smartdata-corpus / README.md
phucdev's picture
Update README.md
bce87b6 verified
---
dataset_info:
- config_name: ee
features:
- name: id
dtype: string
- name: text
dtype: string
- name: entity_mentions
list:
- name: id
dtype: string
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: char_start
dtype: int64
- name: char_end
dtype: int64
- name: type
dtype: string
- name: event_mentions
list:
- name: id
dtype: string
- name: trigger
struct:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: char_start
dtype: int64
- name: char_end
dtype: int64
- name: arguments
list:
- name: text
dtype: string
- name: start
dtype: int64
- name: end
dtype: int64
- name: char_start
dtype: int64
- name: char_end
dtype: int64
- name: role
dtype: string
- name: type
dtype: string
- name: event_type
dtype: string
- name: tokens
sequence: string
- name: pos_tags
sequence: string
- name: lemma
sequence: string
- name: ner_tags
sequence: string
splits:
- name: train
num_bytes: 6532239
num_examples: 1861
- name: validation
num_bytes: 792697
num_examples: 228
- name: test
num_bytes: 802322
num_examples: 230
download_size: 3171788
dataset_size: 8127258
- config_name: ner
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence: string
splits:
- name: train
num_bytes: 2062754
num_examples: 1861
- name: validation
num_bytes: 250635
num_examples: 228
- name: test
num_bytes: 255164
num_examples: 230
download_size: 736425
dataset_size: 2568553
- config_name: re
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: entities
sequence:
sequence: int64
- name: entity_roles
sequence: string
- name: entity_types
sequence: string
- name: event_type
dtype: string
- name: entity_ids
sequence: string
splits:
- name: train
num_bytes: 2116771
num_examples: 1007
- name: validation
num_bytes: 265248
num_examples: 129
- name: test
num_bytes: 238094
num_examples: 128
download_size: 801404
dataset_size: 2620113
configs:
- config_name: ee
data_files:
- split: train
path: ee/train-*
- split: validation
path: ee/validation-*
- split: test
path: ee/test-*
- config_name: ner
data_files:
- split: train
path: ner/train-*
- split: validation
path: ner/validation-*
- split: test
path: ner/test-*
- config_name: re
data_files:
- split: train
path: re/train-*
- split: validation
path: re/validation-*
- split: test
path: re/test-*
license: cc-by-4.0
task_categories:
- text-classification
- token-classification
language:
- de
tags:
- finance
- relation-extraction
- event-extraction
- traffic
- industry
pretty_name: SmartData Corpus
size_categories:
- 1K<n<10K
---
# Dataset Card for SmartData Corpus
## Dataset Description
- **Repository:** [https://github.com/dfki-nlp/smartdata-corpus](https://github.com/dfki-nlp/smartdata-corpus)
- **Paper:** [A German Corpus for Fine-Grained Named Entity Recognition and Relation Extraction of Traffic and Industry Events](https://www.dfki.de/web/forschung/projekte-publikationen/publikation/9427/)
### Dataset Summary
SmartData Corpus is a German-language dataset which is human-annotated with entity types and a set of 15 traffic- and
industry-related n-ary relations and events, such as accidents, traffic jams, acquisitions, and strikes.
The corpus consists of newswire texts, Twitter messages, and traffic reports from radio stations, police and
railway companies.
This version of the dataset loader provides configurations for:
- Named Entity Recognition (`ner`): NER tags use the `BIO` tagging scheme
- Relation Extraction (`re`): n-ary Relation Extraction
- Event Extraction (`ee`): formatted similar to https://github.com/nlpcl-lab/ace2005-preprocessing?tab=readme-ov-file#format
For more details see https://github.com/dfki-nlp/smartdata-corpus and https://www.dfki.de/web/forschung/projekte-publikationen/publikation/9427/.
### Supported Tasks and Leaderboards
- **Tasks:** Named Entity Recognition, n-ary Relation Extraction, Event Extraction
- **Leaderboards:**
### Languages
German
## Dataset Structure
### Data Instances
#### ner
An example of 'train' looks as follows.
```json
{
"id": "671734738147758080",
"tokens": ["A1", "Zwischen", "AS", "Munsbach", "und", "AS", "Flaxweiler", "Bauarbeiten", ",", "rechter", "Fahrstreifen", "gesperrt", ",", "Verkehrsbehinderung", ",", "Dauer", ":", "02.12.2015", "...", "#ACL_A1"],
"ner_tags": ["B-LOCATION_STREET", "O", "B-LOCATION", "I-LOCATION", "O", "B-LOCATION", "I-LOCATION", "O", "O", "O", "O", "O", "O", "B-TRIGGER", "O", "O", "O", "B-DATE", "O", "B-LOCATION_STREET"]
}
```
#### re
An example of 'train' looks as follows.
