|
--- |
|
license: mit |
|
base_model: xlm-roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: xlmroberta-finetuned-sem_eval-rest14-english |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xlmroberta-finetuned-sem_eval-rest14-english |
|
|
|
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0880 |
|
- F1: 0.4875 |
|
- Roc Auc: 0.8755 |
|
- Accuracy: 0.7087 |
|
- Hamming Loss: 0.0254 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | Hamming Loss | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|:------------:| |
|
| No log | 1.0 | 381 | 0.1858 | 0.0351 | 0.6366 | 0.2288 | 0.0609 | |
|
| 0.2234 | 2.0 | 762 | 0.1354 | 0.1345 | 0.6905 | 0.3325 | 0.0418 | |
|
| 0.1455 | 3.0 | 1143 | 0.1091 | 0.2639 | 0.7709 | 0.5138 | 0.0343 | |
|
| 0.1064 | 4.0 | 1524 | 0.0971 | 0.3768 | 0.8313 | 0.6212 | 0.0282 | |
|
| 0.1064 | 5.0 | 1905 | 0.0917 | 0.3767 | 0.8316 | 0.6312 | 0.0286 | |
|
| 0.0807 | 6.0 | 2286 | 0.0880 | 0.3966 | 0.8459 | 0.65 | 0.0274 | |
|
| 0.0657 | 7.0 | 2667 | 0.0922 | 0.3977 | 0.8513 | 0.6525 | 0.0283 | |
|
| 0.0527 | 8.0 | 3048 | 0.0903 | 0.4129 | 0.8555 | 0.6575 | 0.028 | |
|
| 0.0527 | 9.0 | 3429 | 0.0921 | 0.4298 | 0.8611 | 0.6713 | 0.0278 | |
|
| 0.0453 | 10.0 | 3810 | 0.0882 | 0.4612 | 0.8697 | 0.6887 | 0.0261 | |
|
| 0.0385 | 11.0 | 4191 | 0.0859 | 0.4567 | 0.8701 | 0.6925 | 0.0253 | |
|
| 0.0339 | 12.0 | 4572 | 0.0881 | 0.4600 | 0.8726 | 0.7025 | 0.0258 | |
|
| 0.0339 | 13.0 | 4953 | 0.0882 | 0.4818 | 0.8775 | 0.7063 | 0.0252 | |
|
| 0.0304 | 14.0 | 5334 | 0.0879 | 0.4793 | 0.8742 | 0.7 | 0.0254 | |
|
| 0.0271 | 15.0 | 5715 | 0.0880 | 0.4875 | 0.8755 | 0.7087 | 0.0254 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.1 |
|
|