input
stringlengths
0
60.4k
output_summarize
stringlengths
0
60.4k
output_predict
stringlengths
0
60.4k
More divers attached flotation collars to stabilize the module and positioned rafts for astronaut extraction. The divers then passed biological isolation garments (BIGs) to the astronauts, and assisted them into the life raft. The possibility of bringing back pathogens from the lunar surface was considered remote, but NASA took precautions at the recovery site. The astronauts were rubbed down with a sodium hypochlorite solution and Columbia wiped with Povidone-iodine to remove any lunar dust that might be present. The astronauts were winched on board the recovery helicopter. BIGs were worn until they reached isolation facilities on board Hornet. The raft containing decontamination materials was intentionally sunk. After touchdown on Hornet at 17:53 UTC, the helicopter was lowered by the elevator into the hangar bay, where the astronauts walked the to the Mobile quarantine facility (MQF), where they would begin the Earth-based portion of their 21 days of quarantine. This practice would continue for two more Apollo missions, Apollo 12 and Apollo 14, before the Moon was proven to be barren of life, and the quarantine process dropped. Nixon welcomed the astronauts back to Earth. He told them: "[A]s a result of what you've done, the world has never been closer together before." After Nixon departed, Hornet was brought alongside the Columbia, which was lifted aboard by the ship's crane, placed on a dolly and moved next to the MQF. It was then attached to the MQF with a flexible tunnel, allowing the lunar samples, film, data tapes and other items to be removed. Hornet returned to Pearl Harbor, where the MQF was loaded onto a Lockheed C-141 Starlifter and airlifted to the Manned Spacecraft Center. The astronauts arrived at the Lunar Receiving Laboratory at 10:00 UTC on July 28. Columbia was taken to Ford Island for deactivation, and its pyrotechnics made safe. It was then taken to Hickham Air Force Base, from whence it was flown to Houston in a Douglas C-133 Cargomaster, reaching the Lunar Receiving Laboratory on July 30. In accordance with the Extra-Terrestrial Exposure Law, a set of regulations promulgated by NASA on July 16 to codify its quarantine protocol, the astronauts continued in quarantine. After three weeks in confinement (first in the Apollo spacecraft, then in their trailer on Hornet, and finally in the Lunar Receiving Laboratory), the astronauts were given a clean bill of health. On August 10, 1969, the Interagency Committee on Back Contamination met in Atlanta and lifted the quarantine on the astronauts, on those who had joined them in quarantine (NASA physician William Carpentier and MQF project engineer John Hirasaki), and on Columbia itself. Loose equipment from the spacecraft remained in isolation until the lunar samples were released for study. Celebrations On August 13, the three astronauts rode in ticker-tape parades in their honor in New York and Chicago, with an estimated six million attendees.
More divers attached flotation collars to stabilize the module and positioned rafts for astronaut extraction. The divers then passed biological isolation garments (BIGs) to the astronauts, and assisted them into the life raft. The possibility of bringing back pathogens from the lunar surface was considered remote, but NASA took precautions at the recovery site. The astronauts were rubbed down with a sodium hypochlorite solution and Columbia wiped with Povidone-iodine to remove any lunar dust that might be present. The astronauts were winched on board the recovery helicopter. BIGs were worn until they reached isolation facilities on board Hornet. The raft containing decontamination materials was intentionally sunk. After touchdown on Hornet at 17:53 UTC, the helicopter was lowered by the elevator into the hangar bay, where the astronauts walked the to the Mobile quarantine facility (MQF), where they would begin the Earth-based portion of their 21 days of quarantine. This practice would continue for two more Apollo missions, Apollo 12 and Apollo 14, before the Moon was proven to be barren of life, and the quarantine process dropped. Nixon welcomed the astronauts back to Earth. He told them: "[A]s a result of what you've done, the world has never been closer together before." After Nixon departed, Hornet was brought alongside the Columbia, which was lifted aboard by the ship's crane, placed on a dolly and moved next to the MQF. It was then attached to the MQF with a flexible tunnel, allowing the lunar samples, film, data tapes and other items to be removed. Hornet returned to Pearl Harbor, where the MQF was loaded onto a Lockheed C-141 Starlifter and airlifted to the Manned Spacecraft Center. The astronauts arrived at the Lunar Receiving Laboratory at 10:00 UTC on July 28. Columbia was taken to Ford Island for deactivation, and its pyrotechnics made safe. It was then taken to Hickham Air Force Base, from whence it was flown to Houston in a Douglas C-133 Cargomaster, reaching the Lunar Receiving Laboratory on July 30. In accordance with the Extra-Terrestrial Exposure Law, a set of regulations promulgated by NASA on July 16 to codify its quarantine protocol, the astronauts continued in quarantine. After three weeks in confinement (first in the Apollo spacecraft, then in their trailer on Hornet, and finally in the Lunar Receiving Laboratory), the astronauts were given a clean bill of health. On August 10, 1969, the Interagency Committee on Back Contamination met in Atlanta and lifted the quarantine on the astronauts, on those who had joined them in quarantine (NASA physician William Carpentier and MQF project engineer John Hirasaki), and on Columbia itself. Loose equipment from the spacecraft remained in isolation until the lunar samples were released for study. Celebrations On August 13, the three astronauts rode in ticker-tape parades in their honor in New York and Chicago, with an estimated six million attendees.
On the same evening in Los Angeles there was an official state dinner to celebrate the flight, attended by members of Congress, 44 governors, Chief Justice of the United States Warren E. Burger and his predecessor, Earl Warren, and ambassadors from 83 nations at the Century Plaza Hotel. Nixon and Agnew honored each astronaut with a presentation of the Presidential Medal of Freedom. The three astronauts spoke before a joint session of Congress on September 16, 1969. They presented two US flags, one to the House of Representatives and the other to the Senate, that they had carried with them to the surface of the Moon. The flag of American Samoa on Apollo 11 is on display at the Jean P. Haydon Museum in Pago Pago, the capital of American Samoa. This celebration began a 38-day world tour that brought the astronauts to 22 foreign countries and included visits with the leaders of many countries. The crew toured from September 29 to November 5. Many nations honored the first human Moon landing with special features in magazines or by issuing Apollo 11 commemorative postage stamps or coins. Legacy Cultural significance Humans walking on the Moon and returning safely to Earth accomplished Kennedy's goal set eight years earlier. In Mission Control during the Apollo 11 landing, Kennedy's speech flashed on the screen, followed by the words "TASK ACCOMPLISHED, July 1969". The success of Apollo 11 demonstrated the United States' technological superiority; and with the success of Apollo 11, America had won the Space Race. New phrases permeated into the English language. "If they can send a man to the Moon, why can't they ...?" became a common saying following Apollo 11. Armstrong's words on the lunar surface also spun off various parodies. While most people celebrated the accomplishment, disenfranchised Americans saw it as a symbol of the divide in America, evidenced by protesters led by Ralph Abernathy outside of Kennedy Space Center the day before Apollo 11 launched. NASA Administrator Thomas Paine met with Abernathy at the occasion, both hoping that the space program can spur progress also in other regards, such as poverty in the US. Paine was then asked, and agreed, to host protesters as spectators at the launch, and Abernathy, awestruck by the spectacle, prayed for the astronauts. Racial and financial inequalities frustrated citizens who wondered why money spent on the Apollo program was not spent taking care of humans on Earth. A poem by Gil Scott-Heron called "Whitey on the Moon" (1970) illustrated the racial inequality in the United States that was highlighted by the Space Race. The poem starts with: Twenty percent of the world's population watched humans walk on the Moon for the first time. While Apollo 11 sparked the interest of the world, the follow-on Apollo missions did not hold the interest of the nation. One possible explanation was the shift in complexity. Landing someone on the Moon was an easy goal to understand; lunar geology was too abstract for the average person.
On the same evening in Los Angeles there was an official state dinner to celebrate the flight, attended by members of Congress, 44 governors, Chief Justice of the United States Warren E. Burger and his predecessor, Earl Warren, and ambassadors from 83 nations at the Century Plaza Hotel. Nixon and Agnew honored each astronaut with a presentation of the Presidential Medal of Freedom. The three astronauts spoke before a joint session of Congress on September 16, 1969. They presented two US flags, one to the House of Representatives and the other to the Senate, that they had carried with them to the surface of the Moon. The flag of American Samoa on Apollo 11 is on display at the Jean P. Haydon Museum in Pago Pago, the capital of American Samoa. This celebration began a 38-day world tour that brought the astronauts to 22 foreign countries and included visits with the leaders of many countries. The crew toured from September 29 to November 5. Many nations honored the first human Moon landing with special features in magazines or by issuing Apollo 11 commemorative postage stamps or coins. Legacy Cultural significance Humans walking on the Moon and returning safely to Earth accomplished Kennedy's goal set eight years earlier. In Mission Control during the Apollo 11 landing, Kennedy's speech flashed on the screen, followed by the words "TASK ACCOMPLISHED, July 1969". The success of Apollo 11 demonstrated the United States' technological superiority; and with the success of Apollo 11, America had won the Space Race. New phrases permeated into the English language. "If they can send a man to the Moon, why can't they ...?" became a common saying following Apollo 11. Armstrong's words on the lunar surface also spun off various parodies. While most people celebrated the accomplishment, disenfranchised Americans saw it as a symbol of the divide in America, evidenced by protesters led by Ralph Abernathy outside of Kennedy Space Center the day before Apollo 11 launched. NASA Administrator Thomas Paine met with Abernathy at the occasion, both hoping that the space program can spur progress also in other regards, such as poverty in the US. Paine was then asked, and agreed, to host protesters as spectators at the launch, and Abernathy, awestruck by the spectacle, prayed for the astronauts. Racial and financial inequalities frustrated citizens who wondered why money spent on the Apollo program was not spent taking care of humans on Earth. A poem by Gil Scott-Heron called "Whitey on the Moon" (1970) illustrated the racial inequality in the United States that was highlighted by the Space Race. The poem starts with: Twenty percent of the world's population watched humans walk on the Moon for the first time. While Apollo 11 sparked the interest of the world, the follow-on Apollo missions did not hold the interest of the nation. One possible explanation was the shift in complexity. Landing someone on the Moon was an easy goal to understand; lunar geology was too abstract for the average person.
On the same evening in Los Angeles there was an official state dinner to celebrate the flight, attended by members of Congress, 44 governors, Chief Justice of the United States Warren E. Burger and his predecessor, Earl Warren, and ambassadors from 83 nations at the Century Plaza Hotel. Nixon and Agnew honored each astronaut with a presentation of the Presidential Medal of Freedom. The three astronauts spoke before a joint session of Congress on September 16, 1969. They presented two US flags, one to the House of Representatives and the other to the Senate, that they had carried with them to the surface of the Moon. The flag of American Samoa on Apollo 11 is on display at the Jean P. Haydon Museum in Pago Pago, the capital of American Samoa. This celebration began a 38-day world tour that brought the astronauts to 22 foreign countries and included visits with the leaders of many countries. The crew toured from September 29 to November 5. Many nations honored the first human Moon landing with special features in magazines or by issuing Apollo 11 commemorative postage stamps or coins. Legacy Cultural significance Humans walking on the Moon and returning safely to Earth accomplished Kennedy's goal set eight years earlier. In Mission Control during the Apollo 11 landing, Kennedy's speech flashed on the screen, followed by the words "TASK ACCOMPLISHED, July 1969". The success of Apollo 11 demonstrated the United States' technological superiority; and with the success of Apollo 11, America had won the Space Race. New phrases permeated into the English language. "If they can send a man to the Moon, why can't they ...?" became a common saying following Apollo 11. Armstrong's words on the lunar surface also spun off various parodies. While most people celebrated the accomplishment, disenfranchised Americans saw it as a symbol of the divide in America, evidenced by protesters led by Ralph Abernathy outside of Kennedy Space Center the day before Apollo 11 launched. NASA Administrator Thomas Paine met with Abernathy at the occasion, both hoping that the space program can spur progress also in other regards, such as poverty in the US. Paine was then asked, and agreed, to host protesters as spectators at the launch, and Abernathy, awestruck by the spectacle, prayed for the astronauts. Racial and financial inequalities frustrated citizens who wondered why money spent on the Apollo program was not spent taking care of humans on Earth. A poem by Gil Scott-Heron called "Whitey on the Moon" (1970) illustrated the racial inequality in the United States that was highlighted by the Space Race. The poem starts with: Twenty percent of the world's population watched humans walk on the Moon for the first time. While Apollo 11 sparked the interest of the world, the follow-on Apollo missions did not hold the interest of the nation. One possible explanation was the shift in complexity. Landing someone on the Moon was an easy goal to understand; lunar geology was too abstract for the average person.
Another is that Kennedy's goal of landing humans on the Moon had already been accomplished. A well-defined objective helped Project Apollo accomplish its goal, but after it was completed it was hard to justify continuing the lunar missions. While most Americans were proud of their nation's achievements in space exploration, only once during the late 1960s did the Gallup Poll indicate that a majority of Americans favored "doing more" in space as opposed to "doing less". By 1973, 59 percent of those polled favored cutting spending on space exploration. The Space Race had been won, and Cold War tensions were easing as the US and Soviet Union entered the era of détente. This was also a time when inflation was rising, which put pressure on the government to reduce spending. What saved the space program was that it was one of the few government programs that had achieved something great. Drastic cuts, warned Caspar Weinberger, the deputy director of the Office of Management and Budget, might send a signal that "our best years are behind us". After the Apollo 11 mission, officials from the Soviet Union said landing humans on the Moon was dangerous and unnecessary. At the time the Soviet Union was attempting to retrieve lunar samples robotically. The Soviets publicly denied there was a race to the Moon, and indicated they were not making an attempt. Mstislav Keldysh said in July 1969, "We are concentrating wholly on the creation of large satellite systems." It was revealed in 1989 that the Soviets had tried to send people to the Moon, but were unable due to technological difficulties. The public's reaction in the Soviet Union was mixed. The Soviet government limited the release of information about the lunar landing, which affected the reaction. A portion of the populace did not give it any attention, and another portion was angered by it. The Apollo 11 landing is referenced in the songs "Armstrong, Aldrin and Collins" by The Byrds on the 1969 album Ballad of Easy Rider and "Coon on the Moon" by Howlin' Wolf on the 1973 album The Back Door Wolf. Spacecraft The command module Columbia went on a tour of the United States, visiting 49 state capitals, the District of Columbia, and Anchorage, Alaska. In 1971, it was transferred to the Smithsonian Institution, and was displayed at the National Air and Space Museum (NASM) in Washington, DC. It was in the central Milestones of Flight exhibition hall in front of the Jefferson Drive entrance, sharing the main hall with other pioneering flight vehicles such as the Wright Flyer, Spirit of St. Louis, Bell X-1, North American X-15 and Friendship 7.Columbia was moved in 2017 to the NASM Mary Baker Engen Restoration Hangar at the Steven F. Udvar-Hazy Center in Chantilly, Virginia, to be readied for a four-city tour titled Destination Moon: The Apollo 11 Mission.
Another is that Kennedy's goal of landing humans on the Moon had already been accomplished. A well-defined objective helped Project Apollo accomplish its goal, but after it was completed it was hard to justify continuing the lunar missions. While most Americans were proud of their nation's achievements in space exploration, only once during the late 1960s did the Gallup Poll indicate that a majority of Americans favored "doing more" in space as opposed to "doing less". By 1973, 59 percent of those polled favored cutting spending on space exploration. The Space Race had been won, and Cold War tensions were easing as the US and Soviet Union entered the era of détente. This was also a time when inflation was rising, which put pressure on the government to reduce spending. What saved the space program was that it was one of the few government programs that had achieved something great. Drastic cuts, warned Caspar Weinberger, the deputy director of the Office of Management and Budget, might send a signal that "our best years are behind us". After the Apollo 11 mission, officials from the Soviet Union said landing humans on the Moon was dangerous and unnecessary. At the time the Soviet Union was attempting to retrieve lunar samples robotically. The Soviets publicly denied there was a race to the Moon, and indicated they were not making an attempt. Mstislav Keldysh said in July 1969, "We are concentrating wholly on the creation of large satellite systems." It was revealed in 1989 that the Soviets had tried to send people to the Moon, but were unable due to technological difficulties. The public's reaction in the Soviet Union was mixed. The Soviet government limited the release of information about the lunar landing, which affected the reaction. A portion of the populace did not give it any attention, and another portion was angered by it. The Apollo 11 landing is referenced in the songs "Armstrong, Aldrin and Collins" by The Byrds on the 1969 album Ballad of Easy Rider and "Coon on the Moon" by Howlin' Wolf on the 1973 album The Back Door Wolf. Spacecraft The command module Columbia went on a tour of the United States, visiting 49 state capitals, the District of Columbia, and Anchorage, Alaska. In 1971, it was transferred to the Smithsonian Institution, and was displayed at the National Air and Space Museum (NASM) in Washington, DC. It was in the central Milestones of Flight exhibition hall in front of the Jefferson Drive entrance, sharing the main hall with other pioneering flight vehicles such as the Wright Flyer, Spirit of St. Louis, Bell X-1, North American X-15 and Friendship 7.Columbia was moved in 2017 to the NASM Mary Baker Engen Restoration Hangar at the Steven F. Udvar-Hazy Center in Chantilly, Virginia, to be readied for a four-city tour titled Destination Moon: The Apollo 11 Mission.
Another is that Kennedy's goal of landing humans on the Moon had already been accomplished. A well-defined objective helped Project Apollo accomplish its goal, but after it was completed it was hard to justify continuing the lunar missions. While most Americans were proud of their nation's achievements in space exploration, only once during the late 1960s did the Gallup Poll indicate that a majority of Americans favored "doing more" in space as opposed to "doing less". By 1973, 59 percent of those polled favored cutting spending on space exploration. The Space Race had been won, and Cold War tensions were easing as the US and Soviet Union entered the era of détente. This was also a time when inflation was rising, which put pressure on the government to reduce spending. What saved the space program was that it was one of the few government programs that had achieved something great. Drastic cuts, warned Caspar Weinberger, the deputy director of the Office of Management and Budget, might send a signal that "our best years are behind us". After the Apollo 11 mission, officials from the Soviet Union said landing humans on the Moon was dangerous and unnecessary. At the time the Soviet Union was attempting to retrieve lunar samples robotically. The Soviets publicly denied there was a race to the Moon, and indicated they were not making an attempt. Mstislav Keldysh said in July 1969, "We are concentrating wholly on the creation of large satellite systems." It was revealed in 1989 that the Soviets had tried to send people to the Moon, but were unable due to technological difficulties. The public's reaction in the Soviet Union was mixed. The Soviet government limited the release of information about the lunar landing, which affected the reaction. A portion of the populace did not give it any attention, and another portion was angered by it. The Apollo 11 landing is referenced in the songs "Armstrong, Aldrin and Collins" by The Byrds on the 1969 album Ballad of Easy Rider and "Coon on the Moon" by Howlin' Wolf on the 1973 album The Back Door Wolf. Spacecraft The command module Columbia went on a tour of the United States, visiting 49 state capitals, the District of Columbia, and Anchorage, Alaska. In 1971, it was transferred to the Smithsonian Institution, and was displayed at the National Air and Space Museum (NASM) in Washington, DC. It was in the central Milestones of Flight exhibition hall in front of the Jefferson Drive entrance, sharing the main hall with other pioneering flight vehicles such as the Wright Flyer, Spirit of St. Louis, Bell X-1, North American X-15 and Friendship 7.Columbia was moved in 2017 to the NASM Mary Baker Engen Restoration Hangar at the Steven F. Udvar-Hazy Center in Chantilly, Virginia, to be readied for a four-city tour titled Destination Moon: The Apollo 11 Mission.
This included Space Center Houston from October 14, 2017, to March 18, 2018, the Saint Louis Science Center from April 14 to September 3, 2018, the Senator John Heinz History Center in Pittsburgh from September 29, 2018, to February 18, 2019, and its last location at Museum of Flight in Seattle from March 16 to September 2, 2019. Continued renovations at the Smithsonian allowed time for an additional stop for the capsule, and it was moved to the Cincinnati Museum Center. The ribbon cutting ceremony was on September 29, 2019. For 40 years Armstrong's and Aldrin's space suits were displayed in the museum's Apollo to the Moon exhibit, until it permanently closed on December 3, 2018, to be replaced by a new gallery which was scheduled to open in 2022. A special display of Armstrong's suit was unveiled for the 50th anniversary of Apollo 11 in July 2019. The quarantine trailer, the flotation collar and the flotation bags are in the Smithsonian's Steven F. Udvar-Hazy Center annex near Washington Dulles International Airport in Chantilly, Virginia, where they are on display along with a test lunar module. The descent stage of the LM Eagle remains on the Moon. In 2009, the Lunar Reconnaissance Orbiter (LRO) imaged the various Apollo landing sites on the surface of the Moon, for the first time with sufficient resolution to see the descent stages of the lunar modules, scientific instruments, and foot trails made by the astronauts. The remains of the ascent stage lie at an unknown location on the lunar surface, after being abandoned and impacting the Moon. The location is uncertain because Eagle ascent stage was not tracked after it was jettisoned, and the lunar gravity field is sufficiently non-uniform to make the orbit of the spacecraft unpredictable after a short time. In March 2012 a team of specialists financed by Amazon founder Jeff Bezos located the F-1 engines from the S-IC stage that launched Apollo 11 into space. They were found on the Atlantic seabed using advanced sonar scanning. His team brought parts of two of the five engines to the surface. In July 2013, a conservator discovered a serial number under the rust on one of the engines raised from the Atlantic, which NASA confirmed was from Apollo 11. The S-IVB third stage which performed Apollo 11's trans-lunar injection remains in a solar orbit near to that of Earth. Moon rocks The main repository for the Apollo Moon rocks is the Lunar Sample Laboratory Facility at the Lyndon B. Johnson Space Center in Houston, Texas. For safekeeping, there is also a smaller collection stored at White Sands Test Facility near Las Cruces, New Mexico. Most of the rocks are stored in nitrogen to keep them free of moisture. They are handled only indirectly, using special tools. Over 100 research laboratories around the world conduct studies of the samples, and approximately 500 samples are prepared and sent to investigators every year.
This included Space Center Houston from October 14, 2017, to March 18, 2018, the Saint Louis Science Center from April 14 to September 3, 2018, the Senator John Heinz History Center in Pittsburgh from September 29, 2018, to February 18, 2019, and its last location at Museum of Flight in Seattle from March 16 to September 2, 2019. Continued renovations at the Smithsonian allowed time for an additional stop for the capsule, and it was moved to the Cincinnati Museum Center. The ribbon cutting ceremony was on September 29, 2019. For 40 years Armstrong's and Aldrin's space suits were displayed in the museum's Apollo to the Moon exhibit, until it permanently closed on December 3, 2018, to be replaced by a new gallery which was scheduled to open in 2022. A special display of Armstrong's suit was unveiled for the 50th anniversary of Apollo 11 in July 2019. The quarantine trailer, the flotation collar and the flotation bags are in the Smithsonian's Steven F. Udvar-Hazy Center annex near Washington Dulles International Airport in Chantilly, Virginia, where they are on display along with a test lunar module. The descent stage of the LM Eagle remains on the Moon. In 2009, the Lunar Reconnaissance Orbiter (LRO) imaged the various Apollo landing sites on the surface of the Moon, for the first time with sufficient resolution to see the descent stages of the lunar modules, scientific instruments, and foot trails made by the astronauts. The remains of the ascent stage lie at an unknown location on the lunar surface, after being abandoned and impacting the Moon. The location is uncertain because Eagle ascent stage was not tracked after it was jettisoned, and the lunar gravity field is sufficiently non-uniform to make the orbit of the spacecraft unpredictable after a short time. In March 2012 a team of specialists financed by Amazon founder Jeff Bezos located the F-1 engines from the S-IC stage that launched Apollo 11 into space. They were found on the Atlantic seabed using advanced sonar scanning. His team brought parts of two of the five engines to the surface. In July 2013, a conservator discovered a serial number under the rust on one of the engines raised from the Atlantic, which NASA confirmed was from Apollo 11. The S-IVB third stage which performed Apollo 11's trans-lunar injection remains in a solar orbit near to that of Earth. Moon rocks The main repository for the Apollo Moon rocks is the Lunar Sample Laboratory Facility at the Lyndon B. Johnson Space Center in Houston, Texas. For safekeeping, there is also a smaller collection stored at White Sands Test Facility near Las Cruces, New Mexico. Most of the rocks are stored in nitrogen to keep them free of moisture. They are handled only indirectly, using special tools. Over 100 research laboratories around the world conduct studies of the samples, and approximately 500 samples are prepared and sent to investigators every year.
This included Space Center Houston from October 14, 2017, to March 18, 2018, the Saint Louis Science Center from April 14 to September 3, 2018, the Senator John Heinz History Center in Pittsburgh from September 29, 2018, to February 18, 2019, and its last location at Museum of Flight in Seattle from March 16 to September 2, 2019. Continued renovations at the Smithsonian allowed time for an additional stop for the capsule, and it was moved to the Cincinnati Museum Center. The ribbon cutting ceremony was on September 29, 2019. For 40 years Armstrong's and Aldrin's space suits were displayed in the museum's Apollo to the Moon exhibit, until it permanently closed on December 3, 2018, to be replaced by a new gallery which was scheduled to open in 2022. A special display of Armstrong's suit was unveiled for the 50th anniversary of Apollo 11 in July 2019. The quarantine trailer, the flotation collar and the flotation bags are in the Smithsonian's Steven F. Udvar-Hazy Center annex near Washington Dulles International Airport in Chantilly, Virginia, where they are on display along with a test lunar module. The descent stage of the LM Eagle remains on the Moon. In 2009, the Lunar Reconnaissance Orbiter (LRO) imaged the various Apollo landing sites on the surface of the Moon, for the first time with sufficient resolution to see the descent stages of the lunar modules, scientific instruments, and foot trails made by the astronauts. The remains of the ascent stage lie at an unknown location on the lunar surface, after being abandoned and impacting the Moon. The location is uncertain because Eagle ascent stage was not tracked after it was jettisoned, and the lunar gravity field is sufficiently non-uniform to make the orbit of the spacecraft unpredictable after a short time. In March 2012 a team of specialists financed by Amazon founder Jeff Bezos located the F-1 engines from the S-IC stage that launched Apollo 11 into space. They were found on the Atlantic seabed using advanced sonar scanning. His team brought parts of two of the five engines to the surface. In July 2013, a conservator discovered a serial number under the rust on one of the engines raised from the Atlantic, which NASA confirmed was from Apollo 11. The S-IVB third stage which performed Apollo 11's trans-lunar injection remains in a solar orbit near to that of Earth. Moon rocks The main repository for the Apollo Moon rocks is the Lunar Sample Laboratory Facility at the Lyndon B. Johnson Space Center in Houston, Texas. For safekeeping, there is also a smaller collection stored at White Sands Test Facility near Las Cruces, New Mexico. Most of the rocks are stored in nitrogen to keep them free of moisture. They are handled only indirectly, using special tools. Over 100 research laboratories around the world conduct studies of the samples, and approximately 500 samples are prepared and sent to investigators every year.
