version
stringclasses
1 value
hypothesis
stringlengths
6
121
hypothesis_formula
stringclasses
382 values
facts
stringlengths
15
1.44k
facts_formula
stringlengths
13
901
proofs
sequencelengths
1
1
proofs_formula
sequencelengths
1
1
negative_hypothesis
stringlengths
6
89
negative_hypothesis_formula
stringlengths
6
37
negative_proofs
sequencelengths
0
1
negative_original_tree_depth
int64
1
24
original_tree_depth
int64
1
1
depth
int64
0
1
num_formula_distractors
int64
0
22
num_translation_distractors
int64
0
0
num_all_distractors
int64
0
22
proof_label
stringclasses
2 values
negative_proof_label
stringclasses
2 values
world_assump_label
stringclasses
2 values
negative_world_assump_label
stringclasses
2 values
prompt_serial
stringlengths
66
1.54k
proof_serial
stringlengths
31
53
instruction
stringclasses
1 value
input
stringlengths
29
1.46k
response
stringlengths
33
45
0.3
「あのグリッド線は免れ難くない一方で盛り込む」ということは事実と異なる
¬(¬{AA}{a} & {AB}{a})
fact1: あのグリッド線が真ん丸いとすると免れ難いということはないが盛り込む fact2: あのグリッド線は製造ラインである fact3: 「あのグリッド線は扱い易くないけど御寂しい」ということは成り立つ fact4: 仮に「あのグリッド線は走り去らないけれど掻き抱く」ということは間違っていれば掻き抱かない fact5: あのグリッド線は盛り込む fact6: もしもとあるものは真ん丸くないとしたら「免れ難いということはないがしかし盛り込む」ということは真実でない fact7: 「あのグリッド線は真ん丸い」ということは成り立つ fact8: 仮に「なにかは盛り込む」ということは成り立つとしたらそれはちぎれ易くないけれど中央執行委員である fact9: もし「とある物は耐通であるし加えて真ん丸い」ということは嘘であるとすると真ん丸いということはない fact10: もしあのグリッド線が真ん丸いとしたら大理石風である fact11: もし仮になにがしかのものは騒がしくないとしたら「耐通であるし加えて掻き抱く」ということは間違っている fact12: もしもなにかは掻き抱かないとしたら「それが耐通だしその上真ん丸い」ということは成り立たない fact13: この電車妨害は真ん丸い fact14: あのグリッド線が真ん丸いならそれは盛り込む fact15: その剣道部は盛り込む fact16: 「何らかの物は拒む」ということは正しい fact17: もしなにかは対立し合うなら調和し難いということはないけど盛り込む
fact1: {A}{a} -> (¬{AA}{a} & {AB}{a}) fact2: {EG}{a} fact3: (¬{AD}{a} & {IT}{a}) fact4: ¬(¬{E}{a} & {C}{a}) -> ¬{C}{a} fact5: {AB}{a} fact6: (x): ¬{A}x -> ¬(¬{AA}x & {AB}x) fact7: {A}{a} fact8: (x): {AB}x -> (¬{II}x & {JH}x) fact9: (x): ¬({B}x & {A}x) -> ¬{A}x fact10: {A}{a} -> {HT}{a} fact11: (x): ¬{D}x -> ¬({B}x & {C}x) fact12: (x): ¬{C}x -> ¬({B}x & {A}x) fact13: {A}{gk} fact14: {A}{a} -> {AB}{a} fact15: {AB}{ep} fact16: (Ex): {F}x fact17: (x): {FD}x -> (¬{HF}x & {AB}x)
[ "fact1 & fact7 -> hypothesis;" ]
[ "fact1 & fact7 -> hypothesis;" ]
あのグリッド線が盛り込むとするとちぎれ易くないが中央執行委員だ
{AB}{a} -> (¬{II}{a} & {JH}{a})
[ "fact18 -> hypothesis;" ]
1
1
1
15
0
15
DISPROVED
PROVED
DISPROVED
PROVED
$facts$ = fact1: あのグリッド線が真ん丸いとすると免れ難いということはないが盛り込む fact2: あのグリッド線は製造ラインである fact3: 「あのグリッド線は扱い易くないけど御寂しい」ということは成り立つ fact4: 仮に「あのグリッド線は走り去らないけれど掻き抱く」ということは間違っていれば掻き抱かない fact5: あのグリッド線は盛り込む fact6: もしもとあるものは真ん丸くないとしたら「免れ難いということはないがしかし盛り込む」ということは真実でない fact7: 「あのグリッド線は真ん丸い」ということは成り立つ fact8: 仮に「なにかは盛り込む」ということは成り立つとしたらそれはちぎれ易くないけれど中央執行委員である fact9: もし「とある物は耐通であるし加えて真ん丸い」ということは嘘であるとすると真ん丸いということはない fact10: もしあのグリッド線が真ん丸いとしたら大理石風である fact11: もし仮になにがしかのものは騒がしくないとしたら「耐通であるし加えて掻き抱く」ということは間違っている fact12: もしもなにかは掻き抱かないとしたら「それが耐通だしその上真ん丸い」ということは成り立たない fact13: この電車妨害は真ん丸い fact14: あのグリッド線が真ん丸いならそれは盛り込む fact15: その剣道部は盛り込む fact16: 「何らかの物は拒む」ということは正しい fact17: もしなにかは対立し合うなら調和し難いということはないけど盛り込む ; $hypothesis$ = 「あのグリッド線は免れ難くない一方で盛り込む」ということは事実と異なる ; $proof$ =
fact1 & fact7 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: あのグリッド線が真ん丸いとすると免れ難いということはないが盛り込む 事実2: あのグリッド線は製造ラインである 事実3: 「あのグリッド線は扱い易くないけど御寂しい」ということは成り立つ 事実4: 仮に「あのグリッド線は走り去らないけれど掻き抱く」ということは間違っていれば掻き抱かない 事実5: あのグリッド線は盛り込む 事実6: もしもとあるものは真ん丸くないとしたら「免れ難いということはないがしかし盛り込む」ということは真実でない 事実7: 「あのグリッド線は真ん丸い」ということは成り立つ 事実8: 仮に「なにかは盛り込む」ということは成り立つとしたらそれはちぎれ易くないけれど中央執行委員である 事実9: もし「とある物は耐通であるし加えて真ん丸い」ということは嘘であるとすると真ん丸いということはない 事実10: もしあのグリッド線が真ん丸いとしたら大理石風である 事実11: もし仮になにがしかのものは騒がしくないとしたら「耐通であるし加えて掻き抱く」ということは間違っている 事実12: もしもなにかは掻き抱かないとしたら「それが耐通だしその上真ん丸い」ということは成り立たない 事実13: この電車妨害は真ん丸い 事実14: あのグリッド線が真ん丸いならそれは盛り込む 事実15: その剣道部は盛り込む 事実16: 「何らかの物は拒む」ということは正しい 事実17: もしなにかは対立し合うなら調和し難いということはないけど盛り込む 仮説: 「あのグリッド線は免れ難くない一方で盛り込む」ということは事実と異なる
1. 事実1と事実7から、仮説が否定される よって、仮説が否定されました。
0.3
あの一発目は日本美術史だ
{B}{a}
fact1: もしこのソフトが汗臭いということはないとするとそれは区分けするし人工肛門造設だ fact2: あの一発目は山羊達でない fact3: あの一発目は山羊達でないししかも日本美術史であるということはない fact4: あの一発目は汗臭くない fact5: あの通常価格は脳血管障害でないし加えて日本美術史であるということはない fact6: 仮になにがしかのものは区分けするということはないならば「「それは慎み深さであるしそれは山羊達だ」ということは成り立つ」ということは成り立たない fact7: 「あの一発目が山羊達でないならあの五芒星は山羊達だということはない」ということは成り立つ fact8: その精通は山羊達でない
fact1: ¬{F}{c} -> ({D}{c} & {E}{c}) fact2: ¬{A}{a} fact3: (¬{A}{a} & ¬{B}{a}) fact4: ¬{F}{a} fact5: (¬{EL}{ea} & ¬{B}{ea}) fact6: (x): ¬{D}x -> ¬({C}x & {A}x) fact7: ¬{A}{a} -> ¬{A}{it} fact8: ¬{A}{aa}
[ "fact3 -> hypothesis;" ]
[ "fact3 -> hypothesis;" ]
あの五芒星は山羊達でない
¬{A}{it}
[]
7
1
1
7
0
7
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: もしこのソフトが汗臭いということはないとするとそれは区分けするし人工肛門造設だ fact2: あの一発目は山羊達でない fact3: あの一発目は山羊達でないししかも日本美術史であるということはない fact4: あの一発目は汗臭くない fact5: あの通常価格は脳血管障害でないし加えて日本美術史であるということはない fact6: 仮になにがしかのものは区分けするということはないならば「「それは慎み深さであるしそれは山羊達だ」ということは成り立つ」ということは成り立たない fact7: 「あの一発目が山羊達でないならあの五芒星は山羊達だということはない」ということは成り立つ fact8: その精通は山羊達でない ; $hypothesis$ = あの一発目は日本美術史だ ; $proof$ =
fact3 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: もしこのソフトが汗臭いということはないとするとそれは区分けするし人工肛門造設だ 事実2: あの一発目は山羊達でない 事実3: あの一発目は山羊達でないししかも日本美術史であるということはない 事実4: あの一発目は汗臭くない 事実5: あの通常価格は脳血管障害でないし加えて日本美術史であるということはない 事実6: 仮になにがしかのものは区分けするということはないならば「「それは慎み深さであるしそれは山羊達だ」ということは成り立つ」ということは成り立たない 事実7: 「あの一発目が山羊達でないならあの五芒星は山羊達だということはない」ということは成り立つ 事実8: その精通は山羊達でない 仮説: あの一発目は日本美術史だ
1. 事実3から、仮説が否定される よって、仮説が否定されました。
0.3
「「もし仮に捨て難いし温くないとすれば「有線放送である」ということは真実である」ものはある」ということは偽だ
¬((Ex): ({AA}x & ¬{AB}x) -> {B}x)
fact1: もしあの貸し付け先が捨て難いけれどそれが温くないならばそれは有線放送だ fact2: もしあるものは基底膜であるけれどチェックインPMでないとするとそれは唱導する fact3: 「捨て難くてそれに温いなら有線放送である」物はある fact4: もしもあの貸し付け先が財務部だけれど捨て難くないならそれはこっ酷い fact5: 「もし意義であるが立ち遅れないならば業務規程である」物はある fact6: 「「御任せ下さるしまたロングランでない」ということは正しいなら「若々しい」ということは本当である」物はある fact7: 仮に「あの貸し付け先は捨て難くてまた温い」ということは真実ならば有線放送である fact8: 「仮に仕事・プロセスであるし加えて少年法でないとしたら欲求する」物はある fact9: 捨て難くない検索・置換は生命素である
fact1: ({AA}{aa} & ¬{AB}{aa}) -> {B}{aa} fact2: (x): ({GL}x & ¬{JF}x) -> {IG}x fact3: (Ex): ({AA}x & {AB}x) -> {B}x fact4: ({HF}{aa} & ¬{AA}{aa}) -> {ET}{aa} fact5: (Ex): ({EA}x & ¬{EP}x) -> {BM}x fact6: (Ex): ({JB}x & ¬{AM}x) -> {CG}x fact7: ({AA}{aa} & {AB}{aa}) -> {B}{aa} fact8: (Ex): ({BJ}x & ¬{FD}x) -> {AR}x fact9: (x): ({GA}x & ¬{AA}x) -> {AD}x
[ "fact1 -> hypothesis;" ]
[ "fact1 -> hypothesis;" ]
仮にこの第二次世界大戦以後が検索・置換だけれど捨て難くないなら「生命素だ」ということは事実である
({GA}{gt} & ¬{AA}{gt}) -> {AD}{gt}
[ "fact10 -> hypothesis;" ]
1
1
1
8
0
8
DISPROVED
PROVED
DISPROVED
PROVED
$facts$ = fact1: もしあの貸し付け先が捨て難いけれどそれが温くないならばそれは有線放送だ fact2: もしあるものは基底膜であるけれどチェックインPMでないとするとそれは唱導する fact3: 「捨て難くてそれに温いなら有線放送である」物はある fact4: もしもあの貸し付け先が財務部だけれど捨て難くないならそれはこっ酷い fact5: 「もし意義であるが立ち遅れないならば業務規程である」物はある fact6: 「「御任せ下さるしまたロングランでない」ということは正しいなら「若々しい」ということは本当である」物はある fact7: 仮に「あの貸し付け先は捨て難くてまた温い」ということは真実ならば有線放送である fact8: 「仮に仕事・プロセスであるし加えて少年法でないとしたら欲求する」物はある fact9: 捨て難くない検索・置換は生命素である ; $hypothesis$ = 「「もし仮に捨て難いし温くないとすれば「有線放送である」ということは真実である」ものはある」ということは偽だ ; $proof$ =
fact1 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: もしあの貸し付け先が捨て難いけれどそれが温くないならばそれは有線放送だ 事実2: もしあるものは基底膜であるけれどチェックインPMでないとするとそれは唱導する 事実3: 「捨て難くてそれに温いなら有線放送である」物はある 事実4: もしもあの貸し付け先が財務部だけれど捨て難くないならそれはこっ酷い 事実5: 「もし意義であるが立ち遅れないならば業務規程である」物はある 事実6: 「「御任せ下さるしまたロングランでない」ということは正しいなら「若々しい」ということは本当である」物はある 事実7: 仮に「あの貸し付け先は捨て難くてまた温い」ということは真実ならば有線放送である 事実8: 「仮に仕事・プロセスであるし加えて少年法でないとしたら欲求する」物はある 事実9: 捨て難くない検索・置換は生命素である 仮説: 「「もし仮に捨て難いし温くないとすれば「有線放送である」ということは真実である」ものはある」ということは偽だ
1. 事実1から、仮説が否定される よって、仮説が否定されました。
0.3
「「仮に偉いということはないとすると「「艶めかしいがしかし水溶化しない」ということは成り立つ」ということは嘘な」物はある」ということは成り立つということはない
¬((Ex): ¬{A}x -> ¬({AA}x & ¬{AB}x))
fact1: 「「し難くない」ということは成り立つとすると「いみじしまた改編しない」ということは成り立たない」ものはある fact2: 「もしも偉くないならば「艶めかしいしその上水溶化する」ということは成り立たない」物はある fact3: 「もし「偉い」ということは成り立てば「艶めかしいしそれに水溶化しない」ということは成り立たない」物はある fact4: 「偉くないならば艶めかしいしかつ水溶化しない」物はある fact5: もしなにがしかのものは面白おかしくないとしたら「それは言い張るしそれにそれは加工し易くない」ということは間違っている fact6: もし仮にこの再灌流性不整脈は偉くないとすると「それが艶めかしいしその上水溶化しない」ということは誤っている fact7: もし仮にこの再灌流性不整脈は判別し難いということはないとしたら「偉いがしかし挽回しない」ということは偽だ fact8: 「もし仮に「ダイナスティだということはない」ということは誤りでないならば「副詞であるがしかし体力要素でない」ということは成り立つということはない」物はある fact9: この再灌流性不整脈はひっぺがすないならば「偉いけれど発揮し難くない」ということは成り立たない fact10: もし仮にこの遊行上人は直り難くないとすれば「それは手縫いだが水溶化しない」ということは誤りだ fact11: 「もし仮に個人保証でないなら「照らせるし加えて自由奔放さでない」ということは成り立たない」物はある fact12: この再灌流性不整脈は偉いならば「それは艶めかしいがしかし水溶化するということはない」ということは誤っている fact13: 仮にとある物は押し開けないならば「それは淀み無くてそれは郵政民営化法案でない」ということは誤っている fact14: もしこの再灌流性不整脈は手縫いでないとすると「それは水溶化するけど捕まらない」ということは偽である fact15: 「親子分離でないとすれば「すばしっこい一方で順応し易いということはない」ということは成り立つということはない」物はある fact16: もしもこの再灌流性不整脈は掛かり難いということはないとすれば「「それが歯科医師法だしおまけにそれは紳士らしいということはない」ということは成り立つ」ということは事実と異なる fact17: もし仮にこの再灌流性不整脈はチェックインしないとすると「直訴するけれど偉くない」ということは誤りだ fact18: もしこの再灌流性不整脈は偉くないなら「それは艶めかしいしそれに水溶化する」ということは成り立たない fact19: 「仮にあの四位は匿わないとしたら「あの四位が水溶化する一方で晴れはましくらない」ということは誤りである」ということは真実だ fact20: もしもこの再灌流性不整脈が偉くないならばそれは艶めかしいしかつ水溶化しない fact21: 「仮に開け窯しないとしたら色っぽくて百円辺りでない」物はある
fact1: (Ex): ¬{BE}x -> ¬({DM}x & ¬{FJ}x) fact2: (Ex): ¬{A}x -> ¬({AA}x & {AB}x) fact3: (Ex): {A}x -> ¬({AA}x & ¬{AB}x) fact4: (Ex): ¬{A}x -> ({AA}x & ¬{AB}x) fact5: (x): ¬{AQ}x -> ¬({GG}x & ¬{IP}x) fact6: ¬{A}{aa} -> ¬({AA}{aa} & ¬{AB}{aa}) fact7: ¬{HU}{aa} -> ¬({A}{aa} & ¬{IJ}{aa}) fact8: (Ex): ¬{CA}x -> ¬({DD}x & ¬{GC}x) fact9: ¬{JE}{aa} -> ¬({A}{aa} & ¬{HJ}{aa}) fact10: ¬{AS}{bc} -> ¬({BU}{bc} & ¬{AB}{bc}) fact11: (Ex): ¬{Q}x -> ¬({IC}x & ¬{CE}x) fact12: {A}{aa} -> ¬({AA}{aa} & ¬{AB}{aa}) fact13: (x): ¬{AD}x -> ¬({FE}x & ¬{L}x) fact14: ¬{BU}{aa} -> ¬({AB}{aa} & ¬{FK}{aa}) fact15: (Ex): ¬{CK}x -> ¬({AM}x & ¬{GD}x) fact16: ¬{JI}{aa} -> ¬({DI}{aa} & ¬{JH}{aa}) fact17: ¬{GU}{aa} -> ¬({EL}{aa} & ¬{A}{aa}) fact18: ¬{A}{aa} -> ¬({AA}{aa} & {AB}{aa}) fact19: ¬{I}{bq} -> ¬({AB}{bq} & ¬{DE}{bq}) fact20: ¬{A}{aa} -> ({AA}{aa} & ¬{AB}{aa}) fact21: (Ex): ¬{HF}x -> ({EU}x & ¬{EN}x)
[ "fact6 -> hypothesis;" ]
[ "fact6 -> hypothesis;" ]
「もしも面白おかしくないとすると「「言い張るしかつ加工し易くない」ということは真実だ」ということは成り立たない」ものはある
(Ex): ¬{AQ}x -> ¬({GG}x & ¬{IP}x)
[ "fact22 -> int1: もしもこの識別マークは面白おかしくないならば「言い張るが加工し易くない」ということは間違いである; int1 -> hypothesis;" ]
2
1
1
20
0
20
DISPROVED
PROVED
DISPROVED
PROVED
$facts$ = fact1: 「「し難くない」ということは成り立つとすると「いみじしまた改編しない」ということは成り立たない」ものはある fact2: 「もしも偉くないならば「艶めかしいしその上水溶化する」ということは成り立たない」物はある fact3: 「もし「偉い」ということは成り立てば「艶めかしいしそれに水溶化しない」ということは成り立たない」物はある fact4: 「偉くないならば艶めかしいしかつ水溶化しない」物はある fact5: もしなにがしかのものは面白おかしくないとしたら「それは言い張るしそれにそれは加工し易くない」ということは間違っている fact6: もし仮にこの再灌流性不整脈は偉くないとすると「それが艶めかしいしその上水溶化しない」ということは誤っている fact7: もし仮にこの再灌流性不整脈は判別し難いということはないとしたら「偉いがしかし挽回しない」ということは偽だ fact8: 「もし仮に「ダイナスティだということはない」ということは誤りでないならば「副詞であるがしかし体力要素でない」ということは成り立つということはない」物はある fact9: この再灌流性不整脈はひっぺがすないならば「偉いけれど発揮し難くない」ということは成り立たない fact10: もし仮にこの遊行上人は直り難くないとすれば「それは手縫いだが水溶化しない」ということは誤りだ fact11: 「もし仮に個人保証でないなら「照らせるし加えて自由奔放さでない」ということは成り立たない」物はある fact12: この再灌流性不整脈は偉いならば「それは艶めかしいがしかし水溶化するということはない」ということは誤っている fact13: 仮にとある物は押し開けないならば「それは淀み無くてそれは郵政民営化法案でない」ということは誤っている fact14: もしこの再灌流性不整脈は手縫いでないとすると「それは水溶化するけど捕まらない」ということは偽である fact15: 「親子分離でないとすれば「すばしっこい一方で順応し易いということはない」ということは成り立つということはない」物はある fact16: もしもこの再灌流性不整脈は掛かり難いということはないとすれば「「それが歯科医師法だしおまけにそれは紳士らしいということはない」ということは成り立つ」ということは事実と異なる fact17: もし仮にこの再灌流性不整脈はチェックインしないとすると「直訴するけれど偉くない」ということは誤りだ fact18: もしこの再灌流性不整脈は偉くないなら「それは艶めかしいしそれに水溶化する」ということは成り立たない fact19: 「仮にあの四位は匿わないとしたら「あの四位が水溶化する一方で晴れはましくらない」ということは誤りである」ということは真実だ fact20: もしもこの再灌流性不整脈が偉くないならばそれは艶めかしいしかつ水溶化しない fact21: 「仮に開け窯しないとしたら色っぽくて百円辺りでない」物はある ; $hypothesis$ = 「「仮に偉いということはないとすると「「艶めかしいがしかし水溶化しない」ということは成り立つ」ということは嘘な」物はある」ということは成り立つということはない ; $proof$ =
fact6 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: 「「し難くない」ということは成り立つとすると「いみじしまた改編しない」ということは成り立たない」ものはある 事実2: 「もしも偉くないならば「艶めかしいしその上水溶化する」ということは成り立たない」物はある 事実3: 「もし「偉い」ということは成り立てば「艶めかしいしそれに水溶化しない」ということは成り立たない」物はある 事実4: 「偉くないならば艶めかしいしかつ水溶化しない」物はある 事実5: もしなにがしかのものは面白おかしくないとしたら「それは言い張るしそれにそれは加工し易くない」ということは間違っている 事実6: もし仮にこの再灌流性不整脈は偉くないとすると「それが艶めかしいしその上水溶化しない」ということは誤っている 事実7: もし仮にこの再灌流性不整脈は判別し難いということはないとしたら「偉いがしかし挽回しない」ということは偽だ 事実8: 「もし仮に「ダイナスティだということはない」ということは誤りでないならば「副詞であるがしかし体力要素でない」ということは成り立つということはない」物はある 事実9: この再灌流性不整脈はひっぺがすないならば「偉いけれど発揮し難くない」ということは成り立たない 事実10: もし仮にこの遊行上人は直り難くないとすれば「それは手縫いだが水溶化しない」ということは誤りだ 事実11: 「もし仮に個人保証でないなら「照らせるし加えて自由奔放さでない」ということは成り立たない」物はある 事実12: この再灌流性不整脈は偉いならば「それは艶めかしいがしかし水溶化するということはない」ということは誤っている 事実13: 仮にとある物は押し開けないならば「それは淀み無くてそれは郵政民営化法案でない」ということは誤っている 事実14: もしこの再灌流性不整脈は手縫いでないとすると「それは水溶化するけど捕まらない」ということは偽である 事実15: 「親子分離でないとすれば「すばしっこい一方で順応し易いということはない」ということは成り立つということはない」物はある 事実16: もしもこの再灌流性不整脈は掛かり難いということはないとすれば「「それが歯科医師法だしおまけにそれは紳士らしいということはない」ということは成り立つ」ということは事実と異なる 事実17: もし仮にこの再灌流性不整脈はチェックインしないとすると「直訴するけれど偉くない」ということは誤りだ 事実18: もしこの再灌流性不整脈は偉くないなら「それは艶めかしいしそれに水溶化する」ということは成り立たない 事実19: 「仮にあの四位は匿わないとしたら「あの四位が水溶化する一方で晴れはましくらない」ということは誤りである」ということは真実だ 事実20: もしもこの再灌流性不整脈が偉くないならばそれは艶めかしいしかつ水溶化しない 事実21: 「仮に開け窯しないとしたら色っぽくて百円辺りでない」物はある 仮説: 「「仮に偉いということはないとすると「「艶めかしいがしかし水溶化しない」ということは成り立つ」ということは嘘な」物はある」ということは成り立つということはない
1. 事実6から、仮説が否定される よって、仮説が否定されました。
0.3
「この割り当て制は制服姿であるかもしくはそれは押し詰めない」ということは間違いだ
¬({AA}{b} v ¬{AB}{b})
fact1: 仮にこの真理探究生活が礼儀正しいとすればこの割り当て制は飲食する fact2: この智恵子抄は押し詰める fact3: その演題は押し詰めるかもしくはそれは申し立てないかあるいは両方ともだ fact4: もしも「この真理探究生活は押し詰める」ということは成り立つとすればこの割り当て制は飲食するか制服姿でないかもしくはどちらもである fact5: この割り当て制は制服姿であるかもしくはそれは押し詰めるかあるいは両方ともだ fact6: この真理探究生活は体得出来る fact7: この真理探究生活が飲食するならこの割り当て制は制服姿であるかあるいは押し詰める fact8: 仮にこの割り当て制が飲食するとすればこの真理探究生活は制服姿であるかもしくは押し詰めないか両方である fact9: なにがしかのものはうら若くないなら「それは粟立つということはないしおまけに礼儀正しくない」ということは成り立たない fact10: この真理探究生活は飲食する fact11: 「この教団施設は編綴する」ということは事実と異ならない fact12: もし仮に「あの末裔は資本主義経済であるしまた零五住所録である」ということは間違いであるとしたらそれはうら若くない fact13: もしもこの教団施設は清しないならば「あの末裔は資本主義経済だしそれに零五住所録である」ということは真実でない fact14: もし仮にある物が編綴するとしたら清しない fact15: もし仮にこの真理探究生活が飲食するとすればこの割り当て制は制服姿であるかもしくは押し詰めないかどちらもだ
fact1: {B}{a} -> {A}{b} fact2: {AB}{aq} fact3: ({AB}{ii} v ¬{BU}{ii}) fact4: {AB}{a} -> ({A}{b} v ¬{AA}{b}) fact5: ({AA}{b} v {AB}{b}) fact6: {GG}{a} fact7: {A}{a} -> ({AA}{b} v {AB}{b}) fact8: {A}{b} -> ({AA}{a} v ¬{AB}{a}) fact9: (x): ¬{C}x -> ¬(¬{D}x & ¬{B}x) fact10: {A}{a} fact11: {H}{d} fact12: ¬({E}{c} & {F}{c}) -> ¬{C}{c} fact13: ¬{G}{d} -> ¬({E}{c} & {F}{c}) fact14: (x): {H}x -> ¬{G}x fact15: {A}{a} -> ({AA}{b} v ¬{AB}{b})
[ "fact15 & fact10 -> hypothesis;" ]
[ "fact15 & fact10 -> hypothesis;" ]
「この割り当て制は制服姿であるかもしくはそれは押し詰めないか両方ともである」ということは成り立たない
¬({AA}{b} v ¬{AB}{b})
[ "fact19 -> int1: もしもあの末裔はうら若くないなら「それは粟立たないし更に礼儀正しくない」ということは間違っている; fact21 -> int2: もしこの教団施設が編綴するならそれは清しない; int2 & fact20 -> int3: この教団施設は清しない; fact17 & int3 -> int4: 「あの末裔は資本主義経済であるしかつ零五住所録である」ということは偽である; fact16 & int4 -> int5: 「あの末裔はうら若くない」ということは正しい; int1 & int5 -> int6: 「あの末裔が粟立たないしさらにそれは礼儀正しくない」ということは成り立たない; int6 -> int7: 「「粟立たないし礼儀正しくない」ということは偽である」物はある;" ]
9
1
1
13
0
13
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: 仮にこの真理探究生活が礼儀正しいとすればこの割り当て制は飲食する fact2: この智恵子抄は押し詰める fact3: その演題は押し詰めるかもしくはそれは申し立てないかあるいは両方ともだ fact4: もしも「この真理探究生活は押し詰める」ということは成り立つとすればこの割り当て制は飲食するか制服姿でないかもしくはどちらもである fact5: この割り当て制は制服姿であるかもしくはそれは押し詰めるかあるいは両方ともだ fact6: この真理探究生活は体得出来る fact7: この真理探究生活が飲食するならこの割り当て制は制服姿であるかあるいは押し詰める fact8: 仮にこの割り当て制が飲食するとすればこの真理探究生活は制服姿であるかもしくは押し詰めないか両方である fact9: なにがしかのものはうら若くないなら「それは粟立つということはないしおまけに礼儀正しくない」ということは成り立たない fact10: この真理探究生活は飲食する fact11: 「この教団施設は編綴する」ということは事実と異ならない fact12: もし仮に「あの末裔は資本主義経済であるしまた零五住所録である」ということは間違いであるとしたらそれはうら若くない fact13: もしもこの教団施設は清しないならば「あの末裔は資本主義経済だしそれに零五住所録である」ということは真実でない fact14: もし仮にある物が編綴するとしたら清しない fact15: もし仮にこの真理探究生活が飲食するとすればこの割り当て制は制服姿であるかもしくは押し詰めないかどちらもだ ; $hypothesis$ = 「この割り当て制は制服姿であるかもしくはそれは押し詰めない」ということは間違いだ ; $proof$ =
fact15 & fact10 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: 仮にこの真理探究生活が礼儀正しいとすればこの割り当て制は飲食する 事実2: この智恵子抄は押し詰める 事実3: その演題は押し詰めるかもしくはそれは申し立てないかあるいは両方ともだ 事実4: もしも「この真理探究生活は押し詰める」ということは成り立つとすればこの割り当て制は飲食するか制服姿でないかもしくはどちらもである 事実5: この割り当て制は制服姿であるかもしくはそれは押し詰めるかあるいは両方ともだ 事実6: この真理探究生活は体得出来る 事実7: この真理探究生活が飲食するならこの割り当て制は制服姿であるかあるいは押し詰める 事実8: 仮にこの割り当て制が飲食するとすればこの真理探究生活は制服姿であるかもしくは押し詰めないか両方である 事実9: なにがしかのものはうら若くないなら「それは粟立つということはないしおまけに礼儀正しくない」ということは成り立たない 事実10: この真理探究生活は飲食する 事実11: 「この教団施設は編綴する」ということは事実と異ならない 事実12: もし仮に「あの末裔は資本主義経済であるしまた零五住所録である」ということは間違いであるとしたらそれはうら若くない 事実13: もしもこの教団施設は清しないならば「あの末裔は資本主義経済だしそれに零五住所録である」ということは真実でない 事実14: もし仮にある物が編綴するとしたら清しない 事実15: もし仮にこの真理探究生活が飲食するとすればこの割り当て制は制服姿であるかもしくは押し詰めないかどちらもだ 仮説: 「この割り当て制は制服姿であるかもしくはそれは押し詰めない」ということは間違いだ
1. 事実15と事実10から、仮説が否定される よって、仮説が否定されました。
0.3
もし仮にこのハチグミグワーが人懐っこくないししかもそれは取り掛かり易くないとすると「それは後ろめたい」ということは真実である
(¬{AA}{aa} & ¬{AB}{aa}) -> {B}{aa}
fact1: もしもあの遍羅は鑑みるけど平均以下でないならそれは取り掛かり易い fact2: 人懐っこくないし取り掛かり易くない物は後ろめたくない fact3: 人懐こくないレインコートは抗い難い fact4: もしちぎれ易くないものが寝坊しないとすれば沖合いだ fact5: 仮に何かは人懐っこくないがしかし取り掛かり易いならばそれは後ろめたい fact6: 仮にこのハチグミグワーは人懐っこくないけど取り掛かり易いとしたら後ろめたい fact7: このハチグミグワーが燃え滾らないしそれは鮫島・山崎棟だということはないとしたら「染まる」ということは間違っていない fact8: もしこのハチグミグワーが祭祀組織でないしまた後ろめたくないならば法意識だ fact9: このハチグミグワーが法意識でなくて新選洋学年表でないなら取り掛かり易い fact10: とある物は人懐っこいが取り掛かり易いということはないならば「それは後ろめたい」ということは正しい fact11: 仮に何かは通り始めるが陰らないとすればシュートする fact12: 「もしこのハチグミグワーが人懐っこいけど取り掛かり易くないとしたらこのハチグミグワーは後ろめたい」ということは成り立つ fact13: もしもとある物がアルファルファでなくてしかも陰らないとするとそれは小汚い fact14: もしもこのハチグミグワーは厚しないし拙くないとすると否定し難い fact15: もしもこのハチグミグワーは書き替えないしその上直撃しないならば後ろめたい
fact1: ({BL}{bh} & ¬{GJ}{bh}) -> {AB}{bh} fact2: (x): (¬{AA}x & ¬{AB}x) -> {B}x fact3: (x): ({DU}x & ¬{HR}x) -> {DM}x fact4: (x): (¬{CU}x & ¬{JD}x) -> {Q}x fact5: (x): (¬{AA}x & {AB}x) -> {B}x fact6: (¬{AA}{aa} & {AB}{aa}) -> {B}{aa} fact7: (¬{CK}{aa} & ¬{CR}{aa}) -> {HG}{aa} fact8: (¬{EF}{aa} & ¬{B}{aa}) -> {BJ}{aa} fact9: (¬{BJ}{aa} & ¬{BT}{aa}) -> {AB}{aa} fact10: (x): ({AA}x & ¬{AB}x) -> {B}x fact11: (x): ({GA}x & ¬{HU}x) -> {DA}x fact12: ({AA}{aa} & ¬{AB}{aa}) -> {B}{aa} fact13: (x): (¬{IG}x & ¬{HU}x) -> {DS}x fact14: (¬{BU}{aa} & ¬{GC}{aa}) -> {P}{aa} fact15: (¬{IB}{aa} & ¬{DI}{aa}) -> {B}{aa}
[ "fact2 -> hypothesis;" ]
[ "fact2 -> hypothesis;" ]
null
null
[]
null
1
1
14
0
14
PROVED
null
PROVED
null
$facts$ = fact1: もしもあの遍羅は鑑みるけど平均以下でないならそれは取り掛かり易い fact2: 人懐っこくないし取り掛かり易くない物は後ろめたくない fact3: 人懐こくないレインコートは抗い難い fact4: もしちぎれ易くないものが寝坊しないとすれば沖合いだ fact5: 仮に何かは人懐っこくないがしかし取り掛かり易いならばそれは後ろめたい fact6: 仮にこのハチグミグワーは人懐っこくないけど取り掛かり易いとしたら後ろめたい fact7: このハチグミグワーが燃え滾らないしそれは鮫島・山崎棟だということはないとしたら「染まる」ということは間違っていない fact8: もしこのハチグミグワーが祭祀組織でないしまた後ろめたくないならば法意識だ fact9: このハチグミグワーが法意識でなくて新選洋学年表でないなら取り掛かり易い fact10: とある物は人懐っこいが取り掛かり易いということはないならば「それは後ろめたい」ということは正しい fact11: 仮に何かは通り始めるが陰らないとすればシュートする fact12: 「もしこのハチグミグワーが人懐っこいけど取り掛かり易くないとしたらこのハチグミグワーは後ろめたい」ということは成り立つ fact13: もしもとある物がアルファルファでなくてしかも陰らないとするとそれは小汚い fact14: もしもこのハチグミグワーは厚しないし拙くないとすると否定し難い fact15: もしもこのハチグミグワーは書き替えないしその上直撃しないならば後ろめたい ; $hypothesis$ = もし仮にこのハチグミグワーが人懐っこくないししかもそれは取り掛かり易くないとすると「それは後ろめたい」ということは真実である ; $proof$ =
fact2 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: もしもあの遍羅は鑑みるけど平均以下でないならそれは取り掛かり易い 事実2: 人懐っこくないし取り掛かり易くない物は後ろめたくない 事実3: 人懐こくないレインコートは抗い難い 事実4: もしちぎれ易くないものが寝坊しないとすれば沖合いだ 事実5: 仮に何かは人懐っこくないがしかし取り掛かり易いならばそれは後ろめたい 事実6: 仮にこのハチグミグワーは人懐っこくないけど取り掛かり易いとしたら後ろめたい 事実7: このハチグミグワーが燃え滾らないしそれは鮫島・山崎棟だということはないとしたら「染まる」ということは間違っていない 事実8: もしこのハチグミグワーが祭祀組織でないしまた後ろめたくないならば法意識だ 事実9: このハチグミグワーが法意識でなくて新選洋学年表でないなら取り掛かり易い 事実10: とある物は人懐っこいが取り掛かり易いということはないならば「それは後ろめたい」ということは正しい 事実11: 仮に何かは通り始めるが陰らないとすればシュートする 事実12: 「もしこのハチグミグワーが人懐っこいけど取り掛かり易くないとしたらこのハチグミグワーは後ろめたい」ということは成り立つ 事実13: もしもとある物がアルファルファでなくてしかも陰らないとするとそれは小汚い 事実14: もしもこのハチグミグワーは厚しないし拙くないとすると否定し難い 事実15: もしもこのハチグミグワーは書き替えないしその上直撃しないならば後ろめたい 仮説: もし仮にこのハチグミグワーが人懐っこくないししかもそれは取り掛かり易くないとすると「それは後ろめたい」ということは真実である
1. 事実2から、仮説が導かれる よって、仮説が証明されました。
0.3
その証拠書類は商習慣でない
¬{B}{b}
fact1: 仮に「なんらかの物は説明すがしかしそれは耐熱ボウルでない」ということは誤りであるとしたら説明すらない fact2: あの押し入れ棚は何気であるとしたら「あの装花は説明すけれど耐熱ボウルでない」ということは偽だ fact3: この飢えは表一参照であるしそれは回想する fact4: 「あのセットポイントは罵らないとすれば「あのセットポイントが手掛けるしその上それは作り易い」ということは本当である」ということは正しい fact5: もしあの装花が説明すらないとすればあの証拠書類は商習慣でないけれどそれは完全武装する fact6: もしもあのセットポイントが手掛けるならこの飢えは手掛けるということはない fact7: 「あの装花は続日本記であるけど倍加しない」ということは間違いだ fact8: 仮にこの飢えが何気であるけど手掛けるということはないとすればあの押し入れ棚は何気だ fact9: もしもなにかは表一参照ならそれは何気だ fact10: 「あの装花は続日本記であるけど倍加しない」ということは間違っているとしたらその証拠書類は商習慣である
fact1: (x): ¬({C}x & ¬{E}x) -> ¬{C}x fact2: {D}{c} -> ¬({C}{a} & ¬{E}{a}) fact3: ({G}{d} & {H}{d}) fact4: ¬{J}{e} -> ({F}{e} & {I}{e}) fact5: ¬{C}{a} -> (¬{B}{b} & {A}{b}) fact6: {F}{e} -> ¬{F}{d} fact7: ¬({AA}{a} & ¬{AB}{a}) fact8: ({D}{d} & ¬{F}{d}) -> {D}{c} fact9: (x): {G}x -> {D}x fact10: ¬({AA}{a} & ¬{AB}{a}) -> {B}{b}
[ "fact10 & fact7 -> hypothesis;" ]
[ "fact10 & fact7 -> hypothesis;" ]
その証拠書類は商習慣でない
¬{B}{b}
[ "fact16 -> int1: もし「あの装花は説明すがしかし耐熱ボウルでない」ということは事実でないとしたら説明すらない; fact18 -> int2: もし仮にこの飢えが表一参照ならばそれは何気だ; fact11 -> int3: この飢えは表一参照だ; int2 & int3 -> int4: この飢えは何気だ;" ]
9
1
1
8
0
8
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: 仮に「なんらかの物は説明すがしかしそれは耐熱ボウルでない」ということは誤りであるとしたら説明すらない fact2: あの押し入れ棚は何気であるとしたら「あの装花は説明すけれど耐熱ボウルでない」ということは偽だ fact3: この飢えは表一参照であるしそれは回想する fact4: 「あのセットポイントは罵らないとすれば「あのセットポイントが手掛けるしその上それは作り易い」ということは本当である」ということは正しい fact5: もしあの装花が説明すらないとすればあの証拠書類は商習慣でないけれどそれは完全武装する fact6: もしもあのセットポイントが手掛けるならこの飢えは手掛けるということはない fact7: 「あの装花は続日本記であるけど倍加しない」ということは間違いだ fact8: 仮にこの飢えが何気であるけど手掛けるということはないとすればあの押し入れ棚は何気だ fact9: もしもなにかは表一参照ならそれは何気だ fact10: 「あの装花は続日本記であるけど倍加しない」ということは間違っているとしたらその証拠書類は商習慣である ; $hypothesis$ = その証拠書類は商習慣でない ; $proof$ =
fact10 & fact7 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: 仮に「なんらかの物は説明すがしかしそれは耐熱ボウルでない」ということは誤りであるとしたら説明すらない 事実2: あの押し入れ棚は何気であるとしたら「あの装花は説明すけれど耐熱ボウルでない」ということは偽だ 事実3: この飢えは表一参照であるしそれは回想する 事実4: 「あのセットポイントは罵らないとすれば「あのセットポイントが手掛けるしその上それは作り易い」ということは本当である」ということは正しい 事実5: もしあの装花が説明すらないとすればあの証拠書類は商習慣でないけれどそれは完全武装する 事実6: もしもあのセットポイントが手掛けるならこの飢えは手掛けるということはない 事実7: 「あの装花は続日本記であるけど倍加しない」ということは間違いだ 事実8: 仮にこの飢えが何気であるけど手掛けるということはないとすればあの押し入れ棚は何気だ 事実9: もしもなにかは表一参照ならそれは何気だ 事実10: 「あの装花は続日本記であるけど倍加しない」ということは間違っているとしたらその証拠書類は商習慣である 仮説: その証拠書類は商習慣でない
1. 事実10と事実7から、仮説が否定される よって、仮説が否定されました。
0.3
あの一般顧客は溜め込み易くない
¬{A}{a}
fact1: あの一般顧客は溜め込み易いしさらに攻略出来る fact2: この西欧思想は攻略出来る
fact1: ({A}{a} & {B}{a}) fact2: {B}{m}
[ "fact1 -> hypothesis;" ]
[ "fact1 -> hypothesis;" ]
null
null
[]
null
1
1
1
0
1
DISPROVED
null
DISPROVED
null
$facts$ = fact1: あの一般顧客は溜め込み易いしさらに攻略出来る fact2: この西欧思想は攻略出来る ; $hypothesis$ = あの一般顧客は溜め込み易くない ; $proof$ =
fact1 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: あの一般顧客は溜め込み易いしさらに攻略出来る 事実2: この西欧思想は攻略出来る 仮説: あの一般顧客は溜め込み易くない
1. 事実1から、仮説が否定される よって、仮説が否定されました。
0.3
「その本条項は遣り難くて過ごし易い」ということは誤りだ
¬({A}{a} & {B}{a})
fact1: 「あの低消費電力化は過ごし易い」ということは確かだ fact2: そのシリコンチューブは遣り難い fact3: もしも何かは思い出深くないとすれば過ごし易いしその上遣り難い fact4: 仮にその本条項が理解・解釈するとしたらあの血糊は日常化する fact5: その本条項は転用する fact6: もし仮にとあるものは自民党幹事長でないならば非難めくし加えて理解・解釈する fact7: もしも何らかの物がD層だということはないかまたはそれが判別し難いとすると自民党幹事長でない fact8: 「その本条項はデザイナーであるし目論む」ということは正しい fact9: その本条項は覚え切れる fact10: このデイケア施設は醍醐味だしそれに過ごし易い fact11: その本条項はD層でないかもしくはそれは判別し難いかまたは両方ともだ fact12: あのアシドーシスは遣り難くて見難い fact13: その本条項は遣り難い fact14: あのリオンは遣り難くてかつっ早い fact15: その本条項は三条大橋である fact16: その被爆は過ごし易い fact17: その本条項は締め直すしまた活性代謝産物だ fact18: その本条項は過ごし易い
fact1: {B}{gb} fact2: {A}{gm} fact3: (x): ¬{C}x -> ({B}x & {A}x) fact4: {D}{a} -> {GE}{ek} fact5: {AT}{a} fact6: (x): ¬{F}x -> ({E}x & {D}x) fact7: (x): (¬{G}x v {H}x) -> ¬{F}x fact8: ({K}{a} & {IG}{a}) fact9: {IS}{a} fact10: ({IO}{gt} & {B}{gt}) fact11: (¬{G}{a} v {H}{a}) fact12: ({A}{g} & {BK}{g}) fact13: {A}{a} fact14: ({A}{es} & {IC}{es}) fact15: {CA}{a} fact16: {B}{hg} fact17: ({BO}{a} & {BC}{a}) fact18: {B}{a}
[ "fact13 & fact18 -> hypothesis;" ]
[ "fact13 & fact18 -> hypothesis;" ]
あの血糊は日常化するしおまけにそれは過ごし易い
({GE}{ek} & {B}{ek})
[ "fact21 -> int1: もしもその本条項は自民党幹事長でないならば非難めくし更に理解・解釈する; fact19 -> int2: もし仮にその本条項がD層であるということはないかまたは判別し難いかまたは両方ならば自民党幹事長であるということはない; int2 & fact23 -> int3: その本条項は自民党幹事長でない; int1 & int3 -> int4: その本条項は非難めくし理解・解釈する; int4 -> int5: その本条項は理解・解釈する; fact20 & int5 -> int6: あの血糊は日常化する; fact22 -> int7: 仮にあの血糊が思い出深くないとすればそれは過ごし易くておまけにそれは遣り難い;" ]
6
1
1
16
0
16
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: 「あの低消費電力化は過ごし易い」ということは確かだ fact2: そのシリコンチューブは遣り難い fact3: もしも何かは思い出深くないとすれば過ごし易いしその上遣り難い fact4: 仮にその本条項が理解・解釈するとしたらあの血糊は日常化する fact5: その本条項は転用する fact6: もし仮にとあるものは自民党幹事長でないならば非難めくし加えて理解・解釈する fact7: もしも何らかの物がD層だということはないかまたはそれが判別し難いとすると自民党幹事長でない fact8: 「その本条項はデザイナーであるし目論む」ということは正しい fact9: その本条項は覚え切れる fact10: このデイケア施設は醍醐味だしそれに過ごし易い fact11: その本条項はD層でないかもしくはそれは判別し難いかまたは両方ともだ fact12: あのアシドーシスは遣り難くて見難い fact13: その本条項は遣り難い fact14: あのリオンは遣り難くてかつっ早い fact15: その本条項は三条大橋である fact16: その被爆は過ごし易い fact17: その本条項は締め直すしまた活性代謝産物だ fact18: その本条項は過ごし易い ; $hypothesis$ = 「その本条項は遣り難くて過ごし易い」ということは誤りだ ; $proof$ =
fact13 & fact18 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: 「あの低消費電力化は過ごし易い」ということは確かだ 事実2: そのシリコンチューブは遣り難い 事実3: もしも何かは思い出深くないとすれば過ごし易いしその上遣り難い 事実4: 仮にその本条項が理解・解釈するとしたらあの血糊は日常化する 事実5: その本条項は転用する 事実6: もし仮にとあるものは自民党幹事長でないならば非難めくし加えて理解・解釈する 事実7: もしも何らかの物がD層だということはないかまたはそれが判別し難いとすると自民党幹事長でない 事実8: 「その本条項はデザイナーであるし目論む」ということは正しい 事実9: その本条項は覚え切れる 事実10: このデイケア施設は醍醐味だしそれに過ごし易い 事実11: その本条項はD層でないかもしくはそれは判別し難いかまたは両方ともだ 事実12: あのアシドーシスは遣り難くて見難い 事実13: その本条項は遣り難い 事実14: あのリオンは遣り難くてかつっ早い 事実15: その本条項は三条大橋である 事実16: その被爆は過ごし易い 事実17: その本条項は締め直すしまた活性代謝産物だ 事実18: その本条項は過ごし易い 仮説: 「その本条項は遣り難くて過ごし易い」ということは誤りだ
1. 事実13と事実18から、仮説が否定される よって、仮説が否定されました。
0.3
「あの軍事能力は凍り付かないかもしくは続き柄であるか両方ともだ」ということは成り立たない
¬(¬{AA}{aa} v {AB}{aa})
fact1: もし仮に「そのシティズンシップがスポーツ施設だしそれにそれは言い表わす」ということは誤っていれば探偵小説であるということはない fact2: あの先行き不安はむしゃくしゃする fact3: もし何らかの物が招待するとするとそれはおもろい fact4: もしもとある物は探偵小説でないならそれはうら若い fact5: ある物がおもろいとすれば凍り付くということはないか続き柄であるかもしくはどちらもだ fact6: あの先行き不安は栄養補給すれば「その災害対策は読み取れるけどそれは補間しない」ということは成り立つということはない fact7: 仮に「変動費化しないが後らしい」ものがあるとすればこの生活状態は注意喚起だ fact8: 「そのシティズンシップはスポーツ施設であるし言い表わす」ということは成り立たない fact9: もし仮に「このHDLはうら若くない」ということは間違いでないとすれば変動費化しないけど後らしい fact10: 仮になにがしかのものは読み取れるということはないなら「それは取り調べるということはなくてそれは間接レファレンスである」ということは事実と異なる fact11: もし何らかの物がジェネリック・ケースワークでないなら招待するしそれは太り易い fact12: 「その四次元はディスプレーポイントでないかあるいは上げ難い」ということは成り立たない fact13: もし仮に「「その災害対策は読み取れる一方で補間しない」ということは成り立たない」ということは事実だとしたらあの衛生局は読み取れない fact14: あの先行き不安はむしゃくしゃするなら「栄養補給する」ということは成り立つ fact15: 凍り付かないかあるいはそれは続き柄であるか両方ともだという物はない fact16: 「「あの衛生局は取り調べないけど間接レファレンスである」ということは成り立たない」ということは確かだとするとそのシティズンシップは取り調べない fact17: もしもとあるものがおもろくないかあるいは太り易いとすると「それはおもろくない」ということは本当だ fact18: あの軍事能力はデュシャン像でない fact19: もし仮にそのシティズンシップはうら若いがしかし取り調べないとしたらこのHDLはうら若くない fact20: もしこの生活状態は注意喚起ならば「あの綿花は官主導でなくてしかも祝い膳でない」ということは嘘だ
fact1: ¬({Q}{d} & {R}{d}) -> ¬{L}{d} fact2: {S}{g} fact3: (x): {B}x -> {A}x fact4: (x): ¬{L}x -> {J}x fact5: (x): {A}x -> (¬{AA}x v {AB}x) fact6: {O}{g} -> ¬({N}{f} & ¬{P}{f}) fact7: (x): (¬{I}x & {H}x) -> {G}{b} fact8: ¬({Q}{d} & {R}{d}) fact9: ¬{J}{c} -> (¬{I}{c} & {H}{c}) fact10: (x): ¬{N}x -> ¬(¬{K}x & {M}x) fact11: (x): ¬{D}x -> ({B}x & {C}x) fact12: ¬(¬{GG}{m} v {IC}{m}) fact13: ¬({N}{f} & ¬{P}{f}) -> ¬{N}{e} fact14: {S}{g} -> {O}{g} fact15: (x): ¬(¬{AA}x v {AB}x) fact16: ¬(¬{K}{e} & {M}{e}) -> ¬{K}{d} fact17: (x): (¬{A}x v {C}x) -> ¬{A}x fact18: ¬{CM}{aa} fact19: ({J}{d} & ¬{K}{d}) -> ¬{J}{c} fact20: {G}{b} -> ¬(¬{E}{a} & ¬{F}{a})
[ "fact15 -> hypothesis;" ]
[ "fact15 -> hypothesis;" ]
あの軍事能力は凍り付かないか続き柄だ
(¬{AA}{aa} v {AB}{aa})
[ "fact27 -> int1: もし仮に「あの軍事能力はおもろい」ということは真実であるとしたらそれは凍り付くということはないかもしくは続き柄であるかどちらもだ; fact32 -> int2: あの軍事能力が招待するとすればそれはおもろい; fact35 -> int3: あの軍事能力はジェネリック・ケースワークでないとしたらそれは招待するししかも太り易い; fact26 -> int4: もしそのシティズンシップは探偵小説であるということはないとするとうら若い; fact31 & fact34 -> int5: そのシティズンシップは探偵小説でない; int4 & int5 -> int6: そのシティズンシップはうら若い; fact24 -> int7: もし仮にあの衛生局は読み取れるということはないとしたら「それは取り調べないしまたそれは間接レファレンスである」ということは本当でない; fact25 & fact21 -> int8: あの先行き不安は栄養補給する; fact23 & int8 -> int9: 「その災害対策は読み取れる一方でそれは補間しない」ということは成り立たない; fact30 & int9 -> int10: あの衛生局は読み取れない; int7 & int10 -> int11: 「あの衛生局は取り調べないけれどそれは間接レファレンスだ」ということは誤りだ; fact29 & int11 -> int12: そのシティズンシップは取り調べるということはない; int6 & int12 -> int13: そのシティズンシップはうら若い一方で取り調べない; fact28 & int13 -> int14: 「このHDLはうら若くない」ということは間違いであるということはない; fact33 & int14 -> int15: このHDLは変動費化しないが後らしい; int15 -> int16: 「変動費化しなくて後らしい」物はある; int16 & fact22 -> int17: この生活状態は注意喚起だ; fact36 & int17 -> int18: 「あの綿花は官主導でないしさらに祝い膳でない」ということは本当でない; int18 -> int19: 「「「官主導でないし加えて祝い膳でない」ということは偽な」ものはある」ということは真実だ;" ]
17
1
1
19
0
19
PROVED
UNKNOWN
PROVED
UNKNOWN
$facts$ = fact1: もし仮に「そのシティズンシップがスポーツ施設だしそれにそれは言い表わす」ということは誤っていれば探偵小説であるということはない fact2: あの先行き不安はむしゃくしゃする fact3: もし何らかの物が招待するとするとそれはおもろい fact4: もしもとある物は探偵小説でないならそれはうら若い fact5: ある物がおもろいとすれば凍り付くということはないか続き柄であるかもしくはどちらもだ fact6: あの先行き不安は栄養補給すれば「その災害対策は読み取れるけどそれは補間しない」ということは成り立つということはない fact7: 仮に「変動費化しないが後らしい」ものがあるとすればこの生活状態は注意喚起だ fact8: 「そのシティズンシップはスポーツ施設であるし言い表わす」ということは成り立たない fact9: もし仮に「このHDLはうら若くない」ということは間違いでないとすれば変動費化しないけど後らしい fact10: 仮になにがしかのものは読み取れるということはないなら「それは取り調べるということはなくてそれは間接レファレンスである」ということは事実と異なる fact11: もし何らかの物がジェネリック・ケースワークでないなら招待するしそれは太り易い fact12: 「その四次元はディスプレーポイントでないかあるいは上げ難い」ということは成り立たない fact13: もし仮に「「その災害対策は読み取れる一方で補間しない」ということは成り立たない」ということは事実だとしたらあの衛生局は読み取れない fact14: あの先行き不安はむしゃくしゃするなら「栄養補給する」ということは成り立つ fact15: 凍り付かないかあるいはそれは続き柄であるか両方ともだという物はない fact16: 「「あの衛生局は取り調べないけど間接レファレンスである」ということは成り立たない」ということは確かだとするとそのシティズンシップは取り調べない fact17: もしもとあるものがおもろくないかあるいは太り易いとすると「それはおもろくない」ということは本当だ fact18: あの軍事能力はデュシャン像でない fact19: もし仮にそのシティズンシップはうら若いがしかし取り調べないとしたらこのHDLはうら若くない fact20: もしこの生活状態は注意喚起ならば「あの綿花は官主導でなくてしかも祝い膳でない」ということは嘘だ ; $hypothesis$ = 「あの軍事能力は凍り付かないかもしくは続き柄であるか両方ともだ」ということは成り立たない ; $proof$ =
fact15 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: もし仮に「そのシティズンシップがスポーツ施設だしそれにそれは言い表わす」ということは誤っていれば探偵小説であるということはない 事実2: あの先行き不安はむしゃくしゃする 事実3: もし何らかの物が招待するとするとそれはおもろい 事実4: もしもとある物は探偵小説でないならそれはうら若い 事実5: ある物がおもろいとすれば凍り付くということはないか続き柄であるかもしくはどちらもだ 事実6: あの先行き不安は栄養補給すれば「その災害対策は読み取れるけどそれは補間しない」ということは成り立つということはない 事実7: 仮に「変動費化しないが後らしい」ものがあるとすればこの生活状態は注意喚起だ 事実8: 「そのシティズンシップはスポーツ施設であるし言い表わす」ということは成り立たない 事実9: もし仮に「このHDLはうら若くない」ということは間違いでないとすれば変動費化しないけど後らしい 事実10: 仮になにがしかのものは読み取れるということはないなら「それは取り調べるということはなくてそれは間接レファレンスである」ということは事実と異なる 事実11: もし何らかの物がジェネリック・ケースワークでないなら招待するしそれは太り易い 事実12: 「その四次元はディスプレーポイントでないかあるいは上げ難い」ということは成り立たない 事実13: もし仮に「「その災害対策は読み取れる一方で補間しない」ということは成り立たない」ということは事実だとしたらあの衛生局は読み取れない 事実14: あの先行き不安はむしゃくしゃするなら「栄養補給する」ということは成り立つ 事実15: 凍り付かないかあるいはそれは続き柄であるか両方ともだという物はない 事実16: 「「あの衛生局は取り調べないけど間接レファレンスである」ということは成り立たない」ということは確かだとするとそのシティズンシップは取り調べない 事実17: もしもとあるものがおもろくないかあるいは太り易いとすると「それはおもろくない」ということは本当だ 事実18: あの軍事能力はデュシャン像でない 事実19: もし仮にそのシティズンシップはうら若いがしかし取り調べないとしたらこのHDLはうら若くない 事実20: もしこの生活状態は注意喚起ならば「あの綿花は官主導でなくてしかも祝い膳でない」ということは嘘だ 仮説: 「あの軍事能力は凍り付かないかもしくは続き柄であるか両方ともだ」ということは成り立たない
1. 事実15から、仮説が導かれる よって、仮説が証明されました。
0.3
「この打球音は強調すか炉内だ」ということは誤っている
¬({AA}{a} v {AB}{a})
fact1: あの才女は散大しないかまたは職業別でないかもしくはどちらもである fact2: この打球音は扱かない fact3: 仮になにかは賢しくないとすれば総合演習であるかまたはそれは全書であるか両方だ fact4: もしあの才女が扱くということはないとしたらこの打球音は強調す fact5: もしも「この打球音は扱かない」ということは成り立てば強調すかまたは炉内であるか両方ともである fact6: とあるものが散大しないかまたはそれは職業別でないかまたは両方ともだとすれば賢しくない
fact1: (¬{F}{b} v ¬{E}{b}) fact2: ¬{A}{a} fact3: (x): ¬{D}x -> ({B}x v {C}x) fact4: ¬{A}{b} -> {AA}{a} fact5: ¬{A}{a} -> ({AA}{a} v {AB}{a}) fact6: (x): (¬{F}x v ¬{E}x) -> ¬{D}x
[ "fact5 & fact2 -> hypothesis;" ]
[ "fact5 & fact2 -> hypothesis;" ]
この打球音は強調すかあるいはそれは通い出す
({AA}{a} v {AK}{a})
[ "fact10 -> int1: 仮にあの才女が賢しくないならばそれは総合演習であるかあるいは全書である; fact8 -> int2: もしあの才女が散大しないかあるいは職業別でないならばそれは賢しくない; int2 & fact9 -> int3: あの才女は賢しいということはない; int1 & int3 -> int4: あの才女は総合演習であるかまたは全書だ;" ]
6
1
1
4
0
4
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: あの才女は散大しないかまたは職業別でないかもしくはどちらもである fact2: この打球音は扱かない fact3: 仮になにかは賢しくないとすれば総合演習であるかまたはそれは全書であるか両方だ fact4: もしあの才女が扱くということはないとしたらこの打球音は強調す fact5: もしも「この打球音は扱かない」ということは成り立てば強調すかまたは炉内であるか両方ともである fact6: とあるものが散大しないかまたはそれは職業別でないかまたは両方ともだとすれば賢しくない ; $hypothesis$ = 「この打球音は強調すか炉内だ」ということは誤っている ; $proof$ =
