text
stringlengths 67
7.88k
|
---|
<|fim_prefix|>def <|fim_suffix|>(self):
"""Transcribe spack variants into names of Catalyst Editions"""
selected = ["Base"] # Always required
if "+python" in self.spec:
selected.append("Enable-Python")
if "+essentials" in self.spec:
selected.append("Essentials")
if "+extras" in self.spec:
selected.append("Essentials")
selected.append("Extras")
if "+rendering" in self.spec:
selected.append("Essentials")
selected.append("Extras")
selected.append("Rendering-Base")
return selected<|fim_middle|>editions<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(api_link_id: Optional[pulumi.Input[str]] = None,
product_id: Optional[pulumi.Input[str]] = None,
resource_group_name: Optional[pulumi.Input[str]] = None,
service_name: Optional[pulumi.Input[str]] = None,
opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetProductApiLinkResult]:
"""
Gets the API link for the product.
:param str api_link_id: Product-API link identifier. Must be unique in the current API Management service instance.
:param str product_id: Product identifier. Must be unique in the current API Management service instance.
:param str resource_group_name: The name of the resource group. The name is case insensitive.
:param str service_name: The name of the API Management service.
"""
...<|fim_middle|>get_product_api_link_output<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self, tmp_path):
query_file_path = tmp_path / "sql" / "test" / "query_v1"
os.makedirs(query_file_path)
query_file = query_file_path / "query.sql"
query_file.write_text("-- comment \n SELECT 1")
metadata_conf = {
"friendly_name": "test",
"description": "test",
"owners": ["[email protected]"],
}
metadata_file = query_file_path / "metadata.yaml"
metadata_file.write_text(yaml.dump(metadata_conf))
runner = CliRunner()
with patch("subprocess.check_call") as mock_call:
mock_call.return_value = True
result = runner.invoke(
run,
[str(query_file), "--dataset_id=test", "--destination_table=query_v1"],
)
assert result.exit_code == 0
assert mock_call.call_args.args == (
[
"bq",
"query",
"--dataset_id=test",
"--destination_table=query_v1",
],
)
assert "stdin" in mock_call.call_args.kwargs<|fim_middle|>test_run_query<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self):
vec_up = [0, 0, 1]
if self.alternate:
vec_back = [0, 1, 0]
else:
vec_back = [0, -1, 0]
vec_right = [1, 0, 0]
self.set_view(vec_up, vec_back, vec_right)<|fim_middle|>set_view_y<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self):
out = StoreOptions.merge_options(['plot', 'style'],
plot={'Image':dict(fig_size=150)},
style={'Image':dict(cmap='Blues')})
self.assertEqual(out, self.expected)<|fim_middle|>test_partitioned_format<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self):
user = self.request.user
# user.has_perms hasn't been called yet so django-guardian
# hasn't replaced the AnonymousUser with an actual user object
if user.is_anonymous:
return redirect_to_login(
self.request.get_full_path(), settings.LOGIN_URL, "next"
)
if hasattr(self, "get_object"):
obj = self.get_object()
else:
obj = None
perms = self.get_required_permissions()
if user.has_perms(perms, obj):
return None
else:
raise PermissionDenied<|fim_middle|>check_permissions<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(test_case):
device = "cuda"
channel = random(1, 32).to(int)
height = random(1, 2).to(int)
width = random(1024, 8192).to(int)
def get_random_norm_shape():
begin_axis = random(1, 3).to(int).value()
return tuple((channel.value(), height.value(), width.value())[begin_axis:])
m = torch.nn.LayerNorm(
normalized_shape=get_random_norm_shape(),
elementwise_affine=random().to(bool),
).to(device)
x = random_tensor(ndim=4, dim1=channel, dim2=height, dim3=width).to(device)
y = m(x)
return y<|fim_middle|>test_layernorm_with_random_data_shared_mem<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self) -> Optional[str]:
"""
The entity tag used for optimistic concurrency when modifying the resource.
"""
return pulumi.get(self, "etag")<|fim_middle|>etag<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>() -> bool:
try:
from bpython import embed # NOQA F841
except ImportError:
return False
return True<|fim_middle|>has_bpython<|file_separator|> |
<|fim_prefix|>async def <|fim_suffix|>(pipeline_response):
deserialized = self._deserialize("OperationListResult", pipeline_response)
list_of_elem = deserialized.value
if cls:
list_of_elem = cls(list_of_elem) # type: ignore
return None, AsyncList(list_of_elem)<|fim_middle|>extract_data<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(opt, filename):
if 'help' == opt.get_long_name():
if 'upgrade_pre' == filename:
global pre_help_str
print pre_help_str
elif 'upgrade_post' == filename:
global post_help_str
print post_help_str
else:
raise MyError('not supported filename:{0} for help option'.format(filename))
elif 'version' == opt.get_long_name():
global version_str
print version_str<|fim_middle|>deal_with_local_opt<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(args):
golden_raw, pred_raw, golden_label, pred_label = load_from_file(args)
golden_dict = pick_max_golden_evid(golden_raw, pred_raw)
macro_f1, scores = calc_model_f1(golden_dict, pred_raw, len(golden_raw))
return macro_f1, len(golden_raw)<|fim_middle|>main<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self):
parameters = {
**self.serialize_header_param(
"Content-Type", "application/json",
),
**self.serialize_header_param(
"Accept", "application/json",
),
}
return parameters<|fim_middle|>header_parameters<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self) -> None:
"""
Check for public and private keys.
"""
if not hasattr(self, "publicKeys"):
self.publicKeys = self.getPublicKeys()
if not hasattr(self, "privateKeys"):
self.privateKeys = self.getPrivateKeys()
if not self.publicKeys or not self.privateKeys:
raise error.ConchError("no host keys, failing")
if not hasattr(self, "primes"):
self.primes = self.getPrimes()<|fim_middle|>start_factory<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(store):
po_header = store.parseheader()
index = {}
for unit in store.units:
for location in unit.getlocations():
index[location] = unit
index["r_string_languagegroup_name"] = store.UnitClass(po_header["Language-Team"])
return index<|fim_middle|>build_location_index<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(path):
def _cmp(x, y):
if x[1] and not y[1]:
return -1
if not x[1] and y[1]:
return 1
if x[0].lower() > y[0].lower():
return 1
if x[0].lower() < y[0].lower():
return -1
return 0
items = []
if path.startswith("~"):
path = fs.expanduser(path)
if not os.path.isdir(path):
return items
for item in os.listdir(path):
try:
item_is_dir = os.path.isdir(os.path.join(path, item))
if item_is_dir:
os.listdir(os.path.join(path, item))
items.append((item, item_is_dir))
except OSError:
pass
return sorted(items, key=cmp_to_key(_cmp))<|fim_middle|>list_dir<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self, zip_path):
"""Checks if the ZIP file contains another file with the same name, so it is going to be overwritten.