In November 1969, Nixon asked NASA to make up about 250 presentation Apollo 11 lunar sample displays for 135 nations, the fifty states of the United States and its possessions, and the United Nations. Each display included Moon dust from Apollo 11. The rice-sized particles were four small pieces of Moon soil weighing about 50 mg and were enveloped in a clear acrylic button about as big as a United States half dollar coin. This acrylic button magnified the grains of lunar dust. The Apollo 11 lunar sample displays were given out as goodwill gifts by Nixon in 1970.Earth magazine, March 2011, pp. 42–51 Experiment results The Passive Seismic Experiment ran until the command uplink failed on August 25, 1969. The downlink failed on December 14, 1969. , the Lunar Laser Ranging experiment remains operational. Armstrong's camera Armstrong's Hasselblad camera was thought to be lost or left on the Moon surface. LM memorabilia In 2015, after Armstrong died in 2012, his widow contacted the National Air and Space Museum to inform them she had found a white cloth bag in one of Armstrong's closets. The bag contained various items, which should have been left behind in the lunar module, including the 16mm Data Acquisition Camera that had been used to capture images of the first Moon landing. The camera is currently on display at the National Air and Space Museum. Anniversary events 40th anniversary On July 15, 2009, Life.com released a photo gallery of previously unpublished photos of the astronauts taken by Life photographer Ralph Morse prior to the Apollo 11 launch. From July 16 to 24, 2009, NASA streamed the original mission audio on its website in real time 40 years to the minute after the events occurred. It is in the process of restoring the video footage and has released a preview of key moments. In July 2010, air-to-ground voice recordings and film footage shot in Mission Control during the Apollo 11 powered descent and landing was re-synchronized and released for the first time. The John F. Kennedy Presidential Library and Museum set up an Adobe Flash website that rebroadcasts the transmissions of Apollo 11 from launch to landing on the Moon. On July 20, 2009, Armstrong, Aldrin, and Collins met with US President Barack Obama at the White House. "We expect that there is, as we speak, another generation of kids out there who are looking up at the sky and are going to be the next Armstrong, Collins, and Aldrin", Obama said. "We want to make sure that NASA is going to be there for them when they want to take their journey." On August 7, 2009, an act of Congress awarded the three astronauts a Congressional Gold Medal, the highest civilian award in the United States. The bill was sponsored by Florida Senator Bill Nelson and Florida Representative Alan Grayson.
In November 1969, Nixon asked NASA to make up about 250 presentation Apollo 11 lunar sample displays for 135 nations, the fifty states of the United States and its possessions, and the United Nations. Each display included Moon dust from Apollo 11. The rice-sized particles were four small pieces of Moon soil weighing about 50 mg and were enveloped in a clear acrylic button about as big as a United States half dollar coin. This acrylic button magnified the grains of lunar dust. The Apollo 11 lunar sample displays were given out as goodwill gifts by Nixon in 1970.Earth magazine, March 2011, pp. 42–51 Experiment results The Passive Seismic Experiment ran until the command uplink failed on August 25, 1969. The downlink failed on December 14, 1969. , the Lunar Laser Ranging experiment remains operational. Armstrong's camera Armstrong's Hasselblad camera was thought to be lost or left on the Moon surface. LM memorabilia In 2015, after Armstrong died in 2012, his widow contacted the National Air and Space Museum to inform them she had found a white cloth bag in one of Armstrong's closets. The bag contained various items, which should have been left behind in the lunar module, including the 16mm Data Acquisition Camera that had been used to capture images of the first Moon landing. The camera is currently on display at the National Air and Space Museum. Anniversary events 40th anniversary On July 15, 2009, Life.com released a photo gallery of previously unpublished photos of the astronauts taken by Life photographer Ralph Morse prior to the Apollo 11 launch. From July 16 to 24, 2009, NASA streamed the original mission audio on its website in real time 40 years to the minute after the events occurred. It is in the process of restoring the video footage and has released a preview of key moments. In July 2010, air-to-ground voice recordings and film footage shot in Mission Control during the Apollo 11 powered descent and landing was re-synchronized and released for the first time. The John F. Kennedy Presidential Library and Museum set up an Adobe Flash website that rebroadcasts the transmissions of Apollo 11 from launch to landing on the Moon. On July 20, 2009, Armstrong, Aldrin, and Collins met with US President Barack Obama at the White House. "We expect that there is, as we speak, another generation of kids out there who are looking up at the sky and are going to be the next Armstrong, Collins, and Aldrin", Obama said. "We want to make sure that NASA is going to be there for them when they want to take their journey." On August 7, 2009, an act of Congress awarded the three astronauts a Congressional Gold Medal, the highest civilian award in the United States. The bill was sponsored by Florida Senator Bill Nelson and Florida Representative Alan Grayson.
In November 1969, Nixon asked NASA to make up about 250 presentation Apollo 11 lunar sample displays for 135 nations, the fifty states of the United States and its possessions, and the United Nations. Each display included Moon dust from Apollo 11. The rice-sized particles were four small pieces of Moon soil weighing about 50 mg and were enveloped in a clear acrylic button about as big as a United States half dollar coin. This acrylic button magnified the grains of lunar dust. The Apollo 11 lunar sample displays were given out as goodwill gifts by Nixon in 1970.Earth magazine, March 2011, pp. 42–51 Experiment results The Passive Seismic Experiment ran until the command uplink failed on August 25, 1969. The downlink failed on December 14, 1969. , the Lunar Laser Ranging experiment remains operational. Armstrong's camera Armstrong's Hasselblad camera was thought to be lost or left on the Moon surface. LM memorabilia In 2015, after Armstrong died in 2012, his widow contacted the National Air and Space Museum to inform them she had found a white cloth bag in one of Armstrong's closets. The bag contained various items, which should have been left behind in the lunar module, including the 16mm Data Acquisition Camera that had been used to capture images of the first Moon landing. The camera is currently on display at the National Air and Space Museum. Anniversary events 40th anniversary On July 15, 2009, Life.com released a photo gallery of previously unpublished photos of the astronauts taken by Life photographer Ralph Morse prior to the Apollo 11 launch. From July 16 to 24, 2009, NASA streamed the original mission audio on its website in real time 40 years to the minute after the events occurred. It is in the process of restoring the video footage and has released a preview of key moments. In July 2010, air-to-ground voice recordings and film footage shot in Mission Control during the Apollo 11 powered descent and landing was re-synchronized and released for the first time. The John F. Kennedy Presidential Library and Museum set up an Adobe Flash website that rebroadcasts the transmissions of Apollo 11 from launch to landing on the Moon. On July 20, 2009, Armstrong, Aldrin, and Collins met with US President Barack Obama at the White House. "We expect that there is, as we speak, another generation of kids out there who are looking up at the sky and are going to be the next Armstrong, Collins, and Aldrin", Obama said. "We want to make sure that NASA is going to be there for them when they want to take their journey." On August 7, 2009, an act of Congress awarded the three astronauts a Congressional Gold Medal, the highest civilian award in the United States. The bill was sponsored by Florida Senator Bill Nelson and Florida Representative Alan Grayson.
A group of British scientists interviewed as part of the anniversary events reflected on the significance of the Moon landing: 50th anniversary On June 10, 2015, Congressman Bill Posey introduced resolution H.R. 2726 to the 114th session of the United States House of Representatives directing the United States Mint to design and sell commemorative coins in gold, silver and clad for the 50th anniversary of the Apollo 11 mission. On January 24, 2019, the Mint released the Apollo 11 Fiftieth Anniversary commemorative coins to the public on its website. A documentary film, Apollo 11, with restored footage of the 1969 event, premiered in IMAX on March 1, 2019, and broadly in theaters on March 8. The Smithsonian Institute's National Air and Space Museum and NASA sponsored the "Apollo 50 Festival" on the National Mall in Washington DC. The three day (July 18 to 20, 2019) outdoor festival featured hands-on exhibits and activities, live performances, and speakers such as Adam Savage and NASA scientists. As part of the festival, a projection of the tall Saturn V rocket was displayed on the east face of the tall Washington Monument from July 16 through the 20th from 9:30pm until 11:30pm (EDT). The program also included a 17-minute show that combined full-motion video projected on the Washington Monument to recreate the assembly and launch of the Saturn V rocket. The projection was joined by a wide recreation of the Kennedy Space Center countdown clock and two large video screens showing archival footage to recreate the time leading up to the moon landing. There were three shows per night on July 19–20, with the last show on Saturday, delayed slightly so the portion where Armstrong first set foot on the Moon would happen exactly 50 years to the second after the actual event. On July 19, 2019, the Google Doodle paid tribute to the Apollo 11 Moon Landing, complete with a link to an animated YouTube video with voiceover by astronaut Michael Collins. Aldrin, Collins, and Armstrong's sons were hosted by President Donald Trump in the Oval Office. Films and documentaries Footprints on the Moon, a 1969 documentary film by Bill Gibson and Barry Coe, about the Apollo 11 mission Moonwalk One, a 1971 documentary film by Theo Kamecke Apollo 11: As it Happened, a 1994 six-hour documentary on ABC News' coverage of the event Apollo 11, a 2019 documentary film by Todd Douglas Miller with restored footage of the 1969 event Chasing the Moon, a July 2019 PBS three-night six-hour documentary, directed by Robert Stone, examined the events leading up to the Apollo 11 mission. An accompanying book of the same name was also released. 8 Days: To the Moon and Back, a PBS and BBC Studios 2019 documentary film by Anthony Philipson re-enacting major portions of the Apollo 11 mission using mission audio recordings, new studio footage, NASA and news archives, and computer-generated imagery.
A group of British scientists interviewed as part of the anniversary events reflected on the significance of the Moon landing: 50th anniversary On June 10, 2015, Congressman Bill Posey introduced resolution H.R. 2726 to the 114th session of the United States House of Representatives directing the United States Mint to design and sell commemorative coins in gold, silver and clad for the 50th anniversary of the Apollo 11 mission. On January 24, 2019, the Mint released the Apollo 11 Fiftieth Anniversary commemorative coins to the public on its website. A documentary film, Apollo 11, with restored footage of the 1969 event, premiered in IMAX on March 1, 2019, and broadly in theaters on March 8. The Smithsonian Institute's National Air and Space Museum and NASA sponsored the "Apollo 50 Festival" on the National Mall in Washington DC. The three day (July 18 to 20, 2019) outdoor festival featured hands-on exhibits and activities, live performances, and speakers such as Adam Savage and NASA scientists. As part of the festival, a projection of the tall Saturn V rocket was displayed on the east face of the tall Washington Monument from July 16 through the 20th from 9:30pm until 11:30pm (EDT). The program also included a 17-minute show that combined full-motion video projected on the Washington Monument to recreate the assembly and launch of the Saturn V rocket. The projection was joined by a wide recreation of the Kennedy Space Center countdown clock and two large video screens showing archival footage to recreate the time leading up to the moon landing. There were three shows per night on July 19–20, with the last show on Saturday, delayed slightly so the portion where Armstrong first set foot on the Moon would happen exactly 50 years to the second after the actual event. On July 19, 2019, the Google Doodle paid tribute to the Apollo 11 Moon Landing, complete with a link to an animated YouTube video with voiceover by astronaut Michael Collins. Aldrin, Collins, and Armstrong's sons were hosted by President Donald Trump in the Oval Office. Films and documentaries Footprints on the Moon, a 1969 documentary film by Bill Gibson and Barry Coe, about the Apollo 11 mission Moonwalk One, a 1971 documentary film by Theo Kamecke Apollo 11: As it Happened, a 1994 six-hour documentary on ABC News' coverage of the event Apollo 11, a 2019 documentary film by Todd Douglas Miller with restored footage of the 1969 event Chasing the Moon, a July 2019 PBS three-night six-hour documentary, directed by Robert Stone, examined the events leading up to the Apollo 11 mission. An accompanying book of the same name was also released. 8 Days: To the Moon and Back, a PBS and BBC Studios 2019 documentary film by Anthony Philipson re-enacting major portions of the Apollo 11 mission using mission audio recordings, new studio footage, NASA and news archives, and computer-generated imagery.
A group of British scientists interviewed as part of the anniversary events reflected on the significance of the Moon landing: 50th anniversary On June 10, 2015, Congressman Bill Posey introduced resolution H.R. 2726 to the 114th session of the United States House of Representatives directing the United States Mint to design and sell commemorative coins in gold, silver and clad for the 50th anniversary of the Apollo 11 mission. On January 24, 2019, the Mint released the Apollo 11 Fiftieth Anniversary commemorative coins to the public on its website. A documentary film, Apollo 11, with restored footage of the 1969 event, premiered in IMAX on March 1, 2019, and broadly in theaters on March 8. The Smithsonian Institute's National Air and Space Museum and NASA sponsored the "Apollo 50 Festival" on the National Mall in Washington DC. The three day (July 18 to 20, 2019) outdoor festival featured hands-on exhibits and activities, live performances, and speakers such as Adam Savage and NASA scientists. As part of the festival, a projection of the tall Saturn V rocket was displayed on the east face of the tall Washington Monument from July 16 through the 20th from 9:30pm until 11:30pm (EDT). The program also included a 17-minute show that combined full-motion video projected on the Washington Monument to recreate the assembly and launch of the Saturn V rocket. The projection was joined by a wide recreation of the Kennedy Space Center countdown clock and two large video screens showing archival footage to recreate the time leading up to the moon landing. There were three shows per night on July 19–20, with the last show on Saturday, delayed slightly so the portion where Armstrong first set foot on the Moon would happen exactly 50 years to the second after the actual event. On July 19, 2019, the Google Doodle paid tribute to the Apollo 11 Moon Landing, complete with a link to an animated YouTube video with voiceover by astronaut Michael Collins. Aldrin, Collins, and Armstrong's sons were hosted by President Donald Trump in the Oval Office. Films and documentaries Footprints on the Moon, a 1969 documentary film by Bill Gibson and Barry Coe, about the Apollo 11 mission Moonwalk One, a 1971 documentary film by Theo Kamecke Apollo 11: As it Happened, a 1994 six-hour documentary on ABC News' coverage of the event Apollo 11, a 2019 documentary film by Todd Douglas Miller with restored footage of the 1969 event Chasing the Moon, a July 2019 PBS three-night six-hour documentary, directed by Robert Stone, examined the events leading up to the Apollo 11 mission. An accompanying book of the same name was also released. 8 Days: To the Moon and Back, a PBS and BBC Studios 2019 documentary film by Anthony Philipson re-enacting major portions of the Apollo 11 mission using mission audio recordings, new studio footage, NASA and news archives, and computer-generated imagery.
See also Moon landing conspiracy theories References Notes Citations In some of the following sources, times are shown in the format hours:minutes:seconds (e.g. 109:24:15), referring to the mission's Ground Elapsed Time (GET), based on the official launch time of July 16, 1969, 13:32:00 UTC (000:00:00 GET). Sources External links "Apollo 11 transcripts" at Spacelog Apollo 11 in real time Multimedia —Remastered videos of the original landing. Dynamic timeline of lunar excursion. Lunar Reconnaissance Orbiter Camera Apollo 11 Restored EVA Part 1 (1h of restored footage) Apollo 11: As They Photographed It (Augmented Reality) The New York Times'', Interactive, July 18, 2019 "Coverage of the Flight of Apollo 11" provided by Todd Kosovich for RadioTapes.com. Radio station recordings (airchecks) covering the flight of Apollo 11. Buzz Aldrin Neil Armstrong Michael Collins (astronaut) Apollo program missions 1969 on the Moon Soft landings on the Moon Spacecraft launched by Saturn rockets Articles containing video clips Crewed missions to the Moon
See also Moon landing conspiracy theories References Notes Citations In some of the following sources, times are shown in the format hours:minutes:seconds (e.g. 109:24:15), referring to the mission's Ground Elapsed Time (GET), based on the official launch time of July 16, 1969, 13:32:00 UTC (000:00:00 GET). Sources External links "Apollo 11 transcripts" at Spacelog Apollo 11 in real time Multimedia —Remastered videos of the original landing. Dynamic timeline of lunar excursion. Lunar Reconnaissance Orbiter Camera Apollo 11 Restored EVA Part 1 (1h of restored footage) Apollo 11: As They Photographed It (Augmented Reality) The New York Times'', Interactive, July 18, 2019 "Coverage of the Flight of Apollo 11" provided by Todd Kosovich for RadioTapes.com. Radio station recordings (airchecks) covering the flight of Apollo 11. Buzz Aldrin Neil Armstrong Michael Collins (astronaut) Apollo program missions 1969 on the Moon Soft landings on the Moon Spacecraft launched by Saturn rockets Articles containing video clips Crewed missions to the Moon
See also Moon landing conspiracy theories References Notes Citations In some of the following sources, times are shown in the format hours:minutes:seconds (e.g. 109:24:15), referring to the mission's Ground Elapsed Time (GET), based on the official launch time of July 16, 1969, 13:32:00 UTC (000:00:00 GET). Sources External links "Apollo 11 transcripts" at Spacelog Apollo 11 in real time Multimedia —Remastered videos of the original landing. Dynamic timeline of lunar excursion. Lunar Reconnaissance Orbiter Camera Apollo 11 Restored EVA Part 1 (1h of restored footage) Apollo 11: As They Photographed It (Augmented Reality) The New York Times'', Interactive, July 18, 2019 "Coverage of the Flight of Apollo 11" provided by Todd Kosovich for RadioTapes.com. Radio station recordings (airchecks) covering the flight of Apollo 11. Buzz Aldrin Neil Armstrong Michael Collins (astronaut) Apollo program missions 1969 on the Moon Soft landings on the Moon Spacecraft launched by Saturn rockets Articles containing video clips Crewed missions to the Moon
Apollo 8 Apollo 8 (December 21–27, 1968) was the first crewed spacecraft to leave low Earth orbit, and also the first human spaceflight to reach another astronomical object, namely the Moon, which the crew orbited without landing, and then departed safely back to Earth. These three astronauts—Frank Borman, James Lovell, and William Anders—were the first humans to witness and photograph an Earthrise. Apollo 8 launched on December 21, 1968, and was the second crewed spaceflight mission flown in the United States Apollo space program after Apollo7, which stayed in Earth orbit. Apollo8 was the third flight and the first crewed launch of the Saturn V rocket, and was the first human spaceflight from the Kennedy Space Center, located adjacent to Cape Kennedy Air Force Station in Florida. Originally planned as the second crewed Apollo Lunar Module and command module test, to be flown in an elliptical medium Earth orbit in early 1969, the mission profile was changed in August 1968 to a more ambitious command-module-only lunar orbital flight to be flown in December, as the lunar module was not yet ready to make its first flight. Astronaut Jim McDivitt's crew, who were training to fly the first lunar module flight in low Earth orbit, became the crew for the Apollo9 mission, and Borman's crew were moved to the Apollo8 mission. This left Borman's crew with two to three months' less training and preparation time than originally planned, and replaced the planned lunar module training with translunar navigation training. Apollo 8 took 68 hours (almost three days) to travel the distance to the Moon. The crew orbited the Moon ten times over the course of twenty hours, during which they made a Christmas Eve television broadcast in which they read the first ten verses from the Book of Genesis. At the time, the broadcast was the most watched TV program ever. Apollo8's successful mission paved the way for Apollo11 to fulfill U.S. president John F. Kennedy's goal of landing a man on the Moon before the end of the decade. The Apollo8 astronauts returned to Earth on December 27, 1968, when their spacecraft splashed down in the northern Pacific Ocean. The crew members were named Time magazine's "Men of the Year" for 1968 upon their return. Background In the late 1950s and early 1960s, the United States was engaged in the Cold War, a geopolitical rivalry with the Soviet Union. On October 4, 1957, the Soviet Union launched Sputnik 1, the first artificial satellite. This unexpected success stoked fears and imaginations around the world. It not only demonstrated that the Soviet Union had the capability to deliver nuclear weapons over intercontinental distances, it challenged American claims of military, economic, and technological superiority. The launch precipitated the Sputnik crisis and triggered the Space Race.
Apollo 8 Apollo 8 (December 21–27, 1968) was the first crewed spacecraft to leave low Earth orbit, and also the first human spaceflight to reach another astronomical object, namely the Moon, which the crew orbited without landing, and then departed safely back to Earth. These three astronauts—Frank Borman, James Lovell, and William Anders—were the first humans to witness and photograph an Earthrise. Apollo 8 launched on December 21, 1968, and was the second crewed spaceflight mission flown in the United States Apollo space program after Apollo7, which stayed in Earth orbit. Apollo8 was the third flight and the first crewed launch of the Saturn V rocket, and was the first human spaceflight from the Kennedy Space Center, located adjacent to Cape Kennedy Air Force Station in Florida. Originally planned as the second crewed Apollo Lunar Module and command module test, to be flown in an elliptical medium Earth orbit in early 1969, the mission profile was changed in August 1968 to a more ambitious command-module-only lunar orbital flight to be flown in December, as the lunar module was not yet ready to make its first flight. Astronaut Jim McDivitt's crew, who were training to fly the first lunar module flight in low Earth orbit, became the crew for the Apollo9 mission, and Borman's crew were moved to the Apollo8 mission. This left Borman's crew with two to three months' less training and preparation time than originally planned, and replaced the planned lunar module training with translunar navigation training. Apollo 8 took 68 hours (almost three days) to travel the distance to the Moon. The crew orbited the Moon ten times over the course of twenty hours, during which they made a Christmas Eve television broadcast in which they read the first ten verses from the Book of Genesis. At the time, the broadcast was the most watched TV program ever. Apollo8's successful mission paved the way for Apollo11 to fulfill U.S. president John F. Kennedy's goal of landing a man on the Moon before the end of the decade. The Apollo8 astronauts returned to Earth on December 27, 1968, when their spacecraft splashed down in the northern Pacific Ocean. The crew members were named Time magazine's "Men of the Year" for 1968 upon their return. Background In the late 1950s and early 1960s, the United States was engaged in the Cold War, a geopolitical rivalry with the Soviet Union. On October 4, 1957, the Soviet Union launched Sputnik 1, the first artificial satellite. This unexpected success stoked fears and imaginations around the world. It not only demonstrated that the Soviet Union had the capability to deliver nuclear weapons over intercontinental distances, it challenged American claims of military, economic, and technological superiority. The launch precipitated the Sputnik crisis and triggered the Space Race.
President John F. Kennedy believed that not only was it in the national interest of the United States to be superior to other nations, but that the perception of American power was at least as important as the actuality. It was therefore intolerable to him for the Soviet Union to be more advanced in the field of space exploration. He was determined that the United States should compete, and sought a challenge that maximized its chances of winning. The Soviet Union had heavier-lifting carrier rockets, which meant Kennedy needed to choose a goal that was beyond the capacity of the existing generation of rocketry, one where the US and Soviet Union would be starting from a position of equality—something spectacular, even if it could not be justified on military, economic, or scientific grounds. After consulting with his experts and advisors, he chose such a project: to land a man on the Moon and return him to the Earth. This project already had a name: Project Apollo. An early and crucial decision was the adoption of lunar orbit rendezvous, under which a specialized spacecraft would land on the lunar surface. The Apollo spacecraft therefore had three primary components: a command module (CM) with a cabin for the three astronauts, and the only part that would return to Earth; a service module (SM) to provide the command module with propulsion, electrical power, oxygen, and water; and a two-stage lunar module (LM), which comprised a descent stage for landing on the Moon and an ascent stage to return the astronauts to lunar orbit. This configuration could be launched by the Saturn V rocket that was then under development. Framework Prime crew The initial crew assignment of Frank Borman as Commander, Michael Collins as Command Module Pilot (CMP) and William Anders as Lunar Module Pilot (LMP) for the third crewed Apollo flight was officially announced on November 20, 1967. Collins was replaced by Jim Lovell in July 1968, after suffering a cervical disc herniation that required surgery to repair. This crew was unique among pre-Space Shuttle era missions in that the commander was not the most experienced member of the crew: Lovell had flown twice before, on Gemini VII and Gemini XII. This would also be the first case of a commander of a previous mission (Lovell, Gemini XII) flying as a non-commander. This was also the first mission to reunite crewmates from a previous mission (Lovell and Borman, Gemini VII). As of 2021, all three Apollo 8 astronauts remain alive. Backup crew The backup crew assignment of Neil Armstrong as Commander, Lovell as CMP, and Buzz Aldrin as LMP for the third crewed Apollo flight was officially announced at the same time as the prime crew. When Lovell was reassigned to the prime crew, Aldrin was moved to CMP, and Fred Haise was brought in as backup LMP. Armstrong would later command Apollo11, with Aldrin as LMP and Collins as CMP.
