Jesse-marqo's picture
Update README.md
21601c4 verified
|
raw
history blame
5.02 kB
metadata
dataset_info:
  features:
    - name: image
      dtype: image
    - name: category1
      dtype: string
    - name: category2
      dtype: string
    - name: category3
      dtype: float64
    - name: text
      dtype: string
    - name: item_ID
      dtype: string
  splits:
    - name: data
      num_bytes: 143032788.688
      num_examples: 42537
  download_size: 152932414
  dataset_size: 143032788.688
configs:
  - config_name: default
    data_files:
      - split: data
        path: data/data-*

Disclaimer: We do not own this dataset. DeepFashion dataset is a public dataset which can be accessed through its website.

This dataset was used to evaluate Marqo-FashionCLIP and Marqo-FashionSigLIP - see details below.

Marqo-FashionSigLIP Model Card

Marqo-FashionSigLIP leverages Generalised Contrastive Learning (GCL) which allows the model to be trained on not just text descriptions but also categories, style, colors, materials, keywords and fine-details to provide highly relevant search results on fashion products. The model was fine-tuned from ViT-B-16-SigLIP (webli).

Github Page: Marqo-FashionCLIP

Blog: Marqo Blog

Usage

The model can be seamlessly used with OpenCLIP by

import open_clip
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP')
import torch
from PIL import Image
image = preprocess_val(Image.open("docs/fashion-hippo.png")).unsqueeze(0)
text = tokenizer(["a hat", "a t-shirt", "shoes"])
with torch.no_grad(), torch.cuda.amp.autocast():
    image_features = model.encode_image(image)
    text_features = model.encode_text(text)
    image_features /= image_features.norm(dim=-1, keepdim=True)
    text_features /= text_features.norm(dim=-1, keepdim=True)
    text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
print("Label probs:", text_probs)

Benchmark Results

Average evaluation results on 6 public multimodal fashion datasets (Atlas, DeepFashion (In-shop), DeepFashion (Multimodal), Fashion200k, KAGL, and Polyvore) are reported below:

Text-To-Image (Averaged across 6 datasets)

Model AvgRecall Recall@1 Recall@10 MRR
Marqo-FashionSigLIP 0.231 0.121 0.340 0.239
FashionCLIP2.0 0.163 0.077 0.249 0.165
OpenFashionCLIP 0.132 0.060 0.204 0.135
ViT-B-16-laion2b_s34b_b88k 0.174 0.088 0.261 0.180
ViT-B-16-SigLIP-webli 0.212 0.111 0.314 0.214

Category-To-Product (Averaged across 5 datasets)

Model AvgP P@1 P@10 MRR
Marqo-FashionSigLIP 0.737 0.758 0.716 0.812
FashionCLIP2.0 0.684 0.681 0.686 0.741
OpenFashionCLIP 0.646 0.653 0.639 0.720
ViT-B-16-laion2b_s34b_b88k 0.662 0.673 0.652 0.743
ViT-B-16-SigLIP-webli 0.688 0.690 0.685 0.751

Sub-Category-To-Product (Averaged across 4 datasets)

Model AvgP P@1 P@10 MRR
Marqo-FashionSigLIP 0.725 0.767 0.683 0.811
FashionCLIP2.0 0.657 0.676 0.638 0.733
OpenFashionCLIP 0.598 0.619 0.578 0.689
ViT-B-16-laion2b_s34b_b88k 0.638 0.651 0.624 0.712
ViT-B-16-SigLIP-webli 0.643 0.643 0.643 0.726

When using the datset, cite the original work.

@inproceedings{liu2016deepfashion,
 author = {Liu, Ziwei and Luo, Ping and Qiu, Shi and Wang, Xiaogang and Tang, Xiaoou},
 title = {DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations},
 booktitle = {Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
 month = June,
 year = {2016} 
}