@param zip_path: zip file path
@return: comparison boolean
"""
with ZipFile(zip_path, "r") as archive:
# Test if zip file contains a file named as itself.
try:
return any(name == os.path.basename(zip_path) for name in archive.namelist())
except BadZipfile as e:
raise CuckooPackageError("Invalid Zip file") from e<|fim_middle|>is_overwritten<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(
hook_state: Any, bucket: dist.GradBucket, optim_stream_state,
) -> torch.futures.Future[torch.Tensor]:
# Run original hook
ddp_weakref = hook_state
ddp_inst = ddp_weakref()
reducer, process_group = ddp_inst.reducer, ddp_inst.process_group
fut = reducer._run_allreduce_hook(bucket)
optimizer_stream = optim_stream_state.optim_stream
with torch.cuda.stream(optimizer_stream):
fut.wait()
# Apply gradient division since C++ side only allreduces and does
# not average. TODO: (rohan-varma) the div factor may be different
# when running with join hook
bucket.buffer().div_(process_group.size())
model_params = bucket.parameters()
grads = bucket.gradients()
# TODO (rohan-varma): upcast as needed for DDP mixed precision,
# once optimizer in backward + DDP mixed precision is supported.
for p, g in zip(model_params, grads):
if hasattr(p, '_in_backward_optimizers'):
# Note: need to set grad to the bucket's grad, because
# running allreduce results in the bucket's grad being
# reduced, but not grad field.
if not gradient_is_bucket_view:
p.grad = g
for optim in p._in_backward_optimizers:
optim.step()
# Need to return a Future[Tensor] to obey comm hook API contract.
ret_fut = torch.futures.Future()
ret_fut.set_result(bucket.buffer())
# enqueue a callback to wait for this optimizer stream at the end of
# backward and set all DDP managed grads to None.
def wait_for_optim_stream_callback():
torch.cuda.current_stream().wait_stream(
optim_stream_state.optim_stream
)
# Set DDP managed grads to None
for param in ddp_inst._get_data_parallel_params(ddp_inst.module):
if hasattr(param, '_in_backward_optimizers'):
param.grad = None
# reset for the next backwards pass
optim_stream_state.wait_for_optim_stream_enqueued = False
if not optim_stream_state.wait_for_optim_stream_enqueued:
Variable._execution_engine.queue_callback(
wait_for_optim_stream_callback
)
# mark that the callback is enqueued
optim_stream_state.wait_for_optim_stream_enqueued = True
return ret_fut<|fim_middle|>apply_optim_in_backward_hook<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self):
sut = CustomSet([1, 2, 3])
self.assertNotIn(4, sut)<|fim_middle|>test_when_the_element_is_not_in<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self):
# create more sweat users to allow for a decent record_batch size
while len(self.sweat.registered_users) < 1000:
# creating 20 accounts in parallel, about 200 should fit in a chunk
# but we don't want to assume we get to use all the chunk space for
# ourself. Also, other SweatUsers will be in the same loop and at
# some point the local CPU becomes a bottleneck, too.
self.sweat.create_passive_users(
20,
self.node,
self.account,
# protocol enforced max length is 64 but we want shorter names to
# not hit the log limits too soon
max_account_id_len=48)
rng = random.Random()
# just around 300Tgas
batch_size = rng.randint(700, 750)
receivers = self.sweat.random_receivers(self.account_id, batch_size)
tx = SweatMintBatch(
self.sweat.account.key.account_id, self.oracle,
[[account_id, rng.randint(1000, 3000)] for account_id in receivers])
self.send_tx(tx, locust_name="Sweat record batch (stress test)")<|fim_middle|>record_batch_of_large_batches<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(bindings, ret_value):
"""Make a nested let expressions.
Parameters
----------
bindings: List[Tuple[tvm.relay.Var,tvm.relay.Expr]]
The sequence of let bindings
ret_value: tvm.relay.Expr
The final value of the expression.
Returns
-------
lets: tvm.relay.Expr
A nested let expression.
"""
if ret_value is None:
raise RuntimeError("ret is not called in this scope")
if isinstance(ret_value, _expr.If) and ret_value.false_branch is None:
raise RuntimeError("Creating an If expression without else.")
let_expr = ret_value
for var, value in reversed(bindings):
let_expr = _expr.Let(var, value, let_expr)
return let_expr<|fim_middle|>make_lets<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self, minutes):
"""Need function for each pause-timer"""
sabnzbd.Scheduler.plan_resume(minutes)<|fim_middle|>pausefor<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self) -> Any:
"""
The Resource Manager template blueprint artifact body.
"""
return pulumi.get(self, "template")<|fim_middle|>template<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(
source_dir, target_dir, output_file_path, build_variables, arch
):
command = _get_command(arch)
subprocess.check_call(command, cwd=source_dir)
deb_arch = _DEB_ARCH[arch]
deb_file_name = f"{build_variables['DEB_PKG_NAME']}_{build_variables['DEB_PKG_VERSION']}_{deb_arch}.deb"
deb_file_path = mozpath.join(target_dir, deb_file_name)
if not os.path.exists(deb_file_path):
raise NoDebPackageFound(deb_file_path)
subprocess.check_call(["dpkg-deb", "--info", deb_file_path])
shutil.move(deb_file_path, output_file_path)<|fim_middle|>generate_deb_archive<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(spec, suggestions=None):
"""If the user provided a bad format specification, returns a UsageError that tries to help them fix it."""
if suggestions is None:
suggestion = from_spec(spec, allow_unrecognised=True)
suggestions = (
[suggestion] if suggestion else all_supported_import_source_types()
)
try_the_following = (
"Try one of the following" if len(suggestions) >= 2 else "Try the following"
)
return click.UsageError(
f"Unrecognised import-source specification: {spec}\n"
f"{try_the_following}:\n{suggest_specs(suggestions)}"
)<|fim_middle|>bad_spec_error<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(msg, sdk_version=None):
"""Generic warning raiser referencing V2
Args:
phrase: The phrase to include in the warning.
sdk_version: the sdk version of removal of support.
"""
_sdk_version = sdk_version if sdk_version is not None else "2"
full_msg = f"{msg} in sagemaker>={_sdk_version}.\nSee: {V2_URL} for details."
warnings.warn(full_msg, DeprecationWarning, stacklevel=2)
logger.warning(full_msg)<|fim_middle|>warn<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(
self,
use_case_id: UseCaseID,
org_id: int,
project_id: int,
metric_name: str,
value: Sequence[Union[int, float]],
tags: Dict[str, str],
unit: Optional[str],
) -> None:
"""
Emit a distribution metric for internal use cases only. Can
support a sequence of values. Note that, as of now, this function
will return immediately even if the metric message has not been
produced to the broker yet.