President John F. Kennedy believed that not only was it in the national interest of the United States to be superior to other nations, but that the perception of American power was at least as important as the actuality. It was therefore intolerable to him for the Soviet Union to be more advanced in the field of space exploration. He was determined that the United States should compete, and sought a challenge that maximized its chances of winning. The Soviet Union had heavier-lifting carrier rockets, which meant Kennedy needed to choose a goal that was beyond the capacity of the existing generation of rocketry, one where the US and Soviet Union would be starting from a position of equality—something spectacular, even if it could not be justified on military, economic, or scientific grounds. After consulting with his experts and advisors, he chose such a project: to land a man on the Moon and return him to the Earth. This project already had a name: Project Apollo. An early and crucial decision was the adoption of lunar orbit rendezvous, under which a specialized spacecraft would land on the lunar surface. The Apollo spacecraft therefore had three primary components: a command module (CM) with a cabin for the three astronauts, and the only part that would return to Earth; a service module (SM) to provide the command module with propulsion, electrical power, oxygen, and water; and a two-stage lunar module (LM), which comprised a descent stage for landing on the Moon and an ascent stage to return the astronauts to lunar orbit. This configuration could be launched by the Saturn V rocket that was then under development. Framework Prime crew The initial crew assignment of Frank Borman as Commander, Michael Collins as Command Module Pilot (CMP) and William Anders as Lunar Module Pilot (LMP) for the third crewed Apollo flight was officially announced on November 20, 1967. Collins was replaced by Jim Lovell in July 1968, after suffering a cervical disc herniation that required surgery to repair. This crew was unique among pre-Space Shuttle era missions in that the commander was not the most experienced member of the crew: Lovell had flown twice before, on Gemini VII and Gemini XII. This would also be the first case of a commander of a previous mission (Lovell, Gemini XII) flying as a non-commander. This was also the first mission to reunite crewmates from a previous mission (Lovell and Borman, Gemini VII). As of 2021, all three Apollo 8 astronauts remain alive. Backup crew The backup crew assignment of Neil Armstrong as Commander, Lovell as CMP, and Buzz Aldrin as LMP for the third crewed Apollo flight was officially announced at the same time as the prime crew. When Lovell was reassigned to the prime crew, Aldrin was moved to CMP, and Fred Haise was brought in as backup LMP. Armstrong would later command Apollo11, with Aldrin as LMP and Collins as CMP.
President John F. Kennedy believed that not only was it in the national interest of the United States to be superior to other nations, but that the perception of American power was at least as important as the actuality. It was therefore intolerable to him for the Soviet Union to be more advanced in the field of space exploration. He was determined that the United States should compete, and sought a challenge that maximized its chances of winning. The Soviet Union had heavier-lifting carrier rockets, which meant Kennedy needed to choose a goal that was beyond the capacity of the existing generation of rocketry, one where the US and Soviet Union would be starting from a position of equality—something spectacular, even if it could not be justified on military, economic, or scientific grounds. After consulting with his experts and advisors, he chose such a project: to land a man on the Moon and return him to the Earth. This project already had a name: Project Apollo. An early and crucial decision was the adoption of lunar orbit rendezvous, under which a specialized spacecraft would land on the lunar surface. The Apollo spacecraft therefore had three primary components: a command module (CM) with a cabin for the three astronauts, and the only part that would return to Earth; a service module (SM) to provide the command module with propulsion, electrical power, oxygen, and water; and a two-stage lunar module (LM), which comprised a descent stage for landing on the Moon and an ascent stage to return the astronauts to lunar orbit. This configuration could be launched by the Saturn V rocket that was then under development. Framework Prime crew The initial crew assignment of Frank Borman as Commander, Michael Collins as Command Module Pilot (CMP) and William Anders as Lunar Module Pilot (LMP) for the third crewed Apollo flight was officially announced on November 20, 1967. Collins was replaced by Jim Lovell in July 1968, after suffering a cervical disc herniation that required surgery to repair. This crew was unique among pre-Space Shuttle era missions in that the commander was not the most experienced member of the crew: Lovell had flown twice before, on Gemini VII and Gemini XII. This would also be the first case of a commander of a previous mission (Lovell, Gemini XII) flying as a non-commander. This was also the first mission to reunite crewmates from a previous mission (Lovell and Borman, Gemini VII). As of 2021, all three Apollo 8 astronauts remain alive. Backup crew The backup crew assignment of Neil Armstrong as Commander, Lovell as CMP, and Buzz Aldrin as LMP for the third crewed Apollo flight was officially announced at the same time as the prime crew. When Lovell was reassigned to the prime crew, Aldrin was moved to CMP, and Fred Haise was brought in as backup LMP. Armstrong would later command Apollo11, with Aldrin as LMP and Collins as CMP.
Haise served on the backup crew of Apollo11 as LMP and flew on Apollo13 as LMP. Support personnel During Projects Mercury and Gemini, each mission had a prime and a backup crew. For Apollo, a third crew of astronauts was added, known as the support crew. The support crew maintained the flight plan, checklists, and mission ground rules, and ensured that the prime and backup crews were apprised of any changes. The support crew developed procedures in the simulators, especially those for emergency situations, so that the prime and backup crews could practice and master them in their simulator training. For Apollo8, the support crew consisted of Ken Mattingly, Vance Brand, and Gerald Carr. The capsule communicator (CAPCOM) was an astronaut at the Mission Control Center in Houston, Texas, who was the only person who communicated directly with the flight crew. For Apollo8, the CAPCOMs were Michael Collins, Gerald Carr, Ken Mattingly, Neil Armstrong, Buzz Aldrin, Vance Brand, and Fred Haise. The mission control teams rotated in three shifts, each led by a flight director. The directors for Apollo8 were Clifford E. Charlesworth (Green team), Glynn Lunney (Black team), and Milton Windler (Maroon team). Mission insignia and callsign The triangular shape of the insignia refers to the shape of the Apollo CM. It shows a red figure8 looping around the Earth and Moon to reflect both the mission number and the circumlunar nature of the mission. On the bottom of the8 are the names of the three astronauts. The initial design of the insignia was developed by Jim Lovell, who reportedly sketched it while riding in the back seat of a T-38 flight from California to Houston shortly after learning of Apollo8's re-designation as a lunar-orbital mission. The crew wanted to name their spacecraft, but NASA did not allow it. The crew would have likely chosen Columbiad, the name of the giant cannon that launches a space vehicle in Jules Verne's 1865 novel From the Earth to the Moon. The Apollo11 CM was named Columbia in part for that reason. Preparations Mission schedule On September 20, 1967, NASA adopted a seven-step plan for Apollo missions, with the final step being a Moon landing. Apollo4 and Apollo6 were "A" missions, tests of the SaturnV launch vehicle using an uncrewed Block I production model of the command and service module (CSM) in Earth orbit. Apollo5 was a "B" mission, a test of the LM in Earth orbit. Apollo7, scheduled for October 1968, would be a "C" mission, a crewed Earth-orbit flight of the CSM. Further missions depended on the readiness of the LM. It had been decided as early as May 1967 that there would be at least four additional missions.
Haise served on the backup crew of Apollo11 as LMP and flew on Apollo13 as LMP. Support personnel During Projects Mercury and Gemini, each mission had a prime and a backup crew. For Apollo, a third crew of astronauts was added, known as the support crew. The support crew maintained the flight plan, checklists, and mission ground rules, and ensured that the prime and backup crews were apprised of any changes. The support crew developed procedures in the simulators, especially those for emergency situations, so that the prime and backup crews could practice and master them in their simulator training. For Apollo8, the support crew consisted of Ken Mattingly, Vance Brand, and Gerald Carr. The capsule communicator (CAPCOM) was an astronaut at the Mission Control Center in Houston, Texas, who was the only person who communicated directly with the flight crew. For Apollo8, the CAPCOMs were Michael Collins, Gerald Carr, Ken Mattingly, Neil Armstrong, Buzz Aldrin, Vance Brand, and Fred Haise. The mission control teams rotated in three shifts, each led by a flight director. The directors for Apollo8 were Clifford E. Charlesworth (Green team), Glynn Lunney (Black team), and Milton Windler (Maroon team). Mission insignia and callsign The triangular shape of the insignia refers to the shape of the Apollo CM. It shows a red figure8 looping around the Earth and Moon to reflect both the mission number and the circumlunar nature of the mission. On the bottom of the8 are the names of the three astronauts. The initial design of the insignia was developed by Jim Lovell, who reportedly sketched it while riding in the back seat of a T-38 flight from California to Houston shortly after learning of Apollo8's re-designation as a lunar-orbital mission. The crew wanted to name their spacecraft, but NASA did not allow it. The crew would have likely chosen Columbiad, the name of the giant cannon that launches a space vehicle in Jules Verne's 1865 novel From the Earth to the Moon. The Apollo11 CM was named Columbia in part for that reason. Preparations Mission schedule On September 20, 1967, NASA adopted a seven-step plan for Apollo missions, with the final step being a Moon landing. Apollo4 and Apollo6 were "A" missions, tests of the SaturnV launch vehicle using an uncrewed Block I production model of the command and service module (CSM) in Earth orbit. Apollo5 was a "B" mission, a test of the LM in Earth orbit. Apollo7, scheduled for October 1968, would be a "C" mission, a crewed Earth-orbit flight of the CSM. Further missions depended on the readiness of the LM. It had been decided as early as May 1967 that there would be at least four additional missions.
Haise served on the backup crew of Apollo11 as LMP and flew on Apollo13 as LMP. Support personnel During Projects Mercury and Gemini, each mission had a prime and a backup crew. For Apollo, a third crew of astronauts was added, known as the support crew. The support crew maintained the flight plan, checklists, and mission ground rules, and ensured that the prime and backup crews were apprised of any changes. The support crew developed procedures in the simulators, especially those for emergency situations, so that the prime and backup crews could practice and master them in their simulator training. For Apollo8, the support crew consisted of Ken Mattingly, Vance Brand, and Gerald Carr. The capsule communicator (CAPCOM) was an astronaut at the Mission Control Center in Houston, Texas, who was the only person who communicated directly with the flight crew. For Apollo8, the CAPCOMs were Michael Collins, Gerald Carr, Ken Mattingly, Neil Armstrong, Buzz Aldrin, Vance Brand, and Fred Haise. The mission control teams rotated in three shifts, each led by a flight director. The directors for Apollo8 were Clifford E. Charlesworth (Green team), Glynn Lunney (Black team), and Milton Windler (Maroon team). Mission insignia and callsign The triangular shape of the insignia refers to the shape of the Apollo CM. It shows a red figure8 looping around the Earth and Moon to reflect both the mission number and the circumlunar nature of the mission. On the bottom of the8 are the names of the three astronauts. The initial design of the insignia was developed by Jim Lovell, who reportedly sketched it while riding in the back seat of a T-38 flight from California to Houston shortly after learning of Apollo8's re-designation as a lunar-orbital mission. The crew wanted to name their spacecraft, but NASA did not allow it. The crew would have likely chosen Columbiad, the name of the giant cannon that launches a space vehicle in Jules Verne's 1865 novel From the Earth to the Moon. The Apollo11 CM was named Columbia in part for that reason. Preparations Mission schedule On September 20, 1967, NASA adopted a seven-step plan for Apollo missions, with the final step being a Moon landing. Apollo4 and Apollo6 were "A" missions, tests of the SaturnV launch vehicle using an uncrewed Block I production model of the command and service module (CSM) in Earth orbit. Apollo5 was a "B" mission, a test of the LM in Earth orbit. Apollo7, scheduled for October 1968, would be a "C" mission, a crewed Earth-orbit flight of the CSM. Further missions depended on the readiness of the LM. It had been decided as early as May 1967 that there would be at least four additional missions.
Apollo8 was planned as the "D" mission, a test of the LM in a low Earth orbit in December 1968 by James McDivitt, David Scott, and Russell Schweickart, while Borman's crew would fly the "E" mission, a more rigorous LM test in an elliptical medium Earth orbit as Apollo9, in early 1969. The "F" Mission would test the CSM and LM in lunar orbit, and the "G" mission would be the finale, the Moon landing. Production of the LM fell behind schedule, and when Apollo8's LM-3 arrived at the Kennedy Space Center (KSC) in June 1968, more than a hundred significant defects were discovered, leading Bob Gilruth, the director of the Manned Spacecraft Center (MSC), and others to conclude that there was no prospect of LM-3 being ready to fly in 1968. Indeed, it was possible that delivery would slip to February or March 1969. Following the original seven-step plan would have meant delaying the "D" and subsequent missions, and endangering the program's goal of a lunar landing before the end of 1969. George Low, the Manager of the Apollo Spacecraft Program Office, proposed a solution in August 1968 to keep the program on track despite the LM delay. Since the next CSM (designated as "CSM-103") would be ready three months before LM-3, a CSM-only mission could be flown in December 1968. Instead of repeating the "C" mission flight of Apollo7, this CSM could be sent all the way to the Moon, with the possibility of entering a lunar orbit and returning to Earth. The new mission would also allow NASA to test lunar landing procedures that would otherwise have had to wait until Apollo10, the scheduled "F" mission. This also meant that the medium Earth orbit "E" mission could be dispensed with. The net result was that only the "D" mission had to be delayed, and the plan for lunar landing in mid-1969 could remain on timeline. On August 9, 1968, Low discussed the idea with Gilruth, Flight Director Chris Kraft, and the Director of Flight Crew Operations, Donald Slayton. They then flew to the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, where they met with KSC Director Kurt Debus, Apollo Program Director Samuel C. Phillips, Rocco Petrone, and Wernher von Braun. Kraft considered the proposal feasible from a flight control standpoint; Debus and Petrone agreed that the next Saturn V, AS-503, could be made ready by December 1; and von Braun was confident the pogo oscillation problems that had afflicted Apollo6 had been fixed. Almost every senior manager at NASA agreed with this new mission, citing confidence in both the hardware and the personnel, along with the potential for a circumlunar flight providing a significant morale boost. The only person who needed some convincing was James E. Webb, the NASA administrator. Backed by the full support of his agency, Webb authorized the mission. Apollo8 was officially changed from a "D" mission to a "C-Prime" lunar-orbit mission.
Apollo8 was planned as the "D" mission, a test of the LM in a low Earth orbit in December 1968 by James McDivitt, David Scott, and Russell Schweickart, while Borman's crew would fly the "E" mission, a more rigorous LM test in an elliptical medium Earth orbit as Apollo9, in early 1969. The "F" Mission would test the CSM and LM in lunar orbit, and the "G" mission would be the finale, the Moon landing. Production of the LM fell behind schedule, and when Apollo8's LM-3 arrived at the Kennedy Space Center (KSC) in June 1968, more than a hundred significant defects were discovered, leading Bob Gilruth, the director of the Manned Spacecraft Center (MSC), and others to conclude that there was no prospect of LM-3 being ready to fly in 1968. Indeed, it was possible that delivery would slip to February or March 1969. Following the original seven-step plan would have meant delaying the "D" and subsequent missions, and endangering the program's goal of a lunar landing before the end of 1969. George Low, the Manager of the Apollo Spacecraft Program Office, proposed a solution in August 1968 to keep the program on track despite the LM delay. Since the next CSM (designated as "CSM-103") would be ready three months before LM-3, a CSM-only mission could be flown in December 1968. Instead of repeating the "C" mission flight of Apollo7, this CSM could be sent all the way to the Moon, with the possibility of entering a lunar orbit and returning to Earth. The new mission would also allow NASA to test lunar landing procedures that would otherwise have had to wait until Apollo10, the scheduled "F" mission. This also meant that the medium Earth orbit "E" mission could be dispensed with. The net result was that only the "D" mission had to be delayed, and the plan for lunar landing in mid-1969 could remain on timeline. On August 9, 1968, Low discussed the idea with Gilruth, Flight Director Chris Kraft, and the Director of Flight Crew Operations, Donald Slayton. They then flew to the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, where they met with KSC Director Kurt Debus, Apollo Program Director Samuel C. Phillips, Rocco Petrone, and Wernher von Braun. Kraft considered the proposal feasible from a flight control standpoint; Debus and Petrone agreed that the next Saturn V, AS-503, could be made ready by December 1; and von Braun was confident the pogo oscillation problems that had afflicted Apollo6 had been fixed. Almost every senior manager at NASA agreed with this new mission, citing confidence in both the hardware and the personnel, along with the potential for a circumlunar flight providing a significant morale boost. The only person who needed some convincing was James E. Webb, the NASA administrator. Backed by the full support of his agency, Webb authorized the mission. Apollo8 was officially changed from a "D" mission to a "C-Prime" lunar-orbit mission.
Apollo8 was planned as the "D" mission, a test of the LM in a low Earth orbit in December 1968 by James McDivitt, David Scott, and Russell Schweickart, while Borman's crew would fly the "E" mission, a more rigorous LM test in an elliptical medium Earth orbit as Apollo9, in early 1969. The "F" Mission would test the CSM and LM in lunar orbit, and the "G" mission would be the finale, the Moon landing. Production of the LM fell behind schedule, and when Apollo8's LM-3 arrived at the Kennedy Space Center (KSC) in June 1968, more than a hundred significant defects were discovered, leading Bob Gilruth, the director of the Manned Spacecraft Center (MSC), and others to conclude that there was no prospect of LM-3 being ready to fly in 1968. Indeed, it was possible that delivery would slip to February or March 1969. Following the original seven-step plan would have meant delaying the "D" and subsequent missions, and endangering the program's goal of a lunar landing before the end of 1969. George Low, the Manager of the Apollo Spacecraft Program Office, proposed a solution in August 1968 to keep the program on track despite the LM delay. Since the next CSM (designated as "CSM-103") would be ready three months before LM-3, a CSM-only mission could be flown in December 1968. Instead of repeating the "C" mission flight of Apollo7, this CSM could be sent all the way to the Moon, with the possibility of entering a lunar orbit and returning to Earth. The new mission would also allow NASA to test lunar landing procedures that would otherwise have had to wait until Apollo10, the scheduled "F" mission. This also meant that the medium Earth orbit "E" mission could be dispensed with. The net result was that only the "D" mission had to be delayed, and the plan for lunar landing in mid-1969 could remain on timeline. On August 9, 1968, Low discussed the idea with Gilruth, Flight Director Chris Kraft, and the Director of Flight Crew Operations, Donald Slayton. They then flew to the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, where they met with KSC Director Kurt Debus, Apollo Program Director Samuel C. Phillips, Rocco Petrone, and Wernher von Braun. Kraft considered the proposal feasible from a flight control standpoint; Debus and Petrone agreed that the next Saturn V, AS-503, could be made ready by December 1; and von Braun was confident the pogo oscillation problems that had afflicted Apollo6 had been fixed. Almost every senior manager at NASA agreed with this new mission, citing confidence in both the hardware and the personnel, along with the potential for a circumlunar flight providing a significant morale boost. The only person who needed some convincing was James E. Webb, the NASA administrator. Backed by the full support of his agency, Webb authorized the mission. Apollo8 was officially changed from a "D" mission to a "C-Prime" lunar-orbit mission.
With the change in mission for Apollo 8, Slayton asked McDivitt if he still wanted to fly it. McDivitt turned it down; his crew had spent a great deal of time preparing to test the LM, and that was what he still wanted to do. Slayton then decided to swap the prime and backup crews of the Dand Emissions. This swap also meant a swap of spacecraft, requiring Borman's crew to use CSM-103, while McDivitt's crew would use CSM-104, since CM-104 could not be made ready by December. David Scott was not happy about giving up CM-103, the testing of which he had closely supervised, for CM-104, although the two were almost identical, and Anders was less than enthusiastic about being an LMP on a flight with no LM. Instead, in order that the spacecraft would have the correct weight and balance, Apollo8 would carry LM test article, a boilerplate model of LM-3. Added pressure on the Apollo program to make its 1969 landing goal was provided by the Soviet Union's Zond5 mission, which flew some living creatures, including Russian tortoises, in a cislunar loop around the Moon and returned them to Earth on September 21. There was speculation within NASA and the press that they might be preparing to launch cosmonauts on a similar circumlunar mission before the end of 1968. The Apollo 8 crew, now living in the crew quarters at Kennedy Space Center, received a visit from Charles Lindbergh and his wife, Anne Morrow Lindbergh, the night before the launch. They talked about how, before his 1927 flight, Lindbergh had used a piece of string to measure the distance from New York City to Paris on a globe and from that calculated the fuel needed for the flight. The total he had carried was a tenth of the amount that the Saturn V would burn every second. The next day, the Lindberghs watched the launch of Apollo8 from a nearby dune. Saturn V redesign The Saturn V rocket used by Apollo8 was designated AS-503, or the "03rd" model of the SaturnV ("5") Rocket to be used in the Apollo-Saturn ("AS") program. When it was erected in the Vehicle Assembly Building on December 20, 1967, it was thought that the rocket would be used for an uncrewed Earth-orbit test flight carrying a boilerplate command and service module. Apollo6 had suffered several major problems during its April 1968 flight, including severe pogo oscillation during its first stage, two second-stage engine failures, and a third stage that failed to reignite in orbit. Without assurances that these problems had been rectified, NASA administrators could not justify risking a crewed mission until additional uncrewed test flights proved the Saturn V was ready. Teams from the MSFC went to work on the problems. Of primary concern was the pogo oscillation, which would not only hamper engine performance, but could exert significant g-forces on a crew.
With the change in mission for Apollo 8, Slayton asked McDivitt if he still wanted to fly it. McDivitt turned it down; his crew had spent a great deal of time preparing to test the LM, and that was what he still wanted to do. Slayton then decided to swap the prime and backup crews of the Dand Emissions. This swap also meant a swap of spacecraft, requiring Borman's crew to use CSM-103, while McDivitt's crew would use CSM-104, since CM-104 could not be made ready by December. David Scott was not happy about giving up CM-103, the testing of which he had closely supervised, for CM-104, although the two were almost identical, and Anders was less than enthusiastic about being an LMP on a flight with no LM. Instead, in order that the spacecraft would have the correct weight and balance, Apollo8 would carry LM test article, a boilerplate model of LM-3. Added pressure on the Apollo program to make its 1969 landing goal was provided by the Soviet Union's Zond5 mission, which flew some living creatures, including Russian tortoises, in a cislunar loop around the Moon and returned them to Earth on September 21. There was speculation within NASA and the press that they might be preparing to launch cosmonauts on a similar circumlunar mission before the end of 1968. The Apollo 8 crew, now living in the crew quarters at Kennedy Space Center, received a visit from Charles Lindbergh and his wife, Anne Morrow Lindbergh, the night before the launch. They talked about how, before his 1927 flight, Lindbergh had used a piece of string to measure the distance from New York City to Paris on a globe and from that calculated the fuel needed for the flight. The total he had carried was a tenth of the amount that the Saturn V would burn every second. The next day, the Lindberghs watched the launch of Apollo8 from a nearby dune. Saturn V redesign The Saturn V rocket used by Apollo8 was designated AS-503, or the "03rd" model of the SaturnV ("5") Rocket to be used in the Apollo-Saturn ("AS") program. When it was erected in the Vehicle Assembly Building on December 20, 1967, it was thought that the rocket would be used for an uncrewed Earth-orbit test flight carrying a boilerplate command and service module. Apollo6 had suffered several major problems during its April 1968 flight, including severe pogo oscillation during its first stage, two second-stage engine failures, and a third stage that failed to reignite in orbit. Without assurances that these problems had been rectified, NASA administrators could not justify risking a crewed mission until additional uncrewed test flights proved the Saturn V was ready. Teams from the MSFC went to work on the problems. Of primary concern was the pogo oscillation, which would not only hamper engine performance, but could exert significant g-forces on a crew.
With the change in mission for Apollo 8, Slayton asked McDivitt if he still wanted to fly it. McDivitt turned it down; his crew had spent a great deal of time preparing to test the LM, and that was what he still wanted to do. Slayton then decided to swap the prime and backup crews of the Dand Emissions. This swap also meant a swap of spacecraft, requiring Borman's crew to use CSM-103, while McDivitt's crew would use CSM-104, since CM-104 could not be made ready by December. David Scott was not happy about giving up CM-103, the testing of which he had closely supervised, for CM-104, although the two were almost identical, and Anders was less than enthusiastic about being an LMP on a flight with no LM. Instead, in order that the spacecraft would have the correct weight and balance, Apollo8 would carry LM test article, a boilerplate model of LM-3. Added pressure on the Apollo program to make its 1969 landing goal was provided by the Soviet Union's Zond5 mission, which flew some living creatures, including Russian tortoises, in a cislunar loop around the Moon and returned them to Earth on September 21. There was speculation within NASA and the press that they might be preparing to launch cosmonauts on a similar circumlunar mission before the end of 1968. The Apollo 8 crew, now living in the crew quarters at Kennedy Space Center, received a visit from Charles Lindbergh and his wife, Anne Morrow Lindbergh, the night before the launch. They talked about how, before his 1927 flight, Lindbergh had used a piece of string to measure the distance from New York City to Paris on a globe and from that calculated the fuel needed for the flight. The total he had carried was a tenth of the amount that the Saturn V would burn every second. The next day, the Lindberghs watched the launch of Apollo8 from a nearby dune. Saturn V redesign The Saturn V rocket used by Apollo8 was designated AS-503, or the "03rd" model of the SaturnV ("5") Rocket to be used in the Apollo-Saturn ("AS") program. When it was erected in the Vehicle Assembly Building on December 20, 1967, it was thought that the rocket would be used for an uncrewed Earth-orbit test flight carrying a boilerplate command and service module. Apollo6 had suffered several major problems during its April 1968 flight, including severe pogo oscillation during its first stage, two second-stage engine failures, and a third stage that failed to reignite in orbit. Without assurances that these problems had been rectified, NASA administrators could not justify risking a crewed mission until additional uncrewed test flights proved the Saturn V was ready. Teams from the MSFC went to work on the problems. Of primary concern was the pogo oscillation, which would not only hamper engine performance, but could exert significant g-forces on a crew.
