text
stringlengths
67
7.88k
<|fim_prefix|>def <|fim_suffix|>(self) -> str: """ Type of resource. Type = Microsoft.OffAzure/VMWareSites. """ return pulumi.get(self, "type")<|fim_middle|>type<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(intfspec): """Given an interface specification return a cmdline command name""" if len(intfspec) > 2: name = intfspec[2] else: name = intfspec[0].split('.')[-1].replace('_', '-') return name<|fim_middle|>get_cmdline_command_name<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(builder, subgraphs): builder.PrependUOffsetTRelativeSlot( 2, flatbuffers.number_types.UOffsetTFlags.py_type(subgraphs), 0)<|fim_middle|>model_add_subgraphs<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(source: str) -> str: # Filter out any magic lines (starting with %) if in a Jupyter notebook import re srclines = map(lambda x: re.sub(r"^\%.*", "", x), source.split("\n")) source = "\n".join(srclines) return source<|fim_middle|>strip_magic_line<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, visibility): """Set whether to display collision objects or not.""" pass<|fim_middle|>display_collisions<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(obj, user=None): # Check if this is a recipe or project project = Project.objects.filter(uid=obj.uid).first() if not project: project = auth.create_project(user=user, uid=obj.uid, name=obj.name, text=obj.text) project.uid = obj.uid project.name = obj.name project.text = obj.text project.date = obj.date project.privacy = obj.privacy update_image(project, obj.image) project.save() for recipe, vals in obj.recipes.items(): data = parse_json(vals) email = data.owner_email or settings.DEFAULT_FROM_EMAIL owner = get_or_create(email, data=data) upload_recipe(data, project=project, user=owner) return<|fim_middle|>upload_project<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): # Test {} with many items @njit def foo(): return {1: 2.2, 3: 4.4, 5: 6.6} d = foo() self.assertEqual(d, {1: 2.2, 3: 4.4, 5: 6.6})<|fim_middle|>test_use_curlybraces_with_initmany<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(r, partition_key_range): """Evaluates and returns r - partition_key_range :param dict partition_key_range: Partition key range. :param routing_range.Range r: query range. :return: The subtract r - partition_key_range. :rtype: routing_range.Range """ left = max(partition_key_range[routing_range.PartitionKeyRange.MaxExclusive], r.min) if left == r.min: leftInclusive = r.isMinInclusive else: leftInclusive = False queryRange = routing_range.Range(left, r.max, leftInclusive, r.isMaxInclusive) return queryRange<|fim_middle|>subtract_range<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): tz = pytz.timezone('Australia/Sydney') dt = datetime.datetime(2002, 2, 20, 13, 37, 42, 7, tzinfo=tz) w = DatetimePicker(value=dt) assert w.value == dt # tzinfo only changes upon input from user assert w.value.tzinfo == tz<|fim_middle|>test_datetime_tzinfo<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(next_link=None): if not next_link: request = build_list_by_location_request( location=location, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.list_by_location.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: # make call to next link with the client's api-version _parsed_next_link = urllib.parse.urlparse(next_link) _next_request_params = case_insensitive_dict( { key: [urllib.parse.quote(v) for v in value] for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() } ) _next_request_params["api-version"] = self._config.api_version request = HttpRequest( "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request<|fim_middle|>prepare_request<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """ :avocado: tags=machine:pseries :avocado: tags=accel:tcg """ self.require_accelerator("tcg") self.vm.add_args("-accel", "tcg") self.launch_and_wait(set_up_ssh_connection=False)<|fim_middle|>test_pseries_tcg<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(bot: str, raise_exception=True): """ Checks if daily event triggering limit exceeded. @param bot: bot id. @param raise_exception: Raise exception if event is in progress. @return: boolean flag """ today = datetime.today() today_start = today.replace(hour=0, minute=0, second=0) doc_count = ValidationLogs.objects( bot=bot, start_timestamp__gte=today_start ).count() if doc_count >= BotSettings.objects(bot=bot).get().data_importer_limit_per_day: if raise_exception: raise AppException("Daily limit exceeded.") else: return True else: return False<|fim_middle|>is_limit_exceeded<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): return self.args.command == "about"<|fim_middle|>is_about_command<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): return reverse(self.urlname, args=[self.domain, self.program_id])<|fim_middle|>page_url<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, transpiler_level): transpile( self.qv_14_x_14, self.melbourne, seed_transpiler=0, optimization_level=transpiler_level )<|fim_middle|>time_transpile_qv_14_x_14<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): # https://mxnet.apache.org/get_started/build_from_source args = [ self.define_from_variant("USE_CUDA", "cuda"), self.define_from_variant("USE_CUDNN", "cudnn"), self.define_from_variant("USE_OPENCV", "opencv"), self.define_from_variant("USE_OPENMP", "openmp"), self.define_from_variant("USE_LAPACK", "lapack"), self.define("BLAS_LIBRARIES", self.spec["blas"].libs[0]), ] if self.spec.satisfies("@:1"): args.append(self.define_from_variant("USE_MKLDNN", "mkldnn")) elif self.spec.satisfies("@2:"): args.append(self.define_from_variant("USE_ONEDNN", "mkldnn")) args.append(self.define("USE_CUTENSOR", False)) if "+cuda" in self.spec: if "cuda_arch=none" not in self.spec: cuda_arch = ";".join( "{0:.1f}".format(float(i) / 10.0) for i in self.spec.variants["cuda_arch"].value ) args.append(self.define("MXNET_CUDA_ARCH", cuda_arch)) args.extend( [ self.define_from_variant("USE_NCCL", "nccl"), # Workaround for bug in GCC 8+ and CUDA 10 on PowerPC self.define("CMAKE_CUDA_FLAGS", self.compiler.cxx11_flag), # https://github.com/apache/mxnet/issues/21193 # https://github.com/spack/spack/issues/36922 self.define( "CMAKE_CXX_FLAGS", "-L" + join_path(self.spec["cuda"].libs.directories[0], "stubs"), ), ] ) return args<|fim_middle|>cmake_args<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(addresses: Iterable[_N]) -> Iterator[_N]: ...