```json
{
"id": "671734738147758080_0",
"tokens": ["A1", "Zwischen", "AS", "Munsbach", "und", "AS", "Flaxweiler", "Bauarbeiten", ",", "rechter", "Fahrstreifen", "gesperrt", ",", "Verkehrsbehinderung", ",", "Dauer", ":", "02.12.2015", "...", "#ACL_A1"],
"entities": [[0, 1], [2, 4], [5, 7], [13, 14], [17, 18], [19, 20]],
"entity_roles": ["location", "start_loc", "end_loc", "trigger", "end_date", "no_arg"],
"entity_types": ["LOCATION_STREET", "LOCATION", "LOCATION", "TRIGGER", "DATE", "LOCATION_STREET"],
"event_type": "Obstruction",
"entity_ids": ["c/ac611f0a-d610-4ab2-9ddf-00132d9374b5", "c/3e01d530-58c4-4f47-9ab3-082a58e8299b", "c/cb6975e8-4409-4bdf-a491-de398b3c3263", "c/684a0ccd-06ff-4a8f-a90f-bdef169077dc", "c/166acddb-0f4d-48eb-98f6-a8b490f2e578", "c/ca3befa0-92da-4ff9-b34d-ec351854cdda"]
}
```
#### ee
An example of 'train' looks as follows.
```json
{
"id": "671734738147758080",
"text": "A1 Zwischen AS Munsbach und AS Flaxweiler Bauarbeiten, rechter Fahrstreifen gesperrt, Verkehrsbehinderung, Dauer: 02.12.2015... #ACL_A1\n",
"entity_mentions": [
{"id": "c/ac611f0a-d610-4ab2-9ddf-00132d9374b5", "text": "A1", "start": 0, "end": 1, "char_start": 0, "char_end": 2, "type": "LOCATION_STREET"},
{"id": "c/3e01d530-58c4-4f47-9ab3-082a58e8299b", "text": "AS Munsbach", "start": 2, "end": 4, "char_start": 12, "char_end": 23, "type": "LOCATION"},
{"id": "c/cb6975e8-4409-4bdf-a491-de398b3c3263", "text": "AS Flaxweiler", "start": 5, "end": 7, "char_start": 28, "char_end": 41, "type": "LOCATION"},
{"id": "c/684a0ccd-06ff-4a8f-a90f-bdef169077dc", "text": "Verkehrsbehinderung", "start": 13, "end": 14, "char_start": 86, "char_end": 105, "type": "TRIGGER"},
{"id": "c/166acddb-0f4d-48eb-98f6-a8b490f2e578", "text": "02.12.2015", "start": 17, "end": 18, "char_start": 114, "char_end": 124, "type": "DATE"},
{"id": "c/ca3befa0-92da-4ff9-b34d-ec351854cdda", "text": "#ACL_A1", "start": 19, "end": 20, "char_start": 128, "char_end": 135, "type": "LOCATION_STREET"}
],
"event_mentions": [
{
"id": "r/802a82c2-c214-4429-b9f1-bf56e46674ee",
"trigger": {
"text": "Verkehrsbehinderung", "start": 13, "end": 14, "char_start": 86, "char_end": 105
},
"arguments": [
{"text": "02.12.2015", "start": 17, "end": 18, "char_start": 114, "char_end": 124, "role": "end_date", "type": "date"},
{"text": "AS Flaxweiler", "start": 5, "end": 7, "char_start": 28, "char_end": 41, "role": "end_loc", "type": "location"},
{"text": "AS Munsbach", "start": 2, "end": 4, "char_start": 12, "char_end": 23, "role": "start_loc", "type": "location"},
{"text": "A1", "start": 0, "end": 1, "char_start": 0, "char_end": 2, "role": "location", "type": "location-street"}
],
"event_type": "Obstruction"
}
],
"tokens": ["A1", "Zwischen", "AS", "Munsbach", "und", "AS", "Flaxweiler", "Bauarbeiten", ",", "rechter", "Fahrstreifen", "gesperrt", ",", "Verkehrsbehinderung", ",", "Dauer", ":", "02.12.2015", "...", "#ACL_A1"],
"pos_tags": ["CARD", "APPR", "NE", "NE", "KON", "NE", "NE", "NN", "$,", "ADJA", "NN", "VVPP", "$,", "NN", "$,", "NN", "$.", "CARD", "$[", "CARD"],
"lemma": ["a1", "zwischen", "as", "munsbach", "und", "as", "flaxweiler", "bauarbeiten", ",", "rechter", "fahrstreifen", "gesperrt", ",", "verkehrsbehinderung", ",", "dauer", ":", "02.12.2015", "...", "#acl_a1"],
"ner_tags": ["B-LOCATION_STREET", "O", "B-LOCATION", "I-LOCATION", "O", "B-LOCATION", "I-LOCATION", "O", "O", "O", "O", "O", "O", "B-TRIGGER", "O", "O", "O", "B-DATE", "O", "B-LOCATION_STREET"]
}
```
### Data Fields
#### ner
- `id`: example identifier, a `string` feature.
