metadata
language:
- id
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: sentiment-pt-pl10-1
results: []
sentiment-pt-pl10-1
This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3090
- Accuracy: 0.8847
- Precision: 0.8609
- Recall: 0.8609
- F1: 0.8609
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 30
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.5535 | 1.0 | 122 | 0.5041 | 0.7243 | 0.6584 | 0.6324 | 0.6401 |
0.4636 | 2.0 | 244 | 0.4692 | 0.7669 | 0.7253 | 0.7476 | 0.7331 |
0.4023 | 3.0 | 366 | 0.3605 | 0.8371 | 0.8326 | 0.7572 | 0.7809 |
0.3202 | 4.0 | 488 | 0.3256 | 0.8546 | 0.8357 | 0.8021 | 0.8159 |
0.2919 | 5.0 | 610 | 0.3067 | 0.8772 | 0.8592 | 0.8381 | 0.8475 |
0.2657 | 6.0 | 732 | 0.3400 | 0.8521 | 0.8193 | 0.8554 | 0.8320 |
0.2559 | 7.0 | 854 | 0.2993 | 0.8747 | 0.8451 | 0.8613 | 0.8524 |
0.2369 | 8.0 | 976 | 0.3018 | 0.8872 | 0.8760 | 0.8452 | 0.8584 |
0.2178 | 9.0 | 1098 | 0.2926 | 0.8847 | 0.8634 | 0.8559 | 0.8595 |
0.2118 | 10.0 | 1220 | 0.2955 | 0.8872 | 0.8672 | 0.8577 | 0.8622 |
0.2034 | 11.0 | 1342 | 0.2934 | 0.8847 | 0.8679 | 0.8484 | 0.8573 |
0.1856 | 12.0 | 1464 | 0.2978 | 0.8797 | 0.8572 | 0.8499 | 0.8534 |
0.1775 | 13.0 | 1586 | 0.3039 | 0.8797 | 0.8651 | 0.8374 | 0.8494 |
0.1719 | 14.0 | 1708 | 0.3036 | 0.8872 | 0.8672 | 0.8577 | 0.8622 |
0.1621 | 15.0 | 1830 | 0.2990 | 0.8822 | 0.8555 | 0.8642 | 0.8596 |
0.1535 | 16.0 | 1952 | 0.3040 | 0.8847 | 0.8599 | 0.8634 | 0.8616 |
0.1504 | 17.0 | 2074 | 0.3190 | 0.8797 | 0.8616 | 0.8424 | 0.8510 |
0.1459 | 18.0 | 2196 | 0.3101 | 0.8772 | 0.8514 | 0.8531 | 0.8522 |
0.1444 | 19.0 | 2318 | 0.3119 | 0.8822 | 0.8624 | 0.8492 | 0.8553 |
0.1384 | 20.0 | 2440 | 0.3090 | 0.8847 | 0.8609 | 0.8609 | 0.8609 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2