"""
dist_metric = {
"org_id": org_id,
"project_id": project_id,
"name": build_mri(metric_name, "d", use_case_id, unit),
"value": value,
"timestamp": int(datetime.now().timestamp()),
"tags": tags,
"retention_days": get_retention_from_org_id(org_id),
"type": "d",
}
self.__produce(dist_metric, use_case_id)<|fim_middle|>distribution<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(*, parameter_one: bool, **kwargs: Any) -> HttpRequest:
_headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2.0.0"))
accept = _headers.pop("Accept", "application/json")
# Construct URL
_url = kwargs.pop("template_url", "/multiapi/two/testFourEndpoint")
# Construct parameters
_params["parameterOne"] = _SERIALIZER.query("parameter_one", parameter_one, "bool")
_params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
# Construct headers
_headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
return HttpRequest(method="POST", url=_url, params=_params, headers=_headers, **kwargs)<|fim_middle|>build_test_four_request<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self):
img = cv2.imread(self.input)
inputs = [{"input.image": img, }]
op_name = list(self.model_cfg[0].keys())[0]
op = global_config[op_name](self.model_cfg[0][op_name], self.env_cfg)
result = op(inputs)<|fim_middle|>test_ppstructure_kie_ser<|file_separator|> |
<|fim_prefix|>f <|fim_suffix|>(self):<|fim_middle|>get_multiplicity<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self, verbose=False, restore_nonants=True):
""" Get a truncated z score and look for the closest overall.
Returns:
obj (float or None): objective value, none if infeasible.
snamedict (str): closest scenarios
"""
def _vb(msg):
if verbose and self.cylinder_rank == 0:
print ("(rank0) xhat_looper: " + msg)
localmindist = np.zeros(1, dtype='d')
globalmindist = np.zeros(1, dtype='d')
localwinnername = None
for k, s in self.opt.local_scenarios.items():
dist = 0
for ndn_i, xvar in s._mpisppy_data.nonant_indices.items():
diff = pyo.value(xvar) - pyo.value(s._mpisppy_model.xbars[ndn_i])
variance = pyo.value(s._mpisppy_model.xsqbars[ndn_i]) \
- pyo.value(s._mpisppy_model.xbars[ndn_i])*pyo.value(s._mpisppy_model.xbars[ndn_i])
if variance > 0:
stdev = np.sqrt(variance)
dist += min(3, abs(diff)/stdev)
if localwinnername is None:
localmindist[0] = dist
localwinnername = k
elif dist < localmindist[0]:
localmindist[0] = dist
localwinnername = k
self.comms["ROOT"].Allreduce([localmindist, mpi.DOUBLE],
[globalmindist, mpi.DOUBLE],
op=mpi.MIN)
# ties are possible, so break the tie
localwinrank = np.zeros(1, dtype='d') # could use a python variable.
globalwinrank = np.zeros(1, dtype='d')
if globalmindist[0] < localmindist[0]:
localwinrank[0] = -1 # we lost
else:
localwinrank[0] = self.cylinder_rank
self.comms["ROOT"].Allreduce([localwinrank, mpi.DOUBLE],
[globalwinrank, mpi.DOUBLE],
op=mpi.MAX)
# We only used the rank to break a possible tie.
if self.cylinder_rank == int(globalwinrank[0]):
globalwinnername = localwinnername
else:
globalwinnername = None
sroot = globalwinrank[0]
sname = self.comms["ROOT"].bcast(globalwinnername, root=sroot)
_vb("Trying scenario "+sname)
_vb(" Solver options="+str(self.solver_options))
# xxx TBD mult-stage
snamedict = {"ROOT": sname}
obj = self._try_one(snamedict,
solver_options=self.solver_options,
verbose=False,
restore_nonants=restore_nonants)
if obj is None:
_vb(" Infeasible")
else:
_vb(" Feasible, returning " + str(obj))
return obj, snamedict<|fim_middle|>xhat_closest_to_xbar<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self, result):
self._enable_widgets(True)
if result['success']:
self.set_results(result['result'])
"""
if self.table.currentRow() == 0: # Row number hasn't changed but the data probably has!
self.s_show_selected(self.table.item(0, 0))
self.table.setCurrentItem(self.table.item(0, 0))"""
else:
self.set_results(None)<|fim_middle|>r_searched<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self):
process_cpu_usage = ProcessCpuUsage(1,1.34,self.__metric_repository)
user_name = process_cpu_usage.user_name()
self.assertEqual(user_name,'pcp')<|fim_middle|>test_user_name<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(flag: Flag) -> List[Flag]:
members, _ = enum._decompose(flag.__class__, flag._value_)
return members<|fim_middle|>decompose_flag<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self):
print(ds.DefaultSignature().get_digest_alg())
name_id = self.server.ident.transient_nameid("urn:mace:example.com:saml:roland:sp", "id12")
ava = {"givenName": ["Derek"], "surName": ["Jeter"], "mail": ["[email protected]"], "title": "The man"}
signed_resp = self.server.create_authn_response(
ava,
"id12", # in_response_to
"http://lingon.catalogix.se:8087/", # consumer_url
"urn:mace:example.com:saml:roland:sp", # sp_entity_id
name_id=name_id,
sign_assertion=True,
)
print(signed_resp)
assert signed_resp
sresponse = response_from_string(signed_resp)
assert ds.SIG_RSA_SHA1 in str(sresponse), "Not correctly signed!"