- `tokens`: list of tokens, a `list` of `string` features.
- `ner_tags`: list of NER tags, a `list` of `string` features.
#### re
- `id`: example identifier, a `string` feature.
- `text`: example text, a `string` feature.
- `tokens`: list of tokens, a `list` of `string` features.
- `entities`: a list of token spans, a `list` of `int64` features.
- `entity_roles`: a `list` of entity roles, a list of `string` features.
- `event_type`: the event type, a `string` feature.
- `entity_ids`: list of entity ids, a `list` of `string` features.
#### ee
- `id`: example identifier, a `string` feature.
- `text`: example text, a `string` feature.
- `entity_mentions`: a `list` of `struct` features.
- `text`: a `string` feature.
- `start`: token offset start, a `int64` feature.
- `end`: token offset end, a `int64` feature.
- `char_start`: character offset start, a `int64` feature.
- `char_end`: character offset end, a `int64` feature.
- `type`: entity type, a `string` feature.
- `id`: entity id, a `string` feature.
- `event_mentions`: a list of `struct` features.
- `id`: event identifier, a `string` feature.
- `trigger`: a `struct` feature.
- `text`: a `string` feature.
- `start`: token offset start, a `int64` feature.
- `end`: token offset end, a `int64` feature.
- `char_start`: character offset start, a `int64` feature.
- `char_end`: character offset end, a `int64` feature.
- `arguments`: a list of `struct` features.
- `text`: a `string` feature.
- `start`: token offset start, a `int64` feature.
- `end`: token offset end, a `int64` feature.
- `char_start`: character offset start, a `int64` feature.
- `char_end`: character offset end, a `int64` feature.
- `role`: role of the argument, a `string` feature.
- `type`: entity type of the argument, a `string` feature.
- `event_type`: a classification label, a `string` feature.
- `tokens`: list of tokens, a `list` of `string` features.
- `pos_tags`: list of part-of-speech tags, a `list` of `string` features.
- `lemma`: list of lemmatized tokens, a `list` of `string` features.
- `ner_tags`: a `list` of NER tags, a list of `string` features.
### Licensing Information
[CC BY-SA 4.0 license](https://creativecommons.org/licenses/by-sa/4.0/)
### Citation Information
**BibTeX:**
```
@InProceedings{SCHIERSCH18.85,
author = {Martin Schiersch and Veselina Mironova and Maximilian Schmitt and Philippe Thomas and Aleksandra Gabryszak and Leonhard Hennig},
title = "{A German Corpus for Fine-Grained Named Entity Recognition and Relation Extraction of Traffic and Industry Events}",
booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)},
year = {2018},
month = {May 7-12, 2018},
address = {Miyazaki, Japan},
editor = {Nicoletta Calzolari (Conference chair) and Khalid Choukri and Christopher Cieri and Thierry Declerck and Sara Goggi and Koiti Hasida and Hitoshi Isahara and Bente Maegaard and Joseph Mariani and Hélène Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis and Takenobu Tokunaga},
publisher = {European Language Resources Association (ELRA)},
isbn = {979-10-95546-00-9},
language = {english}
}
```
**APA:**
- Schiersch, M., Mironova, V., Schmitt, M., Thomas, P., Gabryszak, A., & Hennig, L. (2018). A German Corpus for Fine-Grained Named Entity Recognition and Relation Extraction of Traffic and Industry Events. In N. Calzolari (Conference chair), K. Choukri, C. Cieri, T. Declerck, S. Goggi, K. Hasida, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis, & T. Tokunaga (Eds.), Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018) (pp. Unknown). Miyazaki, Japan: European Language Resources Association (ELRA). ISBN: 979-10-95546-00-9.
### Contributions