File size: 22,621 Bytes
61fd3fa db5889f 61fd3fa 5fa2de2 61fd3fa c4ed090 61fd3fa a23ca77 76efad4 61fd3fa 2ebae65 61fd3fa 508d191 f7a1cfb 61fd3fa 5fa2de2 00ba0c6 76efad4 5044990 76efad4 5044990 76efad4 508d191 745e2d8 508d191 b45106a 508d191 01d5f4f 508d191 49b2bed b45106a 01d5f4f 49b2bed 568e823 49b2bed 745e2d8 00ba0c6 9997395 b9661d6 01d5f4f c712771 5ce6d63 7fc1061 61fd3fa 81b3fb4 61fd3fa b31174f 61fd3fa f2ef76c b31174f 61fd3fa 02961c5 cf605fe 61fd3fa 02961c5 01d5f4f 508d191 76efad4 02961c5 74c2a13 508d191 76efad4 74c2a13 76efad4 74c2a13 a23ca77 74c2a13 02961c5 61fd3fa b31174f 61fd3fa 81b3fb4 fbb72cc 61fd3fa 02961c5 76efad4 61fd3fa 81b3fb4 74c2a13 e9b9cd5 47ebf1a 76cb606 74c2a13 e9b9cd5 9997395 02961c5 e9b9cd5 02961c5 61fd3fa 81b3fb4 61fd3fa 76efad4 5fa2de2 76efad4 c5eade3 5fa2de2 d004e7b 76efad4 5fa2de2 76efad4 5fa2de2 76efad4 02961c5 76efad4 5fa2de2 d004e7b 76efad4 281d7e6 76efad4 281d7e6 76efad4 f7a1cfb a803284 61fd3fa d004e7b 9c6a8c8 61fd3fa 9c6a8c8 f7a1cfb 76efad4 61fd3fa c4ed090 5fa2de2 e9b9cd5 5fa2de2 e9b9cd5 f2ef76c 4097551 c4ed090 74c2a13 c4ed090 b949ef2 9997395 b949ef2 9997395 b949ef2 76efad4 5ce6d63 f7a1cfb 76efad4 f7a1cfb 76efad4 f7a1cfb 76efad4 4b43c77 f7a1cfb bfb9e3f 9c3c13b f7a1cfb 5a56741 f7a1cfb 81b3fb4 fbb72cc 508d191 fbb72cc 3013e2b fbb72cc 508d191 5a56741 ba3659a fbb72cc cbcc262 6bb95ec 0dfab66 5a56741 49b2bed 6bb95ec fbb72cc 5a56741 8c545f6 fbb72cc f7a1cfb 5fa2de2 f7a1cfb d004e7b 9997395 18d6eb1 5fa2de2 48bacc5 f807446 76cb606 48bacc5 fbb72cc 48bacc5 5fa2de2 9997395 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The SPIDER dataset contains (human) lumbar spine magnetic resonance images
(MRI) and segmentation masks described in the following paper:
van der Graaf, J.W., van Hooff, M.L., Buckens, C.F.M. et al. Lumbar spine
segmentation in MR images: a dataset and a public benchmark.
Sci Data 11, 264 (2024). https://doi.org/10.1038/s41597-024-03090-w
The dataset includes 447 sagittal T1 and T2 MRI series collected from 218
patients across four hospitals. Segmentation masks indicating the vertebrae,
intervertebral discs (IVDs), and spinal canal are also included. Segmentation
masks were created manually by a medical trainee under the supervision of a
medical imaging expert and an experienced musculoskeletal radiologist.
In addition to MR images and segmentation masks, additional metadata
(e.g., scanner manufacturer, pixel bandwidth, etc.), limited patient
characteristics (biological sex and age, when available), and radiological
gradings indicating specific degenerative changes can be loaded with the
corresponding image data.
