Datasets:
Tasks:
Text Retrieval
Formats:
parquet
Sub-tasks:
document-retrieval
Languages:
Chinese
Size:
1M - 10M
License:
language: | |
- zh | |
multilinguality: | |
- multilingual | |
size_categories: [] | |
source_datasets: [] | |
tags: [] | |
task_categories: | |
- text-retrieval | |
license: | |
- apache-2.0 | |
task_ids: | |
- document-retrieval | |
# Wikipedia (zh) embedded with cohere.ai `multilingual-22-12` encoder | |
We encoded [Wikipedia (zh)](https://zh.wikipedia.org) using the [cohere.ai](https://txt.cohere.ai/multilingual/) `multilingual-22-12` embedding model. | |
To get an overview how this dataset was created and pre-processed, have a look at [Cohere/wikipedia-22-12](https://huggingface.co/datasets/Cohere/wikipedia-22-12). | |
## Embeddings | |
We compute for `title+" "+text` the embeddings using our `multilingual-22-12` embedding model, a state-of-the-art model that works for semantic search in 100 languages. If you want to learn more about this model, have a look at [cohere.ai multilingual embedding model](https://txt.cohere.ai/multilingual/). | |
## Further languages | |
We provide embeddings of Wikipedia in many different languages: | |
[ar](https://huggingface.co/datasets/Cohere/wikipedia-22-12-ar-embeddings), [de](https://huggingface.co/datasets/Cohere/wikipedia-22-12-de-embeddings), [en](https://huggingface.co/datasets/Cohere/wikipedia-22-12-en-embeddings), [es](https://huggingface.co/datasets/Cohere/wikipedia-22-12-es-embeddings), [fr](https://huggingface.co/datasets/Cohere/wikipedia-22-12-fr-embeddings), [hi](https://huggingface.co/datasets/Cohere/wikipedia-22-12-hi-embeddings), [it](https://huggingface.co/datasets/Cohere/wikipedia-22-12-it-embeddings), [ja](https://huggingface.co/datasets/Cohere/wikipedia-22-12-ja-embeddings), [ko](https://huggingface.co/datasets/Cohere/wikipedia-22-12-ko-embeddings), [simple english](https://huggingface.co/datasets/Cohere/wikipedia-22-12-simple-embeddings), [zh](https://huggingface.co/datasets/Cohere/wikipedia-22-12-zh-embeddings), | |
You can find the Wikipedia datasets without embeddings at [Cohere/wikipedia-22-12](https://huggingface.co/datasets/Cohere/wikipedia-22-12). | |
## Loading the dataset | |
You can either load the dataset like this: | |
```python | |
from datasets import load_dataset | |
docs = load_dataset(f"Cohere/wikipedia-22-12-zh-embeddings", split="train") | |
``` | |
Or you can also stream it without downloading it before: | |
```python | |
from datasets import load_dataset | |
docs = load_dataset(f"Cohere/wikipedia-22-12-zh-embeddings", split="train", streaming=True) | |
for doc in docs: | |
docid = doc['id'] | |
title = doc['title'] | |
text = doc['text'] | |
emb = doc['emb'] | |
``` | |
## Search | |
A full search example: | |
```python | |
#Run: pip install cohere datasets | |
from datasets import load_dataset | |
import torch | |
import cohere | |
co = cohere.Client(f"<<COHERE_API_KEY>>") # Add your cohere API key from www.cohere.com | |
#Load at max 1000 documents + embeddings | |
max_docs = 1000 | |
docs_stream = load_dataset(f"Cohere/wikipedia-22-12-zh-embeddings", split="train", streaming=True) | |
docs = [] | |
doc_embeddings = [] | |
for doc in docs_stream: | |
docs.append(doc) | |
doc_embeddings.append(doc['emb']) | |
if len(docs) >= max_docs: | |
break | |
doc_embeddings = torch.tensor(doc_embeddings) | |
query = 'Who founded Youtube' | |
response = co.embed(texts=[query], model='multilingual-22-12') | |
query_embedding = response.embeddings | |
query_embedding = torch.tensor(query_embedding) | |
# Compute dot score between query embedding and document embeddings | |
dot_scores = torch.mm(query_embedding, doc_embeddings.transpose(0, 1)) | |
top_k = torch.topk(dot_scores, k=3) | |
# Print results | |
print("Query:", query) | |
for doc_id in top_k.indices[0].tolist(): | |
print(docs[doc_id]['title']) | |
print(docs[doc_id]['text'], "\n") | |
``` | |
## Performance | |
You can find performance on the MIRACL dataset (a semantic search evaluation dataset) here: [miracl-en-queries-22-12#performance](https://huggingface.co/datasets/Cohere/miracl-en-queries-22-12#performance) |