fact5 & fact2 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: あの才女は散大しないかまたは職業別でないかもしくはどちらもである 事実2: この打球音は扱かない 事実3: 仮になにかは賢しくないとすれば総合演習であるかまたはそれは全書であるか両方だ 事実4: もしあの才女が扱くということはないとしたらこの打球音は強調す 事実5: もしも「この打球音は扱かない」ということは成り立てば強調すかまたは炉内であるか両方ともである 事実6: とあるものが散大しないかまたはそれは職業別でないかまたは両方ともだとすれば賢しくない 仮説: 「この打球音は強調すか炉内だ」ということは誤っている
1. 事実5と事実2から、仮説が否定される よって、仮説が否定されました。
0.3
あの可溶性画分は司法解釈だ
{C}{c}
fact1: あのフレイジングが知行書き出しだとするとあの可溶性画分は司法解釈だ fact2: 仮にあのフレイジングがクライアントパソコンだとするとあの可溶性画分は司法解釈である fact3: もしも「あのフレイジングはクライアントパソコンであるけど司法解釈だということはない」ということは偽ならばあの可溶性画分は司法解釈でない fact4: あのフレイジングは知行書き出しであるかあるいはそれはクライアントパソコンであるかあるいは両方ともだ fact5: 仮にあの可溶性画分がクライアントパソコンであるとすればあのフレイジングは司法解釈である fact6: あの可溶性画分は司法解釈であるかもしくはそれはクライアントパソコンであるかあるいはどちらもである fact7: 仮になんらかのものは知行書き出しであるならば「それがクライアントパソコンだし司法解釈でない」ということは誤っている
fact1: {A}{a} -> {C}{c} fact2: {B}{a} -> {C}{c} fact3: ¬({B}{a} & ¬{C}{a}) -> ¬{C}{c} fact4: ({A}{a} v {B}{a}) fact5: {B}{c} -> {C}{a} fact6: ({C}{c} v {B}{c}) fact7: (x): {A}x -> ¬({B}x & ¬{C}x)
[ "fact4 & fact1 & fact2 -> hypothesis;" ]
[ "fact4 & fact1 & fact2 -> hypothesis;" ]
あの可溶性画分は司法解釈でない
¬{C}{c}
[ "fact8 -> int1: あのフレイジングは知行書き出しだとすれば「クライアントパソコンであるしさらにそれは司法解釈でない」ということは本当でない;" ]
6
1
1
4
0
4
PROVED
UNKNOWN
PROVED
UNKNOWN
$facts$ = fact1: あのフレイジングが知行書き出しだとするとあの可溶性画分は司法解釈だ fact2: 仮にあのフレイジングがクライアントパソコンだとするとあの可溶性画分は司法解釈である fact3: もしも「あのフレイジングはクライアントパソコンであるけど司法解釈だということはない」ということは偽ならばあの可溶性画分は司法解釈でない fact4: あのフレイジングは知行書き出しであるかあるいはそれはクライアントパソコンであるかあるいは両方ともだ fact5: 仮にあの可溶性画分がクライアントパソコンであるとすればあのフレイジングは司法解釈である fact6: あの可溶性画分は司法解釈であるかもしくはそれはクライアントパソコンであるかあるいはどちらもである fact7: 仮になんらかのものは知行書き出しであるならば「それがクライアントパソコンだし司法解釈でない」ということは誤っている ; $hypothesis$ = あの可溶性画分は司法解釈だ ; $proof$ =
fact4 & fact1 & fact2 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: あのフレイジングが知行書き出しだとするとあの可溶性画分は司法解釈だ 事実2: 仮にあのフレイジングがクライアントパソコンだとするとあの可溶性画分は司法解釈である 事実3: もしも「あのフレイジングはクライアントパソコンであるけど司法解釈だということはない」ということは偽ならばあの可溶性画分は司法解釈でない 事実4: あのフレイジングは知行書き出しであるかあるいはそれはクライアントパソコンであるかあるいは両方ともだ 事実5: 仮にあの可溶性画分がクライアントパソコンであるとすればあのフレイジングは司法解釈である 事実6: あの可溶性画分は司法解釈であるかもしくはそれはクライアントパソコンであるかあるいはどちらもである 事実7: 仮になんらかのものは知行書き出しであるならば「それがクライアントパソコンだし司法解釈でない」ということは誤っている 仮説: あの可溶性画分は司法解釈だ
1. 事実4と事実1と事実2から、仮説が導かれる よって、仮説が証明されました。
0.3
あの屋上庭園は見張らない
¬{B}{a}
fact1: 「何らかのものは血漿BNP値であるということはないしそれにそれは損失処理でない」ということは成り立たないならば損失処理だ fact2: もしも「その磯子区環境衛生保全協議会はOPタイプであるしまた怒りっぽい」ということは誤りであるならば「あの一個当たりはOPタイプでない」ということは成り立つ fact3: あの屋上庭園は尋問だ fact4: あの屋上庭園が損失処理だとしたらそれは見張る fact5: この水漏れは見張る fact6: あの屋上庭園は損失処理だ fact7: もし「その剥き海老は損失処理であるかまたはそれは血漿BNP値であるか両方である」ということは成り立たないならばあの屋上庭園は見張るということはない
fact1: (x): ¬(¬{C}x & ¬{A}x) -> {A}x fact2: ¬({D}{d} & {E}{d}) -> ¬{D}{c} fact3: {G}{a} fact4: {A}{a} -> {B}{a} fact5: {B}{it} fact6: {A}{a} fact7: ¬({A}{b} v {C}{b}) -> ¬{B}{a}
[ "fact4 & fact6 -> hypothesis;" ]
[ "fact4 & fact6 -> hypothesis;" ]
その減損損失は損失処理だ
{A}{cs}
[ "fact8 -> int1: もし「その減損損失は血漿BNP値でないしまた損失処理でない」ということは間違いならばそれは損失処理だ;" ]
4
1
1
5
0
5
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: 「何らかのものは血漿BNP値であるということはないしそれにそれは損失処理でない」ということは成り立たないならば損失処理だ fact2: もしも「その磯子区環境衛生保全協議会はOPタイプであるしまた怒りっぽい」ということは誤りであるならば「あの一個当たりはOPタイプでない」ということは成り立つ fact3: あの屋上庭園は尋問だ fact4: あの屋上庭園が損失処理だとしたらそれは見張る fact5: この水漏れは見張る fact6: あの屋上庭園は損失処理だ fact7: もし「その剥き海老は損失処理であるかまたはそれは血漿BNP値であるか両方である」ということは成り立たないならばあの屋上庭園は見張るということはない ; $hypothesis$ = あの屋上庭園は見張らない ; $proof$ =
fact4 & fact6 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: 「何らかのものは血漿BNP値であるということはないしそれにそれは損失処理でない」ということは成り立たないならば損失処理だ 事実2: もしも「その磯子区環境衛生保全協議会はOPタイプであるしまた怒りっぽい」ということは誤りであるならば「あの一個当たりはOPタイプでない」ということは成り立つ 事実3: あの屋上庭園は尋問だ 事実4: あの屋上庭園が損失処理だとしたらそれは見張る 事実5: この水漏れは見張る 事実6: あの屋上庭園は損失処理だ 事実7: もし「その剥き海老は損失処理であるかまたはそれは血漿BNP値であるか両方である」ということは成り立たないならばあの屋上庭園は見張るということはない 仮説: あの屋上庭園は見張らない
1. 事実4と事実6から、仮説が否定される よって、仮説が否定されました。
0.3
「あの未明はむさくないしさらに因り難いということはない」ということは誤りである
¬(¬{A}{a} & ¬{B}{a})
fact1: 仮にされ易い物がむず痒いとすると叩き割らない fact2: この説明は因り難くない fact3: 仮に「この社会制度は再生計画認可決定でない」ということは正しいなら「あの未明はむさくなくて加えて因り難くない」ということは事実と異なる fact4: もしその一個当たりが疑い深いということはないかまたは御星様であるかあるいは両方だとすればそのダイナミック・レンジはむず痒い fact5: 仮にそのダイナミック・レンジは叩き割らないとすると「それは世知辛いかまたは冬らしいということはないかあるいはどちらもだ」ということは誤りである fact6: あの未明はむさくない fact7: そのダイナミック・レンジはされ易い fact8: もしもこの道州がしんみりするとするとその一個当たりは疑い深いということはないかあるいは御星様であるかあるいは両方ともだ fact9: あの未明は因り難くない
fact1: (x): ({G}x & {H}x) -> ¬{F}x fact2: ¬{B}{i} fact3: ¬{C}{b} -> ¬(¬{A}{a} & ¬{B}{a}) fact4: (¬{J}{d} v {I}{d}) -> {H}{c} fact5: ¬{F}{c} -> ¬({E}{c} v ¬{D}{c}) fact6: ¬{A}{a} fact7: {G}{c} fact8: {K}{e} -> (¬{J}{d} v {I}{d}) fact9: ¬{B}{a}
[ "fact6 & fact9 -> hypothesis;" ]
[ "fact6 & fact9 -> hypothesis;" ]
「あの未明はむさくないしまたそれは因り難くない」ということは成り立つということはない
¬(¬{A}{a} & ¬{B}{a})
[ "fact11 -> int1: もしもそのダイナミック・レンジはされ易いし更にむず痒いとしたらそれは叩き割らない;" ]
10
1
1
7
0
7
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: 仮にされ易い物がむず痒いとすると叩き割らない fact2: この説明は因り難くない fact3: 仮に「この社会制度は再生計画認可決定でない」ということは正しいなら「あの未明はむさくなくて加えて因り難くない」ということは事実と異なる fact4: もしその一個当たりが疑い深いということはないかまたは御星様であるかあるいは両方だとすればそのダイナミック・レンジはむず痒い fact5: 仮にそのダイナミック・レンジは叩き割らないとすると「それは世知辛いかまたは冬らしいということはないかあるいはどちらもだ」ということは誤りである fact6: あの未明はむさくない fact7: そのダイナミック・レンジはされ易い fact8: もしもこの道州がしんみりするとするとその一個当たりは疑い深いということはないかあるいは御星様であるかあるいは両方ともだ fact9: あの未明は因り難くない ; $hypothesis$ = 「あの未明はむさくないしさらに因り難いということはない」ということは誤りである ; $proof$ =
fact6 & fact9 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: 仮にされ易い物がむず痒いとすると叩き割らない 事実2: この説明は因り難くない 事実3: 仮に「この社会制度は再生計画認可決定でない」ということは正しいなら「あの未明はむさくなくて加えて因り難くない」ということは事実と異なる 事実4: もしその一個当たりが疑い深いということはないかまたは御星様であるかあるいは両方だとすればそのダイナミック・レンジはむず痒い 事実5: 仮にそのダイナミック・レンジは叩き割らないとすると「それは世知辛いかまたは冬らしいということはないかあるいはどちらもだ」ということは誤りである 事実6: あの未明はむさくない 事実7: そのダイナミック・レンジはされ易い 事実8: もしもこの道州がしんみりするとするとその一個当たりは疑い深いということはないかあるいは御星様であるかあるいは両方ともだ 事実9: あの未明は因り難くない 仮説: 「あの未明はむさくないしさらに因り難いということはない」ということは誤りである
1. 事実6と事実9から、仮説が否定される よって、仮説が否定されました。
0.3
「この鉄則は出来事全体であるしそれは捏ね上げる」ということは正しくない
¬({A}{a} & {B}{a})
fact1: もし仮に「何らかのものはツアーバスでないが口煩い」ということは正しいとすれば「それは公示する」ということは確かである fact2: 仮になにがしかのものは修理すれば「口煩くてかつツアーバスでない」ということは誤っている fact3: もし仮に何らかの物が公示するとすると捏ね上げるということはない fact4: この鉄則は捏ね上げる fact5: もし「あの人的交流は言い直すけど収むない」ということは成り立たないならば「それは収む」ということは成り立つ fact6: もし仮に「公示するか出来事全体でないかまたはどちらもな」ものがあるならあのデGψは組成式だ fact7: 仮に「あの人的交流は口煩いがしかしツアーバスでない」ということは成り立つということはないとしたらあのデGψは捏ね上げる fact8: もし仮になにかは修理しないならツアーバスでないし更に口煩い fact9: この初期治療は出来事全体である fact10: 「あの人的交流は言い直すけれどそれは収むない」ということは成り立たない fact11: そのセゾングループは捏ね上げる fact12: この鉄則は出来事全体である fact13: なにかは好ましないとしたら「御忙しくて加えてそれは修理する」ということは偽だ fact14: もし仮にあるものは書き上げないけど収むならば「好ましない」ということは成り立つ fact15: もしも「ある物は御忙しくて加えて修理する」ということは事実と異なれば「それは修理しない」ということは本当だ fact16: 「あの人的交流は書き上げない」ということは成り立つ fact17: 「好ましない」物はある
fact1: (x): (¬{D}x & {E}x) -> {C}x fact2: (x): {F}x -> ¬({E}x & ¬{D}x) fact3: (x): {C}x -> ¬{B}x fact4: {B}{a} fact5: ¬({L}{b} & ¬{J}{b}) -> {J}{b} fact6: (x): ({C}x v ¬{A}x) -> {DH}{f} fact7: ¬({E}{b} & ¬{D}{b}) -> {B}{f} fact8: (x): ¬{F}x -> (¬{D}x & {E}x) fact9: {A}{fr} fact10: ¬({L}{b} & ¬{J}{b}) fact11: {AA}{aa} fact12: {A}{a} fact13: (x): ¬{H}x -> ¬({G}x & {F}x) fact14: (x): (¬{I}x & {J}x) -> ¬{H}x fact15: (x): ¬({G}x & {F}x) -> ¬{F}x fact16: ¬{I}{b} fact17: (Ex): ¬{H}x
[ "fact12 & fact4 -> hypothesis;" ]
[ "fact12 & fact4 -> hypothesis;" ]
「この鉄則が出来事全体だしおまけに捏ね上げる」ということは誤りだ
¬({A}{a} & {B}{a})
[ "fact26 -> int1: もしあの人的交流が公示するとすれば捏ね上げない; fact20 -> int2: もしもあの人的交流がツアーバスだということはないけれど口煩いとすれば公示する; fact23 -> int3: もしあの人的交流は修理しないなら「ツアーバスでないが口煩い」ということは本当である; fact19 -> int4: 仮に「あの人的交流は御忙しいしまた修理する」ということは間違いであるとしたら「修理しない」ということは誤っていない; fact25 -> int5: 仮にあの人的交流は好ましということはないならば「それは御忙しいし修理する」ということは成り立つということはない; fact21 -> int6: もしあの人的交流が書き上げないけれどそれが収むとすると好ましない; fact24 & fact18 -> int7: あの人的交流は収む; fact22 & int7 -> int8: あの人的交流は書き上げるということはない一方で収む; int6 & int8 -> int9: あの人的交流は好ましない; int5 & int9 -> int10: 「あの人的交流は御忙しくて修理する」ということは誤っている; int4 & int10 -> int11: 「あの人的交流は修理しない」ということは本当だ; int3 & int11 -> int12: あの人的交流はツアーバスであるということはない一方で口煩い; int2 & int12 -> int13: あの人的交流は公示する; int1 & int13 -> int14: あの人的交流は捏ね上げない; int14 -> int15: 「捏ね上げるということはない」物はある;" ]
10
1
1
15
0
15
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: もし仮に「何らかのものはツアーバスでないが口煩い」ということは正しいとすれば「それは公示する」ということは確かである fact2: 仮になにがしかのものは修理すれば「口煩くてかつツアーバスでない」ということは誤っている fact3: もし仮に何らかの物が公示するとすると捏ね上げるということはない fact4: この鉄則は捏ね上げる fact5: もし「あの人的交流は言い直すけど収むない」ということは成り立たないならば「それは収む」ということは成り立つ fact6: もし仮に「公示するか出来事全体でないかまたはどちらもな」ものがあるならあのデGψは組成式だ fact7: 仮に「あの人的交流は口煩いがしかしツアーバスでない」ということは成り立つということはないとしたらあのデGψは捏ね上げる fact8: もし仮になにかは修理しないならツアーバスでないし更に口煩い fact9: この初期治療は出来事全体である fact10: 「あの人的交流は言い直すけれどそれは収むない」ということは成り立たない fact11: そのセゾングループは捏ね上げる fact12: この鉄則は出来事全体である fact13: なにかは好ましないとしたら「御忙しくて加えてそれは修理する」ということは偽だ fact14: もし仮にあるものは書き上げないけど収むならば「好ましない」ということは成り立つ fact15: もしも「ある物は御忙しくて加えて修理する」ということは事実と異なれば「それは修理しない」ということは本当だ fact16: 「あの人的交流は書き上げない」ということは成り立つ fact17: 「好ましない」物はある ; $hypothesis$ = 「この鉄則は出来事全体であるしそれは捏ね上げる」ということは正しくない ; $proof$ =
fact12 & fact4 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: もし仮に「何らかのものはツアーバスでないが口煩い」ということは正しいとすれば「それは公示する」ということは確かである 事実2: 仮になにがしかのものは修理すれば「口煩くてかつツアーバスでない」ということは誤っている 事実3: もし仮に何らかの物が公示するとすると捏ね上げるということはない 事実4: この鉄則は捏ね上げる 事実5: もし「あの人的交流は言い直すけど収むない」ということは成り立たないならば「それは収む」ということは成り立つ 事実6: もし仮に「公示するか出来事全体でないかまたはどちらもな」ものがあるならあのデGψは組成式だ 事実7: 仮に「あの人的交流は口煩いがしかしツアーバスでない」ということは成り立つということはないとしたらあのデGψは捏ね上げる 事実8: もし仮になにかは修理しないならツアーバスでないし更に口煩い 事実9: この初期治療は出来事全体である 事実10: 「あの人的交流は言い直すけれどそれは収むない」ということは成り立たない 事実11: そのセゾングループは捏ね上げる 事実12: この鉄則は出来事全体である 事実13: なにかは好ましないとしたら「御忙しくて加えてそれは修理する」ということは偽だ 事実14: もし仮にあるものは書き上げないけど収むならば「好ましない」ということは成り立つ 事実15: もしも「ある物は御忙しくて加えて修理する」ということは事実と異なれば「それは修理しない」ということは本当だ 事実16: 「あの人的交流は書き上げない」ということは成り立つ 事実17: 「好ましない」物はある 仮説: 「この鉄則は出来事全体であるしそれは捏ね上げる」ということは正しくない
1. 事実12と事実4から、仮説が否定される よって、仮説が否定されました。
0.3
この秋冬は遣り直せるかまたは選択し易いか両方である
({A}{a} v {B}{a})
fact1: その公共図書館は前掲枢密院会議議事録でないならば「この秋冬は遣り直せるか選択し易い」ということは成り立たない fact2: もし仮に何らかの物は同期化でないとするとデCであるししかも前掲枢密院会議議事録だ fact3: 「その六十一Bは楊幼炯かまたは磨り潰す」ということは確かだ fact4: この秋冬は遣り直せる fact5: 「あの若僧は研究出来るがしかし守り易いということはない」ということは成り立たないならそれは鼻音化するということはない fact6: もしその制作活動が守り易いかまたはそれは連絡しないなら「その緑化施設は守り易い」ということは確かである fact7: 仮にとある物が鼻音化しないとするとそれはデCでないしそれは同期化であるということはない fact8: もしもあの若僧が前掲枢密院会議議事録であるならばその公共図書館は前掲枢密院会議議事録でない fact9: この四五人は遣り直せる fact10: もしその公共図書館が前掲枢密院会議議事録であるということはないならばこの秋冬は遣り直せるということはないかまたはそれは選択し易いということはないかもしくは両方ともである fact11: もしなにがしかの物が遣り直せらないかあるいはそれは選択し易くないかあるいはどちらもだとすれば戻し易い
fact1: ¬{C}{b} -> ¬({A}{a} v {B}{a}) fact2: (x): ¬{E}x -> ({D}x & {C}x) fact3: ({CR}{iq} v {HF}{iq}) fact4: {A}{a} fact5: ¬({H}{c} & ¬{G}{c}) -> ¬{F}{c} fact6: ({G}{e} v ¬{I}{e}) -> {G}{d} fact7: (x): ¬{F}x -> (¬{D}x & ¬{E}x) fact8: {C}{c} -> ¬{C}{b} fact9: {AA}{aa} fact10: ¬{C}{b} -> (¬{A}{a} v ¬{B}{a}) fact11: (x): (¬{A}x v ¬{B}x) -> {GN}x
[ "fact4 -> hypothesis;" ]
[ "fact4 -> hypothesis;" ]
「この秋冬は遣り直せるかもしくは選択し易いかあるいは両方だ」ということは誤りである
¬({A}{a} v {B}{a})
[ "fact13 -> int1: もし仮にあの若僧が鼻音化しないならそれはデCであるということはなくて加えてそれは同期化でない;" ]
8
1
1
10
0
10
PROVED
UNKNOWN
PROVED
UNKNOWN
$facts$ = fact1: その公共図書館は前掲枢密院会議議事録でないならば「この秋冬は遣り直せるか選択し易い」ということは成り立たない fact2: もし仮に何らかの物は同期化でないとするとデCであるししかも前掲枢密院会議議事録だ fact3: 「その六十一Bは楊幼炯かまたは磨り潰す」ということは確かだ fact4: この秋冬は遣り直せる fact5: 「あの若僧は研究出来るがしかし守り易いということはない」ということは成り立たないならそれは鼻音化するということはない fact6: もしその制作活動が守り易いかまたはそれは連絡しないなら「その緑化施設は守り易い」ということは確かである fact7: 仮にとある物が鼻音化しないとするとそれはデCでないしそれは同期化であるということはない fact8: もしもあの若僧が前掲枢密院会議議事録であるならばその公共図書館は前掲枢密院会議議事録でない fact9: この四五人は遣り直せる fact10: もしその公共図書館が前掲枢密院会議議事録であるということはないならばこの秋冬は遣り直せるということはないかまたはそれは選択し易いということはないかもしくは両方ともである fact11: もしなにがしかの物が遣り直せらないかあるいはそれは選択し易くないかあるいはどちらもだとすれば戻し易い ; $hypothesis$ = この秋冬は遣り直せるかまたは選択し易いか両方である ; $proof$ =
fact4 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: その公共図書館は前掲枢密院会議議事録でないならば「この秋冬は遣り直せるか選択し易い」ということは成り立たない 事実2: もし仮に何らかの物は同期化でないとするとデCであるししかも前掲枢密院会議議事録だ 事実3: 「その六十一Bは楊幼炯かまたは磨り潰す」ということは確かだ 事実4: この秋冬は遣り直せる 事実5: 「あの若僧は研究出来るがしかし守り易いということはない」ということは成り立たないならそれは鼻音化するということはない 事実6: もしその制作活動が守り易いかまたはそれは連絡しないなら「その緑化施設は守り易い」ということは確かである 事実7: 仮にとある物が鼻音化しないとするとそれはデCでないしそれは同期化であるということはない 事実8: もしもあの若僧が前掲枢密院会議議事録であるならばその公共図書館は前掲枢密院会議議事録でない 事実9: この四五人は遣り直せる 事実10: もしその公共図書館が前掲枢密院会議議事録であるということはないならばこの秋冬は遣り直せるということはないかまたはそれは選択し易いということはないかもしくは両方ともである 事実11: もしなにがしかの物が遣り直せらないかあるいはそれは選択し易くないかあるいはどちらもだとすれば戻し易い 仮説: この秋冬は遣り直せるかまたは選択し易いか両方である
1. 事実4から、仮説が導かれる よって、仮説が証明されました。
0.3
あの踊り子達は存続すらないけれどハートマークだ
(¬{A}{a} & {B}{a})
fact1: あの踊り子達はストックしない一方で発現し易い fact2: 心地良いものは絶縁しないが上げ易い fact3: どれもこれもは冗談っぽいしさらに心地良い fact4: 仮に何らかの物がハートマークでないとすれば存続すらない一方で脱落する fact5: もしもその検査等が敵中深いとすればあの踊り子達は敵中深い fact6: あの踊り子達はハートマークである fact7: あの踊り子達は存続すらない fact8: あの電磁場は存続すらない fact9: あの選手同士はハートマークでない fact10: そのエクスペリエンスはハートマークであるということはない fact11: 仮に「「絶縁しない」ということは真実である」物があるとするとその検査等はうら若ししおまけに敵中深い fact12: あのコンデンサは存続すらない fact13: あの踊り子達は欠けない fact14: 仮に何かは敵中深いということはないとすれば「それは存続すということはないしハートマークだ」ということは成り立たない
fact1: (¬{DC}{a} & {DF}{a}) fact2: (x): {G}x -> (¬{E}x & {F}x) fact3: (x): ({H}x & {G}x) fact4: (x): ¬{B}x -> (¬{A}x & {FB}x) fact5: {C}{b} -> {C}{a} fact6: {B}{a} fact7: ¬{A}{a} fact8: ¬{AA}{aa} fact9: ¬{B}{it} fact10: ¬{B}{ef} fact11: (x): ¬{E}x -> ({D}{b} & {C}{b}) fact12: ¬{A}{eo} fact13: ¬{AT}{a} fact14: (x): ¬{C}x -> ¬(¬{A}x & {B}x)
[ "fact7 & fact6 -> hypothesis;" ]
[ "fact7 & fact6 -> hypothesis;" ]
「あの踊り子達は存続すらないけれどハートマークである」ということは間違っている
¬(¬{A}{a} & {B}{a})
[ "fact16 -> int1: この買い手は冗談っぽいしそれに心地良い; int1 -> int2: この買い手は心地良い; int2 -> int3: すべてのものは心地良い; int3 -> int4: この事以上は心地良い; fact15 -> int5: もしこの事以上が心地良いとするとそれは絶縁しないがしかし上げ易い; int4 & int5 -> int6: 「この事以上は絶縁するということはないけれど上げ易い」ということは正しい; int6 -> int7: 全ての物は絶縁しないがしかし上げ易い; int7 -> int8: この隠しファイルは絶縁しないが上げ易い; int8 -> int9: この隠しファイルは絶縁するということはない; int9 -> int10: なんらかの物は絶縁しない; int10 & fact18 -> int11: その検査等はうら若しし敵中深い; int11 -> int12: その検査等は敵中深い; int12 & fact17 -> int13: 「あの踊り子達は敵中深い」ということは成り立つ;" ]
13
1
1
12
0
12
PROVED
UNKNOWN
PROVED
UNKNOWN
$facts$ = fact1: あの踊り子達はストックしない一方で発現し易い fact2: 心地良いものは絶縁しないが上げ易い fact3: どれもこれもは冗談っぽいしさらに心地良い fact4: 仮に何らかの物がハートマークでないとすれば存続すらない一方で脱落する fact5: もしもその検査等が敵中深いとすればあの踊り子達は敵中深い fact6: あの踊り子達はハートマークである fact7: あの踊り子達は存続すらない fact8: あの電磁場は存続すらない fact9: あの選手同士はハートマークでない fact10: そのエクスペリエンスはハートマークであるということはない fact11: 仮に「「絶縁しない」ということは真実である」物があるとするとその検査等はうら若ししおまけに敵中深い fact12: あのコンデンサは存続すらない fact13: あの踊り子達は欠けない fact14: 仮に何かは敵中深いということはないとすれば「それは存続すということはないしハートマークだ」ということは成り立たない ; $hypothesis$ = あの踊り子達は存続すらないけれどハートマークだ ; $proof$ =
fact7 & fact6 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: あの踊り子達はストックしない一方で発現し易い 事実2: 心地良いものは絶縁しないが上げ易い 事実3: どれもこれもは冗談っぽいしさらに心地良い 事実4: 仮に何らかの物がハートマークでないとすれば存続すらない一方で脱落する 事実5: もしもその検査等が敵中深いとすればあの踊り子達は敵中深い 事実6: あの踊り子達はハートマークである 事実7: あの踊り子達は存続すらない 事実8: あの電磁場は存続すらない 事実9: あの選手同士はハートマークでない 事実10: そのエクスペリエンスはハートマークであるということはない 事実11: 仮に「「絶縁しない」ということは真実である」物があるとするとその検査等はうら若ししおまけに敵中深い 事実12: あのコンデンサは存続すらない 事実13: あの踊り子達は欠けない 事実14: 仮に何かは敵中深いということはないとすれば「それは存続すということはないしハートマークだ」ということは成り立たない 仮説: あの踊り子達は存続すらないけれどハートマークだ
1. 事実7と事実6から、仮説が導かれる よって、仮説が証明されました。
0.3
「「擽ったくて加えて傷付き易い」物はある」ということは間違いである
¬((Ex): ({A}x & {B}x))
fact1: 仮にこの火中が遅しならばそのコルボン等々は遅し fact2: 「感じ易くてさらに引き去る」ものはある fact3: 仮に何かはコレクションすれば被告Xである fact4: なんらかのものは薄ら寒いししかも鉛合金である fact5: 「吠え出す」物はある fact6: もし仮にあの結語が上昇し易くないとすると言い終えないしおまけに消化し易くない fact7: 「「擽ったい」ということは確かな」ものはある fact8: ある物は一手であるしそれに証明出来る fact9: この観光産業は被爆者でそれは社会的制裁だ fact10: もし仮にあの結語が先物外国為替契約だということはないならばそのコルボン等々は入滅するということはない fact11: もし「吠え出す」物があればこの氷水はコレクションする fact12: その俗人はVSSであるし加えて取水する fact13: 「このアコードは擽ったい」ということは事実である fact14: 何かは入滅しないならそれは傷付き易くてかつ擽ったい fact15: このアコードは留任するしそれは沈み切る fact16: この観光産業は使い尽くすししかもちっちゃい fact17: なんらかのものは傷付き易い fact18: このアコードは擽ったくて加えて傷付き易い fact19: なにかは掃除し易いしおまけに分岐因子だ fact20: もし「あの結語は言い終えない」ということは確かであるとすればおっきくなくてそれは先物外国為替契約でない fact21: 「仮にこの氷水が被告Xだとしたらこの火中は遅し」ということは事実だ
fact1: {HT}{a} -> {HT}{ea} fact2: (Ex): ({AD}x & {IF}x) fact3: (x): {H}x -> {D}x fact4: (Ex): ({JA}x & {EI}x) fact5: (Ex): {I}x fact6: ¬{K}{c} -> (¬{G}{c} & ¬{J}{c}) fact7: (Ex): {A}x fact8: (Ex): ({FP}x & {DP}x) fact9: ({ER}{bu} & {AC}{bu}) fact10: ¬{E}{c} -> ¬{C}{ea} fact11: (x): {I}x -> {H}{b} fact12: ({M}{ee} & {IT}{ee}) fact13: {A}{aa} fact14: (x): ¬{C}x -> ({B}x & {A}x) fact15: ({FR}{aa} & {IC}{aa}) fact16: ({FA}{bu} & {GJ}{bu}) fact17: (Ex): {B}x fact18: ({A}{aa} & {B}{aa}) fact19: (Ex): ({FO}x & {S}x) fact20: ¬{G}{c} -> (¬{F}{c} & ¬{E}{c}) fact21: {D}{b} -> {HT}{a}
[ "fact18 -> hypothesis;" ]
[ "fact18 -> hypothesis;" ]
そのコルボン等々は遅ししかつ擽ったい
({HT}{ea} & {A}{ea})
[ "fact28 -> int1: この氷水がコレクションするとすればそれは被告Xである; fact30 & fact23 -> int2: この氷水はコレクションする; int1 & int2 -> int3: この氷水は被告Xだ; fact24 & int3 -> int4: この火中は遅し; fact25 & int4 -> int5: そのコルボン等々は遅し; fact22 -> int6: もし仮にそのコルボン等々が入滅しないならば傷付き易くて擽ったい;" ]
8
1
1
20
0
20
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: 仮にこの火中が遅しならばそのコルボン等々は遅し fact2: 「感じ易くてさらに引き去る」ものはある fact3: 仮に何かはコレクションすれば被告Xである fact4: なんらかのものは薄ら寒いししかも鉛合金である fact5: 「吠え出す」物はある fact6: もし仮にあの結語が上昇し易くないとすると言い終えないしおまけに消化し易くない fact7: 「「擽ったい」ということは確かな」ものはある fact8: ある物は一手であるしそれに証明出来る fact9: この観光産業は被爆者でそれは社会的制裁だ fact10: もし仮にあの結語が先物外国為替契約だということはないならばそのコルボン等々は入滅するということはない fact11: もし「吠え出す」物があればこの氷水はコレクションする fact12: その俗人はVSSであるし加えて取水する fact13: 「このアコードは擽ったい」ということは事実である fact14: 何かは入滅しないならそれは傷付き易くてかつ擽ったい fact15: このアコードは留任するしそれは沈み切る fact16: この観光産業は使い尽くすししかもちっちゃい fact17: なんらかのものは傷付き易い fact18: このアコードは擽ったくて加えて傷付き易い fact19: なにかは掃除し易いしおまけに分岐因子だ fact20: もし「あの結語は言い終えない」ということは確かであるとすればおっきくなくてそれは先物外国為替契約でない fact21: 「仮にこの氷水が被告Xだとしたらこの火中は遅し」ということは事実だ ; $hypothesis$ = 「「擽ったくて加えて傷付き易い」物はある」ということは間違いである ; $proof$ =
fact18 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: 仮にこの火中が遅しならばそのコルボン等々は遅し 事実2: 「感じ易くてさらに引き去る」ものはある 事実3: 仮に何かはコレクションすれば被告Xである 事実4: なんらかのものは薄ら寒いししかも鉛合金である 事実5: 「吠え出す」物はある 事実6: もし仮にあの結語が上昇し易くないとすると言い終えないしおまけに消化し易くない 事実7: 「「擽ったい」ということは確かな」ものはある 事実8: ある物は一手であるしそれに証明出来る 事実9: この観光産業は被爆者でそれは社会的制裁だ 事実10: もし仮にあの結語が先物外国為替契約だということはないならばそのコルボン等々は入滅するということはない 事実11: もし「吠え出す」物があればこの氷水はコレクションする 事実12: その俗人はVSSであるし加えて取水する 事実13: 「このアコードは擽ったい」ということは事実である 事実14: 何かは入滅しないならそれは傷付き易くてかつ擽ったい 事実15: このアコードは留任するしそれは沈み切る 事実16: この観光産業は使い尽くすししかもちっちゃい 事実17: なんらかのものは傷付き易い 事実18: このアコードは擽ったくて加えて傷付き易い 事実19: なにかは掃除し易いしおまけに分岐因子だ 事実20: もし「あの結語は言い終えない」ということは確かであるとすればおっきくなくてそれは先物外国為替契約でない 事実21: 「仮にこの氷水が被告Xだとしたらこの火中は遅し」ということは事実だ 仮説: 「「擽ったくて加えて傷付き易い」物はある」ということは間違いである
1. 事実18から、仮説が否定される よって、仮説が否定されました。
0.3
あの補助受容体シグナルは繁殖し易くない
¬{B}{b}
fact1: このドレスは精気である fact2: 仮に「このドレスは繁殖し易いということはないけれど精気だ」ということは誤っているとしたらあの補助受容体シグナルは繁殖し易くない fact3: 仮にこのドレスが精気であるならあの補助受容体シグナルは繁殖し易い
fact1: {A}{a} fact2: ¬(¬{B}{a} & {A}{a}) -> ¬{B}{b} fact3: {A}{a} -> {B}{b}
[ "fact3 & fact1 -> hypothesis;" ]
[ "fact3 & fact1 -> hypothesis;" ]
あの補助受容体シグナルは繁殖し易くない
¬{B}{b}
[]
5
1
1
1
0
1
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: このドレスは精気である fact2: 仮に「このドレスは繁殖し易いということはないけれど精気だ」ということは誤っているとしたらあの補助受容体シグナルは繁殖し易くない fact3: 仮にこのドレスが精気であるならあの補助受容体シグナルは繁殖し易い ; $hypothesis$ = あの補助受容体シグナルは繁殖し易くない ; $proof$ =
fact3 & fact1 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: このドレスは精気である 事実2: 仮に「このドレスは繁殖し易いということはないけれど精気だ」ということは誤っているとしたらあの補助受容体シグナルは繁殖し易くない 事実3: 仮にこのドレスが精気であるならあの補助受容体シグナルは繁殖し易い 仮説: あの補助受容体シグナルは繁殖し易くない
1. 事実3と事実1から、仮説が否定される よって、仮説が否定されました。
0.3
「あの輸出急増は鮎増殖研究部会でない一方で組み付く」ということは成り立つということはない
¬(¬{AA}{a} & {AB}{a})
fact1: なんらかのものが陣没するとすれば入力部でないしそれに顕現するということはない fact2: 入力部は温い fact3: 仮に「この早番は言い足すか難しかないかまたは両方ともだ」ということは誤りならその抗告事件は言い足す fact4: 仮にその抗告事件は言い足すとしたら「「あの輸出急増は鮎増殖研究部会でない一方で組み付く」ということは成り立つ」ということは成り立たない fact5: 何らかの物は温いとすれば「それは言い足すかまたは難しいということはない」ということは間違っている fact6: このリアフロアが入力部だということはなくて顕現しないとすればこの早番は入力部だ fact7: あの輸出急増は鮎増殖研究部会でないけれど組み付く
fact1: (x): {E}x -> (¬{D}x & ¬{F}x) fact2: (x): {D}x -> {C}x fact3: ¬({A}{c} v ¬{B}{c}) -> {A}{b} fact4: {A}{b} -> ¬(¬{AA}{a} & {AB}{a}) fact5: (x): {C}x -> ¬({A}x v ¬{B}x) fact6: (¬{D}{d} & ¬{F}{d}) -> {D}{c} fact7: (¬{AA}{a} & {AB}{a})
[ "fact7 -> hypothesis;" ]
[ "fact7 -> hypothesis;" ]
「あの輸出急増は鮎増殖研究部会でないがしかし組み付く」ということは誤っている
¬(¬{AA}{a} & {AB}{a})
[ "fact13 -> int1: もしも「この早番は温い」ということは成り立つとすると「それは言い足すか難しいということはないかもしくは両方だ」ということは成り立たない; fact12 -> int2: 仮に「この早番は入力部である」ということは成り立つとしたら「それは温い」ということは確かだ; fact10 -> int3: このリアフロアが陣没すればそれは入力部でなくてまた顕現しない;" ]
8
1
0
6
0
6
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: なんらかのものが陣没するとすれば入力部でないしそれに顕現するということはない fact2: 入力部は温い fact3: 仮に「この早番は言い足すか難しかないかまたは両方ともだ」ということは誤りならその抗告事件は言い足す fact4: 仮にその抗告事件は言い足すとしたら「「あの輸出急増は鮎増殖研究部会でない一方で組み付く」ということは成り立つ」ということは成り立たない fact5: 何らかの物は温いとすれば「それは言い足すかまたは難しいということはない」ということは間違っている fact6: このリアフロアが入力部だということはなくて顕現しないとすればこの早番は入力部だ fact7: あの輸出急増は鮎増殖研究部会でないけれど組み付く ; $hypothesis$ = 「あの輸出急増は鮎増殖研究部会でない一方で組み付く」ということは成り立つということはない ; $proof$ =
fact7 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: なんらかのものが陣没するとすれば入力部でないしそれに顕現するということはない 事実2: 入力部は温い 事実3: 仮に「この早番は言い足すか難しかないかまたは両方ともだ」ということは誤りならその抗告事件は言い足す 事実4: 仮にその抗告事件は言い足すとしたら「「あの輸出急増は鮎増殖研究部会でない一方で組み付く」ということは成り立つ」ということは成り立たない 事実5: 何らかの物は温いとすれば「それは言い足すかまたは難しいということはない」ということは間違っている 事実6: このリアフロアが入力部だということはなくて顕現しないとすればこの早番は入力部だ 事実7: あの輸出急増は鮎増殖研究部会でないけれど組み付く 仮説: 「あの輸出急増は鮎増殖研究部会でない一方で組み付く」ということは成り立つということはない
1. 事実7から、仮説が否定される よって、仮説が否定されました。
0.3
「その足掛けは貧しないしそれに公文議員でない」ということは成り立たない
¬(¬{AA}{a} & ¬{AB}{a})
fact1: もし仮になにかは長々しかないとすると「それは強くないしヘルムホルツ方程式でない」ということは偽である fact2: とある物が原理主義者でないとするとそれは貧しないし加えてそれは芽生え始めない fact3: その足掛けは貧しないしそれにそれは積み重ならない fact4: その足掛けは貧しないし公文議員でない
fact1: (x): ¬{D}x -> ¬(¬{B}x & ¬{C}x) fact2: (x): ¬{A}x -> (¬{AA}x & ¬{CL}x) fact3: (¬{AA}{a} & ¬{BU}{a}) fact4: (¬{AA}{a} & ¬{AB}{a})
[ "fact4 -> hypothesis;" ]
[ "fact4 -> hypothesis;" ]
あの調査部分は貧しないし芽生え始めない
(¬{AA}{fu} & ¬{CL}{fu})
[ "fact5 -> int1: あの調査部分は原理主義者でないとするとそれは貧しないし加えて芽生え始めない; fact6 -> int2: もしもその足掛けは長々しかないとすると「強くないしまたそれはヘルムホルツ方程式でない」ということは嘘だ;" ]
5
1
0
3
0
3
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: もし仮になにかは長々しかないとすると「それは強くないしヘルムホルツ方程式でない」ということは偽である fact2: とある物が原理主義者でないとするとそれは貧しないし加えてそれは芽生え始めない fact3: その足掛けは貧しないしそれにそれは積み重ならない fact4: その足掛けは貧しないし公文議員でない ; $hypothesis$ = 「その足掛けは貧しないしそれに公文議員でない」ということは成り立たない ; $proof$ =
fact4 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: もし仮になにかは長々しかないとすると「それは強くないしヘルムホルツ方程式でない」ということは偽である 事実2: とある物が原理主義者でないとするとそれは貧しないし加えてそれは芽生え始めない 事実3: その足掛けは貧しないしそれにそれは積み重ならない 事実4: その足掛けは貧しないし公文議員でない 仮説: 「その足掛けは貧しないしそれに公文議員でない」ということは成り立たない
1. 事実4から、仮説が否定される よって、仮説が否定されました。
0.3
「あの監理技術者は帝国主義である」ということは偽でない
{B}{a}
fact1: もし仮にあの監理技術者は女史でないなら一般用医薬品だということはない fact2: あの監理技術者は押し詰まるかまたはそれは肉類であるかもしくは両方である fact3: あの監理技術者は汚らわしいかそれは女史でない fact4: あの監理技術者は万葉仮名であるかまたは帝国主義でないかまたは両方である fact5: あの監理技術者は汚らわしいか差し支え有らないかもしくは両方ともだ fact6: もしもあの監理技術者は帝国主義であるかもしくは教養課程でないか両方ともだとしたらそれは丸くない fact7: あの独露は汚らわしくない fact8: あの形式分析は冒涜するかもしくはそれは商品種類だ fact9: 仮に「あの監理技術者は二十日号でない」ということは成り立つならそれは光学顕微鏡でない fact10: あの監理技術者は細胞内外であるかもしくは汚らわしくない fact11: あの有限責任が甘酸っぱくないならそれは帝国主義でない fact12: あの監理技術者は試験しない fact13: もしあの監理技術者が汚らわしいかそれは差し支え有らないかもしくはどちらもであるならそれは帝国主義でない fact14: あのチャリティーは帝国主義でない fact15: あの監理技術者はおどろおどろしいということはない fact16: あの監理技術者は気持ち良いかまたは本当らしいかもしくは両方ともである fact17: この博物は差し支え有るかもしくはそれは斜線でないかあるいは両方ともである
fact1: ¬{HL}{a} -> ¬{HQ}{a} fact2: ({AM}{a} v {DR}{a}) fact3: ({AA}{a} v ¬{HL}{a}) fact4: ({CJ}{a} v ¬{B}{a}) fact5: ({AA}{a} v ¬{AB}{a}) fact6: ({B}{a} v ¬{BE}{a}) -> ¬{CT}{a} fact7: ¬{AA}{eh} fact8: ({D}{df} v {HJ}{df}) fact9: ¬{EH}{a} -> ¬{HU}{a} fact10: ({JJ}{a} v ¬{AA}{a}) fact11: ¬{GR}{dr} -> ¬{B}{dr} fact12: ¬{IQ}{a} fact13: ({AA}{a} v ¬{AB}{a}) -> ¬{B}{a} fact14: ¬{B}{aj} fact15: ¬{IH}{a} fact16: ({IN}{a} v {CH}{a}) fact17: ({AB}{ah} v ¬{IE}{ah})
[ "fact13 & fact5 -> hypothesis;" ]
[ "fact13 & fact5 -> hypothesis;" ]
null
null
[]
null
1
1
15
0
15
DISPROVED
null
DISPROVED
null
$facts$ = fact1: もし仮にあの監理技術者は女史でないなら一般用医薬品だということはない fact2: あの監理技術者は押し詰まるかまたはそれは肉類であるかもしくは両方である fact3: あの監理技術者は汚らわしいかそれは女史でない fact4: あの監理技術者は万葉仮名であるかまたは帝国主義でないかまたは両方である fact5: あの監理技術者は汚らわしいか差し支え有らないかもしくは両方ともだ fact6: もしもあの監理技術者は帝国主義であるかもしくは教養課程でないか両方ともだとしたらそれは丸くない fact7: あの独露は汚らわしくない fact8: あの形式分析は冒涜するかもしくはそれは商品種類だ fact9: 仮に「あの監理技術者は二十日号でない」ということは成り立つならそれは光学顕微鏡でない fact10: あの監理技術者は細胞内外であるかもしくは汚らわしくない fact11: あの有限責任が甘酸っぱくないならそれは帝国主義でない fact12: あの監理技術者は試験しない fact13: もしあの監理技術者が汚らわしいかそれは差し支え有らないかもしくはどちらもであるならそれは帝国主義でない fact14: あのチャリティーは帝国主義でない fact15: あの監理技術者はおどろおどろしいということはない fact16: あの監理技術者は気持ち良いかまたは本当らしいかもしくは両方ともである fact17: この博物は差し支え有るかもしくはそれは斜線でないかあるいは両方ともである ; $hypothesis$ = 「あの監理技術者は帝国主義である」ということは偽でない ; $proof$ =
fact13 & fact5 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: もし仮にあの監理技術者は女史でないなら一般用医薬品だということはない 事実2: あの監理技術者は押し詰まるかまたはそれは肉類であるかもしくは両方である 事実3: あの監理技術者は汚らわしいかそれは女史でない 事実4: あの監理技術者は万葉仮名であるかまたは帝国主義でないかまたは両方である 事実5: あの監理技術者は汚らわしいか差し支え有らないかもしくは両方ともだ 事実6: もしもあの監理技術者は帝国主義であるかもしくは教養課程でないか両方ともだとしたらそれは丸くない 事実7: あの独露は汚らわしくない 事実8: あの形式分析は冒涜するかもしくはそれは商品種類だ 事実9: 仮に「あの監理技術者は二十日号でない」ということは成り立つならそれは光学顕微鏡でない 事実10: あの監理技術者は細胞内外であるかもしくは汚らわしくない 事実11: あの有限責任が甘酸っぱくないならそれは帝国主義でない 事実12: あの監理技術者は試験しない 事実13: もしあの監理技術者が汚らわしいかそれは差し支え有らないかもしくはどちらもであるならそれは帝国主義でない 事実14: あのチャリティーは帝国主義でない 事実15: あの監理技術者はおどろおどろしいということはない 事実16: あの監理技術者は気持ち良いかまたは本当らしいかもしくは両方ともである 事実17: この博物は差し支え有るかもしくはそれは斜線でないかあるいは両方ともである 仮説: 「あの監理技術者は帝国主義である」ということは偽でない
1. 事実13と事実5から、仮説が否定される よって、仮説が否定されました。
0.3
その二.二.一参照はコンベンションでない
¬{B}{b}
fact1: もしその御家人達が得難しならばあの二.二.一参照はコンベンションだ fact2: その御家人達はコンベンションである fact3: その二.二.一参照は得難し fact4: その御家人達は得難し fact5: この解答用紙は得難し fact6: もし「その御家人達はコンベンションである」ということは事実だとしたらその二.二.一参照は得難し fact7: その御家人達は支援する fact8: ストライプは取り落とさないし得難しない
fact1: {A}{a} -> {B}{b} fact2: {B}{a} fact3: {A}{b} fact4: {A}{a} fact5: {A}{je} fact6: {B}{a} -> {A}{b} fact7: {BN}{a} fact8: (x): {D}x -> (¬{C}x & ¬{A}x)
[ "fact1 & fact4 -> hypothesis;" ]
[ "fact1 & fact4 -> hypothesis;" ]
その二.二.一参照はコンベンションでない
¬{B}{b}
[ "fact9 -> int1: 仮にその御家人達がストライプだとしたら取り落とさなくてその上それは得難しない;" ]
5
1
1
6
0
6
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: もしその御家人達が得難しならばあの二.二.一参照はコンベンションだ fact2: その御家人達はコンベンションである fact3: その二.二.一参照は得難し fact4: その御家人達は得難し fact5: この解答用紙は得難し fact6: もし「その御家人達はコンベンションである」ということは事実だとしたらその二.二.一参照は得難し fact7: その御家人達は支援する fact8: ストライプは取り落とさないし得難しない ; $hypothesis$ = その二.二.一参照はコンベンションでない ; $proof$ =
fact1 & fact4 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: もしその御家人達が得難しならばあの二.二.一参照はコンベンションだ 事実2: その御家人達はコンベンションである 事実3: その二.二.一参照は得難し 事実4: その御家人達は得難し 事実5: この解答用紙は得難し 事実6: もし「その御家人達はコンベンションである」ということは事実だとしたらその二.二.一参照は得難し 事実7: その御家人達は支援する 事実8: ストライプは取り落とさないし得難しない 仮説: その二.二.一参照はコンベンションでない
1. 事実1と事実4から、仮説が否定される よって、仮説が否定されました。
0.3
あの会長室は萌えない
¬{A}{a}
fact1: その脱力は萌えない fact2: 仮にあの会長室が逆らうということはないかしんどいということはないかまたは両方であるとするとこの入力電圧は逆らわない fact3: あの円柱形は結晶化率である fact4: あの円柱形が草書だしおまけに医療要求である fact5: あの会長室は株式配当でないししかも逆らわない fact6: あの会長室は印象評価でない fact7: あの当該手口は逆らわない fact8: 「この集中講義は逆らわない」ということは成り立つ fact9: 卑しいものは望む fact10: その群は萌えない fact11: その火付けは逆らわない fact12: もしもこの美術史が陪席するけど萌えないとすればあの会長室はしんどかない fact13: 「あの会長室は達観しない」ということは事実だ fact14: もし仮に医療要求が結晶化率だとすればそれは雲散霧消しない fact15: あの会長室は萌えないしさらに逆らわない fact16: もしも何かは雲散霧消するということはないとすれば「どろどろするということはないかあるいは燃焼である」ということは成り立たない fact17: もし何かは望むとするとそれが陪席するしその上萌えない fact18: あの会長室は薨ぜないしそれにそれはめでたしない fact19: 「あの会長室は法的根拠だということはなくて加えて編み入れない」ということは本当である fact20: 「あの円柱形はどろどろしないかあるいは燃焼であるかまたは両方だ」ということは間違いならばこの美術史は卑しい
fact1: ¬{A}{gj} fact2: (¬{B}{a} v ¬{C}{a}) -> ¬{B}{cl} fact3: {K}{c} fact4: ({L}{c} & {J}{c}) fact5: (¬{GH}{a} & ¬{B}{a}) fact6: ¬{CT}{a} fact7: ¬{B}{iq} fact8: ¬{B}{ac} fact9: (x): {F}x -> {E}x fact10: ¬{A}{cp} fact11: ¬{B}{eg} fact12: ({D}{b} & ¬{A}{b}) -> ¬{C}{a} fact13: ¬{CB}{a} fact14: (x): ({J}x & {K}x) -> ¬{I}x fact15: (¬{A}{a} & ¬{B}{a}) fact16: (x): ¬{I}x -> ¬(¬{G}x v {H}x) fact17: (x): {E}x -> ({D}x & ¬{A}x) fact18: (¬{FG}{a} & ¬{AQ}{a}) fact19: (¬{GJ}{a} & ¬{DP}{a}) fact20: ¬(¬{G}{c} v {H}{c}) -> {F}{b}
[ "fact15 -> hypothesis;" ]
[ "fact15 -> hypothesis;" ]
この入力電圧は逆らわない
¬{B}{cl}
[ "fact26 -> int1: もし仮にこの美術史が望めば陪席するがしかし萌えない; fact23 -> int2: この美術史が卑しいとすれば望む; fact21 -> int3: あの円柱形は雲散霧消しないとすると「それはどろどろするということはないかあるいは燃焼であるかもしくは両方ともである」ということは成り立たない; fact22 -> int4: 仮にあの円柱形が医療要求であるししかも結晶化率だとすると「雲散霧消するということはない」ということは本当だ; fact28 -> int5: あの円柱形は医療要求である; int5 & fact25 -> int6: あの円柱形は医療要求で結晶化率である; int4 & int6 -> int7: 「あの円柱形は雲散霧消しない」ということは本当だ; int3 & int7 -> int8: 「あの円柱形はどろどろしないかまたは燃焼であるかあるいはどちらもだ」ということは誤っている; fact29 & int8 -> int9: この美術史は卑しい; int2 & int9 -> int10: この美術史は望む; int1 & int10 -> int11: この美術史は陪席するが萌えない; fact24 & int11 -> int12: 「あの会長室はしんどい」ということは間違っている; int12 -> int13: あの会長室は逆らわないかまたはしんどかない; fact27 & int13 -> hypothesis;" ]
10
1
1
19
0
19
PROVED
PROVED
PROVED
PROVED
$facts$ = fact1: その脱力は萌えない fact2: 仮にあの会長室が逆らうということはないかしんどいということはないかまたは両方であるとするとこの入力電圧は逆らわない fact3: あの円柱形は結晶化率である fact4: あの円柱形が草書だしおまけに医療要求である fact5: あの会長室は株式配当でないししかも逆らわない fact6: あの会長室は印象評価でない fact7: あの当該手口は逆らわない fact8: 「この集中講義は逆らわない」ということは成り立つ fact9: 卑しいものは望む fact10: その群は萌えない fact11: その火付けは逆らわない fact12: もしもこの美術史が陪席するけど萌えないとすればあの会長室はしんどかない fact13: 「あの会長室は達観しない」ということは事実だ fact14: もし仮に医療要求が結晶化率だとすればそれは雲散霧消しない fact15: あの会長室は萌えないしさらに逆らわない fact16: もしも何かは雲散霧消するということはないとすれば「どろどろするということはないかあるいは燃焼である」ということは成り立たない fact17: もし何かは望むとするとそれが陪席するしその上萌えない fact18: あの会長室は薨ぜないしそれにそれはめでたしない fact19: 「あの会長室は法的根拠だということはなくて加えて編み入れない」ということは本当である fact20: 「あの円柱形はどろどろしないかあるいは燃焼であるかまたは両方だ」ということは間違いならばこの美術史は卑しい ; $hypothesis$ = あの会長室は萌えない ; $proof$ =
fact15 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: その脱力は萌えない 事実2: 仮にあの会長室が逆らうということはないかしんどいということはないかまたは両方であるとするとこの入力電圧は逆らわない 事実3: あの円柱形は結晶化率である 事実4: あの円柱形が草書だしおまけに医療要求である 事実5: あの会長室は株式配当でないししかも逆らわない 事実6: あの会長室は印象評価でない 事実7: あの当該手口は逆らわない 事実8: 「この集中講義は逆らわない」ということは成り立つ 事実9: 卑しいものは望む 事実10: その群は萌えない 事実11: その火付けは逆らわない 事実12: もしもこの美術史が陪席するけど萌えないとすればあの会長室はしんどかない 事実13: 「あの会長室は達観しない」ということは事実だ 事実14: もし仮に医療要求が結晶化率だとすればそれは雲散霧消しない 事実15: あの会長室は萌えないしさらに逆らわない 事実16: もしも何かは雲散霧消するということはないとすれば「どろどろするということはないかあるいは燃焼である」ということは成り立たない 事実17: もし何かは望むとするとそれが陪席するしその上萌えない 事実18: あの会長室は薨ぜないしそれにそれはめでたしない 事実19: 「あの会長室は法的根拠だということはなくて加えて編み入れない」ということは本当である 事実20: 「あの円柱形はどろどろしないかあるいは燃焼であるかまたは両方だ」ということは間違いならばこの美術史は卑しい 仮説: あの会長室は萌えない
1. 事実15から、仮説が導かれる よって、仮説が証明されました。
0.3
「「「粉っぽくない」ということは成り立つなら結び付き難くて鳴り続ける」物はある」ということは事実と異なる
¬((Ex): ¬{A}x -> ({AA}x & {AB}x))
fact1: 「塩辛くないとすると統裁するし更に広い」ものはある fact2: もしある物が再組織化するということはないとするとそれは逆輸入するし出血し易い fact3: 「もし仮に陥入しないならば「見逃せるしその上遊び人達だ」ということは偽でない」物はある fact4: もしもあの先述が鳴り続けないならそれは悪者扱いするし更に複製出来る fact5: 「もし粉っぽくないとすると鳴り続ける」ものはある fact6: あのウィンド・ライダーズは虐殺しないならば「結び付き難い」ということは成り立つ fact7: もしあの先述が労働立法であるということはないならそれが得難いしその上それは結び付き難い fact8: もしあの先述が纏まり易くないなら納得し難いしその上先端産業だ fact9: 「もし粉っぽいということはないとしたら結び付き難い」ものはある fact10: 「もし仮に「仄めかすということはない」ということは本当であるとすると早しし更に手強い」ものはある fact11: 「仮に「御存じ無いということはない」ということは確かであるとすれば共用するし数十種類である」ものはある fact12: 仮にあの先述はBC間でないならば粉っぽいしOB臭い fact13: 「もし仮に粉っぽいとしたら結び付き難いしその上鳴り続ける」物はある fact14: もし仮にあの先述が粉っぽくないとしたらそれは鳴り続ける fact15: もし仮にあの先述が粉っぽくないとするとそれは結び付き難いししかも鳴り続ける fact16: もし仮にあの先述が粉っぽいとするとそれは結び付き難いし加えて鳴り続ける fact17: 何かは締め切るということはないとすると粉っぽくてまた期す fact18: もしあの先述が目敏くないならばそれはBC間であるしそれにそれは体感する fact19: もし仮にあの先述が粉っぽくないとしたらそれは嫁ぐしそれは数十種類である fact20: 仮にこの審判官が行為主体でないとすれば結び付き難くて加えて人間ドックである
fact1: (Ex): ¬{CL}x -> ({HQ}x & {EM}x) fact2: (x): ¬{FG}x -> ({AP}x & {JF}x) fact3: (Ex): ¬{HP}x -> ({GQ}x & {JH}x) fact4: ¬{AB}{aa} -> ({HL}{aa} & {AQ}{aa}) fact5: (Ex): ¬{A}x -> {AB}x fact6: ¬{DI}{dr} -> {AA}{dr} fact7: ¬{GG}{aa} -> ({S}{aa} & {AA}{aa}) fact8: ¬{CR}{aa} -> ({BG}{aa} & {BE}{aa}) fact9: (Ex): ¬{A}x -> {AA}x fact10: (Ex): ¬{HR}x -> ({GT}x & {GH}x) fact11: (Ex): ¬{DT}x -> ({BJ}x & {IO}x) fact12: ¬{DP}{aa} -> ({A}{aa} & {EA}{aa}) fact13: (Ex): {A}x -> ({AA}x & {AB}x) fact14: ¬{A}{aa} -> {AB}{aa} fact15: ¬{A}{aa} -> ({AA}{aa} & {AB}{aa}) fact16: {A}{aa} -> ({AA}{aa} & {AB}{aa}) fact17: (x): ¬{BR}x -> ({A}x & {ED}x) fact18: ¬{IC}{aa} -> ({DP}{aa} & {IM}{aa}) fact19: ¬{A}{aa} -> ({EB}{aa} & {IO}{aa}) fact20: ¬{BF}{fi} -> ({AA}{fi} & {J}{fi})
[ "fact15 -> hypothesis;" ]
[ "fact15 -> hypothesis;" ]
「仮に再組織化しないなら逆輸入するしおまけに出血し易い」物はある
(Ex): ¬{FG}x -> ({AP}x & {JF}x)
[ "fact21 -> int1: もしあの競馬が再組織化しないならばそれは逆輸入するし出血し易い; int1 -> hypothesis;" ]
2
1
1
19
0
19
DISPROVED
PROVED
DISPROVED
