metadata
license: bsd-3-clause
base_model: MIT/ast-finetuned-audioset-10-10-0.4593
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.9
ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.4793
- Accuracy: 0.9
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 25
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6559 | 1.0 | 112 | 0.5081 | 0.86 |
0.5141 | 2.0 | 225 | 0.5618 | 0.77 |
0.5517 | 3.0 | 337 | 0.5009 | 0.84 |
0.6651 | 4.0 | 450 | 0.7811 | 0.82 |
0.0057 | 5.0 | 562 | 0.3074 | 0.93 |
0.0018 | 6.0 | 675 | 0.4843 | 0.87 |
0.0007 | 7.0 | 787 | 0.6949 | 0.85 |
0.0007 | 8.0 | 900 | 0.6981 | 0.88 |
0.0007 | 9.0 | 1012 | 0.8356 | 0.87 |
0.0001 | 10.0 | 1125 | 0.6164 | 0.89 |
0.1709 | 11.0 | 1237 | 0.5464 | 0.89 |
0.0001 | 12.0 | 1350 | 0.4885 | 0.88 |
0.0003 | 13.0 | 1462 | 0.4970 | 0.91 |
0.0 | 14.0 | 1575 | 0.5346 | 0.88 |
0.0001 | 15.0 | 1687 | 0.5526 | 0.89 |
0.0 | 16.0 | 1800 | 0.4808 | 0.91 |
0.0 | 17.0 | 1912 | 0.4999 | 0.9 |
0.0 | 18.0 | 2025 | 0.4909 | 0.89 |
0.0 | 19.0 | 2137 | 0.4953 | 0.89 |
0.0 | 20.0 | 2250 | 0.4883 | 0.9 |
0.0543 | 21.0 | 2362 | 0.4830 | 0.91 |
0.0 | 22.0 | 2475 | 0.4811 | 0.9 |
0.0 | 23.0 | 2587 | 0.4805 | 0.9 |
0.0 | 24.0 | 2700 | 0.4785 | 0.91 |
0.0 | 24.89 | 2800 | 0.4793 | 0.9 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.0.1
- Datasets 2.14.5
- Tokenizers 0.15.0