|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- go_emotions |
|
|
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: xtremedistil-emotion |
|
results: |
|
- task: |
|
name: Multi Label Text Classification |
|
type: multi_label_classification |
|
dataset: |
|
name: go_emotions |
|
type: emotion |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: NaN |
|
|
|
--- |
|
# xtremedistil-l6-h384-go-emotion |
|
This model is a fine-tuned version of [microsoft/xtremedistil-l6-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h384-uncased) on the |
|
[go_emotions dataset](https://huggingface.co/datasets/go_emotions). |
|
|
|
See notebook for how the model was trained and converted to ONNX format [![Training Notebook](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/jobergum/emotion/blob/main/TrainGoEmotions.ipynb) |
|
|
|
This model is deployed to [aiserv.cloud](https://aiserv.cloud/) for live demo of the model. |
|
|
|
See [https://github.com/jobergum/browser-ml-inference](https://github.com/jobergum/browser-ml-inference) for how to reproduce. |
|
|
|
|
|
### Training hyperparameters |
|
- batch size 128 |
|
- learning_rate=3e-05 |
|
- epocs 4 |
|
<pre> |
|
Num examples = 211225 |
|
Num Epochs = 4 |
|
Instantaneous batch size per device = 128 |
|
Total train batch size (w. parallel, distributed & accumulation) = 128 |
|
Gradient Accumulation steps = 1 |
|
Total optimization steps = 6604 |
|
[6604/6604 53:23, Epoch 4/4] |
|
Step Training Loss |
|
500 0.263200 |
|
1000 0.156900 |
|
1500 0.152500 |
|
2000 0.145400 |
|
2500 0.140500 |
|
3000 0.135900 |
|
3500 0.132800 |
|
4000 0.129400 |
|
4500 0.127200 |
|
5000 0.125700 |
|
5500 0.124400 |
|
6000 0.124100 |
|
6500 0.123400 |
|
</pre> |