PROVED
$facts$ = fact1: 「塩辛くないとすると統裁するし更に広い」ものはある fact2: もしある物が再組織化するということはないとするとそれは逆輸入するし出血し易い fact3: 「もし仮に陥入しないならば「見逃せるしその上遊び人達だ」ということは偽でない」物はある fact4: もしもあの先述が鳴り続けないならそれは悪者扱いするし更に複製出来る fact5: 「もし粉っぽくないとすると鳴り続ける」ものはある fact6: あのウィンド・ライダーズは虐殺しないならば「結び付き難い」ということは成り立つ fact7: もしあの先述が労働立法であるということはないならそれが得難いしその上それは結び付き難い fact8: もしあの先述が纏まり易くないなら納得し難いしその上先端産業だ fact9: 「もし粉っぽいということはないとしたら結び付き難い」ものはある fact10: 「もし仮に「仄めかすということはない」ということは本当であるとすると早しし更に手強い」ものはある fact11: 「仮に「御存じ無いということはない」ということは確かであるとすれば共用するし数十種類である」ものはある fact12: 仮にあの先述はBC間でないならば粉っぽいしOB臭い fact13: 「もし仮に粉っぽいとしたら結び付き難いしその上鳴り続ける」物はある fact14: もし仮にあの先述が粉っぽくないとしたらそれは鳴り続ける fact15: もし仮にあの先述が粉っぽくないとするとそれは結び付き難いししかも鳴り続ける fact16: もし仮にあの先述が粉っぽいとするとそれは結び付き難いし加えて鳴り続ける fact17: 何かは締め切るということはないとすると粉っぽくてまた期す fact18: もしあの先述が目敏くないならばそれはBC間であるしそれにそれは体感する fact19: もし仮にあの先述が粉っぽくないとしたらそれは嫁ぐしそれは数十種類である fact20: 仮にこの審判官が行為主体でないとすれば結び付き難くて加えて人間ドックである ; $hypothesis$ = 「「「粉っぽくない」ということは成り立つなら結び付き難くて鳴り続ける」物はある」ということは事実と異なる ; $proof$ =
fact15 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: 「塩辛くないとすると統裁するし更に広い」ものはある 事実2: もしある物が再組織化するということはないとするとそれは逆輸入するし出血し易い 事実3: 「もし仮に陥入しないならば「見逃せるしその上遊び人達だ」ということは偽でない」物はある 事実4: もしもあの先述が鳴り続けないならそれは悪者扱いするし更に複製出来る 事実5: 「もし粉っぽくないとすると鳴り続ける」ものはある 事実6: あのウィンド・ライダーズは虐殺しないならば「結び付き難い」ということは成り立つ 事実7: もしあの先述が労働立法であるということはないならそれが得難いしその上それは結び付き難い 事実8: もしあの先述が纏まり易くないなら納得し難いしその上先端産業だ 事実9: 「もし粉っぽいということはないとしたら結び付き難い」ものはある 事実10: 「もし仮に「仄めかすということはない」ということは本当であるとすると早しし更に手強い」ものはある 事実11: 「仮に「御存じ無いということはない」ということは確かであるとすれば共用するし数十種類である」ものはある 事実12: 仮にあの先述はBC間でないならば粉っぽいしOB臭い 事実13: 「もし仮に粉っぽいとしたら結び付き難いしその上鳴り続ける」物はある 事実14: もし仮にあの先述が粉っぽくないとしたらそれは鳴り続ける 事実15: もし仮にあの先述が粉っぽくないとするとそれは結び付き難いししかも鳴り続ける 事実16: もし仮にあの先述が粉っぽいとするとそれは結び付き難いし加えて鳴り続ける 事実17: 何かは締め切るということはないとすると粉っぽくてまた期す 事実18: もしあの先述が目敏くないならばそれはBC間であるしそれにそれは体感する 事実19: もし仮にあの先述が粉っぽくないとしたらそれは嫁ぐしそれは数十種類である 事実20: 仮にこの審判官が行為主体でないとすれば結び付き難くて加えて人間ドックである 仮説: 「「「粉っぽくない」ということは成り立つなら結び付き難くて鳴り続ける」物はある」ということは事実と異なる
1. 事実15から、仮説が否定される よって、仮説が否定されました。
0.3
「この札幌芸術は縁取りである」ということは成り立つ
{A}{a}
fact1: この札幌芸術は八原則であるし排する fact2: その彫刻は八原則である fact3: この札幌芸術は縁取りで八原則である fact4: あの上向は八原則だ fact5: この札幌芸術は自己治癒力である fact6: あの在任期間は歯痒くてそれに吸える fact7: この札幌芸術は八原則である fact8: この札幌芸術は卒業する fact9: この御釈迦様は八原則だ fact10: その伏虎中は朗読するしそれに縁取りだ fact11: この札幌芸術は戦慣れするし呉服屋である fact12: もし何らかのものがTEXでそれは八原則であるなら縁取りでない
fact1: ({B}{a} & {DT}{a}) fact2: {B}{cq} fact3: ({A}{a} & {B}{a}) fact4: {B}{gn} fact5: {ED}{a} fact6: ({FL}{id} & {AM}{id}) fact7: {B}{a} fact8: {BS}{a} fact9: {B}{bg} fact10: ({EK}{ek} & {A}{ek}) fact11: ({JA}{a} & {JF}{a}) fact12: (x): ({C}x & {B}x) -> ¬{A}x
[ "fact3 -> hypothesis;" ]
[ "fact3 -> hypothesis;" ]
この札幌芸術は縁取りでない
¬{A}{a}
[ "fact13 -> int1: もし仮にこの札幌芸術がTEXであるし加えてそれは八原則であるならそれは縁取りであるということはない;" ]
4
1
1
11
0
11
PROVED
UNKNOWN
PROVED
UNKNOWN
$facts$ = fact1: この札幌芸術は八原則であるし排する fact2: その彫刻は八原則である fact3: この札幌芸術は縁取りで八原則である fact4: あの上向は八原則だ fact5: この札幌芸術は自己治癒力である fact6: あの在任期間は歯痒くてそれに吸える fact7: この札幌芸術は八原則である fact8: この札幌芸術は卒業する fact9: この御釈迦様は八原則だ fact10: その伏虎中は朗読するしそれに縁取りだ fact11: この札幌芸術は戦慣れするし呉服屋である fact12: もし何らかのものがTEXでそれは八原則であるなら縁取りでない ; $hypothesis$ = 「この札幌芸術は縁取りである」ということは成り立つ ; $proof$ =
fact3 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: この札幌芸術は八原則であるし排する 事実2: その彫刻は八原則である 事実3: この札幌芸術は縁取りで八原則である 事実4: あの上向は八原則だ 事実5: この札幌芸術は自己治癒力である 事実6: あの在任期間は歯痒くてそれに吸える 事実7: この札幌芸術は八原則である 事実8: この札幌芸術は卒業する 事実9: この御釈迦様は八原則だ 事実10: その伏虎中は朗読するしそれに縁取りだ 事実11: この札幌芸術は戦慣れするし呉服屋である 事実12: もし何らかのものがTEXでそれは八原則であるなら縁取りでない 仮説: 「この札幌芸術は縁取りである」ということは成り立つ
1. 事実3から、仮説が導かれる よって、仮説が証明されました。
0.3
「この諸学校は日本大使だ一方で発生し易くない」ということは誤っている
¬({AA}{a} & ¬{AB}{a})
fact1: 「この諸学校は日本大使であるけれどそれは発生し易いということはない」ということは成り立たない
fact1: ¬({AA}{a} & ¬{AB}{a})
[ "fact1 -> hypothesis;" ]
[ "fact1 -> hypothesis;" ]
null
null
[]
null
1
0
0
0
0
PROVED
null
PROVED
null
$facts$ = fact1: 「この諸学校は日本大使であるけれどそれは発生し易いということはない」ということは成り立たない ; $hypothesis$ = 「この諸学校は日本大使だ一方で発生し易くない」ということは誤っている ; $proof$ =
fact1 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: 「この諸学校は日本大使であるけれどそれは発生し易いということはない」ということは成り立たない 仮説: 「この諸学校は日本大使だ一方で発生し易くない」ということは誤っている
1. 事実1から、仮説が導かれる よって、仮説が証明されました。
0.3
その縫合は選択し直す
{B}{b}
fact1: もしも「なにかは十四:零零津田ホールであるが呪わしくない」ということは成り立たないとしたら十四:零零津田ホールでない fact2: もしも「何かは十四:零零津田ホールでない」ということは本当であるならそれは御寂しくない fact3: もし仮に「この十冊は反応し易いがしかしそれは株主名簿閉鎖期間中でない」ということは事実であるとしたらその縫合は選択し直さない fact4: もし仮に掴み難くないものが非平衡状態でないとしたらこの十冊は選択し直す fact5: この十冊は反応し易いけれど株主名簿閉鎖期間中でない fact6: その縫合は掴み難くないし非平衡状態でない fact7: その縫合は除去出来るが株主名簿閉鎖期間中だということはない fact8: この木片・板は株主名簿閉鎖期間中でない fact9: 仮にとあるものが選択し直すか寡占市場であるかどちらもであるならばあのκPHは寡占市場だ
fact1: (x): ¬({A}x & ¬{F}x) -> ¬{A}x fact2: (x): ¬{A}x -> ¬{JB}x fact3: ({AA}{a} & ¬{AB}{a}) -> ¬{B}{b} fact4: (x): (¬{D}x & ¬{C}x) -> {B}{a} fact5: ({AA}{a} & ¬{AB}{a}) fact6: (¬{D}{b} & ¬{C}{b}) fact7: ({CF}{b} & ¬{AB}{b}) fact8: ¬{AB}{al} fact9: (x): ({B}x v {AF}x) -> {AF}{du}
[ "fact3 & fact5 -> hypothesis;" ]
[ "fact3 & fact5 -> hypothesis;" ]
そのκPHは寡占市場であるがしかし御寂しくない
({AF}{du} & ¬{JB}{du})
[ "fact13 -> int1: 「掴み難くないしその上非平衡状態だということはない」ものはある; int1 & fact11 -> int2: 「この十冊は選択し直す」ということは正しい; int2 -> int3: この十冊は選択し直すかそれは寡占市場であるかまたは両方だ; int3 -> int4: なんらかの物は選択し直すかまたは寡占市場である; int4 & fact10 -> int5: そのκPHは寡占市場である; fact14 -> int6: 仮にそのκPHは十四:零零津田ホールでないならば「御寂しくない」ということは正しい; fact12 -> int7: もし「そのκPHは十四:零零津田ホールであるけれどそれは呪わしくない」ということは成り立つということはないとすればそれは十四:零零津田ホールでない;" ]
6
1
1
7
0
7
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: もしも「なにかは十四:零零津田ホールであるが呪わしくない」ということは成り立たないとしたら十四:零零津田ホールでない fact2: もしも「何かは十四:零零津田ホールでない」ということは本当であるならそれは御寂しくない fact3: もし仮に「この十冊は反応し易いがしかしそれは株主名簿閉鎖期間中でない」ということは事実であるとしたらその縫合は選択し直さない fact4: もし仮に掴み難くないものが非平衡状態でないとしたらこの十冊は選択し直す fact5: この十冊は反応し易いけれど株主名簿閉鎖期間中でない fact6: その縫合は掴み難くないし非平衡状態でない fact7: その縫合は除去出来るが株主名簿閉鎖期間中だということはない fact8: この木片・板は株主名簿閉鎖期間中でない fact9: 仮にとあるものが選択し直すか寡占市場であるかどちらもであるならばあのκPHは寡占市場だ ; $hypothesis$ = その縫合は選択し直す ; $proof$ =
fact3 & fact5 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: もしも「なにかは十四:零零津田ホールであるが呪わしくない」ということは成り立たないとしたら十四:零零津田ホールでない 事実2: もしも「何かは十四:零零津田ホールでない」ということは本当であるならそれは御寂しくない 事実3: もし仮に「この十冊は反応し易いがしかしそれは株主名簿閉鎖期間中でない」ということは事実であるとしたらその縫合は選択し直さない 事実4: もし仮に掴み難くないものが非平衡状態でないとしたらこの十冊は選択し直す 事実5: この十冊は反応し易いけれど株主名簿閉鎖期間中でない 事実6: その縫合は掴み難くないし非平衡状態でない 事実7: その縫合は除去出来るが株主名簿閉鎖期間中だということはない 事実8: この木片・板は株主名簿閉鎖期間中でない 事実9: 仮にとあるものが選択し直すか寡占市場であるかどちらもであるならばあのκPHは寡占市場だ 仮説: その縫合は選択し直す
1. 事実3と事実5から、仮説が否定される よって、仮説が否定されました。
0.3
「あの身体障害者は同行しない一方で修行出来る」ということは成り立たない
¬(¬{AA}{b} & {AB}{b})
fact1: もしあのインプラント手術が暗号通信でないとすればあの身体障害者はトライアングルであるししかもそれは懐かしむ fact2: あの父親譲りが常在でないとするとあのインプラント手術は食いちぎらないかあるいはすっごい fact3: もし何らかのものはトライアングルであるならば「「それは同行するということはないし修行出来る」ということは成り立つ」ということは成り立たない fact4: あのインプラント手術は修行出来るということはない fact5: あのインプラント手術はトライアングルでない fact6: あの身体障害者は礼儀正しい fact7: もし仮に「あのセレスト・ラングリーは射精しない」ということは真実だとしたら「心許ないがしかし聞き取り易くない」ということは成り立たない fact8: あの身体障害者は修行出来る fact9: もし仮にあの身体障害者が修行出来ないとしたらあのインプラント手術は同行するということはないがトライアングルだ fact10: 「あのインプラント手術はトライアングルでない」ということは真実ならばあの身体障害者は修行出来る fact11: もしもなんらかのものが食いちぎらないかまたはそれがすっごいならばそれは暗号通信でない fact12: 「あのセレスト・ラングリーは心許ないけれど聞き取り易くない」ということは成り立つということはないとするとこの押し合いは聞き取り易くない fact13: あの身体障害者はトライアングルであるということはない一方で修行出来る fact14: 仮にあのインプラント手術がトライアングルでないとしたらあの身体障害者は同行しないがしかし修行出来る fact15: もし仮にこの押し合いが聞き取り易くないとすれば渡来人である fact16: もしも「その都市建設は気弱いしタンゴ隊長である」ということは偽であるとしたらあの父親譲りは常在でない fact17: あの身体障害者は機械化する fact18: あのインプラント手術は割拠しないけれど同行する fact19: もしもあのセレスト・ラングリーが行い続けるけれど真下でないとすると射精するということはない fact20: あの身体障害者はトライアングルでない
fact1: ¬{C}{a} -> ({A}{b} & {B}{b}) fact2: ¬{F}{c} -> (¬{E}{a} v {D}{a}) fact3: (x): {A}x -> ¬(¬{AA}x & {AB}x) fact4: ¬{AB}{a} fact5: ¬{A}{a} fact6: {CC}{b} fact7: ¬{L}{f} -> ¬({K}{f} & ¬{J}{f}) fact8: {AB}{b} fact9: ¬{AB}{b} -> (¬{AA}{a} & {A}{a}) fact10: ¬{A}{a} -> {AB}{b} fact11: (x): (¬{E}x v {D}x) -> ¬{C}x fact12: ¬({K}{f} & ¬{J}{f}) -> ¬{J}{e} fact13: (¬{A}{b} & {AB}{b}) fact14: ¬{A}{a} -> (¬{AA}{b} & {AB}{b}) fact15: ¬{J}{e} -> {I}{e} fact16: ¬({G}{d} & {H}{d}) -> ¬{F}{c} fact17: {DK}{b} fact18: (¬{FO}{a} & {AA}{a}) fact19: ({N}{f} & ¬{M}{f}) -> ¬{L}{f} fact20: ¬{A}{b}
[ "fact14 & fact5 -> hypothesis;" ]
[ "fact14 & fact5 -> hypothesis;" ]
「あの身体障害者は同行しない一方で修行出来る」ということは成り立たない
¬(¬{AA}{b} & {AB}{b})
[ "fact27 -> int1: 「あの身体障害者はトライアングルである」ということは確かならば「それは同行しないししかもそれは修行出来る」ということは成り立たない; fact25 -> int2: もしあのインプラント手術が食いちぎらないかもしくはそれはすっごいかあるいは両方であるとすればそれは暗号通信でない;" ]
12
1
1
18
0
18
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: もしあのインプラント手術が暗号通信でないとすればあの身体障害者はトライアングルであるししかもそれは懐かしむ fact2: あの父親譲りが常在でないとするとあのインプラント手術は食いちぎらないかあるいはすっごい fact3: もし何らかのものはトライアングルであるならば「「それは同行するということはないし修行出来る」ということは成り立つ」ということは成り立たない fact4: あのインプラント手術は修行出来るということはない fact5: あのインプラント手術はトライアングルでない fact6: あの身体障害者は礼儀正しい fact7: もし仮に「あのセレスト・ラングリーは射精しない」ということは真実だとしたら「心許ないがしかし聞き取り易くない」ということは成り立たない fact8: あの身体障害者は修行出来る fact9: もし仮にあの身体障害者が修行出来ないとしたらあのインプラント手術は同行するということはないがトライアングルだ fact10: 「あのインプラント手術はトライアングルでない」ということは真実ならばあの身体障害者は修行出来る fact11: もしもなんらかのものが食いちぎらないかまたはそれがすっごいならばそれは暗号通信でない fact12: 「あのセレスト・ラングリーは心許ないけれど聞き取り易くない」ということは成り立つということはないとするとこの押し合いは聞き取り易くない fact13: あの身体障害者はトライアングルであるということはない一方で修行出来る fact14: 仮にあのインプラント手術がトライアングルでないとしたらあの身体障害者は同行しないがしかし修行出来る fact15: もし仮にこの押し合いが聞き取り易くないとすれば渡来人である fact16: もしも「その都市建設は気弱いしタンゴ隊長である」ということは偽であるとしたらあの父親譲りは常在でない fact17: あの身体障害者は機械化する fact18: あのインプラント手術は割拠しないけれど同行する fact19: もしもあのセレスト・ラングリーが行い続けるけれど真下でないとすると射精するということはない fact20: あの身体障害者はトライアングルでない ; $hypothesis$ = 「あの身体障害者は同行しない一方で修行出来る」ということは成り立たない ; $proof$ =
fact14 & fact5 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: もしあのインプラント手術が暗号通信でないとすればあの身体障害者はトライアングルであるししかもそれは懐かしむ 事実2: あの父親譲りが常在でないとするとあのインプラント手術は食いちぎらないかあるいはすっごい 事実3: もし何らかのものはトライアングルであるならば「「それは同行するということはないし修行出来る」ということは成り立つ」ということは成り立たない 事実4: あのインプラント手術は修行出来るということはない 事実5: あのインプラント手術はトライアングルでない 事実6: あの身体障害者は礼儀正しい 事実7: もし仮に「あのセレスト・ラングリーは射精しない」ということは真実だとしたら「心許ないがしかし聞き取り易くない」ということは成り立たない 事実8: あの身体障害者は修行出来る 事実9: もし仮にあの身体障害者が修行出来ないとしたらあのインプラント手術は同行するということはないがトライアングルだ 事実10: 「あのインプラント手術はトライアングルでない」ということは真実ならばあの身体障害者は修行出来る 事実11: もしもなんらかのものが食いちぎらないかまたはそれがすっごいならばそれは暗号通信でない 事実12: 「あのセレスト・ラングリーは心許ないけれど聞き取り易くない」ということは成り立つということはないとするとこの押し合いは聞き取り易くない 事実13: あの身体障害者はトライアングルであるということはない一方で修行出来る 事実14: 仮にあのインプラント手術がトライアングルでないとしたらあの身体障害者は同行しないがしかし修行出来る 事実15: もし仮にこの押し合いが聞き取り易くないとすれば渡来人である 事実16: もしも「その都市建設は気弱いしタンゴ隊長である」ということは偽であるとしたらあの父親譲りは常在でない 事実17: あの身体障害者は機械化する 事実18: あのインプラント手術は割拠しないけれど同行する 事実19: もしもあのセレスト・ラングリーが行い続けるけれど真下でないとすると射精するということはない 事実20: あの身体障害者はトライアングルでない 仮説: 「あの身体障害者は同行しない一方で修行出来る」ということは成り立たない
1. 事実14と事実5から、仮説が否定される よって、仮説が否定されました。
0.3
この大商人はテストしないがしかし百戦する
(¬{AA}{b} & {AB}{b})
fact1: あのアドリブは長たらしくないなら「この大商人はテストしないが百戦する」ということは成り立たない fact2: もしも「あの楼上は見据えるがしかし口腔でない」ということは間違っているとするとあの声無しは口腔である fact3: もしもこの大商人はテストするということはないとしたら「あのアドリブは百戦しないがしかし長たらしい」ということは事実と異なる fact4: あの第一号法定受託事務は難破するしそれに並べ直すとすれば「その大仕事は並べ直す」ということは成り立たない fact5: 「この大商人はマップ要素だということはないが食い入る」ということは間違いだ fact6: 仮に「この影響は類焼するけれどそれはイメージコントロールサブフォルダでない」ということは成り立たないとすればその対残高延滞比率は長たらしくない fact7: 「あのアドリブはテストしないがしかし長たらしい」ということは成り立たない fact8: 「この大商人はテストするしおまけにそれは百戦する」ということは事実でない fact9: 「「物珍しくておまけに手書き文字である」ということは成り立たない」ものがあるならこの企画・判断は手書き文字でない fact10: 「手書き文字でない」物があるとしたらあの第一号法定受託事務は難破するし並べ直す fact11: 「あのアドリブはっ早いということはないけれどテストする」ということは成り立たない fact12: もし仮にあの声無しは口腔であるならば「この影響は類焼するがしかしそれはイメージコントロールサブフォルダでない」ということは成り立つということはない fact13: 「この大商人はテストしないがそれは長たらしい」ということは事実でない fact14: この渡洋爆撃は長たらしいということはない fact15: もし仮になにかは鉱物質でないとすると「それは物珍しくてかつそれは手書き文字である」ということは間違いである fact16: もしも「涙ぐましくないかまたは鉱物質でないかまたは両方ともな」物があるとすればその浅胸筋膜は鉱物質でない fact17: 「なんらかの物は涙ぐましくないかまたは鉱物質でないかあるいはどちらもである」ということは事実である fact18: あのアドリブは長たらしいということはない fact19: あのアドリブは長たらしくないとすれば「この大商人はテストするしさらにそれは百戦する」ということは間違いである fact20: 長たらしくないものはテストしない一方で百戦する fact21: もし「並べ直さない」物はあるなら「あの楼上は見据えるがしかし口腔でない」ということは成り立たない
fact1: ¬{A}{a} -> ¬(¬{AA}{b} & {AB}{b}) fact2: ¬({G}{f} & ¬{E}{f}) -> {E}{e} fact3: ¬{AA}{b} -> ¬(¬{AB}{a} & {A}{a}) fact4: ({I}{h} & {F}{h}) -> ¬{F}{g} fact5: ¬(¬{EK}{b} & {GU}{b}) fact6: ¬({D}{d} & ¬{B}{d}) -> ¬{A}{c} fact7: ¬(¬{AA}{a} & {A}{a}) fact8: ¬({AA}{b} & {AB}{b}) fact9: (x): ¬({J}x & {H}x) -> ¬{H}{i} fact10: (x): ¬{H}x -> ({I}{h} & {F}{h}) fact11: ¬(¬{CH}{a} & {AA}{a}) fact12: {E}{e} -> ¬({D}{d} & ¬{B}{d}) fact13: ¬(¬{AA}{b} & {A}{b}) fact14: ¬{A}{aq} fact15: (x): ¬{K}x -> ¬({J}x & {H}x) fact16: (x): (¬{L}x v ¬{K}x) -> ¬{K}{j} fact17: (Ex): (¬{L}x v ¬{K}x) fact18: ¬{A}{a} fact19: ¬{A}{a} -> ¬({AA}{b} & {AB}{b}) fact20: (x): ¬{A}x -> (¬{AA}x & {AB}x) fact21: (x): ¬{F}x -> ¬({G}{f} & ¬{E}{f})
[ "fact1 & fact18 -> hypothesis;" ]
[ "fact1 & fact18 -> hypothesis;" ]
この大商人はテストしない一方で百戦する
(¬{AA}{b} & {AB}{b})
[ "fact24 -> int1: 仮に「この大商人は長たらしいということはない」ということは本当であるならばそれはテストしないしまたそれは百戦する; fact30 -> int2: その浅胸筋膜は鉱物質でないなら「それは物珍しいし更に手書き文字だ」ということは偽だ; fact25 & fact27 -> int3: その浅胸筋膜は鉱物質でない; int2 & int3 -> int4: 「その浅胸筋膜は物珍しくておまけに手書き文字である」ということは嘘だ; int4 -> int5: 「「物珍しいしそれに手書き文字である」ということは誤りな」物はある; int5 & fact23 -> int6: この企画・判断は手書き文字でない; int6 -> int7: 何かは手書き文字でない; int7 & fact26 -> int8: あの第一号法定受託事務は難破するし並べ直す; fact32 & int8 -> int9: その大仕事は並べ直さない; int9 -> int10: 「並べ直さない」物はある; int10 & fact29 -> int11: 「あの楼上は見据えるがしかし口腔でない」ということは事実と異なる; fact22 & int11 -> int12: あの声無しは口腔である; fact28 & int12 -> int13: 「この影響は類焼するけれどそれはイメージコントロールサブフォルダでない」ということは確かでない; fact31 & int13 -> int14: その対残高延滞比率は長たらしくない; int14 -> int15: 「長たらしくない」物はある;" ]
16
1
1
19
0
19
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: あのアドリブは長たらしくないなら「この大商人はテストしないが百戦する」ということは成り立たない fact2: もしも「あの楼上は見据えるがしかし口腔でない」ということは間違っているとするとあの声無しは口腔である fact3: もしもこの大商人はテストするということはないとしたら「あのアドリブは百戦しないがしかし長たらしい」ということは事実と異なる fact4: あの第一号法定受託事務は難破するしそれに並べ直すとすれば「その大仕事は並べ直す」ということは成り立たない fact5: 「この大商人はマップ要素だということはないが食い入る」ということは間違いだ fact6: 仮に「この影響は類焼するけれどそれはイメージコントロールサブフォルダでない」ということは成り立たないとすればその対残高延滞比率は長たらしくない fact7: 「あのアドリブはテストしないがしかし長たらしい」ということは成り立たない fact8: 「この大商人はテストするしおまけにそれは百戦する」ということは事実でない fact9: 「「物珍しくておまけに手書き文字である」ということは成り立たない」ものがあるならこの企画・判断は手書き文字でない fact10: 「手書き文字でない」物があるとしたらあの第一号法定受託事務は難破するし並べ直す fact11: 「あのアドリブはっ早いということはないけれどテストする」ということは成り立たない fact12: もし仮にあの声無しは口腔であるならば「この影響は類焼するがしかしそれはイメージコントロールサブフォルダでない」ということは成り立つということはない fact13: 「この大商人はテストしないがそれは長たらしい」ということは事実でない fact14: この渡洋爆撃は長たらしいということはない fact15: もし仮になにかは鉱物質でないとすると「それは物珍しくてかつそれは手書き文字である」ということは間違いである fact16: もしも「涙ぐましくないかまたは鉱物質でないかまたは両方ともな」物があるとすればその浅胸筋膜は鉱物質でない fact17: 「なんらかの物は涙ぐましくないかまたは鉱物質でないかあるいはどちらもである」ということは事実である fact18: あのアドリブは長たらしいということはない fact19: あのアドリブは長たらしくないとすれば「この大商人はテストするしさらにそれは百戦する」ということは間違いである fact20: 長たらしくないものはテストしない一方で百戦する fact21: もし「並べ直さない」物はあるなら「あの楼上は見据えるがしかし口腔でない」ということは成り立たない ; $hypothesis$ = この大商人はテストしないがしかし百戦する ; $proof$ =
fact1 & fact18 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: あのアドリブは長たらしくないなら「この大商人はテストしないが百戦する」ということは成り立たない 事実2: もしも「あの楼上は見据えるがしかし口腔でない」ということは間違っているとするとあの声無しは口腔である 事実3: もしもこの大商人はテストするということはないとしたら「あのアドリブは百戦しないがしかし長たらしい」ということは事実と異なる 事実4: あの第一号法定受託事務は難破するしそれに並べ直すとすれば「その大仕事は並べ直す」ということは成り立たない 事実5: 「この大商人はマップ要素だということはないが食い入る」ということは間違いだ 事実6: 仮に「この影響は類焼するけれどそれはイメージコントロールサブフォルダでない」ということは成り立たないとすればその対残高延滞比率は長たらしくない 事実7: 「あのアドリブはテストしないがしかし長たらしい」ということは成り立たない 事実8: 「この大商人はテストするしおまけにそれは百戦する」ということは事実でない 事実9: 「「物珍しくておまけに手書き文字である」ということは成り立たない」ものがあるならこの企画・判断は手書き文字でない 事実10: 「手書き文字でない」物があるとしたらあの第一号法定受託事務は難破するし並べ直す 事実11: 「あのアドリブはっ早いということはないけれどテストする」ということは成り立たない 事実12: もし仮にあの声無しは口腔であるならば「この影響は類焼するがしかしそれはイメージコントロールサブフォルダでない」ということは成り立つということはない 事実13: 「この大商人はテストしないがそれは長たらしい」ということは事実でない 事実14: この渡洋爆撃は長たらしいということはない 事実15: もし仮になにかは鉱物質でないとすると「それは物珍しくてかつそれは手書き文字である」ということは間違いである 事実16: もしも「涙ぐましくないかまたは鉱物質でないかまたは両方ともな」物があるとすればその浅胸筋膜は鉱物質でない 事実17: 「なんらかの物は涙ぐましくないかまたは鉱物質でないかあるいはどちらもである」ということは事実である 事実18: あのアドリブは長たらしいということはない 事実19: あのアドリブは長たらしくないとすれば「この大商人はテストするしさらにそれは百戦する」ということは間違いである 事実20: 長たらしくないものはテストしない一方で百戦する 事実21: もし「並べ直さない」物はあるなら「あの楼上は見据えるがしかし口腔でない」ということは成り立たない 仮説: この大商人はテストしないがしかし百戦する
1. 事実1と事実18から、仮説が否定される よって、仮説が否定されました。
0.3
この搬送路は言い易くない
¬{A}{a}
fact1: 仮に「あの入社は異形二量体でなくてそれは酔い易くない」ということは成り立たないならこの手形訴訟は固定観念である fact2: なにかは攻略しないし怖くないとしたら「それは似付かわしい」ということは間違いだということはない fact3: もしなにがしかの物は似付かわしいとすれば「御出で頂く一方で順応し易くない」ということは事実と異なる fact4: 仮にこの手形訴訟が固定観念だとすればその通告書は否定し難くないし出力内容でない fact5: もし仮に「「断定し難くないが寡婦福祉法だ」ということは間違っている」ものがあるならこの搬送路は言い易い fact6: 仮にこの玄武が日中だとすればあの産業活動は攻略しないしかつそれは怖くない fact7: 「人材派遣でないしそれに取り難い」ものはある fact8: 「「断定し難くない寡婦福祉法だ」ということは嘘である」物はある fact9: もし仮になにがしかの物が順応し易いならばそれは言い易くない fact10: もしも「何らかのものは言い易いということはなくて順応し易くない」ということは誤りならそれは寡婦福祉法だ fact11: もし「あの入社は与え易くない」ということは誤りでないとしたら「異形二量体でないし酔い易くない」ということは事実と異なる fact12: 何かは突破しない一方で考えである fact13: もしその通告書が否定し難くないならばこの玄武が日中だしそれは脚本家である fact14: もし「この産業活動は御出で頂くけれどそれは順応し易くない」ということは成り立たないとしたらこの搬送路は順応し易い
fact1: ¬(¬{M}{f} & ¬{L}{f}) -> {K}{e} fact2: (x): (¬{F}x & ¬{E}x) -> {D}x fact3: (x): {D}x -> ¬({C}x & ¬{B}x) fact4: {K}{e} -> (¬{I}{d} & ¬{J}{d}) fact5: (x): ¬(¬{AA}x & {AB}x) -> {A}{a} fact6: {G}{c} -> (¬{F}{b} & ¬{E}{b}) fact7: (Ex): (¬{DH}x & {CN}x) fact8: (Ex): ¬(¬{AA}x & {AB}x) fact9: (x): {B}x -> ¬{A}x fact10: (x): ¬(¬{A}x & ¬{B}x) -> {AB}x fact11: ¬{N}{f} -> ¬(¬{M}{f} & ¬{L}{f}) fact12: (Ex): (¬{EF}x & {CC}x) fact13: ¬{I}{d} -> ({G}{c} & {H}{c}) fact14: ¬({C}{b} & ¬{B}{b}) -> {B}{a}
[ "fact8 & fact5 -> hypothesis;" ]
[ "fact8 & fact5 -> hypothesis;" ]
この搬送路は言い易くない
¬{A}{a}
[ "fact15 -> int1: この搬送路が順応し易いなら言い易くない; fact16 -> int2: 仮にこの産業活動は似付かわしいとしたら「それは御出で頂くしそれは順応し易くない」ということは偽だ; fact22 -> int3: この産業活動は攻略しなくて怖くないなら「似付かわしい」ということは事実だ;" ]
11
1
1
12
0
12
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: 仮に「あの入社は異形二量体でなくてそれは酔い易くない」ということは成り立たないならこの手形訴訟は固定観念である fact2: なにかは攻略しないし怖くないとしたら「それは似付かわしい」ということは間違いだということはない fact3: もしなにがしかの物は似付かわしいとすれば「御出で頂く一方で順応し易くない」ということは事実と異なる fact4: 仮にこの手形訴訟が固定観念だとすればその通告書は否定し難くないし出力内容でない fact5: もし仮に「「断定し難くないが寡婦福祉法だ」ということは間違っている」ものがあるならこの搬送路は言い易い fact6: 仮にこの玄武が日中だとすればあの産業活動は攻略しないしかつそれは怖くない fact7: 「人材派遣でないしそれに取り難い」ものはある fact8: 「「断定し難くない寡婦福祉法だ」ということは嘘である」物はある fact9: もし仮になにがしかの物が順応し易いならばそれは言い易くない fact10: もしも「何らかのものは言い易いということはなくて順応し易くない」ということは誤りならそれは寡婦福祉法だ fact11: もし「あの入社は与え易くない」ということは誤りでないとしたら「異形二量体でないし酔い易くない」ということは事実と異なる fact12: 何かは突破しない一方で考えである fact13: もしその通告書が否定し難くないならばこの玄武が日中だしそれは脚本家である fact14: もし「この産業活動は御出で頂くけれどそれは順応し易くない」ということは成り立たないとしたらこの搬送路は順応し易い ; $hypothesis$ = この搬送路は言い易くない ; $proof$ =
fact8 & fact5 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: 仮に「あの入社は異形二量体でなくてそれは酔い易くない」ということは成り立たないならこの手形訴訟は固定観念である 事実2: なにかは攻略しないし怖くないとしたら「それは似付かわしい」ということは間違いだということはない 事実3: もしなにがしかの物は似付かわしいとすれば「御出で頂く一方で順応し易くない」ということは事実と異なる 事実4: 仮にこの手形訴訟が固定観念だとすればその通告書は否定し難くないし出力内容でない 事実5: もし仮に「「断定し難くないが寡婦福祉法だ」ということは間違っている」ものがあるならこの搬送路は言い易い 事実6: 仮にこの玄武が日中だとすればあの産業活動は攻略しないしかつそれは怖くない 事実7: 「人材派遣でないしそれに取り難い」ものはある 事実8: 「「断定し難くない寡婦福祉法だ」ということは嘘である」物はある 事実9: もし仮になにがしかの物が順応し易いならばそれは言い易くない 事実10: もしも「何らかのものは言い易いということはなくて順応し易くない」ということは誤りならそれは寡婦福祉法だ 事実11: もし「あの入社は与え易くない」ということは誤りでないとしたら「異形二量体でないし酔い易くない」ということは事実と異なる 事実12: 何かは突破しない一方で考えである 事実13: もしその通告書が否定し難くないならばこの玄武が日中だしそれは脚本家である 事実14: もし「この産業活動は御出で頂くけれどそれは順応し易くない」ということは成り立たないとしたらこの搬送路は順応し易い 仮説: この搬送路は言い易くない
1. 事実8と事実5から、仮説が否定される よって、仮説が否定されました。
0.3
あの国内法上は十七日発行でない
¬{A}{a}
fact1: あの白拍子は十七日発行である fact2: 「仮に「とあるものが借り易いしその上食べ切る」ということは成り立たないとすればそれは習合でない」ということは本当である fact3: もし仮にあの領域内が習合でないとするとその移転登記請求権は応対しないか食べ切らないかあるいは両方だ fact4: もしあの酒量が応対しないとすればあの国内法上は十七日発行であるということはない fact5: 物憂くない物は紛らわしいし加えて藩札である fact6: あの国内法上はジャパン・ヘラルドだ fact7: あの国内法上は青黒い fact8: なにかは習合でないならば応対しない一方で十七日発行だ fact9: あの国内法上は十七日発行だ fact10: 「あの国内法上は物憂くない」ということは本当である fact11: もし仮に「紛らわしい」ものはあるとしたら「あの海上基地建設反対は借り易いし食べ切る」ということは成り立たない fact12: あの国内法上は夫婦らしい fact13: この六七人は十七日発行だ fact14: その薬事法は十七日発行だ
fact1: {A}{ip} fact2: (x): ¬({E}x & {D}x) -> ¬{C}x fact3: ¬{C}{d} -> (¬{B}{c} v ¬{D}{c}) fact4: ¬{B}{b} -> ¬{A}{a} fact5: (x): ¬{H}x -> ({F}x & {G}x) fact6: {DC}{a} fact7: {DL}{a} fact8: (x): ¬{C}x -> (¬{B}x & {A}x) fact9: {A}{a} fact10: ¬{H}{a} fact11: (x): {F}x -> ¬({E}{gb} & {D}{gb}) fact12: {GJ}{a} fact13: {A}{es} fact14: {A}{bt}
[ "fact9 -> hypothesis;" ]
[ "fact9 -> hypothesis;" ]
あの国内法上は十七日発行であるということはない
¬{A}{a}
[]
6
1
0
13
0
13
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: あの白拍子は十七日発行である fact2: 「仮に「とあるものが借り易いしその上食べ切る」ということは成り立たないとすればそれは習合でない」ということは本当である fact3: もし仮にあの領域内が習合でないとするとその移転登記請求権は応対しないか食べ切らないかあるいは両方だ fact4: もしあの酒量が応対しないとすればあの国内法上は十七日発行であるということはない fact5: 物憂くない物は紛らわしいし加えて藩札である fact6: あの国内法上はジャパン・ヘラルドだ fact7: あの国内法上は青黒い fact8: なにかは習合でないならば応対しない一方で十七日発行だ fact9: あの国内法上は十七日発行だ fact10: 「あの国内法上は物憂くない」ということは本当である fact11: もし仮に「紛らわしい」ものはあるとしたら「あの海上基地建設反対は借り易いし食べ切る」ということは成り立たない fact12: あの国内法上は夫婦らしい fact13: この六七人は十七日発行だ fact14: その薬事法は十七日発行だ ; $hypothesis$ = あの国内法上は十七日発行でない ; $proof$ =
fact9 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: あの白拍子は十七日発行である 事実2: 「仮に「とあるものが借り易いしその上食べ切る」ということは成り立たないとすればそれは習合でない」ということは本当である 事実3: もし仮にあの領域内が習合でないとするとその移転登記請求権は応対しないか食べ切らないかあるいは両方だ 事実4: もしあの酒量が応対しないとすればあの国内法上は十七日発行であるということはない 事実5: 物憂くない物は紛らわしいし加えて藩札である 事実6: あの国内法上はジャパン・ヘラルドだ 事実7: あの国内法上は青黒い 事実8: なにかは習合でないならば応対しない一方で十七日発行だ 事実9: あの国内法上は十七日発行だ 事実10: 「あの国内法上は物憂くない」ということは本当である 事実11: もし仮に「紛らわしい」ものはあるとしたら「あの海上基地建設反対は借り易いし食べ切る」ということは成り立たない 事実12: あの国内法上は夫婦らしい 事実13: この六七人は十七日発行だ 事実14: その薬事法は十七日発行だ 仮説: あの国内法上は十七日発行でない
1. 事実9から、仮説が否定される よって、仮説が否定されました。
0.3
あの遺族年金はミス発見システムでない
¬{B}{a}
fact1: もしも「なにがしかのものはしゃぶるということはないけど史だ」ということは成り立たないならばそれは年取り魚でない fact2: もしも何らかのものが転げ込むということはないとするとそれは荒っぽいしそれは調節し易い fact3: 「その戦略プログラムはラテンアメリカ諸国だ」ということは真実である fact4: あの固有言語が釈明するとすればあの公家は引き据えないしかつ脂っぽくない fact5: なんらかのものが病気しないならばいじましくてラテンアメリカ諸国である fact6: もしもその鉱物油が年取り魚でなくてそれがしゃぶらないとするとあの遺族年金はラテンアメリカ諸国でない fact7: あの遺族年金はラテンアメリカ諸国であるしそれにミス発見システムだ fact8: もしも「その公家は荒っぽい」ということは事実と異ならないならあの兵法師範役は病気する fact9: あの遺族年金がラテンアメリカ諸国だしさらに捕集する fact10: あるものが引き据えなくて脂っぽくないとしたら転げ込まない fact11: あの遺族年金は答え難い fact12: もしあの兵法師範役が史だとするとその鉱物油は年取り魚でないしまたしゃぶらない fact13: もしある物が病気すれば史だ fact14: あの遺族年金はラテンアメリカ諸国だ fact15: もしも何かは年取り魚でないとすると壊れるしミス発見システムである fact16: 「あの遺族年金は病気しない」ということは事実と異ならない fact17: この標準モジュールはミス発見システムだ fact18: 仮に何らかの物がラテンアメリカ諸国でないとすればそれはミス発見システムでない
fact1: (x): ¬(¬{D}x & {E}x) -> ¬{C}x fact2: (x): ¬{I}x -> ({G}x & {H}x) fact3: {A}{cp} fact4: {L}{e} -> (¬{J}{d} & ¬{K}{d}) fact5: (x): ¬{F}x -> ({GU}x & {A}x) fact6: (¬{C}{b} & ¬{D}{b}) -> ¬{A}{a} fact7: ({A}{a} & {B}{a}) fact8: {G}{d} -> {F}{c} fact9: ({A}{a} & {EU}{a}) fact10: (x): (¬{J}x & ¬{K}x) -> ¬{I}x fact11: {GA}{a} fact12: {E}{c} -> (¬{C}{b} & ¬{D}{b}) fact13: (x): {F}x -> {E}x fact14: {A}{a} fact15: (x): ¬{C}x -> ({DR}x & {B}x) fact16: ¬{F}{a} fact17: {B}{ap} fact18: (x): ¬{A}x -> ¬{B}x
[ "fact7 -> hypothesis;" ]
[ "fact7 -> hypothesis;" ]
あの遺族年金はミス発見システムでない
¬{B}{a}
[ "fact21 -> int1: もし仮に「あの遺族年金はラテンアメリカ諸国でない」ということは誤りでないとすればミス発見システムでない; fact26 -> int2: もし仮に「あの兵法師範役は病気する」ということは確かであるなら史である; fact24 -> int3: 仮にその公家が転げ込むということはないとすると荒っぽいしそれに調節し易い; fact19 -> int4: もしその公家は引き据えないし脂っぽくないとすれば「転げ込むということはない」ということは真実だ;" ]
9
1
1
17
0
17
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: もしも「なにがしかのものはしゃぶるということはないけど史だ」ということは成り立たないならばそれは年取り魚でない fact2: もしも何らかのものが転げ込むということはないとするとそれは荒っぽいしそれは調節し易い fact3: 「その戦略プログラムはラテンアメリカ諸国だ」ということは真実である fact4: あの固有言語が釈明するとすればあの公家は引き据えないしかつ脂っぽくない fact5: なんらかのものが病気しないならばいじましくてラテンアメリカ諸国である fact6: もしもその鉱物油が年取り魚でなくてそれがしゃぶらないとするとあの遺族年金はラテンアメリカ諸国でない fact7: あの遺族年金はラテンアメリカ諸国であるしそれにミス発見システムだ fact8: もしも「その公家は荒っぽい」ということは事実と異ならないならあの兵法師範役は病気する fact9: あの遺族年金がラテンアメリカ諸国だしさらに捕集する fact10: あるものが引き据えなくて脂っぽくないとしたら転げ込まない fact11: あの遺族年金は答え難い fact12: もしあの兵法師範役が史だとするとその鉱物油は年取り魚でないしまたしゃぶらない fact13: もしある物が病気すれば史だ fact14: あの遺族年金はラテンアメリカ諸国だ fact15: もしも何かは年取り魚でないとすると壊れるしミス発見システムである fact16: 「あの遺族年金は病気しない」ということは事実と異ならない fact17: この標準モジュールはミス発見システムだ fact18: 仮に何らかの物がラテンアメリカ諸国でないとすればそれはミス発見システムでない ; $hypothesis$ = あの遺族年金はミス発見システムでない ; $proof$ =
fact7 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: もしも「なにがしかのものはしゃぶるということはないけど史だ」ということは成り立たないならばそれは年取り魚でない 事実2: もしも何らかのものが転げ込むということはないとするとそれは荒っぽいしそれは調節し易い 事実3: 「その戦略プログラムはラテンアメリカ諸国だ」ということは真実である 事実4: あの固有言語が釈明するとすればあの公家は引き据えないしかつ脂っぽくない 事実5: なんらかのものが病気しないならばいじましくてラテンアメリカ諸国である 事実6: もしもその鉱物油が年取り魚でなくてそれがしゃぶらないとするとあの遺族年金はラテンアメリカ諸国でない 事実7: あの遺族年金はラテンアメリカ諸国であるしそれにミス発見システムだ 事実8: もしも「その公家は荒っぽい」ということは事実と異ならないならあの兵法師範役は病気する 事実9: あの遺族年金がラテンアメリカ諸国だしさらに捕集する 事実10: あるものが引き据えなくて脂っぽくないとしたら転げ込まない 事実11: あの遺族年金は答え難い 事実12: もしあの兵法師範役が史だとするとその鉱物油は年取り魚でないしまたしゃぶらない 事実13: もしある物が病気すれば史だ 事実14: あの遺族年金はラテンアメリカ諸国だ 事実15: もしも何かは年取り魚でないとすると壊れるしミス発見システムである 事実16: 「あの遺族年金は病気しない」ということは事実と異ならない 事実17: この標準モジュールはミス発見システムだ 事実18: 仮に何らかの物がラテンアメリカ諸国でないとすればそれはミス発見システムでない 仮説: あの遺族年金はミス発見システムでない
1. 事実7から、仮説が否定される よって、仮説が否定されました。
0.3
「あの木造は競り落とす」ということは本当である
{B}{a}
fact1: 「あの木造は叩打しないけど得意満面だ」ということは成り立たない fact2: 「「この仮想コードは大変身する」ということは事実だ」ということは誤っている fact3: 「あの木造は持ち難いということはない一方で競り落とす」ということは成り立たない fact4: もし仮にあの木造は特異度であるとしたら親孝行するということはない fact5: もしこの仮想コードが大変身しないとすればあの再生産構造は比すし更にそれは容認す fact6: 「この店主名&修業先は競り落とすしそれに格好良い」ということは事実でない fact7: 「あの木造は叩打するし得意満面だ」ということは嘘である fact8: 仮に「この義仲軍は容認すらない」ということは真実であるならこの独立自営は参照下さるし加えて決め付ける fact9: 「あの木造は自虐史観で更に叩打する」ということは嘘である fact10: 「あの偽名領収書は完全房室ブロックで掻き立てる」ということは誤りだ fact11: もしも「あの木造は叩打するということはないがしかし得意満面だ」ということは嘘だとすると競り落とさない fact12: もし仮にこの独立自営が参照下さるとしたらあの木造は競り落とす fact13: 「この日本的経営システムは鬱陶しかないがしかし複式夢幻能だ」ということは成り立たない fact14: あの木造は上がり出さない fact15: 「あの木造は叩打するし鈍い」ということは成り立たない fact16: 仮に「とあるものは参照下さる」ということは成り立てば「それは得意満面であるということはないが実習する」ということは誤りだ fact17: もしもあの木造が叩打するなら競り落とさない fact18: 「あらゆる物は決め付けない」ということは誤りでない fact19: 仮に「その成人式は当たり前過ぎない一方で連行する」ということは成り立たないならば動き回らない fact20: あの木造は神経突起でない fact21: もしこの再生産構造が容認すしかつ強調するならこの義仲軍は容認すらない
fact1: ¬(¬{AA}{a} & {AB}{a}) fact2: ¬{H}{e} fact3: ¬(¬{EF}{a} & {B}{a}) fact4: {CA}{a} -> ¬{ED}{a} fact5: ¬{H}{e} -> ({G}{d} & {D}{d}) fact6: ¬({B}{gb} & {CE}{gb}) fact7: ¬({AA}{a} & {AB}{a}) fact8: ¬{D}{c} -> ({A}{b} & {C}{b}) fact9: ¬({GH}{a} & {AA}{a}) fact10: ¬({GG}{fs} & {AT}{fs}) fact11: ¬(¬{AA}{a} & {AB}{a}) -> ¬{B}{a} fact12: {A}{b} -> {B}{a} fact13: ¬(¬{CU}{gt} & {DN}{gt}) fact14: ¬{IR}{a} fact15: ¬({AA}{a} & {AS}{a}) fact16: (x): {A}x -> ¬(¬{AB}x & {EH}x) fact17: {AA}{a} -> ¬{B}{a} fact18: (x): ¬{C}x fact19: ¬(¬{GU}{ar} & {AI}{ar}) -> ¬{FR}{ar} fact20: ¬{AO}{a} fact21: ({D}{d} & {F}{d}) -> ¬{D}{c}
[ "fact11 & fact1 -> hypothesis;" ]
[ "fact11 & fact1 -> hypothesis;" ]
「あの倍洗いは得意満面でない一方で実習する」ということは誤りだ
¬(¬{AB}{dd} & {EH}{dd})
[ "fact23 -> int1: あの木造は決め付けない; fact22 -> int2: 仮にあの倍洗いは参照下さるとすると「得意満面でないが実習する」ということは偽だ;" ]
6
1
1
19
0
19
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: 「あの木造は叩打しないけど得意満面だ」ということは成り立たない fact2: 「「この仮想コードは大変身する」ということは事実だ」ということは誤っている fact3: 「あの木造は持ち難いということはない一方で競り落とす」ということは成り立たない fact4: もし仮にあの木造は特異度であるとしたら親孝行するということはない fact5: もしこの仮想コードが大変身しないとすればあの再生産構造は比すし更にそれは容認す fact6: 「この店主名&修業先は競り落とすしそれに格好良い」ということは事実でない fact7: 「あの木造は叩打するし得意満面だ」ということは嘘である fact8: 仮に「この義仲軍は容認すらない」ということは真実であるならこの独立自営は参照下さるし加えて決め付ける fact9: 「あの木造は自虐史観で更に叩打する」ということは嘘である fact10: 「あの偽名領収書は完全房室ブロックで掻き立てる」ということは誤りだ fact11: もしも「あの木造は叩打するということはないがしかし得意満面だ」ということは嘘だとすると競り落とさない fact12: もし仮にこの独立自営が参照下さるとしたらあの木造は競り落とす fact13: 「この日本的経営システムは鬱陶しかないがしかし複式夢幻能だ」ということは成り立たない fact14: あの木造は上がり出さない fact15: 「あの木造は叩打するし鈍い」ということは成り立たない fact16: 仮に「とあるものは参照下さる」ということは成り立てば「それは得意満面であるということはないが実習する」ということは誤りだ fact17: もしもあの木造が叩打するなら競り落とさない fact18: 「あらゆる物は決め付けない」ということは誤りでない fact19: 仮に「その成人式は当たり前過ぎない一方で連行する」ということは成り立たないならば動き回らない fact20: あの木造は神経突起でない fact21: もしこの再生産構造が容認すしかつ強調するならこの義仲軍は容認すらない ; $hypothesis$ = 「あの木造は競り落とす」ということは本当である ; $proof$ =
fact11 & fact1 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: 「あの木造は叩打しないけど得意満面だ」ということは成り立たない 事実2: 「「この仮想コードは大変身する」ということは事実だ」ということは誤っている 事実3: 「あの木造は持ち難いということはない一方で競り落とす」ということは成り立たない 事実4: もし仮にあの木造は特異度であるとしたら親孝行するということはない 事実5: もしこの仮想コードが大変身しないとすればあの再生産構造は比すし更にそれは容認す 事実6: 「この店主名&修業先は競り落とすしそれに格好良い」ということは事実でない 事実7: 「あの木造は叩打するし得意満面だ」ということは嘘である 事実8: 仮に「この義仲軍は容認すらない」ということは真実であるならこの独立自営は参照下さるし加えて決め付ける 事実9: 「あの木造は自虐史観で更に叩打する」ということは嘘である 事実10: 「あの偽名領収書は完全房室ブロックで掻き立てる」ということは誤りだ 事実11: もしも「あの木造は叩打するということはないがしかし得意満面だ」ということは嘘だとすると競り落とさない 事実12: もし仮にこの独立自営が参照下さるとしたらあの木造は競り落とす 事実13: 「この日本的経営システムは鬱陶しかないがしかし複式夢幻能だ」ということは成り立たない 事実14: あの木造は上がり出さない 事実15: 「あの木造は叩打するし鈍い」ということは成り立たない 事実16: 仮に「とあるものは参照下さる」ということは成り立てば「それは得意満面であるということはないが実習する」ということは誤りだ 事実17: もしもあの木造が叩打するなら競り落とさない 事実18: 「あらゆる物は決め付けない」ということは誤りでない 事実19: 仮に「その成人式は当たり前過ぎない一方で連行する」ということは成り立たないならば動き回らない 事実20: あの木造は神経突起でない 事実21: もしこの再生産構造が容認すしかつ強調するならこの義仲軍は容認すらない 仮説: 「あの木造は競り落とす」ということは本当である
1. 事実11と事実1から、仮説が否定される よって、仮説が否定されました。
0.3
その学習習慣は春休みである
{A}{a}
fact1: その学習習慣は春休みだしそれに粉っぽい
fact1: ({A}{a} & {B}{a})
[ "fact1 -> hypothesis;" ]
[ "fact1 -> hypothesis;" ]
null
null
[]
null
1
1
0
0
0
PROVED
null
PROVED
null
$facts$ = fact1: その学習習慣は春休みだしそれに粉っぽい ; $hypothesis$ = その学習習慣は春休みである ; $proof$ =
fact1 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: その学習習慣は春休みだしそれに粉っぽい 仮説: その学習習慣は春休みである
1. 事実1から、仮説が導かれる よって、仮説が証明されました。
0.3
「この何時はバリケードだということはない」ということは本当である
¬{A}{a}
fact1: この何時は嫌味っぽい fact2: この何時はバリケードでそれに嫌味っぽい fact3: 何らかの物が徹底するということはないならばそれがバリケードだしまたそれは誇りっぽい fact4: もしなにがしかの物がバリケードなら嫌味っぽい
fact1: {B}{a} fact2: ({A}{a} & {B}{a}) fact3: (x): ¬{D}x -> ({A}x & {C}x) fact4: (x): {A}x -> {B}x
[ "fact2 -> hypothesis;" ]
[ "fact2 -> hypothesis;" ]
「あの姫犬稗は嫌味っぽい」ということは偽でない
{B}{fn}
[ "fact6 -> int1: もしもあの姫犬稗がバリケードだとするとそれは嫌味っぽい; fact5 -> int2: 仮にあの姫犬稗が徹底するということはないとしたらそれはバリケードであるしかつ誇りっぽい;" ]
5
1
1
3
0
3
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: この何時は嫌味っぽい fact2: この何時はバリケードでそれに嫌味っぽい fact3: 何らかの物が徹底するということはないならばそれがバリケードだしまたそれは誇りっぽい fact4: もしなにがしかの物がバリケードなら嫌味っぽい ; $hypothesis$ = 「この何時はバリケードだということはない」ということは本当である ; $proof$ =
fact2 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: この何時は嫌味っぽい 事実2: この何時はバリケードでそれに嫌味っぽい 事実3: 何らかの物が徹底するということはないならばそれがバリケードだしまたそれは誇りっぽい 事実4: もしなにがしかの物がバリケードなら嫌味っぽい 仮説: 「この何時はバリケードだということはない」ということは本当である
1. 事実2から、仮説が否定される よって、仮説が否定されました。
0.3
「「「浮かさないしさらに壊れ掛けない」ということは誤りだとすれば「分かち合う」ということは成り立つ」ものはある」ということは事実と異なる
¬((Ex): ¬(¬{AA}x & ¬{AB}x) -> {B}x)
fact1: もし「この農奴は明け放つということはないし壊れ掛けない」ということは間違っていればそれは向上等である fact2: 「「もし壊れ掛けるなら分かち合う」ものはある」ということは成り立つ fact3: 仮に「そのヘーゼルナッツは焼失しないし株券不発行制度でない」ということは成り立たないとしたらそれはアルミドだ fact4: 「とあるものは突き砕かなくてかつそれはしらばっくれるということはない」ということは成り立つということはないならばそれは要介護認定である fact5: 仮にそのヘーゼルナッツが壊れ掛けるとすればそれは分かち合う fact6: 「そのヘーゼルナッツは浮かさないしそれは壊れ掛けない」ということは嘘であるとしたら分かち合う fact7: 「もし「浮かさなくて壊れ掛けない」ということは成り立つとすれば分かち合う」物はある fact8: 「「そのヘーゼルナッツは浮かすけれど壊れ掛けない」ということは成り立つ」ということは確かでないとすればそれは分かち合う fact9: 「「汗ばまないし更に長ったらしくない」ということは嘘ならば「示現する」ということは本当である」物はある fact10: 「もし「浮かすし壊れ掛けない」ということは成り立たないとしたら分かち合う」物はある fact11: 仮に「その影響関係は積み藁でなくて源泉所得税でない」ということは事実と異なるとすればそれは分かち合う fact12: もし「そのヘーゼルナッツは公立病院でないしその上浮かさない」ということは成り立たないなら淀み無い fact13: もし仮に「とある物は長ったらしいということはないし雲海酒造でない」ということは成り立つということはないとすればモニタリング・レポートだ fact14: もし「「そのヘーゼルナッツは壊れ掛けるということはなくて田舎臭いということはない」ということは成り立つ」ということは成り立たないならば滑り難い fact15: 仮にそのヘーゼルナッツは浮かさなくておまけに壊れ掛けないとすればそれは分かち合う fact16: 「もし「酸っぱくないしおまけに修正ユリウス日でない」ということは成り立たないとしたら写真週刊誌である」ものはある fact17: 「もしも「プレゼントしなくて公立病院でない」ということは成り立たないならタイアップする」ものはある fact18: 「「浮かさないし壊れ掛ける」ということは成り立たないとすれば分かち合う」ものはある fact19: 「もしも浮かすとすると分かち合う」物はある fact20: 「もし仮に「懐かしないしそれに製品化出来ない」ということは偽だとすると振り掛ける」ものはある fact21: もし仮に「そのヘーゼルナッツはスクリプト‐FUでなくて更に発現し易くない」ということは間違いであるとしたらそれは呉越である
fact1: ¬(¬{GJ}{an} & ¬{AB}{an}) -> {HM}{an} fact2: (Ex): {AB}x -> {B}x fact3: ¬(¬{EI}{aa} & ¬{BA}{aa}) -> {FB}{aa} fact4: (x): ¬(¬{O}x & ¬{BS}x) -> {HB}x fact5: {AB}{aa} -> {B}{aa} fact6: ¬(¬{AA}{aa} & ¬{AB}{aa}) -> {B}{aa} fact7: (Ex): (¬{AA}x & ¬{AB}x) -> {B}x fact8: ¬({AA}{aa} & ¬{AB}{aa}) -> {B}{aa} fact9: (Ex): ¬(¬{HP}x & ¬{EF}x) -> {AH}x fact10: (Ex): ¬({AA}x & ¬{AB}x) -> {B}x fact11: ¬(¬{ES}{jh} & ¬{IU}{jh}) -> {B}{jh} fact12: ¬(¬{Q}{aa} & ¬{AA}{aa}) -> {BM}{aa} fact13: (x): ¬(¬{EF}x & ¬{CG}x) -> {DL}x fact14: ¬(¬{AB}{aa} & ¬{FK}{aa}) -> {AK}{aa} fact15: (¬{AA}{aa} & ¬{AB}{aa}) -> {B}{aa} fact16: (Ex): ¬(¬{DJ}x & ¬{HH}x) -> {EE}x fact17: (Ex): ¬(¬{IB}x & ¬{Q}x) -> {HI}x fact18: (Ex): ¬(¬{AA}x & {AB}x) -> {B}x fact19: (Ex): {AA}x -> {B}x fact20: (Ex): ¬(¬{DC}x & ¬{CJ}x) -> {AE}x fact21: ¬(¬{K}{aa} & ¬{HA}{aa}) -> {DK}{aa}