HuggingFace repository: https://huggingface.co/datasets/cdoswald/SPIDER
"""
# Import packages
import csv
import json
import os
import urllib.request
from typing import Dict, List, Mapping, Optional, Sequence, Set, Tuple, Union
import numpy as np
import pandas as pd
import datasets
import skimage
import SimpleITK as sitk
# Define functions
def import_csv_data(filepath: str) -> List[Dict[str, str]]:
"""Import all rows of CSV file."""
results = []
with open(filepath, encoding='utf-8') as f:
reader = csv.DictReader(f)
for line in reader:
results.append(line)
return results
def subset_file_list(all_files: List[str], subset_ids: Set[int]):
"""Subset files pertaining to individuals in person_ids arg."""
return ([
file for file in all_files
if any(str(id_val) == file.split('_')[0] for id_val in subset_ids)
])
def standardize_3D_image(
image: np.ndarray,
resize_shape: Tuple[int, int, int],
) -> np.ndarray:
"""Aligns dimensions of image to be (height, width, channels); resizes
images to values specified in resize_shape; and rescales pixel values
to Uint8."""
# Align height, width, channel dims
if image.shape[0] < image.shape[2]:
image = np.transpose(image, axes=[1, 2, 0])
# Resize image
image = skimage.transform.resize(image, resize_shape)
# Rescale to UInt8 type (required for PyArrow and PIL)
image = skimage.img_as_ubyte(image)
return image
def standardize_3D_mask(
mask: np.ndarray,
resize_shape: Tuple[int, int, int],
) -> np.ndarray:
"""Aligns dimensions of image to be (height, width, channels); resizes
images to values specified in resize_shape using nearest neighbor interpolation;
and rescales pixel values to Uint8."""
# Align height, width, channel dims
if mask.shape[0] < mask.shape[2]:
mask = np.transpose(mask, axes=[1, 2, 0])
# Resize mask
mask = skimage.transform.resize(
mask,
resize_shape,
order=0,
preserve_range=True,
mode='edge',
)
# Rescale to UInt8 type (required for PyArrow and PIL)
mask = skimage.img_as_ubyte(mask)
return mask
# Define constants
MIN_IVD = 0
MAX_IVD = 9
DEFAULT_SCAN_TYPES = ['t1', 't2', 't2_SPACE']
DEFAULT_RESIZE = (512, 512, 30)
DEMO_SUBSET_N = 10
_CITATION = """\
@misc{vandergraaf2023lumbar,
title={Lumbar spine segmentation in MR images: a dataset and a public benchmark},
author={Jasper W. van der Graaf and Miranda L. van Hooff and \
Constantinus F. M. Buckens and Matthieu Rutten and \
Job L. C. van Susante and Robert Jan Kroeze and \
Marinus de Kleuver and Bram van Ginneken and Nikolas Lessmann},
year={2023},
eprint={2306.12217},
archivePrefix={arXiv},
primaryClass={eess.IV}
}
"""
# Official description
_DESCRIPTION = """\
This is a large publicly available multi-center lumbar spine magnetic resonance \
imaging (MRI) dataset with reference segmentations of vertebrae, intervertebral \
discs (IVDs), and spinal canal. The dataset includes 447 sagittal T1 and T2 \
MRI series from 218 studies of 218 patients with a history of low back pain. \
The data was collected from four different hospitals. There is an additional \
hidden test set, not available here, used in the accompanying SPIDER challenge \
on spider.grand-challenge.org. We share this data to encourage wider \
participation and collaboration in the field of spine segmentation, and \
ultimately improve the diagnostic value of lumbar spine MRI.
This file also provides the biological sex for all patients and the age for \
the patients for which this was available. It also includes a number of \
scanner and acquisition parameters for each individual MRI study. The dataset \
also comes with radiological gradings found in a separate file for the \
following degenerative changes:
1. Modic changes (type I, II or III)
2. Upper and lower endplate changes / Schmorl nodes (binary)
3. Spondylolisthesis (binary)
4. Disc herniation (binary)
5. Disc narrowing (binary)
6. Disc bulging (binary)
7. Pfirrman grade (grade 1 to 5).
All radiological gradings are provided per IVD level.
