metadata
base_model: pierreguillou/ner-bert-large-cased-pt-lenerbr
tags:
- generated_from_trainer
datasets:
- contratos_tceal
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: ner-bert-large-cased-pt-lenerbr-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: contratos_tceal
type: contratos_tceal
config: contratos_tceal
split: validation
args: contratos_tceal
metrics:
- name: Precision
type: precision
value: 0.7549019607843137
- name: Recall
type: recall
value: 0.8115313081215128
- name: F1
type: f1
value: 0.7821930086644756
- name: Accuracy
type: accuracy
value: 0.883160638230246
ner-bert-large-cased-pt-lenerbr-finetuned-ner
This model is a fine-tuned version of pierreguillou/ner-bert-large-cased-pt-lenerbr on the contratos_tceal dataset. It achieves the following results on the evaluation set:
- Loss: nan
- Precision: 0.7549
- Recall: 0.8115
- F1: 0.7822
- Accuracy: 0.8832
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 91 | nan | 0.6987 | 0.7433 | 0.7203 | 0.8620 |
No log | 2.0 | 182 | nan | 0.7040 | 0.7564 | 0.7292 | 0.8624 |
No log | 3.0 | 273 | nan | 0.7317 | 0.7929 | 0.7611 | 0.8731 |
No log | 4.0 | 364 | nan | 0.7501 | 0.8097 | 0.7788 | 0.8838 |
No log | 5.0 | 455 | nan | 0.7504 | 0.8332 | 0.7897 | 0.8857 |
0.3495 | 6.0 | 546 | nan | 0.7551 | 0.8103 | 0.7817 | 0.8799 |
0.3495 | 7.0 | 637 | nan | 0.7533 | 0.8215 | 0.7859 | 0.8824 |
0.3495 | 8.0 | 728 | nan | 0.7578 | 0.7991 | 0.7779 | 0.8785 |
0.3495 | 9.0 | 819 | nan | 0.7520 | 0.8196 | 0.7843 | 0.8840 |
0.3495 | 10.0 | 910 | nan | 0.7549 | 0.8115 | 0.7822 | 0.8832 |
Framework versions
- Transformers 4.36.0
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0