tkon3's picture
add readme
99efcf8
|
raw
history blame
1.34 kB
---
languages: en
task_categories: text-classification
tags:
- long context
task_ids:
- multi-class-classification
- topic-classification
size_categories: 10K<n<100K
---
**Patent Classification: a classification of Patents and abstracts (9 classes).**
This dataset is intended for long context classification (non abstract documents are longer that 512 tokens). \
Data are sampled from "BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization." by Eva Sharma, Chen Li and Lu Wang
* See: https://aclanthology.org/P19-1212.pdf
* See: https://evasharma.github.io/bigpatent/
It contains 11 slightly unbalanced classes, 35k Patents and abstracts divided into 3 splits: train (25k), val (5k) and test (5k).
**Note that documents are uncased and space separated (by authors)**
Compatible with [run_glue.py](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) script:
```
export MODEL_NAME=roberta-base
export MAX_SEQ_LENGTH=512
python run_glue.py \
--model_name_or_path $MODEL_NAME \
--dataset_name ccdv/patent-classification \
--do_train \
--do_eval \
--max_seq_length $MAX_SEQ_LENGTH \
--per_device_train_batch_size 8 \
--gradient_accumulation_steps 4 \
--learning_rate 2e-5 \
--num_train_epochs 1 \
--max_eval_samples 500 \
--output_dir tmp/patent
```