metadata
language:
- id
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: nerugm-lora-r8-2
results: []
nerugm-lora-r8-2
This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1743
- Precision: 0.6820
- Recall: 0.8289
- F1: 0.7483
- Accuracy: 0.9445
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
1.2665 | 1.0 | 106 | 0.7137 | 0.0 | 0.0 | 0.0 | 0.8449 |
0.713 | 2.0 | 212 | 0.6075 | 0.0 | 0.0 | 0.0 | 0.8451 |
0.6346 | 3.0 | 318 | 0.5231 | 0.1905 | 0.0118 | 0.0222 | 0.8494 |
0.5555 | 4.0 | 424 | 0.4458 | 0.275 | 0.0649 | 0.1050 | 0.8656 |
0.4696 | 5.0 | 530 | 0.3715 | 0.4802 | 0.2861 | 0.3586 | 0.8949 |
0.3932 | 6.0 | 636 | 0.3134 | 0.5563 | 0.5251 | 0.5402 | 0.9194 |
0.3299 | 7.0 | 742 | 0.2706 | 0.5968 | 0.6637 | 0.6285 | 0.9277 |
0.2896 | 8.0 | 848 | 0.2433 | 0.62 | 0.7316 | 0.6712 | 0.9340 |
0.2656 | 9.0 | 954 | 0.2277 | 0.6289 | 0.7699 | 0.6923 | 0.9355 |
0.2442 | 10.0 | 1060 | 0.2082 | 0.6526 | 0.7758 | 0.7089 | 0.9387 |
0.23 | 11.0 | 1166 | 0.2020 | 0.6390 | 0.7935 | 0.7079 | 0.9382 |
0.2229 | 12.0 | 1272 | 0.1977 | 0.6524 | 0.8083 | 0.7220 | 0.9385 |
0.2132 | 13.0 | 1378 | 0.1886 | 0.6602 | 0.8083 | 0.7268 | 0.9402 |
0.2055 | 14.0 | 1484 | 0.1810 | 0.6708 | 0.7994 | 0.7295 | 0.9415 |
0.2038 | 15.0 | 1590 | 0.1822 | 0.6595 | 0.8112 | 0.7275 | 0.9405 |
0.2004 | 16.0 | 1696 | 0.1788 | 0.6731 | 0.8201 | 0.7394 | 0.9430 |
0.1966 | 17.0 | 1802 | 0.1775 | 0.6731 | 0.8260 | 0.7417 | 0.9432 |
0.1931 | 18.0 | 1908 | 0.1765 | 0.6683 | 0.8260 | 0.7388 | 0.9435 |
0.1937 | 19.0 | 2014 | 0.1749 | 0.6747 | 0.8260 | 0.7427 | 0.9437 |
0.1888 | 20.0 | 2120 | 0.1743 | 0.6820 | 0.8289 | 0.7483 | 0.9445 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2