chrishalcrow's picture
Upload folder using huggingface_hub
851c829 verified
metadata
library_name: sklearn
tags:
  - sklearn
  - skops
  - tabular-classification
model_format: skops
model_file: skops-4mj4y_67.skops
widget:
  - structuredData:
      amplitude_cutoff:
        - .nan
        - .nan
        - .nan
      amplitude_cv_median:
        - .nan
        - .nan
        - .nan
      amplitude_cv_range:
        - .nan
        - .nan
        - .nan
      amplitude_median:
        - -231.14950561523438
        - -32.41670227050781
        - -49.5401496887207
      drift_mad:
        - .nan
        - .nan
        - .nan
      drift_ptp:
        - .nan
        - .nan
        - .nan
      drift_std:
        - .nan
        - .nan
        - .nan
      firing_range:
        - 1.8000000000000007
        - 3.2399999999999984
        - 1.4399999999999995
      firing_rate:
        - 14.4
        - 14.6
        - 13.8
      isi_violations_count:
        - 0
        - 0
        - 0
      isi_violations_ratio:
        - 0
        - 0
        - 0
      num_spikes:
        - 144
        - 146
        - 138
      presence_ratio:
        - .nan
        - .nan
        - .nan
      rp_contamination:
        - 0
        - 0
        - 0
      rp_violations:
        - 0
        - 0
        - 0
      sd_ratio:
        - 0.5912728859813103
        - 1.1242492492431155
        - 0.7087562828230378
      sliding_rp_violation:
        - 0.14
        - 0.13
        - 0.145
      snr:
        - 40.52572890814601
        - 6.3489456520122625
        - 9.014227884573495
      sync_spike_2:
        - 0
        - 0
        - 0.007246376811594203
      sync_spike_4:
        - 0
        - 0
        - 0
      sync_spike_8:
        - 0
        - 0
        - 0

Model description

[More Information Needed]

Intended uses & limitations

[More Information Needed]

Training Procedure

[More Information Needed]

Hyperparameters

Click to expand
Hyperparameter Value
memory
steps [('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler()), ('classifier', RandomForestClassifier(class_weight='balanced_subsample', min_samples_leaf=3,
min_samples_split=3, n_estimators=103,
random_state=404159593))]
verbose False
imputer SimpleImputer(strategy='median')
scaler StandardScaler()
classifier RandomForestClassifier(class_weight='balanced_subsample', min_samples_leaf=3,
min_samples_split=3, n_estimators=103,
random_state=404159593)
imputer__add_indicator False
imputer__copy True
imputer__fill_value
imputer__keep_empty_features False
imputer__missing_values nan
imputer__strategy median
scaler__copy True
scaler__with_mean True
scaler__with_std True
classifier__bootstrap True
classifier__ccp_alpha 0.0
classifier__class_weight balanced_subsample
classifier__criterion gini
classifier__max_depth
classifier__max_features sqrt
classifier__max_leaf_nodes
classifier__max_samples
classifier__min_impurity_decrease 0.0
classifier__min_samples_leaf 3
classifier__min_samples_split 3
classifier__min_weight_fraction_leaf 0.0
classifier__monotonic_cst
classifier__n_estimators 103
classifier__n_jobs
classifier__oob_score False
classifier__random_state 404159593
classifier__verbose 0
classifier__warm_start False

Model Plot

Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),('scaler', StandardScaler()),('classifier',RandomForestClassifier(class_weight='balanced_subsample',min_samples_leaf=3, min_samples_split=3,n_estimators=103,random_state=404159593))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Evaluation Results

[More Information Needed]

How to Get Started with the Model

[More Information Needed]

Model Card Authors

This model card is written by following authors:

[More Information Needed]

Model Card Contact

You can contact the model card authors through following channels: [More Information Needed]

Citation

Below you can find information related to citation.

BibTeX:

[More Information Needed]