assert ds.DIGEST_SHA1 in str(sresponse), "Not correctly signed!"<|fim_middle|>test_signed_response<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(uri, database, table, schema, rows_num):
engine = create_engine(uri, echo=True)
meta = basefunc.redshift_getmeta(database=database, schema=schema, table=table, engine=engine)
sql = f'select * from {database}.{table} limit {rows_num}'
res_list = basefunc.redshift_getresult(sql=sql, engine=engine)
return [meta, res_list[0], res_list[1]]<|fim_middle|>redshift_getdetail<|file_separator|> |
<|fim_prefix|> <|fim_suffix|>(self):<|fim_middle|>get_seek_position<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(fname: str, entry: str) -> T.Optional[str]:
if is_cygwin() or is_osx():
raise unittest.SkipTest('Test only applicable to ELF platforms')
try:
raw_out = subprocess.check_output(['readelf', '-d', fname],
universal_newlines=True)
except FileNotFoundError:
# FIXME: Try using depfixer.py:Elf() as a fallback
raise unittest.SkipTest('readelf not found')
pattern = re.compile(entry + r': \[(.*?)\]')
for line in raw_out.split('\n'):
m = pattern.search(line)
if m is not None:
return str(m.group(1))
return None # The file did not contain the specified entry.<|fim_middle|>get_dynamic_section_entry<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self):
kpts = cell.make_kpts([1,1,2])
kmf = pbcscf.KUHF(cell, kpts, exxdiv=None)
Escf = kmf.scf()
self._test_ip_diag(kmf)<|fim_middle|>test_he_112_ip_diag<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(file):
"""
_searchForEvent_
Searches for the last event output into the CMSSW output file
"""
MatchRunEvent = re.compile("Run: [0-9]+ Event: [0-9]+$")
# I'm just grabbing the last twenty lines for the hell of it
lines = tailNLinesFromFile(file, 20)
lastMatch = None
for line in lines:
if MatchRunEvent.search(line.strip()):
matches = MatchRunEvent.findall(line.strip())
lastMatch = matches[-1]
if lastMatch != None:
# //
# // Extract and update last run/event number
# //
try:
runInfo, lastEvent = lastMatch.split("Event:", 1)
lastRun = int(runInfo.split("Run:", 1)[1])
lastEvent = int(lastEvent)
return (lastRun, lastEvent)
except Exception:
return (None, None)
return (None, None)<|fim_middle|>search_for_event<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>():
return {"col1": 1, "col2": 2, "col3": 3}<|fim_middle|>dummy_data<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>():
with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".yaml") as f:
yaml.dump({"text": plain_text_str}, f)
return f.name<|fim_middle|>mock_yaml_file<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self):
channel_to_child = [] # For each index in .power, the corresponding child
for spec in self.dev.spectra.value:
for c in (self.dependency1, self.dependency2):
if any(spec == cs for cs in c.spectra.value):
channel_to_child.append(c)
break
else:
raise ValueError("Failed to find spectra %s in children" % (spec,))
# The first and last ones are normally always from different children
c1 = channel_to_child[0]
c2 = channel_to_child[-1]
self.assertNotEqual(c1, c2)
# Test if child light is updated multiplex light is updated as well and vice versa
c1.power.value[0] = self.dev.power.range[1][0] * 0.5
self.assertEqual(self.dev.power.value[0], c1.power.value[0])
c2.power.value[-1] = self.dev.power.range[1][-1] * 0.9
self.assertEqual(self.dev.power.value[-1], c2.power.value[-1])
self.dev.power.value[0] = self.dev.power.range[1][0] * 0.2
self.assertEqual(self.dev.power.value[0], c1.power.value[0])
self.dev.power.value[-1] = self.dev.power.range[1][-1] * 0.7
self.assertEqual(self.dev.power.value[-1], c2.power.value[-1])<|fim_middle|>test_child_update<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self, name):
if "." in name:
return name.split(".", 1)
else:
return "general", name<|fim_middle|>parse_name<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>():
pass<|fim_middle|>bar<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self) -> None:
self.get_csig()<|fim_middle|>make_ready<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self, config):
sparse_feature_number = config.get(
"hyper_parameters.sparse_feature_number")
sparse_feature_dim = config.get("hyper_parameters.sparse_feature_dim")
fc_sizes = config.get("hyper_parameters.fc_sizes")
layer_sizes_dnn = config.get("hyper_parameters.layer_sizes_dnn")
sparse_num_field = config.get("hyper_parameters.sparse_num_field")
sparse_inputs_slots = config.get(
'hyper_parameters.sparse_inputs_slots')
flen_model = net.FLENLayer(sparse_feature_number, sparse_feature_dim,
sparse_inputs_slots, sparse_num_field,
layer_sizes_dnn)
return flen_model<|fim_middle|>create_model<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(
self,
namespace,
init_lvm,
storageclass,
status,
volume_mode,
pvc_factory,
pod_factory,
volume_binding_mode,
):
"""
Test to verify thin pool capacity alert:
1. run io up to 70, check alerts - no alert expected
2. run io up to 76, check alerts
3. run io up to 86, check alerts - critical alert expected
"""
log.info("Test Started successfully")
log.info(f"LVMCluster version is {self.lvm.get_lvm_version()}")
log.info(
f"Lvm thin-pool overprovisionRation is {self.lvm.get_lvm_thin_pool_config_overprovision_ratio()}"
)
log.info(
f"Lvm thin-pool sizePrecent is {self.lvm.get_lvm_thin_pool_config_size_percent()}"
)
size_to_70 = f"{int(float(self.thin_pool_size)*0.7)}Gi"
size_to_76 = f"{int(float(self.thin_pool_size)*0.06)}Gi"
size_to_86 = f"{int(float(self.thin_pool_size)*0.1)}Gi"
sizes_list = [
{
"size_to_fill": size_to_70,
"file_name": "run-to-70",
"pvc_expected_size": f"{float(self.pvc_size)*0.7}",
"alert": None,
},
{
"size_to_fill": size_to_76,
"file_name": "run-to-76",
"pvc_expected_size": f"{float(self.pvc_size)*0.06}",
"alert": constants.TOPOLVM_ALERTS.get("tp_data_75_precent"),
},
{
"size_to_fill": size_to_86,
"file_name": "run-to-86",
"pvc_expected_size": f"{float(self.pvc_size)*0.1}",
"alert": constants.TOPOLVM_ALERTS.get("tp_data_85_precent"),
},
]
log.info(f"LV Size:{self.thin_pool_size}")
self.metric_data = dict()
pvc_list = list()
pods_list = list()
storage_type = "fs"
if volume_mode == constants.VOLUME_MODE_BLOCK:
storage_type = "block"
self.block = True
for size in sizes_list:
log.info(
f"{size.get('size_to_fill')}, {size.get('file_name')}, {size.get('pvc_expected_size')}"
)
pvc_list.append(
pvc_factory(
project=self.proj_obj,
interface=None,
storageclass=self.sc_obj,
size=self.pvc_size,
status=status,
access_mode=self.access_mode,
volume_mode=volume_mode,
)
)
pods_list.append(pod_factory(pvc=pvc_list[-1], raw_block_pv=self.block))
pods_list[-1].run_io(
storage_type=storage_type,
size=size.get("size_to_fill"),
rw_ratio=0,
jobs=1,
runtime=0,
depth=4,
rate="1250m",
rate_process=None,
bs="100M",
end_fsync=0,
invalidate=0,
buffer_pattern=None,
readwrite="write",
direct=1,
verify=False,
timeout=1800,
)
pods_list[-1].get_fio_results(timeout=1800)
# Workaround for BZ-2108018
minimal_pvc = pvc_factory(
project=self.proj_obj,
interface=None,
storageclass=self.sc_obj,
size="1",
status=status,
access_mode=self.access_mode,
volume_mode=volume_mode,
)
mini_pod = pod_factory(pvc=minimal_pvc, raw_block_pv=self.block)
log.info(f"{mini_pod} created")
mini_pod.delete(wait=True)
minimal_pvc.delete(wait=True)
for sample in TimeoutSampler(
150, 30, self.lvm.check_for_alert, size.get("alert")
):
if size["file_name"] == "run-to-70":
time.sleep(60)
break
else:
if sample:
break
# End of workaround
self.lvm.compare_percent_data_from_pvc(
pvc_list[-1], float(size["pvc_expected_size"])
)
expected_os_values = [
self.lvm.get_thin_pool1_data_percent(),
self.lvm.get_thin_pool_metadata(),
self.lvm.get_thin_pool1_size(),
self.lvm.get_vg_free(),
self.lvm.get_vg_size(),
]
for metric, expected in zip(constants.TOPOLVM_METRICS, expected_os_values):
self.lvm.validate_metrics_vs_operating_system_stats(metric, expected)
log.info(f"getting alerts: {self.lvm.get_thin_provisioning_alerts()}")
if size["file_name"] == "run-to-70":
assert not self.lvm.check_for_alert(
size.get("alert")
), "Alert already exists"
else:
log.info(f"size: {size['file_name']}")
assert self.lvm.check_for_alert(size.get("alert")), "Alert not found"
lvmo_health_check()<|fim_middle|>test_thin_pool_capacity_alert<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self):
value_cls = Value[List[CustomType]]
empty = []
nonempty = [CustomType()]
