|
--- |
|
dataset_info: |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: category1 |
|
dtype: string |
|
- name: category2 |
|
dtype: string |
|
- name: category3 |
|
dtype: float64 |
|
- name: text |
|
dtype: string |
|
- name: item_ID |
|
dtype: string |
|
splits: |
|
- name: data |
|
num_bytes: 143032788.688 |
|
num_examples: 42537 |
|
download_size: 152932414 |
|
dataset_size: 143032788.688 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: data |
|
path: data/data-* |
|
--- |
|
**Disclaimer**: We do not own this dataset. DeepFashion dataset is a public dataset which can be accessed through its [website](https://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html). |
|
|
|
This dataset was used to evaluate Marqo-FashionCLIP and Marqo-FashionSigLIP - see details below. |
|
|
|
# Marqo-FashionSigLIP Model Card |
|
Marqo-FashionSigLIP leverages Generalised Contrastive Learning ([GCL](https://www.marqo.ai/blog/generalized-contrastive-learning-for-multi-modal-retrieval-and-ranking)) which allows the model to be trained on not just text descriptions but also categories, style, colors, materials, keywords and fine-details to provide highly relevant search results on fashion products. |
|
The model was fine-tuned from ViT-B-16-SigLIP (webli). |
|
|
|
**Github Page**: [Marqo-FashionCLIP](https://github.com/marqo-ai/marqo-FashionCLIP) |
|
|
|
**Blog**: [Marqo Blog](https://www.marqo.ai/blog/search-model-for-fashion) |
|
|
|
|
|
## Usage |
|
The model can be seamlessly used with [OpenCLIP](https://github.com/mlfoundations/open_clip) by |
|
|
|
```python |
|
import open_clip |
|
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP') |
|
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP') |
|
import torch |
|
from PIL import Image |
|
image = preprocess_val(Image.open("docs/fashion-hippo.png")).unsqueeze(0) |
|
text = tokenizer(["a hat", "a t-shirt", "shoes"]) |
|
with torch.no_grad(), torch.cuda.amp.autocast(): |
|
image_features = model.encode_image(image) |
|
text_features = model.encode_text(text) |
|
image_features /= image_features.norm(dim=-1, keepdim=True) |
|
text_features /= text_features.norm(dim=-1, keepdim=True) |
|
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1) |
|
print("Label probs:", text_probs) |
|
``` |
|
|
|
## Benchmark Results |
|
Average evaluation results on 6 public multimodal fashion datasets ([Atlas](https://huggingface.co/datasets/Marqo/atlas), [DeepFashion (In-shop)](https://huggingface.co/datasets/Marqo/deepfashion-inshop), [DeepFashion (Multimodal)](https://huggingface.co/datasets/Marqo/deepfashion-multimodal), [Fashion200k](https://huggingface.co/datasets/Marqo/fashion200k), [KAGL](https://huggingface.co/datasets/Marqo/KAGL), and [Polyvore](https://huggingface.co/datasets/Marqo/polyvore)) are reported below: |
|
|
|
**Text-To-Image (Averaged across 6 datasets)** |
|
| Model | AvgRecall | Recall@1 | Recall@10 | MRR | |
|
|----------------------------|-------------|------------|-------------|-----------| |
|
| Marqo-FashionSigLIP | **0.231** | **0.121** | **0.340** | **0.239** | |
|
| FashionCLIP2.0 | 0.163 | 0.077 | 0.249 | 0.165 | |
|
| OpenFashionCLIP | 0.132 | 0.060 | 0.204 | 0.135 | |
|
| ViT-B-16-laion2b_s34b_b88k | 0.174 | 0.088 | 0.261 | 0.180 | |
|
| ViT-B-16-SigLIP-webli | 0.212 | 0.111 | 0.314 | 0.214 | |
|
|
|
**Category-To-Product (Averaged across 5 datasets)** |
|
| Model | AvgP | P@1 | P@10 | MRR | |
|
|----------------------------|-----------|-----------|-----------|-----------| |
|
| Marqo-FashionSigLIP | **0.737** | **0.758** | **0.716** | **0.812** | |
|
| FashionCLIP2.0 | 0.684 | 0.681 | 0.686 | 0.741 | |
|
| OpenFashionCLIP | 0.646 | 0.653 | 0.639 | 0.720 | |
|
| ViT-B-16-laion2b_s34b_b88k | 0.662 | 0.673 | 0.652 | 0.743 | |
|
| ViT-B-16-SigLIP-webli | 0.688 | 0.690 | 0.685 | 0.751 | |
|
|
|
**Sub-Category-To-Product (Averaged across 4 datasets)** |
|
| Model | AvgP | P@1 | P@10 | MRR | |
|
|----------------------------|-----------|-----------|-----------|-----------| |
|
| Marqo-FashionSigLIP | **0.725** | **0.767** | **0.683** | **0.811** | |
|
| FashionCLIP2.0 | 0.657 | 0.676 | 0.638 | 0.733 | |
|
| OpenFashionCLIP | 0.598 | 0.619 | 0.578 | 0.689 | |
|
| ViT-B-16-laion2b_s34b_b88k | 0.638 | 0.651 | 0.624 | 0.712 | |
|
| ViT-B-16-SigLIP-webli | 0.643 | 0.643 | 0.643 | 0.726 | |
|
|
|
|
|
|
|
|
|
When using the datset, cite the original work. |
|
``` |
|
@inproceedings{liu2016deepfashion, |
|
author = {Liu, Ziwei and Luo, Ping and Qiu, Shi and Wang, Xiaogang and Tang, Xiaoou}, |
|
title = {DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations}, |
|
booktitle = {Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, |
|
month = June, |
|
year = {2016} |
|
} |
|
``` |