[ "fact6 -> hypothesis;" ]
[ "fact6 -> hypothesis;" ]
「もし仮に「長ったらしくないものであって加えて雲海酒造でない」ということは偽だとすればモニタリング・レポートな」物はある
(Ex): ¬(¬{EF}x & ¬{CG}x) -> {DL}x
[ "fact22 -> int1: もし仮に「その義やんは長ったらしいということはないものでさらに雲海酒造でない」ということは真実でないなら「モニタリング・レポートである」ということは成り立つ; int1 -> hypothesis;" ]
2
1
1
20
0
20
DISPROVED
PROVED
DISPROVED
PROVED
$facts$ = fact1: もし「この農奴は明け放つということはないし壊れ掛けない」ということは間違っていればそれは向上等である fact2: 「「もし壊れ掛けるなら分かち合う」ものはある」ということは成り立つ fact3: 仮に「そのヘーゼルナッツは焼失しないし株券不発行制度でない」ということは成り立たないとしたらそれはアルミドだ fact4: 「とあるものは突き砕かなくてかつそれはしらばっくれるということはない」ということは成り立つということはないならばそれは要介護認定である fact5: 仮にそのヘーゼルナッツが壊れ掛けるとすればそれは分かち合う fact6: 「そのヘーゼルナッツは浮かさないしそれは壊れ掛けない」ということは嘘であるとしたら分かち合う fact7: 「もし「浮かさなくて壊れ掛けない」ということは成り立つとすれば分かち合う」物はある fact8: 「「そのヘーゼルナッツは浮かすけれど壊れ掛けない」ということは成り立つ」ということは確かでないとすればそれは分かち合う fact9: 「「汗ばまないし更に長ったらしくない」ということは嘘ならば「示現する」ということは本当である」物はある fact10: 「もし「浮かすし壊れ掛けない」ということは成り立たないとしたら分かち合う」物はある fact11: 仮に「その影響関係は積み藁でなくて源泉所得税でない」ということは事実と異なるとすればそれは分かち合う fact12: もし「そのヘーゼルナッツは公立病院でないしその上浮かさない」ということは成り立たないなら淀み無い fact13: もし仮に「とある物は長ったらしいということはないし雲海酒造でない」ということは成り立つということはないとすればモニタリング・レポートだ fact14: もし「「そのヘーゼルナッツは壊れ掛けるということはなくて田舎臭いということはない」ということは成り立つ」ということは成り立たないならば滑り難い fact15: 仮にそのヘーゼルナッツは浮かさなくておまけに壊れ掛けないとすればそれは分かち合う fact16: 「もし「酸っぱくないしおまけに修正ユリウス日でない」ということは成り立たないとしたら写真週刊誌である」ものはある fact17: 「もしも「プレゼントしなくて公立病院でない」ということは成り立たないならタイアップする」ものはある fact18: 「「浮かさないし壊れ掛ける」ということは成り立たないとすれば分かち合う」ものはある fact19: 「もしも浮かすとすると分かち合う」物はある fact20: 「もし仮に「懐かしないしそれに製品化出来ない」ということは偽だとすると振り掛ける」ものはある fact21: もし仮に「そのヘーゼルナッツはスクリプト‐FUでなくて更に発現し易くない」ということは間違いであるとしたらそれは呉越である ; $hypothesis$ = 「「「浮かさないしさらに壊れ掛けない」ということは誤りだとすれば「分かち合う」ということは成り立つ」ものはある」ということは事実と異なる ; $proof$ =
fact6 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: もし「この農奴は明け放つということはないし壊れ掛けない」ということは間違っていればそれは向上等である 事実2: 「「もし壊れ掛けるなら分かち合う」ものはある」ということは成り立つ 事実3: 仮に「そのヘーゼルナッツは焼失しないし株券不発行制度でない」ということは成り立たないとしたらそれはアルミドだ 事実4: 「とあるものは突き砕かなくてかつそれはしらばっくれるということはない」ということは成り立つということはないならばそれは要介護認定である 事実5: 仮にそのヘーゼルナッツが壊れ掛けるとすればそれは分かち合う 事実6: 「そのヘーゼルナッツは浮かさないしそれは壊れ掛けない」ということは嘘であるとしたら分かち合う 事実7: 「もし「浮かさなくて壊れ掛けない」ということは成り立つとすれば分かち合う」物はある 事実8: 「「そのヘーゼルナッツは浮かすけれど壊れ掛けない」ということは成り立つ」ということは確かでないとすればそれは分かち合う 事実9: 「「汗ばまないし更に長ったらしくない」ということは嘘ならば「示現する」ということは本当である」物はある 事実10: 「もし「浮かすし壊れ掛けない」ということは成り立たないとしたら分かち合う」物はある 事実11: 仮に「その影響関係は積み藁でなくて源泉所得税でない」ということは事実と異なるとすればそれは分かち合う 事実12: もし「そのヘーゼルナッツは公立病院でないしその上浮かさない」ということは成り立たないなら淀み無い 事実13: もし仮に「とある物は長ったらしいということはないし雲海酒造でない」ということは成り立つということはないとすればモニタリング・レポートだ 事実14: もし「「そのヘーゼルナッツは壊れ掛けるということはなくて田舎臭いということはない」ということは成り立つ」ということは成り立たないならば滑り難い 事実15: 仮にそのヘーゼルナッツは浮かさなくておまけに壊れ掛けないとすればそれは分かち合う 事実16: 「もし「酸っぱくないしおまけに修正ユリウス日でない」ということは成り立たないとしたら写真週刊誌である」ものはある 事実17: 「もしも「プレゼントしなくて公立病院でない」ということは成り立たないならタイアップする」ものはある 事実18: 「「浮かさないし壊れ掛ける」ということは成り立たないとすれば分かち合う」ものはある 事実19: 「もしも浮かすとすると分かち合う」物はある 事実20: 「もし仮に「懐かしないしそれに製品化出来ない」ということは偽だとすると振り掛ける」ものはある 事実21: もし仮に「そのヘーゼルナッツはスクリプト‐FUでなくて更に発現し易くない」ということは間違いであるとしたらそれは呉越である 仮説: 「「「浮かさないしさらに壊れ掛けない」ということは誤りだとすれば「分かち合う」ということは成り立つ」ものはある」ということは事実と異なる
1. 事実6から、仮説が否定される よって、仮説が否定されました。
0.3
そのベースステーションは究明しないけれどそれは察知する
(¬{AA}{a} & {AB}{a})
fact1: もしも何らかの物は切り易くないならば「究明しない一方で察知する」ということは偽だ fact2: そのベースステーションは切り易い fact3: 仮に「この平和共存は揺るぎないがしかしそれは退色し易くない」ということは成り立たないとしたらそのベースステーションは物々交換しない fact4: 仮にそのベースステーションが切り易いとすれば究明しないけど察知する fact5: もしもとあるものが物々交換しないならばそれは切り易くない
fact1: (x): ¬{A}x -> ¬(¬{AA}x & {AB}x) fact2: {A}{a} fact3: ¬({D}{b} & ¬{C}{b}) -> ¬{B}{a} fact4: {A}{a} -> (¬{AA}{a} & {AB}{a}) fact5: (x): ¬{B}x -> ¬{A}x
[ "fact4 & fact2 -> hypothesis;" ]
[ "fact4 & fact2 -> hypothesis;" ]
「そのベースステーションは究明しないが察知する」ということは成り立たない
¬(¬{AA}{a} & {AB}{a})
[ "fact7 -> int1: そのベースステーションは切り易くないとしたら「究明しなくてまた察知する」ということは本当でない; fact6 -> int2: もし仮にそのベースステーションが物々交換するということはないならそれは切り易くない;" ]
6
1
1
3
0
3
PROVED
UNKNOWN
PROVED
UNKNOWN
$facts$ = fact1: もしも何らかの物は切り易くないならば「究明しない一方で察知する」ということは偽だ fact2: そのベースステーションは切り易い fact3: 仮に「この平和共存は揺るぎないがしかしそれは退色し易くない」ということは成り立たないとしたらそのベースステーションは物々交換しない fact4: 仮にそのベースステーションが切り易いとすれば究明しないけど察知する fact5: もしもとあるものが物々交換しないならばそれは切り易くない ; $hypothesis$ = そのベースステーションは究明しないけれどそれは察知する ; $proof$ =
fact4 & fact2 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: もしも何らかの物は切り易くないならば「究明しない一方で察知する」ということは偽だ 事実2: そのベースステーションは切り易い 事実3: 仮に「この平和共存は揺るぎないがしかしそれは退色し易くない」ということは成り立たないとしたらそのベースステーションは物々交換しない 事実4: 仮にそのベースステーションが切り易いとすれば究明しないけど察知する 事実5: もしもとあるものが物々交換しないならばそれは切り易くない 仮説: そのベースステーションは究明しないけれどそれは察知する
1. 事実4と事実2から、仮説が導かれる よって、仮説が証明されました。
0.3
「仮にこの右が御忙しくないならばこの右は山王様だということはない」ということは成り立たない
¬(¬{B}{aa} -> ¬{C}{aa})
fact1: 御忙しくないものは山王様でない fact2: この右が御忙しくないとすればそれは山王様だ fact3: もしとある物は財産+α経営でないならば御忙しくない
fact1: (x): ¬{B}x -> ¬{C}x fact2: ¬{B}{aa} -> {C}{aa} fact3: (x): ¬{DK}x -> ¬{B}x
[ "fact1 -> hypothesis;" ]
[ "fact1 -> hypothesis;" ]
もしその挽歌が財産+α経営でないとすれば御忙しくない
¬{DK}{cn} -> ¬{B}{cn}
[ "fact4 -> hypothesis;" ]
1
1
1
2
0
2
DISPROVED
PROVED
DISPROVED
PROVED
$facts$ = fact1: 御忙しくないものは山王様でない fact2: この右が御忙しくないとすればそれは山王様だ fact3: もしとある物は財産+α経営でないならば御忙しくない ; $hypothesis$ = 「仮にこの右が御忙しくないならばこの右は山王様だということはない」ということは成り立たない ; $proof$ =
fact1 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: 御忙しくないものは山王様でない 事実2: この右が御忙しくないとすればそれは山王様だ 事実3: もしとある物は財産+α経営でないならば御忙しくない 仮説: 「仮にこの右が御忙しくないならばこの右は山王様だということはない」ということは成り立たない
1. 事実1から、仮説が否定される よって、仮説が否定されました。
0.3
あのカーミング・シグナルは年代記者でない
¬{B}{a}
fact1: もしあの寿司桶が生々しいならそのK先生は生々しい fact2: この民国はメニューボタンであるし奥床しい fact3: 立て難くないものが付き上げるとするとそれは年代記者でない fact4: もしもとある物は付き上げないなら「年代記者でないしさらに立て難い」ということは嘘だ fact5: そのK先生が生々しいとしたらあのカーミング・シグナルは付き上げないしその上それは気付き易くない fact6: この借り上げは買うしスケッチする fact7: あのカーミング・シグナルは御持ちに成る fact8: あのカーミング・シグナルは立て難いし更に年代記者だ fact9: あのカーミング・シグナルは立て難い fact10: 「あのカーミング・シグナルは年代記者でないけど立て難い」ということは成り立たないとすればあの幢相は立て難い
fact1: {E}{c} -> {E}{b} fact2: ({DO}{fe} & {CB}{fe}) fact3: (x): (¬{A}x & {C}x) -> ¬{B}x fact4: (x): ¬{C}x -> ¬(¬{B}x & {A}x) fact5: {E}{b} -> (¬{C}{a} & ¬{D}{a}) fact6: ({CR}{dj} & {DF}{dj}) fact7: {DK}{a} fact8: ({A}{a} & {B}{a}) fact9: {A}{a} fact10: ¬(¬{B}{a} & {A}{a}) -> {A}{ef}
[ "fact8 -> hypothesis;" ]
[ "fact8 -> hypothesis;" ]
「あのカーミング・シグナルは年代記者でない」ということは本当だ
¬{B}{a}
[ "fact11 -> int1: 仮にあのカーミング・シグナルは立て難くないがしかし付き上げるとすればそれは年代記者でない;" ]
5
1
1
9
0
9
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: もしあの寿司桶が生々しいならそのK先生は生々しい fact2: この民国はメニューボタンであるし奥床しい fact3: 立て難くないものが付き上げるとするとそれは年代記者でない fact4: もしもとある物は付き上げないなら「年代記者でないしさらに立て難い」ということは嘘だ fact5: そのK先生が生々しいとしたらあのカーミング・シグナルは付き上げないしその上それは気付き易くない fact6: この借り上げは買うしスケッチする fact7: あのカーミング・シグナルは御持ちに成る fact8: あのカーミング・シグナルは立て難いし更に年代記者だ fact9: あのカーミング・シグナルは立て難い fact10: 「あのカーミング・シグナルは年代記者でないけど立て難い」ということは成り立たないとすればあの幢相は立て難い ; $hypothesis$ = あのカーミング・シグナルは年代記者でない ; $proof$ =
fact8 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: もしあの寿司桶が生々しいならそのK先生は生々しい 事実2: この民国はメニューボタンであるし奥床しい 事実3: 立て難くないものが付き上げるとするとそれは年代記者でない 事実4: もしもとある物は付き上げないなら「年代記者でないしさらに立て難い」ということは嘘だ 事実5: そのK先生が生々しいとしたらあのカーミング・シグナルは付き上げないしその上それは気付き易くない 事実6: この借り上げは買うしスケッチする 事実7: あのカーミング・シグナルは御持ちに成る 事実8: あのカーミング・シグナルは立て難いし更に年代記者だ 事実9: あのカーミング・シグナルは立て難い 事実10: 「あのカーミング・シグナルは年代記者でないけど立て難い」ということは成り立たないとすればあの幢相は立て難い 仮説: あのカーミング・シグナルは年代記者でない
1. 事実8から、仮説が否定される よって、仮説が否定されました。
0.3
この企業福祉は作業し易い
{A}{a}
fact1: もしなんらかの物が横紋筋融解症であるかそれは複合免疫不全症でないとしたら複合免疫不全症でない fact2: 「この企業福祉は作業し易い」ということは真実だ fact3: もしもこの企業福祉が自己破産しないが作業し易いならあの難は作業し易い fact4: もしもあの電源開発は複合免疫不全症でないならば「この情報コーナーは名高いし自己破産する」ということは誤りである
fact1: (x): ({F}x v ¬{D}x) -> ¬{D}x fact2: {A}{a} fact3: (¬{C}{a} & {A}{a}) -> {A}{ft} fact4: ¬{D}{c} -> ¬({B}{b} & {C}{b})
[ "fact2 -> hypothesis;" ]
[ "fact2 -> hypothesis;" ]
「あの難は作業し易い」ということは真実である
{A}{ft}
[]
5
1
0
3
0
3
PROVED
UNKNOWN
PROVED
UNKNOWN
$facts$ = fact1: もしなんらかの物が横紋筋融解症であるかそれは複合免疫不全症でないとしたら複合免疫不全症でない fact2: 「この企業福祉は作業し易い」ということは真実だ fact3: もしもこの企業福祉が自己破産しないが作業し易いならあの難は作業し易い fact4: もしもあの電源開発は複合免疫不全症でないならば「この情報コーナーは名高いし自己破産する」ということは誤りである ; $hypothesis$ = この企業福祉は作業し易い ; $proof$ =
fact2 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: もしなんらかの物が横紋筋融解症であるかそれは複合免疫不全症でないとしたら複合免疫不全症でない 事実2: 「この企業福祉は作業し易い」ということは真実だ 事実3: もしもこの企業福祉が自己破産しないが作業し易いならあの難は作業し易い 事実4: もしもあの電源開発は複合免疫不全症でないならば「この情報コーナーは名高いし自己破産する」ということは誤りである 仮説: この企業福祉は作業し易い
1. 事実2から、仮説が導かれる よって、仮説が証明されました。
0.3
あの議員さんは忘れ難い
{A}{a}
fact1: もし何かは集成するならそれは届け出印だ fact2: あの議員さんはぶっとい fact3: 仮に「その重要財産委員会制度は夏らしくないし加えて忘れ難くない」ということは事実でないならあの議員さんは忘れ難くない fact4: あの議員さんはUHF帯である fact5: あの議員さんは忘れ難くてUHF帯である fact6: もしもなにかはUHF帯であるとすれば「それは夏らしくないし忘れ難いということはない」ということは成り立たない fact7: 「この第一回利払い日・決算日はUHF帯でない」ということは成り立たない fact8: あの議員さんはUHF帯だし加えて引き出し易い fact9: この純米酢は忘れ難い
fact1: (x): {D}x -> {IJ}x fact2: {CO}{a} fact3: ¬(¬{C}{b} & ¬{A}{b}) -> ¬{A}{a} fact4: {B}{a} fact5: ({A}{a} & {B}{a}) fact6: (x): {B}x -> ¬(¬{C}x & ¬{A}x) fact7: {B}{dq} fact8: ({B}{a} & {ED}{a}) fact9: {A}{ac}
[ "fact5 -> hypothesis;" ]
[ "fact5 -> hypothesis;" ]
この専門誌は届け出印であるしその上償却不足額である
({IJ}{fn} & {ER}{fn})
[ "fact10 -> int1: もしもこの専門誌が集成するとしたら届け出印である;" ]
4
1
1
8
0
8
PROVED
UNKNOWN
PROVED
UNKNOWN
$facts$ = fact1: もし何かは集成するならそれは届け出印だ fact2: あの議員さんはぶっとい fact3: 仮に「その重要財産委員会制度は夏らしくないし加えて忘れ難くない」ということは事実でないならあの議員さんは忘れ難くない fact4: あの議員さんはUHF帯である fact5: あの議員さんは忘れ難くてUHF帯である fact6: もしもなにかはUHF帯であるとすれば「それは夏らしくないし忘れ難いということはない」ということは成り立たない fact7: 「この第一回利払い日・決算日はUHF帯でない」ということは成り立たない fact8: あの議員さんはUHF帯だし加えて引き出し易い fact9: この純米酢は忘れ難い ; $hypothesis$ = あの議員さんは忘れ難い ; $proof$ =
fact5 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: もし何かは集成するならそれは届け出印だ 事実2: あの議員さんはぶっとい 事実3: 仮に「その重要財産委員会制度は夏らしくないし加えて忘れ難くない」ということは事実でないならあの議員さんは忘れ難くない 事実4: あの議員さんはUHF帯である 事実5: あの議員さんは忘れ難くてUHF帯である 事実6: もしもなにかはUHF帯であるとすれば「それは夏らしくないし忘れ難いということはない」ということは成り立たない 事実7: 「この第一回利払い日・決算日はUHF帯でない」ということは成り立たない 事実8: あの議員さんはUHF帯だし加えて引き出し易い 事実9: この純米酢は忘れ難い 仮説: あの議員さんは忘れ難い
1. 事実5から、仮説が導かれる よって、仮説が証明されました。
0.3
もし仮に「その陸海軍は弱いかもしくは擦り寄らないかまたはどちらもだ」ということは成り立つということはないとしたらそれは心室性不整脈だ
¬({AA}{aa} v ¬{AB}{aa}) -> {B}{aa}
fact1: 「その陸海軍は心室性不整脈であるかあるいは吝嗇でないかどちらもである」ということは事実と異なるとしたら合併し易い fact2: その陸海軍は弱いかあるいは擦り寄らないかもしくは両方であるならば心室性不整脈だ fact3: もしも「なにがしかのものはシャワー付きであるか調節し易くないかあるいは両方ともである」ということは偽なら「それは社会研究所だ」ということは成り立つ fact4: 仮になんらかのものが弱いか擦り寄らないとすれば「心室性不整脈である」ということは事実だ fact5: 「この官能審査室は弱いかまたは育ち難いということはないかどちらもだ」ということは成り立たないならそれは空費する fact6: 「なんらかのものは弱いかあるいは擦り寄るかあるいは両方ともだ」ということは誤りだとすればそれは心室性不整脈だ fact7: 仮に「その陸海軍は写り込むかまたは悪しということはないかもしくは両方だ」ということは成り立たないとすれば「弱い」ということは本当だ fact8: もし「なにがしかの物は弱いかまたは擦り寄らない」ということは嘘であるとしたらそれは心室性不整脈だ fact9: もし「その陸海軍は弱いかもしくはそれは擦り寄る」ということは成り立たないとしたらそれは心室性不整脈である fact10: もし「あの西洋史学は調節し易いかまたはいとおしくない」ということは間違っているとしたら「貧し」ということは成り立つ
fact1: ¬({B}{aa} v ¬{BR}{aa}) -> {FL}{aa} fact2: ({AA}{aa} v ¬{AB}{aa}) -> {B}{aa} fact3: (x): ¬({HQ}x v ¬{AD}x) -> {IN}x fact4: (x): ({AA}x v ¬{AB}x) -> {B}x fact5: ¬({AA}{at} v ¬{IP}{at}) -> {HF}{at} fact6: (x): ¬({AA}x v {AB}x) -> {B}x fact7: ¬({BJ}{aa} v ¬{GB}{aa}) -> {AA}{aa} fact8: (x): ¬({AA}x v ¬{AB}x) -> {B}x fact9: ¬({AA}{aa} v {AB}{aa}) -> {B}{aa} fact10: ¬({AD}{cd} v ¬{GR}{cd}) -> {EP}{cd}
[ "fact8 -> hypothesis;" ]
[ "fact8 -> hypothesis;" ]
null
null
[]
null
1
1
9
0
9
PROVED
null
PROVED
null
$facts$ = fact1: 「その陸海軍は心室性不整脈であるかあるいは吝嗇でないかどちらもである」ということは事実と異なるとしたら合併し易い fact2: その陸海軍は弱いかあるいは擦り寄らないかもしくは両方であるならば心室性不整脈だ fact3: もしも「なにがしかのものはシャワー付きであるか調節し易くないかあるいは両方ともである」ということは偽なら「それは社会研究所だ」ということは成り立つ fact4: 仮になんらかのものが弱いか擦り寄らないとすれば「心室性不整脈である」ということは事実だ fact5: 「この官能審査室は弱いかまたは育ち難いということはないかどちらもだ」ということは成り立たないならそれは空費する fact6: 「なんらかのものは弱いかあるいは擦り寄るかあるいは両方ともだ」ということは誤りだとすればそれは心室性不整脈だ fact7: 仮に「その陸海軍は写り込むかまたは悪しということはないかもしくは両方だ」ということは成り立たないとすれば「弱い」ということは本当だ fact8: もし「なにがしかの物は弱いかまたは擦り寄らない」ということは嘘であるとしたらそれは心室性不整脈だ fact9: もし「その陸海軍は弱いかもしくはそれは擦り寄る」ということは成り立たないとしたらそれは心室性不整脈である fact10: もし「あの西洋史学は調節し易いかまたはいとおしくない」ということは間違っているとしたら「貧し」ということは成り立つ ; $hypothesis$ = もし仮に「その陸海軍は弱いかもしくは擦り寄らないかまたはどちらもだ」ということは成り立つということはないとしたらそれは心室性不整脈だ ; $proof$ =
fact8 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: 「その陸海軍は心室性不整脈であるかあるいは吝嗇でないかどちらもである」ということは事実と異なるとしたら合併し易い 事実2: その陸海軍は弱いかあるいは擦り寄らないかもしくは両方であるならば心室性不整脈だ 事実3: もしも「なにがしかのものはシャワー付きであるか調節し易くないかあるいは両方ともである」ということは偽なら「それは社会研究所だ」ということは成り立つ 事実4: 仮になんらかのものが弱いか擦り寄らないとすれば「心室性不整脈である」ということは事実だ 事実5: 「この官能審査室は弱いかまたは育ち難いということはないかどちらもだ」ということは成り立たないならそれは空費する 事実6: 「なんらかのものは弱いかあるいは擦り寄るかあるいは両方ともだ」ということは誤りだとすればそれは心室性不整脈だ 事実7: 仮に「その陸海軍は写り込むかまたは悪しということはないかもしくは両方だ」ということは成り立たないとすれば「弱い」ということは本当だ 事実8: もし「なにがしかの物は弱いかまたは擦り寄らない」ということは嘘であるとしたらそれは心室性不整脈だ 事実9: もし「その陸海軍は弱いかもしくはそれは擦り寄る」ということは成り立たないとしたらそれは心室性不整脈である 事実10: もし「あの西洋史学は調節し易いかまたはいとおしくない」ということは間違っているとしたら「貧し」ということは成り立つ 仮説: もし仮に「その陸海軍は弱いかもしくは擦り寄らないかまたはどちらもだ」ということは成り立つということはないとしたらそれは心室性不整脈だ
1. 事実8から、仮説が導かれる よって、仮説が証明されました。
0.3
もしその営林署員が送稿するということはないとしたら予測出来るしチェッカーである
¬{A}{aa} -> ({AA}{aa} & {AB}{aa})
fact1: 「なにかはむずからない」ということは成り立てば仄白いししかも参政だ fact2: もしも何かは送稿しないなら予測出来るしそれはチェッカーである
fact1: (x): ¬{HF}x -> ({CS}x & {HJ}x) fact2: (x): ¬{A}x -> ({AA}x & {AB}x)
[ "fact2 -> hypothesis;" ]
[ "fact2 -> hypothesis;" ]
null
null
[]
null
1
1
1
0
1
PROVED
null
PROVED
null
$facts$ = fact1: 「なにかはむずからない」ということは成り立てば仄白いししかも参政だ fact2: もしも何かは送稿しないなら予測出来るしそれはチェッカーである ; $hypothesis$ = もしその営林署員が送稿するということはないとしたら予測出来るしチェッカーである ; $proof$ =
fact2 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: 「なにかはむずからない」ということは成り立てば仄白いししかも参政だ 事実2: もしも何かは送稿しないなら予測出来るしそれはチェッカーである 仮説: もしその営林署員が送稿するということはないとしたら予測出来るしチェッカーである
1. 事実2から、仮説が導かれる よって、仮説が証明されました。
0.3
このアカウントアビリティーは大騒ぎする
{B}{a}
fact1: このアカウントアビリティーは身分登録官である fact2: このアカウントアビリティーはサイホンでない fact3: このアカウントアビリティーは生き辛い fact4: もし仮になんらかのものは費用構造だとしたら「広しないししかも漏れ無くない」ということは間違いである fact5: もし仮にあの身元調査が書き立てないけれどそれが政治的関係なら萱山入会である fact6: もしこのアカウントアビリティーはサイホンでないが十七世紀中頃であるならそれは捻る fact7: この粒子速度は大騒ぎしない一方で探し易い fact8: もしとある物が広しとしたら大騒ぎする fact9: もしもこのアカウントアビリティーがサイホンだし更に書き立てるならそれは大騒ぎする fact10: その乾燥過程はびびらないが黙り続ける fact11: もし仮にこのアカウントアビリティーはインポイントであるということはない一方で逸らすなら「サイホンである」ということは本当だ fact12: もしこのアカウントアビリティーはサイホンであるということはないが書き立てるとすれば大騒ぎする fact13: その永久磁石は書き立てる fact14: このアカウントアビリティーはサイホンでないけれど書き立てる fact15: このアカウントアビリティーは自覚すということはないが経由する
fact1: {ER}{a} fact2: ¬{AA}{a} fact3: {JA}{a} fact4: (x): {C}x -> ¬(¬{A}x & ¬{D}x) fact5: (¬{AB}{hf} & {HN}{hf}) -> {DE}{hf} fact6: (¬{AA}{a} & {BF}{a}) -> {EH}{a} fact7: (¬{B}{dm} & {GP}{dm}) fact8: (x): {A}x -> {B}x fact9: ({AA}{a} & {AB}{a}) -> {B}{a} fact10: (¬{GB}{ft} & {EC}{ft}) fact11: (¬{CE}{a} & {GO}{a}) -> {AA}{a} fact12: (¬{AA}{a} & {AB}{a}) -> {B}{a} fact13: {AB}{bb} fact14: (¬{AA}{a} & {AB}{a}) fact15: (¬{FK}{a} & {EA}{a})
[ "fact12 & fact14 -> hypothesis;" ]
[ "fact12 & fact14 -> hypothesis;" ]
その御塚ちゃんは大騒ぎする
{B}{gc}
[ "fact16 -> int1: もしその御塚ちゃんは広しならば「それは大騒ぎする」ということは成り立つ; fact17 -> int2: 仮にこのアカウントアビリティーは費用構造であるならば「それは広しないし加えて漏れ無くない」ということは成り立つということはない;" ]
5
1
1
13
0
13
PROVED
UNKNOWN
PROVED
UNKNOWN
$facts$ = fact1: このアカウントアビリティーは身分登録官である fact2: このアカウントアビリティーはサイホンでない fact3: このアカウントアビリティーは生き辛い fact4: もし仮になんらかのものは費用構造だとしたら「広しないししかも漏れ無くない」ということは間違いである fact5: もし仮にあの身元調査が書き立てないけれどそれが政治的関係なら萱山入会である fact6: もしこのアカウントアビリティーはサイホンでないが十七世紀中頃であるならそれは捻る fact7: この粒子速度は大騒ぎしない一方で探し易い fact8: もしとある物が広しとしたら大騒ぎする fact9: もしもこのアカウントアビリティーがサイホンだし更に書き立てるならそれは大騒ぎする fact10: その乾燥過程はびびらないが黙り続ける fact11: もし仮にこのアカウントアビリティーはインポイントであるということはない一方で逸らすなら「サイホンである」ということは本当だ fact12: もしこのアカウントアビリティーはサイホンであるということはないが書き立てるとすれば大騒ぎする fact13: その永久磁石は書き立てる fact14: このアカウントアビリティーはサイホンでないけれど書き立てる fact15: このアカウントアビリティーは自覚すということはないが経由する ; $hypothesis$ = このアカウントアビリティーは大騒ぎする ; $proof$ =
fact12 & fact14 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: このアカウントアビリティーは身分登録官である 事実2: このアカウントアビリティーはサイホンでない 事実3: このアカウントアビリティーは生き辛い 事実4: もし仮になんらかのものは費用構造だとしたら「広しないししかも漏れ無くない」ということは間違いである 事実5: もし仮にあの身元調査が書き立てないけれどそれが政治的関係なら萱山入会である 事実6: もしこのアカウントアビリティーはサイホンでないが十七世紀中頃であるならそれは捻る 事実7: この粒子速度は大騒ぎしない一方で探し易い 事実8: もしとある物が広しとしたら大騒ぎする 事実9: もしもこのアカウントアビリティーがサイホンだし更に書き立てるならそれは大騒ぎする 事実10: その乾燥過程はびびらないが黙り続ける 事実11: もし仮にこのアカウントアビリティーはインポイントであるということはない一方で逸らすなら「サイホンである」ということは本当だ 事実12: もしこのアカウントアビリティーはサイホンであるということはないが書き立てるとすれば大騒ぎする 事実13: その永久磁石は書き立てる 事実14: このアカウントアビリティーはサイホンでないけれど書き立てる 事実15: このアカウントアビリティーは自覚すということはないが経由する 仮説: このアカウントアビリティーは大騒ぎする
1. 事実12と事実14から、仮説が導かれる よって、仮説が証明されました。
0.3
その三界は煮え繰り返らない
¬{B}{a}
fact1: その三界は覚え直す fact2: その三界はA・Jだ fact3: 仮にその三界はA・Jであるならば煮え繰り返る fact4: もし仮になにがしかのものが煮え繰り返る一方で入れ難くないとしたらそれはA・Jだ fact5: もし仮にあの青年部長は甘ーくないとすれば「そのビタミンK依存性蛋白質はA・Jだし加えて入れ難い」ということは誤っている fact6: その三界は社会問題化する fact7: その税関手続きはA・Jだ fact8: もしその性倒錯者が持て囃すということはないけれど面倒臭いとしたらあの男関係は超過勤務手当てだということはない fact9: もしその三界が反対するとすれば嫌らしい fact10: あの残留応力はA・Jだ fact11: もしもその島民がフーリエ変換するとすると女らしい fact12: すべては持て囃さない fact13: もしあの男関係が超過勤務手当てでないとしたらあの青年部長は甘ーくない
fact1: {AE}{a} fact2: {A}{a} fact3: {A}{a} -> {B}{a} fact4: (x): ({B}x & ¬{C}x) -> {A}x fact5: ¬{D}{c} -> ¬({A}{b} & {C}{b}) fact6: {JC}{a} fact7: {A}{gb} fact8: (¬{F}{e} & {G}{e}) -> ¬{E}{d} fact9: {O}{a} -> {IT}{a} fact10: {A}{ja} fact11: {T}{ei} -> {FN}{ei} fact12: (x): ¬{F}x fact13: ¬{E}{d} -> ¬{D}{c}
[ "fact3 & fact2 -> hypothesis;" ]
[ "fact3 & fact2 -> hypothesis;" ]
この戒・定・恵はA・Jだ
{A}{iu}
[ "fact14 -> int1: この戒・定・恵が煮え繰り返るけれどそれが入れ難くないとすればそれはA・Jだ;" ]
4
1
1
11
0
11
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: その三界は覚え直す fact2: その三界はA・Jだ fact3: 仮にその三界はA・Jであるならば煮え繰り返る fact4: もし仮になにがしかのものが煮え繰り返る一方で入れ難くないとしたらそれはA・Jだ fact5: もし仮にあの青年部長は甘ーくないとすれば「そのビタミンK依存性蛋白質はA・Jだし加えて入れ難い」ということは誤っている fact6: その三界は社会問題化する fact7: その税関手続きはA・Jだ fact8: もしその性倒錯者が持て囃すということはないけれど面倒臭いとしたらあの男関係は超過勤務手当てだということはない fact9: もしその三界が反対するとすれば嫌らしい fact10: あの残留応力はA・Jだ fact11: もしもその島民がフーリエ変換するとすると女らしい fact12: すべては持て囃さない fact13: もしあの男関係が超過勤務手当てでないとしたらあの青年部長は甘ーくない ; $hypothesis$ = その三界は煮え繰り返らない ; $proof$ =
fact3 & fact2 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: その三界は覚え直す 事実2: その三界はA・Jだ 事実3: 仮にその三界はA・Jであるならば煮え繰り返る 事実4: もし仮になにがしかのものが煮え繰り返る一方で入れ難くないとしたらそれはA・Jだ 事実5: もし仮にあの青年部長は甘ーくないとすれば「そのビタミンK依存性蛋白質はA・Jだし加えて入れ難い」ということは誤っている 事実6: その三界は社会問題化する 事実7: その税関手続きはA・Jだ 事実8: もしその性倒錯者が持て囃すということはないけれど面倒臭いとしたらあの男関係は超過勤務手当てだということはない 事実9: もしその三界が反対するとすれば嫌らしい 事実10: あの残留応力はA・Jだ 事実11: もしもその島民がフーリエ変換するとすると女らしい 事実12: すべては持て囃さない 事実13: もしあの男関係が超過勤務手当てでないとしたらあの青年部長は甘ーくない 仮説: その三界は煮え繰り返らない
1. 事実3と事実2から、仮説が否定される よって、仮説が否定されました。
0.3
「その国内単位は省略する」ということは正しい
{B}{a}
fact1: もし仮にあの狼狽え気味が短パン姿でないとするとその国内単位は待機するし省略する fact2: 「そのIRBは弾き易いか捕まえ易い」ということは嘘である fact3: もし仮にあの中枢型が丹毒だということはなくて生活し易いということはないとしたら田舎出であるということはない fact4: その国内単位は認め難いし省略する fact5: この酪農地帯は認め難くてさらに我々司法書士である fact6: その国内単位は代替わりする fact7: その国内単位は認め難い fact8: 仮にその国内単位が待機するならあのボックス馬券は待機する fact9: 「あるものは認め難いし省略する」ということは誤っているとしたらそれは省略しない fact10: あの中枢型は丹毒でないし生活し易くない fact11: もしも何らかのものは田舎出であるということはないとしたら捕まえ易くない fact12: もしも「捕まえ易いということはない」物はあるとすると「あの狼狽え気味は短パン姿であるし弾き易い」ということは偽でない fact13: その国内単位は負ぶう fact14: あのシナリオライターは省略する fact15: その国内単位は際どくてさらに送り返す fact16: その国内単位はドロップアウトする fact17: その鑑識課は省略する
fact1: ¬{C}{b} -> ({GL}{a} & {B}{a}) fact2: ¬({D}{d} v {E}{d}) fact3: (¬{H}{c} & ¬{G}{c}) -> ¬{F}{c} fact4: ({A}{a} & {B}{a}) fact5: ({A}{as} & {GJ}{as}) fact6: {IC}{a} fact7: {A}{a} fact8: {GL}{a} -> {GL}{ds} fact9: (x): ¬({A}x & {B}x) -> ¬{B}x fact10: (¬{H}{c} & ¬{G}{c}) fact11: (x): ¬{F}x -> ¬{E}x fact12: (x): ¬{E}x -> ({C}{b} & {D}{b}) fact13: {L}{a} fact14: {B}{br} fact15: ({AC}{a} & {CD}{a}) fact16: {IL}{a} fact17: {B}{jh}
[ "fact4 -> hypothesis;" ]
[ "fact4 -> hypothesis;" ]
あのボックス馬券は待機するしまた堪り易い
({GL}{ds} & {BL}{ds})
[ "fact18 -> int1: 「「弾き易いかまたは捕まえ易いかまたは両方ともである」ということは確かでない」物はある;" ]
6
1
1
16
0
16
PROVED
UNKNOWN
PROVED
UNKNOWN
$facts$ = fact1: もし仮にあの狼狽え気味が短パン姿でないとするとその国内単位は待機するし省略する fact2: 「そのIRBは弾き易いか捕まえ易い」ということは嘘である fact3: もし仮にあの中枢型が丹毒だということはなくて生活し易いということはないとしたら田舎出であるということはない fact4: その国内単位は認め難いし省略する fact5: この酪農地帯は認め難くてさらに我々司法書士である fact6: その国内単位は代替わりする fact7: その国内単位は認め難い fact8: 仮にその国内単位が待機するならあのボックス馬券は待機する fact9: 「あるものは認め難いし省略する」ということは誤っているとしたらそれは省略しない fact10: あの中枢型は丹毒でないし生活し易くない fact11: もしも何らかのものは田舎出であるということはないとしたら捕まえ易くない fact12: もしも「捕まえ易いということはない」物はあるとすると「あの狼狽え気味は短パン姿であるし弾き易い」ということは偽でない fact13: その国内単位は負ぶう fact14: あのシナリオライターは省略する fact15: その国内単位は際どくてさらに送り返す fact16: その国内単位はドロップアウトする fact17: その鑑識課は省略する ; $hypothesis$ = 「その国内単位は省略する」ということは正しい ; $proof$ =
fact4 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: もし仮にあの狼狽え気味が短パン姿でないとするとその国内単位は待機するし省略する 事実2: 「そのIRBは弾き易いか捕まえ易い」ということは嘘である 事実3: もし仮にあの中枢型が丹毒だということはなくて生活し易いということはないとしたら田舎出であるということはない 事実4: その国内単位は認め難いし省略する 事実5: この酪農地帯は認め難くてさらに我々司法書士である 事実6: その国内単位は代替わりする 事実7: その国内単位は認め難い 事実8: 仮にその国内単位が待機するならあのボックス馬券は待機する 事実9: 「あるものは認め難いし省略する」ということは誤っているとしたらそれは省略しない 事実10: あの中枢型は丹毒でないし生活し易くない 事実11: もしも何らかのものは田舎出であるということはないとしたら捕まえ易くない 事実12: もしも「捕まえ易いということはない」物はあるとすると「あの狼狽え気味は短パン姿であるし弾き易い」ということは偽でない 事実13: その国内単位は負ぶう 事実14: あのシナリオライターは省略する 事実15: その国内単位は際どくてさらに送り返す 事実16: その国内単位はドロップアウトする 事実17: その鑑識課は省略する 仮説: 「その国内単位は省略する」ということは正しい
1. 事実4から、仮説が導かれる よって、仮説が証明されました。
0.3
「「もし女っぽいなら監視し易くない」ものはある」ということは間違いである
¬((Ex): {A}x -> ¬{C}x)
fact1: 「寒しとすれば心地良くない」物はある fact2: 仮にあの発生頻度が運び易いならば恥骨でない fact3: 「もし仮に拭き切れるとすれば晴々しかない」物はある fact4: もし仮に何らかの物はサービスSであるとするとそれは軽しない fact5: 「仮に起こし易いとすると帰神でない」ものはある fact6: 仮にあの発生頻度が都市化するとすればそれは女っぽくない fact7: もしも「あの発生頻度は嵌まる」ということは本当だとすると御強いということはない fact8: 「仮に流行し始めるとしたら軽しない」物はある fact9: その保全命令が女っぽいならそれは変わり易いということはない fact10: もしもあの発生頻度が監視し易いとするとそれは研ぎ澄まさない fact11: もし仮にあの発生頻度はサービスSであるならば献金しない fact12: 「ソテーすれば売り難くない」物はある fact13: 「もし仮に心地良いならば挟撃しない」物はある fact14: 「仮に女っぽいとすれば監視し易い」物はある fact15: もし「あの発生頻度は女っぽい」ということは確かならばそれは監視し易いということはない fact16: もし仮にあの発生頻度が女っぽいとすればそれは監視し易い
fact1: (Ex): {ED}x -> ¬{FI}x fact2: {EC}{aa} -> ¬{M}{aa} fact3: (Ex): {HE}x -> ¬{DN}x fact4: (x): {AU}x -> ¬{GH}x fact5: (Ex): {EG}x -> ¬{IJ}x fact6: {AI}{aa} -> ¬{A}{aa} fact7: {DM}{aa} -> ¬{FA}{aa} fact8: (Ex): {BH}x -> ¬{GH}x fact9: {A}{am} -> ¬{GC}{am} fact10: {C}{aa} -> ¬{FT}{aa} fact11: {AU}{aa} -> ¬{BI}{aa} fact12: (Ex): {AA}x -> ¬{FK}x fact13: (Ex): {FI}x -> ¬{B}x fact14: (Ex): {A}x -> {C}x fact15: {A}{aa} -> ¬{C}{aa} fact16: {A}{aa} -> {C}{aa}
[ "fact15 -> hypothesis;" ]
[ "fact15 -> hypothesis;" ]
もしもその女学生達はサービスSであるならばそれは軽しない
{AU}{ff} -> ¬{GH}{ff}
[ "fact17 -> hypothesis;" ]
1
1
1
15
0
15
DISPROVED
PROVED
DISPROVED
PROVED
$facts$ = fact1: 「寒しとすれば心地良くない」物はある fact2: 仮にあの発生頻度が運び易いならば恥骨でない fact3: 「もし仮に拭き切れるとすれば晴々しかない」物はある fact4: もし仮に何らかの物はサービスSであるとするとそれは軽しない fact5: 「仮に起こし易いとすると帰神でない」ものはある fact6: 仮にあの発生頻度が都市化するとすればそれは女っぽくない fact7: もしも「あの発生頻度は嵌まる」ということは本当だとすると御強いということはない fact8: 「仮に流行し始めるとしたら軽しない」物はある fact9: その保全命令が女っぽいならそれは変わり易いということはない fact10: もしもあの発生頻度が監視し易いとするとそれは研ぎ澄まさない fact11: もし仮にあの発生頻度はサービスSであるならば献金しない fact12: 「ソテーすれば売り難くない」物はある fact13: 「もし仮に心地良いならば挟撃しない」物はある fact14: 「仮に女っぽいとすれば監視し易い」物はある fact15: もし「あの発生頻度は女っぽい」ということは確かならばそれは監視し易いということはない fact16: もし仮にあの発生頻度が女っぽいとすればそれは監視し易い ; $hypothesis$ = 「「もし女っぽいなら監視し易くない」ものはある」ということは間違いである ; $proof$ =
fact15 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: 「寒しとすれば心地良くない」物はある 事実2: 仮にあの発生頻度が運び易いならば恥骨でない 事実3: 「もし仮に拭き切れるとすれば晴々しかない」物はある 事実4: もし仮に何らかの物はサービスSであるとするとそれは軽しない 事実5: 「仮に起こし易いとすると帰神でない」ものはある 事実6: 仮にあの発生頻度が都市化するとすればそれは女っぽくない 事実7: もしも「あの発生頻度は嵌まる」ということは本当だとすると御強いということはない 事実8: 「仮に流行し始めるとしたら軽しない」物はある 事実9: その保全命令が女っぽいならそれは変わり易いということはない 事実10: もしもあの発生頻度が監視し易いとするとそれは研ぎ澄まさない 事実11: もし仮にあの発生頻度はサービスSであるならば献金しない 事実12: 「ソテーすれば売り難くない」物はある 事実13: 「もし仮に心地良いならば挟撃しない」物はある 事実14: 「仮に女っぽいとすれば監視し易い」物はある 事実15: もし「あの発生頻度は女っぽい」ということは確かならばそれは監視し易いということはない 事実16: もし仮にあの発生頻度が女っぽいとすればそれは監視し易い 仮説: 「「もし女っぽいなら監視し易くない」ものはある」ということは間違いである
1. 事実15から、仮説が否定される よって、仮説が否定されました。
0.3
その客人達はペダルであるけれど打ち終えない
({A}{a} & ¬{B}{a})
fact1: もし「なんらかのものは説明し難いけれどペダルでない」ということは成り立たないならばそれはペダルである fact2: 「その客人達はペダルだ」ということは確かだ fact3: その客人達は打ち終えない
fact1: (x): ¬({C}x & ¬{A}x) -> {A}x fact2: {A}{a} fact3: ¬{B}{a}
[ "fact2 & fact3 -> hypothesis;" ]
[ "fact2 & fact3 -> hypothesis;" ]
あの装備はペダルだ
{A}{gp}
[ "fact4 -> int1: もし「あの装備は説明し難いけれどペダルでない」ということは成り立たないならそれはペダルだ;" ]
4
1
1
1
0
1
PROVED
UNKNOWN
PROVED
UNKNOWN
$facts$ = fact1: もし「なんらかのものは説明し難いけれどペダルでない」ということは成り立たないならばそれはペダルである fact2: 「その客人達はペダルだ」ということは確かだ fact3: その客人達は打ち終えない ; $hypothesis$ = その客人達はペダルであるけれど打ち終えない ; $proof$ =
fact2 & fact3 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: もし「なんらかのものは説明し難いけれどペダルでない」ということは成り立たないならばそれはペダルである 事実2: 「その客人達はペダルだ」ということは確かだ 事実3: その客人達は打ち終えない 仮説: その客人達はペダルであるけれど打ち終えない
1. 事実2と事実3から、仮説が導かれる よって、仮説が証明されました。
0.3
「その被保全権利は私らしい」ということは真実である
{C}{a}
fact1: あの用紙は私らしくない fact2: なにかは挟み込む fact3: もしなんらかの物がに因って来る一方で非常事態宣言でないならばそれは挟み込まない fact4: もし仮にあの研究文献は非常事態宣言だということはないとすれば「その消費者ニーズはに因って来るし更に乏しい」ということは真実でない fact5: その長岡大手高校はアナウンスしない一方で開隊する fact6: 「アナウンスしない」ものはある fact7: 乏しいものはに因って来るが非常事態宣言でない fact8: もしも何かはに因って来ないとすればそれは挟み込むしかつアナウンスする fact9: 「アナウンスしないけれど挟み込む」物はある fact10: なんらかの物はアナウンスするし挟み込む fact11: なにかはアナウンスしなくて加えて挟み込まないとすると私らしくない fact12: 「その消費者ニーズはに因って来るしそれは乏しい」ということは事実と異なるならそのアウトサイドはに因って来ない fact13: 仮に「アナウンスしないけれど挟み込む」物があるならばあの被保全権利は私らしくない fact14: もし「なにかは非常事態宣言だしまた開隊する」ということは成り立たないとしたらそれは非常事態宣言でない fact15: そのアウトサイドがアナウンスするならその被保全権利は私らしい fact16: 「なにがしかのものは入会金でないがセールス活動だ」ということは成り立つ
fact1: ¬{C}{bg} fact2: (Ex): {B}x fact3: (x): ({D}x & ¬{E}x) -> ¬{B}x fact4: ¬{E}{d} -> ¬({D}{c} & {F}{c}) fact5: (¬{A}{bc} & {G}{bc}) fact6: (Ex): ¬{A}x fact7: (x): {F}x -> ({D}x & ¬{E}x) fact8: (x): ¬{D}x -> ({B}x & {A}x) fact9: (Ex): (¬{A}x & {B}x) fact10: (Ex): ({A}x & {B}x) fact11: (x): (¬{A}x & ¬{B}x) -> ¬{C}x fact12: ¬({D}{c} & {F}{c}) -> ¬{D}{b} fact13: (x): (¬{A}x & {B}x) -> ¬{C}{a} fact14: (x): ¬({E}x & {G}x) -> ¬{E}x fact15: {A}{b} -> {C}{a} fact16: (Ex): (¬{DD}x & {BF}x)
[ "fact9 & fact13 -> hypothesis;" ]
[ "fact9 & fact13 -> hypothesis;" ]
「その被保全権利は私らしい」ということは真実だ
{C}{a}
[ "fact21 -> int1: 仮にそのアウトサイドはに因って来ないなら挟み込むしさらにアナウンスする; fact18 -> int2: もし「あの研究文献は非常事態宣言であるしそれは開隊する」ということは間違っているならそれは非常事態宣言でない;" ]
8
1
1
14
0
14
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: あの用紙は私らしくない fact2: なにかは挟み込む fact3: もしなんらかの物がに因って来る一方で非常事態宣言でないならばそれは挟み込まない fact4: もし仮にあの研究文献は非常事態宣言だということはないとすれば「その消費者ニーズはに因って来るし更に乏しい」ということは真実でない fact5: その長岡大手高校はアナウンスしない一方で開隊する fact6: 「アナウンスしない」ものはある fact7: 乏しいものはに因って来るが非常事態宣言でない fact8: もしも何かはに因って来ないとすればそれは挟み込むしかつアナウンスする fact9: 「アナウンスしないけれど挟み込む」物はある fact10: なんらかの物はアナウンスするし挟み込む fact11: なにかはアナウンスしなくて加えて挟み込まないとすると私らしくない fact12: 「その消費者ニーズはに因って来るしそれは乏しい」ということは事実と異なるならそのアウトサイドはに因って来ない fact13: 仮に「アナウンスしないけれど挟み込む」物があるならばあの被保全権利は私らしくない fact14: もし「なにかは非常事態宣言だしまた開隊する」ということは成り立たないとしたらそれは非常事態宣言でない fact15: そのアウトサイドがアナウンスするならその被保全権利は私らしい fact16: 「なにがしかのものは入会金でないがセールス活動だ」ということは成り立つ ; $hypothesis$ = 「その被保全権利は私らしい」ということは真実である ; $proof$ =
fact9 & fact13 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: あの用紙は私らしくない 事実2: なにかは挟み込む 事実3: もしなんらかの物がに因って来る一方で非常事態宣言でないならばそれは挟み込まない 事実4: もし仮にあの研究文献は非常事態宣言だということはないとすれば「その消費者ニーズはに因って来るし更に乏しい」ということは真実でない 事実5: その長岡大手高校はアナウンスしない一方で開隊する 事実6: 「アナウンスしない」ものはある 事実7: 乏しいものはに因って来るが非常事態宣言でない 事実8: もしも何かはに因って来ないとすればそれは挟み込むしかつアナウンスする 事実9: 「アナウンスしないけれど挟み込む」物はある 事実10: なんらかの物はアナウンスするし挟み込む 事実11: なにかはアナウンスしなくて加えて挟み込まないとすると私らしくない 事実12: 「その消費者ニーズはに因って来るしそれは乏しい」ということは事実と異なるならそのアウトサイドはに因って来ない 事実13: 仮に「アナウンスしないけれど挟み込む」物があるならばあの被保全権利は私らしくない 事実14: もし「なにかは非常事態宣言だしまた開隊する」ということは成り立たないとしたらそれは非常事態宣言でない 事実15: そのアウトサイドがアナウンスするならその被保全権利は私らしい 事実16: 「なにがしかのものは入会金でないがセールス活動だ」ということは成り立つ 仮説: 「その被保全権利は私らしい」ということは真実である
1. 事実9と事実13から、仮説が否定される よって、仮説が否定されました。
0.3
あの視野検査は青臭くない
¬{A}{a}
fact1: あの視野検査は上がり仕舞いだ fact2: あの視野検査は恐怖する fact3: あの貢ぎ物は青臭い fact4: あの視野検査は発揮し易い fact5: あの視野検査は納得し難い fact6: あの視野検査はつれない fact7: 仮になにがしかのものが記載でないならそれは青臭いしさらにそれは安っぽい fact8: この国内生産者は青臭い fact9: 「この設計内容は青臭い」ということは成り立つ fact10: あの評議員会は青臭い fact11: あの視野検査は吹かす fact12: 「あの視野検査は依存出来る」ということは本当である fact13: この年賀状ソフトは青臭い fact14: この日本画家は青臭い fact15: あの視野検査は背馳する fact16: あの視野検査はすーごい fact17: この国観光ホテルは青臭い fact18: 「その楼閣式は青臭い」ということは真実である fact19: あの視野検査は青臭い fact20: この変成は青臭い
fact1: {ET}{a} fact2: {FI}{a} fact3: {A}{gi} fact4: {L}{a} fact5: {EQ}{a} fact6: {BS}{a} fact7: (x): ¬{C}x -> ({A}x & {B}x) fact8: {A}{ig} fact9: {A}{hn} fact10: {A}{ij} fact11: {GL}{a} fact12: {GR}{a} fact13: {A}{ak} fact14: {A}{k} fact15: {E}{a} fact16: {GD}{a} fact17: {A}{gb} fact18: {A}{cj} fact19: {A}{a} fact20: {A}{et}
[ "fact19 -> hypothesis;" ]
[ "fact19 -> hypothesis;" ]
あの狭心は青臭い
{A}{i}
[ "fact21 -> int1: 仮にあの狭心が記載でないとすると青臭くて加えてそれは安っぽい;" ]
5
1
0
19
0
19
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: あの視野検査は上がり仕舞いだ fact2: あの視野検査は恐怖する fact3: あの貢ぎ物は青臭い fact4: あの視野検査は発揮し易い fact5: あの視野検査は納得し難い fact6: あの視野検査はつれない fact7: 仮になにがしかのものが記載でないならそれは青臭いしさらにそれは安っぽい fact8: この国内生産者は青臭い fact9: 「この設計内容は青臭い」ということは成り立つ fact10: あの評議員会は青臭い fact11: あの視野検査は吹かす fact12: 「あの視野検査は依存出来る」ということは本当である fact13: この年賀状ソフトは青臭い fact14: この日本画家は青臭い fact15: あの視野検査は背馳する fact16: あの視野検査はすーごい fact17: この国観光ホテルは青臭い fact18: 「その楼閣式は青臭い」ということは真実である fact19: あの視野検査は青臭い fact20: この変成は青臭い ; $hypothesis$ = あの視野検査は青臭くない ; $proof$ =
fact19 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: あの視野検査は上がり仕舞いだ 事実2: あの視野検査は恐怖する 事実3: あの貢ぎ物は青臭い 事実4: あの視野検査は発揮し易い 事実5: あの視野検査は納得し難い 事実6: あの視野検査はつれない 事実7: 仮になにがしかのものが記載でないならそれは青臭いしさらにそれは安っぽい 事実8: この国内生産者は青臭い 事実9: 「この設計内容は青臭い」ということは成り立つ 事実10: あの評議員会は青臭い 事実11: あの視野検査は吹かす 事実12: 「あの視野検査は依存出来る」ということは本当である 事実13: この年賀状ソフトは青臭い 事実14: この日本画家は青臭い 事実15: あの視野検査は背馳する 事実16: あの視野検査はすーごい 事実17: この国観光ホテルは青臭い 事実18: 「その楼閣式は青臭い」ということは真実である 事実19: あの視野検査は青臭い 事実20: この変成は青臭い 仮説: あの視野検査は青臭くない
1. 事実19から、仮説が否定される よって、仮説が否定されました。
0.3
「その限局性はシャボン玉でそれに接近出来る」ということは真実だ
({B}{a} & {C}{a})
fact1: もし仮に「あの統一地方選はみみっちくない」ということは真実ならば「その限局性はシャボン玉だししかも接近出来る」ということは成り立たない fact2: その限局性はゲームセンターである fact3: もしも「何らかのものはシャボン玉でない」ということは真実だとすればその限局性は接近出来る fact4: もしも「「誤り無くない」ということは確かである」物があるならばあの限局性がシャボン玉だしそれに告げ口する fact5: 「あの聾学校はゲット出来ない」ということは成り立つ fact6: ある物がゲット出来ないとしたらそれは生々しくておまけに浮き世離れする fact7: 仮にあの聾学校がゲット出来ないかもしくは厚板だということはないかあるいは両方ともであるならその飛鳥時代はゲット出来ない fact8: もし仮に「その限局性はみみっちくない」ということは確かならばタン塩だし残念がる fact9: 「回避義務でない」ものはある fact10: 「あのトルコ系が関連機関だけど巡らさない」ということは間違いである fact11: 「その限局性は接近出来る」ということは本当である fact12: みみっちくない物はある fact13: もしもあるものがみみっちいということはないとするとその限局性はシャボン玉であるしさらにそれは接近出来る fact14: もしも「なんらかの物は接近出来るけれどシャボン玉でない」ということは成り立たないなら「それはみみっちいということはない」ということは成り立つ fact15: 仮に生々しいものは関連機関でないなら「揺るぎないということはない」ということは成り立つ fact16: もし「「大言語でない」ということは成り立つ」物があるならその限局性は堪え難いし更にそれは押し易い fact17: その飛鳥時代が揺るぎなくないとしたらあの統一地方選はみみっちくないけれど丸い
fact1: ¬{A}{b} -> ¬({B}{a} & {C}{a}) fact2: {IN}{a} fact3: (x): ¬{B}x -> {C}{a} fact4: (x): ¬{HK}x -> ({B}{a} & {EL}{a}) fact5: ¬{I}{d} fact6: (x): ¬{I}x -> ({G}x & {H}x) fact7: (¬{I}{d} v ¬{K}{d}) -> ¬{I}{c} fact8: ¬{A}{a} -> ({EA}{a} & {JB}{a}) fact9: (Ex): ¬{JA}x fact10: ¬({F}{e} & ¬{J}{e}) fact11: {C}{a} fact12: (Ex): ¬{A}x fact13: (x): ¬{A}x -> ({B}{a} & {C}{a}) fact14: (x): ¬({C}x & ¬{B}x) -> ¬{A}x fact15: (x): ({G}x & ¬{F}x) -> ¬{E}x fact16: (x): ¬{DH}x -> ({M}{a} & {BJ}{a}) fact17: ¬{E}{c} -> (¬{A}{b} & {D}{b})
[ "fact12 & fact13 -> hypothesis;" ]
[ "fact12 & fact13 -> hypothesis;" ]
その限局性がタン塩だしそれは残念がる
({EA}{a} & {JB}{a})
[ "fact18 -> int1: 仮に「その限局性は接近出来るがシャボン玉でない」ということは成り立つということはないとしたらみみっちいということはない;" ]
5
1
1
15
0
15
PROVED
UNKNOWN
PROVED
UNKNOWN
$facts$ = fact1: もし仮に「あの統一地方選はみみっちくない」ということは真実ならば「その限局性はシャボン玉だししかも接近出来る」ということは成り立たない fact2: その限局性はゲームセンターである fact3: もしも「何らかのものはシャボン玉でない」ということは真実だとすればその限局性は接近出来る fact4: もしも「「誤り無くない」ということは確かである」物があるならばあの限局性がシャボン玉だしそれに告げ口する fact5: 「あの聾学校はゲット出来ない」ということは成り立つ fact6: ある物がゲット出来ないとしたらそれは生々しくておまけに浮き世離れする fact7: 仮にあの聾学校がゲット出来ないかもしくは厚板だということはないかあるいは両方ともであるならその飛鳥時代はゲット出来ない fact8: もし仮に「その限局性はみみっちくない」ということは確かならばタン塩だし残念がる fact9: 「回避義務でない」ものはある fact10: 「あのトルコ系が関連機関だけど巡らさない」ということは間違いである fact11: 「その限局性は接近出来る」ということは本当である fact12: みみっちくない物はある fact13: もしもあるものがみみっちいということはないとするとその限局性はシャボン玉であるしさらにそれは接近出来る fact14: もしも「なんらかの物は接近出来るけれどシャボン玉でない」ということは成り立たないなら「それはみみっちいということはない」ということは成り立つ fact15: 仮に生々しいものは関連機関でないなら「揺るぎないということはない」ということは成り立つ fact16: もし「「大言語でない」ということは成り立つ」物があるならその限局性は堪え難いし更にそれは押し易い fact17: その飛鳥時代が揺るぎなくないとしたらあの統一地方選はみみっちくないけれど丸い ; $hypothesis$ = 「その限局性はシャボン玉でそれに接近出来る」ということは真実だ ; $proof$ =
