metadata
language:
- en
dataset_info:
features:
- name: text
dtype: string
- name: metadata
struct:
- name: pile_set_name
sequence: string
- name: id
dtype: int64
splits:
- name: train
num_bytes: 64095383
num_examples: 40338
download_size: 39795200
dataset_size: 64095383
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
Description
This dataset is a sampled subset of the Pile dataset. We used DSIR a data selection tool with importance resampling for subsampling.
The subset sample distribution is:
{
'Pile-CC': 19767,
'OpenWebText2': 12424,
'FreeLaw': 3752,
'USPTO Backgrounds': 1055,
'Wikipedia (en)': 813,
'PubMed Central': 576,
'PubMed Abstracts': 499,
'BookCorpus2': 285,
'Books3': 266,
'Gutenberg (PG-19)': 228,
'StackExchange': 184,
'PhilPapers': 112,
'YoutubeSubtitles': 91,
'OpenSubtitles': 75,
'ArXiv': 56,
'NIH ExPorter': 47,
'Enron Emails': 39,
'HackerNews': 29,
'Github': 28,
'EuroParl': 12
}
The dataset contains ~100M words of text. This can be checked with:
from datasets import load_dataset
ds = load_dataset("PatrickHaller/dsir-pile-10M-words")
count = 0
for row in ds["train"]:
count += len(row["text"].split(" "))
print(count)
# Out: 9999894