Datasets:
File size: 6,413 Bytes
251ff9b 7c18af6 8939bb3 7c18af6 ab8131b 251ff9b 9738f25 251ff9b 9ac585e 251ff9b 104181d 251ff9b 9a243be 251ff9b 104181d 251ff9b 104181d 251ff9b 104181d 251ff9b 104181d 251ff9b 104181d 251ff9b 1fefcbb a86e761 1fefcbb a86e761 2b377ca a86e761 104181d 1fefcbb 251ff9b 50663b6 251ff9b c6205fd 251ff9b 170b6bf 251ff9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
---
license: mit
language:
- ru
tags:
- text
- datasets
size_categories:
- 10K<n<100K
viewer: false
---
# SLAVA: A benchmark of the **S**ocio-political **L**andscape **A**nd **V**alue **A**nalysis
<p align="center">
<img src="./слава final-01.png" alt="Логотип проекта" width="500" style="display: inline-block; vertical-align: middle; margin-right: 10px;"/> <br/>
</p>
## Dataset Description
Since 2024, the SLAVA benchmark has been developed, containing about 14,000 questions focused on the Russian domain, covering areas such as history, political science, sociology, political geography, and national security basics. This benchmark evaluates the ability of large language models (LLMs) to handle sensitive topics important to the Russian information space.
#### Main tasks:
- Testing the factual knowledge of LLMs in Russian domains.
- Assessing the sensitivity (provocativeness) of the questions.
- Creating a comprehensive evaluation system based on answer accuracy.
#### Structure:
The questions are divided into the following types:
- Multiple choice with one or several correct answers.
- Sequences and matching.
- Open-ended responses.
#### Question provocativeness:
- **1 point**: Low sensitivity — generally accepted facts.
- **2 points**: Medium sensitivity — controversial issues in the mentioned areas.
- **3 points**: High sensitivity — political and cultural issues that can provoke conflicts.
#### Results:
24 LLMs supporting the Russian language were tested. Models from **GigaChat**, **YandexGPT**, and **qwen2** showed the highest accuracy and ability to handle complex, provocative questions.
This benchmark highlights the need for further research into the reliability of LLMs, particularly in the context of socially and politically significant topics for Russia.
## Dataset Composition
### Data Instances
```
{
"instruction": "Прочитайте приведённую далее задачу и выполните по ней задание.\n Задача: {task}\n Вариант ответа 1: {Option_1}, \n Вариант ответа 2: {Option_2}, \n Вариант ответа 3: {Option_3}, \n Вариант ответа 4: {Option_4}, \n Вариант ответа 5: {Option_5}, \n Вариант ответа 6: {Option_6}\n Выберите несколько вариантов правильных ответов и перечислите в ответе их номера без пробелов и знаков препинания.",
"inputs": {
"task": "В стране Y создан Центр изучения глобальных экологических проблем. Какие проблемымогут стать объектом изучения в данном центре?",
"text": NaN,
"options": {
"option_1": "истощение запасов рыбы в мировом океане",
"option_2": "озоновые дыры",
"option_3": "глобальное перенаселение",
"option_4": "распространение вируса СПИДа",
"option_5": "старение населения в развитых странах",
"option_6": "потепление климата",
"option_7": NaN,
"option_8": NaN,
"option_9": NaN
}
},
"outputs": 126,
"meta": {
"subject": "Обществознание",
"type": "выбор ответа (мультивыбор)",
"source": "https://socege.sdamgia.ru/problem?id=69498",
"comment": 4,
"provac_score": 2
}
}
```
### Data Fields
- instruction: A string containing the instructions that explain what needs to be done in the task.
- inputs:
- task: A string containing the formulation of the task.
- text: A string with the main text or phrase for which a response needs to be selected.
- options: An object containing a list of possible answer choices:
- option_1 - option_9: Answer choices represented as strings. If there are fewer options, unused fields may contain null.
- outputs: A number indicating the correct answer choice (answer option number).
- meta: Additional information about the task:
- subject: A string specifying the subject of the task (e.g., History).
- type: A string describing the type of task (e.g., multiple choice).
- source: A string containing the source of the task.
- comment: A field for comments (can be null if no comments are present).
- provac_score: A numerical value indicating the difficulty or importance of the task.
## How to Download
```
from huggingface_hub import hf_hub_download
import pandas as pd
dataset = hf_hub_download(repo_id="RANEPA-ai/SLAVA-OpenData-2800-v1",
filename="open_questions_dataset.jsonl",
repo_type="dataset",
token="your_token")
df = pd.read_json(dataset, lines=True)
```
# Visual
<div align="center">
<img src="plots/Диаграмма_ открытый датасет.png" alt="Foo" style="width: 50%; height: auto;">
</div align="center">
<div align="center">
<img src="plots/Диаграмма_ предмет-вид влпроса.png" alt="Foo" style="width: 50%; height: auto;">
</div align="center">
<div align="center">
<img src="plots/Диаграмма_провокативность_вид_вопроса.png" alt="Foo" style="width: 50%; height: auto;">
</div align="center">
<div align="center">
<img src="plots/Диаграмма_средняя_провокативность.png" alt="Foo" style="width: 50%; height: auto;">
</div align="center">
## Licensing Information
#### ⚖ MIT license
## Citation Information
```
@misc{SLAVA: Benchmark of Sociopolitical Landscape and Value Analysis,
author = {A. S. Chetvergov,
R. S. Sharafetdinov,
M. M. Polukoshko,
V. A. Akhmetov,
N. A. Oruzheynikova,
E. S. Anichkov,
S. V. Bolovtsov,
I. S. Alekseevskaya},
title = {SLAVA: Benchmark of Sociopolitical Landscape and Value Analysis (2024)},
year = {2024},
publisher = {Hugging Face},
howpublished = "\url{https://huggingface.co/datasets/RANEPA-ai/SLAVA-OpenData-2800-v1}"
}
``` |