|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- wikiann |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: deberta-finetuned-ner-connll-late-stop |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: wikiann |
|
type: wikiann |
|
config: en |
|
split: train |
|
args: en |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.830192600803658 |
|
- name: Recall |
|
type: recall |
|
value: 0.8470945850417079 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8385584324702589 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9228861596598961 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# deberta-finetuned-ner-connll-late-stop |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the wikiann dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5259 |
|
- Precision: 0.8302 |
|
- Recall: 0.8471 |
|
- F1: 0.8386 |
|
- Accuracy: 0.9229 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 7 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.3408 | 1.0 | 1875 | 0.3639 | 0.7462 | 0.7887 | 0.7669 | 0.8966 | |
|
| 0.2435 | 2.0 | 3750 | 0.2933 | 0.8104 | 0.8332 | 0.8217 | 0.9178 | |
|
| 0.1822 | 3.0 | 5625 | 0.3034 | 0.8147 | 0.8388 | 0.8266 | 0.9221 | |
|
| 0.1402 | 4.0 | 7500 | 0.3667 | 0.8275 | 0.8474 | 0.8374 | 0.9235 | |
|
| 0.1013 | 5.0 | 9375 | 0.4290 | 0.8285 | 0.8448 | 0.8366 | 0.9227 | |
|
| 0.0677 | 6.0 | 11250 | 0.4914 | 0.8259 | 0.8473 | 0.8365 | 0.9231 | |
|
| 0.0439 | 7.0 | 13125 | 0.5259 | 0.8302 | 0.8471 | 0.8386 | 0.9229 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.22.1 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|