<|fim_middle|>collapse_addresses<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): "fills the widgets" index_crosssectiontype = self.parameterWidget.cb_crosssectiontype.findText( self.SectionType ) self.parameterWidget.cb_crosssectiontype.setCurrentIndex(index_crosssectiontype) self.parameterWidget.if_rec_height.setText(self.RectHeight.UserString) self.parameterWidget.if_rec_width.setText(self.RectWidth.UserString) self.parameterWidget.if_circ_diameter.setText(self.CircDiameter.UserString) self.parameterWidget.if_pipe_diameter.setText(self.PipeDiameter.UserString) self.parameterWidget.if_pipe_thickness.setText(self.PipeThickness.UserString)<|fim_middle|>update_parameter_widget<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( self, ) -> DashboardListListResponse: """Get all dashboard lists. Fetch all of your existing dashboard list definitions. :rtype: DashboardListListResponse """ kwargs: Dict[str, Any] = {} return self._list_dashboard_lists_endpoint.call_with_http_info(**kwargs)<|fim_middle|>list_dashboard_lists<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(cls, op: "TensorRechunk"): from ..indexing.slice import TensorSlice from ..merge.concatenate import TensorConcatenate if has_unknown_shape(*op.inputs): yield out = op.outputs[0] tensor = astensor(op.inputs[0]) chunk_size = get_nsplits(tensor, op.chunk_size, tensor.dtype.itemsize) if chunk_size == tensor.nsplits: return [tensor] rechunk_infos = gen_rechunk_infos(tensor, chunk_size) out_chunks = [] for rechunk_info in rechunk_infos: chunk_index = rechunk_info.out_index shape = rechunk_info.shape inp_chunks = rechunk_info.input_chunks inp_chunk_slices = rechunk_info.input_slices inp_slice_chunks = [] for inp_chunk, inp_chunk_slice in zip(inp_chunks, inp_chunk_slices): if all(slc == slice(None) for slc in inp_chunk_slice): inp_slice_chunks.append(inp_chunk) else: slc_chunk = TensorSlice(slices=list(inp_chunk_slice)).new_chunk( [inp_chunk], dtype=inp_chunk.dtype, shape=tuple( calc_sliced_size(s, slc) for s, slc in zip(inp_chunk.shape, inp_chunk_slice) ), index=inp_chunk.index, ) inp_slice_chunks.append(slc_chunk) if len(inp_slice_chunks) > 1 or inp_slice_chunks[0].index != chunk_index: chunk_op = TensorConcatenate() out_chunk = chunk_op.new_chunk( inp_slice_chunks, shape=shape, index=chunk_index, dtype=out.dtype, order=out.order, ) out_chunks.append(out_chunk) else: out_chunks.append(inp_slice_chunks[0]) new_op = op.copy() params = out.params params["nsplits"] = chunk_size params["chunks"] = out_chunks tensor = new_op.new_tileable(op.inputs, kws=[params]) if op.reassign_worker: for c in tensor.chunks: c.op.reassign_worker = True return [tensor]<|fim_middle|>tile<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): self.assertIsNone(StatValue.from_list([]))<|fim_middle|>test_empty<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, loss_function, dataset): model_file = get_test_output_path('model{}.bin') yc.execute([ CATBOOST_PATH, 'fit', '--loss-function', loss_function, '-f', dataset.train_file, '--cd', dataset.cd_file, '-i', '10', '-T', '4', '-m', model_file, ]) return model_file<|fim_middle|>fit<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(*, df_list, year, config, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param args: dictionary, used to run flowbyactivity.py ('year' and 'source') :return: df, parsed and partially formatted to flowbyactivity specifications """ df = pd.concat(df_list, sort=False, ignore_index=True) fips = get_all_state_FIPS_2().reset_index(drop=True) # ensure capitalization of state names fips['State'] = fips['State'].apply(lambda x: x.title()) fips['StateAbbrev'] = fips['State'].map(us_state_abbrev) # pad zeroes fips['FIPS_2'] = fips['FIPS_2'].apply(lambda x: x.ljust(3 + len(x), '0')) df = pd.merge( df, fips, how='left', left_on='State', right_on='StateAbbrev') # set us location code df.loc[df['State_x'] == 'US', 'FIPS_2'] = US_FIPS df = df.rename(columns={'FIPS_2': "Location"}) assign_fips_location_system(df, year) df = df.drop(columns=['StateAbbrev', 'State_x', 'State_y']) ## Extract information for SEDS codes units = pd.read_excel(config['url']['activities_url'], sheet_name='Codes_and_Descriptions', header=10, usecols='B:D') units['FuelCode'] = units['MSN'].str[0:2] units['SectorCode'] = units['MSN'].str[2:4] units['UnitCode'] = units['MSN'].str[4:5] units = units.query("UnitCode not in ['D', 'K']") # get fuel names from Total Consumption and Industrial Consumption fuels = (units.query("SectorCode.isin(['TC', 'IC'])") .reset_index(drop=True)) fuels['Fuel'] = (fuels.query( "Description.str.contains('total consumption')") .Description.str.split(' total consumption', expand=True)[0]) fuels['FuelName2'] = (fuels.query( "Description.str.contains('consumed by')") .Description.str.split(' consumed by', expand=True)[0]) fuels['Fuel'] = fuels['Fuel'].fillna(fuels['FuelName2']) fuels['Fuel'] = fuels['Fuel'].str.rstrip(',') fuels = (fuels[['Fuel','FuelCode']].dropna().sort_values(by='Fuel') .drop_duplicates(subset='FuelCode')) # get sector names sectors = units.copy() sectors['ActivityConsumedBy'] = (units.query( "Description.str.contains('consumed by')") .Description.str.split('consumed by the ', expand=True)[1] .str.strip()) sectors = (sectors[['SectorCode', 'ActivityConsumedBy']].dropna() .sort_values(by='ActivityConsumedBy') .drop_duplicates(subset='SectorCode')) units = units.merge(fuels, how='left', on='FuelCode') units = units.merge(sectors, how='left', on='SectorCode') units = units.drop(columns=['FuelCode','SectorCode','UnitCode']) units['Description'] = units['MSN'] + ': ' + units['Description'] df = df.merge(units, how='left', on='MSN') df = (df.rename(columns={year: "FlowAmount", "Fuel": "FlowName"}) .drop(columns=['Data_Status']) .dropna()) # hard code data df['Class'] = np.where(df['Unit'].str.contains('Btu') | df['Unit'].str.contains('watt'), 'Energy', 'Other') df['SourceName'] = 'EIA_SEDS' df['ActivityProducedBy'] = 'None' df['Year'] = year df['FlowType'] = 'TECHNOSPHERE_FLOW' # Fill in the rest of the Flow by fields so they show # "None" instead of nan. df['Compartment'] = 'None' df['MeasureofSpread'] = 'None' df['DistributionType'] = 'None' # Add DQ scores df['DataReliability'] = 5 # tmp df['DataCollection'] = 5 # tmp return df<|fim_middle|>eia_seds_parse<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): return app.send_static_file("registration-form.html")<|fim_middle|>registration_form_html<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): ds = self.mkdataset(True) ds = self.update.saveAndReturnObject(ds) assert ds.details.externalInfo self.assert_type(ds, "test")<|fim_middle|>test_external_info_on_creation<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(filename, silent=False): schema = Schema() print( "Try to read EXPRESS schema file" + filename) with open(filename,'rt') as inp: contents = inp.METHOD_NAME() types = re.findall(re_match_type,contents) for name,aggregate,equals,enums in types: schema.types[name] = Type(name,aggregate,equals,enums) entities = re.findall(re_match_entity,contents) for name,parent,fields_raw in entities: print('process entity {0}, parent is {1}'.format(name,parent)) if not silent else None fields = re.findall(re_match_field,fields_raw) members = [Field(name,type,opt,coll) for name, opt, coll, type in fields] print(' got {0} fields'.format(len(members))) if not silent else None schema.entities[name] = Entity(name,parent,members) return schema<|fim_middle|>read<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(signal_num): # once Python 3.8 is the minimum supported version, # signal.strsignal can be used here signals = type(signal.SIGINT) try: signal_str = f'{signals(signal_num).name} ({signal_num})' except ValueError: signal_str = f'{signal_num}' return f'Terminated by signal {signal_str}'<|fim_middle|>signal_message<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(resource_group_name: Optional[str] = None, trigger_name: Optional[str] = None, workflow_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableListWorkflowTriggerCallbackUrlResult: """ Get the callback URL for a workflow trigger. Azure REST API version: 2019-05-01. :param str resource_group_name: