apwic's picture
Model save
1632c7d verified
|
raw
history blame
3.32 kB
metadata
license: mit
base_model: indolem/indobert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: sentiment-lora-r8a2d0.1-1
    results: []

sentiment-lora-r8a2d0.1-1

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3035
  • Accuracy: 0.8747
  • Precision: 0.8523
  • Recall: 0.8413
  • F1: 0.8465

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 30
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.5655 1.0 122 0.5179 0.7243 0.6623 0.6499 0.6548
0.5048 2.0 244 0.4926 0.7519 0.7079 0.7270 0.7147
0.4529 3.0 366 0.4301 0.7995 0.7581 0.7606 0.7593
0.393 4.0 488 0.3863 0.8221 0.7871 0.7766 0.7814
0.3754 5.0 610 0.3868 0.8246 0.7892 0.8209 0.8003
0.3455 6.0 732 0.3605 0.8446 0.8126 0.8126 0.8126
0.3344 7.0 854 0.3396 0.8546 0.8263 0.8196 0.8229
0.3157 8.0 976 0.3319 0.8672 0.8436 0.8310 0.8369
0.3076 9.0 1098 0.3273 0.8546 0.8284 0.8146 0.8210
0.2948 10.0 1220 0.3238 0.8747 0.8552 0.8363 0.8448
0.2737 11.0 1342 0.3199 0.8697 0.8474 0.8328 0.8395
0.2741 12.0 1464 0.3190 0.8596 0.8299 0.8332 0.8315
0.275 13.0 1586 0.3146 0.8772 0.8628 0.8331 0.8458
0.2736 14.0 1708 0.3104 0.8697 0.8460 0.8353 0.8404
0.263 15.0 1830 0.3112 0.8672 0.8393 0.8410 0.8402
0.2583 16.0 1952 0.3086 0.8722 0.8453 0.8471 0.8462
0.2544 17.0 2074 0.3065 0.8722 0.8512 0.8346 0.8422
0.2594 18.0 2196 0.3056 0.8697 0.8449 0.8378 0.8412
0.256 19.0 2318 0.3043 0.8722 0.8512 0.8346 0.8422
0.2515 20.0 2440 0.3035 0.8747 0.8523 0.8413 0.8465

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2