A task force of contractors, NASA agency representatives, and MSFC researchers concluded that the engines vibrated at a frequency similar to the frequency at which the spacecraft itself vibrated, causing a resonance effect that induced oscillations in the rocket. A system that used helium gas to absorb some of these vibrations was installed. Of equal importance was the failure of three engines during flight. Researchers quickly determined that a leaking hydrogen fuel line ruptured when exposed to vacuum, causing a loss of fuel pressure in engine two. When an automatic shutoff attempted to close the liquid hydrogen valve and shut down engine two, it had accidentally shut down engine three's liquid oxygen due to a miswired connection. As a result, engine three failed within one second of engine two's shutdown. Further investigation revealed the same problem for the third-stage engine—a faulty igniter line. The team modified the igniter lines and fuel conduits, hoping to avoid similar problems on future launches. The teams tested their solutions in August 1968 at the MSFC. A Saturn stage IC was equipped with shock-absorbing devices to demonstrate the team's solution to the problem of pogo oscillation, while a Saturn Stage II was retrofitted with modified fuel lines to demonstrate their resistance to leaks and ruptures in vacuum conditions. Once NASA administrators were convinced that the problems had been solved, they gave their approval for a crewed mission using AS-503. The Apollo 8 spacecraft was placed on top of the rocket on September 21, and the rocket made the slow journey to the launch pad on October9. Testing continued all through December until the day before launch, including various levels of readiness testing from December5 through 11. Final testing of modifications to address the problems of pogo oscillation, ruptured fuel lines, and bad igniter lines took place on December 18, three days before the scheduled launch. Mission Parameter summary As the first crewed spacecraft to orbit more than one celestial body, Apollo8's profile had two different sets of orbital parameters, separated by a translunar injection maneuver. Apollo lunar missions would begin with a nominal circular Earth parking orbit. Apollo8 was launched into an initial orbit with an apogee of and a perigee of , with an inclination of 32.51° to the Equator, and an orbital period of 88.19 minutes. Propellant venting increased the apogee by over the 2hours, 44 minutes, and 30 seconds spent in the parking orbit. This was followed by a trans-lunar injection (TLI) burn of the S-IVB third stage for 318 seconds, accelerating the command and service module and LM test article from an orbital velocity of to the injection velocity of which set a record for the highest speed, relative to Earth, that humans had ever traveled. This speed was slightly less than the Earth's escape velocity of , but put Apollo8 into an elongated elliptical Earth orbit, close enough to the Moon to be captured by the Moon's gravity.
A task force of contractors, NASA agency representatives, and MSFC researchers concluded that the engines vibrated at a frequency similar to the frequency at which the spacecraft itself vibrated, causing a resonance effect that induced oscillations in the rocket. A system that used helium gas to absorb some of these vibrations was installed. Of equal importance was the failure of three engines during flight. Researchers quickly determined that a leaking hydrogen fuel line ruptured when exposed to vacuum, causing a loss of fuel pressure in engine two. When an automatic shutoff attempted to close the liquid hydrogen valve and shut down engine two, it had accidentally shut down engine three's liquid oxygen due to a miswired connection. As a result, engine three failed within one second of engine two's shutdown. Further investigation revealed the same problem for the third-stage engine—a faulty igniter line. The team modified the igniter lines and fuel conduits, hoping to avoid similar problems on future launches. The teams tested their solutions in August 1968 at the MSFC. A Saturn stage IC was equipped with shock-absorbing devices to demonstrate the team's solution to the problem of pogo oscillation, while a Saturn Stage II was retrofitted with modified fuel lines to demonstrate their resistance to leaks and ruptures in vacuum conditions. Once NASA administrators were convinced that the problems had been solved, they gave their approval for a crewed mission using AS-503. The Apollo 8 spacecraft was placed on top of the rocket on September 21, and the rocket made the slow journey to the launch pad on October9. Testing continued all through December until the day before launch, including various levels of readiness testing from December5 through 11. Final testing of modifications to address the problems of pogo oscillation, ruptured fuel lines, and bad igniter lines took place on December 18, three days before the scheduled launch. Mission Parameter summary As the first crewed spacecraft to orbit more than one celestial body, Apollo8's profile had two different sets of orbital parameters, separated by a translunar injection maneuver. Apollo lunar missions would begin with a nominal circular Earth parking orbit. Apollo8 was launched into an initial orbit with an apogee of and a perigee of , with an inclination of 32.51° to the Equator, and an orbital period of 88.19 minutes. Propellant venting increased the apogee by over the 2hours, 44 minutes, and 30 seconds spent in the parking orbit. This was followed by a trans-lunar injection (TLI) burn of the S-IVB third stage for 318 seconds, accelerating the command and service module and LM test article from an orbital velocity of to the injection velocity of which set a record for the highest speed, relative to Earth, that humans had ever traveled. This speed was slightly less than the Earth's escape velocity of , but put Apollo8 into an elongated elliptical Earth orbit, close enough to the Moon to be captured by the Moon's gravity.
A task force of contractors, NASA agency representatives, and MSFC researchers concluded that the engines vibrated at a frequency similar to the frequency at which the spacecraft itself vibrated, causing a resonance effect that induced oscillations in the rocket. A system that used helium gas to absorb some of these vibrations was installed. Of equal importance was the failure of three engines during flight. Researchers quickly determined that a leaking hydrogen fuel line ruptured when exposed to vacuum, causing a loss of fuel pressure in engine two. When an automatic shutoff attempted to close the liquid hydrogen valve and shut down engine two, it had accidentally shut down engine three's liquid oxygen due to a miswired connection. As a result, engine three failed within one second of engine two's shutdown. Further investigation revealed the same problem for the third-stage engine—a faulty igniter line. The team modified the igniter lines and fuel conduits, hoping to avoid similar problems on future launches. The teams tested their solutions in August 1968 at the MSFC. A Saturn stage IC was equipped with shock-absorbing devices to demonstrate the team's solution to the problem of pogo oscillation, while a Saturn Stage II was retrofitted with modified fuel lines to demonstrate their resistance to leaks and ruptures in vacuum conditions. Once NASA administrators were convinced that the problems had been solved, they gave their approval for a crewed mission using AS-503. The Apollo 8 spacecraft was placed on top of the rocket on September 21, and the rocket made the slow journey to the launch pad on October9. Testing continued all through December until the day before launch, including various levels of readiness testing from December5 through 11. Final testing of modifications to address the problems of pogo oscillation, ruptured fuel lines, and bad igniter lines took place on December 18, three days before the scheduled launch. Mission Parameter summary As the first crewed spacecraft to orbit more than one celestial body, Apollo8's profile had two different sets of orbital parameters, separated by a translunar injection maneuver. Apollo lunar missions would begin with a nominal circular Earth parking orbit. Apollo8 was launched into an initial orbit with an apogee of and a perigee of , with an inclination of 32.51° to the Equator, and an orbital period of 88.19 minutes. Propellant venting increased the apogee by over the 2hours, 44 minutes, and 30 seconds spent in the parking orbit. This was followed by a trans-lunar injection (TLI) burn of the S-IVB third stage for 318 seconds, accelerating the command and service module and LM test article from an orbital velocity of to the injection velocity of which set a record for the highest speed, relative to Earth, that humans had ever traveled. This speed was slightly less than the Earth's escape velocity of , but put Apollo8 into an elongated elliptical Earth orbit, close enough to the Moon to be captured by the Moon's gravity.
The standard lunar orbit for Apollo missions was planned as a nominal circular orbit above the Moon's surface. Initial lunar orbit insertion was an ellipse with a perilune of and an apolune of , at an inclination of 12° from the lunar equator. This was then circularized at , with an orbital period of 128.7 minutes. The effect of lunar mass concentrations ("mascons") on the orbit was found to be greater than initially predicted; over the course of the ten lunar orbits lasting twenty hours, the orbital distance was perturbated to . Apollo 8 achieved a maximum distance from Earth of . Launch and trans-lunar injection Apollo 8 was launched at 12:51:00 UTC (07:51:00 Eastern Standard Time) on December 21, 1968, using the Saturn V's three stages to achieve Earth orbit. The S-IC first stage landed in the Atlantic Ocean at , and the S-II second stage landed at . The S-IVB third stage injected the craft into Earth orbit and remained attached to perform the TLI burn that would put the spacecraft on a trajectory to the Moon. Once the vehicle reached Earth orbit, both the crew and Houston flight controllers spent the next 2hours and 38 minutes checking that the spacecraft was in proper working order and ready for TLI. The proper operation of the S-IVB third stage of the rocket was crucial, and in the last uncrewed test, it had failed to reignite for this burn. Collins was the first CAPCOM on duty, and at 2hours, 27 minutes and 22 seconds after launch he radioed, "Apollo8. You are Go for TLI." This communication meant that Mission Control had given official permission for Apollo8 to go to the Moon. The S-IVB engine ignited on time and performed the TLI burn perfectly. Over the next five minutes, the spacecraft's speed increased from . After the S-IVB had placed the mission on course for the Moon, the command and service modules (CSM), the remaining Apollo8 spacecraft, separated from it. The crew then rotated the spacecraft to take photographs of the spent stage and then practiced flying in formation with it. As the crew rotated the spacecraft, they had their first views of the Earth as they moved away from it—this marked the first time humans had viewed the whole Earth at once. Borman became worried that the S-IVB was staying too close to the CSM and suggested to Mission Control that the crew perform a separation maneuver. Mission Control first suggested pointing the spacecraft towards Earth and using the small reaction control system (RCS) thrusters on the service module (SM) to add to their velocity away from the Earth, but Borman did not want to lose sight of the S-IVB. After discussion, the crew and Mission Control decided to burn in the Earth direction to increase speed, but at instead. The time needed to prepare and perform the additional burn put the crew an hour behind their onboard tasks.
The standard lunar orbit for Apollo missions was planned as a nominal circular orbit above the Moon's surface. Initial lunar orbit insertion was an ellipse with a perilune of and an apolune of , at an inclination of 12° from the lunar equator. This was then circularized at , with an orbital period of 128.7 minutes. The effect of lunar mass concentrations ("mascons") on the orbit was found to be greater than initially predicted; over the course of the ten lunar orbits lasting twenty hours, the orbital distance was perturbated to . Apollo 8 achieved a maximum distance from Earth of . Launch and trans-lunar injection Apollo 8 was launched at 12:51:00 UTC (07:51:00 Eastern Standard Time) on December 21, 1968, using the Saturn V's three stages to achieve Earth orbit. The S-IC first stage landed in the Atlantic Ocean at , and the S-II second stage landed at . The S-IVB third stage injected the craft into Earth orbit and remained attached to perform the TLI burn that would put the spacecraft on a trajectory to the Moon. Once the vehicle reached Earth orbit, both the crew and Houston flight controllers spent the next 2hours and 38 minutes checking that the spacecraft was in proper working order and ready for TLI. The proper operation of the S-IVB third stage of the rocket was crucial, and in the last uncrewed test, it had failed to reignite for this burn. Collins was the first CAPCOM on duty, and at 2hours, 27 minutes and 22 seconds after launch he radioed, "Apollo8. You are Go for TLI." This communication meant that Mission Control had given official permission for Apollo8 to go to the Moon. The S-IVB engine ignited on time and performed the TLI burn perfectly. Over the next five minutes, the spacecraft's speed increased from . After the S-IVB had placed the mission on course for the Moon, the command and service modules (CSM), the remaining Apollo8 spacecraft, separated from it. The crew then rotated the spacecraft to take photographs of the spent stage and then practiced flying in formation with it. As the crew rotated the spacecraft, they had their first views of the Earth as they moved away from it—this marked the first time humans had viewed the whole Earth at once. Borman became worried that the S-IVB was staying too close to the CSM and suggested to Mission Control that the crew perform a separation maneuver. Mission Control first suggested pointing the spacecraft towards Earth and using the small reaction control system (RCS) thrusters on the service module (SM) to add to their velocity away from the Earth, but Borman did not want to lose sight of the S-IVB. After discussion, the crew and Mission Control decided to burn in the Earth direction to increase speed, but at instead. The time needed to prepare and perform the additional burn put the crew an hour behind their onboard tasks.
The standard lunar orbit for Apollo missions was planned as a nominal circular orbit above the Moon's surface. Initial lunar orbit insertion was an ellipse with a perilune of and an apolune of , at an inclination of 12° from the lunar equator. This was then circularized at , with an orbital period of 128.7 minutes. The effect of lunar mass concentrations ("mascons") on the orbit was found to be greater than initially predicted; over the course of the ten lunar orbits lasting twenty hours, the orbital distance was perturbated to . Apollo 8 achieved a maximum distance from Earth of . Launch and trans-lunar injection Apollo 8 was launched at 12:51:00 UTC (07:51:00 Eastern Standard Time) on December 21, 1968, using the Saturn V's three stages to achieve Earth orbit. The S-IC first stage landed in the Atlantic Ocean at , and the S-II second stage landed at . The S-IVB third stage injected the craft into Earth orbit and remained attached to perform the TLI burn that would put the spacecraft on a trajectory to the Moon. Once the vehicle reached Earth orbit, both the crew and Houston flight controllers spent the next 2hours and 38 minutes checking that the spacecraft was in proper working order and ready for TLI. The proper operation of the S-IVB third stage of the rocket was crucial, and in the last uncrewed test, it had failed to reignite for this burn. Collins was the first CAPCOM on duty, and at 2hours, 27 minutes and 22 seconds after launch he radioed, "Apollo8. You are Go for TLI." This communication meant that Mission Control had given official permission for Apollo8 to go to the Moon. The S-IVB engine ignited on time and performed the TLI burn perfectly. Over the next five minutes, the spacecraft's speed increased from . After the S-IVB had placed the mission on course for the Moon, the command and service modules (CSM), the remaining Apollo8 spacecraft, separated from it. The crew then rotated the spacecraft to take photographs of the spent stage and then practiced flying in formation with it. As the crew rotated the spacecraft, they had their first views of the Earth as they moved away from it—this marked the first time humans had viewed the whole Earth at once. Borman became worried that the S-IVB was staying too close to the CSM and suggested to Mission Control that the crew perform a separation maneuver. Mission Control first suggested pointing the spacecraft towards Earth and using the small reaction control system (RCS) thrusters on the service module (SM) to add to their velocity away from the Earth, but Borman did not want to lose sight of the S-IVB. After discussion, the crew and Mission Control decided to burn in the Earth direction to increase speed, but at instead. The time needed to prepare and perform the additional burn put the crew an hour behind their onboard tasks.
Five hours after launch, Mission Control sent a command to the S-IVB to vent its remaining fuel, changing its trajectory. The S-IVB, with the test article attached, posed no further hazard to Apollo8, passing the orbit of the Moon and going into a solar orbit with an inclination of 23.47° from the plane of the ecliptic, and an orbital period of 340.80 days. It became a derelict object, and will continue to orbit the Sun for many years, if not retrieved. The Apollo 8 crew were the first humans to pass through the Van Allen radiation belts, which extend up to from Earth. Scientists predicted that passing through the belts quickly at the spacecraft's high speed would cause a radiation dosage of no more than a chest X-ray, or 1milligray (mGy; during a year, the average human receives a dose of 2to 3mGy). To record the actual radiation dosages, each crew member wore a Personal Radiation Dosimeter that transmitted data to Earth, as well as three passive film dosimeters that showed the cumulative radiation experienced by the crew. By the end of the mission, the crew members experienced an average radiation dose of 1.6 mGy. Lunar trajectory Lovell's main job as Command Module Pilot was as navigator. Although Mission Control normally performed all the actual navigation calculations, it was necessary to have a crew member adept at navigation so that the crew could return to Earth in case communication with Mission Control was lost. Lovell navigated by star sightings using a sextant built into the spacecraft, measuring the angle between a star and the Earth's (or the Moon's) horizon. This task was made difficult by a large cloud of debris around the spacecraft, which made it hard to distinguish the stars. By seven hours into the mission, the crew was about 1hour and 40 minutes behind flight plan because of the problems in moving away from the S-IVB and Lovell's obscured star sightings. The crew placed the spacecraft into Passive Thermal Control (PTC), also called "barbecue roll", in which the spacecraft rotated about once per hour around its long axis to ensure even heat distribution across the surface of the spacecraft. In direct sunlight, parts of the spacecraft's outer surface could be heated to over , while the parts in shadow would be . These temperatures could cause the heat shield to crack and propellant lines to burst. Because it was impossible to get a perfect roll, the spacecraft swept out a cone as it rotated. The crew had to make minor adjustments every half hour as the cone pattern got larger and larger. The first mid-course correction came eleven hours into the flight. The crew had been awake for more than 16 hours. Before launch, NASA had decided at least one crew member should be awake at all times to deal with problems that might arise. Borman started the first sleep shift but found sleeping difficult because of the constant radio chatter and mechanical noises.
Five hours after launch, Mission Control sent a command to the S-IVB to vent its remaining fuel, changing its trajectory. The S-IVB, with the test article attached, posed no further hazard to Apollo8, passing the orbit of the Moon and going into a solar orbit with an inclination of 23.47° from the plane of the ecliptic, and an orbital period of 340.80 days. It became a derelict object, and will continue to orbit the Sun for many years, if not retrieved. The Apollo 8 crew were the first humans to pass through the Van Allen radiation belts, which extend up to from Earth. Scientists predicted that passing through the belts quickly at the spacecraft's high speed would cause a radiation dosage of no more than a chest X-ray, or 1milligray (mGy; during a year, the average human receives a dose of 2to 3mGy). To record the actual radiation dosages, each crew member wore a Personal Radiation Dosimeter that transmitted data to Earth, as well as three passive film dosimeters that showed the cumulative radiation experienced by the crew. By the end of the mission, the crew members experienced an average radiation dose of 1.6 mGy. Lunar trajectory Lovell's main job as Command Module Pilot was as navigator. Although Mission Control normally performed all the actual navigation calculations, it was necessary to have a crew member adept at navigation so that the crew could return to Earth in case communication with Mission Control was lost. Lovell navigated by star sightings using a sextant built into the spacecraft, measuring the angle between a star and the Earth's (or the Moon's) horizon. This task was made difficult by a large cloud of debris around the spacecraft, which made it hard to distinguish the stars. By seven hours into the mission, the crew was about 1hour and 40 minutes behind flight plan because of the problems in moving away from the S-IVB and Lovell's obscured star sightings. The crew placed the spacecraft into Passive Thermal Control (PTC), also called "barbecue roll", in which the spacecraft rotated about once per hour around its long axis to ensure even heat distribution across the surface of the spacecraft. In direct sunlight, parts of the spacecraft's outer surface could be heated to over , while the parts in shadow would be . These temperatures could cause the heat shield to crack and propellant lines to burst. Because it was impossible to get a perfect roll, the spacecraft swept out a cone as it rotated. The crew had to make minor adjustments every half hour as the cone pattern got larger and larger. The first mid-course correction came eleven hours into the flight. The crew had been awake for more than 16 hours. Before launch, NASA had decided at least one crew member should be awake at all times to deal with problems that might arise. Borman started the first sleep shift but found sleeping difficult because of the constant radio chatter and mechanical noises.
Five hours after launch, Mission Control sent a command to the S-IVB to vent its remaining fuel, changing its trajectory. The S-IVB, with the test article attached, posed no further hazard to Apollo8, passing the orbit of the Moon and going into a solar orbit with an inclination of 23.47° from the plane of the ecliptic, and an orbital period of 340.80 days. It became a derelict object, and will continue to orbit the Sun for many years, if not retrieved. The Apollo 8 crew were the first humans to pass through the Van Allen radiation belts, which extend up to from Earth. Scientists predicted that passing through the belts quickly at the spacecraft's high speed would cause a radiation dosage of no more than a chest X-ray, or 1milligray (mGy; during a year, the average human receives a dose of 2to 3mGy). To record the actual radiation dosages, each crew member wore a Personal Radiation Dosimeter that transmitted data to Earth, as well as three passive film dosimeters that showed the cumulative radiation experienced by the crew. By the end of the mission, the crew members experienced an average radiation dose of 1.6 mGy. Lunar trajectory Lovell's main job as Command Module Pilot was as navigator. Although Mission Control normally performed all the actual navigation calculations, it was necessary to have a crew member adept at navigation so that the crew could return to Earth in case communication with Mission Control was lost. Lovell navigated by star sightings using a sextant built into the spacecraft, measuring the angle between a star and the Earth's (or the Moon's) horizon. This task was made difficult by a large cloud of debris around the spacecraft, which made it hard to distinguish the stars. By seven hours into the mission, the crew was about 1hour and 40 minutes behind flight plan because of the problems in moving away from the S-IVB and Lovell's obscured star sightings. The crew placed the spacecraft into Passive Thermal Control (PTC), also called "barbecue roll", in which the spacecraft rotated about once per hour around its long axis to ensure even heat distribution across the surface of the spacecraft. In direct sunlight, parts of the spacecraft's outer surface could be heated to over , while the parts in shadow would be . These temperatures could cause the heat shield to crack and propellant lines to burst. Because it was impossible to get a perfect roll, the spacecraft swept out a cone as it rotated. The crew had to make minor adjustments every half hour as the cone pattern got larger and larger. The first mid-course correction came eleven hours into the flight. The crew had been awake for more than 16 hours. Before launch, NASA had decided at least one crew member should be awake at all times to deal with problems that might arise. Borman started the first sleep shift but found sleeping difficult because of the constant radio chatter and mechanical noises.
Testing on the ground had shown that the service propulsion system (SPS) engine had a small chance of exploding when burned for long periods unless its combustion chamber was "coated" first by burning the engine for a short period. This first correction burn was only 2.4 seconds and added about velocity prograde (in the direction of travel). This change was less than the planned , because of a bubble of helium in the oxidizer lines, which caused unexpectedly low propellant pressure. The crew had to use the small RCS thrusters to make up the shortfall. Two later planned mid-course corrections were canceled because the Apollo8 trajectory was found to be perfect. About an hour after starting his sleep shift, Borman obtained permission from ground control to take a Seconal sleeping pill. The pill had little effect. Borman eventually fell asleep, and then awoke feeling ill. He vomited twice and had a bout of diarrhea; this left the spacecraft full of small globules of vomit and feces, which the crew cleaned up as well as they could. Borman initially did not want everyone to know about his medical problems, but Lovell and Anders wanted to inform Mission Control. The crew decided to use the Data Storage Equipment (DSE), which could tape voice recordings and telemetry and dump them to Mission Control at high speed. After recording a description of Borman's illness they asked Mission Control to check the recording, stating that they "would like an evaluation of the voice comments". The Apollo 8 crew and Mission Control medical personnel held a conference using an unoccupied second-floor control room (there were two identical control rooms in Houston, on the second and third floors, only one of which was used during a mission). The conference participants concluded that there was little to worry about and that Borman's illness was either a 24-hour flu, as Borman thought, or a reaction to the sleeping pill. Researchers now believe that he was suffering from space adaptation syndrome, which affects about a third of astronauts during their first day in space as their vestibular system adapts to weightlessness. Space adaptation syndrome had not occurred on previous spacecraft (Mercury and Gemini), because those astronauts could not move freely in the small cabins of those spacecraft. The increased cabin space in the Apollo command module afforded astronauts greater freedom of movement, contributing to symptoms of space sickness for Borman and, later, astronaut Rusty Schweickart during Apollo9. The cruise phase was a relatively uneventful part of the flight, except for the crew's checking that the spacecraft was in working order and that they were on course. During this time, NASA scheduled a television broadcast at 31 hours after launch. The Apollo8 crew used a camera that broadcast in black-and-white only, using a Vidicon tube. The camera had two lenses, a very wide-angle (160°) lens, and a telephoto (9°) lens.
Testing on the ground had shown that the service propulsion system (SPS) engine had a small chance of exploding when burned for long periods unless its combustion chamber was "coated" first by burning the engine for a short period. This first correction burn was only 2.4 seconds and added about velocity prograde (in the direction of travel). This change was less than the planned , because of a bubble of helium in the oxidizer lines, which caused unexpectedly low propellant pressure. The crew had to use the small RCS thrusters to make up the shortfall. Two later planned mid-course corrections were canceled because the Apollo8 trajectory was found to be perfect. About an hour after starting his sleep shift, Borman obtained permission from ground control to take a Seconal sleeping pill. The pill had little effect. Borman eventually fell asleep, and then awoke feeling ill. He vomited twice and had a bout of diarrhea; this left the spacecraft full of small globules of vomit and feces, which the crew cleaned up as well as they could. Borman initially did not want everyone to know about his medical problems, but Lovell and Anders wanted to inform Mission Control. The crew decided to use the Data Storage Equipment (DSE), which could tape voice recordings and telemetry and dump them to Mission Control at high speed. After recording a description of Borman's illness they asked Mission Control to check the recording, stating that they "would like an evaluation of the voice comments". The Apollo 8 crew and Mission Control medical personnel held a conference using an unoccupied second-floor control room (there were two identical control rooms in Houston, on the second and third floors, only one of which was used during a mission). The conference participants concluded that there was little to worry about and that Borman's illness was either a 24-hour flu, as Borman thought, or a reaction to the sleeping pill. Researchers now believe that he was suffering from space adaptation syndrome, which affects about a third of astronauts during their first day in space as their vestibular system adapts to weightlessness. Space adaptation syndrome had not occurred on previous spacecraft (Mercury and Gemini), because those astronauts could not move freely in the small cabins of those spacecraft. The increased cabin space in the Apollo command module afforded astronauts greater freedom of movement, contributing to symptoms of space sickness for Borman and, later, astronaut Rusty Schweickart during Apollo9. The cruise phase was a relatively uneventful part of the flight, except for the crew's checking that the spacecraft was in working order and that they were on course. During this time, NASA scheduled a television broadcast at 31 hours after launch. The Apollo8 crew used a camera that broadcast in black-and-white only, using a Vidicon tube. The camera had two lenses, a very wide-angle (160°) lens, and a telephoto (9°) lens.