The resource group name. :param str trigger_name: The workflow trigger name. :param str workflow_name: The workflow name. """ __args__ = dict() __args__['resourceGroupName'] = resource_group_name __args__['triggerName'] = trigger_name __args__['workflowName'] = workflow_name opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts) __ret__ = pulumi.runtime.invoke('azure-native:logic:listWorkflowTriggerCallbackUrl', __args__, opts=opts, typ=ListWorkflowTriggerCallbackUrlResult).value return AwaitableListWorkflowTriggerCallbackUrlResult( base_path=pulumi.get(__ret__, 'base_path'), method=pulumi.get(__ret__, 'method'), queries=pulumi.get(__ret__, 'queries'), relative_path=pulumi.get(__ret__, 'relative_path'), relative_path_parameters=pulumi.get(__ret__, 'relative_path_parameters'), value=pulumi.get(__ret__, 'value'))<|fim_middle|>list_workflow_trigger_callback_url<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): tf = tempfile.NamedTemporaryFile(mode="w") tf.write('TELEMETRY tgt1 pkt1 LITTLE_ENDIAN "Packet"\n') tf.write(" LIMITS_RESPONSE\n") tf.seek(0) with self.assertRaisesRegex( ConfigParser.Error, "No current item for LIMITS_RESPONSE" ): self.pc.process_file(tf.name, "TGT1") tf.close()<|fim_middle|>test_complains_if_a_current_item_is<|file_separator|>
<|fim_prefix|>f <|fim_suffix|>(self, msg_builder):<|fim_middle|>localizer_handle_msg<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(dataset_path: Path, clear: bool = False) -> None: dataset = _load_dataset(dataset_path) if clear: clear_store(dataset) store = get_store(dataset, external=True) dedupe_ui(store, url_base="https://opensanctions.org/entities/%s/")<|fim_middle|>dedupe<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, username): return Inventory().METHOD_NAME(username)<|fim_middle|>get_locations_for_user<|file_separator|>
<|fim_prefix|>f <|fim_suffix|>(self):<|fim_middle|>variable_shape<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict())<|fim_middle|>to_str<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): return PESIDRepositoryEntry( pesid='rhel8-CRB', major_version='8', repoid='codeready-builder-for-rhel-8-x86_64-rpms', rhui='', arch='x86_64', channel='ga', repo_type='rpm')<|fim_middle|>rhel8_crb_pesidrepo<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(ontology): """Prints a list of entity types matching a list of input fields. Args: ontology: An instance of the OntologyWrapper class. """ standard_field_list = _InputFieldsFromUser() entity_type_match_dict = {} for i, match in enumerate( ontology.GetEntityTypesFromFields(standard_field_list) ): entity_type_match_dict[i] = match for i in range(DEFAULT_MATCHED_TYPES_LIST_SIZE): print(colored(f'{i+1}. {entity_type_match_dict[i]}', 'green')) _PrintFieldMatchComparison(ontology, entity_type_match_dict) match_selection = input('Would you like to see all matches? (y/n): ') if match_selection == 'y': for i, match in [ (index, match) for index, match in entity_type_match_dict.items() if match.GetMatchScore() > 0 ]: print(colored(f'{i+1}. {match}', 'green')) _PrintFieldMatchComparison(ontology, entity_type_match_dict)<|fim_middle|>get_types_for_field_list<|file_separator|>
<|fim_prefix|>f <|fim_suffix|>(self):<|fim_middle|>test_initialization_and_priming<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): @es_test(requires=[cats_adapter]) class TestCatsRequired(SimpleTestCase): def test_index_exists(self): assert_index_exists(cats_adapter) dirty_test = TestCatsRequired() dirty_test.setUp() dirty_test.test_index_exists() # dirty test never cleans up tolerant_test = TestCatsRequired() tolerant_test.setUp() # does not raise "index_already_exists_exception" tolerant_test.test_index_exists() tolerant_test.tearDown() tolerant_test.doCleanups() # tolerant test still cleans up assert_not_index_exists(cats_adapter)<|fim_middle|>test_setup_tolerates_existing_index<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(request): """OSPF verify E-bit and N-bit mismatch.""" tc_name = request.node.name write_test_header(tc_name) tgen = get_topogen() # Don't run this test if we have any failure. if tgen.routers_have_failure(): pytest.skip(tgen.errors) global topo step("Bring up the base config as per the topology") reset_config_on_routers(tgen) input_dict = {"r3": {"ospf6": {"neighbors": []}}} step("Configure r3 as stub router") stub = {"r3": {"ospf6": {"area": [{"id": "1.1.1.1", "type": "stub"}]}}} result = create_router_ospf(tgen, topo, stub) assert result is True, "Testcase {}: Failed \n Error: {}".format(tc_name, result) # Verify r3 lost its adjacency with r2 due to E-bit mismatch result = verify_ospf6_neighbor(tgen, topo, dut="r3", input_dict=input_dict) assert result is True, "Testcase {}: Failed \n Error: {}".format(tc_name, result) step("Configure r2 as stub router") stub = {"r2": {"ospf6": {"area": [{"id": "1.1.1.1", "type": "stub"}]}}} result = create_router_ospf(tgen, topo, stub) assert result is True, "Testcase {}: Failed \n Error: {}".format(tc_name, result) # Verify r3 has an adjacency up with r2 again result = verify_ospf6_neighbor(tgen, topo, dut="r3") assert result is True, "Testcase {}: Failed \n Error: {}".format(tc_name, result) step("Configure r3 as NSSA router") nssa = {"r3": {"ospf6": {"area": [{"id": "1.1.1.1", "type": "nssa"}]}}} result = create_router_ospf(tgen, topo, nssa) # Verify r3 lost its adjacency with r2 due to N-bit mismatch result = verify_ospf6_neighbor(tgen, topo, dut="r3", input_dict=input_dict) assert result is True, "Testcase {}: Failed \n Error: {}".format(tc_name, result) step("Configure r2 as NSSA router") nssa = {"r2": {"ospf6": {"area": [{"id": "1.1.1.1", "type": "nssa"}]}}} result = create_router_ospf(tgen, topo, nssa) # Verify r3 has an adjacency up with r2 again result = verify_ospf6_neighbor(tgen, topo, dut="r3") assert result is True, "Testcase {}: Failed \n Error: {}".format(tc_name, result) write_test_footer(tc_name)<|fim_middle|>test_ospfv3_bit_mismatch<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, item: Node, start: int = 0, stop: int = sys.maxsize) -> int: ...<|fim_middle|>index<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, path, include_body=True): """ This is an edited method of original class so that we can show directory listing and set correct Content-Type """ path = self.parse_url_path(path) abspath = os.path.abspath(os.path.join(self.root, path)) self.absolute_path = abspath if not os.path.exists(abspath): raise tornado.web.HTTPError(404) # Check if a directory if so provide listing if os.path.isdir(abspath): # need to look at the request.path here for when path is empty # but there is some prefix to the path that was already # trimmed by the routing # Just loop once to get dirnames and filenames :P for abspath, dirnames, filenames in os.walk(abspath): break directory_listing_template = tornado.template.Template( """ <html> <head> <title>Directory Listing</title> </head> <body> <h1>Index of</h1> <hr> <ul> <li><a href="../">../</a></li> {% if len(dirnames) > 0 %} <h2>Directories</h2> {% for item in dirnames %} <li><a href="{{ url_escape(item, plus=False) }}/">{{ item }}/</a></li> {% end %} {% end %} {% if len(filenames) > 0 %} <h2>Files</h2> {% for item in filenames %} <li><a href="{{ url_escape(item, plus=False) }}">{{ item }}</a></li> {% end %} {% end %} </ul> </body> </html> """ ) self.write(directory_listing_template.generate(dirnames=dirnames, filenames=filenames)) return if os.path.isfile(abspath): # So file stat_result = os.stat(abspath) modified = datetime.datetime.fromtimestamp(stat_result[stat.ST_MTIME]) self.set_header("Last-Modified", modified) mime_type, encoding = mimetypes.guess_type(abspath) if mime_type: self.set_header("Content-Type", mime_type) cache_time = self.get_cache_time(path, modified, mime_type) if cache_time > 0: self.set_header("Expires", datetime.datetime.utcnow() + datetime.timedelta(seconds=cache_time)) self.set_header("Cache-Control", "max-age={!s}".format(cache_time)) else: self.set_header("Cache-Control", "public") self.set_extra_headers(path) # Check the If-Modified-Since, and don't send the result if the # content has not been modified ims_value = self.request.headers.METHOD_NAME("If-Modified-Since") if ims_value is not None: date_tuple = email.utils.parsedate(ims_value) if_since = datetime.datetime.fromtimestamp(time.mktime(date_tuple)) if if_since >= modified: self.set_status(304) return no_of_lines = self.get_argument("lines", default="-1") if no_of_lines != "-1": data = subprocess.check_output(["tail", "-" + no_of_lines, abspath]) else: with open(abspath, "rb") as file: data = file.read() hasher = hashlib.sha1() hasher.update(data) self.set_header("Etag", '"{!s}"'.format(hasher.hexdigest())) if include_body: self.write(data) else: assert self.request.method == "HEAD" self.set_header("Content-Length", len(data))<|fim_middle|>get<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self) -> None: self._archive_download_url: Attribute[str] = NotSet self._created_at: Attribute[datetime] = NotSet self._expired: Attribute[bool] = NotSet self._expires_at: Attribute[datetime] = NotSet self._head_sha: Attribute[str] = NotSet self._id: Attribute[int] = NotSet self._name: Attribute[str] = NotSet self._node_id: Attribute[str] = NotSet self._size_in_bytes: Attribute[int] = NotSet self._updated_at: Attribute[datetime] = NotSet self._url: Attribute[str] = NotSet self._workflow_run: Attribute[WorkflowRun] = NotSet<|fim_middle|>init_attributes<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, *args, **kwargs): """Overrides default init by loading value from checkpoint.""" # pylint: disable=protected-access self._old_init(*args, **kwargs) ckpt_name = self._map_func(self._shared_name) if ckpt_name not in self._ckpt_var_cache: raise errors.NotFoundError(None, None, "%s not found in checkpoint" % ckpt_name) val = self._ckpt_var_cache.get(ckpt_name, None) if val is not None: self.assign(val) # Avoid assigning for the second time. self._ckpt_var_cache[ckpt_name] = None # pylint: enable=protected-access<|fim_middle|>init_from_checkpoint<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( multiprocessing_tcp_port_selector: TCPPortSelector, context: BaseContext ): queue = context.Queue() p1 = context.Process( # type: ignore[attr-defined] target=get_multiprocessing_tcp_port, args=(multiprocessing_tcp_port_selector, MULTIPROCESSING_PORT, queue), ) p2 = context.Process( # type: ignore[attr-defined] target=get_multiprocessing_tcp_port, args=(multiprocessing_tcp_port_selector, MULTIPROCESSING_PORT, queue), ) p1.start() p2.start() free_tcp_port_1 = queue.get() free_tcp_port_2 = queue.get() p1.join() p2.join() actual_results = [free_tcp_port_1, free_tcp_port_2] assert MULTIPROCESSING_PORT in actual_results assert None in actual_results<|fim_middle|>test_tcp_port_selector_uses_multiprocess_leases<|file_separator|>
<|fim_prefix|>f <|fim_suffix|>(self):<|fim_middle|>test_system_artifacts_are_not_marked_in<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, stat_buf, stat): def store(offset, val): return self.state.memory.store(stat_buf + offset, val, endness=self.state.arch.memory_endness) store(0x00, stat.st_dev) store(0x08, stat.st_ino) store(0x10, stat.st_mode) store(0x14, stat.st_nlink) store(0x18, stat.st_uid) store(0x1C, stat.st_gid) store(0x20, stat.st_rdev) store(0x28, self.state.solver.BVV(0, 64)) store(0x30, stat.st_size) store(0x38, stat.st_blksize) store(0x3C, self.state.solver.BVV(0, 32)) store(0x40, stat.st_blocks) store(0x48, stat.st_atime) store(0x4C, stat.st_atimensec) store(0x50, stat.st_mtime) store(0x54, stat.st_mtimensec) store(0x58, stat.st_ctime) store(0x5C, stat.st_ctimensec) store(0x60, self.state.solver.BVV(0, 32)) store(0x64, self.state.solver.BVV(0, 32))<|fim_middle|>store_ppc32<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """Returns the state of the scheduler as a :class:`dict`. It contains an entry for every variable in self.__dict__ which is not the optimizer. The learning rate lambda functions will only be saved if they are callable objects and not if they are functions or lambdas. """ METHOD_NAME = { key: value for key, value in self.__dict__.items() if key not in ("optimizer", "lr_lambdas") } METHOD_NAME["lr_lambdas"] = [None] * len(self.lr_lambdas) for idx, fn in enumerate(self.lr_lambdas): if not isinstance(fn, types.FunctionType): METHOD_NAME["lr_lambdas"][idx] = fn.__dict__.copy() return METHOD_NAME<|fim_middle|>state_dict<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(account_name: Optional[str] = None, resource_group_name: Optional[str] = None, share_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetShareResult: """ Get a share :param str account_name: The name of the share account. :param str resource_group_name: The resource group name. :param str share_name: The name of the share to retrieve. """ __args__ = dict() __args__['accountName'] = account_name __args__['resourceGroupName'] = resource_group_name __args__['shareName'] = share_name opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts) __ret__ = pulumi.runtime.invoke('azure-native:datashare/v20210801:getShare', __args__, opts=opts, typ=GetShareResult).value return AwaitableGetShareResult( created_at=pulumi.get(__ret__, 'created_at'), description=pulumi.get(__ret__, 'description'), id=pulumi.get(__ret__, 'id'), name=pulumi.get(__ret__, 'name'), provisioning_state=pulumi.get(__ret__, 'provisioning_state'), share_kind=pulumi.get(__ret__, 'share_kind'), system_data=pulumi.get(__ret__, 'system_data'), terms=pulumi.get(__ret__, 'terms'), type=pulumi.get(__ret__, 'type'), user_email=pulumi.get(__ret__, 'user_email'), user_name=pulumi.get(__ret__, 'user_name'))<|fim_middle|>get_share<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(sSearch=''): oGui = cGui() if sSearch: sUrl = sSearch else: oInputParameterHandler = cInputParameterHandler() sUrl = oInputParameterHandler.getValue('siteUrl') oRequestHandler = cRequestHandler(sUrl) sHtmlContent = oRequestHandler.request() sPattern = 'class="featured-image"><a href="([^"]+)" title="([^"]+)"><img width=".+?" height=".