arincon's picture
arincon/ia-detection-deberta-v3-small
c604148
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - autextification2023
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: ia-detection-deberta-v3-small
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: autextification2023
          type: autextification2023
          config: detection_en
          split: train
          args: detection_en
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6245419567607182
          - name: F1
            type: f1
            value: 0.7308134379823322
          - name: Precision
            type: precision
            value: 0.5776958621047713
          - name: Recall
            type: recall
            value: 0.9943699731903485

ia-detection-deberta-v3-small

This model is a fine-tuned version of microsoft/deberta-v3-small on the autextification2023 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0506
  • Accuracy: 0.6245
  • F1: 0.7308
  • Precision: 0.5777
  • Recall: 0.9944

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.2303 1.0 3808 0.3607 0.8984 0.8934 0.9231 0.8655
0.1757 2.0 7616 0.5627 0.8606 0.8731 0.7903 0.9754
0.0372 3.0 11424 0.4746 0.8978 0.9014 0.8575 0.9502
0.1016 4.0 15232 0.6520 0.8910 0.8932 0.8620 0.9267
0.0871 5.0 19040 0.7452 0.8730 0.8797 0.8235 0.9441
0.0002 6.0 22848 0.7724 0.8942 0.8942 0.8802 0.9087

Framework versions

  • Transformers 4.26.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.13.3