Testing on the ground had shown that the service propulsion system (SPS) engine had a small chance of exploding when burned for long periods unless its combustion chamber was "coated" first by burning the engine for a short period. This first correction burn was only 2.4 seconds and added about velocity prograde (in the direction of travel). This change was less than the planned , because of a bubble of helium in the oxidizer lines, which caused unexpectedly low propellant pressure. The crew had to use the small RCS thrusters to make up the shortfall. Two later planned mid-course corrections were canceled because the Apollo8 trajectory was found to be perfect. About an hour after starting his sleep shift, Borman obtained permission from ground control to take a Seconal sleeping pill. The pill had little effect. Borman eventually fell asleep, and then awoke feeling ill. He vomited twice and had a bout of diarrhea; this left the spacecraft full of small globules of vomit and feces, which the crew cleaned up as well as they could. Borman initially did not want everyone to know about his medical problems, but Lovell and Anders wanted to inform Mission Control. The crew decided to use the Data Storage Equipment (DSE), which could tape voice recordings and telemetry and dump them to Mission Control at high speed. After recording a description of Borman's illness they asked Mission Control to check the recording, stating that they "would like an evaluation of the voice comments". The Apollo 8 crew and Mission Control medical personnel held a conference using an unoccupied second-floor control room (there were two identical control rooms in Houston, on the second and third floors, only one of which was used during a mission). The conference participants concluded that there was little to worry about and that Borman's illness was either a 24-hour flu, as Borman thought, or a reaction to the sleeping pill. Researchers now believe that he was suffering from space adaptation syndrome, which affects about a third of astronauts during their first day in space as their vestibular system adapts to weightlessness. Space adaptation syndrome had not occurred on previous spacecraft (Mercury and Gemini), because those astronauts could not move freely in the small cabins of those spacecraft. The increased cabin space in the Apollo command module afforded astronauts greater freedom of movement, contributing to symptoms of space sickness for Borman and, later, astronaut Rusty Schweickart during Apollo9. The cruise phase was a relatively uneventful part of the flight, except for the crew's checking that the spacecraft was in working order and that they were on course. During this time, NASA scheduled a television broadcast at 31 hours after launch. The Apollo8 crew used a camera that broadcast in black-and-white only, using a Vidicon tube. The camera had two lenses, a very wide-angle (160°) lens, and a telephoto (9°) lens.
During this first broadcast, the crew gave a tour of the spacecraft and attempted to show how the Earth appeared from space. However, difficulties aiming the narrow-angle lens without the aid of a monitor to show what it was looking at made showing the Earth impossible. Additionally, without proper filters, the Earth image became saturated by any bright source. In the end, all the crew could show the people watching back on Earth was a bright blob. After broadcasting for 17 minutes, the rotation of the spacecraft took the high-gain antenna out of view of the receiving stations on Earth and they ended the transmission with Lovell wishing his mother a happy birthday. By this time, the crew had completely abandoned the planned sleep shifts. Lovell went to sleep 32-and-a-half hours into the flight – three-and-a-half hours before he had planned to. A short while later, Anders also went to sleep after taking a sleeping pill. The crew was unable to see the Moon for much of the outward cruise. Two factors made the Moon almost impossible to see from inside the spacecraft: three of the five windows fogging up due to out-gassed oils from the silicone sealant, and the attitude required for passive thermal control. It was not until the crew had gone behind the Moon that they would be able to see it for the first time. Apollo 8 made a second television broadcast at 55 hours into the flight. This time, the crew rigged up filters meant for the still cameras so they could acquire images of the Earth through the telephoto lens. Although difficult to aim, as they had to maneuver the entire spacecraft, the crew was able to broadcast back to Earth the first television pictures of the Earth. The crew spent the transmission describing the Earth, what was visible, and the colors they could see. The transmission lasted 23 minutes. Lunar sphere of influence At about 55 hours and 40 minutes into the flight, and 13 hours before entering lunar orbit, the crew of Apollo8 became the first humans to enter the gravitational sphere of influence of another celestial body. In other words, the effect of the Moon's gravitational force on Apollo8 became stronger than that of the Earth. At the time it happened, Apollo8 was from the Moon and had a speed of relative to the Moon. This historic moment was of little interest to the crew, since they were still calculating their trajectory with respect to the launch pad at Kennedy Space Center. They would continue to do so until they performed their last mid-course correction, switching to a reference frame based on ideal orientation for the second engine burn they would make in lunar orbit. The last major event before Lunar Orbit Insertion (LOI) was a second mid-course correction. It was in retrograde (against the direction of travel) and slowed the spacecraft down by , effectively reducing the closest distance at which the spacecraft would pass the Moon.
During this first broadcast, the crew gave a tour of the spacecraft and attempted to show how the Earth appeared from space. However, difficulties aiming the narrow-angle lens without the aid of a monitor to show what it was looking at made showing the Earth impossible. Additionally, without proper filters, the Earth image became saturated by any bright source. In the end, all the crew could show the people watching back on Earth was a bright blob. After broadcasting for 17 minutes, the rotation of the spacecraft took the high-gain antenna out of view of the receiving stations on Earth and they ended the transmission with Lovell wishing his mother a happy birthday. By this time, the crew had completely abandoned the planned sleep shifts. Lovell went to sleep 32-and-a-half hours into the flight – three-and-a-half hours before he had planned to. A short while later, Anders also went to sleep after taking a sleeping pill. The crew was unable to see the Moon for much of the outward cruise. Two factors made the Moon almost impossible to see from inside the spacecraft: three of the five windows fogging up due to out-gassed oils from the silicone sealant, and the attitude required for passive thermal control. It was not until the crew had gone behind the Moon that they would be able to see it for the first time. Apollo 8 made a second television broadcast at 55 hours into the flight. This time, the crew rigged up filters meant for the still cameras so they could acquire images of the Earth through the telephoto lens. Although difficult to aim, as they had to maneuver the entire spacecraft, the crew was able to broadcast back to Earth the first television pictures of the Earth. The crew spent the transmission describing the Earth, what was visible, and the colors they could see. The transmission lasted 23 minutes. Lunar sphere of influence At about 55 hours and 40 minutes into the flight, and 13 hours before entering lunar orbit, the crew of Apollo8 became the first humans to enter the gravitational sphere of influence of another celestial body. In other words, the effect of the Moon's gravitational force on Apollo8 became stronger than that of the Earth. At the time it happened, Apollo8 was from the Moon and had a speed of relative to the Moon. This historic moment was of little interest to the crew, since they were still calculating their trajectory with respect to the launch pad at Kennedy Space Center. They would continue to do so until they performed their last mid-course correction, switching to a reference frame based on ideal orientation for the second engine burn they would make in lunar orbit. The last major event before Lunar Orbit Insertion (LOI) was a second mid-course correction. It was in retrograde (against the direction of travel) and slowed the spacecraft down by , effectively reducing the closest distance at which the spacecraft would pass the Moon.
During this first broadcast, the crew gave a tour of the spacecraft and attempted to show how the Earth appeared from space. However, difficulties aiming the narrow-angle lens without the aid of a monitor to show what it was looking at made showing the Earth impossible. Additionally, without proper filters, the Earth image became saturated by any bright source. In the end, all the crew could show the people watching back on Earth was a bright blob. After broadcasting for 17 minutes, the rotation of the spacecraft took the high-gain antenna out of view of the receiving stations on Earth and they ended the transmission with Lovell wishing his mother a happy birthday. By this time, the crew had completely abandoned the planned sleep shifts. Lovell went to sleep 32-and-a-half hours into the flight – three-and-a-half hours before he had planned to. A short while later, Anders also went to sleep after taking a sleeping pill. The crew was unable to see the Moon for much of the outward cruise. Two factors made the Moon almost impossible to see from inside the spacecraft: three of the five windows fogging up due to out-gassed oils from the silicone sealant, and the attitude required for passive thermal control. It was not until the crew had gone behind the Moon that they would be able to see it for the first time. Apollo 8 made a second television broadcast at 55 hours into the flight. This time, the crew rigged up filters meant for the still cameras so they could acquire images of the Earth through the telephoto lens. Although difficult to aim, as they had to maneuver the entire spacecraft, the crew was able to broadcast back to Earth the first television pictures of the Earth. The crew spent the transmission describing the Earth, what was visible, and the colors they could see. The transmission lasted 23 minutes. Lunar sphere of influence At about 55 hours and 40 minutes into the flight, and 13 hours before entering lunar orbit, the crew of Apollo8 became the first humans to enter the gravitational sphere of influence of another celestial body. In other words, the effect of the Moon's gravitational force on Apollo8 became stronger than that of the Earth. At the time it happened, Apollo8 was from the Moon and had a speed of relative to the Moon. This historic moment was of little interest to the crew, since they were still calculating their trajectory with respect to the launch pad at Kennedy Space Center. They would continue to do so until they performed their last mid-course correction, switching to a reference frame based on ideal orientation for the second engine burn they would make in lunar orbit. The last major event before Lunar Orbit Insertion (LOI) was a second mid-course correction. It was in retrograde (against the direction of travel) and slowed the spacecraft down by , effectively reducing the closest distance at which the spacecraft would pass the Moon.
At exactly 61 hours after launch, about from the Moon, the crew burned the RCS for 11 seconds. They would now pass from the lunar surface. At 64 hours into the flight, the crew began to prepare for Lunar Orbit Insertion1 (LOI-1). This maneuver had to be performed perfectly, and due to orbital mechanics had to be on the far side of the Moon, out of contact with the Earth. After Mission Control was polled for a "go/no go" decision, the crew was told at 68 hours that they were Go and "riding the best bird we can find". Lovell replied, "We'll see you on the other side", and for the first time in history, humans travelled behind the Moon and out of radio contact with the Earth. With ten minutes remaining before LOI-1, the crew began one last check of the spacecraft systems and made sure that every switch was in its correct position. At that time, they finally got their first glimpses of the Moon. They had been flying over the unlit side, and it was Lovell who saw the first shafts of sunlight obliquely illuminating the lunar surface. The LOI burn was only two minutes away, so the crew had little time to appreciate the view. Lunar orbit The SPS was ignited at 69 hours, 8minutes, and 16 seconds after launch and burned for 4minutes and 7seconds, placing the Apollo8 spacecraft in orbit around the Moon. The crew described the burn as being the longest four minutes of their lives. If the burn had not lasted exactly the correct amount of time, the spacecraft could have ended up in a highly elliptical lunar orbit or even been flung off into space. If it had lasted too long, they could have struck the Moon. After making sure the spacecraft was working, they finally had a chance to look at the Moon, which they would orbit for the next 20 hours. On Earth, Mission Control continued to wait. If the crew had not burned the engine, or the burn had not lasted the planned length of time, the crew would have appeared early from behind the Moon. Exactly at the calculated moment the signal was received from the spacecraft, indicating it was in a orbit around the Moon. After reporting on the status of the spacecraft, Lovell gave the first description of what the lunar surface looked like: Lovell continued to describe the terrain they were passing over. One of the crew's major tasks was reconnaissance of planned future landing sites on the Moon, especially one in Mare Tranquillitatis that was planned as the Apollo11 landing site. The launch time of Apollo8 had been chosen to give the best lighting conditions for examining the site. A film camera had been set up in one of the spacecraft windows to record one frame per second of the Moon below. Bill Anders spent much of the next 20 hours taking as many photographs as possible of targets of interest.
At exactly 61 hours after launch, about from the Moon, the crew burned the RCS for 11 seconds. They would now pass from the lunar surface. At 64 hours into the flight, the crew began to prepare for Lunar Orbit Insertion1 (LOI-1). This maneuver had to be performed perfectly, and due to orbital mechanics had to be on the far side of the Moon, out of contact with the Earth. After Mission Control was polled for a "go/no go" decision, the crew was told at 68 hours that they were Go and "riding the best bird we can find". Lovell replied, "We'll see you on the other side", and for the first time in history, humans travelled behind the Moon and out of radio contact with the Earth. With ten minutes remaining before LOI-1, the crew began one last check of the spacecraft systems and made sure that every switch was in its correct position. At that time, they finally got their first glimpses of the Moon. They had been flying over the unlit side, and it was Lovell who saw the first shafts of sunlight obliquely illuminating the lunar surface. The LOI burn was only two minutes away, so the crew had little time to appreciate the view. Lunar orbit The SPS was ignited at 69 hours, 8minutes, and 16 seconds after launch and burned for 4minutes and 7seconds, placing the Apollo8 spacecraft in orbit around the Moon. The crew described the burn as being the longest four minutes of their lives. If the burn had not lasted exactly the correct amount of time, the spacecraft could have ended up in a highly elliptical lunar orbit or even been flung off into space. If it had lasted too long, they could have struck the Moon. After making sure the spacecraft was working, they finally had a chance to look at the Moon, which they would orbit for the next 20 hours. On Earth, Mission Control continued to wait. If the crew had not burned the engine, or the burn had not lasted the planned length of time, the crew would have appeared early from behind the Moon. Exactly at the calculated moment the signal was received from the spacecraft, indicating it was in a orbit around the Moon. After reporting on the status of the spacecraft, Lovell gave the first description of what the lunar surface looked like: Lovell continued to describe the terrain they were passing over. One of the crew's major tasks was reconnaissance of planned future landing sites on the Moon, especially one in Mare Tranquillitatis that was planned as the Apollo11 landing site. The launch time of Apollo8 had been chosen to give the best lighting conditions for examining the site. A film camera had been set up in one of the spacecraft windows to record one frame per second of the Moon below. Bill Anders spent much of the next 20 hours taking as many photographs as possible of targets of interest.
At exactly 61 hours after launch, about from the Moon, the crew burned the RCS for 11 seconds. They would now pass from the lunar surface. At 64 hours into the flight, the crew began to prepare for Lunar Orbit Insertion1 (LOI-1). This maneuver had to be performed perfectly, and due to orbital mechanics had to be on the far side of the Moon, out of contact with the Earth. After Mission Control was polled for a "go/no go" decision, the crew was told at 68 hours that they were Go and "riding the best bird we can find". Lovell replied, "We'll see you on the other side", and for the first time in history, humans travelled behind the Moon and out of radio contact with the Earth. With ten minutes remaining before LOI-1, the crew began one last check of the spacecraft systems and made sure that every switch was in its correct position. At that time, they finally got their first glimpses of the Moon. They had been flying over the unlit side, and it was Lovell who saw the first shafts of sunlight obliquely illuminating the lunar surface. The LOI burn was only two minutes away, so the crew had little time to appreciate the view. Lunar orbit The SPS was ignited at 69 hours, 8minutes, and 16 seconds after launch and burned for 4minutes and 7seconds, placing the Apollo8 spacecraft in orbit around the Moon. The crew described the burn as being the longest four minutes of their lives. If the burn had not lasted exactly the correct amount of time, the spacecraft could have ended up in a highly elliptical lunar orbit or even been flung off into space. If it had lasted too long, they could have struck the Moon. After making sure the spacecraft was working, they finally had a chance to look at the Moon, which they would orbit for the next 20 hours. On Earth, Mission Control continued to wait. If the crew had not burned the engine, or the burn had not lasted the planned length of time, the crew would have appeared early from behind the Moon. Exactly at the calculated moment the signal was received from the spacecraft, indicating it was in a orbit around the Moon. After reporting on the status of the spacecraft, Lovell gave the first description of what the lunar surface looked like: Lovell continued to describe the terrain they were passing over. One of the crew's major tasks was reconnaissance of planned future landing sites on the Moon, especially one in Mare Tranquillitatis that was planned as the Apollo11 landing site. The launch time of Apollo8 had been chosen to give the best lighting conditions for examining the site. A film camera had been set up in one of the spacecraft windows to record one frame per second of the Moon below. Bill Anders spent much of the next 20 hours taking as many photographs as possible of targets of interest.
By the end of the mission, the crew had taken over eight hundred 70 mm still photographs and of 16 mm movie film. Throughout the hour that the spacecraft was in contact with Earth, Borman kept asking how the data for the SPS looked. He wanted to make sure that the engine was working and could be used to return early to the Earth if necessary. He also asked that they receive a "go/no go" decision before they passed behind the Moon on each orbit. As they reappeared for their second pass in front of the Moon, the crew set up equipment to broadcast a view of the lunar surface. Anders described the craters that they were passing over. At the end of this second orbit, they performed an 11-second LOI-2 burn of the SPS to circularize the orbit to . Throughout the next two orbits, the crew continued to check the spacecraft and to observe and photograph the Moon. During the third pass, Borman read a small prayer for his church. He had been scheduled to participate in a service at St. Christopher's Episcopal Church near Seabrook, Texas, but due to the Apollo8 flight, he was unable to attend. A fellow parishioner and engineer at Mission Control, Rod Rose, suggested that Borman read the prayer, which could be recorded and then replayed during the service. Earthrise When the spacecraft came out from behind the Moon for its fourth pass across the front, the crew witnessed an "Earthrise" in person for the first time in human history. NASA's Lunar Orbiter 1 had taken the first picture of an Earthrise from the vicinity of the Moon, on August 23, 1966. Anders saw the Earth emerging from behind the lunar horizon and called in excitement to the others, taking a black-and-white photograph as he did so. Anders asked Lovell for color film and then took Earthrise, a now famous color photo, later picked by Life magazine as one of its hundred photos of the century. Due to the synchronous rotation of the Moon about the Earth, Earthrise is not generally visible from the lunar surface. This is because, as seen from any one place on the Moon's surface, Earth remains in approximately the same position in the lunar sky, either above or below the horizon. Earthrise is generally visible only while orbiting the Moon, and at selected surface locations near the Moon's limb, where libration carries the Earth slightly above and below the lunar horizon. Anders continued to take photographs while Lovell assumed control of the spacecraft so that Borman could rest. Despite the difficulty resting in the cramped and noisy spacecraft, Borman was able to sleep for two orbits, awakening periodically to ask questions about their status. Borman awoke fully when he started to hear his fellow crew members make mistakes. They were beginning to not understand questions and had to ask for the answers to be repeated.
By the end of the mission, the crew had taken over eight hundred 70 mm still photographs and of 16 mm movie film. Throughout the hour that the spacecraft was in contact with Earth, Borman kept asking how the data for the SPS looked. He wanted to make sure that the engine was working and could be used to return early to the Earth if necessary. He also asked that they receive a "go/no go" decision before they passed behind the Moon on each orbit. As they reappeared for their second pass in front of the Moon, the crew set up equipment to broadcast a view of the lunar surface. Anders described the craters that they were passing over. At the end of this second orbit, they performed an 11-second LOI-2 burn of the SPS to circularize the orbit to . Throughout the next two orbits, the crew continued to check the spacecraft and to observe and photograph the Moon. During the third pass, Borman read a small prayer for his church. He had been scheduled to participate in a service at St. Christopher's Episcopal Church near Seabrook, Texas, but due to the Apollo8 flight, he was unable to attend. A fellow parishioner and engineer at Mission Control, Rod Rose, suggested that Borman read the prayer, which could be recorded and then replayed during the service. Earthrise When the spacecraft came out from behind the Moon for its fourth pass across the front, the crew witnessed an "Earthrise" in person for the first time in human history. NASA's Lunar Orbiter 1 had taken the first picture of an Earthrise from the vicinity of the Moon, on August 23, 1966. Anders saw the Earth emerging from behind the lunar horizon and called in excitement to the others, taking a black-and-white photograph as he did so. Anders asked Lovell for color film and then took Earthrise, a now famous color photo, later picked by Life magazine as one of its hundred photos of the century. Due to the synchronous rotation of the Moon about the Earth, Earthrise is not generally visible from the lunar surface. This is because, as seen from any one place on the Moon's surface, Earth remains in approximately the same position in the lunar sky, either above or below the horizon. Earthrise is generally visible only while orbiting the Moon, and at selected surface locations near the Moon's limb, where libration carries the Earth slightly above and below the lunar horizon. Anders continued to take photographs while Lovell assumed control of the spacecraft so that Borman could rest. Despite the difficulty resting in the cramped and noisy spacecraft, Borman was able to sleep for two orbits, awakening periodically to ask questions about their status. Borman awoke fully when he started to hear his fellow crew members make mistakes. They were beginning to not understand questions and had to ask for the answers to be repeated.
By the end of the mission, the crew had taken over eight hundred 70 mm still photographs and of 16 mm movie film. Throughout the hour that the spacecraft was in contact with Earth, Borman kept asking how the data for the SPS looked. He wanted to make sure that the engine was working and could be used to return early to the Earth if necessary. He also asked that they receive a "go/no go" decision before they passed behind the Moon on each orbit. As they reappeared for their second pass in front of the Moon, the crew set up equipment to broadcast a view of the lunar surface. Anders described the craters that they were passing over. At the end of this second orbit, they performed an 11-second LOI-2 burn of the SPS to circularize the orbit to . Throughout the next two orbits, the crew continued to check the spacecraft and to observe and photograph the Moon. During the third pass, Borman read a small prayer for his church. He had been scheduled to participate in a service at St. Christopher's Episcopal Church near Seabrook, Texas, but due to the Apollo8 flight, he was unable to attend. A fellow parishioner and engineer at Mission Control, Rod Rose, suggested that Borman read the prayer, which could be recorded and then replayed during the service. Earthrise When the spacecraft came out from behind the Moon for its fourth pass across the front, the crew witnessed an "Earthrise" in person for the first time in human history. NASA's Lunar Orbiter 1 had taken the first picture of an Earthrise from the vicinity of the Moon, on August 23, 1966. Anders saw the Earth emerging from behind the lunar horizon and called in excitement to the others, taking a black-and-white photograph as he did so. Anders asked Lovell for color film and then took Earthrise, a now famous color photo, later picked by Life magazine as one of its hundred photos of the century. Due to the synchronous rotation of the Moon about the Earth, Earthrise is not generally visible from the lunar surface. This is because, as seen from any one place on the Moon's surface, Earth remains in approximately the same position in the lunar sky, either above or below the horizon. Earthrise is generally visible only while orbiting the Moon, and at selected surface locations near the Moon's limb, where libration carries the Earth slightly above and below the lunar horizon. Anders continued to take photographs while Lovell assumed control of the spacecraft so that Borman could rest. Despite the difficulty resting in the cramped and noisy spacecraft, Borman was able to sleep for two orbits, awakening periodically to ask questions about their status. Borman awoke fully when he started to hear his fellow crew members make mistakes. They were beginning to not understand questions and had to ask for the answers to be repeated.
Borman realized that everyone was extremely tired from not having a good night's sleep in over three days. He ordered Anders and Lovell to get some sleep and that the rest of the flight plan regarding observing the Moon be scrubbed. Anders initially protested, saying that he was fine, but Borman would not be swayed. Anders finally agreed under the condition that Borman would set up the camera to continue to take automatic pictures of the Moon. Borman also remembered that there was a second television broadcast planned, and with so many people expected to be watching, he wanted the crew to be alert. For the next two orbits, Anders and Lovell slept while Borman sat at the helm. As they rounded the Moon for the ninth time, the astronauts began the second television transmission. Borman introduced the crew, followed by each man giving his impression of the lunar surface and what it was like to be orbiting the Moon. Borman described it as being "a vast, lonely, forbidding expanse of nothing". Then, after talking about what they were flying over, Anders said that the crew had a message for all those on Earth. Each man on board read a section from the Biblical creation story from the Book of Genesis. Borman finished the broadcast by wishing a Merry Christmas to everyone on Earth. His message appeared to sum up the feelings that all three crewmen had from their vantage point in lunar orbit. Borman said, "And from the crew of Apollo8, we close with good night, good luck, a Merry Christmas and God bless all of you—all of you on the good Earth." The only task left for the crew at this point was to perform the trans-Earth injection (TEI), which was scheduled for hours after the end of the television transmission. The TEI was the most critical burn of the flight, as any failure of the SPS to ignite would strand the crew in lunar orbit, with little hope of escape. As with the previous burn, the crew had to perform the maneuver above the far side of the Moon, out of contact with Earth. The burn occurred exactly on time. The spacecraft telemetry was reacquired as it re-emerged from behind the Moon at 89 hours, 28 minutes, and 39 seconds, the exact time calculated. When voice contact was regained, Lovell announced, "Please be informed, there is a Santa Claus", to which Ken Mattingly, the current CAPCOM, replied, "That's affirmative, you are the best ones to know." The spacecraft began its journey back to Earth on December 25, Christmas Day. Unplanned manual realignment Later, Lovell used some otherwise idle time to do some navigational sightings, maneuvering the module to view various stars by using the computer keyboard.
Borman realized that everyone was extremely tired from not having a good night's sleep in over three days. He ordered Anders and Lovell to get some sleep and that the rest of the flight plan regarding observing the Moon be scrubbed. Anders initially protested, saying that he was fine, but Borman would not be swayed. Anders finally agreed under the condition that Borman would set up the camera to continue to take automatic pictures of the Moon. Borman also remembered that there was a second television broadcast planned, and with so many people expected to be watching, he wanted the crew to be alert. For the next two orbits, Anders and Lovell slept while Borman sat at the helm. As they rounded the Moon for the ninth time, the astronauts began the second television transmission. Borman introduced the crew, followed by each man giving his impression of the lunar surface and what it was like to be orbiting the Moon. Borman described it as being "a vast, lonely, forbidding expanse of nothing". Then, after talking about what they were flying over, Anders said that the crew had a message for all those on Earth. Each man on board read a section from the Biblical creation story from the Book of Genesis. Borman finished the broadcast by wishing a Merry Christmas to everyone on Earth. His message appeared to sum up the feelings that all three crewmen had from their vantage point in lunar orbit. Borman said, "And from the crew of Apollo8, we close with good night, good luck, a Merry Christmas and God bless all of you—all of you on the good Earth." The only task left for the crew at this point was to perform the trans-Earth injection (TEI), which was scheduled for hours after the end of the television transmission. The TEI was the most critical burn of the flight, as any failure of the SPS to ignite would strand the crew in lunar orbit, with little hope of escape. As with the previous burn, the crew had to perform the maneuver above the far side of the Moon, out of contact with Earth. The burn occurred exactly on time. The spacecraft telemetry was reacquired as it re-emerged from behind the Moon at 89 hours, 28 minutes, and 39 seconds, the exact time calculated. When voice contact was regained, Lovell announced, "Please be informed, there is a Santa Claus", to which Ken Mattingly, the current CAPCOM, replied, "That's affirmative, you are the best ones to know." The spacecraft began its journey back to Earth on December 25, Christmas Day. Unplanned manual realignment Later, Lovell used some otherwise idle time to do some navigational sightings, maneuvering the module to view various stars by using the computer keyboard.