+?" src="([^"]+)' oParser = cParser() aResult = oParser.parse(sHtmlContent, sPattern) if not aResult[0]: oGui.addText(SITE_IDENTIFIER) if aResult[0]: total = len(aResult[1]) progress_ = progress().VScreate(SITE_NAME) oOutputParameterHandler = cOutputParameterHandler() for aEntry in aResult[1]: progress_.VSupdate(progress_, total) if progress_.iscanceled(): break # first post filter if (str(aEntry[2]) != "https://www.mamcin.com/wp-content/uploads/2017/10/plus-belle-la-vie-episode-suivant-en-avance.jpg"): sUrl = aEntry[0] sTitle = aEntry[1] sThumb = aEntry[2] oOutputParameterHandler.addParameter('siteUrl', sUrl) oOutputParameterHandler.addParameter('sMovieTitle', sTitle) oOutputParameterHandler.addParameter('sThumb', sThumb) oGui.addMovie(SITE_IDENTIFIER, 'showHosters', sTitle, '', sThumb, '', oOutputParameterHandler) progress_.VSclose(progress_) sNextPage = __checkForNextPage(sHtmlContent) if sNextPage: oOutputParameterHandler = cOutputParameterHandler() oOutputParameterHandler.addParameter('siteUrl', sNextPage) sPaging = re.search('page/([0-9]+)', sNextPage).group(1) oGui.addNext(SITE_IDENTIFIER, 'showMovies', 'Page ' + sPaging, oOutputParameterHandler) if not sSearch: oGui.setEndOfDirectory()<|fim_middle|>show_movies<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): has_arg, option = getopt.long_has_args('abc', ['abc=']) self.assertTrue(has_arg) self.assertEqual(option, 'abc') has_arg, option = getopt.long_has_args('abc', ['abc']) self.assertFalse(has_arg) self.assertEqual(option, 'abc') has_arg, option = getopt.long_has_args('abc', ['abcd']) self.assertFalse(has_arg) self.assertEqual(option, 'abcd') self.assertError(getopt.long_has_args, 'abc', ['def']) self.assertError(getopt.long_has_args, 'abc', []) self.assertError(getopt.long_has_args, 'abc', ['abcd','abcde'])<|fim_middle|>test_long_has_args<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( self, configuration: ExpectationConfiguration, metrics, runtime_configuration: dict = None, execution_engine=None, ): success = metrics.get("column_values.geometry_overlap").get("success") indices = metrics.get("column_values.geometry_overlap").get("indices") return {"success": success, "result": {"overlapping_indices": indices}}<|fim_middle|>validate<|file_separator|>
<|fim_prefix|>async def <|fim_suffix|>(self) -> None: """ Represents one loop of the service. Users should override this method. To actually run the service once, call `LoopService().start(loops=1)` instead of `LoopService().run_once()`, because this method will not invoke setup and teardown methods properly. """ raise NotImplementedError("LoopService subclasses must implement this method.")<|fim_middle|>run_once<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): sm2mm_1 = SomeM2MModel.objects.create(name='abc') sm2mm_1.polymorphics = [self.pol_1, self.pol_2] sm2mm_1 = SomeM2MModel.objects.get(name='abc') sm2mm_2 = SomeM2MModel.objects.create(name='def') sm2mm_2.polymorphics = [self.pol_2, self.pol_3] with self.assertNumQueries(5): # 5 queries: # 1) SomeM2MModel # 2) Content Types (usually cached, but turned off in tests) # 3) PolymorphicModelBaseTest ids # 4) PolymorphicModelTest based on 3) # 5) PolymorphicModelTest2 based on 3) result = { sm.name: sm for sm in SomeM2MModel.objects.prefetch_related(Prefetch( lookup='polymorphics', queryset=PolymorphicModelBaseTest.polymorphic_objects.polymorphic_filter( # noqa some_m2m__in=SomeM2MModel.objects.all() ).all(), )).order_by('name') } self.assertCountEqual( result['abc'].polymorphics.all(), [self.pol_1, self.pol_2] ) self.assertCountEqual( [inst._meta.model for inst in result['abc'].polymorphics.all()], [PolymorphicModelTest, PolymorphicModelTest] ) self.assertCountEqual( result['def'].polymorphics.all(), [self.pol_2, self.pol_3] ) self.assertCountEqual( [inst._meta.model for inst in result['def'].polymorphics.all()], [PolymorphicModelTest, PolymorphicModelTest2] )<|fim_middle|>test_m2m_with_prefetch_related_on_polymorphic<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """ Notes ----- 计算所有的时间层。 """ rdir = self.options['rdir'] step = self.options['step'] timeline = self.timeline dt = timeline.current_time_step_length() timeline.reset() # 时间置零 fname = rdir + '/test_'+ str(timeline.current).zfill(10) + '.vtu' self.write_to_vtk(fname) print(fname) while not timeline.stop(): self.one_step_solve() timeline.current += 1 if timeline.current%step == 0: fname = rdir + '/test_'+ str(timeline.current).zfill(10) + '.vtu' print(fname) self.write_to_vtk(fname) timeline.reset()<|fim_middle|>solve<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(path): isolation = {'cgroup': {'path': path}} client.load('empty', processes=1, isolation=isolation)<|fim_middle|>set_cgroup_path<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self) -> Node | None: ...<|fim_middle|>previous_sibling<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>() -> None: migrate_nulls() with op.batch_alter_table("journalist_login_attempt", schema=None) as batch_op: batch_op.alter_column("journalist_id", existing_type=sa.INTEGER(), nullable=False) with op.batch_alter_table("replies", schema=None) as batch_op: batch_op.alter_column("journalist_id", existing_type=sa.INTEGER(), nullable=False) with op.batch_alter_table("revoked_tokens", schema=None) as batch_op: batch_op.alter_column("journalist_id", existing_type=sa.INTEGER(), nullable=False) with op.batch_alter_table("seen_files", schema=None) as batch_op: batch_op.alter_column("journalist_id", existing_type=sa.INTEGER(), nullable=False) with op.batch_alter_table("seen_messages", schema=None) as batch_op: batch_op.alter_column("journalist_id", existing_type=sa.INTEGER(), nullable=False) with op.batch_alter_table("seen_replies", schema=None) as batch_op: batch_op.alter_column("journalist_id", existing_type=sa.INTEGER(), nullable=False)<|fim_middle|>upgrade<|file_separator|>
<|fim_prefix|>async def <|fim_suffix|>(self, unit_tag: int): """ Override this in your bot class. This will event will be called when a unit (or structure, friendly or enemy) dies. For enemy units, this only works if the enemy unit was in vision on death. :param unit_tag: """<|fim_middle|>on_unit_destroyed<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): # Wrong type of b1 and bk2 power spectra with pytest.raises(ValueError): ccl.nl_pt.LagrangianPTCalculator(b1_pk_kind='non-linear') # Wrong type of b1 and bk2 power spectra with pytest.raises(ValueError): ccl.nl_pt.LagrangianPTCalculator(bk2_pk_kind='non-linear') # Uninitialized templates with pytest.raises(ccl.CCLError): ptc = ccl.nl_pt.LagrangianPTCalculator() ptc.get_biased_pk2d(TRS['TG']) # TODO: Discuss this test # Wrong pair combination with pytest.raises(ValueError): ptc = ccl.nl_pt.LagrangianPTCalculator(cosmo=COSMO) ptc.get_pk2d_template('b1:b3')<|fim_middle|>test_lpt_calculator_raises<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, op_fn, type_fn): x = type_fn() f = function([x], op_fn(x)) xval = _asarray(np.random.random(10) * 10, dtype=type_fn.dtype) yval = f(xval) assert str(yval.dtype) == op_fn.scalar_op.output_types_preference.spec[0].dtype<|fim_middle|>test_0<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(replay_start, timestamp): if len(timestamp.split(".")[-1]) < 6: for i in range(6 - len(timestamp.split(".")