# Empty construction.
value = value_cls()
self.assertEqual(value.get_value(), empty)
value = value_cls(empty)
self.assert_equal_but_not_aliased(value.get_value(), empty)
value = value_cls(nonempty)
self.assert_equal_but_not_aliased(value.get_value(), nonempty)
# Test mutation.
value = value_cls(nonempty)
self.assertNotEqual(value.get_value(), empty)
value.set_value(empty)
self.assert_equal_but_not_aliased(value.get_value(), empty)<|fim_middle|>test_abstract_value_py_list<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self) -> DirsToCopySettings:
def extract_dirs_data(root_item: QTreeWidgetItem) -> Dict[str, bool]:
data = {}
for i in range(root_item.childCount()):
item = root_item.child(i)
relative_path = item.data(0, Qt.UserRole)
is_checked = item.checkState(0) == Qt.Checked
data[relative_path] = is_checked
if item.childCount() > 0:
data.update(extract_dirs_data(item))
return data
METHOD_NAME = extract_dirs_data(self.dirsTreeWidget.invisibleRootItem())
return METHOD_NAME<|fim_middle|>dirs_to_copy<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self, position=None, on_stderr=False):
if position is None:
# I'm not currently tracking the position, so there is no default.
# position = self.get_position()
return
handle = win32.STDOUT
if on_stderr:
handle = win32.STDERR
win32.SetConsoleCursorPosition(handle, position)<|fim_middle|>set_cursor_position<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self):
fn = getattr(Permutated, 'fn(1, 2)')
self.assertFalse(hasattr(fn, PERMUTATION_ATTR))<|fim_middle|>test_clear_permuations_attribute<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(template, values):
from app.models import EMAIL_TYPE, LETTER_TYPE, SMS_TYPE
return {SMS_TYPE: SMSMessageTemplate, EMAIL_TYPE: WithSubjectTemplate, LETTER_TYPE: WithSubjectTemplate}[
template["template_type"]
](template, values)<|fim_middle|>get_template_instance<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>():
"""Verify that writing to a BytesIO object contains the same data as to_image().
The goal of this test is to ensure that Plotly correctly handles a writable buffer
which doesn't correspond to a filesystem path.
"""
bio = BytesIO()
pio.write_image(fig, bio, format="jpg", engine="kaleido", validate=False)
bio.seek(0) # Rewind to the beginning of the buffer, otherwise read() returns b''.
bio_bytes = bio.read()
to_image_bytes = pio.to_image(fig, format="jpg", engine="kaleido", validate=False)
assert bio_bytes == to_image_bytes<|fim_middle|>test_bytesio<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self, signer: NeonLocalAccount, tx: dict) -> TransactionSent:
tx = self.sign_transaction(signer, tx)
return self.send_wait_transaction(tx)<|fim_middle|>sign_send_wait_transaction<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self) -> str:
"""
The provider-assigned unique ID for this managed resource.
"""
return pulumi.get(self, "id")<|fim_middle|>id<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self):
return self._override<|fim_middle|>override_value<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self):
if self.auth and self.auth.is_valid():
return self.auth
creds = self.config.credentials()
res = requests.post(
self.routes.auth(),
data={
'username': creds.qualified_username(),
'password': creds.passwd(),
'client_id': creds.client_id(),
'client_secret': creds.client_secret(),
'scope': creds.scope(),
'grant_type': 'password',
},
)
res = cxmodel.AuthResponse(**res.json())
res.expires_at = datetime.datetime.fromtimestamp(
datetime.datetime.now().timestamp() + res.expires_in - 10
)
self.auth = res
return res<|fim_middle|>auth<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>():
return {"colors": ["wal"]}<|fim_middle|>wal_theme<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(unused_argv):
if FLAGS.mode == "mobile_install":
with open(FLAGS.input_manifest, "rb") as input_manifest:
new_manifest, old_application, app_package = (
StubifyMobileInstall(input_manifest.read()))
if FLAGS.override_package:
app_package = FLAGS.override_package
with open(FLAGS.output_manifest, "wb") as output_xml:
output_xml.write(new_manifest)
with open(FLAGS.output_datafile, "wb") as output_file:
output_file.write("\n".join([old_application, app_package]).encode())
elif FLAGS.mode == "instant_run":
with open(FLAGS.input_manifest, "rb") as input_manifest:
new_manifest = StubifyInstantRun(input_manifest.read())
with open(FLAGS.output_manifest, "wb") as output_xml:
output_xml.write(new_manifest)<|fim_middle|>main<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self):
self.logger = logging.getLogger("TestColors")
self.color_list_length = len(ginga.colors.color_dict)<|fim_middle|>setup_class<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(source, case, store, libdir):
with host.ServiceManager() as mgr:
expects = case["expects"]
if expects == "error":
with pytest.raises(host.RemoteError):
source.download(mgr, store, libdir)
elif expects == "success":
source.download(mgr, store, libdir)
else:
raise ValueError(f"invalid expectation: {expects}")<|fim_middle|>check_case<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(workload_name):
# Return the global batch size.
if workload_name == 'criteo1tb':
return 262_144
elif workload_name == 'fastmri':
return 32
elif workload_name == 'imagenet_resnet':
return 1024
elif workload_name == 'imagenet_vit':
return 1024
elif workload_name == 'librispeech_conformer':
return 256
elif workload_name == 'librispeech_deepspeech':
return 256
elif workload_name == 'ogbg':
return 512
elif workload_name == 'wmt':
return 128
elif workload_name == 'mnist':
return 16
else:
raise ValueError(f'Unsupported workload name: {workload_name}.')<|fim_middle|>get_batch_size<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self, session, test_client,
object_count):
self.create_many_objects(session, object_count)
res = test_client.get(self.page_url(1, -1))
assert res.status_code == 404<|fim_middle|>test_does_not_allow_negative_per_page<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self, section: str) -> dict[str, str]: ...<|fim_middle|>section_as_dict<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self) -> str:
"""
Gets or sets the Id of the resource.
