Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10K - 100K
Tags:
long context
language: en | |
size_categories: 10K<n<100K | |
task_categories: | |
- text-classification | |
task_ids: | |
- multi-class-classification | |
- topic-classification | |
tags: | |
- long context | |
dataset_info: | |
- config_name: abstract | |
features: | |
- name: text | |
dtype: string | |
- name: label | |
dtype: | |
class_label: | |
names: | |
'0': Human Necessities | |
'1': Performing Operations; Transporting | |
'2': Chemistry; Metallurgy | |
'3': Textiles; Paper | |
'4': Fixed Constructions | |
'5': Mechanical Engineering; Lightning; Heating; Weapons; Blasting | |
'6': Physics | |
'7': Electricity | |
'8': General tagging of new or cross-sectional technology | |
splits: | |
- name: train | |
num_bytes: 17225101 | |
num_examples: 25000 | |
- name: validation | |
num_bytes: 3472854 | |
num_examples: 5000 | |
- name: test | |
num_bytes: 3456733 | |
num_examples: 5000 | |
download_size: 12067953 | |
dataset_size: 24154688 | |
- config_name: patent | |
features: | |
- name: text | |
dtype: string | |
- name: label | |
dtype: | |
class_label: | |
names: | |
'0': Human Necessities | |
'1': Performing Operations; Transporting | |
'2': Chemistry; Metallurgy | |
'3': Textiles; Paper | |
'4': Fixed Constructions | |
'5': Mechanical Engineering; Lightning; Heating; Weapons; Blasting | |
'6': Physics | |
'7': Electricity | |
'8': General tagging of new or cross-sectional technology | |
splits: | |
- name: train | |
num_bytes: 466788625 | |
num_examples: 25000 | |
- name: validation | |
num_bytes: 95315107 | |
num_examples: 5000 | |
- name: test | |
num_bytes: 93844869 | |
num_examples: 5000 | |
download_size: 272966251 | |
dataset_size: 655948601 | |
configs: | |
- config_name: abstract | |
data_files: | |
- split: train | |
path: abstract/train-* | |
- split: validation | |
path: abstract/validation-* | |
- split: test | |
path: abstract/test-* | |
- config_name: patent | |
data_files: | |
- split: train | |
path: patent/train-* | |
- split: validation | |
path: patent/validation-* | |
- split: test | |
path: patent/test-* | |
default: true | |
**Patent Classification: a classification of Patents and abstracts (9 classes).** | |
This dataset is intended for long context classification (non abstract documents are longer that 512 tokens). \ | |
Data are sampled from "BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization." by Eva Sharma, Chen Li and Lu Wang | |
* See: https://aclanthology.org/P19-1212.pdf | |
* See: https://evasharma.github.io/bigpatent/ | |
It contains 9 unbalanced classes, 35k Patents and abstracts divided into 3 splits: train (25k), val (5k) and test (5k). | |
**Note that documents are uncased and space separated (by authors)** | |
Compatible with [run_glue.py](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) script: | |
``` | |
export MODEL_NAME=roberta-base | |
export MAX_SEQ_LENGTH=512 | |
python run_glue.py \ | |
--model_name_or_path $MODEL_NAME \ | |
--dataset_name ccdv/patent-classification \ | |
--do_train \ | |
--do_eval \ | |
--max_seq_length $MAX_SEQ_LENGTH \ | |
--per_device_train_batch_size 8 \ | |
--gradient_accumulation_steps 4 \ | |
--learning_rate 2e-5 \ | |
--num_train_epochs 1 \ | |
--max_eval_samples 500 \ | |
--output_dir tmp/patent | |
``` |