[-1])): timestamp = timestamp + "0" start = datetime.fromisoformat(replay_start) stamp = datetime.fromisoformat(timestamp) if start.tzinfo is None: start = start.replace(tzinfo=timezone.utc) if stamp.tzinfo is None: stamp = stamp.replace(tzinfo=timezone.utc) return ((stamp - start).total_seconds()) * 1000<|fim_middle|>calc_diff<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, other): """ The equals method. :param other: a different object. :type other: object :return: True if equal, otherwise False. :rtype: bool """ if not isinstance(other, ASTForStmt): return False if self.get_variable() != other.get_variable(): return False if not self.get_start_from().METHOD_NAME(other.get_start_from()): return False if not self.get_end_at().METHOD_NAME(other.get_end_at()): return False if self.get_step() != other.get_step(): return False return self.get_block().METHOD_NAME(other.get_block())<|fim_middle|>equals<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(left, right): if diff_options: opts = ' ' + ' '.join(diff_options) else: opts = '' print('diff%s %s %s' % (opts, left, right))<|fim_middle|>diff_line<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, pathname, setting): """ _addEnvironmentPath_ add a key = value1:value2:value3 environment setting to this step """ if getattr(self.data.environment.paths, pathname, None) == None: setattr(self.data.environment.paths, pathname, []) pathentry = getattr(self.data.environment.paths, pathname) pathentry.append(setting) return<|fim_middle|>add_environment_path<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """ Testing the exact solution which is a property of every backend. """ n_qubits = 8 register = range(n_qubits) p = 1 correct_energy = -8 correct_config = [0, 1, 0, 1, 0, 1, 0, 1] # The tests pass regardless of the value of betas and gammas is this correct? betas = [np.pi / 8] gammas = [np.pi / 4] cost_hamiltonian = ring_of_disagrees(register) mixer_hamiltonian = X_mixer_hamiltonian(n_qubits) qaoa_descriptor = QAOADescriptor(cost_hamiltonian, mixer_hamiltonian, p) variational_params_std = QAOAVariationalStandardParams( qaoa_descriptor, betas, gammas ) backend_analytical = QAOABackendAnalyticalSimulator(qaoa_descriptor) # exact solution is defined as the property of the cost function energy_vec, config_vec = backend_analytical.exact_solution assert np.isclose(energy_vec, correct_energy) config_vec = [config.tolist() for config in config_vec] assert correct_config in config_vec<|fim_middle|>test_exact_solution<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): cl = ConfigList(["un", "quatre", "trois"]) cl[1] = "deux" self.assertEqual(cl.serialize(), ["un", "deux", "trois"])<|fim_middle|>test_config_list_setitem<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--config_path', type=str, default=None, help="path of compression strategy config.", required=True) parser.add_argument( '--analysis_file', type=str, default='sensitivity_0.data', help="directory to save compressed model.") parser.add_argument( '--pruned_ratios', nargs='+', type=float, default=[0.1, 0.2, 0.3, 0.4], help="The ratios to be pruned when compute sensitivity.") parser.add_argument( '--target_loss', type=float, default=0.2, help="use the target loss to get prune ratio of each parameter") return parser<|fim_middle|>argsparser<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): return self.try_parse_helper("#")<|fim_middle|>try_parse_hash<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): if get_env("USE_FAST_LN"): paddle.nn.LayerNorm = FastLayerNorm elif get_env("USE_FUSED_LN"): paddle.nn.LayerNorm = FusedLayerNorm elif get_env("USE_FUSED_RMS_NORM"): paddle.nn.LayerNorm = FusedRMSNorm if get_env("USE_LINEAR_WITH_GRAD_ADD"): paddle.nn.functional.linear = FusedLinearWithGradAdd.apply paddle.incubate.nn.functional.fused_linear = FusedLinearWithGradAdd.apply<|fim_middle|>mock_layers<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, item, spider): # noqa: C901 check_field(item, spider, "brand_wikidata", allowed_types=(str,), match_regex=self.wikidata_regex) check_field(item, spider, "website", (str,), self.url_regex) check_field(item, spider, "image", (str,), self.url_regex) check_field(item, spider, "email", (str,), self.email_regex) check_field(item, spider, "phone", (str,)) check_field(item, spider, "street_address", (str,)) check_field(item, spider, "city", (str,)) check_field(item, spider, "state", (str,)) check_field(item, spider, "postcode", (str,)) check_field(item, spider, "country", (str,), self.country_regex) check_field(item, spider, "name", (str,)) check_field(item, spider, "brand", (str,)) if coords := get_lat_lon(item): lat, lon = coords if not (self.min_lat < lat < self.max_lat): spider.crawler.stats.inc_value("atp/field/lat/invalid") lat = None if not (self.min_lon < lon < self.max_lon): spider.crawler.stats.inc_value("atp/field/lon/invalid") lon = None if isinstance(lat, float) and isinstance(lon, float): if math.fabs(lat) < 3 and math.fabs(lon) < 3: spider.crawler.stats.inc_value("atp/geometry/null_island") lat = None lon = None set_lat_lon(item, lat, lon) if not (item.get("geometry") or get_lat_lon(item)): spider.crawler.stats.inc_value("atp/field/lat/missing") spider.crawler.stats.inc_value("atp/field/lon/missing") if twitter := item.get("twitter"): if not isinstance(twitter, str): spider.crawler.stats.inc_value("atp/field/twitter/wrong_type") elif not (self.url_regex.match(twitter) and "twitter.com" in twitter) and not self.twitter_regex.match( twitter ): spider.crawler.stats.inc_value("atp/field/twitter/invalid") else: spider.crawler.stats.inc_value("atp/field/twitter/missing") if opening_hours := item.get("opening_hours"): if isinstance(opening_hours, OpeningHours): if opening_hours.day_hours: item["opening_hours"] = opening_hours.as_opening_hours() else: item["opening_hours"] = None spider.crawler.stats.inc_value("atp/field/opening_hours/missing") elif not isinstance(opening_hours, str): spider.crawler.stats.inc_value("atp/field/opening_hours/wrong_type") elif not self.opening_hours_regex.match(opening_hours) and opening_hours != "24/7": spider.crawler.stats.inc_value("atp/field/opening_hours/invalid") else: spider.crawler.stats.inc_value("atp/field/opening_hours/missing") return item<|fim_middle|>process_item<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(stress): mean = sigma_mean(stress) return np.sqrt(0.5 * (np.power(stress[0] - mean, 2) + 2*stress[1]*stress[1] + 2*stress[2]*stress[2] + np.power(stress[3] - mean, 2) + 2*stress[4]*stress[4] + np.power(stress[5] - mean, 2)))<|fim_middle|>sigma_bar<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(space, expected_batch_space_4): batch_space_4 = batch_space(space, n=4) assert batch_space_4 == expected_batch_space_4<|fim_middle|>test_batch_space<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): return { # sell "energy_sell_rate": self._sell_energy_profile.input_energy_rate, "energy_rate_profile": self._sell_energy_profile.input_profile, "energy_rate_profile_uuid": self._sell_energy_profile.input_profile_uuid, # buy "energy_buy_rate": self._buy_energy_profile.input_energy_rate, "buying_rate_profile": self._buy_energy_profile.input_profile, "buying_rate_profile_uuid": self._buy_energy_profile.input_profile_uuid, }<|fim_middle|>serialize<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( self, start_well: AbstractWellCore, num_channels: int = 1, fail_if_full: bool = False, ): """ Removes tips from the tip tracker. This method should be called when a tip is picked up. Generally, it will be called with `num_channels=1` or `num_channels=8` for single- and multi-channel respectively. If picking up with more than one channel, this method will automatically determine which tips are used based on the start well, the number of channels, and the geometry of the tiprack. :param start_well: The :py:class:`.Well` from which