"""
return pulumi.get(self, "id")<|fim_middle|>id<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(
self,
_mode: str,
cached_results: List[dict],
_dump_dir: str = None,
):
result = self.parse_cached_results(cached_results)
target = torch.stack(result["label"], dim=0)
prediction_logit = torch.stack(result["logit"], dim=0)
prediction = torch.stack(result["prediction"], dim=0)
loss = self.logit_loss(prediction_logit, target)
logs = dict(
loss=loss.detach().cpu().item(),
)
if _mode in ["valid", "test"]:
logs.update(
self.log_scores(
score_args=(
prediction.detach().cpu().numpy(),
target.detach().cpu().numpy(),
),
)
)
return logs<|fim_middle|>reduction<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(nonlinear_domains):
mappings_are_cellwise_constant(nonlinear_domains, False)<|fim_middle|>test_mappings_are_cellwise_not_constant_on<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(gl, user, GPG_KEY):
gkey = user.gpgkeys.create({"key": GPG_KEY})
assert gkey in user.gpgkeys.list()
# Seems broken on the gitlab side
# gkey = user.gpgkeys.get(gkey.id)
gkey.delete()
assert gkey not in user.gpgkeys.list()<|fim_middle|>test_user_gpg_keys<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(
date_from=None, date_to=None,
user=None, asset=None, account=None,
input=None, session=None, risk_level=None, org_id=None):
filter_kwargs = {}
date_from_default = timezone.now() - datetime.timedelta(days=7)
date_to_default = timezone.now()
if not date_from and not session:
date_from = date_from_default
if not date_to and not session:
date_to = date_to_default
if date_from is not None:
if isinstance(date_from, datetime.datetime):
date_from = date_from.timestamp()
filter_kwargs['timestamp__gte'] = int(date_from)
if date_to is not None:
if isinstance(date_to, datetime.datetime):
date_to = date_to.timestamp()
filter_kwargs['timestamp__lte'] = int(date_to)
if user:
filter_kwargs["user__startswith"] = user
if asset:
filter_kwargs['asset'] = asset
if account:
filter_kwargs['account'] = account
if input:
filter_kwargs['input__icontains'] = input
if session:
filter_kwargs['session'] = session
if org_id is not None:
filter_kwargs['org_id'] = org_id
if risk_level is not None:
filter_kwargs['risk_level'] = risk_level
return filter_kwargs<|fim_middle|>make_filter_kwargs<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self, chunk_size, event_handler=None):
"""
:param chunk_size: Maximum number of records to read from the database at one time
:param event_handler: instance of ``PaginateViewLogHandler`` to be notified of view events.
:return: an instance of ``ResumableFunctionIterator``
"""
raise NotImplementedError<|fim_middle|>get_document_iterator<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(proof_req_name: str):
proof_request_info = read_json_data("proof_request_" + proof_req_name + ".json")
return proof_request_info["presentation_proposal"]<|fim_middle|>read_proof_req_data<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self, prime):
req = super(FDBRecord, self).make_req(prime)
if 'NDA_VLAN' in req and req['NDA_VLAN'] == 0:
req.pop('NDA_VLAN')
return req<|fim_middle|>make_idx_req<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self, board: AbstractBoard) -> None:
if any(core.is_kvm_core() for core in self.get_cores()):
board.kvm_vm = self.kvm_vm
# To get the KVM CPUs to run on different host CPUs
# Specify a different event queue for each CPU
for i, core in enumerate(self.cores):
for obj in core.get_simobject().descendants():
obj.eventq_index = 0
core.get_simobject().eventq_index = i + 1
board.set_mem_mode(MemMode.ATOMIC_NONCACHING)
elif isinstance(
self.cores[0].get_simobject(),
(BaseTimingSimpleCPU, BaseO3CPU, BaseMinorCPU),
):
board.set_mem_mode(MemMode.TIMING)
elif isinstance(
self.cores[0].get_simobject(), BaseNonCachingSimpleCPU
):
board.set_mem_mode(MemMode.ATOMIC_NONCACHING)
elif isinstance(self.cores[0].get_simobject(), BaseAtomicSimpleCPU):
if board.get_cache_hierarchy().is_ruby():
warn(
"Using an atomic core with Ruby will result in "
"'atomic_noncaching' memory mode. This will skip caching "
"completely."
)
board.set_mem_mode(MemMode.ATOMIC_NONCACHING)
else:
board.set_mem_mode(MemMode.ATOMIC)
else:
raise NotImplementedError<|fim_middle|>incorporate_processor<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self):
mock_sdb = MagicMock(return_value=None)
with patch.dict(vagrant.__utils__, {"sdb.sdb_set": mock_sdb}):
mock_sdb = MagicMock(return_value={})
with patch.dict(vagrant.__utils__, {"sdb.sdb_get": mock_sdb}):
vagrant.init("test3", cwd="/tmp")
with self.assertRaises(salt.exceptions.SaltInvocationError):
vagrant.get_ssh_config("test3") # has not been started<|fim_middle|>test_vagrant_get_ssh_config_fails<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(func):
""" Runs the function only once (caches the return value for subsequent runs) """
@functools.wraps(func)
def decorator(*args, **kwargs):
if decorator.has_run:
return decorator.result
decorator.result = func(*args, **kwargs)
decorator.has_run = True
return decorator.result
decorator.has_run = False
decorator.result = None
return decorator<|fim_middle|>run_once<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self, agency_identifier, row):
frec_inst = FrecMap.objects.filter(
agency_identifier=agency_identifier,
main_account_code=row["Account Code"],
sub_function_code=row["Subfunction Code"],
)
if frec_inst.exists():
return frec_inst.first().fr_entity_code<|fim_middle|>find_frec<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>():
with pytest.raises(ParseException) as exc:
CupsFilesConf(context_wrap(CUPS_FILES_CONF_EMPTY))
assert str(exc.value) == "Empty Content"<|fim_middle|>test_cups_files_conf_empyt<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(report_filename_and_folder):
plugin_folder = report_filename_and_folder[0]
report_filename = report_filename_and_folder[1]
plugin: PluginBase = get_plugin_from_cache(report_filename)
assert plugin, report_filename
assert plugin.id == plugin_folder<|fim_middle|>test_autodetected_on_all_report_collection<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>():
with open("valid_test_file.yaml", "w") as f:
f.write("setting: value")
result, message = validate_yaml_file("valid_test_file.yaml")
os.remove("valid_test_file.yaml")
assert result == True
assert "Successfully validated" in message<|fim_middle|>test_validate_yaml_file_valid<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self):
self._lines.add_line('Stats:')
for label, value in self._obj._repr_stats():
self._lines.add_line('%s%s: %s' % (self._indent, label, value))
self._lines.add_separator()<|fim_middle|>process_stats<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(filename, fmt):
if fmt == 'png':
return find_open_image_png_function()(filename)
raise NotImplementedError(f'Image format {fmt} not implemented yet')<|fim_middle|>load_image<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(args):
print('Converting data...')
