Datasets:

Languages:
English
License:
bc7_litcovid / bc7_litcovid.py
masaenger's picture
Update bc7_litcovid based on git version 5e9947b
0590f1a verified
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List, Tuple
import datasets
import pandas as pd
from .bigbiohub import BigBioConfig, Tasks, text_features
_LANGUAGES = ["English"]
_PUBMED = True
_LOCAL = False
_CITATION = """\
@inproceedings{chen2021overview,
title = {
Overview of the BioCreative VII LitCovid Track: multi-label topic
classification for COVID-19 literature annotation
},
author = {
Chen, Qingyu and Allot, Alexis and Leaman, Robert and Do{\\u{g}}an, Rezarta
Islamaj and Lu, Zhiyong
},
year = 2021,
booktitle = {Proceedings of the seventh BioCreative challenge evaluation workshop}
}
"""
_DATASETNAME = "bc7_litcovid"
_DISPLAYNAME = "BC7-LitCovid"
_DESCRIPTION = """\
The training and development datasets contain the publicly-available \
text of over 30 thousand COVID-19-related articles and their metadata \
(e.g., title, abstract, journal). Articles in both datasets have been \
manually reviewed and articles annotated by in-house models.
"""
_HOMEPAGE = "https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-5/"
_LICENSE = "UNKNOWN"
_BASE = "https://ftp.ncbi.nlm.nih.gov/pub/lu/LitCovid/biocreative/BC7-LitCovid-"
_URLS = {
_DATASETNAME: {
"train": _BASE + "Train.csv",
"validation": _BASE + "Dev.csv",
"test": _BASE + "Test-GS.csv",
},
}
_SUPPORTED_TASKS = [Tasks.TEXT_CLASSIFICATION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
_CLASS_NAMES = [
"Epidemic Forecasting",
"Treatment",
"Prevention",
"Mechanism",
"Case Report",
"Transmission",
"Diagnosis",
]
logger = datasets.utils.logging.get_logger(__name__)
class BC7LitCovidDataset(datasets.GeneratorBasedBuilder):
"""
Track 5 - LitCovid track Multi-label topic classification for
COVID-19 literature annotation
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="bc7_litcovid_source",
version=SOURCE_VERSION,
description="bc7_litcovid source schema",
schema="source",
subset_id="bc7_litcovid",
),
BigBioConfig(
name="bc7_litcovid_bigbio_text",
version=BIGBIO_VERSION,
description="bc7_litcovid BigBio schema",
schema="bigbio_text",
subset_id="bc7_litcovid",
),
]
DEFAULT_CONFIG_NAME = "bc7_litcovid_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"pmid": datasets.Value("string"),
"journal": datasets.Value("string"),
"title": datasets.Value("string"),
"abstract": datasets.Value("string"),
"keywords": datasets.Sequence(datasets.Value("string")),
"pub_type": datasets.Sequence(datasets.Value("string")),
"authors": datasets.Sequence(datasets.Value("string")),
"doi": datasets.Value("string"),
"labels": datasets.Sequence(datasets.ClassLabel(names=_CLASS_NAMES)),
}
)
elif self.config.schema == "bigbio_text":
features = text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
# Download all the CSV
urls = _URLS[_DATASETNAME]
path_train = dl_manager.download(urls["train"])
path_validation = dl_manager.download(urls["validation"])
path_test = dl_manager.download(urls["test"])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": path_train,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": path_validation,
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": path_test,
"split": "dev",
},
),
]
def _validate_entry(self, e, index) -> bool:
"""
Validates if an entry has all the required fields
"""
fields_to_validate = ["pmid", "abstract", "label"]
for key in fields_to_validate:
if e[key]:
continue
else:
logger.warning(f"Entry {index} missing {key}")
return False
return True
def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
idx = 0
# Load the CSV and convert it to the string format
df = pd.read_csv(filepath, sep=",").astype(str).replace({"nan": None})
for index, e in df.iterrows():
if not self._validate_entry(e, index):
continue
if self.config.schema == "source":
yield idx, {
"pmid": e["pmid"],
"journal": e["journal"],
"title": e["title"],
"abstract": e["abstract"],
"keywords": e["keywords"].split(";") if e["keywords"] is not None else [],
"pub_type": e["pub_type"].split(";") if e["pub_type"] is not None else [],
"authors": e["authors"].split(";") if e["authors"] is not None else [],
"doi": e["doi"],
"labels": e["label"].split(";"),
}
elif self.config.schema == "bigbio_text":
yield idx, {
"id": idx,
"document_id": e["pmid"],
"text": e["abstract"],
"labels": e["label"].split(";"),
}
idx += 1