Repository: https://zenodo.org/records/10159290
Paper: https://www.nature.com/articles/s41597-024-03090-w
"""
_HOMEPAGE = "https://zenodo.org/records/10159290"
_LICENSE = """Creative Commons Attribution 4.0 International License \
(https://creativecommons.org/licenses/by/4.0/legalcode)"""
_URLS = {
"images":"https://zenodo.org/records/10159290/files/images.zip",
"masks":"https://zenodo.org/records/10159290/files/masks.zip",
"overview":"https://zenodo.org/records/10159290/files/overview.csv",
"gradings":"https://zenodo.org/records/10159290/files/radiological_gradings.csv",
"var_types": "https://huggingface.co/datasets/cdoswald/SPIDER/raw/main/textfiles/var_types.json",
}
class CustomBuilderConfig(datasets.BuilderConfig):
def __init__(
self,
name: str = 'default',
version: str = '0.0.0',
data_dir: Optional[str] = None,
data_files: Optional[Union[str, Sequence, Mapping]] = None,
description: Optional[str] = None,
scan_types: List[str] = DEFAULT_SCAN_TYPES,
resize_shape: Tuple[int, int, int] = DEFAULT_RESIZE,
shuffle: bool = True,
):
super().__init__(name, version, data_dir, data_files, description)
self.scan_types = self._validate_scan_types(scan_types)
self.resize_shape = resize_shape
self.shuffle = shuffle
self.var_types = self._import_var_types()
def _validate_scan_types(self, scan_types):
for item in scan_types:
if item not in ['t1', 't2', 't2_SPACE']:
raise ValueError(
'Scan type "{item}" not recognized as valid scan type.\
Verify scan type argument.'
)
return scan_types
def _import_var_types(self):
"""Import variable types from HuggingFace repository subfolder."""
with urllib.request.urlopen(_URLS['var_types']) as url:
var_types = json.load(url)
return var_types
class SPIDER(datasets.GeneratorBasedBuilder):
"""Resized/rescaled 3-dimensional volumetric arrays of lumbar spine MRIs \
with corresponding scanner/patient metadata and radiological gradings."""
# Class attributes
DEFAULT_WRITER_BATCH_SIZE = 16 # PyArrow default is too large for image data
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIG_CLASS = CustomBuilderConfig
BUILDER_CONFIGS = [
CustomBuilderConfig(
name="default",
description="Load the full dataset",
),
CustomBuilderConfig(
name="demo",
description="Generate 10 examples for demonstration",
)
]
DEFAULT_CONFIG_NAME = "default"
def _info(self):
"""Specify datasets.DatasetInfo object containing information and typing
for the dataset."""
features = datasets.Features({
"patient_id": datasets.Value("string"),
"scan_type": datasets.Value("string"),
"image": datasets.Array3D(shape=self.config.resize_shape, dtype='uint8'),
"mask": datasets.Array3D(shape=self.config.resize_shape, dtype='uint8'),
"image_path": datasets.Value("string"),
"mask_path": datasets.Value("string"),
"metadata": {
k:datasets.Value(v) for k,v in
self.config.var_types['metadata'].items()
},
"rad_gradings": {
"IVD label": datasets.Sequence(datasets.Value("string")),
"Modic": datasets.Sequence(datasets.Value("string")),
"UP endplate": datasets.Sequence(datasets.Value("string")),
"LOW endplate": datasets.Sequence(datasets.Value("string")),
"Spondylolisthesis": datasets.Sequence(datasets.Value("string")),
"Disc herniation": datasets.Sequence(datasets.Value("string")),
"Disc narrowing": datasets.Sequence(datasets.Value("string")),
"Disc bulging": datasets.Sequence(datasets.Value("string")),
"Pfirrman grade": datasets.Sequence(datasets.Value("string")),
}
})
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(
self,
dl_manager,
validate_share: float = 0.2,
test_share: float = 0.2,
random_seed: int = 9999,
):
"""
Download and extract data and define splits based on configuration.
Args
dl_manager: HuggingFace datasets download manager (automatically supplied)
validate_share: float indicating share of data to use for validation;
must be in range (0.0, 1.0); note that training share is
calculated as (1 - validate_share - test_share)
test_share: float indicating share of data to use for testing;
must be in range (0.0, 1.0); note that training share is
calculated as (1 - validate_share - test_share)
random_seed: seed for random draws of train/validate/test patient ids
"""
# Set constants
train_share = (1.0 - validate_share - test_share)
np.random.seed(int(random_seed))
# Validate params
if train_share <= 0.0:
raise ValueError(
f'Training share is calculated as (1 - validate_share - test_share) \
and must be greater than 0. Current calculated value is \
{round(train_share, 3)}. Adjust validate_share and/or \
test_share parameters.'
