sulaimank's picture
End of training
dfa4dca verified
metadata
library_name: transformers
language:
  - lg
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
datasets:
  - yogera
metrics:
  - wer
model-index:
  - name: wav2vec2-bert
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Yogera
          type: yogera
        metrics:
          - name: Wer
            type: wer
            value: 0.12906588824020016

wav2vec2-bert

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the Yogera dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2157
  • Wer: 0.1291
  • Cer: 0.0296

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.6428 1.0 257 0.1958 0.2392 0.0488
0.1608 2.0 514 0.1623 0.1868 0.0393
0.1216 3.0 771 0.1471 0.1663 0.0368
0.1001 4.0 1028 0.1483 0.1601 0.0351
0.0859 5.0 1285 0.1471 0.1497 0.0332
0.0742 6.0 1542 0.1478 0.1468 0.0315
0.0641 7.0 1799 0.1642 0.1476 0.0326
0.0544 8.0 2056 0.1520 0.1461 0.0322
0.0489 9.0 2313 0.1596 0.1386 0.0312
0.0452 10.0 2570 0.1521 0.1408 0.0320
0.04 11.0 2827 0.1754 0.1395 0.0306
0.0371 12.0 3084 0.1703 0.1405 0.0309
0.0329 13.0 3341 0.1657 0.1447 0.0318
0.0323 14.0 3598 0.1695 0.1327 0.0298
0.0282 15.0 3855 0.1852 0.1356 0.0310
0.0237 16.0 4112 0.1728 0.1399 0.0308
0.0229 17.0 4369 0.1810 0.1301 0.0291
0.02 18.0 4626 0.1781 0.1367 0.0304
0.0204 19.0 4883 0.2039 0.1329 0.0293
0.0186 20.0 5140 0.1929 0.1366 0.0302
0.0164 21.0 5397 0.2022 0.1356 0.0301
0.0154 22.0 5654 0.1787 0.1307 0.0293
0.0127 23.0 5911 0.2086 0.1296 0.0290
0.0129 24.0 6168 0.2094 0.1281 0.0287
0.0108 25.0 6425 0.2148 0.1254 0.0280
0.0122 26.0 6682 0.2091 0.1339 0.0305
0.0106 27.0 6939 0.2030 0.1315 0.0295
0.0102 28.0 7196 0.2092 0.1241 0.0282
0.0088 29.0 7453 0.2078 0.1290 0.0287
0.008 30.0 7710 0.2112 0.1298 0.0282
0.0084 31.0 7967 0.1972 0.1305 0.0295
0.0074 32.0 8224 0.2130 0.1337 0.0293
0.0062 33.0 8481 0.2141 0.1308 0.0297
0.0065 34.0 8738 0.2151 0.1319 0.0296
0.0079 35.0 8995 0.2070 0.1253 0.0279
0.0059 36.0 9252 0.2229 0.1267 0.0285
0.0071 37.0 9509 0.2218 0.1295 0.0297
0.0066 38.0 9766 0.2157 0.1291 0.0296

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.1.0+cu118
  • Datasets 3.0.1
  • Tokenizers 0.20.1