fact12 & fact13 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: もし仮に「あの統一地方選はみみっちくない」ということは真実ならば「その限局性はシャボン玉だししかも接近出来る」ということは成り立たない 事実2: その限局性はゲームセンターである 事実3: もしも「何らかのものはシャボン玉でない」ということは真実だとすればその限局性は接近出来る 事実4: もしも「「誤り無くない」ということは確かである」物があるならばあの限局性がシャボン玉だしそれに告げ口する 事実5: 「あの聾学校はゲット出来ない」ということは成り立つ 事実6: ある物がゲット出来ないとしたらそれは生々しくておまけに浮き世離れする 事実7: 仮にあの聾学校がゲット出来ないかもしくは厚板だということはないかあるいは両方ともであるならその飛鳥時代はゲット出来ない 事実8: もし仮に「その限局性はみみっちくない」ということは確かならばタン塩だし残念がる 事実9: 「回避義務でない」ものはある 事実10: 「あのトルコ系が関連機関だけど巡らさない」ということは間違いである 事実11: 「その限局性は接近出来る」ということは本当である 事実12: みみっちくない物はある 事実13: もしもあるものがみみっちいということはないとするとその限局性はシャボン玉であるしさらにそれは接近出来る 事実14: もしも「なんらかの物は接近出来るけれどシャボン玉でない」ということは成り立たないなら「それはみみっちいということはない」ということは成り立つ 事実15: 仮に生々しいものは関連機関でないなら「揺るぎないということはない」ということは成り立つ 事実16: もし「「大言語でない」ということは成り立つ」物があるならその限局性は堪え難いし更にそれは押し易い 事実17: その飛鳥時代が揺るぎなくないとしたらあの統一地方選はみみっちくないけれど丸い 仮説: 「その限局性はシャボン玉でそれに接近出来る」ということは真実だ
1. 事実12と事実13から、仮説が導かれる よって、仮説が証明されました。
0.3
このフィーリングは約四十万人だ
{A}{a}
fact1: もしも何らかの物がどたばたするとすれば御任せない fact2: 「そのレタスはまあるくない一方で頤だ」ということは成り立たないとすればあのAUSFは混迷しない fact3: もし仮にとある物は僻みっぽいなら「まあるくないしおまけにそれは頤だ」ということは成り立たない fact4: 「もし仮にこのフィーリングは御任せないとすると「そのミルククリームは星図でない一方で苦々しい」ということは偽である」ということは事実だ fact5: もし仮にある物は支援すとしたら「極まり悪くてさらにそれは錆無くない」ということは嘘だ fact6: もし仮にあのAUSFがTHワンであるしまた生じ難いとしたらあの継続開示はTHワンでない fact7: もし「なにかは星図でないがしかし苦々しい」ということは誤りだとすると「約四十万人でない」ということは成り立つ fact8: あのジャンパースカートは回りくどい fact9: 「この飯屋さんは錆無くなくておまけに極まり悪くない」ということは事実と異なるとするとあのジャンパースカートはどたばたしない fact10: 好もしいかすげなくないかどちらもな物は回りくどくない fact11: もし仮にあるものが混迷しないとしたらTHワンで生じ難い fact12: 仮にあのジャンパースカートがどたばたしないとするとあの其処等辺は御任せない fact13: もし仮にこのテレビ制作者が苦々しいとするとこのフィーリングは約四十万人だ fact14: もし仮にあの其処等辺が御任せないとすればあのテレビ制作者は苦々しくておまけに星図だ fact15: もし「このKG/DAYは遣り易くないしかつ支援すらない」ということは成り立つということはないとすればあの饂飩粉病は支援すらない fact16: そのレタスは僻みっぽい fact17: 仮にあの其処等辺が支援すらないとすればこのテレビ制作者は支援す fact18: もしもあの饂飩粉病は支援すらないなら「「この飯屋さんは錆無くなくてしかも極まり悪くない」ということは事実と異なる」ということは正しい fact19: もしもその使用資格は回りくどくないとすれば「このKG/DAYが遣り易くないしさらにそれは支援すらない」ということは偽である fact20: もし「このテレビ制作者は極まり悪いがしかし錆無くない」ということは真実でないとするとこのフィーリングはどたばたする fact21: 「このフィーリングは約四十万人でない」ということは成り立つ
fact1: (x): {E}x -> ¬{D}x fact2: ¬(¬{Q}{k} & {P}{k}) -> ¬{N}{j} fact3: (x): {R}x -> ¬(¬{Q}x & {P}x) fact4: ¬{D}{a} -> ¬(¬{C}{gm} & {B}{gm}) fact5: (x): {H}x -> ¬({F}x & ¬{G}x) fact6: ({M}{j} & {O}{j}) -> ¬{M}{i} fact7: (x): ¬(¬{C}x & {B}x) -> ¬{A}x fact8: {J}{d} fact9: ¬(¬{G}{e} & ¬{F}{e}) -> ¬{E}{d} fact10: (x): ({L}x v ¬{K}x) -> ¬{J}x fact11: (x): ¬{N}x -> ({M}x & {O}x) fact12: ¬{E}{d} -> ¬{D}{c} fact13: {B}{b} -> {A}{a} fact14: ¬{D}{c} -> ({B}{b} & {C}{b}) fact15: ¬(¬{I}{g} & ¬{H}{g}) -> ¬{H}{f} fact16: {R}{k} fact17: ¬{H}{c} -> {H}{b} fact18: ¬{H}{f} -> ¬(¬{G}{e} & ¬{F}{e}) fact19: ¬{J}{h} -> ¬(¬{I}{g} & ¬{H}{g}) fact20: ¬({F}{b} & ¬{G}{b}) -> {E}{a} fact21: ¬{A}{a}
[ "fact21 -> hypothesis;" ]
[ "fact21 -> hypothesis;" ]
このフィーリングは約四十万人だ
{A}{a}
[ "fact28 -> int1: その使用資格は好もしいかまたはすげなくないかあるいは両方ともであるとしたら回りくどくない; fact33 -> int2: もし「あのAUSFは混迷しない」ということは本当ならTHワンであるし更に生じ難い; fact25 -> int3: もし仮にそのレタスは僻みっぽいとすると「まあるかない一方で頤だ」ということは成り立たない; int3 & fact27 -> int4: 「そのレタスはまあるくないけれどそれは頤である」ということは成り立たない; fact32 & int4 -> int5: 「あのAUSFは混迷するということはない」ということは成り立つ; int2 & int5 -> int6: あのAUSFがTHワンだし生じ難い; fact24 & int6 -> int7: 「あの継続開示はTHワンでない」ということは事実だ; int7 -> int8: 「THワンでない」ものはある;" ]
16
1
0
20
0
20
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: もしも何らかの物がどたばたするとすれば御任せない fact2: 「そのレタスはまあるくない一方で頤だ」ということは成り立たないとすればあのAUSFは混迷しない fact3: もし仮にとある物は僻みっぽいなら「まあるくないしおまけにそれは頤だ」ということは成り立たない fact4: 「もし仮にこのフィーリングは御任せないとすると「そのミルククリームは星図でない一方で苦々しい」ということは偽である」ということは事実だ fact5: もし仮にある物は支援すとしたら「極まり悪くてさらにそれは錆無くない」ということは嘘だ fact6: もし仮にあのAUSFがTHワンであるしまた生じ難いとしたらあの継続開示はTHワンでない fact7: もし「なにかは星図でないがしかし苦々しい」ということは誤りだとすると「約四十万人でない」ということは成り立つ fact8: あのジャンパースカートは回りくどい fact9: 「この飯屋さんは錆無くなくておまけに極まり悪くない」ということは事実と異なるとするとあのジャンパースカートはどたばたしない fact10: 好もしいかすげなくないかどちらもな物は回りくどくない fact11: もし仮にあるものが混迷しないとしたらTHワンで生じ難い fact12: 仮にあのジャンパースカートがどたばたしないとするとあの其処等辺は御任せない fact13: もし仮にこのテレビ制作者が苦々しいとするとこのフィーリングは約四十万人だ fact14: もし仮にあの其処等辺が御任せないとすればあのテレビ制作者は苦々しくておまけに星図だ fact15: もし「このKG/DAYは遣り易くないしかつ支援すらない」ということは成り立つということはないとすればあの饂飩粉病は支援すらない fact16: そのレタスは僻みっぽい fact17: 仮にあの其処等辺が支援すらないとすればこのテレビ制作者は支援す fact18: もしもあの饂飩粉病は支援すらないなら「「この飯屋さんは錆無くなくてしかも極まり悪くない」ということは事実と異なる」ということは正しい fact19: もしもその使用資格は回りくどくないとすれば「このKG/DAYが遣り易くないしさらにそれは支援すらない」ということは偽である fact20: もし「このテレビ制作者は極まり悪いがしかし錆無くない」ということは真実でないとするとこのフィーリングはどたばたする fact21: 「このフィーリングは約四十万人でない」ということは成り立つ ; $hypothesis$ = このフィーリングは約四十万人だ ; $proof$ =
fact21 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: もしも何らかの物がどたばたするとすれば御任せない 事実2: 「そのレタスはまあるくない一方で頤だ」ということは成り立たないとすればあのAUSFは混迷しない 事実3: もし仮にとある物は僻みっぽいなら「まあるくないしおまけにそれは頤だ」ということは成り立たない 事実4: 「もし仮にこのフィーリングは御任せないとすると「そのミルククリームは星図でない一方で苦々しい」ということは偽である」ということは事実だ 事実5: もし仮にある物は支援すとしたら「極まり悪くてさらにそれは錆無くない」ということは嘘だ 事実6: もし仮にあのAUSFがTHワンであるしまた生じ難いとしたらあの継続開示はTHワンでない 事実7: もし「なにかは星図でないがしかし苦々しい」ということは誤りだとすると「約四十万人でない」ということは成り立つ 事実8: あのジャンパースカートは回りくどい 事実9: 「この飯屋さんは錆無くなくておまけに極まり悪くない」ということは事実と異なるとするとあのジャンパースカートはどたばたしない 事実10: 好もしいかすげなくないかどちらもな物は回りくどくない 事実11: もし仮にあるものが混迷しないとしたらTHワンで生じ難い 事実12: 仮にあのジャンパースカートがどたばたしないとするとあの其処等辺は御任せない 事実13: もし仮にこのテレビ制作者が苦々しいとするとこのフィーリングは約四十万人だ 事実14: もし仮にあの其処等辺が御任せないとすればあのテレビ制作者は苦々しくておまけに星図だ 事実15: もし「このKG/DAYは遣り易くないしかつ支援すらない」ということは成り立つということはないとすればあの饂飩粉病は支援すらない 事実16: そのレタスは僻みっぽい 事実17: 仮にあの其処等辺が支援すらないとすればこのテレビ制作者は支援す 事実18: もしもあの饂飩粉病は支援すらないなら「「この飯屋さんは錆無くなくてしかも極まり悪くない」ということは事実と異なる」ということは正しい 事実19: もしもその使用資格は回りくどくないとすれば「このKG/DAYが遣り易くないしさらにそれは支援すらない」ということは偽である 事実20: もし「このテレビ制作者は極まり悪いがしかし錆無くない」ということは真実でないとするとこのフィーリングはどたばたする 事実21: 「このフィーリングは約四十万人でない」ということは成り立つ 仮説: このフィーリングは約四十万人だ
1. 事実21から、仮説が否定される よって、仮説が否定されました。
0.3
このダリアは奮闘努力でない
¬{B}{b}
fact1: 生じ易くない物は奮闘努力でない fact2: 「その再生時間は河川水利システムであるかもしくは解消的身分行為でない」ということは間違いだ fact3: このダリアは斜線部分である fact4: もしもその研究開発インセンティブが土壌消毒であるとするとその再生時間は興味深い一方で生じ易くない fact5: 「その再生時間は斜線部分であるかあるいは完全耐性でない」ということは事実と異なる fact6: もしも「その再生時間は奮闘努力であるかあるいはそれは斜線部分でない」ということは間違いならばこのダリアは完全耐性だ fact7: もしも「その再生時間は興味深いがそれは生じ易くない」ということは確かだとするとこのダリアは生じ易くない fact8: 「その再生時間は斜線部分であるかそれは奮闘努力でない」ということは誤りである fact9: もしも「その再生時間は斜線部分であるかまたは完全耐性でないかあるいは両方だ」ということは誤りであるならこのダリアは奮闘努力である fact10: 「その再生時間は斜線部分であるかあるいは奮闘努力であるかもしくは両方だ」ということは誤りならこのダリアは完全耐性である
fact1: (x): ¬{A}x -> ¬{B}x fact2: ¬({BO}{a} v ¬{IH}{a}) fact3: {AA}{b} fact4: {D}{c} -> ({C}{a} & ¬{A}{a}) fact5: ¬({AA}{a} v ¬{AB}{a}) fact6: ¬({B}{a} v ¬{AA}{a}) -> {AB}{b} fact7: ({C}{a} & ¬{A}{a}) -> ¬{A}{b} fact8: ¬({AA}{a} v ¬{B}{a}) fact9: ¬({AA}{a} v ¬{AB}{a}) -> {B}{b} fact10: ¬({AA}{a} v {B}{a}) -> {AB}{b}
[ "fact9 & fact5 -> hypothesis;" ]
[ "fact9 & fact5 -> hypothesis;" ]
このダリアは奮闘努力だということはない
¬{B}{b}
[ "fact11 -> int1: 仮にこのダリアが生じ易くないとすると奮闘努力でない;" ]
7
1
1
8
0
8
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: 生じ易くない物は奮闘努力でない fact2: 「その再生時間は河川水利システムであるかもしくは解消的身分行為でない」ということは間違いだ fact3: このダリアは斜線部分である fact4: もしもその研究開発インセンティブが土壌消毒であるとするとその再生時間は興味深い一方で生じ易くない fact5: 「その再生時間は斜線部分であるかあるいは完全耐性でない」ということは事実と異なる fact6: もしも「その再生時間は奮闘努力であるかあるいはそれは斜線部分でない」ということは間違いならばこのダリアは完全耐性だ fact7: もしも「その再生時間は興味深いがそれは生じ易くない」ということは確かだとするとこのダリアは生じ易くない fact8: 「その再生時間は斜線部分であるかそれは奮闘努力でない」ということは誤りである fact9: もしも「その再生時間は斜線部分であるかまたは完全耐性でないかあるいは両方だ」ということは誤りであるならこのダリアは奮闘努力である fact10: 「その再生時間は斜線部分であるかあるいは奮闘努力であるかもしくは両方だ」ということは誤りならこのダリアは完全耐性である ; $hypothesis$ = このダリアは奮闘努力でない ; $proof$ =
fact9 & fact5 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: 生じ易くない物は奮闘努力でない 事実2: 「その再生時間は河川水利システムであるかもしくは解消的身分行為でない」ということは間違いだ 事実3: このダリアは斜線部分である 事実4: もしもその研究開発インセンティブが土壌消毒であるとするとその再生時間は興味深い一方で生じ易くない 事実5: 「その再生時間は斜線部分であるかあるいは完全耐性でない」ということは事実と異なる 事実6: もしも「その再生時間は奮闘努力であるかあるいはそれは斜線部分でない」ということは間違いならばこのダリアは完全耐性だ 事実7: もしも「その再生時間は興味深いがそれは生じ易くない」ということは確かだとするとこのダリアは生じ易くない 事実8: 「その再生時間は斜線部分であるかそれは奮闘努力でない」ということは誤りである 事実9: もしも「その再生時間は斜線部分であるかまたは完全耐性でないかあるいは両方だ」ということは誤りであるならこのダリアは奮闘努力である 事実10: 「その再生時間は斜線部分であるかあるいは奮闘努力であるかもしくは両方だ」ということは誤りならこのダリアは完全耐性である 仮説: このダリアは奮闘努力でない
1. 事実9と事実5から、仮説が否定される よって、仮説が否定されました。
0.3
「「「もし仮にインターネット接続ウィザードであるとすると「調和しないかあるいは切り易くない」ということは成り立たない」物はある」ということは正しい」ということは成り立たない
¬((Ex): {A}x -> ¬(¬{AA}x v ¬{AB}x))
fact1: もし仮にその戦国武士はインターネット接続ウィザードならば「それは調和しないかあるいはそれは切り易い」ということは成り立つということはない fact2: もしその戦国武士はインターネット接続ウィザードだとすると「調和しないかまたはそれは切り易くないかもしくはどちらもだ」ということは成り立つということはない fact3: その戦国武士はインターネット接続ウィザードだとすれば「それは調和する」ということは真実だ fact4: 「仮にインターネット接続ウィザードだとすると切り易い」物はある fact5: 「もし仮に絶縁性であるとすると聞き辛くないかもしくはコントロールしない」物はある fact6: 「インターネット接続ウィザードであるとすると調和する」物はある fact7: 「言上するとしたら「会話らしくないかまたはしどけなくないかあるいは両方である」ということは成り立たない」ものはある fact8: その戦国武士がインターネット接続ウィザードであるとすれば調和するということはないかあるいは切り易くないかもしくはどちらもである
fact1: {A}{aa} -> ¬(¬{AA}{aa} v {AB}{aa}) fact2: {A}{aa} -> ¬(¬{AA}{aa} v ¬{AB}{aa}) fact3: {A}{aa} -> {AA}{aa} fact4: (Ex): {A}x -> {AB}x fact5: (Ex): {FU}x -> (¬{HE}x v ¬{EU}x) fact6: (Ex): {A}x -> {AA}x fact7: (Ex): {IU}x -> ¬(¬{CM}x v ¬{EI}x) fact8: {A}{aa} -> (¬{AA}{aa} v ¬{AB}{aa})
[ "fact2 -> hypothesis;" ]
[ "fact2 -> hypothesis;" ]
null
null
[]
null
1
1
7
0
7
DISPROVED
null
DISPROVED
null
$facts$ = fact1: もし仮にその戦国武士はインターネット接続ウィザードならば「それは調和しないかあるいはそれは切り易い」ということは成り立つということはない fact2: もしその戦国武士はインターネット接続ウィザードだとすると「調和しないかまたはそれは切り易くないかもしくはどちらもだ」ということは成り立つということはない fact3: その戦国武士はインターネット接続ウィザードだとすれば「それは調和する」ということは真実だ fact4: 「仮にインターネット接続ウィザードだとすると切り易い」物はある fact5: 「もし仮に絶縁性であるとすると聞き辛くないかもしくはコントロールしない」物はある fact6: 「インターネット接続ウィザードであるとすると調和する」物はある fact7: 「言上するとしたら「会話らしくないかまたはしどけなくないかあるいは両方である」ということは成り立たない」ものはある fact8: その戦国武士がインターネット接続ウィザードであるとすれば調和するということはないかあるいは切り易くないかもしくはどちらもである ; $hypothesis$ = 「「「もし仮にインターネット接続ウィザードであるとすると「調和しないかあるいは切り易くない」ということは成り立たない」物はある」ということは正しい」ということは成り立たない ; $proof$ =
fact2 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: もし仮にその戦国武士はインターネット接続ウィザードならば「それは調和しないかあるいはそれは切り易い」ということは成り立つということはない 事実2: もしその戦国武士はインターネット接続ウィザードだとすると「調和しないかまたはそれは切り易くないかもしくはどちらもだ」ということは成り立つということはない 事実3: その戦国武士はインターネット接続ウィザードだとすれば「それは調和する」ということは真実だ 事実4: 「仮にインターネット接続ウィザードだとすると切り易い」物はある 事実5: 「もし仮に絶縁性であるとすると聞き辛くないかもしくはコントロールしない」物はある 事実6: 「インターネット接続ウィザードであるとすると調和する」物はある 事実7: 「言上するとしたら「会話らしくないかまたはしどけなくないかあるいは両方である」ということは成り立たない」ものはある 事実8: その戦国武士がインターネット接続ウィザードであるとすれば調和するということはないかあるいは切り易くないかもしくはどちらもである 仮説: 「「「もし仮にインターネット接続ウィザードであるとすると「調和しないかあるいは切り易くない」ということは成り立たない」物はある」ということは正しい」ということは成り立たない
1. 事実2から、仮説が否定される よって、仮説が否定されました。
0.3
この勤務地異動は早めるということはない
¬{B}{b}
fact1: 仮に「あの年金形式は合い難いけど退却しない」ということは事実と異なるとするとこの勤務地異動は早めない fact2: この勤務地異動は合い難くない fact3: 打ち易いものは世知辛い一方で山形屋でない fact4: 仮に何らかの物は厚着するとすれば「このデジタル処理は世知辛いけれど黒しない」ということは成り立たない fact5: 「あの年金形式は早めるけど退却しない」ということは嘘だ fact6: もしあるものが狡くないならそれは厚着するしかつ早める fact7: 「この勤務地異動は百万都市であるかあるいは山形屋でない」ということは嘘であるとしたらあの年金形式は百万都市でない fact8: あの年金形式が厚着するならこの勤務地異動は早める fact9: もしなんらかのものは百万都市でないとすると「フラレでなくてそれは狡い」ということは誤りである fact10: もしも「あの年金形式は合い難いがしかし早めない」ということは間違いだとするとこの勤務地異動は退却しない fact11: もしなんらかのものが狡いということはないとすればそれは早めるかもしくはそれは厚着するかあるいは両方だ fact12: あの年金形式が退却するとすればこの勤務地異動は早めない fact13: もし仮にこの勤務地異動が退却するということはないとしたらあの年金形式は早めない fact14: あの年金形式が早めるとするとこの勤務地異動は早める fact15: 「あの年金形式は合い難いがそれは退却しない」ということは本当でない fact16: 「あの年金形式は合い難いし退却する」ということは成り立たない fact17: もし「あの年金形式はフラレでない一方で狡い」ということは成り立たないとすれば狡くない fact18: 「あの良性腫瘍は打ち易くない」ということは事実と異ならない
fact1: ¬({AA}{a} & ¬{AB}{a}) -> ¬{B}{b} fact2: ¬{AA}{b} fact3: (x): {H}x -> ({G}x & ¬{F}x) fact4: (x): {A}x -> ¬({G}{cm} & ¬{EB}{cm}) fact5: ¬({B}{a} & ¬{AB}{a}) fact6: (x): ¬{C}x -> ({A}x & {B}x) fact7: ¬({D}{b} v ¬{F}{b}) -> ¬{D}{a} fact8: {A}{a} -> {B}{b} fact9: (x): ¬{D}x -> ¬(¬{E}x & {C}x) fact10: ¬({AA}{a} & ¬{B}{a}) -> ¬{AB}{b} fact11: (x): ¬{C}x -> ({B}x v {A}x) fact12: {AB}{a} -> ¬{B}{b} fact13: ¬{AB}{b} -> ¬{B}{a} fact14: {B}{a} -> {B}{b} fact15: ¬({AA}{a} & ¬{AB}{a}) fact16: ¬({AA}{a} & {AB}{a}) fact17: ¬(¬{E}{a} & {C}{a}) -> ¬{C}{a} fact18: ¬{H}{c}
[ "fact1 & fact15 -> hypothesis;" ]
[ "fact1 & fact15 -> hypothesis;" ]
「このデジタル処理は世知辛いけれど黒しない」ということは事実と異なる
¬({G}{cm} & ¬{EB}{cm})
[ "fact23 -> int1: もしあの年金形式が狡くないならそれは厚着するししかも早める; fact24 -> int2: 仮にあの年金形式は百万都市でないならば「フラレでなくてそれは狡い」ということは成り立つということはない; fact20 -> int3: 「打ち易くない」物はある;" ]
9
1
1
16
0
16
PROVED
UNKNOWN
PROVED
UNKNOWN
$facts$ = fact1: 仮に「あの年金形式は合い難いけど退却しない」ということは事実と異なるとするとこの勤務地異動は早めない fact2: この勤務地異動は合い難くない fact3: 打ち易いものは世知辛い一方で山形屋でない fact4: 仮に何らかの物は厚着するとすれば「このデジタル処理は世知辛いけれど黒しない」ということは成り立たない fact5: 「あの年金形式は早めるけど退却しない」ということは嘘だ fact6: もしあるものが狡くないならそれは厚着するしかつ早める fact7: 「この勤務地異動は百万都市であるかあるいは山形屋でない」ということは嘘であるとしたらあの年金形式は百万都市でない fact8: あの年金形式が厚着するならこの勤務地異動は早める fact9: もしなんらかのものは百万都市でないとすると「フラレでなくてそれは狡い」ということは誤りである fact10: もしも「あの年金形式は合い難いがしかし早めない」ということは間違いだとするとこの勤務地異動は退却しない fact11: もしなんらかのものが狡いということはないとすればそれは早めるかもしくはそれは厚着するかあるいは両方だ fact12: あの年金形式が退却するとすればこの勤務地異動は早めない fact13: もし仮にこの勤務地異動が退却するということはないとしたらあの年金形式は早めない fact14: あの年金形式が早めるとするとこの勤務地異動は早める fact15: 「あの年金形式は合い難いがそれは退却しない」ということは本当でない fact16: 「あの年金形式は合い難いし退却する」ということは成り立たない fact17: もし「あの年金形式はフラレでない一方で狡い」ということは成り立たないとすれば狡くない fact18: 「あの良性腫瘍は打ち易くない」ということは事実と異ならない ; $hypothesis$ = この勤務地異動は早めるということはない ; $proof$ =
fact1 & fact15 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: 仮に「あの年金形式は合い難いけど退却しない」ということは事実と異なるとするとこの勤務地異動は早めない 事実2: この勤務地異動は合い難くない 事実3: 打ち易いものは世知辛い一方で山形屋でない 事実4: 仮に何らかの物は厚着するとすれば「このデジタル処理は世知辛いけれど黒しない」ということは成り立たない 事実5: 「あの年金形式は早めるけど退却しない」ということは嘘だ 事実6: もしあるものが狡くないならそれは厚着するしかつ早める 事実7: 「この勤務地異動は百万都市であるかあるいは山形屋でない」ということは嘘であるとしたらあの年金形式は百万都市でない 事実8: あの年金形式が厚着するならこの勤務地異動は早める 事実9: もしなんらかのものは百万都市でないとすると「フラレでなくてそれは狡い」ということは誤りである 事実10: もしも「あの年金形式は合い難いがしかし早めない」ということは間違いだとするとこの勤務地異動は退却しない 事実11: もしなんらかのものが狡いということはないとすればそれは早めるかもしくはそれは厚着するかあるいは両方だ 事実12: あの年金形式が退却するとすればこの勤務地異動は早めない 事実13: もし仮にこの勤務地異動が退却するということはないとしたらあの年金形式は早めない 事実14: あの年金形式が早めるとするとこの勤務地異動は早める 事実15: 「あの年金形式は合い難いがそれは退却しない」ということは本当でない 事実16: 「あの年金形式は合い難いし退却する」ということは成り立たない 事実17: もし「あの年金形式はフラレでない一方で狡い」ということは成り立たないとすれば狡くない 事実18: 「あの良性腫瘍は打ち易くない」ということは事実と異ならない 仮説: この勤務地異動は早めるということはない
1. 事実1と事実15から、仮説が導かれる よって、仮説が証明されました。
0.3
このキャパシティは埃っぽいけど右主張でない
({AA}{b} & ¬{AB}{b})
fact1: このキャパシティは右主張でない fact2: 仮にあの赤字額が公的医療保険であるということはないとすればこのキャパシティは埃っぽいがしかし右主張でない fact3: あの赤字額は公的医療保険でない
fact1: ¬{AB}{b} fact2: ¬{A}{a} -> ({AA}{b} & ¬{AB}{b}) fact3: ¬{A}{a}
[ "fact2 & fact3 -> hypothesis;" ]
[ "fact2 & fact3 -> hypothesis;" ]
null
null
[]
null
1
1
1
0
1
PROVED
null
PROVED
null
$facts$ = fact1: このキャパシティは右主張でない fact2: 仮にあの赤字額が公的医療保険であるということはないとすればこのキャパシティは埃っぽいがしかし右主張でない fact3: あの赤字額は公的医療保険でない ; $hypothesis$ = このキャパシティは埃っぽいけど右主張でない ; $proof$ =
fact2 & fact3 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: このキャパシティは右主張でない 事実2: 仮にあの赤字額が公的医療保険であるということはないとすればこのキャパシティは埃っぽいがしかし右主張でない 事実3: あの赤字額は公的医療保険でない 仮説: このキャパシティは埃っぽいけど右主張でない
1. 事実2と事実3から、仮説が導かれる よって、仮説が証明されました。
0.3
あの未既婚はグリースでない
¬{B}{b}
fact1: もし仮に「この代替地は私らしくない一方で跳ね飛ぶ」ということは成り立たないとしたらあの未既婚はグリースでない fact2: もし仮にこの代替地が私らしいならあの未既婚はグリースでない fact3: 「この代替地は私らしいし跳ね飛ぶ」ということは間違っている fact4: もしもこの代替地が差別化出来るかまたはグリースであるかまたはどちらもだとするとあの第四十二図はグリースでない fact5: 「この代替地は私らしくないがしかし跳ね飛ぶ」ということは嘘だ fact6: もし何かは観ぜないとすると差別化出来るしそれはグリースである fact7: 仮に「この代替地はグリースでない一方でそれは跳ね飛ぶ」ということは事実と異なるとすればあの未既婚は私らしくない
fact1: ¬(¬{AA}{a} & {AB}{a}) -> ¬{B}{b} fact2: {AA}{a} -> ¬{B}{b} fact3: ¬({AA}{a} & {AB}{a}) fact4: ({A}{a} v {B}{a}) -> ¬{B}{do} fact5: ¬(¬{AA}{a} & {AB}{a}) fact6: (x): ¬{C}x -> ({A}x & {B}x) fact7: ¬(¬{B}{a} & {AB}{a}) -> ¬{AA}{b}
[ "fact1 & fact5 -> hypothesis;" ]
[ "fact1 & fact5 -> hypothesis;" ]
あの第四十二図はグリースであるということはない
¬{B}{do}
[]
6
1
1
5
0
5
PROVED
UNKNOWN
PROVED
UNKNOWN
$facts$ = fact1: もし仮に「この代替地は私らしくない一方で跳ね飛ぶ」ということは成り立たないとしたらあの未既婚はグリースでない fact2: もし仮にこの代替地が私らしいならあの未既婚はグリースでない fact3: 「この代替地は私らしいし跳ね飛ぶ」ということは間違っている fact4: もしもこの代替地が差別化出来るかまたはグリースであるかまたはどちらもだとするとあの第四十二図はグリースでない fact5: 「この代替地は私らしくないがしかし跳ね飛ぶ」ということは嘘だ fact6: もし何かは観ぜないとすると差別化出来るしそれはグリースである fact7: 仮に「この代替地はグリースでない一方でそれは跳ね飛ぶ」ということは事実と異なるとすればあの未既婚は私らしくない ; $hypothesis$ = あの未既婚はグリースでない ; $proof$ =
fact1 & fact5 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: もし仮に「この代替地は私らしくない一方で跳ね飛ぶ」ということは成り立たないとしたらあの未既婚はグリースでない 事実2: もし仮にこの代替地が私らしいならあの未既婚はグリースでない 事実3: 「この代替地は私らしいし跳ね飛ぶ」ということは間違っている 事実4: もしもこの代替地が差別化出来るかまたはグリースであるかまたはどちらもだとするとあの第四十二図はグリースでない 事実5: 「この代替地は私らしくないがしかし跳ね飛ぶ」ということは嘘だ 事実6: もし何かは観ぜないとすると差別化出来るしそれはグリースである 事実7: 仮に「この代替地はグリースでない一方でそれは跳ね飛ぶ」ということは事実と異なるとすればあの未既婚は私らしくない 仮説: あの未既婚はグリースでない
1. 事実1と事実5から、仮説が導かれる よって、仮説が証明されました。
0.3
「このリゾート問題はしつこいか把握し難いということはない」ということは偽だ
¬({AA}{a} v ¬{AB}{a})
fact1: もし仮にこのリゾート問題は少年野球でないとすれば「それはしつこいかあるいは把握し難くないかあるいは両方だ」ということは真実でない fact2: 仮にこのリゾート問題は政治運動であるとしたら「この認知改善療法群は書き直さない」ということは誤っていない fact3: 仮に何かはトンボロであるとしたらそれは政治運動である fact4: このリゾート問題は少年野球でない fact5: もし仮にとあるものは書き直さないとすると「それは少年野球であるかまたは馬鹿馬鹿しかない」ということは誤りだ fact6: もし仮になにがしかのものは長期でないとしたらそれは仰向けでまたトンボロだ
fact1: ¬{A}{a} -> ¬({AA}{a} v ¬{AB}{a}) fact2: {C}{a} -> ¬{B}{cp} fact3: (x): {D}x -> {C}x fact4: ¬{A}{a} fact5: (x): ¬{B}x -> ¬({A}x v ¬{CT}x) fact6: (x): ¬{F}x -> ({E}x & {D}x)
[ "fact1 & fact4 -> hypothesis;" ]
[ "fact1 & fact4 -> hypothesis;" ]
「この認知改善療法群は少年野球であるかもしくは馬鹿馬鹿しいということはない」ということは偽である
¬({A}{cp} v ¬{CT}{cp})
[ "fact9 -> int1: もしこの認知改善療法群は書き直さないとすれば「それは少年野球であるかもしくは馬鹿馬鹿しかないか両方ともだ」ということは間違いである; fact8 -> int2: もし仮にこのリゾート問題はトンボロであるとすると政治運動だ; fact7 -> int3: もしもこのリゾート問題は長期でないとすると「それは仰向けでそれにトンボロである」ということは正しい;" ]
6
1
1
4
0
4
PROVED
UNKNOWN
PROVED
UNKNOWN
$facts$ = fact1: もし仮にこのリゾート問題は少年野球でないとすれば「それはしつこいかあるいは把握し難くないかあるいは両方だ」ということは真実でない fact2: 仮にこのリゾート問題は政治運動であるとしたら「この認知改善療法群は書き直さない」ということは誤っていない fact3: 仮に何かはトンボロであるとしたらそれは政治運動である fact4: このリゾート問題は少年野球でない fact5: もし仮にとあるものは書き直さないとすると「それは少年野球であるかまたは馬鹿馬鹿しかない」ということは誤りだ fact6: もし仮になにがしかのものは長期でないとしたらそれは仰向けでまたトンボロだ ; $hypothesis$ = 「このリゾート問題はしつこいか把握し難いということはない」ということは偽だ ; $proof$ =
fact1 & fact4 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: もし仮にこのリゾート問題は少年野球でないとすれば「それはしつこいかあるいは把握し難くないかあるいは両方だ」ということは真実でない 事実2: 仮にこのリゾート問題は政治運動であるとしたら「この認知改善療法群は書き直さない」ということは誤っていない 事実3: 仮に何かはトンボロであるとしたらそれは政治運動である 事実4: このリゾート問題は少年野球でない 事実5: もし仮にとあるものは書き直さないとすると「それは少年野球であるかまたは馬鹿馬鹿しかない」ということは誤りだ 事実6: もし仮になにがしかのものは長期でないとしたらそれは仰向けでまたトンボロだ 仮説: 「このリゾート問題はしつこいか把握し難いということはない」ということは偽だ
1. 事実1と事実4から、仮説が導かれる よって、仮説が証明されました。
0.3
この集中投票は油断する
{B}{a}
fact1: もし「この集中投票は拝聴しないしそれに琴線でない」ということは間違っているとすればその冒険旅行は拝聴しない fact2: 仮にとあるものが拝聴しないならばそれは寒しし油断する fact3: もしもなにがしかのものが人口削減でないとすればそれは寒しが拝聴しない fact4: この使用前は油断する fact5: もしこの集中投票が寒しなら油断する fact6: 「この集中投票は寒し」ということは成り立つ
fact1: ¬(¬{C}{a} & ¬{E}{a}) -> ¬{C}{bu} fact2: (x): ¬{C}x -> ({A}x & {B}x) fact3: (x): ¬{D}x -> ({A}x & ¬{C}x) fact4: {B}{cj} fact5: {A}{a} -> {B}{a} fact6: {A}{a}
[ "fact5 & fact6 -> hypothesis;" ]
[ "fact5 & fact6 -> hypothesis;" ]
この集中投票は油断しない
¬{B}{a}
[ "fact7 -> int1: もしもこの集中投票は人口削減でないとすれば「寒しけど拝聴しない」ということは偽でない;" ]
4
1
1
4
0
4
PROVED
UNKNOWN
PROVED
UNKNOWN
$facts$ = fact1: もし「この集中投票は拝聴しないしそれに琴線でない」ということは間違っているとすればその冒険旅行は拝聴しない fact2: 仮にとあるものが拝聴しないならばそれは寒しし油断する fact3: もしもなにがしかのものが人口削減でないとすればそれは寒しが拝聴しない fact4: この使用前は油断する fact5: もしこの集中投票が寒しなら油断する fact6: 「この集中投票は寒し」ということは成り立つ ; $hypothesis$ = この集中投票は油断する ; $proof$ =
fact5 & fact6 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: もし「この集中投票は拝聴しないしそれに琴線でない」ということは間違っているとすればその冒険旅行は拝聴しない 事実2: 仮にとあるものが拝聴しないならばそれは寒しし油断する 事実3: もしもなにがしかのものが人口削減でないとすればそれは寒しが拝聴しない 事実4: この使用前は油断する 事実5: もしこの集中投票が寒しなら油断する 事実6: 「この集中投票は寒し」ということは成り立つ 仮説: この集中投票は油断する
1. 事実5と事実6から、仮説が導かれる よって、仮説が証明されました。
0.3
「その個人所有は摘み入れないがしかしクレジットカード番号だ」ということは嘘だ
¬(¬{AA}{a} & {AB}{a})
fact1: その肺門腫脹は一苦労でないけれど達す fact2: その個人所有は塾頭でないけどクレジットカード番号である fact3: その個人所有は電荷移動反応でないがしかし器楽である fact4: その個人所有は習字でないがクレジットカード番号である fact5: その個人所有は建造物でないけれど焼き上がる fact6: その個人所有は余所余所しかないがそれはフランス人らしい fact7: その個人所有は車上だということはないがしかしそれは空気取り入り口である fact8: 「その土壌汚染対策は青っぽくないがそれは摘み入れる」ということは事実である fact9: その個人所有はクレジットカード番号だ fact10: その個人所有は摘み入れるということはないがクレジットカード番号である fact11: あのプラナリアはクレジットカード番号でないが見兼ねる fact12: なんらかのものが達すならそれは叩き蒸しでなくてその上それは耐え難くない fact13: その個人所有は欧米系でない一方で移ろい易い fact14: あの志積浦は摘み入れないけどスイートポテトである fact15: もしも「何らかのものは耐え難くない」ということは真実であるならば「摘み入れないけどクレジットカード番号である」ということは成り立たない fact16: その個人所有は癒えないけど御めでたい fact17: あの反蘇我系は摘み入れないがしかし障害福祉サービス事業である fact18: この屈従は使用し易いということはないけど摘み入れる
fact1: (¬{CL}{ck} & {C}{ck}) fact2: (¬{GF}{a} & {AB}{a}) fact3: (¬{GK}{a} & {AT}{a}) fact4: (¬{FS}{a} & {AB}{a}) fact5: (¬{CP}{a} & {AP}{a}) fact6: (¬{CO}{a} & {HG}{a}) fact7: (¬{EL}{a} & {BM}{a}) fact8: (¬{BK}{gc} & {AA}{gc}) fact9: {AB}{a} fact10: (¬{AA}{a} & {AB}{a}) fact11: (¬{AB}{au} & {AD}{au}) fact12: (x): {C}x -> (¬{B}x & ¬{A}x) fact13: (¬{IR}{a} & {IL}{a}) fact14: (¬{AA}{fr} & {AN}{fr}) fact15: (x): ¬{A}x -> ¬(¬{AA}x & {AB}x) fact16: (¬{FO}{a} & {HP}{a}) fact17: (¬{AA}{is} & {AO}{is}) fact18: (¬{FT}{dt} & {AA}{dt})
[ "fact10 -> hypothesis;" ]
[ "fact10 -> hypothesis;" ]
「その個人所有は摘み入れないがクレジットカード番号である」ということは成り立たない
¬(¬{AA}{a} & {AB}{a})
[ "fact19 -> int1: その個人所有は耐え難くないとすれば「摘み入れないししかもそれはクレジットカード番号だ」ということは間違いである; fact20 -> int2: もし「その個人所有は達す」ということは成り立つならそれは叩き蒸しでなくておまけにそれは耐え難くない;" ]
5
1
0
17
0
17
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: その肺門腫脹は一苦労でないけれど達す fact2: その個人所有は塾頭でないけどクレジットカード番号である fact3: その個人所有は電荷移動反応でないがしかし器楽である fact4: その個人所有は習字でないがクレジットカード番号である fact5: その個人所有は建造物でないけれど焼き上がる fact6: その個人所有は余所余所しかないがそれはフランス人らしい fact7: その個人所有は車上だということはないがしかしそれは空気取り入り口である fact8: 「その土壌汚染対策は青っぽくないがそれは摘み入れる」ということは事実である fact9: その個人所有はクレジットカード番号だ fact10: その個人所有は摘み入れるということはないがクレジットカード番号である fact11: あのプラナリアはクレジットカード番号でないが見兼ねる fact12: なんらかのものが達すならそれは叩き蒸しでなくてその上それは耐え難くない fact13: その個人所有は欧米系でない一方で移ろい易い fact14: あの志積浦は摘み入れないけどスイートポテトである fact15: もしも「何らかのものは耐え難くない」ということは真実であるならば「摘み入れないけどクレジットカード番号である」ということは成り立たない fact16: その個人所有は癒えないけど御めでたい fact17: あの反蘇我系は摘み入れないがしかし障害福祉サービス事業である fact18: この屈従は使用し易いということはないけど摘み入れる ; $hypothesis$ = 「その個人所有は摘み入れないがしかしクレジットカード番号だ」ということは嘘だ ; $proof$ =
fact10 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: その肺門腫脹は一苦労でないけれど達す 事実2: その個人所有は塾頭でないけどクレジットカード番号である 事実3: その個人所有は電荷移動反応でないがしかし器楽である 事実4: その個人所有は習字でないがクレジットカード番号である 事実5: その個人所有は建造物でないけれど焼き上がる 事実6: その個人所有は余所余所しかないがそれはフランス人らしい 事実7: その個人所有は車上だということはないがしかしそれは空気取り入り口である 事実8: 「その土壌汚染対策は青っぽくないがそれは摘み入れる」ということは事実である 事実9: その個人所有はクレジットカード番号だ 事実10: その個人所有は摘み入れるということはないがクレジットカード番号である 事実11: あのプラナリアはクレジットカード番号でないが見兼ねる 事実12: なんらかのものが達すならそれは叩き蒸しでなくてその上それは耐え難くない 事実13: その個人所有は欧米系でない一方で移ろい易い 事実14: あの志積浦は摘み入れないけどスイートポテトである 事実15: もしも「何らかのものは耐え難くない」ということは真実であるならば「摘み入れないけどクレジットカード番号である」ということは成り立たない 事実16: その個人所有は癒えないけど御めでたい 事実17: あの反蘇我系は摘み入れないがしかし障害福祉サービス事業である 事実18: この屈従は使用し易いということはないけど摘み入れる 仮説: 「その個人所有は摘み入れないがしかしクレジットカード番号だ」ということは嘘だ
1. 事実10から、仮説が否定される よって、仮説が否定されました。
0.3
「仮に「この十一人が社会保険制度でないしまた当て付けはましくらない」ということは事実と異なるとすればこの十一人は判任官でない」ということは成り立たない
¬(¬(¬{AA}{aa} & ¬{AB}{aa}) -> ¬{B}{aa})
fact1: もし仮に「何かは社会保険制度でなくて当て付けがましくらない」ということは成り立たないとしたら「判任官でない」ということは確かである fact2: もしこの十一人が産気付くということはないしさらにシャンプーするということはないとすればそれは社会保険制度でない fact3: もし仮に「何らかのものは惨くないしその上格好良くない」ということは偽だとしたらそれは御早い fact4: 「「なにがしかのものは五Fだということはなくて加えてディスカッションしない」ということは真実だ」ということは成り立たないなら設定例だ fact5: 「何かは復員するということはなくてそれは誇らしいということはない」ということは事実と異なれば働かない fact6: もし仮に「「その新人事制度は青っぽくない一方で当て付けがましい」ということは嘘である」ということは真実だとするとそれは印刷レイアウトだということはない fact7: もしあるものが改訂コーポレート・ガバナンス原則だとすればそれは頑是無くない fact8: 毎月は企業革新であるということはない fact9: 何らかの物は社会保険制度であるならそれは判任官でない fact10: もし仮になんらかの物が社会保険制度だということはないし加えて当て付けがましくらないとすればそれは判任官であるということはない fact11: もしもこの十一人はベルメゾン松原であるとしたら推察致さない fact12: もし「この十一人が当て付けはましくらないしおまけに狂わない」ということは誤っているとするとそれは改訂コーポレート・ガバナンス原則だ fact13: だらし無くない物が詩法でないとすればそれは跳ね飛ばない fact14: もしもこの十一人は考え深くなくて更に選ばないなら判任官でない
fact1: (x): ¬(¬{AA}x & ¬{AB}x) -> ¬{B}x fact2: (¬{CI}{aa} & ¬{CH}{aa}) -> ¬{AA}{aa} fact3: (x): ¬(¬{AR}x & ¬{HC}x) -> {JG}x fact4: (x): ¬(¬{BS}x & ¬{I}x) -> {CQ}x fact5: (x): ¬(¬{EP}x & ¬{CR}x) -> ¬{EA}x fact6: ¬(¬{CS}{j} & {AB}{j}) -> ¬{AU}{j} fact7: (x): {FR}x -> ¬{FG}x fact8: (x): {CE}x -> ¬{GH}x fact9: (x): {AA}x -> ¬{B}x fact10: (x): (¬{AA}x & ¬{AB}x) -> ¬{B}x fact11: {O}{aa} -> ¬{BG}{aa} fact12: ¬(¬{AB}{aa} & ¬{EF}{aa}) -> {FR}{aa} fact13: (x): (¬{CT}x & ¬{HT}x) -> ¬{CM}x fact14: (¬{JK}{aa} & ¬{BE}{aa}) -> ¬{B}{aa}
[ "fact1 -> hypothesis;" ]
[ "fact1 -> hypothesis;" ]
null
null
[]
null
1
1
13
0
13
DISPROVED
null
DISPROVED
null
$facts$ = fact1: もし仮に「何かは社会保険制度でなくて当て付けがましくらない」ということは成り立たないとしたら「判任官でない」ということは確かである fact2: もしこの十一人が産気付くということはないしさらにシャンプーするということはないとすればそれは社会保険制度でない fact3: もし仮に「何らかのものは惨くないしその上格好良くない」ということは偽だとしたらそれは御早い fact4: 「「なにがしかのものは五Fだということはなくて加えてディスカッションしない」ということは真実だ」ということは成り立たないなら設定例だ fact5: 「何かは復員するということはなくてそれは誇らしいということはない」ということは事実と異なれば働かない fact6: もし仮に「「その新人事制度は青っぽくない一方で当て付けがましい」ということは嘘である」ということは真実だとするとそれは印刷レイアウトだということはない fact7: もしあるものが改訂コーポレート・ガバナンス原則だとすればそれは頑是無くない fact8: 毎月は企業革新であるということはない fact9: 何らかの物は社会保険制度であるならそれは判任官でない fact10: もし仮になんらかの物が社会保険制度だということはないし加えて当て付けがましくらないとすればそれは判任官であるということはない fact11: もしもこの十一人はベルメゾン松原であるとしたら推察致さない fact12: もし「この十一人が当て付けはましくらないしおまけに狂わない」ということは誤っているとするとそれは改訂コーポレート・ガバナンス原則だ fact13: だらし無くない物が詩法でないとすればそれは跳ね飛ばない fact14: もしもこの十一人は考え深くなくて更に選ばないなら判任官でない ; $hypothesis$ = 「仮に「この十一人が社会保険制度でないしまた当て付けはましくらない」ということは事実と異なるとすればこの十一人は判任官でない」ということは成り立たない ; $proof$ =
fact1 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: もし仮に「何かは社会保険制度でなくて当て付けがましくらない」ということは成り立たないとしたら「判任官でない」ということは確かである 事実2: もしこの十一人が産気付くということはないしさらにシャンプーするということはないとすればそれは社会保険制度でない 事実3: もし仮に「何らかのものは惨くないしその上格好良くない」ということは偽だとしたらそれは御早い 事実4: 「「なにがしかのものは五Fだということはなくて加えてディスカッションしない」ということは真実だ」ということは成り立たないなら設定例だ 事実5: 「何かは復員するということはなくてそれは誇らしいということはない」ということは事実と異なれば働かない 事実6: もし仮に「「その新人事制度は青っぽくない一方で当て付けがましい」ということは嘘である」ということは真実だとするとそれは印刷レイアウトだということはない 事実7: もしあるものが改訂コーポレート・ガバナンス原則だとすればそれは頑是無くない 事実8: 毎月は企業革新であるということはない 事実9: 何らかの物は社会保険制度であるならそれは判任官でない 事実10: もし仮になんらかの物が社会保険制度だということはないし加えて当て付けがましくらないとすればそれは判任官であるということはない 事実11: もしもこの十一人はベルメゾン松原であるとしたら推察致さない 事実12: もし「この十一人が当て付けはましくらないしおまけに狂わない」ということは誤っているとするとそれは改訂コーポレート・ガバナンス原則だ 事実13: だらし無くない物が詩法でないとすればそれは跳ね飛ばない 事実14: もしもこの十一人は考え深くなくて更に選ばないなら判任官でない 仮説: 「仮に「この十一人が社会保険制度でないしまた当て付けはましくらない」ということは事実と異なるとすればこの十一人は判任官でない」ということは成り立たない
1. 事実1から、仮説が否定される よって、仮説が否定されました。
0.3
あのセゾングループは返還するということはない
¬{A}{a}
fact1: この乾性は返還しない fact2: あの鼠蹊リンパ肉芽腫は返還しない fact3: あのセゾングループは垂れ流さない fact4: あのセゾングループは返還しない
fact1: ¬{A}{cr} fact2: ¬{AA}{aa} fact3: ¬{DP}{a} fact4: ¬{A}{a}
[ "fact4 -> hypothesis;" ]
[ "fact4 -> hypothesis;" ]
null
null
[]
null
1
0
3
0
3
PROVED
null
PROVED
null
$facts$ = fact1: この乾性は返還しない fact2: あの鼠蹊リンパ肉芽腫は返還しない fact3: あのセゾングループは垂れ流さない fact4: あのセゾングループは返還しない ; $hypothesis$ = あのセゾングループは返還するということはない ; $proof$ =
fact4 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: この乾性は返還しない 事実2: あの鼠蹊リンパ肉芽腫は返還しない 事実3: あのセゾングループは垂れ流さない 事実4: あのセゾングループは返還しない 仮説: あのセゾングループは返還するということはない
1. 事実4から、仮説が導かれる よって、仮説が証明されました。
0.3
このベトナム側は騒々しい
{B}{b}
fact1: もしもこの大天守・小天守が酔い易いとすればあの拝謁は名乗り続ける fact2: 仮に珍しかない物が民訴でないとすれば邪魔臭くない fact3: あの百五ページ参照は増反地だ fact4: もし仮にあの百五ページ参照が野暮ったいが増反地でないならこのベトナム側は騒々しいということはない fact5: あの百五ページ参照が増反地であるとすればあのベトナム側は騒々しい fact6: もし仮にこのベトナム側が増反地だとすればあの百五ページ参照は騒々しい fact7: もし仮になにかは名乗り続けないとすれば珍しかなくてそれは民訴でない fact8: もし仮に何かは邪魔臭いということはないとすると野暮ったいししかも増反地でない fact9: もしもあの拝謁が名乗り続けるしその上運悪いならばあの百五ページ参照は名乗り続けない
fact1: {J}{e} -> {G}{c} fact2: (x): (¬{E}x & ¬{F}x) -> ¬{D}x fact3: {A}{a} fact4: ({C}{a} & ¬{A}{a}) -> ¬{B}{b} fact5: {A}{a} -> {B}{b} fact6: {A}{b} -> {B}{a} fact7: (x): ¬{G}x -> (¬{E}x & ¬{F}x) fact8: (x): ¬{D}x -> ({C}x & ¬{A}x) fact9: ({G}{c} & {I}{c}) -> ¬{G}{a}
[ "fact5 & fact3 -> hypothesis;" ]
[ "fact5 & fact3 -> hypothesis;" ]
このベトナム側は騒々しいということはない
¬{B}{b}
[ "fact10 -> int1: もし仮にあの百五ページ参照が邪魔臭くないとするとそれは野暮ったくて増反地でない; fact11 -> int2: もしもあの百五ページ参照が珍しかないしおまけにそれが民訴でないとすれば邪魔臭くない; fact12 -> int3: もしもあの百五ページ参照が名乗り続けるということはないとしたら珍しかないし更に民訴でない;" ]
7
1
1
7
0
7
PROVED
UNKNOWN
PROVED
UNKNOWN
$facts$ = fact1: もしもこの大天守・小天守が酔い易いとすればあの拝謁は名乗り続ける fact2: 仮に珍しかない物が民訴でないとすれば邪魔臭くない fact3: あの百五ページ参照は増反地だ fact4: もし仮にあの百五ページ参照が野暮ったいが増反地でないならこのベトナム側は騒々しいということはない fact5: あの百五ページ参照が増反地であるとすればあのベトナム側は騒々しい fact6: もし仮にこのベトナム側が増反地だとすればあの百五ページ参照は騒々しい fact7: もし仮になにかは名乗り続けないとすれば珍しかなくてそれは民訴でない fact8: もし仮に何かは邪魔臭いということはないとすると野暮ったいししかも増反地でない fact9: もしもあの拝謁が名乗り続けるしその上運悪いならばあの百五ページ参照は名乗り続けない ; $hypothesis$ = このベトナム側は騒々しい ; $proof$ =
fact5 & fact3 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: もしもこの大天守・小天守が酔い易いとすればあの拝謁は名乗り続ける 事実2: 仮に珍しかない物が民訴でないとすれば邪魔臭くない 事実3: あの百五ページ参照は増反地だ 事実4: もし仮にあの百五ページ参照が野暮ったいが増反地でないならこのベトナム側は騒々しいということはない 事実5: あの百五ページ参照が増反地であるとすればあのベトナム側は騒々しい 事実6: もし仮にこのベトナム側が増反地だとすればあの百五ページ参照は騒々しい 事実7: もし仮になにかは名乗り続けないとすれば珍しかなくてそれは民訴でない 事実8: もし仮に何かは邪魔臭いということはないとすると野暮ったいししかも増反地でない 事実9: もしもあの拝謁が名乗り続けるしその上運悪いならばあの百五ページ参照は名乗り続けない 仮説: このベトナム側は騒々しい
1. 事実5と事実3から、仮説が導かれる よって、仮説が証明されました。
0.3
「あの共同体スホードは大口預金者でないしかつ巨岩でない」ということは間違いである
¬(¬{B}{a} & ¬{C}{a})
fact1: ある物は誘発し易いということはない fact2: 仮に「「その統合論は濃過ぎないけれど築き難い」ということは真実である」ということは成り立つということはないならこの倉庫・中は濃過ぎる fact3: 「あの共同体スホードは大口預金者でないが巨岩だ」ということは成り立たない fact4: 「造林でない」ものはあるとすると「あの共同体スホードは大口預金者だけど巨岩であるということはない」ということは事実と異なる fact5: 「この体表は立ち読みしないかまたはそれは完了形でない」ということは成り立たないとすれば「あの共同体スホードは造林でない」ということは成り立つ fact6: 小気味良くない物は取り辛いし射殺である fact7: 「「造林でない」ということは成り立つ」物はある fact8: もし仮に「造林であるということはない」物はあれば「あの共同体スホードは大口預金者でないけれど巨岩だ」ということは嘘である fact9: 「造林でない」ものはあるとしたら「「あの共同体スホードは大口預金者でなくてそれに巨岩でない」ということは成り立たない」ということは成り立つ fact10: なにがしかの物は造林である fact11: もし仮になにがしかの物が造林でないとすれば大口預金者でないし更に巨岩であるということはない fact12: 「あの共同体スホードは服務裁判所でないししかも巨岩だということはない」ということは成り立たない fact13: 「あの共同体スホードは大口預金者だ一方で巨岩でない」ということは嘘だ fact14: もし何かは余儀無いとすれば「それは立ち読みしないか完了形でない」ということは事実と異なる fact15: 「大口預金者でない」物はある fact16: もし「この会員総数は頬張らない」ということは成り立つとしたら「この体表は余儀無い」ということは確かである fact17: 「この倉庫・中は御話下さるかあるいはそれは小気味良くない」ということは間違っているとしたら「この会員総数は小気味良くない」ということは正しい fact18: もしこの倉庫・中は濃過ぎるなら「御話下さるかあるいはそれは小気味良くない」ということは誤っている fact19: もしもある物は取り辛いかまたは天元だとすれば頬張らない
fact1: (Ex): ¬{N}x fact2: ¬(¬{L}{e} & {O}{e}) -> {L}{d} fact3: ¬(¬{B}{a} & {C}{a}) fact4: (x): ¬{A}x -> ¬({B}{a} & ¬{C}{a}) fact5: ¬(¬{D}{b} v ¬{E}{b}) -> ¬{A}{a} fact6: (x): ¬{K}x -> ({I}x & {J}x) fact7: (Ex): ¬{A}x fact8: (x): ¬{A}x -> ¬(¬{B}{a} & {C}{a}) fact9: (x): ¬{A}x -> ¬(¬{B}{a} & ¬{C}{a}) fact10: (Ex): {A}x fact11: (x): ¬{A}x -> (¬{B}x & ¬{C}x) fact12: ¬(¬{DF}{a} & ¬{C}{a}) fact13: ¬({B}{a} & ¬{C}{a}) fact14: (x): {F}x -> ¬(¬{D}x v ¬{E}x) fact15: (Ex): ¬{B}x fact16: ¬{G}{c} -> {F}{b} fact17: ¬({M}{d} v ¬{K}{d}) -> ¬{K}{c} fact18: {L}{d} -> ¬({M}{d} v ¬{K}{d}) fact19: (x): ({I}x v {H}x) -> ¬{G}x
[ "fact7 & fact9 -> hypothesis;" ]
[ "fact7 & fact9 -> hypothesis;" ]
あの共同体スホードは大口預金者でなくて巨岩でない
(¬{B}{a} & ¬{C}{a})
[ "fact28 -> int1: 仮に「あの共同体スホードは造林であるということはない」ということは事実であるならば「大口預金者でなくて巨岩であるということはない」ということは事実である; fact21 -> int2: この体表は余儀無いとすれば「それは立ち読みしないか完了形でないかもしくは両方だ」ということは成り立たない; fact22 -> int3: もしもこの会員総数が取り辛いか天元だとすればそれは頬張らない; fact20 -> int4: もしこの会員総数が小気味良くないならば取り辛くてまた射殺である;" ]
12
1
1
17
0
17
PROVED
UNKNOWN
PROVED
UNKNOWN
$facts$ = fact1: ある物は誘発し易いということはない fact2: 仮に「「その統合論は濃過ぎないけれど築き難い」ということは真実である」ということは成り立つということはないならこの倉庫・中は濃過ぎる fact3: 「あの共同体スホードは大口預金者でないが巨岩だ」ということは成り立たない fact4: 「造林でない」ものはあるとすると「あの共同体スホードは大口預金者だけど巨岩であるということはない」ということは事実と異なる fact5: 「この体表は立ち読みしないかまたはそれは完了形でない」ということは成り立たないとすれば「あの共同体スホードは造林でない」ということは成り立つ fact6: 小気味良くない物は取り辛いし射殺である fact7: 「「造林でない」ということは成り立つ」物はある fact8: もし仮に「造林であるということはない」物はあれば「あの共同体スホードは大口預金者でないけれど巨岩だ」ということは嘘である fact9: 「造林でない」ものはあるとしたら「「あの共同体スホードは大口預金者でなくてそれに巨岩でない」ということは成り立たない」ということは成り立つ fact10: なにがしかの物は造林である fact11: もし仮になにがしかの物が造林でないとすれば大口預金者でないし更に巨岩であるということはない fact12: 「あの共同体スホードは服務裁判所でないししかも巨岩だということはない」ということは成り立たない fact13: 「あの共同体スホードは大口預金者だ一方で巨岩でない」ということは嘘だ fact14: もし何かは余儀無いとすれば「それは立ち読みしないか完了形でない」ということは事実と異なる fact15: 「大口預金者でない」物はある fact16: もし「この会員総数は頬張らない」ということは成り立つとしたら「この体表は余儀無い」ということは確かである fact17: 「この倉庫・中は御話下さるかあるいはそれは小気味良くない」ということは間違っているとしたら「この会員総数は小気味良くない」ということは正しい fact18: もしこの倉庫・中は濃過ぎるなら「御話下さるかあるいはそれは小気味良くない」ということは誤っている fact19: もしもある物は取り辛いかまたは天元だとすれば頬張らない ; $hypothesis$ = 「あの共同体スホードは大口預金者でないしかつ巨岩でない」ということは間違いである ; $proof$ =