to pick up a tip. For a single-channel pipette, this is the well to send the pipette to. For a multi-channel pipette, this is the well to send the back-most nozzle of the pipette to. :type start_well: :py:class:`.Well` :param num_channels: The number of channels for the current pipette :type num_channels: int :param fail_if_full: for backwards compatibility """ # Select the column of the labware that contains the target well target_column = [col for col in self._columns if start_well in col][0] well_idx = target_column.index(start_well) # Number of tips to pick up is the lesser of (1) the number of tips # from the starting well to the end of the column, and (2) the number # of channels of the pipette (so a 4-channel pipette would pick up a # max of 4 tips, and picking up from the 2nd-to-bottom well in a # column would get a maximum of 2 tips) num_tips = min(len(target_column) - well_idx, num_channels) target_wells = target_column[well_idx : well_idx + num_tips] # In API version 2.2, we no longer reset the tip tracker when a tip # is dropped back into a tiprack well. This fixes a behavior where # subsequent transfers would reuse the dirty tip. However, sometimes # the user explicitly wants to use a dirty tip, and this check would # raise an exception if they tried to do so. # An extension of work here is to have separate tip trackers for # dirty tips and non-present tips; but until then, we can avoid the # exception. if fail_if_full: assert all( well.has_tip() for well in target_wells ), "{} is out of tips".format(str(self)) for well in target_wells: well.set_has_tip(False)<|fim_middle|>use_tips<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(administrator_name: Optional[str] = None, managed_instance_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetManagedInstanceAdministratorResult: """ Gets a managed instance administrator. Azure REST API version: 2021-11-01. :param str managed_instance_name: The name of the managed instance. :param str resource_group_name: The name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal. """ __args__ = dict() __args__['administratorName'] = administrator_name __args__['managedInstanceName'] = managed_instance_name __args__['resourceGroupName'] = resource_group_name opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts) __ret__ = pulumi.runtime.invoke('azure-native:sql:getManagedInstanceAdministrator', __args__, opts=opts, typ=GetManagedInstanceAdministratorResult).value return AwaitableGetManagedInstanceAdministratorResult( administrator_type=pulumi.get(__ret__, 'administrator_type'), id=pulumi.get(__ret__, 'id'), login=pulumi.get(__ret__, 'login'), name=pulumi.get(__ret__, 'name'), sid=pulumi.get(__ret__, 'sid'), tenant_id=pulumi.get(__ret__, 'tenant_id'), type=pulumi.get(__ret__, 'type'))<|fim_middle|>get_managed_instance_administrator<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): blurb = lldb.debugger.GetVersionString() top = blurb.split('\n')[0] full = top.split(' ')[2] major, minor = full.split('.')[:2] return LldbVersion(full, int(major), int(minor))<|fim_middle|>compute_lldb_ver<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(module, client, backup_plan_name: str): backup_plan_id = _list_backup_plans(client, backup_plan_name) if not backup_plan_id: return [] try: result = client.get_backup_plan(BackupPlanId=backup_plan_id) except (botocore.exceptions.BotoCoreError, botocore.exceptions.ClientError) as e: module.fail_json_aws(e, msg=f"Failed to describe plan {backup_plan_id}") # Turn the boto3 result in to ansible_friendly_snaked_names snaked_backup_plan = [] try: resource = result.get("BackupPlanArn", None) tag_dict = get_backup_resource_tags(module, client, resource) result.update({"tags": tag_dict}) except (botocore.exceptions.BotoCoreError, botocore.exceptions.ClientError) as e: module.fail_json_aws(e, msg="Failed to get the backup plan tags") snaked_backup_plan.append(camel_dict_to_snake_dict(result, ignore_list="tags")) # Remove AWS API response and add top-level plan name for v in snaked_backup_plan: if "response_metadata" in v: del v["response_metadata"] v["backup_plan_name"] = v["backup_plan"]["backup_plan_name"] return snaked_backup_plan<|fim_middle|>get_plan_details<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, variable): if isinstance(variable, VariableMatch): return variable match = search_variable(variable) if not match.is_variable() or match.items: raise DataError("Invalid variable name '%s'." % variable) return match<|fim_middle|>get_match<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(end_point_name, model_name, token): if token is None: return False FedMLModelCache.get_instance().set_redis_params(settings.redis_addr, settings.redis_port, settings.redis_password) cached_token = FedMLModelCache.get_instance(settings.redis_addr, settings.redis_port). \ get_end_point_token(end_point_name, model_name) if cached_token is not None and cached_token == token: return True return False<|fim_middle|>auth_request_token<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(config, env): import rtyaml fn = os.path.join(env['STORAGE_ROOT'], 'settings.yaml') with open(fn, "w") as f: f.write(rtyaml.dump(config))<|fim_middle|>write_settings<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, ep_name, lang, title=notifyStrings[NOTIFY_SUBTITLE_DOWNLOAD]): """ Sends a Join notification when subtitles for an episode are downloaded :param ep_name: The name of the episode subtitles were downloaded for :param lang: The language of the downloaded subtitles :param title: The title of the notification to send """ if settings.JOIN_NOTIFY_ONSUBTITLEDOWNLOAD: self._notify_join(title, "{0}: {1}".format(ep_name, lang))<|fim_middle|>notify_subtitle_download<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self) -> 'outputs.ResourceReferenceResponse': """ Reference to a resource. """ return pulumi.get(self, "custom_certificate")<|fim_middle|>custom_certificate<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(s: bytes) -> bytes: """ Serialize a byte string with Bitcoin's variable length string serialization. :param s: The byte string to be serialized :returns: The serialized byte string """ return ser_compact_size(len(s)) + s<|fim_middle|>ser_string<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, method): """ Teardown method """ try: self.client.admin_drop_user("example-test") time.sleep(1) except e.InvalidUser: pass self.client.close()<|fim_middle|>teardown_method<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): import subprocess cmd = "xdputil query | grep 'DPU Batch' | awk -F':' '{ print $2}' | awk -F',' '{ print $1}' " p = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True) ret = p.communicate() if ret[0] == b'': return 1 return int(ret[0])<|fim_middle|>get_batch<|file_separator|>
