apwic's picture
Model save
d640c9c verified
|
raw
history blame
3.32 kB
metadata
license: mit
base_model: indolem/indobert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: sentiment-lora-r4a2d0.15-0
    results: []

sentiment-lora-r4a2d0.15-0

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3513
  • Accuracy: 0.8471
  • Precision: 0.8147
  • Recall: 0.8193
  • F1: 0.8169

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 30
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.5621 1.0 122 0.5100 0.7218 0.6593 0.6482 0.6527
0.5049 2.0 244 0.4890 0.7343 0.6945 0.7195 0.7011
0.4776 3.0 366 0.4480 0.7594 0.7150 0.7323 0.7216
0.4422 4.0 488 0.4104 0.7945 0.7524 0.7446 0.7482
0.4146 5.0 610 0.4257 0.7594 0.7202 0.7473 0.7283
0.3828 6.0 732 0.3869 0.8246 0.7880 0.7909 0.7894
0.3697 7.0 854 0.3959 0.8145 0.7766 0.7988 0.7854
0.3486 8.0 976 0.3808 0.8321 0.7961 0.8087 0.8018
0.3437 9.0 1098 0.3738 0.8271 0.7904 0.8001 0.7949
0.3317 10.0 1220 0.3643 0.8471 0.8159 0.8143 0.8151
0.3114 11.0 1342 0.3683 0.8271 0.7902 0.8051 0.7968
0.3035 12.0 1464 0.3660 0.8346 0.7988 0.8155 0.8061
0.3117 13.0 1586 0.3518 0.8471 0.8167 0.8118 0.8142
0.3048 14.0 1708 0.3533 0.8446 0.8115 0.8176 0.8144
0.2916 15.0 1830 0.3570 0.8421 0.8083 0.8158 0.8119
0.2832 16.0 1952 0.3579 0.8471 0.8138 0.8243 0.8187
0.284 17.0 2074 0.3496 0.8471 0.8153 0.8168 0.8160
0.2906 18.0 2196 0.3537 0.8446 0.8111 0.8201 0.8153
0.2805 19.0 2318 0.3505 0.8496 0.8186 0.8186 0.8186
0.2815 20.0 2440 0.3513 0.8471 0.8147 0.8193 0.8169

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2