Borman realized that everyone was extremely tired from not having a good night's sleep in over three days. He ordered Anders and Lovell to get some sleep and that the rest of the flight plan regarding observing the Moon be scrubbed. Anders initially protested, saying that he was fine, but Borman would not be swayed. Anders finally agreed under the condition that Borman would set up the camera to continue to take automatic pictures of the Moon. Borman also remembered that there was a second television broadcast planned, and with so many people expected to be watching, he wanted the crew to be alert. For the next two orbits, Anders and Lovell slept while Borman sat at the helm. As they rounded the Moon for the ninth time, the astronauts began the second television transmission. Borman introduced the crew, followed by each man giving his impression of the lunar surface and what it was like to be orbiting the Moon. Borman described it as being "a vast, lonely, forbidding expanse of nothing". Then, after talking about what they were flying over, Anders said that the crew had a message for all those on Earth. Each man on board read a section from the Biblical creation story from the Book of Genesis. Borman finished the broadcast by wishing a Merry Christmas to everyone on Earth. His message appeared to sum up the feelings that all three crewmen had from their vantage point in lunar orbit. Borman said, "And from the crew of Apollo8, we close with good night, good luck, a Merry Christmas and God bless all of you—all of you on the good Earth." The only task left for the crew at this point was to perform the trans-Earth injection (TEI), which was scheduled for hours after the end of the television transmission. The TEI was the most critical burn of the flight, as any failure of the SPS to ignite would strand the crew in lunar orbit, with little hope of escape. As with the previous burn, the crew had to perform the maneuver above the far side of the Moon, out of contact with Earth. The burn occurred exactly on time. The spacecraft telemetry was reacquired as it re-emerged from behind the Moon at 89 hours, 28 minutes, and 39 seconds, the exact time calculated. When voice contact was regained, Lovell announced, "Please be informed, there is a Santa Claus", to which Ken Mattingly, the current CAPCOM, replied, "That's affirmative, you are the best ones to know." The spacecraft began its journey back to Earth on December 25, Christmas Day. Unplanned manual realignment Later, Lovell used some otherwise idle time to do some navigational sightings, maneuvering the module to view various stars by using the computer keyboard.
He accidentally erased some of the computer's memory, which caused the inertial measurement unit (IMU) to contain data indicating that the module was in the same relative orientation it had been in before lift-off; the IMU then fired the thrusters to "correct" the module's attitude. Once the crew realized why the computer had changed the module's attitude, they realized that they would have to reenter data to tell the computer the module's actual orientation. It took Lovell ten minutes to figure out the right numbers, using the thrusters to get the stars Rigel and Sirius aligned, and another 15 minutes to enter the corrected data into the computer. Sixteen months later, during the Apollo13 mission, Lovell would have to perform a similar manual realignment under more critical conditions after the module's IMU had to be turned off to conserve energy. Cruise back to Earth and reentry The cruise back to Earth was mostly a time for the crew to relax and monitor the spacecraft. As long as the trajectory specialists had calculated everything correctly, the spacecraft would reenter Earth's atmosphere two-and-a-half days after TEI and splash down in the Pacific. On Christmas afternoon, the crew made their fifth television broadcast. This time, they gave a tour of the spacecraft, showing how an astronaut lived in space. When they finished broadcasting, they found a small present from Slayton in the food locker: a real turkey dinner with stuffing, in the same kind of pack given to the troops in Vietnam. Another Slayton surprise was a gift of three miniature bottles of brandy, which Borman ordered the crew to leave alone until after they landed. They remained unopened, even years after the flight. There were also small presents to the crew from their wives. The next day, at about 124 hours into the mission, the sixth and final TV transmission showed the mission's best video images of the Earth, during a four-minute broadcast. After two uneventful days, the crew prepared for reentry. The computer would control the reentry, and all the crew had to do was put the spacecraft in the correct attitude, with the blunt end forward. In the event of computer failure, Borman was ready to take over. Separation from the service module prepared the command module for reentry by exposing the heat shield and shedding unneeded mass. The service module would burn up in the atmosphere as planned. Six minutes before they hit the top of the atmosphere, the crew saw the Moon rising above the Earth's horizon, just as had been calculated by the trajectory specialists. As the module hit the thin outer atmosphere, the crew noticed that it was becoming hazy outside as glowing plasma formed around the spacecraft. The spacecraft started slowing down, and the deceleration peaked at . With the computer controlling the descent by changing the attitude of the spacecraft, Apollo8 rose briefly like a skipping stone before descending to the ocean.
He accidentally erased some of the computer's memory, which caused the inertial measurement unit (IMU) to contain data indicating that the module was in the same relative orientation it had been in before lift-off; the IMU then fired the thrusters to "correct" the module's attitude. Once the crew realized why the computer had changed the module's attitude, they realized that they would have to reenter data to tell the computer the module's actual orientation. It took Lovell ten minutes to figure out the right numbers, using the thrusters to get the stars Rigel and Sirius aligned, and another 15 minutes to enter the corrected data into the computer. Sixteen months later, during the Apollo13 mission, Lovell would have to perform a similar manual realignment under more critical conditions after the module's IMU had to be turned off to conserve energy. Cruise back to Earth and reentry The cruise back to Earth was mostly a time for the crew to relax and monitor the spacecraft. As long as the trajectory specialists had calculated everything correctly, the spacecraft would reenter Earth's atmosphere two-and-a-half days after TEI and splash down in the Pacific. On Christmas afternoon, the crew made their fifth television broadcast. This time, they gave a tour of the spacecraft, showing how an astronaut lived in space. When they finished broadcasting, they found a small present from Slayton in the food locker: a real turkey dinner with stuffing, in the same kind of pack given to the troops in Vietnam. Another Slayton surprise was a gift of three miniature bottles of brandy, which Borman ordered the crew to leave alone until after they landed. They remained unopened, even years after the flight. There were also small presents to the crew from their wives. The next day, at about 124 hours into the mission, the sixth and final TV transmission showed the mission's best video images of the Earth, during a four-minute broadcast. After two uneventful days, the crew prepared for reentry. The computer would control the reentry, and all the crew had to do was put the spacecraft in the correct attitude, with the blunt end forward. In the event of computer failure, Borman was ready to take over. Separation from the service module prepared the command module for reentry by exposing the heat shield and shedding unneeded mass. The service module would burn up in the atmosphere as planned. Six minutes before they hit the top of the atmosphere, the crew saw the Moon rising above the Earth's horizon, just as had been calculated by the trajectory specialists. As the module hit the thin outer atmosphere, the crew noticed that it was becoming hazy outside as glowing plasma formed around the spacecraft. The spacecraft started slowing down, and the deceleration peaked at . With the computer controlling the descent by changing the attitude of the spacecraft, Apollo8 rose briefly like a skipping stone before descending to the ocean.
He accidentally erased some of the computer's memory, which caused the inertial measurement unit (IMU) to contain data indicating that the module was in the same relative orientation it had been in before lift-off; the IMU then fired the thrusters to "correct" the module's attitude. Once the crew realized why the computer had changed the module's attitude, they realized that they would have to reenter data to tell the computer the module's actual orientation. It took Lovell ten minutes to figure out the right numbers, using the thrusters to get the stars Rigel and Sirius aligned, and another 15 minutes to enter the corrected data into the computer. Sixteen months later, during the Apollo13 mission, Lovell would have to perform a similar manual realignment under more critical conditions after the module's IMU had to be turned off to conserve energy. Cruise back to Earth and reentry The cruise back to Earth was mostly a time for the crew to relax and monitor the spacecraft. As long as the trajectory specialists had calculated everything correctly, the spacecraft would reenter Earth's atmosphere two-and-a-half days after TEI and splash down in the Pacific. On Christmas afternoon, the crew made their fifth television broadcast. This time, they gave a tour of the spacecraft, showing how an astronaut lived in space. When they finished broadcasting, they found a small present from Slayton in the food locker: a real turkey dinner with stuffing, in the same kind of pack given to the troops in Vietnam. Another Slayton surprise was a gift of three miniature bottles of brandy, which Borman ordered the crew to leave alone until after they landed. They remained unopened, even years after the flight. There were also small presents to the crew from their wives. The next day, at about 124 hours into the mission, the sixth and final TV transmission showed the mission's best video images of the Earth, during a four-minute broadcast. After two uneventful days, the crew prepared for reentry. The computer would control the reentry, and all the crew had to do was put the spacecraft in the correct attitude, with the blunt end forward. In the event of computer failure, Borman was ready to take over. Separation from the service module prepared the command module for reentry by exposing the heat shield and shedding unneeded mass. The service module would burn up in the atmosphere as planned. Six minutes before they hit the top of the atmosphere, the crew saw the Moon rising above the Earth's horizon, just as had been calculated by the trajectory specialists. As the module hit the thin outer atmosphere, the crew noticed that it was becoming hazy outside as glowing plasma formed around the spacecraft. The spacecraft started slowing down, and the deceleration peaked at . With the computer controlling the descent by changing the attitude of the spacecraft, Apollo8 rose briefly like a skipping stone before descending to the ocean.
At , the drogue parachute deployed, stabilizing the spacecraft, followed at by the three main parachutes. The spacecraft splashdown position was officially reported as in the North Pacific Ocean, southwest of Hawaii at 15:51:42 UTC on December 27, 1968. When the spacecraft hit the water, the parachutes dragged it over and left it upside down, in what was termed Stable2 position. As they were buffeted by a swell, Borman was sick, waiting for the three flotation balloons to right the spacecraft. About six minutes after splashdown, the command module was righted into a normal apex-up (Stable 1) orientation by its inflatable bag uprighting system. The first frogman from aircraft carrier arrived 43 minutes after splashdown. Forty-five minutes later, the crew was safe on the flight deck of the Yorktown. Legacy Historical importance Apollo 8 came at the end of 1968, a year that had seen much upheaval in the United States and most of the world. Even though the year saw political assassinations, political unrest in the streets of Europe and America, and the Prague Spring, Time magazine chose the crew of Apollo8 as its Men of the Year for 1968, recognizing them as the people who most influenced events in the preceding year. They had been the first people ever to leave the gravitational influence of the Earth and orbit another celestial body. They had survived a mission that even the crew themselves had rated as having only a fifty-fifty chance of fully succeeding. The effect of Apollo8 was summed up in a telegram from a stranger, received by Borman after the mission, that stated simply, "Thank you Apollo8. You saved 1968." One of the most famous aspects of the flight was the Earthrise picture that the crew took as they came around for their fourth orbit of the Moon. This was the first time that humans had taken such a picture while actually behind the camera, and it has been credited as one of the inspirations of the first Earth Day in 1970. It was selected as the first of Life magazine's 100 Photographs That Changed the World. Apollo 11 astronaut Michael Collins said, "Eight's momentous historic significance was foremost"; while space historian Robert K. Poole saw Apollo8 as the most historically significant of all the Apollo missions. The mission was the most widely covered by the media since the first American orbital flight, Mercury-Atlas 6 by John Glenn, in 1962. There were 1,200 journalists covering the mission, with the BBC's coverage broadcast in 54 countries in 15 different languages. The Soviet newspaper Pravda featured a quote from Boris Nikolaevich Petrov, Chairman of the Soviet Interkosmos program, who described the flight as an "outstanding achievement of American space sciences and technology". It is estimated that a quarter of the people alive at the time saw—either live or delayed—the Christmas Eve transmission during the ninth orbit of the Moon. The Apollo8 broadcasts won an Emmy Award, the highest honor given by the Academy of Television Arts & Sciences.
At , the drogue parachute deployed, stabilizing the spacecraft, followed at by the three main parachutes. The spacecraft splashdown position was officially reported as in the North Pacific Ocean, southwest of Hawaii at 15:51:42 UTC on December 27, 1968. When the spacecraft hit the water, the parachutes dragged it over and left it upside down, in what was termed Stable2 position. As they were buffeted by a swell, Borman was sick, waiting for the three flotation balloons to right the spacecraft. About six minutes after splashdown, the command module was righted into a normal apex-up (Stable 1) orientation by its inflatable bag uprighting system. The first frogman from aircraft carrier arrived 43 minutes after splashdown. Forty-five minutes later, the crew was safe on the flight deck of the Yorktown. Legacy Historical importance Apollo 8 came at the end of 1968, a year that had seen much upheaval in the United States and most of the world. Even though the year saw political assassinations, political unrest in the streets of Europe and America, and the Prague Spring, Time magazine chose the crew of Apollo8 as its Men of the Year for 1968, recognizing them as the people who most influenced events in the preceding year. They had been the first people ever to leave the gravitational influence of the Earth and orbit another celestial body. They had survived a mission that even the crew themselves had rated as having only a fifty-fifty chance of fully succeeding. The effect of Apollo8 was summed up in a telegram from a stranger, received by Borman after the mission, that stated simply, "Thank you Apollo8. You saved 1968." One of the most famous aspects of the flight was the Earthrise picture that the crew took as they came around for their fourth orbit of the Moon. This was the first time that humans had taken such a picture while actually behind the camera, and it has been credited as one of the inspirations of the first Earth Day in 1970. It was selected as the first of Life magazine's 100 Photographs That Changed the World. Apollo 11 astronaut Michael Collins said, "Eight's momentous historic significance was foremost"; while space historian Robert K. Poole saw Apollo8 as the most historically significant of all the Apollo missions. The mission was the most widely covered by the media since the first American orbital flight, Mercury-Atlas 6 by John Glenn, in 1962. There were 1,200 journalists covering the mission, with the BBC's coverage broadcast in 54 countries in 15 different languages. The Soviet newspaper Pravda featured a quote from Boris Nikolaevich Petrov, Chairman of the Soviet Interkosmos program, who described the flight as an "outstanding achievement of American space sciences and technology". It is estimated that a quarter of the people alive at the time saw—either live or delayed—the Christmas Eve transmission during the ninth orbit of the Moon. The Apollo8 broadcasts won an Emmy Award, the highest honor given by the Academy of Television Arts & Sciences.
At , the drogue parachute deployed, stabilizing the spacecraft, followed at by the three main parachutes. The spacecraft splashdown position was officially reported as in the North Pacific Ocean, southwest of Hawaii at 15:51:42 UTC on December 27, 1968. When the spacecraft hit the water, the parachutes dragged it over and left it upside down, in what was termed Stable2 position. As they were buffeted by a swell, Borman was sick, waiting for the three flotation balloons to right the spacecraft. About six minutes after splashdown, the command module was righted into a normal apex-up (Stable 1) orientation by its inflatable bag uprighting system. The first frogman from aircraft carrier arrived 43 minutes after splashdown. Forty-five minutes later, the crew was safe on the flight deck of the Yorktown. Legacy Historical importance Apollo 8 came at the end of 1968, a year that had seen much upheaval in the United States and most of the world. Even though the year saw political assassinations, political unrest in the streets of Europe and America, and the Prague Spring, Time magazine chose the crew of Apollo8 as its Men of the Year for 1968, recognizing them as the people who most influenced events in the preceding year. They had been the first people ever to leave the gravitational influence of the Earth and orbit another celestial body. They had survived a mission that even the crew themselves had rated as having only a fifty-fifty chance of fully succeeding. The effect of Apollo8 was summed up in a telegram from a stranger, received by Borman after the mission, that stated simply, "Thank you Apollo8. You saved 1968." One of the most famous aspects of the flight was the Earthrise picture that the crew took as they came around for their fourth orbit of the Moon. This was the first time that humans had taken such a picture while actually behind the camera, and it has been credited as one of the inspirations of the first Earth Day in 1970. It was selected as the first of Life magazine's 100 Photographs That Changed the World. Apollo 11 astronaut Michael Collins said, "Eight's momentous historic significance was foremost"; while space historian Robert K. Poole saw Apollo8 as the most historically significant of all the Apollo missions. The mission was the most widely covered by the media since the first American orbital flight, Mercury-Atlas 6 by John Glenn, in 1962. There were 1,200 journalists covering the mission, with the BBC's coverage broadcast in 54 countries in 15 different languages. The Soviet newspaper Pravda featured a quote from Boris Nikolaevich Petrov, Chairman of the Soviet Interkosmos program, who described the flight as an "outstanding achievement of American space sciences and technology". It is estimated that a quarter of the people alive at the time saw—either live or delayed—the Christmas Eve transmission during the ninth orbit of the Moon. The Apollo8 broadcasts won an Emmy Award, the highest honor given by the Academy of Television Arts & Sciences.
Madalyn Murray O'Hair, an atheist, later caused controversy by bringing a lawsuit against NASA over the reading from Genesis. O'Hair wanted the courts to ban American astronauts—who were all government employees—from public prayer in space. Though the case was rejected by the Supreme Court of the United States, apparently for lack of jurisdiction in outer space, it caused NASA to be skittish about the issue of religion throughout the rest of the Apollo program. Buzz Aldrin, on Apollo11, self-communicated Presbyterian Communion on the surface of the Moon after landing; he refrained from mentioning this publicly for several years and referred to it only obliquely at the time. In 1969, the United States Post Office Department issued a postage stamp (Scott catalogue #1371) commemorating the Apollo8 flight around the Moon. The stamp featured a detail of the famous photograph of the Earthrise over the Moon taken by Anders on Christmas Eve, and the words, "In the beginning God...", the first words of the book of Genesis. In January 1969, just 18 days after the crew's return to Earth, they appeared in the Super Bowl III pre-game show, reciting the Pledge of Allegiance, before the national anthem was performed by trumpeter Lloyd Geisler of the Washington National Symphony Orchestra. Spacecraft location In January 1970, the spacecraft was delivered to Osaka, Japan, for display in the U.S. pavilion at Expo '70. It is now displayed at the Chicago Museum of Science and Industry, along with a collection of personal items from the flight donated by Lovell and the space suit worn by Frank Borman. Jim Lovell's Apollo8 space suit is on public display in the Visitor Center at NASA's Glenn Research Center. Bill Anders's space suit is on display at the Science Museum in London, United Kingdom. In popular culture Apollo 8's historic mission has been depicted and referred to in several forms, both documentary and fiction. The various television transmissions and 16 mm footage shot by the crew of Apollo8 were compiled and released by NASA in the 1969 documentary Debrief: Apollo8, hosted by Burgess Meredith. In addition, Spacecraft Films released, in 2003, a three-disc DVD set containing all of NASA's TV and 16 mm film footage related to the mission, including all TV transmissions from space, training and launch footage, and motion pictures taken in flight. Other documentaries include "Race to the Moon" (2005) as part of season 18 of American Experience and In the Shadow of the Moon (2007). Apollo's Daring Mission aired on PBS' Nova in December 2018, marking the flight's 50th anniversary. Parts of the mission are dramatized in the 1998 miniseries From the Earth to the Moon episode "1968". The S-IVB stage of Apollo8 was also portrayed as the location of an alien device in the 1970 UFO episode "Conflict". Apollo8's lunar orbit insertion was chronicled with actual recordings in the song "The Other Side", on the 2015 album The Race for Space, by the band Public Service Broadcasting.
Madalyn Murray O'Hair, an atheist, later caused controversy by bringing a lawsuit against NASA over the reading from Genesis. O'Hair wanted the courts to ban American astronauts—who were all government employees—from public prayer in space. Though the case was rejected by the Supreme Court of the United States, apparently for lack of jurisdiction in outer space, it caused NASA to be skittish about the issue of religion throughout the rest of the Apollo program. Buzz Aldrin, on Apollo11, self-communicated Presbyterian Communion on the surface of the Moon after landing; he refrained from mentioning this publicly for several years and referred to it only obliquely at the time. In 1969, the United States Post Office Department issued a postage stamp (Scott catalogue #1371) commemorating the Apollo8 flight around the Moon. The stamp featured a detail of the famous photograph of the Earthrise over the Moon taken by Anders on Christmas Eve, and the words, "In the beginning God...", the first words of the book of Genesis. In January 1969, just 18 days after the crew's return to Earth, they appeared in the Super Bowl III pre-game show, reciting the Pledge of Allegiance, before the national anthem was performed by trumpeter Lloyd Geisler of the Washington National Symphony Orchestra. Spacecraft location In January 1970, the spacecraft was delivered to Osaka, Japan, for display in the U.S. pavilion at Expo '70. It is now displayed at the Chicago Museum of Science and Industry, along with a collection of personal items from the flight donated by Lovell and the space suit worn by Frank Borman. Jim Lovell's Apollo8 space suit is on public display in the Visitor Center at NASA's Glenn Research Center. Bill Anders's space suit is on display at the Science Museum in London, United Kingdom. In popular culture Apollo 8's historic mission has been depicted and referred to in several forms, both documentary and fiction. The various television transmissions and 16 mm footage shot by the crew of Apollo8 were compiled and released by NASA in the 1969 documentary Debrief: Apollo8, hosted by Burgess Meredith. In addition, Spacecraft Films released, in 2003, a three-disc DVD set containing all of NASA's TV and 16 mm film footage related to the mission, including all TV transmissions from space, training and launch footage, and motion pictures taken in flight. Other documentaries include "Race to the Moon" (2005) as part of season 18 of American Experience and In the Shadow of the Moon (2007). Apollo's Daring Mission aired on PBS' Nova in December 2018, marking the flight's 50th anniversary. Parts of the mission are dramatized in the 1998 miniseries From the Earth to the Moon episode "1968". The S-IVB stage of Apollo8 was also portrayed as the location of an alien device in the 1970 UFO episode "Conflict". Apollo8's lunar orbit insertion was chronicled with actual recordings in the song "The Other Side", on the 2015 album The Race for Space, by the band Public Service Broadcasting.
Madalyn Murray O'Hair, an atheist, later caused controversy by bringing a lawsuit against NASA over the reading from Genesis. O'Hair wanted the courts to ban American astronauts—who were all government employees—from public prayer in space. Though the case was rejected by the Supreme Court of the United States, apparently for lack of jurisdiction in outer space, it caused NASA to be skittish about the issue of religion throughout the rest of the Apollo program. Buzz Aldrin, on Apollo11, self-communicated Presbyterian Communion on the surface of the Moon after landing; he refrained from mentioning this publicly for several years and referred to it only obliquely at the time. In 1969, the United States Post Office Department issued a postage stamp (Scott catalogue #1371) commemorating the Apollo8 flight around the Moon. The stamp featured a detail of the famous photograph of the Earthrise over the Moon taken by Anders on Christmas Eve, and the words, "In the beginning God...", the first words of the book of Genesis. In January 1969, just 18 days after the crew's return to Earth, they appeared in the Super Bowl III pre-game show, reciting the Pledge of Allegiance, before the national anthem was performed by trumpeter Lloyd Geisler of the Washington National Symphony Orchestra. Spacecraft location In January 1970, the spacecraft was delivered to Osaka, Japan, for display in the U.S. pavilion at Expo '70. It is now displayed at the Chicago Museum of Science and Industry, along with a collection of personal items from the flight donated by Lovell and the space suit worn by Frank Borman. Jim Lovell's Apollo8 space suit is on public display in the Visitor Center at NASA's Glenn Research Center. Bill Anders's space suit is on display at the Science Museum in London, United Kingdom. In popular culture Apollo 8's historic mission has been depicted and referred to in several forms, both documentary and fiction. The various television transmissions and 16 mm footage shot by the crew of Apollo8 were compiled and released by NASA in the 1969 documentary Debrief: Apollo8, hosted by Burgess Meredith. In addition, Spacecraft Films released, in 2003, a three-disc DVD set containing all of NASA's TV and 16 mm film footage related to the mission, including all TV transmissions from space, training and launch footage, and motion pictures taken in flight. Other documentaries include "Race to the Moon" (2005) as part of season 18 of American Experience and In the Shadow of the Moon (2007). Apollo's Daring Mission aired on PBS' Nova in December 2018, marking the flight's 50th anniversary. Parts of the mission are dramatized in the 1998 miniseries From the Earth to the Moon episode "1968". The S-IVB stage of Apollo8 was also portrayed as the location of an alien device in the 1970 UFO episode "Conflict". Apollo8's lunar orbit insertion was chronicled with actual recordings in the song "The Other Side", on the 2015 album The Race for Space, by the band Public Service Broadcasting.
