|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-xls-r-1b |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: xls-r-1b-bemba-genbed-combined |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xls-r-1b-bemba-genbed-combined |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5103 |
|
- Wer: 0.7252 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 30.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:------:| |
|
| No log | 0.1375 | 100 | 3.2454 | 1.0 | |
|
| No log | 0.2749 | 200 | 2.9592 | 1.0 | |
|
| No log | 0.4124 | 300 | 1.0579 | 1.0633 | |
|
| No log | 0.5498 | 400 | 0.8291 | 0.9390 | |
|
| 2.3726 | 0.6873 | 500 | 0.9104 | 0.9572 | |
|
| 2.3726 | 0.8247 | 600 | 0.7652 | 0.8985 | |
|
| 2.3726 | 0.9622 | 700 | 0.6910 | 0.8788 | |
|
| 2.3726 | 1.0997 | 800 | 0.5304 | 0.7518 | |
|
| 2.3726 | 1.2371 | 900 | 0.5304 | 0.7565 | |
|
| 0.7002 | 1.3746 | 1000 | 0.5120 | 0.7657 | |
|
| 0.7002 | 1.5120 | 1100 | 0.4937 | 0.7343 | |
|
| 0.7002 | 1.6495 | 1200 | 0.4805 | 0.7139 | |
|
| 0.7002 | 1.7869 | 1300 | 0.4803 | 0.7177 | |
|
| 0.7002 | 1.9244 | 1400 | 0.4576 | 0.6875 | |
|
| 0.5954 | 2.0619 | 1500 | 0.4863 | 0.7114 | |
|
| 0.5954 | 2.1993 | 1600 | 0.5060 | 0.7316 | |
|
| 0.5954 | 2.3368 | 1700 | 0.5103 | 0.7252 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.0.dev0 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.0 |
|
|