sentiment-pt-pl10-1 / README.md
apwic's picture
End of training
bb89480 verified
metadata
language:
  - id
license: mit
base_model: indolem/indobert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: sentiment-pt-pl10-1
    results: []

sentiment-pt-pl10-1

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3090
  • Accuracy: 0.8847
  • Precision: 0.8609
  • Recall: 0.8609
  • F1: 0.8609

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 30
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.5535 1.0 122 0.5041 0.7243 0.6584 0.6324 0.6401
0.4636 2.0 244 0.4692 0.7669 0.7253 0.7476 0.7331
0.4023 3.0 366 0.3605 0.8371 0.8326 0.7572 0.7809
0.3202 4.0 488 0.3256 0.8546 0.8357 0.8021 0.8159
0.2919 5.0 610 0.3067 0.8772 0.8592 0.8381 0.8475
0.2657 6.0 732 0.3400 0.8521 0.8193 0.8554 0.8320
0.2559 7.0 854 0.2993 0.8747 0.8451 0.8613 0.8524
0.2369 8.0 976 0.3018 0.8872 0.8760 0.8452 0.8584
0.2178 9.0 1098 0.2926 0.8847 0.8634 0.8559 0.8595
0.2118 10.0 1220 0.2955 0.8872 0.8672 0.8577 0.8622
0.2034 11.0 1342 0.2934 0.8847 0.8679 0.8484 0.8573
0.1856 12.0 1464 0.2978 0.8797 0.8572 0.8499 0.8534
0.1775 13.0 1586 0.3039 0.8797 0.8651 0.8374 0.8494
0.1719 14.0 1708 0.3036 0.8872 0.8672 0.8577 0.8622
0.1621 15.0 1830 0.2990 0.8822 0.8555 0.8642 0.8596
0.1535 16.0 1952 0.3040 0.8847 0.8599 0.8634 0.8616
0.1504 17.0 2074 0.3190 0.8797 0.8616 0.8424 0.8510
0.1459 18.0 2196 0.3101 0.8772 0.8514 0.8531 0.8522
0.1444 19.0 2318 0.3119 0.8822 0.8624 0.8492 0.8553
0.1384 20.0 2440 0.3090 0.8847 0.8609 0.8609 0.8609

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2