In the credits of the animated film Free Birds (2013) a newspaper front page about the Apollo 8 mission is doctored to read: "As one of the most turbulent, tragic years in American history drew to a close, millions around the world were watching and listening as the Apollo 8 astronauts – Frank Gobbler, Jim Snood, and Bill Wattles – became the first turkeys to orbit another world." A documentary film, First to the Moon: The Journey of Apollo 8 was released in 2018. The choral music piece Earthrise by Luke Byrne commemorates the mission. The piece was premièred on January 19, 2020, by Sydney Philharmonia Choirs at the Sydney Opera House. Notes References Bibliography External links "Apollo 8" at Encyclopedia Astronautica Article about the 40th anniversary of Apollo8 Multimedia Apollo 8: Go for TLI 1969 NASA film at the Internet Archive Debrief: Apollo 8 1969 NASA film at the Internet Archive "Apollo 07 and 08 16mm Onboard Film (1968)" raw footage taken from Apollos 7and8 at the Internet Archive Apollo 8 Around the Moon and Back 2018 YouTube video Apollo 08 Crewed missions to the Moon Spacecraft launched in 1968 1968 in the United States Spacecraft which reentered in 1968 December 1968 events Spacecraft launched by Saturn rockets Jim Lovell William Anders Frank Borman
In the credits of the animated film Free Birds (2013) a newspaper front page about the Apollo 8 mission is doctored to read: "As one of the most turbulent, tragic years in American history drew to a close, millions around the world were watching and listening as the Apollo 8 astronauts – Frank Gobbler, Jim Snood, and Bill Wattles – became the first turkeys to orbit another world." A documentary film, First to the Moon: The Journey of Apollo 8 was released in 2018. The choral music piece Earthrise by Luke Byrne commemorates the mission. The piece was premièred on January 19, 2020, by Sydney Philharmonia Choirs at the Sydney Opera House. Notes References Bibliography External links "Apollo 8" at Encyclopedia Astronautica Article about the 40th anniversary of Apollo8 Multimedia Apollo 8: Go for TLI 1969 NASA film at the Internet Archive Debrief: Apollo 8 1969 NASA film at the Internet Archive "Apollo 07 and 08 16mm Onboard Film (1968)" raw footage taken from Apollos 7and8 at the Internet Archive Apollo 8 Around the Moon and Back 2018 YouTube video Apollo 08 Crewed missions to the Moon Spacecraft launched in 1968 1968 in the United States Spacecraft which reentered in 1968 December 1968 events Spacecraft launched by Saturn rockets Jim Lovell William Anders Frank Borman
In the credits of the animated film Free Birds (2013) a newspaper front page about the Apollo 8 mission is doctored to read: "As one of the most turbulent, tragic years in American history drew to a close, millions around the world were watching and listening as the Apollo 8 astronauts – Frank Gobbler, Jim Snood, and Bill Wattles – became the first turkeys to orbit another world." A documentary film, First to the Moon: The Journey of Apollo 8 was released in 2018. The choral music piece Earthrise by Luke Byrne commemorates the mission. The piece was premièred on January 19, 2020, by Sydney Philharmonia Choirs at the Sydney Opera House. Notes References Bibliography External links "Apollo 8" at Encyclopedia Astronautica Article about the 40th anniversary of Apollo8 Multimedia Apollo 8: Go for TLI 1969 NASA film at the Internet Archive Debrief: Apollo 8 1969 NASA film at the Internet Archive "Apollo 07 and 08 16mm Onboard Film (1968)" raw footage taken from Apollos 7and8 at the Internet Archive Apollo 8 Around the Moon and Back 2018 YouTube video Apollo 08 Crewed missions to the Moon Spacecraft launched in 1968 1968 in the United States Spacecraft which reentered in 1968 December 1968 events Spacecraft launched by Saturn rockets Jim Lovell William Anders Frank Borman
Astronaut An astronaut (from the Ancient Greek (), meaning 'star', and (), meaning 'sailor') is a person trained, equipped, and deployed by a human spaceflight program to serve as a commander or crew member aboard a spacecraft. Although generally reserved for professional space travelers, the term is sometimes applied to anyone who travels into space, including scientists, politicians, journalists, and tourists. "Astronaut" technically applies to all human space travelers regardless of nationality or allegiance; however, astronauts fielded by Russia or the Soviet Union are typically known instead as cosmonauts (from the Russian "kosmos" (космос), meaning "space", also borrowed from Greek) in order to distinguish them from American or otherwise NATO-oriented space travellers. Comparatively recent developments in crewed spaceflight made by China have led to the rise of the term taikonaut (from the Mandarin "tàikōng" (), meaning "space"), although its use is somewhat informal and its origin is unclear. In China, the People's Liberation Army Astronaut Corps astronauts and their foreign counterparts are all officially called hángtiānyuán (, meaning "heaven navigator" or literally "heaven-sailing staff"). Since 1961, 600 astronauts have flown in space. Until 2002, astronauts were sponsored and trained exclusively by governments, either by the military or by civilian space agencies. With the suborbital flight of the privately funded SpaceShipOne in 2004, a new category of astronaut was created: the commercial astronaut. Definition The criteria for what constitutes human spaceflight vary, with some focus on the point where the atmosphere becomes so thin that centrifugal force, rather than aerodynamic force, carries a significant portion of the weight of the flight object. The Fédération Aéronautique Internationale (FAI) Sporting Code for astronautics recognizes only flights that exceed the Kármán line, at an altitude of . In the United States, professional, military, and commercial astronauts who travel above an altitude of are awarded astronaut wings. , 552 people from 36 countries have reached or more in altitude, of whom 549 reached low Earth orbit or beyond. Of these, 24 people have traveled beyond low Earth orbit, either to lunar orbit, the lunar surface, or, in one case, a loop around the Moon. Three of the 24—Jim Lovell, John Young and Eugene Cernan—did so twice. , under the U.S. definition, 558 people qualify as having reached space, above altitude. Of eight X-15 pilots who exceeded in altitude, only one, Joseph A. Walker, exceeded 100 kilometers (about 62.1 miles) and he did it two times, becoming the first person in space twice. Space travelers have spent over 41,790 man-days (114.5 man-years) in space, including over 100 astronaut-days of spacewalks. , the man with the longest cumulative time in space is Gennady Padalka, who has spent 879 days in space. Peggy A. Whitson holds the record for the most time in space by a woman, 377 days.
Astronaut An astronaut (from the Ancient Greek (), meaning 'star', and (), meaning 'sailor') is a person trained, equipped, and deployed by a human spaceflight program to serve as a commander or crew member aboard a spacecraft. Although generally reserved for professional space travelers, the term is sometimes applied to anyone who travels into space, including scientists, politicians, journalists, and tourists. "Astronaut" technically applies to all human space travelers regardless of nationality or allegiance; however, astronauts fielded by Russia or the Soviet Union are typically known instead as cosmonauts (from the Russian "kosmos" (космос), meaning "space", also borrowed from Greek) in order to distinguish them from American or otherwise NATO-oriented space travellers. Comparatively recent developments in crewed spaceflight made by China have led to the rise of the term taikonaut (from the Mandarin "tàikōng" (), meaning "space"), although its use is somewhat informal and its origin is unclear. In China, the People's Liberation Army Astronaut Corps astronauts and their foreign counterparts are all officially called hángtiānyuán (, meaning "heaven navigator" or literally "heaven-sailing staff"). Since 1961, 600 astronauts have flown in space. Until 2002, astronauts were sponsored and trained exclusively by governments, either by the military or by civilian space agencies. With the suborbital flight of the privately funded SpaceShipOne in 2004, a new category of astronaut was created: the commercial astronaut. Definition The criteria for what constitutes human spaceflight vary, with some focus on the point where the atmosphere becomes so thin that centrifugal force, rather than aerodynamic force, carries a significant portion of the weight of the flight object. The Fédération Aéronautique Internationale (FAI) Sporting Code for astronautics recognizes only flights that exceed the Kármán line, at an altitude of . In the United States, professional, military, and commercial astronauts who travel above an altitude of are awarded astronaut wings. , 552 people from 36 countries have reached or more in altitude, of whom 549 reached low Earth orbit or beyond. Of these, 24 people have traveled beyond low Earth orbit, either to lunar orbit, the lunar surface, or, in one case, a loop around the Moon. Three of the 24—Jim Lovell, John Young and Eugene Cernan—did so twice. , under the U.S. definition, 558 people qualify as having reached space, above altitude. Of eight X-15 pilots who exceeded in altitude, only one, Joseph A. Walker, exceeded 100 kilometers (about 62.1 miles) and he did it two times, becoming the first person in space twice. Space travelers have spent over 41,790 man-days (114.5 man-years) in space, including over 100 astronaut-days of spacewalks. , the man with the longest cumulative time in space is Gennady Padalka, who has spent 879 days in space. Peggy A. Whitson holds the record for the most time in space by a woman, 377 days.
Terminology In 1959, when both the United States and Soviet Union were planning, but had yet to launch humans into space, NASA Administrator T. Keith Glennan and his Deputy Administrator, Hugh Dryden, discussed whether spacecraft crew members should be called astronauts or cosmonauts. Dryden preferred "cosmonaut", on the grounds that flights would occur in and to the broader cosmos, while the "astro" prefix suggested flight specifically to the stars. Most NASA Space Task Group members preferred "astronaut", which survived by common usage as the preferred American term. When the Soviet Union launched the first man into space, Yuri Gagarin in 1961, they chose a term which anglicizes to "cosmonaut". Astronaut A professional space traveler is called an astronaut. The first known use of the term "astronaut" in the modern sense was by Neil R. Jones in his 1930 short story "The Death's Head Meteor". The word itself had been known earlier; for example, in Percy Greg's 1880 book Across the Zodiac, "astronaut" referred to a spacecraft. In Les Navigateurs de l'Infini (1925) by J.-H. Rosny aîné, the word astronautique (astronautic) was used. The word may have been inspired by "aeronaut", an older term for an air traveler first applied in 1784 to balloonists. An early use of "astronaut" in a non-fiction publication is Eric Frank Russell's poem "The Astronaut", appearing in the November 1934 Bulletin of the British Interplanetary Society. The first known formal use of the term astronautics in the scientific community was the establishment of the annual International Astronautical Congress in 1950, and the subsequent founding of the International Astronautical Federation the following year. NASA applies the term astronaut to any crew member aboard NASA spacecraft bound for Earth orbit or beyond. NASA also uses the term as a title for those selected to join its Astronaut Corps. The European Space Agency similarly uses the term astronaut for members of its Astronaut Corps. Cosmonaut By convention, an astronaut employed by the Russian Federal Space Agency (or its Soviet predecessor) is called a cosmonaut in English texts. The word is an Anglicization of kosmonavt ( ). Other countries of the former Eastern Bloc use variations of the Russian kosmonavt, such as the (although Polish also uses , and the two words are considered synonyms). Coinage of the term has been credited to Soviet aeronautics (or "cosmonautics") pioneer Mikhail Tikhonravov (1900–1974). The first cosmonaut was Soviet Air Force pilot Yuri Gagarin, also the first person in space. He was part of the first six Russians, with German Titov, Yevgeny Khrunov, Andriyan Nikolayev, Pavel Popovich, and Grigoriy Nelyubov, who were given the title of pilot-cosmonaut in January 1961. Valentina Tereshkova was the first female cosmonaut and the first and youngest woman to have flown in space with a solo mission on the Vostok 6 in 1963. On 14 March 1995, Norman Thagard became the first American to ride to space on board a Russian launch vehicle, and thus became the first "American cosmonaut".
Terminology In 1959, when both the United States and Soviet Union were planning, but had yet to launch humans into space, NASA Administrator T. Keith Glennan and his Deputy Administrator, Hugh Dryden, discussed whether spacecraft crew members should be called astronauts or cosmonauts. Dryden preferred "cosmonaut", on the grounds that flights would occur in and to the broader cosmos, while the "astro" prefix suggested flight specifically to the stars. Most NASA Space Task Group members preferred "astronaut", which survived by common usage as the preferred American term. When the Soviet Union launched the first man into space, Yuri Gagarin in 1961, they chose a term which anglicizes to "cosmonaut". Astronaut A professional space traveler is called an astronaut. The first known use of the term "astronaut" in the modern sense was by Neil R. Jones in his 1930 short story "The Death's Head Meteor". The word itself had been known earlier; for example, in Percy Greg's 1880 book Across the Zodiac, "astronaut" referred to a spacecraft. In Les Navigateurs de l'Infini (1925) by J.-H. Rosny aîné, the word astronautique (astronautic) was used. The word may have been inspired by "aeronaut", an older term for an air traveler first applied in 1784 to balloonists. An early use of "astronaut" in a non-fiction publication is Eric Frank Russell's poem "The Astronaut", appearing in the November 1934 Bulletin of the British Interplanetary Society. The first known formal use of the term astronautics in the scientific community was the establishment of the annual International Astronautical Congress in 1950, and the subsequent founding of the International Astronautical Federation the following year. NASA applies the term astronaut to any crew member aboard NASA spacecraft bound for Earth orbit or beyond. NASA also uses the term as a title for those selected to join its Astronaut Corps. The European Space Agency similarly uses the term astronaut for members of its Astronaut Corps. Cosmonaut By convention, an astronaut employed by the Russian Federal Space Agency (or its Soviet predecessor) is called a cosmonaut in English texts. The word is an Anglicization of kosmonavt ( ). Other countries of the former Eastern Bloc use variations of the Russian kosmonavt, such as the (although Polish also uses , and the two words are considered synonyms). Coinage of the term has been credited to Soviet aeronautics (or "cosmonautics") pioneer Mikhail Tikhonravov (1900–1974). The first cosmonaut was Soviet Air Force pilot Yuri Gagarin, also the first person in space. He was part of the first six Russians, with German Titov, Yevgeny Khrunov, Andriyan Nikolayev, Pavel Popovich, and Grigoriy Nelyubov, who were given the title of pilot-cosmonaut in January 1961. Valentina Tereshkova was the first female cosmonaut and the first and youngest woman to have flown in space with a solo mission on the Vostok 6 in 1963. On 14 March 1995, Norman Thagard became the first American to ride to space on board a Russian launch vehicle, and thus became the first "American cosmonaut".
Terminology In 1959, when both the United States and Soviet Union were planning, but had yet to launch humans into space, NASA Administrator T. Keith Glennan and his Deputy Administrator, Hugh Dryden, discussed whether spacecraft crew members should be called astronauts or cosmonauts. Dryden preferred "cosmonaut", on the grounds that flights would occur in and to the broader cosmos, while the "astro" prefix suggested flight specifically to the stars. Most NASA Space Task Group members preferred "astronaut", which survived by common usage as the preferred American term. When the Soviet Union launched the first man into space, Yuri Gagarin in 1961, they chose a term which anglicizes to "cosmonaut". Astronaut A professional space traveler is called an astronaut. The first known use of the term "astronaut" in the modern sense was by Neil R. Jones in his 1930 short story "The Death's Head Meteor". The word itself had been known earlier; for example, in Percy Greg's 1880 book Across the Zodiac, "astronaut" referred to a spacecraft. In Les Navigateurs de l'Infini (1925) by J.-H. Rosny aîné, the word astronautique (astronautic) was used. The word may have been inspired by "aeronaut", an older term for an air traveler first applied in 1784 to balloonists. An early use of "astronaut" in a non-fiction publication is Eric Frank Russell's poem "The Astronaut", appearing in the November 1934 Bulletin of the British Interplanetary Society. The first known formal use of the term astronautics in the scientific community was the establishment of the annual International Astronautical Congress in 1950, and the subsequent founding of the International Astronautical Federation the following year. NASA applies the term astronaut to any crew member aboard NASA spacecraft bound for Earth orbit or beyond. NASA also uses the term as a title for those selected to join its Astronaut Corps. The European Space Agency similarly uses the term astronaut for members of its Astronaut Corps. Cosmonaut By convention, an astronaut employed by the Russian Federal Space Agency (or its Soviet predecessor) is called a cosmonaut in English texts. The word is an Anglicization of kosmonavt ( ). Other countries of the former Eastern Bloc use variations of the Russian kosmonavt, such as the (although Polish also uses , and the two words are considered synonyms). Coinage of the term has been credited to Soviet aeronautics (or "cosmonautics") pioneer Mikhail Tikhonravov (1900–1974). The first cosmonaut was Soviet Air Force pilot Yuri Gagarin, also the first person in space. He was part of the first six Russians, with German Titov, Yevgeny Khrunov, Andriyan Nikolayev, Pavel Popovich, and Grigoriy Nelyubov, who were given the title of pilot-cosmonaut in January 1961. Valentina Tereshkova was the first female cosmonaut and the first and youngest woman to have flown in space with a solo mission on the Vostok 6 in 1963. On 14 March 1995, Norman Thagard became the first American to ride to space on board a Russian launch vehicle, and thus became the first "American cosmonaut".
Taikonaut In Chinese, the term (, "cosmos navigating personnel") is used for astronauts and cosmonauts in general, while (, "navigating celestial-heaven personnel") is used for Chinese astronauts. Here, (, literally "heaven-navigating", or spaceflight) is strictly defined as the navigation of outer space within the local star system, i.e. Solar System. The phrase (, "spaceman") is often used in Hong Kong and Taiwan. The term taikonaut is used by some English-language news media organizations for professional space travelers from China. The word has featured in the Longman and Oxford English dictionaries, and the term became more common in 2003 when China sent its first astronaut Yang Liwei into space aboard the Shenzhou 5 spacecraft. This is the term used by Xinhua News Agency in the English version of the Chinese People's Daily since the advent of the Chinese space program. The origin of the term is unclear; as early as May 1998, Chiew Lee Yih () from Malaysia, used it in newsgroups. Parastronaut For its 2022 Astronaut Group, ESA envisions recruiting an astronaut with a physical disability, a category they called "parastronauts", with the intention but not guarantee of spaceflight. The categories of disability considered for the program were individuals with lower limb deficiency (either through amputation or congenital), leg length difference, or a short stature (less than ). Other terms With the rise of space tourism, NASA and the Russian Federal Space Agency agreed to use the term "spaceflight participant" to distinguish those space travelers from professional astronauts on missions coordinated by those two agencies. While no nation other than Russia (and previously the Soviet Union), the United States, and China have launched a crewed spacecraft, several other nations have sent people into space in cooperation with one of these countries, e.g. the Soviet-led Interkosmos program. Inspired partly by these missions, other synonyms for astronaut have entered occasional English usage. For example, the term spationaut () is sometimes used to describe French space travelers, from the Latin word for "space"; the Malay term (deriving from angkasa meaning 'space') was used to describe participants in the Angkasawan program (note its similarity with the Indonesian term antariksawan). Plans of the Indian Space Research Organisation to launch its crewed Gaganyaan spacecraft have spurred at times public discussion if another term than astronaut should be used for the crew members, suggesting vyomanaut (from the Sanskrit word / meaning 'sky' or 'space') or gagannaut (from the Sanskrit word for 'sky'). In Finland, the NASA astronaut Timothy Kopra, a Finnish American, has sometimes been referred to as , from the Finnish word . Across Germanic languages, "astronaut" is used in conjunction with locally derived words like German's Raumfahrer, Dutch's ruimtevaarder, Swedish's rymdfarare and Norwegian's romfarer.
Taikonaut In Chinese, the term (, "cosmos navigating personnel") is used for astronauts and cosmonauts in general, while (, "navigating celestial-heaven personnel") is used for Chinese astronauts. Here, (, literally "heaven-navigating", or spaceflight) is strictly defined as the navigation of outer space within the local star system, i.e. Solar System. The phrase (, "spaceman") is often used in Hong Kong and Taiwan. The term taikonaut is used by some English-language news media organizations for professional space travelers from China. The word has featured in the Longman and Oxford English dictionaries, and the term became more common in 2003 when China sent its first astronaut Yang Liwei into space aboard the Shenzhou 5 spacecraft. This is the term used by Xinhua News Agency in the English version of the Chinese People's Daily since the advent of the Chinese space program. The origin of the term is unclear; as early as May 1998, Chiew Lee Yih () from Malaysia, used it in newsgroups. Parastronaut For its 2022 Astronaut Group, ESA envisions recruiting an astronaut with a physical disability, a category they called "parastronauts", with the intention but not guarantee of spaceflight. The categories of disability considered for the program were individuals with lower limb deficiency (either through amputation or congenital), leg length difference, or a short stature (less than ). Other terms With the rise of space tourism, NASA and the Russian Federal Space Agency agreed to use the term "spaceflight participant" to distinguish those space travelers from professional astronauts on missions coordinated by those two agencies. While no nation other than Russia (and previously the Soviet Union), the United States, and China have launched a crewed spacecraft, several other nations have sent people into space in cooperation with one of these countries, e.g. the Soviet-led Interkosmos program. Inspired partly by these missions, other synonyms for astronaut have entered occasional English usage. For example, the term spationaut () is sometimes used to describe French space travelers, from the Latin word for "space"; the Malay term (deriving from angkasa meaning 'space') was used to describe participants in the Angkasawan program (note its similarity with the Indonesian term antariksawan). Plans of the Indian Space Research Organisation to launch its crewed Gaganyaan spacecraft have spurred at times public discussion if another term than astronaut should be used for the crew members, suggesting vyomanaut (from the Sanskrit word / meaning 'sky' or 'space') or gagannaut (from the Sanskrit word for 'sky'). In Finland, the NASA astronaut Timothy Kopra, a Finnish American, has sometimes been referred to as , from the Finnish word . Across Germanic languages, "astronaut" is used in conjunction with locally derived words like German's Raumfahrer, Dutch's ruimtevaarder, Swedish's rymdfarare and Norwegian's romfarer.
Taikonaut In Chinese, the term (, "cosmos navigating personnel") is used for astronauts and cosmonauts in general, while (, "navigating celestial-heaven personnel") is used for Chinese astronauts. Here, (, literally "heaven-navigating", or spaceflight) is strictly defined as the navigation of outer space within the local star system, i.e. Solar System. The phrase (, "spaceman") is often used in Hong Kong and Taiwan. The term taikonaut is used by some English-language news media organizations for professional space travelers from China. The word has featured in the Longman and Oxford English dictionaries, and the term became more common in 2003 when China sent its first astronaut Yang Liwei into space aboard the Shenzhou 5 spacecraft. This is the term used by Xinhua News Agency in the English version of the Chinese People's Daily since the advent of the Chinese space program. The origin of the term is unclear; as early as May 1998, Chiew Lee Yih () from Malaysia, used it in newsgroups. Parastronaut For its 2022 Astronaut Group, ESA envisions recruiting an astronaut with a physical disability, a category they called "parastronauts", with the intention but not guarantee of spaceflight. The categories of disability considered for the program were individuals with lower limb deficiency (either through amputation or congenital), leg length difference, or a short stature (less than ). Other terms With the rise of space tourism, NASA and the Russian Federal Space Agency agreed to use the term "spaceflight participant" to distinguish those space travelers from professional astronauts on missions coordinated by those two agencies. While no nation other than Russia (and previously the Soviet Union), the United States, and China have launched a crewed spacecraft, several other nations have sent people into space in cooperation with one of these countries, e.g. the Soviet-led Interkosmos program. Inspired partly by these missions, other synonyms for astronaut have entered occasional English usage. For example, the term spationaut () is sometimes used to describe French space travelers, from the Latin word for "space"; the Malay term (deriving from angkasa meaning 'space') was used to describe participants in the Angkasawan program (note its similarity with the Indonesian term antariksawan). Plans of the Indian Space Research Organisation to launch its crewed Gaganyaan spacecraft have spurred at times public discussion if another term than astronaut should be used for the crew members, suggesting vyomanaut (from the Sanskrit word / meaning 'sky' or 'space') or gagannaut (from the Sanskrit word for 'sky'). In Finland, the NASA astronaut Timothy Kopra, a Finnish American, has sometimes been referred to as , from the Finnish word . Across Germanic languages, "astronaut" is used in conjunction with locally derived words like German's Raumfahrer, Dutch's ruimtevaarder, Swedish's rymdfarare and Norwegian's romfarer.
As of 2021 in the United States, astronaut status is conferred on a person depending on the authorizing agency: one who flies in a vehicle above for NASA or the military is considered an astronaut (with no qualifier) one who flies in a vehicle to the International Space Station in a mission coordinated by NASA and Roscosmos is a spaceflight participant one who flies above in a non-NASA vehicle as a crewmember and demonstrates activities during flight that are essential to public safety, or contribute to human space flight safety, is considered a commercial astronaut by the Federal Aviation Administration one who flies to the International Space Station as part of a "privately funded, dedicated commercial spaceflight on a commercial launch vehicle dedicated to the mission ... to conduct approved commercial and marketing activities on the space station (or in a commercial segment attached to the station)" is considered a private astronaut by NASA (as of 2020, nobody has yet qualified for this status) a generally-accepted but unofficial term for a paying non-crew passenger who flies a private non-NASA or military vehicles above is a space tourist (as of 2020, nobody has yet qualified for this status) On July 20, 2021, the FAA issued an order redefining the eligibility criteria to be an astronaut in response to the private suborbital spaceflights of Jeff Bezos and Richard Branson. The new criteria states that one must have "[d]emonstrated activities during flight that were essential to public safety, or contributed to human space flight safety" in order to qualify as an astronaut. This new definition excludes Bezos and Branson. Space travel milestones The first human in space was Soviet Yuri Gagarin, who was launched on 12 April 1961, aboard Vostok 1 and orbited around the Earth for 108 minutes. The first woman in space was Soviet Valentina Tereshkova, who launched on 16 June 1963, aboard Vostok 6 and orbited Earth for almost three days. Alan Shepard became the first American and second person in space on 5 May 1961, on a 15-minute sub-orbital flight aboard Freedom 7. The first American to orbit the Earth was John Glenn, aboard Friendship 7 on 20 February 1962. The first American woman in space was Sally Ride, during Space Shuttle Challenger's mission STS-7, on 18 June 1983. In 1992, Mae Jemison became the first African American woman to travel in space aboard STS-47. Cosmonaut Alexei Leonov was the first person to conduct an extravehicular activity (EVA), (commonly called a "spacewalk"), on 18 March 1965, on the Soviet Union's Voskhod 2 mission. This was followed two and a half months later by astronaut Ed White who made the first American EVA on NASA's Gemini 4 mission. The first crewed mission to orbit the Moon, Apollo 8, included American William Anders who was born in Hong Kong, making him the first Asian-born astronaut in 1968. The Soviet Union, through its Intercosmos program, allowed people from other "socialist" (i.e.
