nerugm-base-0 / README.md
apwic's picture
End of training
38cab9e verified
|
raw
history blame
3.31 kB
metadata
language:
  - id
license: mit
base_model: indolem/indobert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: nerugm-base-0
    results: []

nerugm-base-0

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2749
  • Precision: 0.8234
  • Recall: 0.8964
  • F1: 0.8584
  • Accuracy: 0.9631

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.3551 1.0 106 0.1873 0.6789 0.8757 0.7649 0.9414
0.1199 2.0 212 0.1308 0.7602 0.8817 0.8164 0.9611
0.0746 3.0 318 0.1383 0.7755 0.8787 0.8239 0.9618
0.0497 4.0 424 0.1717 0.7922 0.8462 0.8183 0.9554
0.0289 5.0 530 0.1706 0.8027 0.8787 0.8390 0.9621
0.023 6.0 636 0.1929 0.7688 0.8757 0.8188 0.9585
0.0161 7.0 742 0.2457 0.7769 0.8757 0.8234 0.9539
0.0106 8.0 848 0.2450 0.7926 0.8817 0.8347 0.9572
0.0065 9.0 954 0.2315 0.8150 0.8994 0.8551 0.9629
0.0053 10.0 1060 0.2373 0.8147 0.8846 0.8482 0.9626
0.004 11.0 1166 0.2421 0.8283 0.8846 0.8555 0.9639
0.003 12.0 1272 0.2572 0.808 0.8964 0.8499 0.9621
0.0027 13.0 1378 0.2516 0.8135 0.8905 0.8503 0.9616
0.0012 14.0 1484 0.2636 0.8123 0.8964 0.8523 0.9649
0.002 15.0 1590 0.2672 0.8091 0.8905 0.8479 0.9626
0.0012 16.0 1696 0.2610 0.8130 0.8876 0.8487 0.9634
0.001 17.0 1802 0.2694 0.8251 0.8935 0.8580 0.9631
0.0012 18.0 1908 0.2815 0.8177 0.9024 0.8579 0.9626
0.0012 19.0 2014 0.2723 0.8229 0.8935 0.8567 0.9629
0.0008 20.0 2120 0.2749 0.8234 0.8964 0.8584 0.9631

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2