car13mesquita's picture
End of training
a6e56a5 verified
metadata
license: mit
base_model: xlm-roberta-base
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: xlmroberta-finetuned-sem_eval-rest14-english
    results: []

xlmroberta-finetuned-sem_eval-rest14-english

This model is a fine-tuned version of xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0880
  • F1: 0.4875
  • Roc Auc: 0.8755
  • Accuracy: 0.7087
  • Hamming Loss: 0.0254

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy Hamming Loss
No log 1.0 381 0.1858 0.0351 0.6366 0.2288 0.0609
0.2234 2.0 762 0.1354 0.1345 0.6905 0.3325 0.0418
0.1455 3.0 1143 0.1091 0.2639 0.7709 0.5138 0.0343
0.1064 4.0 1524 0.0971 0.3768 0.8313 0.6212 0.0282
0.1064 5.0 1905 0.0917 0.3767 0.8316 0.6312 0.0286
0.0807 6.0 2286 0.0880 0.3966 0.8459 0.65 0.0274
0.0657 7.0 2667 0.0922 0.3977 0.8513 0.6525 0.0283
0.0527 8.0 3048 0.0903 0.4129 0.8555 0.6575 0.028
0.0527 9.0 3429 0.0921 0.4298 0.8611 0.6713 0.0278
0.0453 10.0 3810 0.0882 0.4612 0.8697 0.6887 0.0261
0.0385 11.0 4191 0.0859 0.4567 0.8701 0.6925 0.0253
0.0339 12.0 4572 0.0881 0.4600 0.8726 0.7025 0.0258
0.0339 13.0 4953 0.0882 0.4818 0.8775 0.7063 0.0252
0.0304 14.0 5334 0.0879 0.4793 0.8742 0.7 0.0254
0.0271 15.0 5715 0.0880 0.4875 0.8755 0.7087 0.0254

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1