)
if validate_share > 1.0 or validate_share < 0.0:
raise ValueError(
f'Validation share must be between (0, 1). Current value is \
{validate_share}.'
)
if test_share > 1.0 or test_share < 0.0:
raise ValueError(
f'Testing share must be between (0, 1). Current value is \
{test_share}.'
)
# Download images (returns dictionary to local cache)
paths_dict = dl_manager.download_and_extract(_URLS)
# Get list of image and mask data files
image_files = [
file for file in os.listdir(os.path.join(paths_dict['images'], 'images'))
if file.endswith('.mha')
]
assert len(image_files) > 0, "No image files found--check directory path."
mask_files = [
file for file in os.listdir(os.path.join(paths_dict['masks'], 'masks'))
if file.endswith('.mha')
]
assert len(mask_files) > 0, "No mask files found--check directory path."
# Filter image and mask data files based on scan types
image_files = [
file for file in image_files
if any(f'{scan_type}.mha' in file for scan_type in self.config.scan_types)
]
mask_files = [
file for file in mask_files
if any(f'{scan_type}.mha' in file for scan_type in self.config.scan_types)
]
# Generate train/validate/test partitions of patient IDs
patient_ids = np.unique([file.split('_')[0] for file in image_files])
partition = np.random.choice(
['train', 'dev', 'test'],
p=[train_share, validate_share, test_share],
size=len(patient_ids),
)
train_ids = set(patient_ids[partition == 'train'])
validate_ids = set(patient_ids[partition == 'dev'])
test_ids = set(patient_ids[partition == 'test'])
assert len(train_ids.union(validate_ids, test_ids)) == len(patient_ids)
# Subset train/validation/test partition images and mask files
train_image_files = subset_file_list(image_files, train_ids)
validate_image_files = subset_file_list(image_files, validate_ids)
test_image_files = subset_file_list(image_files, test_ids)
train_mask_files = subset_file_list(mask_files, train_ids)
validate_mask_files = subset_file_list(mask_files, validate_ids)
test_mask_files = subset_file_list(mask_files, test_ids)
assert len(train_image_files) == len(train_mask_files)
assert len(validate_image_files) == len(validate_mask_files)
assert len(test_image_files) == len(test_mask_files)
# Import patient/scanner data and radiological gradings data
overview_data = import_csv_data(paths_dict['overview'])
grades_data = import_csv_data(paths_dict['gradings'])
# Convert overview data list of dicts to dict of dicts
exclude_vars = ['new_file_name', 'subset'] # Original data only lists train and validate
overview_dict = {}
for item in overview_data:
key = item['new_file_name']
overview_dict[key] = {
k:v for k,v in item.items() if k not in exclude_vars
}
overview_dict[key]['OrigSubset'] = item['subset'] # Change name to original subset
# Convert overview data types
cast_overview_dict = {}
for scan_id, scan_metadata in overview_dict.items():
cast_dict = {}
for key, value in scan_metadata.items():
if key in self.config.var_types['metadata']:
new_type = self.config.var_types['metadata'][key]
if new_type != "string":
cast_dict[key] = eval(f'np.{new_type}({value})')
else:
cast_dict[key] = str(value)
else:
cast_dict[key] = value
cast_overview_dict[scan_id] = cast_dict
overview_dict = cast_overview_dict
# Merge patient records for radiological gradings data
grades_dict = {}
for patient_id in patient_ids:
patient_grades = [
x for x in grades_data if x['Patient'] == str(patient_id)
]
# Pad so that all patients have same number of IVD observations
IVD_values = [x['IVD label'] for x in patient_grades]
for i in range(MIN_IVD, MAX_IVD + 1):
if str(i) not in IVD_values:
patient_grades.append({
"Patient": f"{patient_id}",
"IVD label": f"{i}",
"Modic": "",
"UP endplate": "",
"LOW endplate": "",
"Spondylolisthesis": "",
"Disc herniation": "",
"Disc narrowing": "",
"Disc bulging": "",
"Pfirrman grade": "",
})
assert len(patient_grades) == (MAX_IVD - MIN_IVD + 1), "Radiological\