fact7 & fact9 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: ある物は誘発し易いということはない 事実2: 仮に「「その統合論は濃過ぎないけれど築き難い」ということは真実である」ということは成り立つということはないならこの倉庫・中は濃過ぎる 事実3: 「あの共同体スホードは大口預金者でないが巨岩だ」ということは成り立たない 事実4: 「造林でない」ものはあるとすると「あの共同体スホードは大口預金者だけど巨岩であるということはない」ということは事実と異なる 事実5: 「この体表は立ち読みしないかまたはそれは完了形でない」ということは成り立たないとすれば「あの共同体スホードは造林でない」ということは成り立つ 事実6: 小気味良くない物は取り辛いし射殺である 事実7: 「「造林でない」ということは成り立つ」物はある 事実8: もし仮に「造林であるということはない」物はあれば「あの共同体スホードは大口預金者でないけれど巨岩だ」ということは嘘である 事実9: 「造林でない」ものはあるとしたら「「あの共同体スホードは大口預金者でなくてそれに巨岩でない」ということは成り立たない」ということは成り立つ 事実10: なにがしかの物は造林である 事実11: もし仮になにがしかの物が造林でないとすれば大口預金者でないし更に巨岩であるということはない 事実12: 「あの共同体スホードは服務裁判所でないししかも巨岩だということはない」ということは成り立たない 事実13: 「あの共同体スホードは大口預金者だ一方で巨岩でない」ということは嘘だ 事実14: もし何かは余儀無いとすれば「それは立ち読みしないか完了形でない」ということは事実と異なる 事実15: 「大口預金者でない」物はある 事実16: もし「この会員総数は頬張らない」ということは成り立つとしたら「この体表は余儀無い」ということは確かである 事実17: 「この倉庫・中は御話下さるかあるいはそれは小気味良くない」ということは間違っているとしたら「この会員総数は小気味良くない」ということは正しい 事実18: もしこの倉庫・中は濃過ぎるなら「御話下さるかあるいはそれは小気味良くない」ということは誤っている 事実19: もしもある物は取り辛いかまたは天元だとすれば頬張らない 仮説: 「あの共同体スホードは大口預金者でないしかつ巨岩でない」ということは間違いである
1. 事実7と事実9から、仮説が導かれる よって、仮説が証明されました。
0.3
もし仮にこの蓮華温泉が喋り始めないとしたらそれは恐れ入らない
¬{B}{aa} -> ¬{C}{aa}
fact1: 仮になにがしかのものが喋り始めないとするとそれは恐れ入らない fact2: もしあの自陣は喋り始めないならば「南京路だ」ということは本当だ fact3: 把握し辛いものはすっごくない fact4: 「もしこの蓮華温泉が喋り始めるならこの蓮華温泉は恐れ入らない」ということは事実だ fact5: 生温いものは絶え間無くない fact6: 仮にこの蓮華温泉が喋り始めないとすればそれは恐れ入る fact7: 何らかの物は喋り始めないとすれば「恐れ入る」ということは間違っているということはない
fact1: (x): ¬{B}x -> ¬{C}x fact2: ¬{B}{cq} -> {I}{cq} fact3: (x): {D}x -> ¬{DD}x fact4: {B}{aa} -> ¬{C}{aa} fact5: (x): {JA}x -> ¬{HP}x fact6: ¬{B}{aa} -> {C}{aa} fact7: (x): ¬{B}x -> {C}x
[ "fact1 -> hypothesis;" ]
[ "fact1 -> hypothesis;" ]
null
null
[]
null
1
1
6
0
6
PROVED
null
PROVED
null
$facts$ = fact1: 仮になにがしかのものが喋り始めないとするとそれは恐れ入らない fact2: もしあの自陣は喋り始めないならば「南京路だ」ということは本当だ fact3: 把握し辛いものはすっごくない fact4: 「もしこの蓮華温泉が喋り始めるならこの蓮華温泉は恐れ入らない」ということは事実だ fact5: 生温いものは絶え間無くない fact6: 仮にこの蓮華温泉が喋り始めないとすればそれは恐れ入る fact7: 何らかの物は喋り始めないとすれば「恐れ入る」ということは間違っているということはない ; $hypothesis$ = もし仮にこの蓮華温泉が喋り始めないとしたらそれは恐れ入らない ; $proof$ =
fact1 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: 仮になにがしかのものが喋り始めないとするとそれは恐れ入らない 事実2: もしあの自陣は喋り始めないならば「南京路だ」ということは本当だ 事実3: 把握し辛いものはすっごくない 事実4: 「もしこの蓮華温泉が喋り始めるならこの蓮華温泉は恐れ入らない」ということは事実だ 事実5: 生温いものは絶え間無くない 事実6: 仮にこの蓮華温泉が喋り始めないとすればそれは恐れ入る 事実7: 何らかの物は喋り始めないとすれば「恐れ入る」ということは間違っているということはない 仮説: もし仮にこの蓮華温泉が喋り始めないとしたらそれは恐れ入らない
1. 事実1から、仮説が導かれる よって、仮説が証明されました。
0.3
「もしもこのイーグルが胸苦しいということはないならばあのイーグルは門付けするしそれに萎む」ということは間違いである
¬(¬{A}{aa} -> ({AA}{aa} & {AB}{aa}))
fact1: 「何らかの物は落とし掛ける」ということは成り立つとしたらそれは立案するしまた寒々しい fact2: この施設管理は復号化スクリプトだということはないとすれば「それは英英辞典だ」ということは本当だ fact3: 地平は真っ黒くて加えて聞かす fact4: もしも何らかのものはべと付かないとすれば嬉しい fact5: 胸苦しくないものは門付けするし更に萎む fact6: もし仮にこのオートポイエーシスが門付けしないとすれば貰うし加えてそれは呆気ない fact7: 仮に「このイーグルは大航海時代だ」ということは真実だとしたらそれは門付けするしおまけに復号化スクリプトである fact8: このイーグルが溶け難いとすれば胸苦しいしおまけに予測し易い fact9: なんらかのものは地平でないならそれは救命する fact10: 仮にこのイーグルが寄る辺無いとしたら陸橋であるししかも萎む fact11: 仮に何かは鉱区でないとすれば慎む fact12: 「満員御礼は問題提起するしおまけにレストアする」ということは事実だ fact13: もし「このイーグルは胸苦しい」ということは事実と異ならないならばそれは門付けするしまたそれは萎む fact14: 仮にこのコンクリート面は旨であるということはないなら萎む fact15: 胸苦しいものは門付けするし加えて萎む
fact1: (x): {EB}x -> ({HU}x & {CC}x) fact2: ¬{U}{dd} -> {JD}{dd} fact3: (x): {DS}x -> ({EK}x & {IT}x) fact4: (x): ¬{E}x -> {FP}x fact5: (x): ¬{A}x -> ({AA}x & {AB}x) fact6: ¬{AA}{c} -> ({GQ}{c} & {AD}{c}) fact7: {JE}{aa} -> ({AA}{aa} & {U}{aa}) fact8: {HK}{aa} -> ({A}{aa} & {HN}{aa}) fact9: (x): ¬{DS}x -> {CF}x fact10: {AC}{aa} -> ({BC}{aa} & {AB}{aa}) fact11: (x): ¬{AR}x -> {FS}x fact12: (x): {FT}x -> ({IL}x & {CQ}x) fact13: {A}{aa} -> ({AA}{aa} & {AB}{aa}) fact14: ¬{GI}{cl} -> {AB}{cl} fact15: (x): {A}x -> ({AA}x & {AB}x)
[ "fact5 -> hypothesis;" ]
[ "fact5 -> hypothesis;" ]
null
null
[]
null
1
1
14
0
14
DISPROVED
null
DISPROVED
null
$facts$ = fact1: 「何らかの物は落とし掛ける」ということは成り立つとしたらそれは立案するしまた寒々しい fact2: この施設管理は復号化スクリプトだということはないとすれば「それは英英辞典だ」ということは本当だ fact3: 地平は真っ黒くて加えて聞かす fact4: もしも何らかのものはべと付かないとすれば嬉しい fact5: 胸苦しくないものは門付けするし更に萎む fact6: もし仮にこのオートポイエーシスが門付けしないとすれば貰うし加えてそれは呆気ない fact7: 仮に「このイーグルは大航海時代だ」ということは真実だとしたらそれは門付けするしおまけに復号化スクリプトである fact8: このイーグルが溶け難いとすれば胸苦しいしおまけに予測し易い fact9: なんらかのものは地平でないならそれは救命する fact10: 仮にこのイーグルが寄る辺無いとしたら陸橋であるししかも萎む fact11: 仮に何かは鉱区でないとすれば慎む fact12: 「満員御礼は問題提起するしおまけにレストアする」ということは事実だ fact13: もし「このイーグルは胸苦しい」ということは事実と異ならないならばそれは門付けするしまたそれは萎む fact14: 仮にこのコンクリート面は旨であるということはないなら萎む fact15: 胸苦しいものは門付けするし加えて萎む ; $hypothesis$ = 「もしもこのイーグルが胸苦しいということはないならばあのイーグルは門付けするしそれに萎む」ということは間違いである ; $proof$ =
fact5 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: 「何らかの物は落とし掛ける」ということは成り立つとしたらそれは立案するしまた寒々しい 事実2: この施設管理は復号化スクリプトだということはないとすれば「それは英英辞典だ」ということは本当だ 事実3: 地平は真っ黒くて加えて聞かす 事実4: もしも何らかのものはべと付かないとすれば嬉しい 事実5: 胸苦しくないものは門付けするし更に萎む 事実6: もし仮にこのオートポイエーシスが門付けしないとすれば貰うし加えてそれは呆気ない 事実7: 仮に「このイーグルは大航海時代だ」ということは真実だとしたらそれは門付けするしおまけに復号化スクリプトである 事実8: このイーグルが溶け難いとすれば胸苦しいしおまけに予測し易い 事実9: なんらかのものは地平でないならそれは救命する 事実10: 仮にこのイーグルが寄る辺無いとしたら陸橋であるししかも萎む 事実11: 仮に何かは鉱区でないとすれば慎む 事実12: 「満員御礼は問題提起するしおまけにレストアする」ということは事実だ 事実13: もし「このイーグルは胸苦しい」ということは事実と異ならないならばそれは門付けするしまたそれは萎む 事実14: 仮にこのコンクリート面は旨であるということはないなら萎む 事実15: 胸苦しいものは門付けするし加えて萎む 仮説: 「もしもこのイーグルが胸苦しいということはないならばあのイーグルは門付けするしそれに萎む」ということは間違いである
1. 事実5から、仮説が否定される よって、仮説が否定されました。
0.3
「「「物狂おしくないけれど対抗出来る」ということは成り立たない」物はある」ということは間違いである
¬((Ex): ¬(¬{AA}x & {AB}x))
fact1: 「もしこの軸装は輝かしいということはないとすれば「この軸装は個体数でなくてしかも凛々しくない」ということは真実である」ということは確かだ fact2: 「「関西弁でない」物はあれば「この大宝令制下は出遅れるがそれは貿易摩擦であるということはない」ということは成り立たない」ということは事実である fact3: 凛々しくない物はマルチナショナル企業でないが御めでたい fact4: もし仮にこの軸装がマルチナショナル企業でないけど御めでたいとしたら「そのプードルは関西弁でない」ということは事実である fact5: 「しょぼくれないけど一工場な」ものはある fact6: 仮に何かはスタミナでないなら「三十秒以上でないけど集約出来る」ということは正しくない fact7: 「あのメタ認知は物狂おしくないがしかし対抗出来る」ということは嘘である fact8: この軸装は輝かしくない fact9: 「「赤キャベツであるし加えて立証す」ということは成り立たない」ものはある
fact1: ¬{I}{c} -> (¬{H}{c} & ¬{G}{c}) fact2: (x): ¬{D}x -> ¬({C}{a} & ¬{B}{a}) fact3: (x): ¬{G}x -> (¬{E}x & {F}x) fact4: (¬{E}{c} & {F}{c}) -> ¬{D}{b} fact5: (Ex): (¬{GE}x & {IU}x) fact6: (x): ¬{A}x -> ¬(¬{IG}x & {GU}x) fact7: ¬(¬{AA}{aa} & {AB}{aa}) fact8: ¬{I}{c} fact9: (Ex): ¬({EB}x & {GD}x)
[ "fact7 -> hypothesis;" ]
[ "fact7 -> hypothesis;" ]
「あのメタ認知は三十秒以上でない一方で集約出来る」ということは成り立たない
¬(¬{IG}{aa} & {GU}{aa})
[ "fact10 -> int1: もしもあのメタ認知はスタミナでないとすると「それは三十秒以上でないしさらにそれは集約出来る」ということは成り立たない; fact14 -> int2: もしもこの軸装が凛々しくないとすればそれはマルチナショナル企業でなくてその上御めでたい; fact13 & fact15 -> int3: この軸装は個体数でないしその上それは凛々しくない; int3 -> int4: この軸装は凛々しくない; int2 & int4 -> int5: この軸装はマルチナショナル企業でないがしかし御めでたい; fact11 & int5 -> int6: そのプードルは関西弁でない; int6 -> int7: 「関西弁でない」物はある; int7 & fact12 -> int8: 「この大宝令制下は出遅れるが貿易摩擦だということはない」ということは誤っている; int8 -> int9: 「「出遅れるけど貿易摩擦でない」ということは嘘である」ものはある;" ]
9
1
1
8
0
8
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: 「もしこの軸装は輝かしいということはないとすれば「この軸装は個体数でなくてしかも凛々しくない」ということは真実である」ということは確かだ fact2: 「「関西弁でない」物はあれば「この大宝令制下は出遅れるがそれは貿易摩擦であるということはない」ということは成り立たない」ということは事実である fact3: 凛々しくない物はマルチナショナル企業でないが御めでたい fact4: もし仮にこの軸装がマルチナショナル企業でないけど御めでたいとしたら「そのプードルは関西弁でない」ということは事実である fact5: 「しょぼくれないけど一工場な」ものはある fact6: 仮に何かはスタミナでないなら「三十秒以上でないけど集約出来る」ということは正しくない fact7: 「あのメタ認知は物狂おしくないがしかし対抗出来る」ということは嘘である fact8: この軸装は輝かしくない fact9: 「「赤キャベツであるし加えて立証す」ということは成り立たない」ものはある ; $hypothesis$ = 「「「物狂おしくないけれど対抗出来る」ということは成り立たない」物はある」ということは間違いである ; $proof$ =
fact7 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: 「もしこの軸装は輝かしいということはないとすれば「この軸装は個体数でなくてしかも凛々しくない」ということは真実である」ということは確かだ 事実2: 「「関西弁でない」物はあれば「この大宝令制下は出遅れるがそれは貿易摩擦であるということはない」ということは成り立たない」ということは事実である 事実3: 凛々しくない物はマルチナショナル企業でないが御めでたい 事実4: もし仮にこの軸装がマルチナショナル企業でないけど御めでたいとしたら「そのプードルは関西弁でない」ということは事実である 事実5: 「しょぼくれないけど一工場な」ものはある 事実6: 仮に何かはスタミナでないなら「三十秒以上でないけど集約出来る」ということは正しくない 事実7: 「あのメタ認知は物狂おしくないがしかし対抗出来る」ということは嘘である 事実8: この軸装は輝かしくない 事実9: 「「赤キャベツであるし加えて立証す」ということは成り立たない」ものはある 仮説: 「「「物狂おしくないけれど対抗出来る」ということは成り立たない」物はある」ということは間違いである
1. 事実7から、仮説が否定される よって、仮説が否定されました。
0.3
「その因果応報は伝習生だ一方で契約書でない」ということは誤りである
¬({AA}{a} & ¬{AB}{a})
fact1: 仮にその因果応報は女性らしくないなら「それは伝習生でかつ契約書である」ということは成り立たない fact2: 「その因果応報は女性らしいということはない」ということは誤っていない fact3: もし仮になにかは女性らしいとしたらそれは伝習生であるしそれは契約書でない fact4: 仮に「その因果応報は書院番・小姓組番だ」ということは成り立たないとすると「このガイドヘルプは女性らしいが見辛くない」ということは誤っている fact5: もし「その因果応報は書院番・小姓組番である一方で打ち消し合わない」ということは成り立たないなら書院番・小姓組番でない fact6: もしその因果応報はそそっかしくないとすると「それは契約書であるしおまけに淀み無くない」ということは偽である fact7: もしその因果応報は女性らしくないならば「それは伝習生だけれど契約書でない」ということは確かでない
fact1: ¬{A}{a} -> ¬({AA}{a} & {AB}{a}) fact2: ¬{A}{a} fact3: (x): {A}x -> ({AA}x & ¬{AB}x) fact4: ¬{B}{a} -> ¬({A}{bn} & ¬{AG}{bn}) fact5: ¬({B}{a} & ¬{D}{a}) -> ¬{B}{a} fact6: ¬{EP}{a} -> ¬({AB}{a} & ¬{AS}{a}) fact7: ¬{A}{a} -> ¬({AA}{a} & ¬{AB}{a})
[ "fact7 & fact2 -> hypothesis;" ]
[ "fact7 & fact2 -> hypothesis;" ]
「このガイドヘルプは女性らしい一方で見辛くない」ということは偽である
¬({A}{bn} & ¬{AG}{bn})
[]
5
1
1
5
0
5
PROVED
UNKNOWN
PROVED
UNKNOWN
$facts$ = fact1: 仮にその因果応報は女性らしくないなら「それは伝習生でかつ契約書である」ということは成り立たない fact2: 「その因果応報は女性らしいということはない」ということは誤っていない fact3: もし仮になにかは女性らしいとしたらそれは伝習生であるしそれは契約書でない fact4: 仮に「その因果応報は書院番・小姓組番だ」ということは成り立たないとすると「このガイドヘルプは女性らしいが見辛くない」ということは誤っている fact5: もし「その因果応報は書院番・小姓組番である一方で打ち消し合わない」ということは成り立たないなら書院番・小姓組番でない fact6: もしその因果応報はそそっかしくないとすると「それは契約書であるしおまけに淀み無くない」ということは偽である fact7: もしその因果応報は女性らしくないならば「それは伝習生だけれど契約書でない」ということは確かでない ; $hypothesis$ = 「その因果応報は伝習生だ一方で契約書でない」ということは誤りである ; $proof$ =
fact7 & fact2 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: 仮にその因果応報は女性らしくないなら「それは伝習生でかつ契約書である」ということは成り立たない 事実2: 「その因果応報は女性らしいということはない」ということは誤っていない 事実3: もし仮になにかは女性らしいとしたらそれは伝習生であるしそれは契約書でない 事実4: 仮に「その因果応報は書院番・小姓組番だ」ということは成り立たないとすると「このガイドヘルプは女性らしいが見辛くない」ということは誤っている 事実5: もし「その因果応報は書院番・小姓組番である一方で打ち消し合わない」ということは成り立たないなら書院番・小姓組番でない 事実6: もしその因果応報はそそっかしくないとすると「それは契約書であるしおまけに淀み無くない」ということは偽である 事実7: もしその因果応報は女性らしくないならば「それは伝習生だけれど契約書でない」ということは確かでない 仮説: 「その因果応報は伝習生だ一方で契約書でない」ということは誤りである
1. 事実7と事実2から、仮説が導かれる よって、仮説が証明されました。
0.3
この生産途中はみっとも可愛い
{C}{a}
fact1: とある物は創薬でない一方で夜間戦闘機だ fact2: 「みっとも可愛くない」ものはある fact3: その会計課員は違法犯罪活動であるかまたは幸福度である fact4: もしもなにがしかのものが創薬であるということはない一方で夜間戦闘機だとしたらこの生産途中はみっとも可愛い fact5: もし仮にあの食糧科学は差し上候うとすると「この縁組はコンデンサー素子でない一方で御美しい」ということは成り立つということはない fact6: もしもその会計課員が違法犯罪活動ならそれは発生機序だということはない fact7: もしもあの新型Iポッドは御美しいならば「この審査基準は創薬でないかあるいは夜間戦闘機だ」ということは事実と異なる fact8: もしも「「この縁組はコンデンサー素子であるということはないがそれは御美しい」ということは嘘でない」ということは間違っているならあの新型Iポッドは御美しい fact9: もしも何かは発生機序でないならそれはし難くない fact10: もしその年少児は差し上候うとしたら「あの食糧科学は差し上候う」ということは本当だ
fact1: (Ex): (¬{A}x & {B}x) fact2: (Ex): ¬{C}x fact3: ({J}{g} v {K}{g}) fact4: (x): (¬{A}x & {B}x) -> {C}{a} fact5: {F}{e} -> ¬(¬{E}{d} & {D}{d}) fact6: {J}{g} -> ¬{I}{g} fact7: {D}{c} -> ¬(¬{A}{b} v {B}{b}) fact8: ¬(¬{E}{d} & {D}{d}) -> {D}{c} fact9: (x): ¬{I}x -> ¬{H}x fact10: {F}{f} -> {F}{e}
[ "fact1 & fact4 -> hypothesis;" ]
[ "fact1 & fact4 -> hypothesis;" ]
この生産途中はみっとも可愛くない
¬{C}{a}
[ "fact16 -> int1: 仮にその会計課員は発生機序でないなら「し難い」ということは嘘である;" ]
11
1
1
8
0
8
PROVED
UNKNOWN
PROVED
UNKNOWN
$facts$ = fact1: とある物は創薬でない一方で夜間戦闘機だ fact2: 「みっとも可愛くない」ものはある fact3: その会計課員は違法犯罪活動であるかまたは幸福度である fact4: もしもなにがしかのものが創薬であるということはない一方で夜間戦闘機だとしたらこの生産途中はみっとも可愛い fact5: もし仮にあの食糧科学は差し上候うとすると「この縁組はコンデンサー素子でない一方で御美しい」ということは成り立つということはない fact6: もしもその会計課員が違法犯罪活動ならそれは発生機序だということはない fact7: もしもあの新型Iポッドは御美しいならば「この審査基準は創薬でないかあるいは夜間戦闘機だ」ということは事実と異なる fact8: もしも「「この縁組はコンデンサー素子であるということはないがそれは御美しい」ということは嘘でない」ということは間違っているならあの新型Iポッドは御美しい fact9: もしも何かは発生機序でないならそれはし難くない fact10: もしその年少児は差し上候うとしたら「あの食糧科学は差し上候う」ということは本当だ ; $hypothesis$ = この生産途中はみっとも可愛い ; $proof$ =
fact1 & fact4 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: とある物は創薬でない一方で夜間戦闘機だ 事実2: 「みっとも可愛くない」ものはある 事実3: その会計課員は違法犯罪活動であるかまたは幸福度である 事実4: もしもなにがしかのものが創薬であるということはない一方で夜間戦闘機だとしたらこの生産途中はみっとも可愛い 事実5: もし仮にあの食糧科学は差し上候うとすると「この縁組はコンデンサー素子でない一方で御美しい」ということは成り立つということはない 事実6: もしもその会計課員が違法犯罪活動ならそれは発生機序だということはない 事実7: もしもあの新型Iポッドは御美しいならば「この審査基準は創薬でないかあるいは夜間戦闘機だ」ということは事実と異なる 事実8: もしも「「この縁組はコンデンサー素子であるということはないがそれは御美しい」ということは嘘でない」ということは間違っているならあの新型Iポッドは御美しい 事実9: もしも何かは発生機序でないならそれはし難くない 事実10: もしその年少児は差し上候うとしたら「あの食糧科学は差し上候う」ということは本当だ 仮説: この生産途中はみっとも可愛い
1. 事実1と事実4から、仮説が導かれる よって、仮説が証明されました。
0.3
「もしあの農村民が厄介払いするならあの農村民はケレケレだけれどスイープでない」ということは本当でない
¬({A}{aa} -> ({AA}{aa} & ¬{AB}{aa}))
fact1: もしも何かは厄介払いすればそれはケレケレだがしかしスイープでない fact2: もし「この諸仏はスイープである」ということは成り立つとすると軍人らしいけれど有るらしくない fact3: 「もしあの農村民がCDショップであるとすればあの農村民は悪賢いけど女っぽいということはない」ということは真実だ fact4: 「もしもその気功は批評し合うとすれば「その気功は消臭剤だ一方でそれはケレケレでない」ということは成り立つ」ということは成り立つ fact5: もし仮にとある物が見据えれば寄せであるしまたし辛くない fact6: 危殆は玻璃であるが三億六千万双をするということはない fact7: もし仮にある物が痛いなら白ししそれに収まり切らない fact8: もしあの農村民が厄介払いすればそれはケレケレだしスイープである fact9: 何らかの物が厄介払いすればケレケレであるししかもスイープだ fact10: もし仮に何らかの物が厄介払いするとしたらそれはケレケレである fact11: 仮にあの農村民が厄介払いするならそれはケレケレである fact12: 仮にそのOVSは甘海老であるとしたらスイープであるしフィットする fact13: 「あの農村民は取り分である」ということは確かなら苦々しい一方で幼けなくない fact14: 仮にあの農村民が法律支援であるならケレケレであるしさらにそれは把握し易いということはない fact15: もしもその目付け役が陥り易いとすれば白み掛けるがしかし室橋等でない
fact1: (x): {A}x -> ({AA}x & ¬{AB}x) fact2: {AB}{bd} -> ({HK}{bd} & ¬{DF}{bd}) fact3: {DK}{aa} -> ({GR}{aa} & ¬{FK}{aa}) fact4: {EN}{r} -> ({DU}{r} & ¬{AA}{r}) fact5: (x): {ID}x -> ({M}x & ¬{CT}x) fact6: (x): {GN}x -> ({DO}x & ¬{DN}x) fact7: (x): {AR}x -> ({CJ}x & ¬{HT}x) fact8: {A}{aa} -> ({AA}{aa} & {AB}{aa}) fact9: (x): {A}x -> ({AA}x & {AB}x) fact10: (x): {A}x -> {AA}x fact11: {A}{aa} -> {AA}{aa} fact12: {EB}{du} -> ({AB}{du} & {K}{du}) fact13: {FP}{aa} -> ({GG}{aa} & ¬{AM}{aa}) fact14: {DC}{aa} -> ({AA}{aa} & ¬{B}{aa}) fact15: {FC}{g} -> ({BG}{g} & ¬{IB}{g})
[ "fact1 -> hypothesis;" ]
[ "fact1 -> hypothesis;" ]
null
null
[]
null
1
1
14
0
14
DISPROVED
null
DISPROVED
null
$facts$ = fact1: もしも何かは厄介払いすればそれはケレケレだがしかしスイープでない fact2: もし「この諸仏はスイープである」ということは成り立つとすると軍人らしいけれど有るらしくない fact3: 「もしあの農村民がCDショップであるとすればあの農村民は悪賢いけど女っぽいということはない」ということは真実だ fact4: 「もしもその気功は批評し合うとすれば「その気功は消臭剤だ一方でそれはケレケレでない」ということは成り立つ」ということは成り立つ fact5: もし仮にとある物が見据えれば寄せであるしまたし辛くない fact6: 危殆は玻璃であるが三億六千万双をするということはない fact7: もし仮にある物が痛いなら白ししそれに収まり切らない fact8: もしあの農村民が厄介払いすればそれはケレケレだしスイープである fact9: 何らかの物が厄介払いすればケレケレであるししかもスイープだ fact10: もし仮に何らかの物が厄介払いするとしたらそれはケレケレである fact11: 仮にあの農村民が厄介払いするならそれはケレケレである fact12: 仮にそのOVSは甘海老であるとしたらスイープであるしフィットする fact13: 「あの農村民は取り分である」ということは確かなら苦々しい一方で幼けなくない fact14: 仮にあの農村民が法律支援であるならケレケレであるしさらにそれは把握し易いということはない fact15: もしもその目付け役が陥り易いとすれば白み掛けるがしかし室橋等でない ; $hypothesis$ = 「もしあの農村民が厄介払いするならあの農村民はケレケレだけれどスイープでない」ということは本当でない ; $proof$ =
fact1 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: もしも何かは厄介払いすればそれはケレケレだがしかしスイープでない 事実2: もし「この諸仏はスイープである」ということは成り立つとすると軍人らしいけれど有るらしくない 事実3: 「もしあの農村民がCDショップであるとすればあの農村民は悪賢いけど女っぽいということはない」ということは真実だ 事実4: 「もしもその気功は批評し合うとすれば「その気功は消臭剤だ一方でそれはケレケレでない」ということは成り立つ」ということは成り立つ 事実5: もし仮にとある物が見据えれば寄せであるしまたし辛くない 事実6: 危殆は玻璃であるが三億六千万双をするということはない 事実7: もし仮にある物が痛いなら白ししそれに収まり切らない 事実8: もしあの農村民が厄介払いすればそれはケレケレだしスイープである 事実9: 何らかの物が厄介払いすればケレケレであるししかもスイープだ 事実10: もし仮に何らかの物が厄介払いするとしたらそれはケレケレである 事実11: 仮にあの農村民が厄介払いするならそれはケレケレである 事実12: 仮にそのOVSは甘海老であるとしたらスイープであるしフィットする 事実13: 「あの農村民は取り分である」ということは確かなら苦々しい一方で幼けなくない 事実14: 仮にあの農村民が法律支援であるならケレケレであるしさらにそれは把握し易いということはない 事実15: もしもその目付け役が陥り易いとすれば白み掛けるがしかし室橋等でない 仮説: 「もしあの農村民が厄介払いするならあの農村民はケレケレだけれどスイープでない」ということは本当でない
1. 事実1から、仮説が否定される よって、仮説が否定されました。
0.3
「この反GHQ運動は気弱くないけれど詠唱する」ということは成り立たない
¬(¬{AA}{aa} & {AB}{aa})
fact1: 気弱いということはない一方で詠唱するという物はない fact2: もしも画像入力信号が近付き難くないとしたらそれは概観出来る
fact1: (x): ¬(¬{AA}x & {AB}x) fact2: (x): ({C}x & ¬{B}x) -> {A}x
[ "fact1 -> hypothesis;" ]
[ "fact1 -> hypothesis;" ]
それは財源構成だということはないしそれにそれは手厳しいというものはない
(x): ¬(¬{JA}x & {CJ}x)
[ "fact3 -> int1: もし仮にその二百二十ページ参照は画像入力信号だがしかし近付き難くないならそれは概観出来る;" ]
5
1
1
1
0
1
PROVED
UNKNOWN
PROVED
UNKNOWN
$facts$ = fact1: 気弱いということはない一方で詠唱するという物はない fact2: もしも画像入力信号が近付き難くないとしたらそれは概観出来る ; $hypothesis$ = 「この反GHQ運動は気弱くないけれど詠唱する」ということは成り立たない ; $proof$ =
fact1 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: 気弱いということはない一方で詠唱するという物はない 事実2: もしも画像入力信号が近付き難くないとしたらそれは概観出来る 仮説: 「この反GHQ運動は気弱くないけれど詠唱する」ということは成り立たない
1. 事実1から、仮説が導かれる よって、仮説が証明されました。
0.3
「もし仮に「あの暦学は生易しいかもしくは減少し続けない」ということは事実と異なればあの暦学は研修室である」ということは偽である
¬(¬({AA}{aa} v ¬{AB}{aa}) -> {B}{aa})
fact1: 仮に「なんらかの物は生易しいかそれは減少し続けるかもしくは両方だ」ということは間違っているならそれは研修室だ fact2: もし仮にあの暦学が生易しいかもしくは減少し続けないとしたらそれは研修室だ fact3: 仮に何かは生易しいかあるいは減少し続けないかあるいは両方ならそれは研修室だ fact4: もしも「何らかのものは生易しいかもしくはそれは減少し続けないかもしくは両方ともだ」ということは偽であるならば研修室だ
fact1: (x): ¬({AA}x v {AB}x) -> {B}x fact2: ({AA}{aa} v ¬{AB}{aa}) -> {B}{aa} fact3: (x): ({AA}x v ¬{AB}x) -> {B}x fact4: (x): ¬({AA}x v ¬{AB}x) -> {B}x
[ "fact4 -> hypothesis;" ]
[ "fact4 -> hypothesis;" ]
null
null
[]
null
1
1
3
0
3
DISPROVED
null
DISPROVED
null
$facts$ = fact1: 仮に「なんらかの物は生易しいかそれは減少し続けるかもしくは両方だ」ということは間違っているならそれは研修室だ fact2: もし仮にあの暦学が生易しいかもしくは減少し続けないとしたらそれは研修室だ fact3: 仮に何かは生易しいかあるいは減少し続けないかあるいは両方ならそれは研修室だ fact4: もしも「何らかのものは生易しいかもしくはそれは減少し続けないかもしくは両方ともだ」ということは偽であるならば研修室だ ; $hypothesis$ = 「もし仮に「あの暦学は生易しいかもしくは減少し続けない」ということは事実と異なればあの暦学は研修室である」ということは偽である ; $proof$ =
fact4 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: 仮に「なんらかの物は生易しいかそれは減少し続けるかもしくは両方だ」ということは間違っているならそれは研修室だ 事実2: もし仮にあの暦学が生易しいかもしくは減少し続けないとしたらそれは研修室だ 事実3: 仮に何かは生易しいかあるいは減少し続けないかあるいは両方ならそれは研修室だ 事実4: もしも「何らかのものは生易しいかもしくはそれは減少し続けないかもしくは両方ともだ」ということは偽であるならば研修室だ 仮説: 「もし仮に「あの暦学は生易しいかもしくは減少し続けない」ということは事実と異なればあの暦学は研修室である」ということは偽である
1. 事実4から、仮説が否定される よって、仮説が否定されました。
0.3
あの念仏生活は伏さない
¬{B}{a}
fact1: あの指示文書が真っ暗くないとするとあの念仏生活は真っ暗い fact2: あの念仏生活は諦める fact3: そのアンケート調査結果は置き換える fact4: あの念仏生活は置き換えるしおまけにそれは伏す
fact1: ¬{FK}{b} -> {FK}{a} fact2: {EE}{a} fact3: {A}{f} fact4: ({A}{a} & {B}{a})
[ "fact4 -> hypothesis;" ]
[ "fact4 -> hypothesis;" ]
あの念仏生活は真っ暗くて支障無い
({FK}{a} & {BU}{a})
[]
6
1
1
3
0
3
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: あの指示文書が真っ暗くないとするとあの念仏生活は真っ暗い fact2: あの念仏生活は諦める fact3: そのアンケート調査結果は置き換える fact4: あの念仏生活は置き換えるしおまけにそれは伏す ; $hypothesis$ = あの念仏生活は伏さない ; $proof$ =
fact4 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: あの指示文書が真っ暗くないとするとあの念仏生活は真っ暗い 事実2: あの念仏生活は諦める 事実3: そのアンケート調査結果は置き換える 事実4: あの念仏生活は置き換えるしおまけにそれは伏す 仮説: あの念仏生活は伏さない
1. 事実4から、仮説が否定される よって、仮説が否定されました。
0.3
この数値以外は呼び出し音でない
¬{B}{a}
fact1: この数値以外は度し難い fact2: あのインターカレーションは呼び出し音である fact3: もしも「あの債券投資は条例改正でないしさらに移封しない」ということは成り立たないならば「それは移封する」ということは正しい fact4: 「「あの債券投資は条例改正でないしかつ移封しない」ということは成り立たない」ということは事実だ fact5: この数値以外は聞き取り難いしそれは追記する fact6: この統合型取り引き処理システムは呼び出し音だ fact7: 仮になにがしかのものは移封するとしたら「それは技能・表現であるかまたは形成し易くないかまたは両方である」ということは偽だ fact8: 「「技能・表現であるかあるいは形成し易くない」ということは成り立たない」ものがあるとするとこの中国式は活躍出来ない fact9: この数値以外は学生・生徒で更にそれは粘膜面だ fact10: その実戦向き御勧めコンボが働き易いしその上シュナップスだ fact11: この数値以外は聞き取り難い fact12: この数値以外は聞き取り難くて呼び出し音だ fact13: 聞き取り難くないものは慎み深くて更に太り難い
fact1: {IT}{a} fact2: {B}{aa} fact3: ¬(¬{H}{d} & ¬{G}{d}) -> {G}{d} fact4: ¬(¬{H}{d} & ¬{G}{d}) fact5: ({A}{a} & {FO}{a}) fact6: {B}{jh} fact7: (x): {G}x -> ¬({F}x v ¬{E}x) fact8: (x): ¬({F}x v ¬{E}x) -> ¬{D}{c} fact9: ({GJ}{a} & {S}{a}) fact10: ({ED}{ic} & {AT}{ic}) fact11: {A}{a} fact12: ({A}{a} & {B}{a}) fact13: (x): ¬{A}x -> ({EP}x & {M}x)
[ "fact12 -> hypothesis;" ]
[ "fact12 -> hypothesis;" ]
「この数値以外は呼び出し音でない」ということは事実だ
¬{B}{a}
[ "fact16 -> int1: もしもあの債券投資は移封すれば「それは技能・表現であるかもしくは形成し易いということはないかまたは両方ともである」ということは事実でない; fact17 & fact14 -> int2: あの債券投資は移封する; int1 & int2 -> int3: 「あの債券投資は技能・表現であるかそれは形成し易くないかまたはどちらもだ」ということは誤りである; int3 -> int4: 「「技能・表現であるか形成し易くない」ということは嘘な」物はある; int4 & fact15 -> int5: この中国式は活躍出来ない; int5 -> int6: 「活躍出来ない」ものはある;" ]
8
1
1
12
0
12
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: この数値以外は度し難い fact2: あのインターカレーションは呼び出し音である fact3: もしも「あの債券投資は条例改正でないしさらに移封しない」ということは成り立たないならば「それは移封する」ということは正しい fact4: 「「あの債券投資は条例改正でないしかつ移封しない」ということは成り立たない」ということは事実だ fact5: この数値以外は聞き取り難いしそれは追記する fact6: この統合型取り引き処理システムは呼び出し音だ fact7: 仮になにがしかのものは移封するとしたら「それは技能・表現であるかまたは形成し易くないかまたは両方である」ということは偽だ fact8: 「「技能・表現であるかあるいは形成し易くない」ということは成り立たない」ものがあるとするとこの中国式は活躍出来ない fact9: この数値以外は学生・生徒で更にそれは粘膜面だ fact10: その実戦向き御勧めコンボが働き易いしその上シュナップスだ fact11: この数値以外は聞き取り難い fact12: この数値以外は聞き取り難くて呼び出し音だ fact13: 聞き取り難くないものは慎み深くて更に太り難い ; $hypothesis$ = この数値以外は呼び出し音でない ; $proof$ =
fact12 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: この数値以外は度し難い 事実2: あのインターカレーションは呼び出し音である 事実3: もしも「あの債券投資は条例改正でないしさらに移封しない」ということは成り立たないならば「それは移封する」ということは正しい 事実4: 「「あの債券投資は条例改正でないしかつ移封しない」ということは成り立たない」ということは事実だ 事実5: この数値以外は聞き取り難いしそれは追記する 事実6: この統合型取り引き処理システムは呼び出し音だ 事実7: 仮になにがしかのものは移封するとしたら「それは技能・表現であるかまたは形成し易くないかまたは両方である」ということは偽だ 事実8: 「「技能・表現であるかあるいは形成し易くない」ということは成り立たない」ものがあるとするとこの中国式は活躍出来ない 事実9: この数値以外は学生・生徒で更にそれは粘膜面だ 事実10: その実戦向き御勧めコンボが働き易いしその上シュナップスだ 事実11: この数値以外は聞き取り難い 事実12: この数値以外は聞き取り難くて呼び出し音だ 事実13: 聞き取り難くないものは慎み深くて更に太り難い 仮説: この数値以外は呼び出し音でない
1. 事実12から、仮説が否定される よって、仮説が否定されました。
0.3
「あの妃達はアップリンクポートであるししかも大便だ」ということは事実と異なる
¬({A}{a} & {B}{a})
fact1: あの妃達はアップリンクポートだ fact2: もしも「とある物は憲法草案であるがそれは甲斐甲斐しかない」ということは誤りだとしたらそれは甲斐甲斐しい fact3: もしあの妃達が寝泊まりするということはない一方で見過ごせるならばあの極点は見過ごせる fact4: なにがしかの物は憲法草案でないとしたら「この弦さんは憲法草案である一方でそれは甲斐甲斐しかない」ということは間違っている fact5: もしこのデジタルIDがアップリンクポートでないとするとあの妃達は寝泊まりしないけれど見過ごせる fact6: あの妃達は大便だ fact7: もし何らかの物が溶け易いとするとそれはダブルチェックであるかもしくはそれは野暮ったくないかまたは両方ともである fact8: この入内は作業し易くない fact9: この弦さんはカトマンズ盆地でないとしたら「この低張尿は来談者中心療法である一方で意味痴呆でない」ということは間違いである fact10: もし仮になんらかの物がダブルチェックであるかまたは野暮ったくないかまたは両方ともであるとするとアップリンクポートでない fact11: 仮に「「粘っこくてかつ始動である」ということは偽である」ものはあるなら「この入内は粘っこくない」ということは正しい fact12: もし何かは粘っこくないしそれにそれが作業し易くないとしたらその極点は八雲琴である fact13: あるものが取り組み始めるとしたら溶け易い fact14: なんらかのものは憲法草案でない fact15: 甲斐甲斐しいものはカトマンズ盆地でない fact16: もしなにがしかのものは八雲琴であるならば「大便である」ということは事実である fact17: 「「粘っこいしその上始動である」ということは成り立たない」物はある fact18: この退職金規定は大便だ fact19: もし仮に「この低張尿は来談者中心療法である一方で意味痴呆でない」ということは成り立たないとすれば「このデジタルIDは取り組み始める」ということは成り立つ
fact1: {A}{a} fact2: (x): ¬({P}x & ¬{K}x) -> {K}x fact3: (¬{C}{a} & {EN}{a}) -> {EN}{an} fact4: (x): ¬{P}x -> ¬({P}{d} & ¬{K}{d}) fact5: ¬{A}{b} -> (¬{C}{a} & {EN}{a}) fact6: {B}{a} fact7: (x): {F}x -> ({D}x v ¬{E}x) fact8: ¬{N}{e} fact9: ¬{J}{d} -> ¬({I}{c} & ¬{H}{c}) fact10: (x): ({D}x v ¬{E}x) -> ¬{A}x fact11: (x): ¬({M}x & {Q}x) -> ¬{M}{e} fact12: (x): (¬{M}x & ¬{N}x) -> {L}{an} fact13: (x): {G}x -> {F}x fact14: (Ex): ¬{P}x fact15: (x): {K}x -> ¬{J}x fact16: (x): {L}x -> {B}x fact17: (Ex): ¬({M}x & {Q}x) fact18: {B}{ab} fact19: ¬({I}{c} & ¬{H}{c}) -> {G}{b}
[ "fact1 & fact6 -> hypothesis;" ]
[ "fact1 & fact6 -> hypothesis;" ]
その極点は大便でそれに見過ごせる
({B}{an} & {EN}{an})
[ "fact24 -> int1: もしその極点は八雲琴だとすれば「それは大便である」ということは成り立つ; fact30 & fact29 -> int2: この入内は粘っこくない; int2 & fact31 -> int3: この入内は粘っこくないしそれに作業し易くない; int3 -> int4: 「「粘っこいということはなくて作業し易くない」物はある」ということは成り立つ; int4 & fact20 -> int5: その極点は八雲琴だ; int1 & int5 -> int6: 「その極点は大便だ」ということは真実である; fact26 -> int7: もしこのデジタルIDがダブルチェックであるかあるいは野暮ったくないかあるいはどちらもだとするとそれはアップリンクポートでない; fact21 -> int8: 仮にこのデジタルIDが溶け易いならばそれはダブルチェックであるかあるいは野暮ったくない; fact34 -> int9: 仮にこのデジタルIDが取り組み始めるならそれは溶け易い; fact33 -> int10: もしもこの弦さんは甲斐甲斐しいとしたら「カトマンズ盆地だということはない」ということは偽でない; fact32 -> int11: もし「この弦さんは憲法草案であるがしかし甲斐甲斐しいということはない」ということは間違っているとしたらそれは甲斐甲斐しい; fact23 & fact28 -> int12: 「この弦さんは憲法草案だ一方で甲斐甲斐しいということはない」ということは誤りである; int11 & int12 -> int13: この弦さんは甲斐甲斐しい; int10 & int13 -> int14: この弦さんはカトマンズ盆地でない; fact27 & int14 -> int15: 「この低張尿は来談者中心療法であるけど意味痴呆でない」ということは本当であるということはない; fact22 & int15 -> int16: このデジタルIDは取り組み始める; int9 & int16 -> int17: 「このデジタルIDは溶け易くない」ということは誤っている; int8 & int17 -> int18: このデジタルIDはダブルチェックであるかもしくは野暮ったくないか両方ともである; int7 & int18 -> int19: 「このデジタルIDはアップリンクポートでない」ということは成り立つ; fact35 & int19 -> int20: あの妃達は寝泊まりしないけれど見過ごせる; fact25 & int20 -> int21: その極点は見過ごせる; int6 & int21 -> hypothesis;" ]
11
1
1
17
0
17
DISPROVED
PROVED
DISPROVED
PROVED
$facts$ = fact1: あの妃達はアップリンクポートだ fact2: もしも「とある物は憲法草案であるがそれは甲斐甲斐しかない」ということは誤りだとしたらそれは甲斐甲斐しい fact3: もしあの妃達が寝泊まりするということはない一方で見過ごせるならばあの極点は見過ごせる fact4: なにがしかの物は憲法草案でないとしたら「この弦さんは憲法草案である一方でそれは甲斐甲斐しかない」ということは間違っている fact5: もしこのデジタルIDがアップリンクポートでないとするとあの妃達は寝泊まりしないけれど見過ごせる fact6: あの妃達は大便だ fact7: もし何らかの物が溶け易いとするとそれはダブルチェックであるかもしくはそれは野暮ったくないかまたは両方ともである fact8: この入内は作業し易くない fact9: この弦さんはカトマンズ盆地でないとしたら「この低張尿は来談者中心療法である一方で意味痴呆でない」ということは間違いである fact10: もし仮になんらかの物がダブルチェックであるかまたは野暮ったくないかまたは両方ともであるとするとアップリンクポートでない fact11: 仮に「「粘っこくてかつ始動である」ということは偽である」ものはあるなら「この入内は粘っこくない」ということは正しい fact12: もし何かは粘っこくないしそれにそれが作業し易くないとしたらその極点は八雲琴である fact13: あるものが取り組み始めるとしたら溶け易い fact14: なんらかのものは憲法草案でない fact15: 甲斐甲斐しいものはカトマンズ盆地でない fact16: もしなにがしかのものは八雲琴であるならば「大便である」ということは事実である fact17: 「「粘っこいしその上始動である」ということは成り立たない」物はある fact18: この退職金規定は大便だ fact19: もし仮に「この低張尿は来談者中心療法である一方で意味痴呆でない」ということは成り立たないとすれば「このデジタルIDは取り組み始める」ということは成り立つ ; $hypothesis$ = 「あの妃達はアップリンクポートであるししかも大便だ」ということは事実と異なる ; $proof$ =
fact1 & fact6 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: あの妃達はアップリンクポートだ 事実2: もしも「とある物は憲法草案であるがそれは甲斐甲斐しかない」ということは誤りだとしたらそれは甲斐甲斐しい 事実3: もしあの妃達が寝泊まりするということはない一方で見過ごせるならばあの極点は見過ごせる 事実4: なにがしかの物は憲法草案でないとしたら「この弦さんは憲法草案である一方でそれは甲斐甲斐しかない」ということは間違っている 事実5: もしこのデジタルIDがアップリンクポートでないとするとあの妃達は寝泊まりしないけれど見過ごせる 事実6: あの妃達は大便だ 事実7: もし何らかの物が溶け易いとするとそれはダブルチェックであるかもしくはそれは野暮ったくないかまたは両方ともである 事実8: この入内は作業し易くない 事実9: この弦さんはカトマンズ盆地でないとしたら「この低張尿は来談者中心療法である一方で意味痴呆でない」ということは間違いである 事実10: もし仮になんらかの物がダブルチェックであるかまたは野暮ったくないかまたは両方ともであるとするとアップリンクポートでない 事実11: 仮に「「粘っこくてかつ始動である」ということは偽である」ものはあるなら「この入内は粘っこくない」ということは正しい 事実12: もし何かは粘っこくないしそれにそれが作業し易くないとしたらその極点は八雲琴である 事実13: あるものが取り組み始めるとしたら溶け易い 事実14: なんらかのものは憲法草案でない 事実15: 甲斐甲斐しいものはカトマンズ盆地でない 事実16: もしなにがしかのものは八雲琴であるならば「大便である」ということは事実である 事実17: 「「粘っこいしその上始動である」ということは成り立たない」物はある 事実18: この退職金規定は大便だ 事実19: もし仮に「この低張尿は来談者中心療法である一方で意味痴呆でない」ということは成り立たないとすれば「このデジタルIDは取り組み始める」ということは成り立つ 仮説: 「あの妃達はアップリンクポートであるししかも大便だ」ということは事実と異なる
1. 事実1と事実6から、仮説が否定される よって、仮説が否定されました。
0.3
もし仮にあの鏡像対称性は運動中枢であるならそれは損なうか農繁期でないかまたはどちらもだ
{A}{aa} -> ({AA}{aa} v ¬{AB}{aa})
fact1: あの鏡像対称性が断続するとするとそれは引き手繰るかそれは運動中枢でないかあるいはどちらもだ fact2: 仮に何かは無線局であるとすればそれは解釈するかもしくは農繁期でないか両方ともだ fact3: もし仮にそのプライオリティが浮き出るなら愛撫するか農繁期である fact4: もし仮にこのサプライ・チェーンが論理値であるならそれは圧縮フォーマットであるかもしくは運動中枢でないかどちらもだ fact5: もしもあるものが非常災害なら洗礼名であるかもしくは増減しないか両方である fact6: もし仮になにかは区別し易いとしたらそれは口さがないかもしくは御偉いということはないかもしくは両方ともである fact7: もしも「あの鏡像対称性は空だ」ということは真実なら「合併し易いかまたは命令するということはないかあるいは両方ともである」ということは確かだ fact8: もし仮になんらかの物が御出でるとすれば水溜まり面であるかまたはそれは練習時間だということはないかあるいはどちらもである fact9: 「あのメタデータは運動中枢だということはない」ということは成り立たないならば愛撫するかあるいは琉球列島でないか両方ともである fact10: もし仮にあの鏡像対称性が運動中枢であるとするとそれは損なうか農繁期だ fact11: 運動中枢は損なうかもしくは農繁期でないかあるいは両方ともだ fact12: もしあの鏡像対称性は検討し始めるとしたら「それは農繁期であるかもしくは干し上げる」ということは正しい
fact1: {CO}{aa} -> ({IP}{aa} v ¬{A}{aa}) fact2: (x): {EP}x -> ({IE}x v ¬{AB}x) fact3: {JE}{al} -> ({AE}{al} v {AB}{al}) fact4: {HN}{ei} -> ({AQ}{ei} v ¬{A}{ei}) fact5: (x): {FK}x -> ({BM}x v ¬{CG}x) fact6: (x): {FO}x -> ({P}x v ¬{HS}x) fact7: {HC}{aa} -> ({HH}{aa} v ¬{CR}{aa}) fact8: (x): {CB}x -> ({AI}x v ¬{BC}x) fact9: {A}{ct} -> ({AE}{ct} v ¬{ET}{ct}) fact10: {A}{aa} -> ({AA}{aa} v {AB}{aa}) fact11: (x): {A}x -> ({AA}x v ¬{AB}x) fact12: {FI}{aa} -> ({AB}{aa} v {FT}{aa})
[ "fact11 -> hypothesis;" ]
[ "fact11 -> hypothesis;" ]
仮にこの意見書が無線局だとすればそれは解釈するかそれは農繁期でないか両方ともだ
{EP}{cj} -> ({IE}{cj} v ¬{AB}{cj})
[ "fact13 -> hypothesis;" ]
1
1
1
11
0
11
PROVED
PROVED
PROVED
PROVED
$facts$ = fact1: あの鏡像対称性が断続するとするとそれは引き手繰るかそれは運動中枢でないかあるいはどちらもだ fact2: 仮に何かは無線局であるとすればそれは解釈するかもしくは農繁期でないか両方ともだ fact3: もし仮にそのプライオリティが浮き出るなら愛撫するか農繁期である fact4: もし仮にこのサプライ・チェーンが論理値であるならそれは圧縮フォーマットであるかもしくは運動中枢でないかどちらもだ fact5: もしもあるものが非常災害なら洗礼名であるかもしくは増減しないか両方である fact6: もし仮になにかは区別し易いとしたらそれは口さがないかもしくは御偉いということはないかもしくは両方ともである fact7: もしも「あの鏡像対称性は空だ」ということは真実なら「合併し易いかまたは命令するということはないかあるいは両方ともである」ということは確かだ fact8: もし仮になんらかの物が御出でるとすれば水溜まり面であるかまたはそれは練習時間だということはないかあるいはどちらもである fact9: 「あのメタデータは運動中枢だということはない」ということは成り立たないならば愛撫するかあるいは琉球列島でないか両方ともである fact10: もし仮にあの鏡像対称性が運動中枢であるとするとそれは損なうか農繁期だ fact11: 運動中枢は損なうかもしくは農繁期でないかあるいは両方ともだ fact12: もしあの鏡像対称性は検討し始めるとしたら「それは農繁期であるかもしくは干し上げる」ということは正しい ; $hypothesis$ = もし仮にあの鏡像対称性は運動中枢であるならそれは損なうか農繁期でないかまたはどちらもだ ; $proof$ =
fact11 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: あの鏡像対称性が断続するとするとそれは引き手繰るかそれは運動中枢でないかあるいはどちらもだ 事実2: 仮に何かは無線局であるとすればそれは解釈するかもしくは農繁期でないか両方ともだ 事実3: もし仮にそのプライオリティが浮き出るなら愛撫するか農繁期である 事実4: もし仮にこのサプライ・チェーンが論理値であるならそれは圧縮フォーマットであるかもしくは運動中枢でないかどちらもだ 事実5: もしもあるものが非常災害なら洗礼名であるかもしくは増減しないか両方である 事実6: もし仮になにかは区別し易いとしたらそれは口さがないかもしくは御偉いということはないかもしくは両方ともである 事実7: もしも「あの鏡像対称性は空だ」ということは真実なら「合併し易いかまたは命令するということはないかあるいは両方ともである」ということは確かだ 事実8: もし仮になんらかの物が御出でるとすれば水溜まり面であるかまたはそれは練習時間だということはないかあるいはどちらもである 事実9: 「あのメタデータは運動中枢だということはない」ということは成り立たないならば愛撫するかあるいは琉球列島でないか両方ともである 事実10: もし仮にあの鏡像対称性が運動中枢であるとするとそれは損なうか農繁期だ 事実11: 運動中枢は損なうかもしくは農繁期でないかあるいは両方ともだ 事実12: もしあの鏡像対称性は検討し始めるとしたら「それは農繁期であるかもしくは干し上げる」ということは正しい 仮説: もし仮にあの鏡像対称性は運動中枢であるならそれは損なうか農繁期でないかまたはどちらもだ
1. 事実11から、仮説が導かれる よって、仮説が証明されました。
0.3
「「「掛かり過ぎるしし辛い」ということは成り立たない」ものはある」ということは嘘である
¬((Ex): ¬({AA}x & {AB}x))
fact1: 「「寄せ書きであるしさらに混入し易い」ということは偽な」ものはある fact2: もし仮にある物はすぐるとすれば「事欠くということはないけれどバーベルだ」ということは成り立たない fact3: 「「納得し易いしおまけに具備する」ということは偽な」ものはある fact4: 仮に「「事欠かなくてしかもバーベルだ」ということは偽である」物があればこの旧名は準拠性でない fact5: もし仮にある物が姫路城でないとすればそれはすぐるしおまけに図々しい fact6: あの医療記録は姫路城であるということはない fact7: もしも何かは準拠性でないとしたら「長ずし混入し易い」ということは誤りだ fact8: 「この専門課程はし辛くて加えてそれは書き上がる」ということは成り立たない fact9: 「その兵庫県立工業技術センターは掛かり過ぎるし励行する」ということは間違いだ fact10: 「この専門課程は掛かり過ぎるしさらにし辛い」ということは誤りだ fact11: 「「土地条令だしそれにとろい」ということは成り立たない」物はある fact12: 「掛かり過ぎるしし辛い」ものはある
fact1: (Ex): ¬({FQ}x & {P}x) fact2: (x): {D}x -> ¬(¬{B}x & {C}x) fact3: (Ex): ¬({AN}x & {BJ}x) fact4: (x): ¬(¬{B}x & {C}x) -> ¬{A}{a} fact5: (x): ¬{F}x -> ({D}x & {E}x) fact6: ¬{F}{b} fact7: (x): ¬{A}x -> ¬({FT}x & {P}x) fact8: ¬({AB}{aa} & {FF}{aa}) fact9: ¬({AA}{dd} & {FS}{dd}) fact10: ¬({AA}{aa} & {AB}{aa}) fact11: (Ex): ¬({AF}x & {BB}x) fact12: (Ex): ({AA}x & {AB}x)
[ "fact10 -> hypothesis;" ]
[ "fact10 -> hypothesis;" ]
「「長ずし混入し易い」ということは間違っている」物はある
(Ex): ¬({FT}x & {P}x)
[ "fact17 -> int1: この旧名は準拠性だということはないなら「それは長ずしかつ混入し易い」ということは事実と異なる; fact13 -> int2: もしもあの医療記録はすぐるとすると「事欠かなくてまたバーベルである」ということは偽だ; fact15 -> int3: 仮にあの医療記録が姫路城でないとするとそれはすぐるしまたそれは図々しい; int3 & fact16 -> int4: あの医療記録はすぐるしおまけに図々しい; int4 -> int5: あの医療記録はすぐる; int2 & int5 -> int6: 「あの医療記録は事欠かないけどバーベルだ」ということは誤りだ; int6 -> int7: 「「事欠かなくておまけにバーベルである」ということは間違っている」ものはある; int7 & fact14 -> int8: この旧名は準拠性でない; int1 & int8 -> int9: 「この旧名は長ずし混入し易い」ということは成り立たない; int9 -> hypothesis;" ]
8
1
1
11
0
11
DISPROVED
PROVED
DISPROVED
PROVED
$facts$ = fact1: 「「寄せ書きであるしさらに混入し易い」ということは偽な」ものはある fact2: もし仮にある物はすぐるとすれば「事欠くということはないけれどバーベルだ」ということは成り立たない fact3: 「「納得し易いしおまけに具備する」ということは偽な」ものはある fact4: 仮に「「事欠かなくてしかもバーベルだ」ということは偽である」物があればこの旧名は準拠性でない fact5: もし仮にある物が姫路城でないとすればそれはすぐるしおまけに図々しい fact6: あの医療記録は姫路城であるということはない fact7: もしも何かは準拠性でないとしたら「長ずし混入し易い」ということは誤りだ fact8: 「この専門課程はし辛くて加えてそれは書き上がる」ということは成り立たない fact9: 「その兵庫県立工業技術センターは掛かり過ぎるし励行する」ということは間違いだ fact10: 「この専門課程は掛かり過ぎるしさらにし辛い」ということは誤りだ fact11: 「「土地条令だしそれにとろい」ということは成り立たない」物はある fact12: 「掛かり過ぎるしし辛い」ものはある ; $hypothesis$ = 「「「掛かり過ぎるしし辛い」ということは成り立たない」ものはある」ということは嘘である ; $proof$ =
fact10 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: 「「寄せ書きであるしさらに混入し易い」ということは偽な」ものはある 事実2: もし仮にある物はすぐるとすれば「事欠くということはないけれどバーベルだ」ということは成り立たない 事実3: 「「納得し易いしおまけに具備する」ということは偽な」ものはある 事実4: 仮に「「事欠かなくてしかもバーベルだ」ということは偽である」物があればこの旧名は準拠性でない 事実5: もし仮にある物が姫路城でないとすればそれはすぐるしおまけに図々しい 事実6: あの医療記録は姫路城であるということはない 事実7: もしも何かは準拠性でないとしたら「長ずし混入し易い」ということは誤りだ 事実8: 「この専門課程はし辛くて加えてそれは書き上がる」ということは成り立たない 事実9: 「その兵庫県立工業技術センターは掛かり過ぎるし励行する」ということは間違いだ 事実10: 「この専門課程は掛かり過ぎるしさらにし辛い」ということは誤りだ 事実11: 「「土地条令だしそれにとろい」ということは成り立たない」物はある 事実12: 「掛かり過ぎるしし辛い」ものはある 仮説: 「「「掛かり過ぎるしし辛い」ということは成り立たない」ものはある」ということは嘘である
1. 事実10から、仮説が否定される よって、仮説が否定されました。
0.3
「「もし仮に見境無いとすれば「「ディフェンス体型でないかもしくは局限する」ということは成り立つ」ということは誤りである」ものはある」ということは誤っている
¬((Ex): {A}x -> ¬(¬{AA}x v {AB}x))
fact1: 「仮に財政学だとすれば限り無しないかまたは数学的部分であるかあるいは両方な」ものはある fact2: もし仮にその得物が発生し易いとすればそれはディフェンス体型でないかもしくはそれは顕在化し易いかまたはどちらもである fact3: 「もし仮に小さいとすると取り違える」物はある fact4: もしその得物が見境無いとしたらディフェンス体型だ fact5: 「仮に過つとしたら十文字であるということはないかまたは小さいかまたは両方な」ものはある fact6: 仮にその得物はあどけないならば「御用意でないかあるいは限り無し」ということは成り立たない fact7: 仮にその校庭がディフェンス体型であるなら螺鈿でないかあるいは慌ただしいかどちらもだ fact8: もし仮にその得物は静まり返るとしたら「それは見境無くないかあるいはそれは数学的部分であるかもしくは両方だ」ということは成り立たない fact9: もしその得物が易しいなら打った切るということはないかもしくはそれは見境無いか両方ともである fact10: 「もし仮に処遇すれば「相待たないかまたはMIPであるかまたは両方だ」ということは成り立たない」ものはある fact11: 「もし仮に「見難くない」ということは誤っているとすれば付け入る」ものはある fact12: 「従事すなら「解明出来るということはないか快い」ということは正しくない」物はある fact13: もし仮にあの高利貸しは言い合うなら「飛び火しないかそれは誇らしいかまたは両方ともである」ということは事実と異なる fact14: 「もし巻き起こるとすれば「婬臭である」ということは真実な」物はある fact15: 何らかの物はクロスすれば「それは読み難いということはないかもしくは忍ばすかまたは両方ともだ」ということは成り立たない fact16: 「もし仮にバランス良いならば垣間見ない」ものはある fact17: その得物がメゾ・ソプラノであるとしたらそれは局限しないかもしくはそれは○月○日であるか両方だ fact18: 「上がり仕舞いであるなら飲み易くないかまたは週給である」物はある fact19: 「見境無いとすれば「ディフェンス体型であるかあるいは局限するかもしくは両方だ」ということは確かでない」物はある fact20: 「もし仮にその得物は見境無いならば「その得物はディフェンス体型でないかあるいは局限するかまたは両方である」ということは成り立たない」ということは成り立つ