queries_files = {}
qrels_files = {}
for set_name in ['train', 'dev', 'test']:
queries_filepath = os.path.join(
args.output_folder, 'queries.{}.tsv'.format(set_name))
qrels_filepath = os.path.join(
args.output_folder, 'qrels.{}'.format(set_name))
queries_files[set_name] = open(queries_filepath, 'w')
qrels_files[set_name] = open(qrels_filepath, 'w')
file_names = os.listdir(args.collection_path)
file_paths = []
for file_name in file_names:
file_path = os.path.join(args.collection_path, file_name)
if not os.path.isfile(file_path):
continue
if not file_path.endswith('.gz'):
continue
file_paths.append(file_path)
print('{} files found'.format(len(file_paths)))
# We first need to collect papers by year, sort them, and split between
# training, dev, and test sets.
train_ids, dev_ids, test_ids, id_years = get_id_years(
file_paths=file_paths, train_fraction=args.train_fraction)
doc_ids = train_ids | dev_ids | test_ids
n_docs = 0
file_index = 0
num_train = 0
num_dev = 0
num_test = 0
start_time = time.time()
for file_num, file_path in enumerate(file_paths):
with gzip.open(file_path) as f:
for line in f:
obj = json.loads(line.strip())
doc_id = obj['id']
if doc_id not in doc_ids:
continue
if n_docs % args.max_docs_per_file == 0:
if n_docs > 0:
output_jsonl_file.close()
output_path = os.path.join(
args.output_folder, 'corpus/docs{:02d}.json'.format(file_index))
output_jsonl_file = open(output_path, 'w')
file_index += 1
doc_text = '[Title]: {} [Abstract]: {}'.format(
obj['title'], obj['paperAbstract'])
doc_text = clean(doc_text)
output_dict = {'id': doc_id, 'contents': doc_text}
output_jsonl_file.write(json.dumps(output_dict) + '\n')
n_docs += 1
out_citations = obj['outCitations']
# Remove citations not in the corpus.
out_citations = [
out_citation for out_citation in out_citations
if out_citation in doc_ids
]
# Remove self citations.
out_citations = [
out_citation for out_citation in out_citations
if out_citation != doc_id
]
# Use only citations that have an older publication year than the citing
# paper's or do not have an year.
out_citations2 = []
for out_citation in out_citations:
if out_citation in id_years:
if id_years[out_citation] <= obj['year']:
out_citations2.append(out_citation)
out_citations = out_citations2
# Skip papers with no out citations.
if len(out_citations) == 0:
continue
if doc_id in train_ids:
set_name = 'train'
num_train += 1
elif doc_id in dev_ids:
set_name = 'dev'
num_dev += 1
elif doc_id in test_ids:
set_name = 'test'
num_test += 1
queries_file = queries_files[set_name]
qrels_file = qrels_files[set_name]
doc_title = obj['title']
doc_title = clean(doc_title)
if args.use_abstract_in_query:
doc_abstract = clean(obj['paperAbstract'])
query = '[Title]: ' + doc_title + ' [Abstract]: ' + doc_abstract
else:
query = doc_title
queries_file.write('{}\t{}\n'.format(doc_id, query))
for out_citation in out_citations:
qrels_file.write('{} 0 {} 1\n'.format(doc_id, out_citation))
if n_docs % 100000 == 0:
print('Read {}/{} files. {} docs written in {} files in {} secs.'.format(
file_num, len(file_paths), n_docs, file_index,
int(time.time() - start_time)))
print('Examples: {} train, {} valid, {} test'.format(
num_train, num_dev, num_test))
# Close queries and qrels files.
for queries_file in queries_files.values():
queries_file.close()
for qrels_file in qrels_files.values():
qrels_file.close()<|fim_middle|>create_dataset<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self):
self.create_ucr(self.active_domain, 'active-table', is_orphan=False)
call_command('manage_orphaned_ucrs', 'delete', engine_id='ucr')
self.mock_drop_ucrs.assert_not_called()<|fim_middle|>test_non_orphaned_tables_are_not_dropped<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self, data, preprocessors):
from auger_ml.preprocessors.text import TextPreprocessor
res = data
for p in preprocessors:
name = list(p.keys())[0]
params = list(p.values())[0]
if name != 'text':
raise Exception("Only text preprocessor supported.")
tp = TextPreprocessor(params)
res = tp.fit_transform(res)
return res<|fim_middle|>preprocess_data_locally<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>():
"""A simple test for running an atomic convolution on featurized data."""
dir_path = os.path.dirname(os.path.realpath(__file__))
ligand_file = os.path.join(dir_path,
"../../feat/tests/data/3zso_ligand_hyd.pdb")
protein_file = os.path.join(dir_path,
"../../feat/tests/data/3zso_protein_noH.pdb")
# Pulled from PDB files. For larger datasets with more PDBs, would use
# max num atoms instead of exact.
frag1_num_atoms = 44 # for ligand atoms
frag2_num_atoms = 2334 # for protein atoms
complex_num_atoms = 2378 # in total
max_num_neighbors = 4
# Cutoff in angstroms
neighbor_cutoff = 4
complex_featurizer = AtomicConvFeaturizer(frag1_num_atoms, frag2_num_atoms,
complex_num_atoms,
max_num_neighbors,
neighbor_cutoff)
# arbitrary label
labels = np.array([0])
features = complex_featurizer.featurize([(ligand_file, protein_file)])
dataset = NumpyDataset(features, labels)
batch_size = 1
print("Constructing Atomic Conv model")
atomic_convnet = atomic_conv.AtomicConvModel(
n_tasks=1,
batch_size=batch_size,
layer_sizes=[10],
frag1_num_atoms=frag1_num_atoms,
frag2_num_atoms=frag2_num_atoms,
complex_num_atoms=complex_num_atoms)
print("About to call fit")
# Run a fitting operation
atomic_convnet.fit(dataset)
preds = atomic_convnet.predict(dataset)
assert preds.shape == (1, 1, 1)
assert np.count_nonzero(preds) > 0<|fim_middle|>test_atomic_conv_with_feat<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self, preferred):
supported = SupportedSRS([SRS(4326), SRS(25832)], preferred)
assert [SRS(4326), SRS(25832)] == [srs for srs in supported]<|fim_middle|>test_iter<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self, item) -> Iterable[Union[None, Tuple[str, Callable]]]:
"""
Use None to insert a MenuSeparator(). The tuples are: (menu entry text, callback)
"""
return []<|fim_middle|>build_context_menu_block<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self, node: NearNodeProxy, account: Account):
"""
Passive users are only used as receiver, not as signer.
"""
node.send_tx_retry(InitFTAccount(self.account, account),
locust_name="Init FT Account")
self.registered_users.append(account.key.account_id)<|fim_middle|>register_passive_user<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self, item):
"""Parse or generate event title"""
return item.css(".event-title::text").extract_first()<|fim_middle|>parse_title<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>():
"""Converts/Lowers an expression containing QNN ops to an expression containing only core
(non-Dialect) Relay ops. Each QNN op is lowered to a sequence of existing Relay ops. This is a
target-independent pass. One can register the lowering/transformation function for this op using
FTVMQnnCanonicalize attr_name for FTVMLegalize op attribute. An example of this transformation
is below
Examples
________
.. code-block:: python
# Original expression
qnn_expr = relay.qnn.op.requantize(y,
input_scale=1,
input_zero_point=0,
output_scale=1,
output_zero_point=0,
out_dtype='int8')
