|
import os |
|
import numpy as np |
|
from skimage import io |
|
from glob import glob |
|
from tqdm import tqdm |
|
import cv2 |
|
import torch |
|
import torch.nn.functional as F |
|
from torchvision.transforms.functional import normalize |
|
from models import ISNetDIS |
|
|
|
|
|
if __name__ == "__main__": |
|
dataset_path="input_images" |
|
model_path="model.pth" |
|
result_path="output_results" |
|
|
|
if not os.path.exists(result_path): |
|
os.makedirs(result_path) |
|
|
|
input_size=[1024,1024] |
|
net=ISNetDIS() |
|
|
|
if torch.cuda.is_available(): |
|
net.load_state_dict(torch.load(model_path)) |
|
net=net.cuda() |
|
else: |
|
net.load_state_dict(torch.load(model_path,map_location="cpu")) |
|
net.eval() |
|
|
|
im_list = glob(dataset_path+"/*.jpg")+glob(dataset_path+"/*.JPG")+glob(dataset_path+"/*.jpeg")+glob(dataset_path+"/*.JPEG")+glob(dataset_path+"/*.png")+glob(dataset_path+"/*.PNG")+glob(dataset_path+"/*.bmp")+glob(dataset_path+"/*.BMP")+glob(dataset_path+"/*.tiff")+glob(dataset_path+"/*.TIFF") |
|
with torch.no_grad(): |
|
for i, im_path in tqdm(enumerate(im_list), total=len(im_list)): |
|
print("im_path: ", im_path) |
|
im = io.imread(im_path) |
|
if len(im.shape) < 3: |
|
im = im[:, :, np.newaxis] |
|
im_shp=im.shape[0:2] |
|
im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1) |
|
im_tensor = F.upsample(torch.unsqueeze(im_tensor,0), input_size, mode="bilinear").type(torch.uint8) |
|
image = torch.divide(im_tensor,255.0) |
|
image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0]) |
|
|
|
if torch.cuda.is_available(): |
|
image=image.cuda() |
|
|
|
result=net(image) |
|
result=torch.squeeze(F.upsample(result[0][0],im_shp,mode='bilinear'),0) |
|
ma = torch.max(result) |
|
mi = torch.min(result) |
|
result = (result-mi)/(ma-mi) |
|
im_name=im_path.split('/')[-1].split('.')[0] |
|
cv2.imwrite(os.path.join(result_path,im_name+".png"),(result*255).permute(1,2,0).cpu().data.numpy().astype(np.uint8)) |
|
|