fact1: (Ex): {DH}x -> (¬{IM}x v {FT}x) fact2: {JC}{aa} -> (¬{AA}{aa} v {AN}{aa}) fact3: (Ex): {FJ}x -> {AE}x fact4: {A}{aa} -> {AA}{aa} fact5: (Ex): {BM}x -> (¬{BU}x v {FJ}x) fact6: {DF}{aa} -> ¬(¬{GU}{aa} v {IM}{aa}) fact7: {AA}{l} -> (¬{GA}{l} v {IB}{l}) fact8: {EF}{aa} -> ¬(¬{A}{aa} v {FT}{aa}) fact9: {BS}{aa} -> (¬{CU}{aa} v {A}{aa}) fact10: (Ex): {CB}x -> ¬(¬{CN}x v {FH}x) fact11: (Ex): {AM}x -> {AQ}x fact12: (Ex): {DI}x -> ¬(¬{GQ}x v {CJ}x) fact13: {DN}{ei} -> ¬(¬{ES}{ei} v {FC}{ei}) fact14: (Ex): {FM}x -> {IH}x fact15: (x): {HK}x -> ¬(¬{BL}x v {DG}x) fact16: (Ex): {GF}x -> ¬{HD}x fact17: {JF}{aa} -> (¬{AB}{aa} v {FP}{aa}) fact18: (Ex): {BA}x -> (¬{EP}x v {K}x) fact19: (Ex): {A}x -> ¬({AA}x v {AB}x) fact20: {A}{aa} -> ¬(¬{AA}{aa} v {AB}{aa})
[ "fact20 -> hypothesis;" ]
[ "fact20 -> hypothesis;" ]
もし仮にその得物はクロスするとすると「それは読み難くないかまたは忍ばす」ということは誤りである
{HK}{aa} -> ¬(¬{BL}{aa} v {DG}{aa})
[ "fact21 -> hypothesis;" ]
1
1
1
19
0
19
DISPROVED
PROVED
DISPROVED
PROVED
$facts$ = fact1: 「仮に財政学だとすれば限り無しないかまたは数学的部分であるかあるいは両方な」ものはある fact2: もし仮にその得物が発生し易いとすればそれはディフェンス体型でないかもしくはそれは顕在化し易いかまたはどちらもである fact3: 「もし仮に小さいとすると取り違える」物はある fact4: もしその得物が見境無いとしたらディフェンス体型だ fact5: 「仮に過つとしたら十文字であるということはないかまたは小さいかまたは両方な」ものはある fact6: 仮にその得物はあどけないならば「御用意でないかあるいは限り無し」ということは成り立たない fact7: 仮にその校庭がディフェンス体型であるなら螺鈿でないかあるいは慌ただしいかどちらもだ fact8: もし仮にその得物は静まり返るとしたら「それは見境無くないかあるいはそれは数学的部分であるかもしくは両方だ」ということは成り立たない fact9: もしその得物が易しいなら打った切るということはないかもしくはそれは見境無いか両方ともである fact10: 「もし仮に処遇すれば「相待たないかまたはMIPであるかまたは両方だ」ということは成り立たない」ものはある fact11: 「もし仮に「見難くない」ということは誤っているとすれば付け入る」ものはある fact12: 「従事すなら「解明出来るということはないか快い」ということは正しくない」物はある fact13: もし仮にあの高利貸しは言い合うなら「飛び火しないかそれは誇らしいかまたは両方ともである」ということは事実と異なる fact14: 「もし巻き起こるとすれば「婬臭である」ということは真実な」物はある fact15: 何らかの物はクロスすれば「それは読み難いということはないかもしくは忍ばすかまたは両方ともだ」ということは成り立たない fact16: 「もし仮にバランス良いならば垣間見ない」ものはある fact17: その得物がメゾ・ソプラノであるとしたらそれは局限しないかもしくはそれは○月○日であるか両方だ fact18: 「上がり仕舞いであるなら飲み易くないかまたは週給である」物はある fact19: 「見境無いとすれば「ディフェンス体型であるかあるいは局限するかもしくは両方だ」ということは確かでない」物はある fact20: 「もし仮にその得物は見境無いならば「その得物はディフェンス体型でないかあるいは局限するかまたは両方である」ということは成り立たない」ということは成り立つ ; $hypothesis$ = 「「もし仮に見境無いとすれば「「ディフェンス体型でないかもしくは局限する」ということは成り立つ」ということは誤りである」ものはある」ということは誤っている ; $proof$ =
fact20 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: 「仮に財政学だとすれば限り無しないかまたは数学的部分であるかあるいは両方な」ものはある 事実2: もし仮にその得物が発生し易いとすればそれはディフェンス体型でないかもしくはそれは顕在化し易いかまたはどちらもである 事実3: 「もし仮に小さいとすると取り違える」物はある 事実4: もしその得物が見境無いとしたらディフェンス体型だ 事実5: 「仮に過つとしたら十文字であるということはないかまたは小さいかまたは両方な」ものはある 事実6: 仮にその得物はあどけないならば「御用意でないかあるいは限り無し」ということは成り立たない 事実7: 仮にその校庭がディフェンス体型であるなら螺鈿でないかあるいは慌ただしいかどちらもだ 事実8: もし仮にその得物は静まり返るとしたら「それは見境無くないかあるいはそれは数学的部分であるかもしくは両方だ」ということは成り立たない 事実9: もしその得物が易しいなら打った切るということはないかもしくはそれは見境無いか両方ともである 事実10: 「もし仮に処遇すれば「相待たないかまたはMIPであるかまたは両方だ」ということは成り立たない」ものはある 事実11: 「もし仮に「見難くない」ということは誤っているとすれば付け入る」ものはある 事実12: 「従事すなら「解明出来るということはないか快い」ということは正しくない」物はある 事実13: もし仮にあの高利貸しは言い合うなら「飛び火しないかそれは誇らしいかまたは両方ともである」ということは事実と異なる 事実14: 「もし巻き起こるとすれば「婬臭である」ということは真実な」物はある 事実15: 何らかの物はクロスすれば「それは読み難いということはないかもしくは忍ばすかまたは両方ともだ」ということは成り立たない 事実16: 「もし仮にバランス良いならば垣間見ない」ものはある 事実17: その得物がメゾ・ソプラノであるとしたらそれは局限しないかもしくはそれは○月○日であるか両方だ 事実18: 「上がり仕舞いであるなら飲み易くないかまたは週給である」物はある 事実19: 「見境無いとすれば「ディフェンス体型であるかあるいは局限するかもしくは両方だ」ということは確かでない」物はある 事実20: 「もし仮にその得物は見境無いならば「その得物はディフェンス体型でないかあるいは局限するかまたは両方である」ということは成り立たない」ということは成り立つ 仮説: 「「もし仮に見境無いとすれば「「ディフェンス体型でないかもしくは局限する」ということは成り立つ」ということは誤りである」ものはある」ということは誤っている
1. 事実20から、仮説が否定される よって、仮説が否定されました。
0.3
「あの日用雑貨は渾名しないかもしくはデータベース関数でないかもしくはどちらもである」ということは成り立たない
¬(¬{AA}{a} v ¬{AB}{a})
fact1: あの日用雑貨は渾名しないかもしくはデータベース関数であるかあるいは両方である fact2: あの日用雑貨は渾名するかあるいはデータベース関数だということはないかあるいはどちらもである fact3: あの日用雑貨は渾名しないかもしくはデータベース関数でないかまたは両方だ fact4: 仮に「なにかは一内容でなくて脂っぽくない」ということは偽であるならばそれは運材車だ fact5: あの日用雑貨はデータベース関数でないかもしくはスポット溶接するか両方ともだ fact6: もし仮になにかは殺生でないとすれば皮側で加えて運材車だ fact7: もしあるものは皮側でないなら「それは渾名しないかあるいはデータベース関数でないかまたは両方ともである」ということは正しくない fact8: もし仮にその刀は味わわすとすれば「それは闖入する」ということは確かだ fact9: その刀は闖入するなら「話し辛くない」ということは事実である fact10: 皮側はブロー成型でないかまたは移動相であるということはないか両方だ fact11: あの日用雑貨は攻撃力アップでないかあるいは渾名しないかもしくは両方である fact12: その刀は味わわす fact13: もしも「その東半部は殺生だがしかし皮側でない」ということは嘘であるならばあの日用雑貨は皮側でない fact14: 話し辛くないものは覚え直すしおまけに一内容だ fact15: もし仮にそのボストンバッグは運材車だとしたら「その東半部は殺生であるがしかし皮側でない」ということは正しくない
fact1: (¬{AA}{a} v {AB}{a}) fact2: ({AA}{a} v ¬{AB}{a}) fact3: (¬{AA}{a} v ¬{AB}{a}) fact4: (x): ¬(¬{D}x & ¬{E}x) -> {B}x fact5: (¬{AB}{a} v {BC}{a}) fact6: (x): ¬{C}x -> ({A}x & {B}x) fact7: (x): ¬{A}x -> ¬(¬{AA}x v ¬{AB}x) fact8: {I}{d} -> {H}{d} fact9: {H}{d} -> ¬{G}{d} fact10: (x): {A}x -> (¬{IS}x v ¬{DL}x) fact11: (¬{BA}{a} v ¬{AA}{a}) fact12: {I}{d} fact13: ¬({C}{b} & ¬{A}{b}) -> ¬{A}{a} fact14: (x): ¬{G}x -> ({F}x & {D}x) fact15: {B}{c} -> ¬({C}{b} & ¬{A}{b})
[ "fact3 -> hypothesis;" ]
[ "fact3 -> hypothesis;" ]
「あの日用雑貨は渾名しないかデータベース関数でないかあるいは両方である」ということは成り立たない
¬(¬{AA}{a} v ¬{AB}{a})
[ "fact19 -> int1: あの日用雑貨は皮側でないならば「渾名しないかデータベース関数でない」ということは誤っている; fact21 -> int2: 「そのボストンバッグは一内容でないしおまけに脂っぽくない」ということは事実でないとすると運材車である; fact17 -> int3: 「もしもその刀が話し辛くないとすればその刀は覚え直すし加えて一内容である」ということは正しい; fact18 & fact23 -> int4: 「その刀は闖入する」ということは事実である; fact22 & int4 -> int5: 「その刀は話し辛くない」ということは真実である; int3 & int5 -> int6: その刀は覚え直すしさらにそれは一内容である; int6 -> int7: その刀は一内容である; int7 -> int8: 何らかの物は一内容だ;" ]
10
1
0
14
0
14
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: あの日用雑貨は渾名しないかもしくはデータベース関数であるかあるいは両方である fact2: あの日用雑貨は渾名するかあるいはデータベース関数だということはないかあるいはどちらもである fact3: あの日用雑貨は渾名しないかもしくはデータベース関数でないかまたは両方だ fact4: 仮に「なにかは一内容でなくて脂っぽくない」ということは偽であるならばそれは運材車だ fact5: あの日用雑貨はデータベース関数でないかもしくはスポット溶接するか両方ともだ fact6: もし仮になにかは殺生でないとすれば皮側で加えて運材車だ fact7: もしあるものは皮側でないなら「それは渾名しないかあるいはデータベース関数でないかまたは両方ともである」ということは正しくない fact8: もし仮にその刀は味わわすとすれば「それは闖入する」ということは確かだ fact9: その刀は闖入するなら「話し辛くない」ということは事実である fact10: 皮側はブロー成型でないかまたは移動相であるということはないか両方だ fact11: あの日用雑貨は攻撃力アップでないかあるいは渾名しないかもしくは両方である fact12: その刀は味わわす fact13: もしも「その東半部は殺生だがしかし皮側でない」ということは嘘であるならばあの日用雑貨は皮側でない fact14: 話し辛くないものは覚え直すしおまけに一内容だ fact15: もし仮にそのボストンバッグは運材車だとしたら「その東半部は殺生であるがしかし皮側でない」ということは正しくない ; $hypothesis$ = 「あの日用雑貨は渾名しないかもしくはデータベース関数でないかもしくはどちらもである」ということは成り立たない ; $proof$ =
fact3 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: あの日用雑貨は渾名しないかもしくはデータベース関数であるかあるいは両方である 事実2: あの日用雑貨は渾名するかあるいはデータベース関数だということはないかあるいはどちらもである 事実3: あの日用雑貨は渾名しないかもしくはデータベース関数でないかまたは両方だ 事実4: 仮に「なにかは一内容でなくて脂っぽくない」ということは偽であるならばそれは運材車だ 事実5: あの日用雑貨はデータベース関数でないかもしくはスポット溶接するか両方ともだ 事実6: もし仮になにかは殺生でないとすれば皮側で加えて運材車だ 事実7: もしあるものは皮側でないなら「それは渾名しないかあるいはデータベース関数でないかまたは両方ともである」ということは正しくない 事実8: もし仮にその刀は味わわすとすれば「それは闖入する」ということは確かだ 事実9: その刀は闖入するなら「話し辛くない」ということは事実である 事実10: 皮側はブロー成型でないかまたは移動相であるということはないか両方だ 事実11: あの日用雑貨は攻撃力アップでないかあるいは渾名しないかもしくは両方である 事実12: その刀は味わわす 事実13: もしも「その東半部は殺生だがしかし皮側でない」ということは嘘であるならばあの日用雑貨は皮側でない 事実14: 話し辛くないものは覚え直すしおまけに一内容だ 事実15: もし仮にそのボストンバッグは運材車だとしたら「その東半部は殺生であるがしかし皮側でない」ということは正しくない 仮説: 「あの日用雑貨は渾名しないかもしくはデータベース関数でないかもしくはどちらもである」ということは成り立たない
1. 事実3から、仮説が否定される よって、仮説が否定されました。
0.3
あの本大会は痩せ難い一方で書き難くない
({AA}{b} & ¬{AB}{b})
fact1: あの本大会が二十世紀フォックスでないしかつ当該供用年度以後であるということはないとすればこの投資形態は叩き折らない fact2: もし作業し易い物はあれば「このバッファバーは痩せ難いし整復する」ということは成り立つ fact3: この印刷範囲は整復する fact4: 全てはテレビでない fact5: 仮にこの投資形態が整復するとするとあの本大会は痩せ難い一方で書き難いということはない fact6: この投資形態は整復する fact7: もしなにかは叩き折らないならばそれは作業し易くて帰着する fact8: とある物はテレビでないならばそれは二十世紀フォックスでないし当該供用年度以後でない
fact1: (¬{E}{b} & ¬{F}{b}) -> ¬{D}{a} fact2: (x): {B}x -> ({AA}{cd} & {A}{cd}) fact3: {AC}{aa} fact4: (x): ¬{G}x fact5: {A}{a} -> ({AA}{b} & ¬{AB}{b}) fact6: {A}{a} fact7: (x): ¬{D}x -> ({B}x & {C}x) fact8: (x): ¬{G}x -> (¬{E}x & ¬{F}x)
[ "fact5 & fact6 -> hypothesis;" ]
[ "fact5 & fact6 -> hypothesis;" ]
「このバッファバーは痩せ難い」ということは正しい
{AA}{cd}
[ "fact10 -> int1: もしもこのサッカー大使がテレビだということはないとしたら二十世紀フォックスでないしさらに当該供用年度以後でない; fact11 -> int2: このサッカー大使はテレビでない; int1 & int2 -> int3: このサッカー大使は二十世紀フォックスでないしかつ当該供用年度以後でない; int3 -> int4: あらゆる物は二十世紀フォックスであるということはないし加えてそれは当該供用年度以後でない; int4 -> int5: あの本大会は二十世紀フォックスでないしおまけに当該供用年度以後でない; fact9 & int5 -> int6: この投資形態は叩き折らない; fact13 -> int7: もしこの投資形態が叩き折らないならそれは作業し易いしその上帰着する; int6 & int7 -> int8: 「この投資形態は作業し易くてそれは帰着する」ということは成り立つ; int8 -> int9: この投資形態は作業し易い; int9 -> int10: 「作業し易い」ものはある; fact12 & int10 -> int11: このバッファバーは痩せ難くて更に整復する; int11 -> hypothesis;" ]
10
1
1
6
0
6
PROVED
PROVED
PROVED
PROVED
$facts$ = fact1: あの本大会が二十世紀フォックスでないしかつ当該供用年度以後であるということはないとすればこの投資形態は叩き折らない fact2: もし作業し易い物はあれば「このバッファバーは痩せ難いし整復する」ということは成り立つ fact3: この印刷範囲は整復する fact4: 全てはテレビでない fact5: 仮にこの投資形態が整復するとするとあの本大会は痩せ難い一方で書き難いということはない fact6: この投資形態は整復する fact7: もしなにかは叩き折らないならばそれは作業し易くて帰着する fact8: とある物はテレビでないならばそれは二十世紀フォックスでないし当該供用年度以後でない ; $hypothesis$ = あの本大会は痩せ難い一方で書き難くない ; $proof$ =
fact5 & fact6 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: あの本大会が二十世紀フォックスでないしかつ当該供用年度以後であるということはないとすればこの投資形態は叩き折らない 事実2: もし作業し易い物はあれば「このバッファバーは痩せ難いし整復する」ということは成り立つ 事実3: この印刷範囲は整復する 事実4: 全てはテレビでない 事実5: 仮にこの投資形態が整復するとするとあの本大会は痩せ難い一方で書き難いということはない 事実6: この投資形態は整復する 事実7: もしなにかは叩き折らないならばそれは作業し易くて帰着する 事実8: とある物はテレビでないならばそれは二十世紀フォックスでないし当該供用年度以後でない 仮説: あの本大会は痩せ難い一方で書き難くない
1. 事実5と事実6から、仮説が導かれる よって、仮説が証明されました。
0.3
この法的責任は一箇月以上でない
¬{A}{a}
fact1: この法的責任はアドレスする fact2: この法的責任は操作し易い fact3: その風水地理説は一箇月以上だ fact4: あの水辺は一箇月以上である fact5: この法的責任は茘枝だ fact6: この法的責任は職業指導・職業紹介事業である fact7: あの鰤セットは一箇月以上である fact8: あの鰤セットは防止出来る fact9: その何形は一箇月以上だ fact10: この法的責任は答え易い fact11: この監査意見は一箇月以上である fact12: この法的責任は総コレステロールである fact13: この法的責任は紙飛行機だ fact14: この法的責任は戦時公債である fact15: 「その魚体は一箇月以上だ」ということは真実だ fact16: この法的責任は一箇月以上だ fact17: その本田以外は一箇月以上だ fact18: あの設計施工一括は一箇月以上だ fact19: この法的責任は親衛である fact20: この法的責任は高下である fact21: あの自家用車は一箇月以上である
fact1: {BI}{a} fact2: {EE}{a} fact3: {A}{ak} fact4: {A}{ad} fact5: {GP}{a} fact6: {IQ}{a} fact7: {A}{di} fact8: {AU}{di} fact9: {A}{bu} fact10: {FA}{a} fact11: {A}{hn} fact12: {IF}{a} fact13: {BR}{a} fact14: {CI}{a} fact15: {A}{ah} fact16: {A}{a} fact17: {A}{hd} fact18: {A}{fq} fact19: {GB}{a} fact20: {HE}{a} fact21: {A}{ee}
[ "fact16 -> hypothesis;" ]
[ "fact16 -> hypothesis;" ]
null
null
[]
null
1
0
20
0
20
DISPROVED
null
DISPROVED
null
$facts$ = fact1: この法的責任はアドレスする fact2: この法的責任は操作し易い fact3: その風水地理説は一箇月以上だ fact4: あの水辺は一箇月以上である fact5: この法的責任は茘枝だ fact6: この法的責任は職業指導・職業紹介事業である fact7: あの鰤セットは一箇月以上である fact8: あの鰤セットは防止出来る fact9: その何形は一箇月以上だ fact10: この法的責任は答え易い fact11: この監査意見は一箇月以上である fact12: この法的責任は総コレステロールである fact13: この法的責任は紙飛行機だ fact14: この法的責任は戦時公債である fact15: 「その魚体は一箇月以上だ」ということは真実だ fact16: この法的責任は一箇月以上だ fact17: その本田以外は一箇月以上だ fact18: あの設計施工一括は一箇月以上だ fact19: この法的責任は親衛である fact20: この法的責任は高下である fact21: あの自家用車は一箇月以上である ; $hypothesis$ = この法的責任は一箇月以上でない ; $proof$ =
fact16 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: この法的責任はアドレスする 事実2: この法的責任は操作し易い 事実3: その風水地理説は一箇月以上だ 事実4: あの水辺は一箇月以上である 事実5: この法的責任は茘枝だ 事実6: この法的責任は職業指導・職業紹介事業である 事実7: あの鰤セットは一箇月以上である 事実8: あの鰤セットは防止出来る 事実9: その何形は一箇月以上だ 事実10: この法的責任は答え易い 事実11: この監査意見は一箇月以上である 事実12: この法的責任は総コレステロールである 事実13: この法的責任は紙飛行機だ 事実14: この法的責任は戦時公債である 事実15: 「その魚体は一箇月以上だ」ということは真実だ 事実16: この法的責任は一箇月以上だ 事実17: その本田以外は一箇月以上だ 事実18: あの設計施工一括は一箇月以上だ 事実19: この法的責任は親衛である 事実20: この法的責任は高下である 事実21: あの自家用車は一箇月以上である 仮説: この法的責任は一箇月以上でない
1. 事実16から、仮説が否定される よって、仮説が否定されました。
0.3
「あの一挙一動は議するということはない一方で硫煙である」ということは誤っている
¬(¬{AA}{b} & {AB}{b})
fact1: この監査法人は冠水しない fact2: 「あの一挙一動は惨くて悪心だ」ということは事実と異なる fact3: 「この監査法人は議するし冠水する」ということは事実と異なる fact4: 「この監査法人は進み易いし硫煙だ」ということは偽だ fact5: この側室は冠水しない fact6: 「あの一挙一動は硫煙でないがしかし冠水する」ということは偽である fact7: あの援兵は硫煙だということはない fact8: もしも「とある物は罪深いけど巨大化するということはない」ということは嘘であるならそれは冠水する fact9: 「あの水産物加工は硫煙でない」ということは真実だ fact10: もしこの監査法人は冠水しないとすれば「あの一挙一動は議するということはないけど硫煙である」ということは誤りだ fact11: もしもこの監査法人は硫煙でないとしたら「あの一挙一動は議するしそれは冠水する」ということは成り立たない fact12: 「あの一挙一動は冠水するしそれにそれは硫煙だ」ということは事実と異なる fact13: 「その五分増は閉口しないが地球温暖化係数だ」ということは成り立たない fact14: 「この監査法人は与しないが飲み慣れる」ということは誤りだ fact15: 「「この監査法人は冠水するし議する」ということは誤りである」ということは本当である fact16: もしこの監査法人は硫煙でないとすると「あの一挙一動は議しないがしかしそれは冠水する」ということは事実と異なる fact17: もしあの一挙一動は冠水しないなら「この監査法人は議するしその上硫煙である」ということは誤りである fact18: 「あの一挙一動は議するしそれにそれは冠水する」ということは成り立つということはない fact19: もし仮にあの一挙一動は議しないなら「この監査法人は冠水しないがそれは硫煙である」ということは偽である fact20: もし仮にあの一挙一動は硫煙でないなら「この監査法人は冠水しないけど議する」ということは誤りだ fact21: あの一挙一動は目標状態でない fact22: もしこの監査法人は冠水しないとすると「あの一挙一動は議するしそれに硫煙である」ということは成り立たない
fact1: ¬{A}{a} fact2: ¬({IO}{b} & {FA}{b}) fact3: ¬({AA}{a} & {A}{a}) fact4: ¬({IG}{a} & {AB}{a}) fact5: ¬{AC}{aa} fact6: ¬(¬{AB}{b} & {A}{b}) fact7: ¬{AB}{gt} fact8: (x): ¬({B}x & ¬{C}x) -> {A}x fact9: ¬{AB}{fe} fact10: ¬{A}{a} -> ¬(¬{AA}{b} & {AB}{b}) fact11: ¬{AB}{a} -> ¬({AA}{b} & {A}{b}) fact12: ¬({A}{b} & {AB}{b}) fact13: ¬(¬{DL}{ce} & {E}{ce}) fact14: ¬(¬{IT}{a} & {EP}{a}) fact15: ¬({A}{a} & {AA}{a}) fact16: ¬{AB}{a} -> ¬(¬{AA}{b} & {A}{b}) fact17: ¬{A}{b} -> ¬({AA}{a} & {AB}{a}) fact18: ¬({AA}{b} & {A}{b}) fact19: ¬{AA}{b} -> ¬(¬{A}{a} & {AB}{a}) fact20: ¬{AB}{b} -> ¬(¬{A}{a} & {AA}{a}) fact21: ¬{II}{b} fact22: ¬{A}{a} -> ¬({AA}{b} & {AB}{b})
[ "fact10 & fact1 -> hypothesis;" ]
[ "fact10 & fact1 -> hypothesis;" ]
あの一挙一動は議しない一方で硫煙である
(¬{AA}{b} & {AB}{b})
[ "fact23 -> int1: もしも「この監査法人は罪深いけど巨大化しない」ということは偽だとしたら冠水する;" ]
5
1
1
20
0
20
PROVED
UNKNOWN
PROVED
UNKNOWN
$facts$ = fact1: この監査法人は冠水しない fact2: 「あの一挙一動は惨くて悪心だ」ということは事実と異なる fact3: 「この監査法人は議するし冠水する」ということは事実と異なる fact4: 「この監査法人は進み易いし硫煙だ」ということは偽だ fact5: この側室は冠水しない fact6: 「あの一挙一動は硫煙でないがしかし冠水する」ということは偽である fact7: あの援兵は硫煙だということはない fact8: もしも「とある物は罪深いけど巨大化するということはない」ということは嘘であるならそれは冠水する fact9: 「あの水産物加工は硫煙でない」ということは真実だ fact10: もしこの監査法人は冠水しないとすれば「あの一挙一動は議するということはないけど硫煙である」ということは誤りだ fact11: もしもこの監査法人は硫煙でないとしたら「あの一挙一動は議するしそれは冠水する」ということは成り立たない fact12: 「あの一挙一動は冠水するしそれにそれは硫煙だ」ということは事実と異なる fact13: 「その五分増は閉口しないが地球温暖化係数だ」ということは成り立たない fact14: 「この監査法人は与しないが飲み慣れる」ということは誤りだ fact15: 「「この監査法人は冠水するし議する」ということは誤りである」ということは本当である fact16: もしこの監査法人は硫煙でないとすると「あの一挙一動は議しないがしかしそれは冠水する」ということは事実と異なる fact17: もしあの一挙一動は冠水しないなら「この監査法人は議するしその上硫煙である」ということは誤りである fact18: 「あの一挙一動は議するしそれにそれは冠水する」ということは成り立つということはない fact19: もし仮にあの一挙一動は議しないなら「この監査法人は冠水しないがそれは硫煙である」ということは偽である fact20: もし仮にあの一挙一動は硫煙でないなら「この監査法人は冠水しないけど議する」ということは誤りだ fact21: あの一挙一動は目標状態でない fact22: もしこの監査法人は冠水しないとすると「あの一挙一動は議するしそれに硫煙である」ということは成り立たない ; $hypothesis$ = 「あの一挙一動は議するということはない一方で硫煙である」ということは誤っている ; $proof$ =
fact10 & fact1 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: この監査法人は冠水しない 事実2: 「あの一挙一動は惨くて悪心だ」ということは事実と異なる 事実3: 「この監査法人は議するし冠水する」ということは事実と異なる 事実4: 「この監査法人は進み易いし硫煙だ」ということは偽だ 事実5: この側室は冠水しない 事実6: 「あの一挙一動は硫煙でないがしかし冠水する」ということは偽である 事実7: あの援兵は硫煙だということはない 事実8: もしも「とある物は罪深いけど巨大化するということはない」ということは嘘であるならそれは冠水する 事実9: 「あの水産物加工は硫煙でない」ということは真実だ 事実10: もしこの監査法人は冠水しないとすれば「あの一挙一動は議するということはないけど硫煙である」ということは誤りだ 事実11: もしもこの監査法人は硫煙でないとしたら「あの一挙一動は議するしそれは冠水する」ということは成り立たない 事実12: 「あの一挙一動は冠水するしそれにそれは硫煙だ」ということは事実と異なる 事実13: 「その五分増は閉口しないが地球温暖化係数だ」ということは成り立たない 事実14: 「この監査法人は与しないが飲み慣れる」ということは誤りだ 事実15: 「「この監査法人は冠水するし議する」ということは誤りである」ということは本当である 事実16: もしこの監査法人は硫煙でないとすると「あの一挙一動は議しないがしかしそれは冠水する」ということは事実と異なる 事実17: もしあの一挙一動は冠水しないなら「この監査法人は議するしその上硫煙である」ということは誤りである 事実18: 「あの一挙一動は議するしそれにそれは冠水する」ということは成り立つということはない 事実19: もし仮にあの一挙一動は議しないなら「この監査法人は冠水しないがそれは硫煙である」ということは偽である 事実20: もし仮にあの一挙一動は硫煙でないなら「この監査法人は冠水しないけど議する」ということは誤りだ 事実21: あの一挙一動は目標状態でない 事実22: もしこの監査法人は冠水しないとすると「あの一挙一動は議するしそれに硫煙である」ということは成り立たない 仮説: 「あの一挙一動は議するということはない一方で硫煙である」ということは誤っている
1. 事実10と事実1から、仮説が導かれる よって、仮説が証明されました。
0.3
「その快活さが健康保険でないならばその快活さはもどかしくない」ということは真実でない
¬(¬{B}{aa} -> ¬{C}{aa})
fact1: 仮に何かは外し易くないとするとそれは民俗文化でない fact2: 仮にその快活さがもどかしくないならばそれはシェアしない fact3: その快活さが健康保険でないとすればもどかしい fact4: その快活さは健康保険だとすると「もどかしくない」ということは事実である fact5: もし仮にあの赤錆が似付かわしいということはないならばそれはエロいということはない fact6: なにかは乗り為さらないとすると冬らしくない fact7: もし仮にある物が怪しくないとすると団体法的理念でない fact8: もし仮に「何らかのものは健康保険である」ということは間違っていないとするとそれはもどかしくない fact9: もし何らかのものは賑わうということはないとすれば「それは差し入らない」ということは成り立つ fact10: 仮に「何かは健康保険でない」ということは成り立つならそれはもどかしい fact11: ある物は認知改善療法でないならそれは六窓でない fact12: 仮にある物が整い始めないとするとそれは感じ続けない fact13: もし何らかの物が健康保険でないとすればもどかしくない fact14: その快活さが健康保険だということはないとすれば石切り場であるということはない fact15: もし「その快活さは居辛くない」ということは本当であるとすれば感情移入するということはない
fact1: (x): ¬{DP}x -> ¬{JD}x fact2: ¬{C}{aa} -> ¬{AH}{aa} fact3: ¬{B}{aa} -> {C}{aa} fact4: {B}{aa} -> ¬{C}{aa} fact5: ¬{FG}{hf} -> ¬{HM}{hf} fact6: (x): ¬{HB}x -> ¬{BP}x fact7: (x): ¬{CQ}x -> ¬{IL}x fact8: (x): {B}x -> ¬{C}x fact9: (x): ¬{AL}x -> ¬{GE}x fact10: (x): ¬{B}x -> {C}x fact11: (x): ¬{BI}x -> ¬{DA}x fact12: (x): ¬{AM}x -> ¬{CD}x fact13: (x): ¬{B}x -> ¬{C}x fact14: ¬{B}{aa} -> ¬{AP}{aa} fact15: ¬{FE}{aa} -> ¬{ID}{aa}
[ "fact13 -> hypothesis;" ]
[ "fact13 -> hypothesis;" ]
null
null
[]
null
1
1
14
0
14
DISPROVED
null
DISPROVED
null
$facts$ = fact1: 仮に何かは外し易くないとするとそれは民俗文化でない fact2: 仮にその快活さがもどかしくないならばそれはシェアしない fact3: その快活さが健康保険でないとすればもどかしい fact4: その快活さは健康保険だとすると「もどかしくない」ということは事実である fact5: もし仮にあの赤錆が似付かわしいということはないならばそれはエロいということはない fact6: なにかは乗り為さらないとすると冬らしくない fact7: もし仮にある物が怪しくないとすると団体法的理念でない fact8: もし仮に「何らかのものは健康保険である」ということは間違っていないとするとそれはもどかしくない fact9: もし何らかのものは賑わうということはないとすれば「それは差し入らない」ということは成り立つ fact10: 仮に「何かは健康保険でない」ということは成り立つならそれはもどかしい fact11: ある物は認知改善療法でないならそれは六窓でない fact12: 仮にある物が整い始めないとするとそれは感じ続けない fact13: もし何らかの物が健康保険でないとすればもどかしくない fact14: その快活さが健康保険だということはないとすれば石切り場であるということはない fact15: もし「その快活さは居辛くない」ということは本当であるとすれば感情移入するということはない ; $hypothesis$ = 「その快活さが健康保険でないならばその快活さはもどかしくない」ということは真実でない ; $proof$ =
fact13 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: 仮に何かは外し易くないとするとそれは民俗文化でない 事実2: 仮にその快活さがもどかしくないならばそれはシェアしない 事実3: その快活さが健康保険でないとすればもどかしい 事実4: その快活さは健康保険だとすると「もどかしくない」ということは事実である 事実5: もし仮にあの赤錆が似付かわしいということはないならばそれはエロいということはない 事実6: なにかは乗り為さらないとすると冬らしくない 事実7: もし仮にある物が怪しくないとすると団体法的理念でない 事実8: もし仮に「何らかのものは健康保険である」ということは間違っていないとするとそれはもどかしくない 事実9: もし何らかのものは賑わうということはないとすれば「それは差し入らない」ということは成り立つ 事実10: 仮に「何かは健康保険でない」ということは成り立つならそれはもどかしい 事実11: ある物は認知改善療法でないならそれは六窓でない 事実12: 仮にある物が整い始めないとするとそれは感じ続けない 事実13: もし何らかの物が健康保険でないとすればもどかしくない 事実14: その快活さが健康保険だということはないとすれば石切り場であるということはない 事実15: もし「その快活さは居辛くない」ということは本当であるとすれば感情移入するということはない 仮説: 「その快活さが健康保険でないならばその快活さはもどかしくない」ということは真実でない
1. 事実13から、仮説が否定される よって、仮説が否定されました。
0.3
その都市計画区域は受戒しない
¬{A}{a}
fact1: 「その都市計画区域は放心状態で加えて流行する」ということは正しい fact2: その都市計画区域が一体化しないなら染め抜かない fact3: 仮になにかは染め抜かないとすると「それは拍手喝采でないし更にそれは賞味しない」ということは誤りである fact4: もし仮に「この弟は一体化しないか賞味するということはないか両方ともである」ということは偽であるなら「染め抜かない」ということは本当である fact5: 仮に「その都市計画区域は受戒しない一方でか弱い」ということは成り立たないとすればその影領域は許し難い fact6: その都市計画区域は許し難い fact7: 仮にその都市計画区域が応諾するならそれは一体化しないししかも子蟹でない fact8: その都市計画区域は攻略出来るし逆襲する fact9: ある物は柔いなら「受戒しないし加えてか弱い」ということは成り立たない fact10: とある物は柔いとしたら「それはか弱くないかあるいは許し難くないかもしくは両方だ」ということは成り立たない fact11: その都市計画区域は青いししかも手招きする fact12: 拍手喝采は柔い fact13: その都市計画区域は受戒するしそれに許し難い fact14: そのチェリーは受戒する fact15: もし仮になんらかの物は子蟹でないならば「それは一体化しないか賞味しないかもしくは両方である」ということは正しいということはない fact16: もし仮に「その都市計画区域は拍手喝采でなくて賞味するということはない」ということは成り立つということはないとすれば拍手喝采だ fact17: もし「あるものはか弱くないかあるいは許し難くないかもしくは両方である」ということは成り立つということはないとすれば受戒するということはない
fact1: ({JK}{a} & {FF}{a}) fact2: ¬{H}{a} -> ¬{F}{a} fact3: (x): ¬{F}x -> ¬(¬{E}x & ¬{G}x) fact4: ¬(¬{H}{b} v ¬{G}{b}) -> ¬{F}{b} fact5: ¬(¬{A}{a} & {C}{a}) -> {B}{in} fact6: {B}{a} fact7: {J}{a} -> (¬{H}{a} & ¬{I}{a}) fact8: ({FB}{a} & {GO}{a}) fact9: (x): {D}x -> ¬(¬{A}x & {C}x) fact10: (x): {D}x -> ¬(¬{C}x v ¬{B}x) fact11: ({IT}{a} & {HR}{a}) fact12: (x): {E}x -> {D}x fact13: ({A}{a} & {B}{a}) fact14: {A}{dq} fact15: (x): ¬{I}x -> ¬(¬{H}x v ¬{G}x) fact16: ¬(¬{E}{a} & ¬{G}{a}) -> {E}{a} fact17: (x): ¬(¬{C}x v ¬{B}x) -> ¬{A}x
[ "fact13 -> hypothesis;" ]
[ "fact13 -> hypothesis;" ]
その都市計画区域は受戒しない
¬{A}{a}
[ "fact23 -> int1: 「その都市計画区域はか弱くないか許し難くないかまたはどちらもである」ということは誤っているとしたら受戒しない; fact19 -> int2: 仮にその都市計画区域は柔いとしたら「それはか弱いということはないかそれは許し難くないかもしくはどちらもだ」ということは事実と異なる; fact20 -> int3: 仮にその都市計画区域は拍手喝采であるならそれは柔い; fact18 -> int4: もし仮にその都市計画区域は染め抜かないとすれば「拍手喝采でなくてそれは賞味しない」ということは成り立たない;" ]
8
1
1
16
0
16
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: 「その都市計画区域は放心状態で加えて流行する」ということは正しい fact2: その都市計画区域が一体化しないなら染め抜かない fact3: 仮になにかは染め抜かないとすると「それは拍手喝采でないし更にそれは賞味しない」ということは誤りである fact4: もし仮に「この弟は一体化しないか賞味するということはないか両方ともである」ということは偽であるなら「染め抜かない」ということは本当である fact5: 仮に「その都市計画区域は受戒しない一方でか弱い」ということは成り立たないとすればその影領域は許し難い fact6: その都市計画区域は許し難い fact7: 仮にその都市計画区域が応諾するならそれは一体化しないししかも子蟹でない fact8: その都市計画区域は攻略出来るし逆襲する fact9: ある物は柔いなら「受戒しないし加えてか弱い」ということは成り立たない fact10: とある物は柔いとしたら「それはか弱くないかあるいは許し難くないかもしくは両方だ」ということは成り立たない fact11: その都市計画区域は青いししかも手招きする fact12: 拍手喝采は柔い fact13: その都市計画区域は受戒するしそれに許し難い fact14: そのチェリーは受戒する fact15: もし仮になんらかの物は子蟹でないならば「それは一体化しないか賞味しないかもしくは両方である」ということは正しいということはない fact16: もし仮に「その都市計画区域は拍手喝采でなくて賞味するということはない」ということは成り立つということはないとすれば拍手喝采だ fact17: もし「あるものはか弱くないかあるいは許し難くないかもしくは両方である」ということは成り立つということはないとすれば受戒するということはない ; $hypothesis$ = その都市計画区域は受戒しない ; $proof$ =
fact13 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: 「その都市計画区域は放心状態で加えて流行する」ということは正しい 事実2: その都市計画区域が一体化しないなら染め抜かない 事実3: 仮になにかは染め抜かないとすると「それは拍手喝采でないし更にそれは賞味しない」ということは誤りである 事実4: もし仮に「この弟は一体化しないか賞味するということはないか両方ともである」ということは偽であるなら「染め抜かない」ということは本当である 事実5: 仮に「その都市計画区域は受戒しない一方でか弱い」ということは成り立たないとすればその影領域は許し難い 事実6: その都市計画区域は許し難い 事実7: 仮にその都市計画区域が応諾するならそれは一体化しないししかも子蟹でない 事実8: その都市計画区域は攻略出来るし逆襲する 事実9: ある物は柔いなら「受戒しないし加えてか弱い」ということは成り立たない 事実10: とある物は柔いとしたら「それはか弱くないかあるいは許し難くないかもしくは両方だ」ということは成り立たない 事実11: その都市計画区域は青いししかも手招きする 事実12: 拍手喝采は柔い 事実13: その都市計画区域は受戒するしそれに許し難い 事実14: そのチェリーは受戒する 事実15: もし仮になんらかの物は子蟹でないならば「それは一体化しないか賞味しないかもしくは両方である」ということは正しいということはない 事実16: もし仮に「その都市計画区域は拍手喝采でなくて賞味するということはない」ということは成り立つということはないとすれば拍手喝采だ 事実17: もし「あるものはか弱くないかあるいは許し難くないかもしくは両方である」ということは成り立つということはないとすれば受戒するということはない 仮説: その都市計画区域は受戒しない
1. 事実13から、仮説が否定される よって、仮説が否定されました。
0.3
この盤上は乗り易い
{B}{a}
fact1: もしこの盤上が狡いならばそれは乗り易い fact2: もし仮にこの盤上が女神像ならそれはけばけばしい fact3: もしもこの盤上は忠実忠実しいとしたら「それは礼装用でなくてそれは電力コストでない」ということは偽である fact4: この盤上は狡い fact5: 仮になにかは礼装用であるとすると「狡い」ということは事実だ fact6: 「なんらかの物は礼装用でしかもそれは乗り易い」ということは嘘だとすれば乗り易くない
fact1: {A}{a} -> {B}{a} fact2: {GH}{a} -> {GU}{a} fact3: {D}{a} -> ¬(¬{C}{a} & ¬{E}{a}) fact4: {A}{a} fact5: (x): {C}x -> {A}x fact6: (x): ¬({C}x & {B}x) -> ¬{B}x
[ "fact1 & fact4 -> hypothesis;" ]
[ "fact1 & fact4 -> hypothesis;" ]
そのクラブヘッドは乗り易い
{B}{db}
[ "fact8 -> int1: そのクラブヘッドは礼装用であるとしたら狡い;" ]
5
1
1
4
0
4
PROVED
UNKNOWN
PROVED
UNKNOWN
$facts$ = fact1: もしこの盤上が狡いならばそれは乗り易い fact2: もし仮にこの盤上が女神像ならそれはけばけばしい fact3: もしもこの盤上は忠実忠実しいとしたら「それは礼装用でなくてそれは電力コストでない」ということは偽である fact4: この盤上は狡い fact5: 仮になにかは礼装用であるとすると「狡い」ということは事実だ fact6: 「なんらかの物は礼装用でしかもそれは乗り易い」ということは嘘だとすれば乗り易くない ; $hypothesis$ = この盤上は乗り易い ; $proof$ =
fact1 & fact4 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: もしこの盤上が狡いならばそれは乗り易い 事実2: もし仮にこの盤上が女神像ならそれはけばけばしい 事実3: もしもこの盤上は忠実忠実しいとしたら「それは礼装用でなくてそれは電力コストでない」ということは偽である 事実4: この盤上は狡い 事実5: 仮になにかは礼装用であるとすると「狡い」ということは事実だ 事実6: 「なんらかの物は礼装用でしかもそれは乗り易い」ということは嘘だとすれば乗り易くない 仮説: この盤上は乗り易い
1. 事実1と事実4から、仮説が導かれる よって、仮説が証明されました。
0.3
「その掌握力は朝家である」ということは成り立つ
{A}{a}
fact1: その掌握力は朝家だ fact2: あの植菌後は治癒力だとすると「御強いしその上旧内務官僚でない」ということは成り立つということはない
fact1: {A}{a} fact2: {F}{c} -> ¬({D}{c} & ¬{E}{c})
[ "fact1 -> hypothesis;" ]
[ "fact1 -> hypothesis;" ]
その掌握力は朝家でない
¬{A}{a}
[]
6
1
0
1
0
1
PROVED
UNKNOWN
PROVED
UNKNOWN
$facts$ = fact1: その掌握力は朝家だ fact2: あの植菌後は治癒力だとすると「御強いしその上旧内務官僚でない」ということは成り立つということはない ; $hypothesis$ = 「その掌握力は朝家である」ということは成り立つ ; $proof$ =
fact1 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: その掌握力は朝家だ 事実2: あの植菌後は治癒力だとすると「御強いしその上旧内務官僚でない」ということは成り立つということはない 仮説: 「その掌握力は朝家である」ということは成り立つ
1. 事実1から、仮説が導かれる よって、仮説が証明されました。
0.3
その上級程度は外せらない
¬{B}{b}
fact1: 仮にこの曲がり屋は外せるとすれば「その上級程度はRNA結合部位だ」ということは確かである fact2: その上級程度は御し易い fact3: 「この曲がり屋は外せる」ということは成り立つ fact4: なんらかの物は金銭関係でないとしたらそれは練習試合でない fact5: 仮にその上級程度が御し易いならばその団体競技は外せる fact6: もし「その上級程度は御し易いかもしくは如才無くないかあるいは両方ともである」ということは偽ならばそれは外せらない fact7: もしなんらかのものは政治献金でないかもしくは因り掛かるかまたは両方ならば金銭関係でない fact8: その気分変調性障害は外せる fact9: もしもなんらかの物は細長くないなら「それは御し易いかまたはそれは如才無くないかまたは両方ともだ」ということは嘘だ fact10: この曲がり屋は世界人である fact11: もしもその上級程度が御し易いとしたらこの曲がり屋は外せる fact12: 仮にこの曲がり屋が外せらない一方で御し易いとしたらその上級程度は外せらない fact13: もしもこの曲がり屋が御し易いとするとその上級程度は外せる fact14: この大尉は外せる fact15: この小学校卒業は御し易い fact16: その上級程度は船底である fact17: もしその上級程度が一定するならこの曲がり屋は外せる fact18: この曲がり屋は巻ける fact19: もし仮にこの曲がり屋が外せるとすればあの上級程度は御し易い fact20: とある物が練習試合でないとすると特進するしかつ細長いということはない fact21: この曲がり屋は御し易い
fact1: {B}{a} -> {FU}{b} fact2: {A}{b} fact3: {B}{a} fact4: (x): ¬{G}x -> ¬{F}x fact5: {A}{b} -> {B}{am} fact6: ¬({A}{b} v ¬{C}{b}) -> ¬{B}{b} fact7: (x): (¬{I}x v {H}x) -> ¬{G}x fact8: {B}{bn} fact9: (x): ¬{D}x -> ¬({A}x v ¬{C}x) fact10: {GM}{a} fact11: {A}{b} -> {B}{a} fact12: (¬{B}{a} & {A}{a}) -> ¬{B}{b} fact13: {A}{a} -> {B}{b} fact14: {B}{jk} fact15: {A}{bo} fact16: {DL}{b} fact17: {CK}{b} -> {B}{a} fact18: {GP}{a} fact19: {B}{a} -> {A}{b} fact20: (x): ¬{F}x -> ({E}x & ¬{D}x) fact21: {A}{a}
[ "fact13 & fact21 -> hypothesis;" ]
[ "fact13 & fact21 -> hypothesis;" ]
その上級程度は外せらない
¬{B}{b}
[]
5
1
1
19
0
19
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: 仮にこの曲がり屋は外せるとすれば「その上級程度はRNA結合部位だ」ということは確かである fact2: その上級程度は御し易い fact3: 「この曲がり屋は外せる」ということは成り立つ fact4: なんらかの物は金銭関係でないとしたらそれは練習試合でない fact5: 仮にその上級程度が御し易いならばその団体競技は外せる fact6: もし「その上級程度は御し易いかもしくは如才無くないかあるいは両方ともである」ということは偽ならばそれは外せらない fact7: もしなんらかのものは政治献金でないかもしくは因り掛かるかまたは両方ならば金銭関係でない fact8: その気分変調性障害は外せる fact9: もしもなんらかの物は細長くないなら「それは御し易いかまたはそれは如才無くないかまたは両方ともだ」ということは嘘だ fact10: この曲がり屋は世界人である fact11: もしもその上級程度が御し易いとしたらこの曲がり屋は外せる fact12: 仮にこの曲がり屋が外せらない一方で御し易いとしたらその上級程度は外せらない fact13: もしもこの曲がり屋が御し易いとするとその上級程度は外せる fact14: この大尉は外せる fact15: この小学校卒業は御し易い fact16: その上級程度は船底である fact17: もしその上級程度が一定するならこの曲がり屋は外せる fact18: この曲がり屋は巻ける fact19: もし仮にこの曲がり屋が外せるとすればあの上級程度は御し易い fact20: とある物が練習試合でないとすると特進するしかつ細長いということはない fact21: この曲がり屋は御し易い ; $hypothesis$ = その上級程度は外せらない ; $proof$ =
fact13 & fact21 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: 仮にこの曲がり屋は外せるとすれば「その上級程度はRNA結合部位だ」ということは確かである 事実2: その上級程度は御し易い 事実3: 「この曲がり屋は外せる」ということは成り立つ 事実4: なんらかの物は金銭関係でないとしたらそれは練習試合でない 事実5: 仮にその上級程度が御し易いならばその団体競技は外せる 事実6: もし「その上級程度は御し易いかもしくは如才無くないかあるいは両方ともである」ということは偽ならばそれは外せらない 事実7: もしなんらかのものは政治献金でないかもしくは因り掛かるかまたは両方ならば金銭関係でない 事実8: その気分変調性障害は外せる 事実9: もしもなんらかの物は細長くないなら「それは御し易いかまたはそれは如才無くないかまたは両方ともだ」ということは嘘だ 事実10: この曲がり屋は世界人である 事実11: もしもその上級程度が御し易いとしたらこの曲がり屋は外せる 事実12: 仮にこの曲がり屋が外せらない一方で御し易いとしたらその上級程度は外せらない 事実13: もしもこの曲がり屋が御し易いとするとその上級程度は外せる 事実14: この大尉は外せる 事実15: この小学校卒業は御し易い 事実16: その上級程度は船底である 事実17: もしその上級程度が一定するならこの曲がり屋は外せる 事実18: この曲がり屋は巻ける 事実19: もし仮にこの曲がり屋が外せるとすればあの上級程度は御し易い 事実20: とある物が練習試合でないとすると特進するしかつ細長いということはない 事実21: この曲がり屋は御し易い 仮説: その上級程度は外せらない
1. 事実13と事実21から、仮説が否定される よって、仮説が否定されました。
0.3
もし「あの作為義務は毀損する」ということは成り立つとしたらそれは物欲しいかまたはそれは対決しないかもしくは両方だ
{A}{aa} -> ({AA}{aa} v ¬{AB}{aa})
fact1: その呉軍港がNUTSならそれはくねるかまたは対決するということはないかどちらもである fact2: 仮にあの作為義務が毀損するとしたらそれは物欲しいかまたは対決する fact3: もしあの作為義務は毀損するとすると「それは掻き合わせるかもしくはそれは因り難くない」ということは成り立つ fact4: 仮にあるものが気忙しいとすると湿っぽいかまたは長しないかあるいは両方だ fact5: 仮にある物が毀損するとしたらそれは物欲しいかまたはそれは対決しない fact6: 認知活動は踏み出せるか発現しないか両方ともだ fact7: もしある物がくねれば見辛いかあるいはモルタル塗りでない fact8: 仮にあの作為義務が毀損するとしたらタイトルらしいか紫はからないか両方ともだ fact9: もし「あの作為義務は湿っぽい」ということは本当であるとしたらそれは物欲しいか数値であるということはない fact10: もしもとある物は協調行動であるならば「それは抜き難いかそれは向かわさないかあるいは両方ともだ」ということは成り立つ fact11: あの作為義務が巻きするとするとカレンシーであるかもしくは来難くないかあるいは両方ともだ fact12: もしもあの作為義務がし続けるならそれは茶色いか絶え間無くないかもしくはどちらもだ fact13: なにがしかの物は奇襲攻撃するとすると「それは丸めるかまたはそれは爪郭部だということはないかあるいは両方だ」ということは本当だ fact14: 読み下しは限局性であるか長しない fact15: 仮になんらかの物が毀損するとするとそれは物欲しいかもしくは対決するかもしくは両方だ
fact1: {BT}{ek} -> ({BE}{ek} v ¬{AB}{ek}) fact2: {A}{aa} -> ({AA}{aa} v {AB}{aa}) fact3: {A}{aa} -> ({AD}{aa} v ¬{EN}{aa}) fact4: (x): {II}x -> ({CO}x v ¬{HK}x) fact5: (x): {A}x -> ({AA}x v ¬{AB}x) fact6: (x): {T}x -> ({CN}x v ¬{DC}x) fact7: (x): {BE}x -> ({AK}x v ¬{B}x) fact8: {A}{aa} -> ({CR}{aa} v ¬{CA}{aa}) fact9: {CO}{aa} -> ({AA}{aa} v ¬{FB}{aa}) fact10: (x): {HC}x -> ({HP}x v ¬{IM}x) fact11: {BD}{aa} -> ({HL}{aa} v ¬{FO}{aa}) fact12: {AO}{aa} -> ({AJ}{aa} v ¬{BB}{aa}) fact13: (x): {ID}x -> ({FJ}x v ¬{CP}x) fact14: (x): {GJ}x -> ({IE}x v ¬{HK}x) fact15: (x): {A}x -> ({AA}x v {AB}x)
[ "fact5 -> hypothesis;" ]
[ "fact5 -> hypothesis;" ]
null
null
[]
null
1
1
14
0
14
PROVED
null
PROVED
null
$facts$ = fact1: その呉軍港がNUTSならそれはくねるかまたは対決するということはないかどちらもである fact2: 仮にあの作為義務が毀損するとしたらそれは物欲しいかまたは対決する fact3: もしあの作為義務は毀損するとすると「それは掻き合わせるかもしくはそれは因り難くない」ということは成り立つ fact4: 仮にあるものが気忙しいとすると湿っぽいかまたは長しないかあるいは両方だ fact5: 仮にある物が毀損するとしたらそれは物欲しいかまたはそれは対決しない fact6: 認知活動は踏み出せるか発現しないか両方ともだ fact7: もしある物がくねれば見辛いかあるいはモルタル塗りでない fact8: 仮にあの作為義務が毀損するとしたらタイトルらしいか紫はからないか両方ともだ fact9: もし「あの作為義務は湿っぽい」ということは本当であるとしたらそれは物欲しいか数値であるということはない fact10: もしもとある物は協調行動であるならば「それは抜き難いかそれは向かわさないかあるいは両方ともだ」ということは成り立つ fact11: あの作為義務が巻きするとするとカレンシーであるかもしくは来難くないかあるいは両方ともだ fact12: もしもあの作為義務がし続けるならそれは茶色いか絶え間無くないかもしくはどちらもだ fact13: なにがしかの物は奇襲攻撃するとすると「それは丸めるかまたはそれは爪郭部だということはないかあるいは両方だ」ということは本当だ fact14: 読み下しは限局性であるか長しない fact15: 仮になんらかの物が毀損するとするとそれは物欲しいかもしくは対決するかもしくは両方だ ; $hypothesis$ = もし「あの作為義務は毀損する」ということは成り立つとしたらそれは物欲しいかまたはそれは対決しないかもしくは両方だ ; $proof$ =
fact5 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: その呉軍港がNUTSならそれはくねるかまたは対決するということはないかどちらもである 事実2: 仮にあの作為義務が毀損するとしたらそれは物欲しいかまたは対決する 事実3: もしあの作為義務は毀損するとすると「それは掻き合わせるかもしくはそれは因り難くない」ということは成り立つ 事実4: 仮にあるものが気忙しいとすると湿っぽいかまたは長しないかあるいは両方だ 事実5: 仮にある物が毀損するとしたらそれは物欲しいかまたはそれは対決しない 事実6: 認知活動は踏み出せるか発現しないか両方ともだ 事実7: もしある物がくねれば見辛いかあるいはモルタル塗りでない 事実8: 仮にあの作為義務が毀損するとしたらタイトルらしいか紫はからないか両方ともだ 事実9: もし「あの作為義務は湿っぽい」ということは本当であるとしたらそれは物欲しいか数値であるということはない 事実10: もしもとある物は協調行動であるならば「それは抜き難いかそれは向かわさないかあるいは両方ともだ」ということは成り立つ 事実11: あの作為義務が巻きするとするとカレンシーであるかもしくは来難くないかあるいは両方ともだ 事実12: もしもあの作為義務がし続けるならそれは茶色いか絶え間無くないかもしくはどちらもだ 事実13: なにがしかの物は奇襲攻撃するとすると「それは丸めるかまたはそれは爪郭部だということはないかあるいは両方だ」ということは本当だ 事実14: 読み下しは限局性であるか長しない 事実15: 仮になんらかの物が毀損するとするとそれは物欲しいかもしくは対決するかもしくは両方だ 仮説: もし「あの作為義務は毀損する」ということは成り立つとしたらそれは物欲しいかまたはそれは対決しないかもしくは両方だ
1. 事実5から、仮説が導かれる よって、仮説が証明されました。
0.3
あの人格関係は唯我独尊だ
{A}{a}
fact1: 「あの人格関係は空しい」ということは正しい fact2: 仮に「その追い掛けっこは何気無いということはないしおまけにバンドルしない」ということは成り立たないとすれば「その事務権限はバンドルしない」ということは事実だ fact3: もしもあの配給制は全症例であるとしたら「報うけど松葉でない」ということは誤っている fact4: 仮に「あの配給制は報う一方で松葉でない」ということは間違いであるならばその追い掛けっこは報わない fact5: 「あの人格関係は波打たないとすれば「この経費等はあぐねるということはないがそれは飾れる」ということは間違いだ」ということは成り立つ fact6: その事務権限がバンドルしないとするとその撒水はバンドルしない fact7: この撮影シーンは呼び得るかまたはもちもちする fact8: もし「なにがしかの物はバンドルしない」ということは事実であるとすれば「波打つけれど久しない」ということは誤りである fact9: この委託費は唯我独尊だ fact10: もしその追い掛けっこが報わないならその事務権限は報う fact11: もしもあるものは全症例でないとすると「それが何気無くないしさらにバンドルしない」ということは成り立つということはない fact12: とあるものは波打たないかまたは報うかまたは両方であるとしたら飾れる fact13: あの状態遷移関数は唯我独尊である fact14: あの人格関係は何気無い fact15: 仮になにがしかのものが飾れるとすれば唯我独尊でないしあぐねる fact16: あの人格関係は唯我独尊である fact17: もし仮に「何らかのものは波打つけど久しということはない」ということは誤りだとしたら波打つということはない fact18: その撒水は報わないとすれば「あの人格関係は波打たない」ということは確かだ fact19: すべては全症例でない fact20: その事務権限が報うがしかしバンドルしないとしたらその撒水は報わない fact21: もし仮にこの撮影シーンが呼び得るとしたらあの配給制は全症例である
fact1: {ID}{a} fact2: ¬(¬{H}{d} & ¬{G}{d}) -> ¬{G}{c} fact3: {I}{f} -> ¬({E}{f} & ¬{J}{f}) fact4: ¬({E}{f} & ¬{J}{f}) -> ¬{E}{d} fact5: ¬{D}{a} -> ¬(¬{C}{gl} & {B}{gl}) fact6: ¬{G}{c} -> ¬{G}{b} fact7: ({L}{g} v {K}{g}) fact8: (x): ¬{G}x -> ¬({D}x & ¬{F}x) fact9: {A}{ik} fact10: ¬{E}{d} -> {E}{c} fact11: (x): ¬{I}x -> ¬(¬{H}x & ¬{G}x) fact12: (x): (¬{D}x v {E}x) -> {B}x fact13: {A}{ci} fact14: {H}{a} fact15: (x): {B}x -> (¬{A}x & {C}x) fact16: {A}{a} fact17: (x): ¬({D}x & ¬{F}x) -> ¬{D}x fact18: ¬{E}{b} -> ¬{D}{a} fact19: (x): ¬{I}x fact20: ({E}{c} & ¬{G}{c}) -> ¬{E}{b} fact21: {L}{g} -> {I}{f}
[ "fact16 -> hypothesis;" ]
[ "fact16 -> hypothesis;" ]
あの人格関係は唯我独尊でない
¬{A}{a}
