|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- autextification2023 |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: ia-detection-deberta-v3-small |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: autextification2023 |
|
type: autextification2023 |
|
config: detection_en |
|
split: train |
|
args: detection_en |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.6245419567607182 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7308134379823322 |
|
- name: Precision |
|
type: precision |
|
value: 0.5776958621047713 |
|
- name: Recall |
|
type: recall |
|
value: 0.9943699731903485 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ia-detection-deberta-v3-small |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the autextification2023 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.0506 |
|
- Accuracy: 0.6245 |
|
- F1: 0.7308 |
|
- Precision: 0.5777 |
|
- Recall: 0.9944 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.2303 | 1.0 | 3808 | 0.3607 | 0.8984 | 0.8934 | 0.9231 | 0.8655 | |
|
| 0.1757 | 2.0 | 7616 | 0.5627 | 0.8606 | 0.8731 | 0.7903 | 0.9754 | |
|
| 0.0372 | 3.0 | 11424 | 0.4746 | 0.8978 | 0.9014 | 0.8575 | 0.9502 | |
|
| 0.1016 | 4.0 | 15232 | 0.6520 | 0.8910 | 0.8932 | 0.8620 | 0.9267 | |
|
| 0.0871 | 5.0 | 19040 | 0.7452 | 0.8730 | 0.8797 | 0.8235 | 0.9441 | |
|
| 0.0002 | 6.0 | 22848 | 0.7724 | 0.8942 | 0.8942 | 0.8802 | 0.9087 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.13.3 |
|
|