# We want to utilize all the existing Relay infrastructure. So, instead of supporting this
# QNN requantize op, we convert it into a sequence of existing Relay operators.
mod = tvm.IRModule.from_expr(qnn_expr)
mod = relay.qnn.transform.CanonicalizeOps()(mod)
relay_expr = mod['main']
print(relay_expr)
def @main(%quantized_data: Tensor[(200), int32]) -> Tensor[(200), int8] {
%0 = cast(%quantized_data, dtype="int64") /* ty=Tensor[(200), int64] */;
%1 = multiply(%0, 2 /* ty=int64 */) /* ty=Tensor[(200), int64] */;
%2 = multiply(%1, 1073741824 /* ty=int64 */) /* ty=Tensor[(200), int64] */;
%3 = add(%2, 1073741824 /* ty=int64 */) /* ty=Tensor[(200), int64] */;
%4 = right_shift(%3, 31 /* ty=int64 */) /* ty=Tensor[(200), int64] */;
%5 = add(0 /* ty=int64 */, %4) /* ty=Tensor[(200), int64] */;
%6 = clip(%5, a_min=-128f, a_max=127f) /* ty=Tensor[(200), int64] */;
cast(%6, dtype="int8") /* ty=Tensor[(200), int8] */
}
Returns
-------
ret : tvm.transform.Pass
The registered pass that canonicalizes QNN ops to Relay ops.
"""
return relay.transform.Legalize("FTVMQnnCanonicalize")<|fim_middle|>canonicalize_ops<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self):
"""Convert the object to a yaml string.
Returns:
str: The yaml string.
"""
json_obj = self.to_json()
yaml_obj = yaml.safe_dump(json_obj)
return yaml_obj<|fim_middle|>to_yaml<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(self):
if not self.precise:
self._locate()
return self._max_col<|fim_middle|>max_col<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>():
"""Find the modules in sys.modules which cause "mod" to be imported."""
# If we've run this function before, return the same result.
global KNOWN_FTZ
if KNOWN_FTZ:
return KNOWN_FTZ
# Start by determining our baseline: the FTZ and sys.modules state in a fresh
# process which has only imported this module and nothing else.
always_enables_ftz, always_imports = run_in_process(always_imported_modules)
if always_enables_ftz:
raise RuntimeError("Python is always in FTZ mode, even without imports!")
CHECKED_CACHE.update(always_imports)
# Next, we'll search through sys.modules looking for a package (or packages) such
# that importing them in a new process sets the FTZ state. As a heuristic, we'll
# start with packages known to have ever enabled FTZ, then top-level packages as
# a way to eliminate large fractions of the search space relatively quickly.
def key(name):
"""Prefer known-FTZ modules, then top-level packages, then alphabetical."""
return (name not in KNOWN_EVER_CULPRITS, name.count("."), name)
# We'll track the set of modules to be checked, and those which do trigger FTZ.
candidates = set(sys.modules) - CHECKED_CACHE
triggering_modules = {}
while candidates:
mod = min(candidates, key=key)
candidates.discard(mod)
enables_ftz, imports = run_in_process(modules_imported_by, mod)
imports -= CHECKED_CACHE
if enables_ftz:
triggering_modules[mod] = imports
candidates &= imports
else:
candidates -= imports
CHECKED_CACHE.update(imports)
# We only want to report the 'top level' packages which enable FTZ - for example,
# if the enabling code is in `a.b`, and `a` in turn imports `a.b`, we prefer to
# report `a`. On the other hand, if `a` does _not_ import `a.b`, as is the case
# for `hypothesis.extra.*` modules, then `a` will not be in `triggering_modules`
# and we'll report `a.b` here instead.
prefixes = tuple(n + "." for n in triggering_modules)
result = {k for k in triggering_modules if not k.startswith(prefixes)}
# Suppose that `bar` enables FTZ, and `foo` imports `bar`. At this point we're
# tracking both, but only want to report the latter.
for a in sorted(result):
for b in sorted(result):
if a in triggering_modules[b] and b not in triggering_modules[a]:
result.discard(b)
# There may be a cyclic dependency which that didn't handle, or simply two
# separate modules which both enable FTZ. We already gave up comprehensive
# reporting for speed above (`candidates &= imports`), so we'll also buy
# simpler reporting by arbitrarily selecting the alphabetically first package.
KNOWN_FTZ = min(result) # Cache the result - it's likely this will trigger again!
return KNOWN_FTZ<|fim_middle|>identify_ftz_culprits<|file_separator|> |
<|fim_prefix|>f <|fim_suffix|>(self):<|fim_middle|>get_results<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(event, mocker, req_with_session):
class MockingStep(checkoutflow.BaseCheckoutFlowStep):
identifier = 'mocking'
priority = 100
def is_applicable(self, request):
return False
flow = with_mocked_step(mocker, MockingStep, event)
req_with_session.event = event
assert flow[3].get_next_applicable(req_with_session) is flow[6]
# flow[3] is also skipped because no payment is required if there is no cart
assert flow[3] is flow[6].get_prev_applicable(req_with_session)<|fim_middle|>test_step_ignored<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(domain_ownership_identifier_name: Optional[pulumi.Input[str]] = None,
name: Optional[pulumi.Input[str]] = None,
resource_group_name: Optional[pulumi.Input[str]] = None,
opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetWebAppDomainOwnershipIdentifierResult]:
"""
Description for Get domain ownership identifier for web app.
:param str domain_ownership_identifier_name: Name of domain ownership identifier.
:param str name: Name of the app.
:param str resource_group_name: Name of the resource group to which the resource belongs.
"""
...<|fim_middle|>get_web_app_domain_ownership_identifier_output<|file_separator|> |
<|fim_prefix|>async def <|fim_suffix|>(self, strategy_tester):
await strategy_tester.run_test_slow_uptrend(None, None)<|fim_middle|>test_slow_uptrend<|file_separator|> |
<|fim_prefix|>async def <|fim_suffix|>(_session_git_repo, tmp_path, event_loop):
# don't use this if you want to edit origin repo
repo_path = tmp_path / "redbot-cloned_testrepo"
repo = Repo(
name="redbot-testrepo",
url=str(_session_git_repo.folder_path),
branch=_session_git_repo.branch,
commit=_session_git_repo.commit,
folder_path=repo_path,
)
sp.run(("git", "clone", str(_session_git_repo.folder_path), str(repo_path)), check=True)
return repo<|fim_middle|>cloned_git_repo<|file_separator|> |
<|fim_prefix|>def <|fim_suffix|>(name, path, data, module=True):
"""
Process data to create a screenshot which will be saved in
docs/screenshots/<name>.png
If module is True the screenshot will include the name and py3status.
"""
# create dir if not exists
try:
path.mkdir(parents=True, exist_ok=True)
except OSError:
pass
global font, glyph_data
if font is None:
font = ImageFont.truetype(FONT, FONT_SIZE * SCALE)
if glyph_data is None:
glyph_data = TTFont(font.path)
# make sure that the data is in list form
if not isinstance(data, list):
data = [data]
if contains_bad_glyph(glyph_data, data):
print("** {} has characters not in {} **".format(name, font.getname()[0]))
else:
create_screenshot(name, data, path, font=font, is_module=module)<|fim_middle|>process<|file_separator|> |