[ "fact25 -> int1: もしもその撒水が飾れるとしたらそれは唯我独尊でないしおまけにそれはあぐねる; fact29 -> int2: もし仮にこのエンテロウイルスは全症例だということはないとしたら「何気無くないし更にバンドルしない」ということは嘘だ; fact23 -> int3: このエンテロウイルスは全症例でない; int2 & int3 -> int4: 「このエンテロウイルスは何気無くなくてバンドルするということはない」ということは事実と異なる; int4 -> int5: 何気無くなくておまけにそれはバンドルしないというものはない; int5 -> int6: 「その追い掛けっこは何気無くないし更にそれはバンドルするということはない」ということは嘘である; fact22 & int6 -> int7: その事務権限はバンドルしない; fact28 & int7 -> int8: その撒水はバンドルしない; fact24 -> int9: 仮にその撒水はバンドルしないならば「それは波打つしさらにそれは久しない」ということは間違っている; int8 & int9 -> int10: 「その撒水は波打つがしかし久しない」ということは嘘である; fact27 -> int11: もしも「その撒水は波打つ一方でそれは久しということはない」ということは本当でないとすると波打たない; int10 & int11 -> int12: その撒水は波打たない; int12 -> int13: その撒水は波打たないかもしくはそれは報う; fact26 -> int14: もしもその撒水が波打たないかまたは報うかあるいはどちらもだとすると飾れる; int13 & int14 -> int15: その撒水は飾れる; int1 & int15 -> int16: その撒水は唯我独尊でないがしかしあぐねる;" ]
12
1
0
20
0
20
PROVED
UNKNOWN
PROVED
UNKNOWN
$facts$ = fact1: 「あの人格関係は空しい」ということは正しい fact2: 仮に「その追い掛けっこは何気無いということはないしおまけにバンドルしない」ということは成り立たないとすれば「その事務権限はバンドルしない」ということは事実だ fact3: もしもあの配給制は全症例であるとしたら「報うけど松葉でない」ということは誤っている fact4: 仮に「あの配給制は報う一方で松葉でない」ということは間違いであるならばその追い掛けっこは報わない fact5: 「あの人格関係は波打たないとすれば「この経費等はあぐねるということはないがそれは飾れる」ということは間違いだ」ということは成り立つ fact6: その事務権限がバンドルしないとするとその撒水はバンドルしない fact7: この撮影シーンは呼び得るかまたはもちもちする fact8: もし「なにがしかの物はバンドルしない」ということは事実であるとすれば「波打つけれど久しない」ということは誤りである fact9: この委託費は唯我独尊だ fact10: もしその追い掛けっこが報わないならその事務権限は報う fact11: もしもあるものは全症例でないとすると「それが何気無くないしさらにバンドルしない」ということは成り立つということはない fact12: とあるものは波打たないかまたは報うかまたは両方であるとしたら飾れる fact13: あの状態遷移関数は唯我独尊である fact14: あの人格関係は何気無い fact15: 仮になにがしかのものが飾れるとすれば唯我独尊でないしあぐねる fact16: あの人格関係は唯我独尊である fact17: もし仮に「何らかのものは波打つけど久しということはない」ということは誤りだとしたら波打つということはない fact18: その撒水は報わないとすれば「あの人格関係は波打たない」ということは確かだ fact19: すべては全症例でない fact20: その事務権限が報うがしかしバンドルしないとしたらその撒水は報わない fact21: もし仮にこの撮影シーンが呼び得るとしたらあの配給制は全症例である ; $hypothesis$ = あの人格関係は唯我独尊だ ; $proof$ =
fact16 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: 「あの人格関係は空しい」ということは正しい 事実2: 仮に「その追い掛けっこは何気無いということはないしおまけにバンドルしない」ということは成り立たないとすれば「その事務権限はバンドルしない」ということは事実だ 事実3: もしもあの配給制は全症例であるとしたら「報うけど松葉でない」ということは誤っている 事実4: 仮に「あの配給制は報う一方で松葉でない」ということは間違いであるならばその追い掛けっこは報わない 事実5: 「あの人格関係は波打たないとすれば「この経費等はあぐねるということはないがそれは飾れる」ということは間違いだ」ということは成り立つ 事実6: その事務権限がバンドルしないとするとその撒水はバンドルしない 事実7: この撮影シーンは呼び得るかまたはもちもちする 事実8: もし「なにがしかの物はバンドルしない」ということは事実であるとすれば「波打つけれど久しない」ということは誤りである 事実9: この委託費は唯我独尊だ 事実10: もしその追い掛けっこが報わないならその事務権限は報う 事実11: もしもあるものは全症例でないとすると「それが何気無くないしさらにバンドルしない」ということは成り立つということはない 事実12: とあるものは波打たないかまたは報うかまたは両方であるとしたら飾れる 事実13: あの状態遷移関数は唯我独尊である 事実14: あの人格関係は何気無い 事実15: 仮になにがしかのものが飾れるとすれば唯我独尊でないしあぐねる 事実16: あの人格関係は唯我独尊である 事実17: もし仮に「何らかのものは波打つけど久しということはない」ということは誤りだとしたら波打つということはない 事実18: その撒水は報わないとすれば「あの人格関係は波打たない」ということは確かだ 事実19: すべては全症例でない 事実20: その事務権限が報うがしかしバンドルしないとしたらその撒水は報わない 事実21: もし仮にこの撮影シーンが呼び得るとしたらあの配給制は全症例である 仮説: あの人格関係は唯我独尊だ
1. 事実16から、仮説が導かれる よって、仮説が証明されました。
0.3
この足幅は待ち草臥れるということはない
¬{B}{b}
fact1: その最新作は緩衝するししかもそれは待ち草臥れる fact2: この足幅が緩衝するし惜しみ無いとしたら「その最新作は待ち草臥れない」ということは成り立つ fact3: その最新作は惜しみ無くてかつ緩衝する fact4: その最新作は短縮出来るし加えて待ち草臥れる fact5: もしも「「その最新作は誕生後でないがそれはしゃがむ」ということは誤りだ」ということは嘘でないとすればそれはしゃがまない fact6: それは遣り方でないけれど御し易いという物はない fact7: この伝送路は惜しみ無くない fact8: 仮にその最新作が惜しみ無くてそれに緩衝するとするとこの足幅は待ち草臥れない fact9: その最新作は緩衝する fact10: この足幅が惜しみ無いし緩衝すればその最新作は待ち草臥れない fact11: この草枕は緩衝しない fact12: 仮に「「遣り方であるということはないけど御し易い」ということは誤りな」ものがあるとするとこの足幅は亡国だ fact13: もしこの既判力は千七百六十年代ならば「その最新作は誕生後でないがしかしそれはしゃがむ」ということは確かでない fact14: この足幅は惜しみ無くない fact15: もし何らかの物は待ち草臥れるけれど訝しくないなら価値創造である fact16: もし仮にある物がしゃがまないとすれば訝しいしそれは待ち草臥れる fact17: この足幅は緩衝しない
fact1: ({AB}{a} & {B}{a}) fact2: ({AB}{b} & {AA}{b}) -> ¬{B}{a} fact3: ({AA}{a} & {AB}{a}) fact4: ({JC}{a} & {B}{a}) fact5: ¬(¬{D}{a} & {C}{a}) -> ¬{C}{a} fact6: (x): ¬(¬{F}x & {G}x) fact7: ¬{AA}{io} fact8: ({AA}{a} & {AB}{a}) -> ¬{B}{b} fact9: {AB}{a} fact10: ({AA}{b} & {AB}{b}) -> ¬{B}{a} fact11: ¬{AB}{iu} fact12: (x): ¬(¬{F}x & {G}x) -> {CE}{b} fact13: {E}{c} -> ¬(¬{D}{a} & {C}{a}) fact14: ¬{AA}{b} fact15: (x): ({B}x & ¬{A}x) -> {T}x fact16: (x): ¬{C}x -> ({A}x & {B}x) fact17: ¬{AB}{b}
[ "fact8 & fact3 -> hypothesis;" ]
[ "fact8 & fact3 -> hypothesis;" ]
この足幅は待ち草臥れる
{B}{b}
[ "fact18 -> int1: もし仮にこの足幅がしゃがまないとすればそれは訝しいし更に待ち草臥れる;" ]
5
1
1
15
0
15
PROVED
UNKNOWN
PROVED
UNKNOWN
$facts$ = fact1: その最新作は緩衝するししかもそれは待ち草臥れる fact2: この足幅が緩衝するし惜しみ無いとしたら「その最新作は待ち草臥れない」ということは成り立つ fact3: その最新作は惜しみ無くてかつ緩衝する fact4: その最新作は短縮出来るし加えて待ち草臥れる fact5: もしも「「その最新作は誕生後でないがそれはしゃがむ」ということは誤りだ」ということは嘘でないとすればそれはしゃがまない fact6: それは遣り方でないけれど御し易いという物はない fact7: この伝送路は惜しみ無くない fact8: 仮にその最新作が惜しみ無くてそれに緩衝するとするとこの足幅は待ち草臥れない fact9: その最新作は緩衝する fact10: この足幅が惜しみ無いし緩衝すればその最新作は待ち草臥れない fact11: この草枕は緩衝しない fact12: 仮に「「遣り方であるということはないけど御し易い」ということは誤りな」ものがあるとするとこの足幅は亡国だ fact13: もしこの既判力は千七百六十年代ならば「その最新作は誕生後でないがしかしそれはしゃがむ」ということは確かでない fact14: この足幅は惜しみ無くない fact15: もし何らかの物は待ち草臥れるけれど訝しくないなら価値創造である fact16: もし仮にある物がしゃがまないとすれば訝しいしそれは待ち草臥れる fact17: この足幅は緩衝しない ; $hypothesis$ = この足幅は待ち草臥れるということはない ; $proof$ =
fact8 & fact3 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: その最新作は緩衝するししかもそれは待ち草臥れる 事実2: この足幅が緩衝するし惜しみ無いとしたら「その最新作は待ち草臥れない」ということは成り立つ 事実3: その最新作は惜しみ無くてかつ緩衝する 事実4: その最新作は短縮出来るし加えて待ち草臥れる 事実5: もしも「「その最新作は誕生後でないがそれはしゃがむ」ということは誤りだ」ということは嘘でないとすればそれはしゃがまない 事実6: それは遣り方でないけれど御し易いという物はない 事実7: この伝送路は惜しみ無くない 事実8: 仮にその最新作が惜しみ無くてそれに緩衝するとするとこの足幅は待ち草臥れない 事実9: その最新作は緩衝する 事実10: この足幅が惜しみ無いし緩衝すればその最新作は待ち草臥れない 事実11: この草枕は緩衝しない 事実12: 仮に「「遣り方であるということはないけど御し易い」ということは誤りな」ものがあるとするとこの足幅は亡国だ 事実13: もしこの既判力は千七百六十年代ならば「その最新作は誕生後でないがしかしそれはしゃがむ」ということは確かでない 事実14: この足幅は惜しみ無くない 事実15: もし何らかの物は待ち草臥れるけれど訝しくないなら価値創造である 事実16: もし仮にある物がしゃがまないとすれば訝しいしそれは待ち草臥れる 事実17: この足幅は緩衝しない 仮説: この足幅は待ち草臥れるということはない
1. 事実8と事実3から、仮説が導かれる よって、仮説が証明されました。
0.3
その世界最速は演技する
{B}{a}
fact1: その世界最速は激昂する fact2: あの多層塔は取り辛くないかもしくはそれは決するか両方だ fact3: その世界最速は囲い者であるし更に流れ易い fact4: 仮にとあるものが言い聞かせるとすれば廃業するししかもそれは加工し易くない fact5: もしなんらかの物が脱水するとしたらそれは院宣でない fact6: もしも「その適格事後設立は囲い者だ」ということは正しいとするとその世界最速は囲い者である fact7: このステイタスは意思確認でない fact8: もしも「院宣でない」物があるとすればあの商工ファンドは言い聞かせるということはないかあるいは推進するかまたは両方である fact9: あの多層塔が取り辛くないかもしくは決するか両方だとすると脱水する fact10: 仮に「その適格事後設立は推進しないしそれは言い聞かせるということはない」ということは成り立たないとしたらその世界最速は言い聞かせる fact11: あの商工ファンドが言い聞かせるということはないならばあの適格事後設立は廃業するし囲い者だ fact12: その適格事後設立は院宣であるなら「それは推進しなくて言い聞かせらない」ということは偽である fact13: 仮にあるものが言い聞かせらないかあるいは推進するかあるいはどちらもだとすると言い聞かせらない fact14: もしこの全島が院宣であるがしかし意思確認でないならその適格事後設立は院宣だ fact15: 何かは加工し易くないとすると「それは囲い者だし演技する」ということは偽である fact16: もしも「何らかのものは囲い者であるし演技する」ということは誤っているとしたら演技しない fact17: もしあの商工ファンドが脱水するならこの全島は院宣だけれど意思確認でない fact18: その世界最速は囲い者である fact19: もしもあの商工ファンドが取り辛くないならば脱水する fact20: その世界最速は囲い者でかつ演技する fact21: もしも「この全島は演技しないかあるいは加工し易いかもしくはどちらもである」ということは誤りであるとしたらその世界最速は火消し屋敷である
fact1: {AM}{a} fact2: (¬{J}{e} v {K}{e}) fact3: ({A}{a} & {EF}{a}) fact4: (x): {E}x -> ({D}x & ¬{C}x) fact5: (x): {H}x -> ¬{G}x fact6: {A}{b} -> {A}{a} fact7: ¬{I}{f} fact8: (x): ¬{G}x -> (¬{E}{d} v {F}{d}) fact9: (¬{J}{e} v {K}{e}) -> {H}{e} fact10: ¬(¬{F}{b} & ¬{E}{b}) -> {E}{a} fact11: ¬{E}{d} -> ({D}{b} & {A}{b}) fact12: {G}{b} -> ¬(¬{F}{b} & ¬{E}{b}) fact13: (x): (¬{E}x v {F}x) -> ¬{E}x fact14: ({G}{c} & ¬{I}{c}) -> {G}{b} fact15: (x): ¬{C}x -> ¬({A}x & {B}x) fact16: (x): ¬({A}x & {B}x) -> ¬{B}x fact17: {H}{d} -> ({G}{c} & ¬{I}{c}) fact18: {A}{a} fact19: ¬{J}{d} -> {H}{d} fact20: ({A}{a} & {B}{a}) fact21: ¬(¬{B}{c} v {C}{c}) -> {ED}{a}
[ "fact20 -> hypothesis;" ]
[ "fact20 -> hypothesis;" ]
その世界最速は演技しない
¬{B}{a}
[ "fact29 -> int1: 「その世界最速は囲い者であるしそれに演技する」ということは真実でないとしたら演技しない; fact24 -> int2: 仮にその世界最速は加工し易くないなら「囲い者であるし更にそれは演技する」ということは成り立たない; fact28 -> int3: 仮にその世界最速が言い聞かせれば廃業するしそれは加工し易いということはない;" ]
10
1
1
20
0
20
PROVED
UNKNOWN
PROVED
UNKNOWN
$facts$ = fact1: その世界最速は激昂する fact2: あの多層塔は取り辛くないかもしくはそれは決するか両方だ fact3: その世界最速は囲い者であるし更に流れ易い fact4: 仮にとあるものが言い聞かせるとすれば廃業するししかもそれは加工し易くない fact5: もしなんらかの物が脱水するとしたらそれは院宣でない fact6: もしも「その適格事後設立は囲い者だ」ということは正しいとするとその世界最速は囲い者である fact7: このステイタスは意思確認でない fact8: もしも「院宣でない」物があるとすればあの商工ファンドは言い聞かせるということはないかあるいは推進するかまたは両方である fact9: あの多層塔が取り辛くないかもしくは決するか両方だとすると脱水する fact10: 仮に「その適格事後設立は推進しないしそれは言い聞かせるということはない」ということは成り立たないとしたらその世界最速は言い聞かせる fact11: あの商工ファンドが言い聞かせるということはないならばあの適格事後設立は廃業するし囲い者だ fact12: その適格事後設立は院宣であるなら「それは推進しなくて言い聞かせらない」ということは偽である fact13: 仮にあるものが言い聞かせらないかあるいは推進するかあるいはどちらもだとすると言い聞かせらない fact14: もしこの全島が院宣であるがしかし意思確認でないならその適格事後設立は院宣だ fact15: 何かは加工し易くないとすると「それは囲い者だし演技する」ということは偽である fact16: もしも「何らかのものは囲い者であるし演技する」ということは誤っているとしたら演技しない fact17: もしあの商工ファンドが脱水するならこの全島は院宣だけれど意思確認でない fact18: その世界最速は囲い者である fact19: もしもあの商工ファンドが取り辛くないならば脱水する fact20: その世界最速は囲い者でかつ演技する fact21: もしも「この全島は演技しないかあるいは加工し易いかもしくはどちらもである」ということは誤りであるとしたらその世界最速は火消し屋敷である ; $hypothesis$ = その世界最速は演技する ; $proof$ =
fact20 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: その世界最速は激昂する 事実2: あの多層塔は取り辛くないかもしくはそれは決するか両方だ 事実3: その世界最速は囲い者であるし更に流れ易い 事実4: 仮にとあるものが言い聞かせるとすれば廃業するししかもそれは加工し易くない 事実5: もしなんらかの物が脱水するとしたらそれは院宣でない 事実6: もしも「その適格事後設立は囲い者だ」ということは正しいとするとその世界最速は囲い者である 事実7: このステイタスは意思確認でない 事実8: もしも「院宣でない」物があるとすればあの商工ファンドは言い聞かせるということはないかあるいは推進するかまたは両方である 事実9: あの多層塔が取り辛くないかもしくは決するか両方だとすると脱水する 事実10: 仮に「その適格事後設立は推進しないしそれは言い聞かせるということはない」ということは成り立たないとしたらその世界最速は言い聞かせる 事実11: あの商工ファンドが言い聞かせるということはないならばあの適格事後設立は廃業するし囲い者だ 事実12: その適格事後設立は院宣であるなら「それは推進しなくて言い聞かせらない」ということは偽である 事実13: 仮にあるものが言い聞かせらないかあるいは推進するかあるいはどちらもだとすると言い聞かせらない 事実14: もしこの全島が院宣であるがしかし意思確認でないならその適格事後設立は院宣だ 事実15: 何かは加工し易くないとすると「それは囲い者だし演技する」ということは偽である 事実16: もしも「何らかのものは囲い者であるし演技する」ということは誤っているとしたら演技しない 事実17: もしあの商工ファンドが脱水するならこの全島は院宣だけれど意思確認でない 事実18: その世界最速は囲い者である 事実19: もしもあの商工ファンドが取り辛くないならば脱水する 事実20: その世界最速は囲い者でかつ演技する 事実21: もしも「この全島は演技しないかあるいは加工し易いかもしくはどちらもである」ということは誤りであるとしたらその世界最速は火消し屋敷である 仮説: その世界最速は演技する
1. 事実20から、仮説が導かれる よって、仮説が証明されました。
0.3
あの収穫物は尖る
{B}{a}
fact1: もしなんらかの物が図像化すればスハルト時代だ fact2: 「あの収穫物は霊山寺である」ということは成り立つ fact3: もしなんらかのものが着するとすればそれは図像化する fact4: その異性は霊山寺だ fact5: もしも「あの大森はリタイアしないけど転売する」ということは間違っているとすれば歩き難くない fact6: この半径Rが震災直後だ一方で尖らないとするとあの収穫物は尖らない fact7: とある物は食品加工でないとしたらそれは震災直後だということはない一方で打ち込める fact8: もし仮になんらかのものは公開授業であるとしたら「食品加工だということはないしそれは打ち込める」ということは成り立つということはない fact9: もし「この再吸収は食品加工でないけれど打ち込める」ということは嘘であるならばあの半径Rは霊山寺である fact10: すべての物は食品加工でない fact11: この全地域は霊山寺だ fact12: あの収穫物が霊山寺だとしたらそれは尖る fact13: 「あの収穫物は寓する」ということは確かだ fact14: もし仮にとある物が導出するとしたら着する fact15: もしもあの零X五Cがスハルト時代であるならこの再吸収は公開授業だ fact16: 仮にあの大森が歩き難くないとしたらあの零X五Cは導出するしおまけに合唱団だ
fact1: (x): {H}x -> {G}x fact2: {A}{a} fact3: (x): {I}x -> {H}x fact4: {A}{er} fact5: ¬(¬{M}{e} & {N}{e}) -> ¬{L}{e} fact6: ({C}{b} & ¬{B}{b}) -> ¬{B}{a} fact7: (x): ¬{E}x -> (¬{C}x & {D}x) fact8: (x): {F}x -> ¬(¬{E}x & {D}x) fact9: ¬(¬{E}{c} & {D}{c}) -> {A}{b} fact10: (x): ¬{E}x fact11: {A}{hj} fact12: {A}{a} -> {B}{a} fact13: {FR}{a} fact14: (x): {J}x -> {I}x fact15: {G}{d} -> {F}{c} fact16: ¬{L}{e} -> ({J}{d} & {K}{d})
[ "fact12 & fact2 -> hypothesis;" ]
[ "fact12 & fact2 -> hypothesis;" ]
あの収穫物は尖らない
¬{B}{a}
[ "fact17 -> int1: もしもこの再吸収は公開授業ならば「それは食品加工でないけれど打ち込める」ということは成り立たない; fact19 -> int2: あの零X五Cが図像化するとするとスハルト時代である; fact25 -> int3: もしあの零X五Cが着するとしたら図像化する; fact23 -> int4: もしあの零X五Cが導出すればそれは着する;" ]
11
1
1
14
0
14
PROVED
UNKNOWN
PROVED
UNKNOWN
$facts$ = fact1: もしなんらかの物が図像化すればスハルト時代だ fact2: 「あの収穫物は霊山寺である」ということは成り立つ fact3: もしなんらかのものが着するとすればそれは図像化する fact4: その異性は霊山寺だ fact5: もしも「あの大森はリタイアしないけど転売する」ということは間違っているとすれば歩き難くない fact6: この半径Rが震災直後だ一方で尖らないとするとあの収穫物は尖らない fact7: とある物は食品加工でないとしたらそれは震災直後だということはない一方で打ち込める fact8: もし仮になんらかのものは公開授業であるとしたら「食品加工だということはないしそれは打ち込める」ということは成り立つということはない fact9: もし「この再吸収は食品加工でないけれど打ち込める」ということは嘘であるならばあの半径Rは霊山寺である fact10: すべての物は食品加工でない fact11: この全地域は霊山寺だ fact12: あの収穫物が霊山寺だとしたらそれは尖る fact13: 「あの収穫物は寓する」ということは確かだ fact14: もし仮にとある物が導出するとしたら着する fact15: もしもあの零X五Cがスハルト時代であるならこの再吸収は公開授業だ fact16: 仮にあの大森が歩き難くないとしたらあの零X五Cは導出するしおまけに合唱団だ ; $hypothesis$ = あの収穫物は尖る ; $proof$ =
fact12 & fact2 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: もしなんらかの物が図像化すればスハルト時代だ 事実2: 「あの収穫物は霊山寺である」ということは成り立つ 事実3: もしなんらかのものが着するとすればそれは図像化する 事実4: その異性は霊山寺だ 事実5: もしも「あの大森はリタイアしないけど転売する」ということは間違っているとすれば歩き難くない 事実6: この半径Rが震災直後だ一方で尖らないとするとあの収穫物は尖らない 事実7: とある物は食品加工でないとしたらそれは震災直後だということはない一方で打ち込める 事実8: もし仮になんらかのものは公開授業であるとしたら「食品加工だということはないしそれは打ち込める」ということは成り立つということはない 事実9: もし「この再吸収は食品加工でないけれど打ち込める」ということは嘘であるならばあの半径Rは霊山寺である 事実10: すべての物は食品加工でない 事実11: この全地域は霊山寺だ 事実12: あの収穫物が霊山寺だとしたらそれは尖る 事実13: 「あの収穫物は寓する」ということは確かだ 事実14: もし仮にとある物が導出するとしたら着する 事実15: もしもあの零X五Cがスハルト時代であるならこの再吸収は公開授業だ 事実16: 仮にあの大森が歩き難くないとしたらあの零X五Cは導出するしおまけに合唱団だ 仮説: あの収穫物は尖る
1. 事実12と事実2から、仮説が導かれる よって、仮説が証明されました。
0.3
「「仮に悪性貧血だとすると「子育てしないし他力本願であるということはない」ということは成り立たない」ものはある」ということは間違いである
¬((Ex): {A}x -> ¬(¬{AA}x & ¬{AB}x))
fact1: もしそのフローラ・ベイ・リゾートは悪性貧血であるならそれは子育てしなくて他力本願でない fact2: 「自決するとしたら「高跳びでないし生き難くない」ということは誤っている」ものはある fact3: 「もし仮に悪性貧血だとすると「子育てしないけど他力本願だ」ということは偽な」物はある fact4: 仮になんらかの物は特化するとすれば「それは慎ましいということはなくてしかも鑑賞でない」ということは間違いだ fact5: もし「そのフローラ・ベイ・リゾートは悪性貧血である」ということは真実なら「それは子育てしなくてしかも他力本願でない」ということは偽である fact6: もしそのフローラ・ベイ・リゾートは犯し易いとすると「それは参照先でないしそれに子育てしない」ということは間違っている fact7: 「もし仮に悪性貧血であるとすると「子育てするしかつ他力本願でない」ということは成り立たない」物はある fact8: 仮にその分子クラスターは他力本願であるなら「「友布子さんだということはないし第二夫人でない」ということは真実だ」ということは成り立たない fact9: 「仮に編集すれば「オーソリティズでないしさらに天才脳でない」ということは成り立たない」ものはある fact10: 仮にそのフローラ・ベイ・リゾートは他力本願なら「労働基準監督署長でないしそれは編集するということはない」ということは成り立たない fact11: 「仮に悪性貧血だとすれば子育てしないしまた他力本願でない」物はある fact12: そのフローラ・ベイ・リゾートは会釈するとすれば「他力本願でなくて加えて興奮し易くない」ということは偽である fact13: もし仮にこの留守役は広がり難いとしたら「他力本願でなくてICJでない」ということは成り立たない fact14: 「もしも挽き方であるとすれば「「鞍替えしないしそれに大慶至極でない」ということは真実である」ということは事実と異なる」物はある fact15: 「仮に眠いとすると「ストレス・リダクションだということはないしまた済ま無くない」ということは成り立つということはない」物はある fact16: 仮にそのフローラ・ベイ・リゾートは悪性貧血だとすれば「それは子育てするしそれにそれは他力本願でない」ということは誤りである fact17: もしそのフローラ・ベイ・リゾートは悪性貧血だとすれば「子育てするということはなくてそれは他力本願である」ということは間違いである
fact1: {A}{aa} -> (¬{AA}{aa} & ¬{AB}{aa}) fact2: (Ex): {DQ}x -> ¬(¬{AC}x & ¬{AD}x) fact3: (Ex): {A}x -> ¬(¬{AA}x & {AB}x) fact4: (x): {HH}x -> ¬(¬{AO}x & ¬{HT}x) fact5: {A}{aa} -> ¬(¬{AA}{aa} & ¬{AB}{aa}) fact6: {DJ}{aa} -> ¬(¬{J}{aa} & ¬{AA}{aa}) fact7: (Ex): {A}x -> ¬({AA}x & ¬{AB}x) fact8: {AB}{dm} -> ¬(¬{FR}{dm} & ¬{EI}{dm}) fact9: (Ex): {C}x -> ¬(¬{FF}x & ¬{AM}x) fact10: {AB}{aa} -> ¬(¬{O}{aa} & ¬{C}{aa}) fact11: (Ex): {A}x -> (¬{AA}x & ¬{AB}x) fact12: {GS}{aa} -> ¬(¬{AB}{aa} & ¬{IP}{aa}) fact13: {FM}{er} -> ¬(¬{AB}{er} & ¬{EC}{er}) fact14: (Ex): {BP}x -> ¬(¬{HB}x & ¬{EG}x) fact15: (Ex): {IQ}x -> ¬(¬{EE}x & ¬{JI}x) fact16: {A}{aa} -> ¬({AA}{aa} & ¬{AB}{aa}) fact17: {A}{aa} -> ¬(¬{AA}{aa} & {AB}{aa})
[ "fact5 -> hypothesis;" ]
[ "fact5 -> hypothesis;" ]
「もしも特化するとすると「慎ましくないし鑑賞でない」ということは成り立たない」物はある
(Ex): {HH}x -> ¬(¬{AO}x & ¬{HT}x)
[ "fact18 -> int1: もし仮にあのセリーグは特化するなら「それは慎ましくなくておまけにそれは鑑賞でない」ということは成り立たない; int1 -> hypothesis;" ]
2
1
1
16
0
16
DISPROVED
PROVED
DISPROVED
PROVED
$facts$ = fact1: もしそのフローラ・ベイ・リゾートは悪性貧血であるならそれは子育てしなくて他力本願でない fact2: 「自決するとしたら「高跳びでないし生き難くない」ということは誤っている」ものはある fact3: 「もし仮に悪性貧血だとすると「子育てしないけど他力本願だ」ということは偽な」物はある fact4: 仮になんらかの物は特化するとすれば「それは慎ましいということはなくてしかも鑑賞でない」ということは間違いだ fact5: もし「そのフローラ・ベイ・リゾートは悪性貧血である」ということは真実なら「それは子育てしなくてしかも他力本願でない」ということは偽である fact6: もしそのフローラ・ベイ・リゾートは犯し易いとすると「それは参照先でないしそれに子育てしない」ということは間違っている fact7: 「もし仮に悪性貧血であるとすると「子育てするしかつ他力本願でない」ということは成り立たない」物はある fact8: 仮にその分子クラスターは他力本願であるなら「「友布子さんだということはないし第二夫人でない」ということは真実だ」ということは成り立たない fact9: 「仮に編集すれば「オーソリティズでないしさらに天才脳でない」ということは成り立たない」ものはある fact10: 仮にそのフローラ・ベイ・リゾートは他力本願なら「労働基準監督署長でないしそれは編集するということはない」ということは成り立たない fact11: 「仮に悪性貧血だとすれば子育てしないしまた他力本願でない」物はある fact12: そのフローラ・ベイ・リゾートは会釈するとすれば「他力本願でなくて加えて興奮し易くない」ということは偽である fact13: もし仮にこの留守役は広がり難いとしたら「他力本願でなくてICJでない」ということは成り立たない fact14: 「もしも挽き方であるとすれば「「鞍替えしないしそれに大慶至極でない」ということは真実である」ということは事実と異なる」物はある fact15: 「仮に眠いとすると「ストレス・リダクションだということはないしまた済ま無くない」ということは成り立つということはない」物はある fact16: 仮にそのフローラ・ベイ・リゾートは悪性貧血だとすれば「それは子育てするしそれにそれは他力本願でない」ということは誤りである fact17: もしそのフローラ・ベイ・リゾートは悪性貧血だとすれば「子育てするということはなくてそれは他力本願である」ということは間違いである ; $hypothesis$ = 「「仮に悪性貧血だとすると「子育てしないし他力本願であるということはない」ということは成り立たない」ものはある」ということは間違いである ; $proof$ =
fact5 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: もしそのフローラ・ベイ・リゾートは悪性貧血であるならそれは子育てしなくて他力本願でない 事実2: 「自決するとしたら「高跳びでないし生き難くない」ということは誤っている」ものはある 事実3: 「もし仮に悪性貧血だとすると「子育てしないけど他力本願だ」ということは偽な」物はある 事実4: 仮になんらかの物は特化するとすれば「それは慎ましいということはなくてしかも鑑賞でない」ということは間違いだ 事実5: もし「そのフローラ・ベイ・リゾートは悪性貧血である」ということは真実なら「それは子育てしなくてしかも他力本願でない」ということは偽である 事実6: もしそのフローラ・ベイ・リゾートは犯し易いとすると「それは参照先でないしそれに子育てしない」ということは間違っている 事実7: 「もし仮に悪性貧血であるとすると「子育てするしかつ他力本願でない」ということは成り立たない」物はある 事実8: 仮にその分子クラスターは他力本願であるなら「「友布子さんだということはないし第二夫人でない」ということは真実だ」ということは成り立たない 事実9: 「仮に編集すれば「オーソリティズでないしさらに天才脳でない」ということは成り立たない」ものはある 事実10: 仮にそのフローラ・ベイ・リゾートは他力本願なら「労働基準監督署長でないしそれは編集するということはない」ということは成り立たない 事実11: 「仮に悪性貧血だとすれば子育てしないしまた他力本願でない」物はある 事実12: そのフローラ・ベイ・リゾートは会釈するとすれば「他力本願でなくて加えて興奮し易くない」ということは偽である 事実13: もし仮にこの留守役は広がり難いとしたら「他力本願でなくてICJでない」ということは成り立たない 事実14: 「もしも挽き方であるとすれば「「鞍替えしないしそれに大慶至極でない」ということは真実である」ということは事実と異なる」物はある 事実15: 「仮に眠いとすると「ストレス・リダクションだということはないしまた済ま無くない」ということは成り立つということはない」物はある 事実16: 仮にそのフローラ・ベイ・リゾートは悪性貧血だとすれば「それは子育てするしそれにそれは他力本願でない」ということは誤りである 事実17: もしそのフローラ・ベイ・リゾートは悪性貧血だとすれば「子育てするということはなくてそれは他力本願である」ということは間違いである 仮説: 「「仮に悪性貧血だとすると「子育てしないし他力本願であるということはない」ということは成り立たない」ものはある」ということは間違いである
1. 事実5から、仮説が否定される よって、仮説が否定されました。
0.3
「この学芸会は取り出し易い」ということは偽でない
{B}{a}
fact1: もしも何らかのものは為でないなら「それは甲高くない」ということは成り立つ fact2: もしもそのCNBCが腫れぼったいとするとそれは持ち越すということはないけどびんたである fact3: もし仮に「寒々しかない」物はあるとすれば「そのCNBCは見せ付けるがしかしそれは為でない」ということは間違いである fact4: その余裕資金が確立出来るとしたらそれは取り出し易い fact5: この学芸会はびんたであるならばそれは取り出し易い fact6: 「この学芸会はびんただ」ということは本当である fact7: 仮に甲高いということはないものはびんただとすると「それは取り出し易い」ということは成り立つ fact8: 口惜しくないかあるいは華々しくないかどちらもなものは腫れぼったい fact9: この幼虫が見せ付けるが寒々しかないならあの非流暢性は為でない fact10: もしもその管財は単板であるとすればびんたである fact11: もし仮にこの学芸会が延び延びだとすれば取り出し易い fact12: この幼虫がせせこましいということはないがしかし起こりであるなら観点毎でない fact13: あの異常は取り出し易い fact14: もしもあの非流暢性が質問表であるということはないとすればあの学芸会は寒々しいということはない fact15: 仮に「なにがしかのものは観点毎でない」ということは本当だとすればあの非流暢性は質問表でない fact16: 仮にとあるものが甲高くないならばそれはびんたであるしその上取り出し易い fact17: この学芸会は覚束無い fact18: もしあの非流暢性が甲高くないとすればあの学芸会はびんたでないしそれに取り出し易くない fact19: もし仮に「そのCNBCは馬鹿でかいしさらに華々しい」ということは成り立たないならそれは華々しくない fact20: 「そのCNBCは馬鹿でかいしそれに華々しい」ということは事実でない fact21: この幼虫はせせこましいということはないけれど起こりである
fact1: (x): ¬{D}x -> ¬{C}x fact2: {H}{cn} -> (¬{G}{cn} & {A}{cn}) fact3: (x): ¬{F}x -> ¬({E}{cn} & ¬{D}{cn}) fact4: {GP}{hq} -> {B}{hq} fact5: {A}{a} -> {B}{a} fact6: {A}{a} fact7: (x): (¬{C}x & {A}x) -> {B}x fact8: (x): (¬{I}x v ¬{J}x) -> {H}x fact9: ({E}{c} & ¬{F}{c}) -> ¬{D}{b} fact10: {IQ}{r} -> {A}{r} fact11: {DM}{a} -> {B}{a} fact12: (¬{O}{c} & {M}{c}) -> ¬{L}{c} fact13: {B}{jk} fact14: ¬{K}{b} -> ¬{F}{a} fact15: (x): ¬{L}x -> ¬{K}{b} fact16: (x): ¬{C}x -> ({A}x & {B}x) fact17: {HQ}{a} fact18: ¬{C}{b} -> (¬{A}{a} & ¬{B}{a}) fact19: ¬({N}{cn} & {J}{cn}) -> ¬{J}{cn} fact20: ¬({N}{cn} & {J}{cn}) fact21: (¬{O}{c} & {M}{c})
[ "fact5 & fact6 -> hypothesis;" ]
[ "fact5 & fact6 -> hypothesis;" ]
この学芸会は取り出し易くない
¬{B}{a}
[ "fact23 -> int1: もしもあの非流暢性は為でないなら甲高くない;" ]
7
1
1
19
0
19
PROVED
UNKNOWN
PROVED
UNKNOWN
$facts$ = fact1: もしも何らかのものは為でないなら「それは甲高くない」ということは成り立つ fact2: もしもそのCNBCが腫れぼったいとするとそれは持ち越すということはないけどびんたである fact3: もし仮に「寒々しかない」物はあるとすれば「そのCNBCは見せ付けるがしかしそれは為でない」ということは間違いである fact4: その余裕資金が確立出来るとしたらそれは取り出し易い fact5: この学芸会はびんたであるならばそれは取り出し易い fact6: 「この学芸会はびんただ」ということは本当である fact7: 仮に甲高いということはないものはびんただとすると「それは取り出し易い」ということは成り立つ fact8: 口惜しくないかあるいは華々しくないかどちらもなものは腫れぼったい fact9: この幼虫が見せ付けるが寒々しかないならあの非流暢性は為でない fact10: もしもその管財は単板であるとすればびんたである fact11: もし仮にこの学芸会が延び延びだとすれば取り出し易い fact12: この幼虫がせせこましいということはないがしかし起こりであるなら観点毎でない fact13: あの異常は取り出し易い fact14: もしもあの非流暢性が質問表であるということはないとすればあの学芸会は寒々しいということはない fact15: 仮に「なにがしかのものは観点毎でない」ということは本当だとすればあの非流暢性は質問表でない fact16: 仮にとあるものが甲高くないならばそれはびんたであるしその上取り出し易い fact17: この学芸会は覚束無い fact18: もしあの非流暢性が甲高くないとすればあの学芸会はびんたでないしそれに取り出し易くない fact19: もし仮に「そのCNBCは馬鹿でかいしさらに華々しい」ということは成り立たないならそれは華々しくない fact20: 「そのCNBCは馬鹿でかいしそれに華々しい」ということは事実でない fact21: この幼虫はせせこましいということはないけれど起こりである ; $hypothesis$ = 「この学芸会は取り出し易い」ということは偽でない ; $proof$ =
fact5 & fact6 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: もしも何らかのものは為でないなら「それは甲高くない」ということは成り立つ 事実2: もしもそのCNBCが腫れぼったいとするとそれは持ち越すということはないけどびんたである 事実3: もし仮に「寒々しかない」物はあるとすれば「そのCNBCは見せ付けるがしかしそれは為でない」ということは間違いである 事実4: その余裕資金が確立出来るとしたらそれは取り出し易い 事実5: この学芸会はびんたであるならばそれは取り出し易い 事実6: 「この学芸会はびんただ」ということは本当である 事実7: 仮に甲高いということはないものはびんただとすると「それは取り出し易い」ということは成り立つ 事実8: 口惜しくないかあるいは華々しくないかどちらもなものは腫れぼったい 事実9: この幼虫が見せ付けるが寒々しかないならあの非流暢性は為でない 事実10: もしもその管財は単板であるとすればびんたである 事実11: もし仮にこの学芸会が延び延びだとすれば取り出し易い 事実12: この幼虫がせせこましいということはないがしかし起こりであるなら観点毎でない 事実13: あの異常は取り出し易い 事実14: もしもあの非流暢性が質問表であるということはないとすればあの学芸会は寒々しいということはない 事実15: 仮に「なにがしかのものは観点毎でない」ということは本当だとすればあの非流暢性は質問表でない 事実16: 仮にとあるものが甲高くないならばそれはびんたであるしその上取り出し易い 事実17: この学芸会は覚束無い 事実18: もしあの非流暢性が甲高くないとすればあの学芸会はびんたでないしそれに取り出し易くない 事実19: もし仮に「そのCNBCは馬鹿でかいしさらに華々しい」ということは成り立たないならそれは華々しくない 事実20: 「そのCNBCは馬鹿でかいしそれに華々しい」ということは事実でない 事実21: この幼虫はせせこましいということはないけれど起こりである 仮説: 「この学芸会は取り出し易い」ということは偽でない
1. 事実5と事実6から、仮説が導かれる よって、仮説が証明されました。
0.3
「あの辺数は物凄ーい」ということは成り立つ
{A}{a}
fact1: その金銅製装飾品は物凄ーい fact2: それは意義深くなくて加えてそれは許可証明書だという物はない fact3: 「この入会山は目録でなくてまた抜かさない」ということは間違いである fact4: 「この入会山は目録でなくて抜かさない」ということは誤っていればそれは尿臭でない fact5: あの辺数は物凄ーい fact6: あの辺数は彷徨く fact7: あの金毘羅未生譚は物凄ーい fact8: 何かは生き易くないならばこの美術スタッフはひっそりしない fact9: なにかはひっそりしないとすればごつくて加えて割る fact10: もしもある物はヨーロッパ内でないとすると「許可証明書でないししかもいじましい」ということは間違いである fact11: 「なにがしかの物は意義深くない一方で許可証明書である」ということは間違っているとしたらそれは許可証明書だということはない fact12: 青くないものはヨーロッパ内でない一方で意義深い fact13: もし「何かは許可証明書でないがいじましい」ということは間違っていればそれは物凄ーくない fact14: もし「尿臭でない」ものがあるとしたらそのA病院は生き易くない
fact1: {A}{bf} fact2: (x): ¬(¬{E}x & {C}x) fact3: ¬(¬{M}{d} & ¬{L}{d}) fact4: ¬(¬{M}{d} & ¬{L}{d}) -> ¬{K}{d} fact5: {A}{a} fact6: {CO}{a} fact7: {A}{cg} fact8: (x): ¬{J}x -> ¬{I}{b} fact9: (x): ¬{I}x -> ({H}x & {G}x) fact10: (x): ¬{D}x -> ¬(¬{C}x & {B}x) fact11: (x): ¬(¬{E}x & {C}x) -> ¬{C}x fact12: (x): ¬{F}x -> (¬{D}x & {E}x) fact13: (x): ¬(¬{C}x & {B}x) -> ¬{A}x fact14: (x): ¬{K}x -> ¬{J}{c}
[ "fact5 -> hypothesis;" ]
[ "fact5 -> hypothesis;" ]
あのホームケアは物凄ーい
{A}{ba}
[ "fact15 -> int1: もし仮に「あの辺数は意義深くないがしかしそれは許可証明書だ」ということは誤りであるならばそれは許可証明書でない; fact16 -> int2: 「あの辺数は意義深くないけれど許可証明書だ」ということは成り立たない; int1 & int2 -> int3: あの辺数は許可証明書でない;" ]
6
1
0
13
0
13
PROVED
UNKNOWN
PROVED
UNKNOWN
$facts$ = fact1: その金銅製装飾品は物凄ーい fact2: それは意義深くなくて加えてそれは許可証明書だという物はない fact3: 「この入会山は目録でなくてまた抜かさない」ということは間違いである fact4: 「この入会山は目録でなくて抜かさない」ということは誤っていればそれは尿臭でない fact5: あの辺数は物凄ーい fact6: あの辺数は彷徨く fact7: あの金毘羅未生譚は物凄ーい fact8: 何かは生き易くないならばこの美術スタッフはひっそりしない fact9: なにかはひっそりしないとすればごつくて加えて割る fact10: もしもある物はヨーロッパ内でないとすると「許可証明書でないししかもいじましい」ということは間違いである fact11: 「なにがしかの物は意義深くない一方で許可証明書である」ということは間違っているとしたらそれは許可証明書だということはない fact12: 青くないものはヨーロッパ内でない一方で意義深い fact13: もし「何かは許可証明書でないがいじましい」ということは間違っていればそれは物凄ーくない fact14: もし「尿臭でない」ものがあるとしたらそのA病院は生き易くない ; $hypothesis$ = 「あの辺数は物凄ーい」ということは成り立つ ; $proof$ =
fact5 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: その金銅製装飾品は物凄ーい 事実2: それは意義深くなくて加えてそれは許可証明書だという物はない 事実3: 「この入会山は目録でなくてまた抜かさない」ということは間違いである 事実4: 「この入会山は目録でなくて抜かさない」ということは誤っていればそれは尿臭でない 事実5: あの辺数は物凄ーい 事実6: あの辺数は彷徨く 事実7: あの金毘羅未生譚は物凄ーい 事実8: 何かは生き易くないならばこの美術スタッフはひっそりしない 事実9: なにかはひっそりしないとすればごつくて加えて割る 事実10: もしもある物はヨーロッパ内でないとすると「許可証明書でないししかもいじましい」ということは間違いである 事実11: 「なにがしかの物は意義深くない一方で許可証明書である」ということは間違っているとしたらそれは許可証明書だということはない 事実12: 青くないものはヨーロッパ内でない一方で意義深い 事実13: もし「何かは許可証明書でないがいじましい」ということは間違っていればそれは物凄ーくない 事実14: もし「尿臭でない」ものがあるとしたらそのA病院は生き易くない 仮説: 「あの辺数は物凄ーい」ということは成り立つ
1. 事実5から、仮説が導かれる よって、仮説が証明されました。
0.3
その州教育課程委員会は勘違いし易いということはない
¬{B}{a}
fact1: もしなにがしかのものがゴルフしないならばそれは諸大夫である fact2: その州教育課程委員会は了知出来るしおまけに勘違いし易い
fact1: (x): ¬{C}x -> {FT}x fact2: ({A}{a} & {B}{a})
[ "fact2 -> hypothesis;" ]
[ "fact2 -> hypothesis;" ]
そのCエイトα‐γ分子は諸大夫であるししかもそれは乱れる
({FT}{bs} & {GD}{bs})
[ "fact3 -> int1: その州教育課程委員会がゴルフしないならばそれは諸大夫だ;" ]
5
1
1
1
0
1
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: もしなにがしかのものがゴルフしないならばそれは諸大夫である fact2: その州教育課程委員会は了知出来るしおまけに勘違いし易い ; $hypothesis$ = その州教育課程委員会は勘違いし易いということはない ; $proof$ =
fact2 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: もしなにがしかのものがゴルフしないならばそれは諸大夫である 事実2: その州教育課程委員会は了知出来るしおまけに勘違いし易い 仮説: その州教育課程委員会は勘違いし易いということはない
1. 事実2から、仮説が否定される よって、仮説が否定されました。
0.3
「この単結合は軽くない」ということは成り立つ
¬{A}{a}
fact1: この単結合は永続する fact2: なにかは咽頭拭い液なら「それは喋り続けないし柔くない」ということは成り立たない fact3: この単結合は軽い fact4: 何かは喋り続けるとすれば「「それは揺す一方で叙勲だということはない」ということは正しい」ということは成り立たない fact5: その一面トップは軽い fact6: 叙勲は安宿であるかもしくはやくざっぽくないかあるいは両方だ fact7: もし仮にこの単結合は空港ビルであるとしたら「その国民審査は軽い」ということは確かである fact8: この組織モデルが咽頭拭い液だし興奮し易い fact9: あの胸部X線撮影は軽い fact10: 「この組織モデルは喋り続けないしその上それは柔くない」ということは成り立たないなら「あの型変換は喋り続ける」ということは確かだ fact11: もし仮に「あの型変換は揺すけれど叙勲でない」ということは成り立たないならばこの豪族達は叙勲だ
fact1: {GR}{a} fact2: (x): {I}x -> ¬(¬{F}x & ¬{H}x) fact3: {A}{a} fact4: (x): {F}x -> ¬({G}x & ¬{E}x) fact5: {A}{ga} fact6: (x): {E}x -> ({C}x v ¬{D}x) fact7: {B}{a} -> {A}{hn} fact8: ({I}{d} & {J}{d}) fact9: {A}{eu} fact10: ¬(¬{F}{d} & ¬{H}{d}) -> {F}{c} fact11: ¬({G}{c} & ¬{E}{c}) -> {E}{b}
[ "fact3 -> hypothesis;" ]
[ "fact3 -> hypothesis;" ]
その国民審査は軽い
{A}{hn}
[ "fact14 -> int1: もしこの豪族達が叙勲だとすると安宿であるかまたはそれはやくざっぽくないかあるいは両方だ; fact18 -> int2: あの型変換は喋り続けるなら「揺すがしかし叙勲だということはない」ということは成り立たない; fact17 -> int3: もし仮にこの組織モデルは咽頭拭い液であるならば「それは喋り続けないししかも柔くない」ということは成り立たない; fact16 -> int4: この組織モデルは咽頭拭い液である; int3 & int4 -> int5: 「この組織モデルは喋り続けないしまた柔くない」ということは間違いである; fact12 & int5 -> int6: あの型変換は喋り続ける; int2 & int6 -> int7: 「あの型変換は揺すけど叙勲でない」ということは真実でない; fact15 & int7 -> int8: 「この豪族達は叙勲だ」ということは事実だ; int1 & int8 -> int9: この豪族達は安宿であるかもしくはそれはやくざっぽくない; int9 -> int10: なにかは安宿であるかあるいはやくざっぽくない;" ]
9
1
0
10
0
10
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: この単結合は永続する fact2: なにかは咽頭拭い液なら「それは喋り続けないし柔くない」ということは成り立たない fact3: この単結合は軽い fact4: 何かは喋り続けるとすれば「「それは揺す一方で叙勲だということはない」ということは正しい」ということは成り立たない fact5: その一面トップは軽い fact6: 叙勲は安宿であるかもしくはやくざっぽくないかあるいは両方だ fact7: もし仮にこの単結合は空港ビルであるとしたら「その国民審査は軽い」ということは確かである fact8: この組織モデルが咽頭拭い液だし興奮し易い fact9: あの胸部X線撮影は軽い fact10: 「この組織モデルは喋り続けないしその上それは柔くない」ということは成り立たないなら「あの型変換は喋り続ける」ということは確かだ fact11: もし仮に「あの型変換は揺すけれど叙勲でない」ということは成り立たないならばこの豪族達は叙勲だ ; $hypothesis$ = 「この単結合は軽くない」ということは成り立つ ; $proof$ =
fact3 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: この単結合は永続する 事実2: なにかは咽頭拭い液なら「それは喋り続けないし柔くない」ということは成り立たない 事実3: この単結合は軽い 事実4: 何かは喋り続けるとすれば「「それは揺す一方で叙勲だということはない」ということは正しい」ということは成り立たない 事実5: その一面トップは軽い 事実6: 叙勲は安宿であるかもしくはやくざっぽくないかあるいは両方だ 事実7: もし仮にこの単結合は空港ビルであるとしたら「その国民審査は軽い」ということは確かである 事実8: この組織モデルが咽頭拭い液だし興奮し易い 事実9: あの胸部X線撮影は軽い 事実10: 「この組織モデルは喋り続けないしその上それは柔くない」ということは成り立たないなら「あの型変換は喋り続ける」ということは確かだ 事実11: もし仮に「あの型変換は揺すけれど叙勲でない」ということは成り立たないならばこの豪族達は叙勲だ 仮説: 「この単結合は軽くない」ということは成り立つ
1. 事実3から、仮説が否定される よって、仮説が否定されました。
0.3
もし仮にその居宅介護支援は司法執行機関であるとしたら「それは戦争責任であるが習練しない」ということは正しい
{A}{aa} -> ({AA}{aa} & ¬{AB}{aa})
fact1: 仮にその居宅介護支援が習練するとすればそれはださいけれど攻撃し易くない fact2: もしも何らかの物が習練するとしたら潔いし悪戯っぽいということはない fact3: もし仮にある物が温むとすればそれは酸っぱいけど八十年代半ばでない fact4: もしもなにがしかのものは司法執行機関であるとするとそれは戦争責任であるが習練しない fact5: もしもあるものが司法執行機関なら習練しない fact6: もしもその居宅介護支援が司法執行機関だとすれば取得し易いし更に思い遣らない fact7: 潔いものは処理すがいちゃもんでない
fact1: {AB}{aa} -> ({AR}{aa} & ¬{HJ}{aa}) fact2: (x): {AB}x -> ({CE}x & ¬{EH}x) fact3: (x): {IC}x -> ({FM}x & ¬{EP}x) fact4: (x): {A}x -> ({AA}x & ¬{AB}x) fact5: (x): {A}x -> ¬{AB}x fact6: {A}{aa} -> ({HO}{aa} & ¬{GH}{aa}) fact7: (x): {CE}x -> ({BC}x & ¬{HE}x)
[ "fact4 -> hypothesis;" ]
[ "fact4 -> hypothesis;" ]
仮にその居宅介護支援が習練するとすると潔くてさらに悪戯っぽくない
{AB}{aa} -> ({CE}{aa} & ¬{EH}{aa})
[ "fact8 -> hypothesis;" ]
1
1
1
6
0
6
PROVED
PROVED
PROVED
PROVED
$facts$ = fact1: 仮にその居宅介護支援が習練するとすればそれはださいけれど攻撃し易くない fact2: もしも何らかの物が習練するとしたら潔いし悪戯っぽいということはない fact3: もし仮にある物が温むとすればそれは酸っぱいけど八十年代半ばでない fact4: もしもなにがしかのものは司法執行機関であるとするとそれは戦争責任であるが習練しない fact5: もしもあるものが司法執行機関なら習練しない fact6: もしもその居宅介護支援が司法執行機関だとすれば取得し易いし更に思い遣らない fact7: 潔いものは処理すがいちゃもんでない ; $hypothesis$ = もし仮にその居宅介護支援は司法執行機関であるとしたら「それは戦争責任であるが習練しない」ということは正しい ; $proof$ =
fact4 -> hypothesis; __PROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: 仮にその居宅介護支援が習練するとすればそれはださいけれど攻撃し易くない 事実2: もしも何らかの物が習練するとしたら潔いし悪戯っぽいということはない 事実3: もし仮にある物が温むとすればそれは酸っぱいけど八十年代半ばでない 事実4: もしもなにがしかのものは司法執行機関であるとするとそれは戦争責任であるが習練しない 事実5: もしもあるものが司法執行機関なら習練しない 事実6: もしもその居宅介護支援が司法執行機関だとすれば取得し易いし更に思い遣らない 事実7: 潔いものは処理すがいちゃもんでない 仮説: もし仮にその居宅介護支援は司法執行機関であるとしたら「それは戦争責任であるが習練しない」ということは正しい
1. 事実4から、仮説が導かれる よって、仮説が証明されました。
0.3
あの読解力は調べ易いということはない
¬{A}{a}
fact1: 「「御寂しくないが灯す」ということは誤りな」物はある fact2: もしも「「諸兄でないがしかし銘だ」ということは間違っている」ものがあるとしたらあの読解力は調べ易い fact3: もし仮に寒々しいものは透過性昂進でないならば「忍耐強くない」ということは確かだ fact4: 「「恐れ慎まない一方で疑い深い」ということは本当でない」物はある fact5: 「透過性昂進でないが堪り易い」ものはある fact6: 仮にあるものが銘でないとすればあの読解力は調べ易い fact7: 「「観察項目だということはないし調べ易い」ということは誤りである」物があればこの設立手続きは判断出来る fact8: 「「吊耳鉄鍋でなくて資料ページである」ということは確かであるということはない」ものはある fact9: もしも「何らかの物は川岸でしかも無症状だ」ということは事実と異なるとすると川岸だということはない fact10: あのユーザーアカウント名は縫合部であるけれど作業し易くない fact11: あの読解力は抜き難い fact12: 「「諸兄だし銘である」ということは成り立たない」物はある fact13: あの読解力は銘である fact14: この預金利息が忍耐強いということはないとするとあの読解力は真ん丸くないしその上それは調べ易くない fact15: 真ん丸くないし加えて重い物はある fact16: 何らかのものはディスプレイしないがそれは処遇管理である fact17: もし仮になにがしかの物は縫合部であるけれど作業し易くないならそれは川岸だということはない fact18: もしも「そのずわい蟹は川岸であるということはない」ということは本当ならこの預金利息は寒々しいけどそれは透過性昂進でない fact19: 「「腎障害でないが遊泳する」ということは成り立たない」ものはある fact20: 「「「諸兄であるということはないし銘だ」ということは成り立たない」ものはある」ということは正しい
fact1: (Ex): ¬(¬{HG}x & {IU}x) fact2: (x): ¬(¬{AA}x & {AB}x) -> {A}{a} fact3: (x): ({E}x & ¬{D}x) -> ¬{C}x fact4: (Ex): ¬(¬{GR}x & {DN}x) fact5: (Ex): (¬{D}x & {HA}x) fact6: (x): ¬{AB}x -> {A}{a} fact7: (x): ¬(¬{IC}x & {A}x) -> {HQ}{gb} fact8: (Ex): ¬(¬{BN}x & {FB}x) fact9: (x): ¬({F}x & {G}x) -> ¬{F}x fact10: ({I}{d} & ¬{H}{d}) fact11: {AF}{a} fact12: (Ex): ¬({AA}x & {AB}x) fact13: {AB}{a} fact14: ¬{C}{b} -> (¬{B}{a} & ¬{A}{a}) fact15: (Ex): (¬{B}x & {CS}x) fact16: (Ex): (¬{HF}x & {ED}x) fact17: (x): ({I}x & ¬{H}x) -> ¬{F}x fact18: ¬{F}{c} -> ({E}{b} & ¬{D}{b}) fact19: (Ex): ¬(¬{CJ}x & {CN}x) fact20: (Ex): ¬(¬{AA}x & {AB}x)
[ "fact20 & fact2 -> hypothesis;" ]
[ "fact20 & fact2 -> hypothesis;" ]
あの読解力は調べ易くない
¬{A}{a}
[ "fact22 -> int1: 仮にこの預金利息が寒々しいけれどそれは透過性昂進でないならそれは忍耐強くない; fact21 -> int2: もし仮に「そのずわい蟹は川岸であるしそれは無症状である」ということは誤りであるとすれば川岸でない; fact23 -> int3: もしあのユーザーアカウント名は縫合部だけれど作業し易くないとすればそれは川岸だということはない; int3 & fact25 -> int4: あのユーザーアカウント名は川岸でない; int4 -> int5: 「川岸でない」ものはある;" ]
9
1
1
18
0
18
DISPROVED
UNKNOWN
DISPROVED
UNKNOWN
$facts$ = fact1: 「「御寂しくないが灯す」ということは誤りな」物はある fact2: もしも「「諸兄でないがしかし銘だ」ということは間違っている」ものがあるとしたらあの読解力は調べ易い fact3: もし仮に寒々しいものは透過性昂進でないならば「忍耐強くない」ということは確かだ fact4: 「「恐れ慎まない一方で疑い深い」ということは本当でない」物はある fact5: 「透過性昂進でないが堪り易い」ものはある fact6: 仮にあるものが銘でないとすればあの読解力は調べ易い fact7: 「「観察項目だということはないし調べ易い」ということは誤りである」物があればこの設立手続きは判断出来る fact8: 「「吊耳鉄鍋でなくて資料ページである」ということは確かであるということはない」ものはある fact9: もしも「何らかの物は川岸でしかも無症状だ」ということは事実と異なるとすると川岸だということはない fact10: あのユーザーアカウント名は縫合部であるけれど作業し易くない fact11: あの読解力は抜き難い fact12: 「「諸兄だし銘である」ということは成り立たない」物はある fact13: あの読解力は銘である fact14: この預金利息が忍耐強いということはないとするとあの読解力は真ん丸くないしその上それは調べ易くない fact15: 真ん丸くないし加えて重い物はある fact16: 何らかのものはディスプレイしないがそれは処遇管理である fact17: もし仮になにがしかの物は縫合部であるけれど作業し易くないならそれは川岸だということはない fact18: もしも「そのずわい蟹は川岸であるということはない」ということは本当ならこの預金利息は寒々しいけどそれは透過性昂進でない fact19: 「「腎障害でないが遊泳する」ということは成り立たない」ものはある fact20: 「「「諸兄であるということはないし銘だ」ということは成り立たない」ものはある」ということは正しい ; $hypothesis$ = あの読解力は調べ易いということはない ; $proof$ =
fact20 & fact2 -> hypothesis; __DISPROVED__
事実から仮説を証明できるか、理由を含めて回答してください。
事実1: 「「御寂しくないが灯す」ということは誤りな」物はある 事実2: もしも「「諸兄でないがしかし銘だ」ということは間違っている」ものがあるとしたらあの読解力は調べ易い 事実3: もし仮に寒々しいものは透過性昂進でないならば「忍耐強くない」ということは確かだ 事実4: 「「恐れ慎まない一方で疑い深い」ということは本当でない」物はある 事実5: 「透過性昂進でないが堪り易い」ものはある 事実6: 仮にあるものが銘でないとすればあの読解力は調べ易い 事実7: 「「観察項目だということはないし調べ易い」ということは誤りである」物があればこの設立手続きは判断出来る 事実8: 「「吊耳鉄鍋でなくて資料ページである」ということは確かであるということはない」ものはある 事実9: もしも「何らかの物は川岸でしかも無症状だ」ということは事実と異なるとすると川岸だということはない 事実10: あのユーザーアカウント名は縫合部であるけれど作業し易くない 事実11: あの読解力は抜き難い 事実12: 「「諸兄だし銘である」ということは成り立たない」物はある 事実13: あの読解力は銘である 事実14: この預金利息が忍耐強いということはないとするとあの読解力は真ん丸くないしその上それは調べ易くない 事実15: 真ん丸くないし加えて重い物はある 事実16: 何らかのものはディスプレイしないがそれは処遇管理である 事実17: もし仮になにがしかの物は縫合部であるけれど作業し易くないならそれは川岸だということはない 事実18: もしも「そのずわい蟹は川岸であるということはない」ということは本当ならこの預金利息は寒々しいけどそれは透過性昂進でない 事実19: 「「腎障害でないが遊泳する」ということは成り立たない」ものはある 事実20: 「「「諸兄であるということはないし銘だ」ということは成り立たない」ものはある」ということは正しい 仮説: あの読解力は調べ易いということはない
1. 事実20と事実2から、仮説が否定される よって、仮説が否定されました。