csikasote's picture
End of training
e23ad97 verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-1b
tags:
  - automatic-speech-recognition
  - genbed
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: xls-r-1b-bem-genbed-all
    results: []

xls-r-1b-bem-genbed-all

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the GENBED - BEM dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2172
  • Wer: 0.7294

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.6827 0.2644 200 2.8347 1.0
1.0401 0.5288 400 0.5636 0.9410
0.4289 0.7931 600 0.4018 0.9029
0.3449 1.0575 800 0.3604 0.8771
0.2954 1.3219 1000 0.3389 0.8741
0.2719 1.5863 1200 0.2962 0.8439
0.2472 1.8506 1400 0.2701 0.8053
0.2093 2.1150 1600 0.2599 0.8285
0.1725 2.3794 1800 0.2534 0.8375
0.1675 2.6438 2000 0.2406 0.7691
0.1632 2.9081 2200 0.2309 0.7616
0.1295 3.1725 2400 0.2387 0.7557
0.1082 3.4369 2600 0.2275 0.7329
0.1059 3.7013 2800 0.2240 0.7329
0.1049 3.9656 3000 0.2172 0.7294
0.0657 4.2300 3200 0.2320 0.7220
0.059 4.4944 3400 0.2341 0.7215
0.0582 4.7588 3600 0.2316 0.7116

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1