whisper-tiny-cv-de / README.md
controngo's picture
End of training
088b96a verified
metadata
language:
  - de
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_0
metrics:
  - wer
model-index:
  - name: Whisper Tiny CV de
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0 de 5%
          type: mozilla-foundation/common_voice_16_0
          config: de
          split: None
          args: 'config: de, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 72.91819291819291

Whisper Tiny CV de

This model is a fine-tuned version of openai/whisper-tiny on the Common Voice 11.0 de 5% dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7117
  • Wer: 72.9182

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.35e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 250
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6076 0.2252 250 0.8347 76.3126
0.5955 0.4505 500 0.7893 79.1697
0.5179 0.6757 750 0.7593 82.1978
0.5189 0.9009 1000 0.7370 73.0159
0.3644 1.1261 1250 0.7254 84.1270
0.394 1.3514 1500 0.7183 73.4066
0.3672 1.5766 1750 0.7152 73.1136
0.3751 1.8018 2000 0.7117 72.9182

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1