begnini's picture
contratos_tceal
9b36d49
metadata
base_model: pierreguillou/ner-bert-large-cased-pt-lenerbr
tags:
  - generated_from_trainer
datasets:
  - contratos_tceal
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: ner-bert-large-cased-pt-lenerbr-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: contratos_tceal
          type: contratos_tceal
          config: contratos_tceal
          split: validation
          args: contratos_tceal
        metrics:
          - name: Precision
            type: precision
            value: 0.7549019607843137
          - name: Recall
            type: recall
            value: 0.8115313081215128
          - name: F1
            type: f1
            value: 0.7821930086644756
          - name: Accuracy
            type: accuracy
            value: 0.883160638230246

ner-bert-large-cased-pt-lenerbr-finetuned-ner

This model is a fine-tuned version of pierreguillou/ner-bert-large-cased-pt-lenerbr on the contratos_tceal dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Precision: 0.7549
  • Recall: 0.8115
  • F1: 0.7822
  • Accuracy: 0.8832

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 91 nan 0.6987 0.7433 0.7203 0.8620
No log 2.0 182 nan 0.7040 0.7564 0.7292 0.8624
No log 3.0 273 nan 0.7317 0.7929 0.7611 0.8731
No log 4.0 364 nan 0.7501 0.8097 0.7788 0.8838
No log 5.0 455 nan 0.7504 0.8332 0.7897 0.8857
0.3495 6.0 546 nan 0.7551 0.8103 0.7817 0.8799
0.3495 7.0 637 nan 0.7533 0.8215 0.7859 0.8824
0.3495 8.0 728 nan 0.7578 0.7991 0.7779 0.8785
0.3495 9.0 819 nan 0.7520 0.8196 0.7843 0.8840
0.3495 10.0 910 nan 0.7549 0.8115 0.7822 0.8832

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0