gradings not padded correctly"
# Convert to sequences
df = (
pd.DataFrame(patient_grades)
.sort_values("IVD label")
.reset_index(drop=True)
)
grades_dict[str(patient_id)] = {
col:df[col].tolist() for col in df.columns
if col not in ['Patient']
}
# DEMO configuration: subset first 10 examples
if self.config.name == "demo":
train_image_files = train_image_files[:DEMO_SUBSET_N]
train_mask_files = train_mask_files[:DEMO_SUBSET_N]
validate_image_files = validate_image_files[:DEMO_SUBSET_N]
validate_mask_files = validate_mask_files[:DEMO_SUBSET_N]
test_image_files = test_image_files[:DEMO_SUBSET_N]
test_mask_files = test_mask_files[:DEMO_SUBSET_N]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"paths_dict": paths_dict,
"image_files": train_image_files,
"mask_files": train_mask_files,
"overview_dict": overview_dict,
"grades_dict": grades_dict,
"resize_shape": self.config.resize_shape,
"shuffle": self.config.shuffle,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"paths_dict": paths_dict,
"image_files": validate_image_files,
"mask_files": validate_mask_files,
"overview_dict": overview_dict,
"grades_dict": grades_dict,
"resize_shape": self.config.resize_shape,
"shuffle": self.config.shuffle,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"paths_dict": paths_dict,
"image_files": test_image_files,
"mask_files": test_mask_files,
"overview_dict": overview_dict,
"grades_dict": grades_dict,
"resize_shape": self.config.resize_shape,
"shuffle": self.config.shuffle,
},
),
]
def _generate_examples(
self,
paths_dict: Dict[str, str],
image_files: List[str],
mask_files: List[str],
overview_dict: Dict,
grades_dict: Dict,
resize_shape: Tuple[int, int, int],
shuffle: bool,
) -> Tuple[str, Dict]:
"""
This method handles input defined in _split_generators to yield
(key, example) tuples from the dataset. The `key` is for legacy reasons
(tfds) and is not important in itself, but must be unique for each example.
"""
# Shuffle order of patient scans
# (note that only images need to be shuffled since masks and metadata
# will be linked to the selected image)
if shuffle:
np.random.shuffle(image_files)
## Generate next example
# ----------------------
for idx, example in enumerate(image_files):
# Extract linking data
scan_id = example.replace('.mha', '')
patient_id = scan_id.split('_')[0]
scan_type = '_'.join(scan_id.split('_')[1:])
# Load .mha image file
image_path = os.path.join(paths_dict['images'], 'images', example)
image = sitk.ReadImage(image_path)
# Convert .mha image to original size numeric array
image_array_original = sitk.GetArrayFromImage(image)
# Convert .mha image to standardized numeric array
image_array_standardized = standardize_3D_image(
image_array_original,
resize_shape,
)
# Load .mha mask file
mask_path = os.path.join(paths_dict['masks'], 'masks', example)
mask = sitk.ReadImage(mask_path)
# Convert .mha mask to original size numeric array
mask_array_original = sitk.GetArrayFromImage(mask)
# Convert to Uint8 (existing range is [0,225],
# so all values should fit in Uint8)
mask_array_standardized = np.array(mask_array_original, dtype='uint8')
# Convert .mha mask to standardized numeric array
mask_array_standardized = standardize_3D_mask(
mask_array_standardized,
resize_shape,
)
print(patient_id, scan_id)
print(np.unique(mask_array_standardized, return_counts=True))
# Extract overview data corresponding to image
image_overview = overview_dict[scan_id]
# Extract patient radiological gradings corresponding to patient
patient_grades_dict = grades_dict[patient_id]
# Prepare example return dict
return_dict = {
'patient_id':patient_id,
'scan_type':scan_type,
'image':image_array_standardized,
'mask':mask_array_standardized,
'image_path':image_path,
'mask_path':mask_path,
'metadata':image_overview,
'rad_gradings':patient_grades_dict,
}
# Yield example
yield scan_id, return_dict
|