csikasote's picture
End of training
9f4f5cb verified
|
raw
history blame
2.72 kB
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-1b
tags:
  - automatic-speech-recognition
  - natbed
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: xls-r-1b-bem-natbed-combined-model
    results: []

xls-r-1b-bem-natbed-combined-model

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the NATBED - BEM dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7801
  • Wer: 0.7879

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.1252 100 1.3725 0.9805
No log 0.2505 200 0.9491 0.8541
No log 0.3757 300 0.9524 0.8137
No log 0.5009 400 1.0355 0.9016
1.7945 0.6262 500 0.9611 0.8788
1.7945 0.7514 600 0.9790 0.8642
1.7945 0.8766 700 0.9877 0.8602
1.7945 1.0019 800 0.9604 0.8925
1.7945 1.1271 900 0.8880 0.8328
0.9885 1.2523 1000 0.8917 0.8368
0.9885 1.3776 1100 0.9034 0.8306
0.9885 1.5028 1200 0.8478 0.7938
0.9885 1.6281 1300 0.8666 0.8628
0.9885 1.7533 1400 0.8331 0.8218
0.8854 1.8785 1500 0.8405 0.8045
0.8854 2.0038 1600 0.7801 0.7879
0.8854 2.1290 1700 0.8305 0.7917
0.8854 2.2542 1800 0.7972 0.7911
0.8854 2.3795 1900 0.7916 0.7758

Framework versions

  • Transformers 4.46.0.dev0
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0