Datasets:
license: cc-by-4.0
task_categories:
- image-to-text
language:
- fr
- en
- nl
- it
- es
- ca
pretty_name: CATMuS Medieval
size_categories:
- 100K<n<1M
tags:
- optical-character-recognition
- humanities
- handwritten-text-recognition
Dataset Card for CATMuS Medieval
Join our Discord to ask questions about the dataset:
Dataset Details
Handwritten Text Recognition (HTR) has emerged as a crucial tool for converting manuscripts images into machine-readable formats, enabling researchers and scholars to analyse vast collections efficiently. Despite significant technological progress, establishing consistent ground truth across projects for HTR tasks, particularly for complex and heterogeneous historical sources like medieval manuscripts in Latin scripts (8th-15th century CE), remains nonetheless challenging. We introduce the Consistent Approaches to Transcribing Manuscripts (CATMuS) dataset for medieval manuscripts, which offers:
- a uniform framework for annotation practices for medieval manuscripts,
- a benchmarking environment for evaluating automatic text recognition models across multiple dimensions thanks to rich metadata (century of production, language, genre, script, etc.),
- a benchmarking environment for other tasks (such as script classification or dating approaches),
- a benchmarking environment and finally for exploratory work pertaining to computer vision and digital paleography around line-based tasks, such as generative approaches.
Developed through collaboration among various institutions and projects, CATMuS provides an inter-compatible dataset spanning more than 200 manuscripts and incunabula in 10 different languages, comprising over 160,000 lines of text and 5 million characters spanning from the 8th century to the 16th.
The dataset's consistency in transcription approaches aims to mitigate challenges arising from the diversity in standards for medieval manuscript transcriptions, providing a comprehensive benchmark for evaluating HTR models on historical sources.
Dataset Description
- Curated by: Thibault Clérice
- Funded by: BnF Datalab, Biblissima +, DIM PAMIR
- Language(s) (NLP): Middle and Old French, Middle Dutch, Catalan, Spanish, Navarese, Italian, Venitian, Old English, Latin
- License: CC-BY
Uses
Direct Use
- Handwritten Text Recognition
- Date classification
- Script classification
Out-of-Scope Use
- Text-To-Image
Dataset Structure
- Data contains the main
split
that is loaded throughload_dataset("CATMuS/medieval")
- Data can be split with each manuscript inside train, val and test using the
gen_split
columns which results in a 90/5/5 split - The image is in the
im
column, and the text in thetext
column
Annotations [optional]
Annotation process
The annotation process is described in the dataset paper.
Who are the annotators?
- Pinche, Ariane
- Clérice, Thibault
- Chagué, Alix
- Camps, Jean-Baptiste
- Vlachou-Efstathiou, Malamatenia
- Gille Levenson, Matthias
- Brisville-Fertin, Olivier
- Boschetti, Federico
- Fischer, Franz
- Gervers, Michael
- Boutreux, Agnès
- Manton, Avery
- Gabay, Simon
- Bordier, Julie
- Glaise, Anthony
- Alba, Rachele
- Rubin, Giorgia
- White, Nick
- Karaisl, Antonia
- Leroy, Noé
- Maulu, Marco
- Biay, Sébastien
- Cappe, Zoé
- Konstantinova, Kristina
- Boby, Victor
- Christensen, Kelly
- Pierreville, Corinne
- Aruta, Davide
- Lenzi, Martina
- Le Huëron, Armelle
- Possamaï, Marylène
- Duval, Frédéric
- Mariotti, Violetta
- Morreale, Laura
- Nolibois, Alice
- Foehr-Janssens, Yasmina
- Deleville, Prunelle
- Carnaille, Camille
- Lecomte, Sophie
- Meylan, Aminoel
- Ventura, Simone
- Dugaz, Lucien
Bias, Risks, and Limitations
The data are skewed toward Old French, Middle Dutch and Spanish, specifically from the 14th century.
The only language that is represented over all centuries is Latin, and in each scripts. The other language with a coverage close to Latin is Old French.
Only one document is available in Old English.
Citation
BibTeX:
@unpublished{clerice:hal-04453952,
TITLE = {{CATMuS Medieval: A multilingual large-scale cross-century dataset in Latin script for handwritten text recognition and beyond}},
AUTHOR = {Cl{\'e}rice, Thibault and Pinche, Ariane and Vlachou-Efstathiou, Malamatenia and Chagu{\'e}, Alix and Camps, Jean-Baptiste and Gille-Levenson, Matthias and Brisville-Fertin, Olivier and Fischer, Franz and Gervers, Michaels and Boutreux, Agn{\`e}s and Manton, Avery and Gabay, Simon and O'Connor, Patricia and Haverals, Wouter and Kestemont, Mike and Vandyck, Caroline and Kiessling, Benjamin},
URL = {https://inria.hal.science/hal-04453952},
NOTE = {working paper or preprint},
YEAR = {2024},
MONTH = Feb,
KEYWORDS = {Historical sources ; medieval manuscripts ; Latin scripts ; benchmarking dataset ; multilingual ; handwritten text recognition},
PDF = {https://inria.hal.science/hal-04453952/file/ICDAR24___CATMUS_Medieval-1.pdf},
HAL_ID = {hal-04453952},
HAL_VERSION = {v1},
}
APA:
Thibault Clérice, Ariane Pinche, Malamatenia Vlachou-Efstathiou, Alix Chagué, Jean-Baptiste Camps, et al.. CATMuS Medieval: A multilingual large-scale cross-century dataset in Latin script for handwritten text recognition and beyond. 2024. ⟨hal-04453952⟩
Glossary
- Scripts: In the middle ages, the writing style changed over time, specifically in "litterary" manuscripts, for which we call the general scripts "Bookscripts". This is what CATMuS Medieval covers at the time
Dataset Card Contact
Thibault Clérice ([email protected])