|
--- |
|
license: apache-2.0 |
|
base_model: google-t5/t5-large |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: t5-large-finetuned |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-large-finetuned |
|
|
|
This model is a fine-tuned version of [google-t5/t5-large](https://huggingface.co/google-t5/t5-large) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6085 |
|
- Rouge1: 25.8315 |
|
- Rouge2: 11.4547 |
|
- Rougel: 22.5227 |
|
- Rougelsum: 22.7341 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| 1.7803 | 1.0 | 5351 | 1.6070 | 25.1375 | 10.9135 | 21.8817 | 22.0576 | |
|
| 1.4798 | 2.0 | 10702 | 1.4737 | 25.4328 | 11.0728 | 21.8859 | 22.0964 | |
|
| 1.2923 | 3.0 | 16053 | 1.4838 | 25.6553 | 11.3169 | 22.1861 | 22.3694 | |
|
| 1.1509 | 4.0 | 21404 | 1.4842 | 25.7181 | 11.4215 | 22.271 | 22.4394 | |
|
| 1.0404 | 5.0 | 26755 | 1.5121 | 26.0812 | 11.8877 | 22.7516 | 22.941 | |
|
| 0.9533 | 6.0 | 32106 | 1.5602 | 25.5218 | 11.486 | 22.2236 | 22.4401 | |
|
| 0.888 | 7.0 | 37457 | 1.5832 | 25.8289 | 11.5647 | 22.5507 | 22.7091 | |
|
| 0.8424 | 8.0 | 42808 | 1.6085 | 25.8315 | 11.4547 | 22.5227 | 22.7341 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|