metadata
license: apache-2.0
datasets:
- go_emotions
metrics:
- accuracy
model-index:
- name: xtremedistil-emotion
results:
- task:
name: Multi Label Text Classification
type: multi_label_classification
dataset:
name: go_emotions
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: NaN
xtremedistil-l6-h384-go-emotion
This model is a fine-tuned version of microsoft/xtremedistil-l6-h384-uncased on the go_emotions dataset.
See notebook for how the model was trained and converted to ONNX format
This model is deployed to aiserv.cloud for live demo of the model.
See https://github.com/jobergum/browser-ml-inference for how to reproduce.
Training hyperparameters
- batch size 128
- learning_rate=3e-05
- epocs 4
Num examples = 211225 Num Epochs = 4 Instantaneous batch size per device = 128 Total train batch size (w. parallel, distributed & accumulation) = 128 Gradient Accumulation steps = 1 Total optimization steps = 6604 [6604/6604 53:23, Epoch 4/4] Step Training Loss 500 0.263200 1000 0.156900 1500 0.152500 2000 0.145400 2500 0.140500 3000 0.135900 3500 0.132800 4000 0.129400 4500 0.127200 5000 0.125700 5500 0.124400 6000 0.124100 6500 0.123400