Datasets:

Modalities:
Text
Languages:
Russian
Libraries:
Datasets
License:
File size: 6,413 Bytes
251ff9b
 
7c18af6
 
8939bb3
 
 
7c18af6
 
ab8131b
251ff9b
9738f25
251ff9b
9ac585e
 
 
 
251ff9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104181d
 
251ff9b
 
9a243be
251ff9b
 
 
 
 
 
 
 
 
 
104181d
251ff9b
104181d
 
251ff9b
104181d
 
 
 
 
 
251ff9b
 
 
 
 
104181d
251ff9b
 
104181d
 
 
251ff9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fefcbb
 
 
 
a86e761
1fefcbb
a86e761
2b377ca
a86e761
 
 
104181d
1fefcbb
251ff9b
50663b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
251ff9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6205fd
 
251ff9b
 
 
170b6bf
251ff9b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
---
license: mit
language:
- ru
tags:
- text
- datasets
size_categories:
- 10K<n<100K
viewer: false
---
# SLAVA: A benchmark of the **S**ocio-political **L**andscape **A**nd **V**alue **A**nalysis

<p align="center">
    <img src="./слава final-01.png" alt="Логотип проекта" width="500" style="display: inline-block; vertical-align: middle; margin-right: 10px;"/>  <br/> 
</p>


## Dataset Description

Since 2024, the SLAVA benchmark has been developed, containing about 14,000 questions focused on the Russian domain, covering areas such as history, political science, sociology, political geography, and national security basics. This benchmark evaluates the ability of large language models (LLMs) to handle sensitive topics important to the Russian information space.

#### Main tasks:
- Testing the factual knowledge of LLMs in Russian domains.
- Assessing the sensitivity (provocativeness) of the questions.
- Creating a comprehensive evaluation system based on answer accuracy.

#### Structure:
The questions are divided into the following types:
- Multiple choice with one or several correct answers.
- Sequences and matching.
- Open-ended responses.

#### Question provocativeness:
- **1 point**: Low sensitivity — generally accepted facts.
- **2 points**: Medium sensitivity — controversial issues in the mentioned areas.
- **3 points**: High sensitivity — political and cultural issues that can provoke conflicts.

#### Results:
24 LLMs supporting the Russian language were tested. Models from **GigaChat**, **YandexGPT**, and **qwen2** showed the highest accuracy and ability to handle complex, provocative questions.

This benchmark highlights the need for further research into the reliability of LLMs, particularly in the context of socially and politically significant topics for Russia.


## Dataset Composition

### Data Instances

```
{
        "instruction": "Прочитайте приведённую далее задачу и выполните по ней задание.\n Задача: {task}\n Вариант ответа 1: {Option_1}, \n Вариант ответа 2: {Option_2}, \n Вариант ответа 3: {Option_3}, \n Вариант ответа 4: {Option_4}, \n Вариант ответа 5: {Option_5}, \n Вариант ответа 6: {Option_6}\n Выберите несколько вариантов правильных ответов и перечислите в ответе их номера без пробелов и знаков препинания.",
        "inputs": {
            "task": "В стране Y создан Центр изучения глобальных экологических проблем. Какие проблемымогут стать объектом изучения в данном центре?",
            "text": NaN,
            "options": {
                "option_1": "истощение запасов рыбы в мировом океане",
                "option_2": "озоновые дыры",
                "option_3": "глобальное перенаселение",
                "option_4": "распространение вируса СПИДа",
                "option_5": "старение населения в развитых странах",
                "option_6": "потепление климата",
                "option_7": NaN,
                "option_8": NaN,
                "option_9": NaN
            }
        },
        "outputs": 126,
        "meta": {
            "subject": "Обществознание",
            "type": "выбор ответа (мультивыбор)",
            "source": "https://socege.sdamgia.ru/problem?id=69498",
            "comment": 4,
            "provac_score": 2
        }
    }
```


### Data Fields 


- instruction: A string containing the instructions that explain what needs to be done in the task.
- inputs:
    - task: A string containing the formulation of the task.
    - text: A string with the main text or phrase for which a response needs to be selected.
    - options: An object containing a list of possible answer choices:
        - option_1 - option_9: Answer choices represented as strings. If there are fewer options, unused fields may contain null.
- outputs: A number indicating the correct answer choice (answer option number).
- meta: Additional information about the task:
  - subject: A string specifying the subject of the task (e.g., History).
    - type: A string describing the type of task (e.g., multiple choice).
    - source: A string containing the source of the task.
    - comment: A field for comments (can be null if no comments are present).
    - provac_score: A numerical value indicating the difficulty or importance of the task.

   
## How to Download

```
from huggingface_hub import hf_hub_download
import pandas as pd

dataset = hf_hub_download(repo_id="RANEPA-ai/SLAVA-OpenData-2800-v1",
                          filename="open_questions_dataset.jsonl",
                          repo_type="dataset",
                          token="your_token")
df = pd.read_json(dataset, lines=True)

```

# Visual

<div align="center">
    <img src="plots/Диаграмма_ открытый датасет.png" alt="Foo" style="width: 50%; height: auto;">
</div align="center">

<div align="center">
    <img src="plots/Диаграмма_ предмет-вид влпроса.png" alt="Foo" style="width: 50%; height: auto;">
</div align="center">

<div align="center">
    <img src="plots/Диаграмма_провокативность_вид_вопроса.png" alt="Foo" style="width: 50%; height: auto;">
</div align="center">

<div align="center">
    <img src="plots/Диаграмма_средняя_провокативность.png" alt="Foo" style="width: 50%; height: auto;">
</div align="center">


## Licensing Information

#### ⚖ MIT license

## Citation Information



```
@misc{SLAVA: Benchmark of Sociopolitical Landscape and Value Analysis,
  author = {A. S. Chetvergov, 
R. S. Sharafetdinov, 
M. M. Polukoshko, 
V. A. Akhmetov, 
N. A. Oruzheynikova, 
E. S. Anichkov, 
S. V. Bolovtsov,
I. S. Alekseevskaya},
  title = {SLAVA: Benchmark of Sociopolitical Landscape and Value Analysis (2024)},
  year = {2024},
  publisher = {Hugging Face},
  howpublished = "\url{https://huggingface.co/datasets/RANEPA-ai/SLAVA-OpenData-2800-v1}"
}
```