<|fim_prefix|>def <|fim_suffix|> (programs): print_test_name ("Rewrite test") output = programs.meta_set (False, "--bext-originator \"Really, really long string\" output.wav") output = programs.meta_set (False, "--bext-originator \"Short\" output.wav") output = programs.meta_get (False, "--bext-originator output.wav") if output.find ("really long") > 0: print("\n\nError : output '%s' should not contain 'really long'." % output) sys.exit (1) print("ok")<|fim_middle|>test_rewrite<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(vertices, faces, root=0): """Unify the cycle directions of the given faces such that adjacent faces share opposite halfedges. Parameters ---------- vertices : sequence[[float, float, float] | :class:`~compas.geometry.Point`] A list of vertex coordinates. faces : sequence[sequence[int]] A list of faces with each face defined by a list of indices into the list of vertices. root : int, optional The starting face. Returns ------- list[list[int]] A list of faces with the same orientation as the root face. Raises ------ AssertionError If not all faces were visited. Notes ----- The algorithm works by first building an adjacency dict of the faces, which can be traversed efficiently to unify all face cycles. Although this process technically only requires the connectivity information contained in the faces, the locations of the vertices can be used to speed up execution for very large collections of faces. Examples -------- >>> vertices = [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]] >>> faces = [[0, 1, 2], [0, 3, 2]] >>> unify_cycles(vertices, faces) [[0, 1, 2], [2, 3, 0]] """ def unify(node, nbr): # find the common edge for u, v in pairwise(faces[nbr] + faces[nbr][0:1]): if u in faces[node] and v in faces[node]: # node and nbr have edge u-v in common i = faces[node].index(u) j = faces[node].index(v) if i == j - 1 or (j == 0 and u == faces[node][-1]): # if the traversal of a neighboring halfedge # is in the same direction # flip the neighbor faces[nbr][:] = faces[nbr][::-1] return adj = face_adjacency(vertices, faces) visited = breadth_first_traverse(adj, root, unify) assert len(list(visited)) == len(faces), "Not all faces were visited" return faces<|fim_middle|>unify_cycles<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, key: str) -> Any: """@brief Return the highest priority value for the option, or its default.""" for layer in self._layers: if key in layer: return layer[key] return self.get_default(key)<|fim_middle|>get<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(cls) -> dict[Any, Callable[[Any], Any]]: if pydantic.VERSION.startswith("1"): # pragma: no cover return {**_base_encoders, **cls._create_pydantic_v1_encoders()} return {**_base_encoders, **cls._create_pydantic_v2_encoders()}<|fim_middle|>encoders<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( cls, method_, url_, api_key=None, idempotency_key=None, stripe_version=None, stripe_account=None, params=None, ): params = None if params is None else params.copy() api_key = util.read_special_variable(params, "api_key", api_key) idempotency_key = util.read_special_variable( params, "idempotency_key", idempotency_key ) stripe_version = util.read_special_variable( params, "stripe_version", stripe_version ) stripe_account = util.read_special_variable( params, "stripe_account", stripe_account ) headers = util.read_special_variable(params, "headers", None) requestor = api_requestor.APIRequestor( api_key, api_version=stripe_version, account=stripe_account ) if idempotency_key is not None: headers = {} if headers is None else headers.copy() headers.update(util.populate_headers(idempotency_key)) # type: ignore response, _ = requestor.request_stream(method_, url_, params, headers) return response<|fim_middle|>static_request_stream<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(dataloader): latency_list = [] for idx, (inputs, labels) in enumerate(dataloader): # dataloader should keep the order and len of inputs same with input_tensor inputs = np.array([inputs]) feed_dict = dict(zip(input_tensor, inputs)) start = time.time() predictions = model.sess.run(output_tensor, feed_dict) end = time.time() metric.update(predictions, labels) latency_list.append(end-start) if idx + 1 == iteration: break latency = np.array(latency_list).mean() / args.batch_size return latency<|fim_middle|>eval_func<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( f, len ): global Setsdrmasks, SetsdrmasksOnesCount byteCount = (len+7)//8 Setsdrmasks = f.read( byteCount ) ls = [] SetsdrmasksOnesCount = 0 for b in Setsdrmasks: ls.append( "%x" % ((b & 0xf0) >> 4) ) ls.append( "%x" % ( b & 0x0f ) ) for i in range(8): if b & (1<<i): SetsdrmasksOnesCount = SetsdrmasksOnesCount +1 return ''.join(ls)<|fim_middle|>read_sdrmasks<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(args: tuple[str, ...], expanded: tuple[str, ...]) -> None: cli_alias = CliAlias.from_dict( { "--alias": "--flag goal", } ) assert cli_alias.expand_args(args) == expanded<|fim_middle|>test_expand_args_flag<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(filters): amount = 0.0 # get amounts from all the apps for method_name in frappe.get_hooks( "get_amounts_not_reflected_in_system_for_bank_reconciliation_statement" ): amount += frappe.get_attr(method_name)(filters) or 0.0 return amount<|fim_middle|>get_amounts_not_reflected_in_system<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( self, pipeline_types: Tuple[MypyType, ...], pipeline_kinds: List[ArgKind], ctx: CallableContext, ) -> MypyType: """Pass pipeline functions to infer them one by one.""" parameter = FuncArg(None, self._instance, ARG_POS) ret_type = ctx.default_return_type for pipeline, kind in zip(pipeline_types, pipeline_kinds): ret_type = self._proper_type( analyze_call( cast(FunctionLike, pipeline), [parameter], ctx, show_errors=True, ), ) parameter = FuncArg(None, ret_type, kind) return ret_type<|fim_middle|>from_callable_sequence<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self) -> Optional['outputs.PeeringPropertiesDirectResponse']: """ The properties that define a direct peering. """ return pulumi.get(self, "direct")<|fim_middle|>direct<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(model_name: str) -> None: if SWIGNORE_PATH.exists(): lines = SWIGNORE_PATH.read_text().splitlines() else: lines = [] write_lines = [] for line in lines: if "*/base-" in line or "*/adapter-" in line: continue write_lines.append(line) for m in SUPPORTED_MODELS: if m == model_name: continue write_lines.append(f"*/base-{m}/*") write_lines.append(f"*/adapter-{m}/*") SWIGNORE_PATH.write_text("\n".join(write_lines))<|fim_middle|>update_swignore<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, api_url): response = requests.get(api_url, timeout=10) response.raise_for_status() return response.json()<|fim_middle|>call_api<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(band): amp_mask = get_all_nonamp_fiberbitmask_val() if band.lower().find('b')>=0: amp_mask |= fmsk.BADAMPB if band.lower().find('r')>=0: amp_mask |= fmsk.BADAMPR if band.lower().find('z')>=0: amp_mask |= fmsk.BADAMPZ return amp_mask<|fim_middle|>get_all_fiberbitmask_with_amp<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, fields) -> Optional[List[FieldModel]]: """ Recursively convert the parsed schema into required models """ field_models = [] for field in fields: try: field_models.append( FieldModel( name=field.name, dataType=ProtobufDataTypes(field.type).name, children=self.METHOD_NAME(field.message_type.fields) if field.type == 11 else None, ) ) except Exception as exc: # pylint: disable=broad-except logger.debug(traceback.format_exc()) logger.warning( f"Unable to parse the protobuf schema into models: {exc}" ) return field_models<|fim_middle|>get_protobuf_fields<|file_separator|>