As of 2021 in the United States, astronaut status is conferred on a person depending on the authorizing agency: one who flies in a vehicle above for NASA or the military is considered an astronaut (with no qualifier) one who flies in a vehicle to the International Space Station in a mission coordinated by NASA and Roscosmos is a spaceflight participant one who flies above in a non-NASA vehicle as a crewmember and demonstrates activities during flight that are essential to public safety, or contribute to human space flight safety, is considered a commercial astronaut by the Federal Aviation Administration one who flies to the International Space Station as part of a "privately funded, dedicated commercial spaceflight on a commercial launch vehicle dedicated to the mission ... to conduct approved commercial and marketing activities on the space station (or in a commercial segment attached to the station)" is considered a private astronaut by NASA (as of 2020, nobody has yet qualified for this status) a generally-accepted but unofficial term for a paying non-crew passenger who flies a private non-NASA or military vehicles above is a space tourist (as of 2020, nobody has yet qualified for this status) On July 20, 2021, the FAA issued an order redefining the eligibility criteria to be an astronaut in response to the private suborbital spaceflights of Jeff Bezos and Richard Branson. The new criteria states that one must have "[d]emonstrated activities during flight that were essential to public safety, or contributed to human space flight safety" in order to qualify as an astronaut. This new definition excludes Bezos and Branson. Space travel milestones The first human in space was Soviet Yuri Gagarin, who was launched on 12 April 1961, aboard Vostok 1 and orbited around the Earth for 108 minutes. The first woman in space was Soviet Valentina Tereshkova, who launched on 16 June 1963, aboard Vostok 6 and orbited Earth for almost three days. Alan Shepard became the first American and second person in space on 5 May 1961, on a 15-minute sub-orbital flight aboard Freedom 7. The first American to orbit the Earth was John Glenn, aboard Friendship 7 on 20 February 1962. The first American woman in space was Sally Ride, during Space Shuttle Challenger's mission STS-7, on 18 June 1983. In 1992, Mae Jemison became the first African American woman to travel in space aboard STS-47. Cosmonaut Alexei Leonov was the first person to conduct an extravehicular activity (EVA), (commonly called a "spacewalk"), on 18 March 1965, on the Soviet Union's Voskhod 2 mission. This was followed two and a half months later by astronaut Ed White who made the first American EVA on NASA's Gemini 4 mission. The first crewed mission to orbit the Moon, Apollo 8, included American William Anders who was born in Hong Kong, making him the first Asian-born astronaut in 1968. The Soviet Union, through its Intercosmos program, allowed people from other "socialist" (i.e.
As of 2021 in the United States, astronaut status is conferred on a person depending on the authorizing agency: one who flies in a vehicle above for NASA or the military is considered an astronaut (with no qualifier) one who flies in a vehicle to the International Space Station in a mission coordinated by NASA and Roscosmos is a spaceflight participant one who flies above in a non-NASA vehicle as a crewmember and demonstrates activities during flight that are essential to public safety, or contribute to human space flight safety, is considered a commercial astronaut by the Federal Aviation Administration one who flies to the International Space Station as part of a "privately funded, dedicated commercial spaceflight on a commercial launch vehicle dedicated to the mission ... to conduct approved commercial and marketing activities on the space station (or in a commercial segment attached to the station)" is considered a private astronaut by NASA (as of 2020, nobody has yet qualified for this status) a generally-accepted but unofficial term for a paying non-crew passenger who flies a private non-NASA or military vehicles above is a space tourist (as of 2020, nobody has yet qualified for this status) On July 20, 2021, the FAA issued an order redefining the eligibility criteria to be an astronaut in response to the private suborbital spaceflights of Jeff Bezos and Richard Branson. The new criteria states that one must have "[d]emonstrated activities during flight that were essential to public safety, or contributed to human space flight safety" in order to qualify as an astronaut. This new definition excludes Bezos and Branson. Space travel milestones The first human in space was Soviet Yuri Gagarin, who was launched on 12 April 1961, aboard Vostok 1 and orbited around the Earth for 108 minutes. The first woman in space was Soviet Valentina Tereshkova, who launched on 16 June 1963, aboard Vostok 6 and orbited Earth for almost three days. Alan Shepard became the first American and second person in space on 5 May 1961, on a 15-minute sub-orbital flight aboard Freedom 7. The first American to orbit the Earth was John Glenn, aboard Friendship 7 on 20 February 1962. The first American woman in space was Sally Ride, during Space Shuttle Challenger's mission STS-7, on 18 June 1983. In 1992, Mae Jemison became the first African American woman to travel in space aboard STS-47. Cosmonaut Alexei Leonov was the first person to conduct an extravehicular activity (EVA), (commonly called a "spacewalk"), on 18 March 1965, on the Soviet Union's Voskhod 2 mission. This was followed two and a half months later by astronaut Ed White who made the first American EVA on NASA's Gemini 4 mission. The first crewed mission to orbit the Moon, Apollo 8, included American William Anders who was born in Hong Kong, making him the first Asian-born astronaut in 1968. The Soviet Union, through its Intercosmos program, allowed people from other "socialist" (i.e.
Warsaw Pact and other Soviet-allied) countries to fly on its missions, with the notable exceptions of France and Austria participating in Soyuz TM-7 and Soyuz TM-13, respectively. An example is Czechoslovak Vladimír Remek, the first cosmonaut from a country other than the Soviet Union or the United States, who flew to space in 1978 on a Soyuz-U rocket. Rakesh Sharma became the first Indian citizen to travel to space. He was launched aboard Soyuz T-11, on 2 April 1984. On 23 July 1980, Pham Tuan of Vietnam became the first Asian in space when he flew aboard Soyuz 37. Also in 1980, Cuban Arnaldo Tamayo Méndez became the first person of Hispanic and black African descent to fly in space, and in 1983, Guion Bluford became the first African American to fly into space. In April 1985, Taylor Wang became the first ethnic Chinese person in space. The first person born in Africa to fly in space was Patrick Baudry (France), in 1985. In 1985, Saudi Arabian Prince Sultan Bin Salman Bin AbdulAziz Al-Saud became the first Arab Muslim astronaut in space. In 1988, Abdul Ahad Mohmand became the first Afghan to reach space, spending nine days aboard the Mir space station. With the increase of seats on the Space Shuttle, the U.S. began taking international astronauts. In 1983, Ulf Merbold of West Germany became the first non-US citizen to fly in a US spacecraft. In 1984, Marc Garneau became the first of eight Canadian astronauts to fly in space (through 2010). In 1985, Rodolfo Neri Vela became the first Mexican-born person in space. In 1991, Helen Sharman became the first Briton to fly in space. In 2002, Mark Shuttleworth became the first citizen of an African country to fly in space, as a paying spaceflight participant. In 2003, Ilan Ramon became the first Israeli to fly in space, although he died during a re-entry accident. On 15 October 2003, Yang Liwei became China's first astronaut on the Shenzhou 5 spacecraft. On 30 May 2020, Doug Hurley and Bob Behnken became the first astronauts to launch on a private crewed spacecraft, Crew Dragon. Age milestones The youngest person to reach space is Oliver Daemen, who was 18 years and 11 months old when he made a suborbital spaceflight lasting 7 minutes on July 20, 2021. Daemen, who was a commercial passenger aboard the New Shepard, broke the record of Soviet cosmonaut Gherman Titov, who was 25 years old when he flew Vostok 2. Titov remains the youngest human to reach orbit; he rounded the planet 17 times. Titov was also the first person to suffer space sickness and the first person to sleep in space, twice. On the same flight as Daemen was 82 year, 6-month-old Wally Funk, one of the women dubbed the Mercury 13, and now the oldest person in space.
Warsaw Pact and other Soviet-allied) countries to fly on its missions, with the notable exceptions of France and Austria participating in Soyuz TM-7 and Soyuz TM-13, respectively. An example is Czechoslovak Vladimír Remek, the first cosmonaut from a country other than the Soviet Union or the United States, who flew to space in 1978 on a Soyuz-U rocket. Rakesh Sharma became the first Indian citizen to travel to space. He was launched aboard Soyuz T-11, on 2 April 1984. On 23 July 1980, Pham Tuan of Vietnam became the first Asian in space when he flew aboard Soyuz 37. Also in 1980, Cuban Arnaldo Tamayo Méndez became the first person of Hispanic and black African descent to fly in space, and in 1983, Guion Bluford became the first African American to fly into space. In April 1985, Taylor Wang became the first ethnic Chinese person in space. The first person born in Africa to fly in space was Patrick Baudry (France), in 1985. In 1985, Saudi Arabian Prince Sultan Bin Salman Bin AbdulAziz Al-Saud became the first Arab Muslim astronaut in space. In 1988, Abdul Ahad Mohmand became the first Afghan to reach space, spending nine days aboard the Mir space station. With the increase of seats on the Space Shuttle, the U.S. began taking international astronauts. In 1983, Ulf Merbold of West Germany became the first non-US citizen to fly in a US spacecraft. In 1984, Marc Garneau became the first of eight Canadian astronauts to fly in space (through 2010). In 1985, Rodolfo Neri Vela became the first Mexican-born person in space. In 1991, Helen Sharman became the first Briton to fly in space. In 2002, Mark Shuttleworth became the first citizen of an African country to fly in space, as a paying spaceflight participant. In 2003, Ilan Ramon became the first Israeli to fly in space, although he died during a re-entry accident. On 15 October 2003, Yang Liwei became China's first astronaut on the Shenzhou 5 spacecraft. On 30 May 2020, Doug Hurley and Bob Behnken became the first astronauts to launch on a private crewed spacecraft, Crew Dragon. Age milestones The youngest person to reach space is Oliver Daemen, who was 18 years and 11 months old when he made a suborbital spaceflight lasting 7 minutes on July 20, 2021. Daemen, who was a commercial passenger aboard the New Shepard, broke the record of Soviet cosmonaut Gherman Titov, who was 25 years old when he flew Vostok 2. Titov remains the youngest human to reach orbit; he rounded the planet 17 times. Titov was also the first person to suffer space sickness and the first person to sleep in space, twice. On the same flight as Daemen was 82 year, 6-month-old Wally Funk, one of the women dubbed the Mercury 13, and now the oldest person in space.
Warsaw Pact and other Soviet-allied) countries to fly on its missions, with the notable exceptions of France and Austria participating in Soyuz TM-7 and Soyuz TM-13, respectively. An example is Czechoslovak Vladimír Remek, the first cosmonaut from a country other than the Soviet Union or the United States, who flew to space in 1978 on a Soyuz-U rocket. Rakesh Sharma became the first Indian citizen to travel to space. He was launched aboard Soyuz T-11, on 2 April 1984. On 23 July 1980, Pham Tuan of Vietnam became the first Asian in space when he flew aboard Soyuz 37. Also in 1980, Cuban Arnaldo Tamayo Méndez became the first person of Hispanic and black African descent to fly in space, and in 1983, Guion Bluford became the first African American to fly into space. In April 1985, Taylor Wang became the first ethnic Chinese person in space. The first person born in Africa to fly in space was Patrick Baudry (France), in 1985. In 1985, Saudi Arabian Prince Sultan Bin Salman Bin AbdulAziz Al-Saud became the first Arab Muslim astronaut in space. In 1988, Abdul Ahad Mohmand became the first Afghan to reach space, spending nine days aboard the Mir space station. With the increase of seats on the Space Shuttle, the U.S. began taking international astronauts. In 1983, Ulf Merbold of West Germany became the first non-US citizen to fly in a US spacecraft. In 1984, Marc Garneau became the first of eight Canadian astronauts to fly in space (through 2010). In 1985, Rodolfo Neri Vela became the first Mexican-born person in space. In 1991, Helen Sharman became the first Briton to fly in space. In 2002, Mark Shuttleworth became the first citizen of an African country to fly in space, as a paying spaceflight participant. In 2003, Ilan Ramon became the first Israeli to fly in space, although he died during a re-entry accident. On 15 October 2003, Yang Liwei became China's first astronaut on the Shenzhou 5 spacecraft. On 30 May 2020, Doug Hurley and Bob Behnken became the first astronauts to launch on a private crewed spacecraft, Crew Dragon. Age milestones The youngest person to reach space is Oliver Daemen, who was 18 years and 11 months old when he made a suborbital spaceflight lasting 7 minutes on July 20, 2021. Daemen, who was a commercial passenger aboard the New Shepard, broke the record of Soviet cosmonaut Gherman Titov, who was 25 years old when he flew Vostok 2. Titov remains the youngest human to reach orbit; he rounded the planet 17 times. Titov was also the first person to suffer space sickness and the first person to sleep in space, twice. On the same flight as Daemen was 82 year, 6-month-old Wally Funk, one of the women dubbed the Mercury 13, and now the oldest person in space.
She is the first of the Mercury 13 to reach space, although the group was trained concurrently with the all-male Mercury 7, who would all engage in space travel. The oldest person to reach orbit is John Glenn, one of the Mercury 7, who was 77 when he flew on STS-95. For suborbital age records, see . Duration and distance milestones 438 days is the longest time spent in space, by Russian Valeri Polyakov. As of 2006, the most spaceflights by an individual astronaut is seven, a record held by both Jerry L. Ross and Franklin Chang-Diaz. The farthest distance from Earth an astronaut has traveled was , when Jim Lovell, Jack Swigert, and Fred Haise went around the Moon during the Apollo 13 emergency. Civilian and non-government milestones The first civilian in space was Valentina Tereshkova aboard Vostok 6 (she also became the first woman in space on that mission). Tereshkova was only honorarily inducted into the USSR's Air Force, which did not accept female pilots at that time. A month later, Joseph Albert Walker became the first American civilian in space when his X-15 Flight 90 crossed the line, qualifying him by the international definition of spaceflight. Walker had joined the US Army Air Force but was not a member during his flight. The first people in space who had never been a member of any country's armed forces were both Konstantin Feoktistov and Boris Yegorov aboard Voskhod 1. The first non-governmental space traveler was Byron K. Lichtenberg, a researcher from the Massachusetts Institute of Technology who flew on STS-9 in 1983. In December 1990, Toyohiro Akiyama became the first paying space traveler and the first journalist in space for Tokyo Broadcasting System, a visit to Mir as part of an estimated $12 million (USD) deal with a Japanese TV station, although at the time, the term used to refer to Akiyama was "Research Cosmonaut". Akiyama suffered severe space sickness during his mission, which affected his productivity. The first self-funded space tourist was Dennis Tito on board the Russian spacecraft Soyuz TM-3 on 28 April 2001. Self-funded travelers The first person to fly on an entirely privately funded mission was Mike Melvill, piloting SpaceShipOne flight 15P on a suborbital journey, although he was a test pilot employed by Scaled Composites and not an actual paying space tourist.
She is the first of the Mercury 13 to reach space, although the group was trained concurrently with the all-male Mercury 7, who would all engage in space travel. The oldest person to reach orbit is John Glenn, one of the Mercury 7, who was 77 when he flew on STS-95. For suborbital age records, see . Duration and distance milestones 438 days is the longest time spent in space, by Russian Valeri Polyakov. As of 2006, the most spaceflights by an individual astronaut is seven, a record held by both Jerry L. Ross and Franklin Chang-Diaz. The farthest distance from Earth an astronaut has traveled was , when Jim Lovell, Jack Swigert, and Fred Haise went around the Moon during the Apollo 13 emergency. Civilian and non-government milestones The first civilian in space was Valentina Tereshkova aboard Vostok 6 (she also became the first woman in space on that mission). Tereshkova was only honorarily inducted into the USSR's Air Force, which did not accept female pilots at that time. A month later, Joseph Albert Walker became the first American civilian in space when his X-15 Flight 90 crossed the line, qualifying him by the international definition of spaceflight. Walker had joined the US Army Air Force but was not a member during his flight. The first people in space who had never been a member of any country's armed forces were both Konstantin Feoktistov and Boris Yegorov aboard Voskhod 1. The first non-governmental space traveler was Byron K. Lichtenberg, a researcher from the Massachusetts Institute of Technology who flew on STS-9 in 1983. In December 1990, Toyohiro Akiyama became the first paying space traveler and the first journalist in space for Tokyo Broadcasting System, a visit to Mir as part of an estimated $12 million (USD) deal with a Japanese TV station, although at the time, the term used to refer to Akiyama was "Research Cosmonaut". Akiyama suffered severe space sickness during his mission, which affected his productivity. The first self-funded space tourist was Dennis Tito on board the Russian spacecraft Soyuz TM-3 on 28 April 2001. Self-funded travelers The first person to fly on an entirely privately funded mission was Mike Melvill, piloting SpaceShipOne flight 15P on a suborbital journey, although he was a test pilot employed by Scaled Composites and not an actual paying space tourist.
She is the first of the Mercury 13 to reach space, although the group was trained concurrently with the all-male Mercury 7, who would all engage in space travel. The oldest person to reach orbit is John Glenn, one of the Mercury 7, who was 77 when he flew on STS-95. For suborbital age records, see . Duration and distance milestones 438 days is the longest time spent in space, by Russian Valeri Polyakov. As of 2006, the most spaceflights by an individual astronaut is seven, a record held by both Jerry L. Ross and Franklin Chang-Diaz. The farthest distance from Earth an astronaut has traveled was , when Jim Lovell, Jack Swigert, and Fred Haise went around the Moon during the Apollo 13 emergency. Civilian and non-government milestones The first civilian in space was Valentina Tereshkova aboard Vostok 6 (she also became the first woman in space on that mission). Tereshkova was only honorarily inducted into the USSR's Air Force, which did not accept female pilots at that time. A month later, Joseph Albert Walker became the first American civilian in space when his X-15 Flight 90 crossed the line, qualifying him by the international definition of spaceflight. Walker had joined the US Army Air Force but was not a member during his flight. The first people in space who had never been a member of any country's armed forces were both Konstantin Feoktistov and Boris Yegorov aboard Voskhod 1. The first non-governmental space traveler was Byron K. Lichtenberg, a researcher from the Massachusetts Institute of Technology who flew on STS-9 in 1983. In December 1990, Toyohiro Akiyama became the first paying space traveler and the first journalist in space for Tokyo Broadcasting System, a visit to Mir as part of an estimated $12 million (USD) deal with a Japanese TV station, although at the time, the term used to refer to Akiyama was "Research Cosmonaut". Akiyama suffered severe space sickness during his mission, which affected his productivity. The first self-funded space tourist was Dennis Tito on board the Russian spacecraft Soyuz TM-3 on 28 April 2001. Self-funded travelers The first person to fly on an entirely privately funded mission was Mike Melvill, piloting SpaceShipOne flight 15P on a suborbital journey, although he was a test pilot employed by Scaled Composites and not an actual paying space tourist.
Seven others have paid the Russian Space Agency to fly into space: Dennis Tito (American): 28 April – 6 May 2001 (ISS) Mark Shuttleworth (South African): 25 April – 5 May 2002 (ISS) Gregory Olsen (American): 1–11 October 2005 (ISS) Anousheh Ansari (Iranian / American): 18–29 September 2006 (ISS) Charles Simonyi (Hungarian / American): 7–21 April 2007 (ISS), 26 March – 8 April 2009 (ISS) Richard Garriott (British / American): 12–24 October 2008 (ISS) Guy Laliberté (Canadian): 30 September 2009 – 11 October 2009 (ISS) Jared Isaacman (American): 15–18 September 2021 (Free Flier) Yusaku Maezawa (Japanese): 8 – 24 December 2021 (ISS) Training The first NASA astronauts were selected for training in 1959. Early in the space program, military jet test piloting and engineering training were often cited as prerequisites for selection as an astronaut at NASA, although neither John Glenn nor Scott Carpenter (of the Mercury Seven) had any university degree, in engineering or any other discipline at the time of their selection. Selection was initially limited to military pilots. The earliest astronauts for both the US and the USSR tended to be jet fighter pilots, and were often test pilots. Once selected, NASA astronauts go through twenty months of training in a variety of areas, including training for extravehicular activity in a facility such as NASA's Neutral Buoyancy Laboratory. Astronauts-in-training (astronaut candidates) may also experience short periods of weightlessness (microgravity) in an aircraft called the "Vomit Comet," the nickname given to a pair of modified KC-135s (retired in 2000 and 2004, respectively, and replaced in 2005 with a C-9) which perform parabolic flights. Astronauts are also required to accumulate a number of flight hours in high-performance jet aircraft. This is mostly done in T-38 jet aircraft out of Ellington Field, due to its proximity to the Johnson Space Center. Ellington Field is also where the Shuttle Training Aircraft is maintained and developed, although most flights of the aircraft are conducted from Edwards Air Force Base. Astronauts in training must learn how to control and fly the Space Shuttle and, it is vital that they are familiar with the International Space Station so they know what they must do when they get there. NASA candidacy requirements The candidate must be a citizen of the United States. The candidate must complete a master's degree in a STEM field, including engineering, biological science, physical science, computer science or mathematics. The candidate must have at least two years of related professional experience obtained after degree completion or at least 1,000 hours pilot-in-command time on jet aircraft. The candidate must be able to pass the NASA long-duration flight astronaut physical. The candidate must also have skills in leadership, teamwork and communications. The master's degree requirement can also be met by: Two years of work toward a doctoral program in a related science, technology, engineering or math field. A completed Doctor of Medicine or Doctor of Osteopathic Medicine degree. Completion of a nationally recognized test pilot school program.
Seven others have paid the Russian Space Agency to fly into space: Dennis Tito (American): 28 April – 6 May 2001 (ISS) Mark Shuttleworth (South African): 25 April – 5 May 2002 (ISS) Gregory Olsen (American): 1–11 October 2005 (ISS) Anousheh Ansari (Iranian / American): 18–29 September 2006 (ISS) Charles Simonyi (Hungarian / American): 7–21 April 2007 (ISS), 26 March – 8 April 2009 (ISS) Richard Garriott (British / American): 12–24 October 2008 (ISS) Guy Laliberté (Canadian): 30 September 2009 – 11 October 2009 (ISS) Jared Isaacman (American): 15–18 September 2021 (Free Flier) Yusaku Maezawa (Japanese): 8 – 24 December 2021 (ISS) Training The first NASA astronauts were selected for training in 1959. Early in the space program, military jet test piloting and engineering training were often cited as prerequisites for selection as an astronaut at NASA, although neither John Glenn nor Scott Carpenter (of the Mercury Seven) had any university degree, in engineering or any other discipline at the time of their selection. Selection was initially limited to military pilots. The earliest astronauts for both the US and the USSR tended to be jet fighter pilots, and were often test pilots. Once selected, NASA astronauts go through twenty months of training in a variety of areas, including training for extravehicular activity in a facility such as NASA's Neutral Buoyancy Laboratory. Astronauts-in-training (astronaut candidates) may also experience short periods of weightlessness (microgravity) in an aircraft called the "Vomit Comet," the nickname given to a pair of modified KC-135s (retired in 2000 and 2004, respectively, and replaced in 2005 with a C-9) which perform parabolic flights. Astronauts are also required to accumulate a number of flight hours in high-performance jet aircraft. This is mostly done in T-38 jet aircraft out of Ellington Field, due to its proximity to the Johnson Space Center. Ellington Field is also where the Shuttle Training Aircraft is maintained and developed, although most flights of the aircraft are conducted from Edwards Air Force Base. Astronauts in training must learn how to control and fly the Space Shuttle and, it is vital that they are familiar with the International Space Station so they know what they must do when they get there. NASA candidacy requirements The candidate must be a citizen of the United States. The candidate must complete a master's degree in a STEM field, including engineering, biological science, physical science, computer science or mathematics. The candidate must have at least two years of related professional experience obtained after degree completion or at least 1,000 hours pilot-in-command time on jet aircraft. The candidate must be able to pass the NASA long-duration flight astronaut physical. The candidate must also have skills in leadership, teamwork and communications. The master's degree requirement can also be met by: Two years of work toward a doctoral program in a related science, technology, engineering or math field. A completed Doctor of Medicine or Doctor of Osteopathic Medicine degree. Completion of a nationally recognized test pilot school program.
Seven others have paid the Russian Space Agency to fly into space: Dennis Tito (American): 28 April – 6 May 2001 (ISS) Mark Shuttleworth (South African): 25 April – 5 May 2002 (ISS) Gregory Olsen (American): 1–11 October 2005 (ISS) Anousheh Ansari (Iranian / American): 18–29 September 2006 (ISS) Charles Simonyi (Hungarian / American): 7–21 April 2007 (ISS), 26 March – 8 April 2009 (ISS) Richard Garriott (British / American): 12–24 October 2008 (ISS) Guy Laliberté (Canadian): 30 September 2009 – 11 October 2009 (ISS) Jared Isaacman (American): 15–18 September 2021 (Free Flier) Yusaku Maezawa (Japanese): 8 – 24 December 2021 (ISS) Training The first NASA astronauts were selected for training in 1959. Early in the space program, military jet test piloting and engineering training were often cited as prerequisites for selection as an astronaut at NASA, although neither John Glenn nor Scott Carpenter (of the Mercury Seven) had any university degree, in engineering or any other discipline at the time of their selection. Selection was initially limited to military pilots. The earliest astronauts for both the US and the USSR tended to be jet fighter pilots, and were often test pilots. Once selected, NASA astronauts go through twenty months of training in a variety of areas, including training for extravehicular activity in a facility such as NASA's Neutral Buoyancy Laboratory. Astronauts-in-training (astronaut candidates) may also experience short periods of weightlessness (microgravity) in an aircraft called the "Vomit Comet," the nickname given to a pair of modified KC-135s (retired in 2000 and 2004, respectively, and replaced in 2005 with a C-9) which perform parabolic flights. Astronauts are also required to accumulate a number of flight hours in high-performance jet aircraft. This is mostly done in T-38 jet aircraft out of Ellington Field, due to its proximity to the Johnson Space Center. Ellington Field is also where the Shuttle Training Aircraft is maintained and developed, although most flights of the aircraft are conducted from Edwards Air Force Base. Astronauts in training must learn how to control and fly the Space Shuttle and, it is vital that they are familiar with the International Space Station so they know what they must do when they get there. NASA candidacy requirements The candidate must be a citizen of the United States. The candidate must complete a master's degree in a STEM field, including engineering, biological science, physical science, computer science or mathematics. The candidate must have at least two years of related professional experience obtained after degree completion or at least 1,000 hours pilot-in-command time on jet aircraft. The candidate must be able to pass the NASA long-duration flight astronaut physical. The candidate must also have skills in leadership, teamwork and communications. The master's degree requirement can also be met by: Two years of work toward a doctoral program in a related science, technology, engineering or math field. A completed Doctor of Medicine or Doctor of Osteopathic Medicine degree. Completion of a nationally recognized test pilot school program.
Mission Specialist Educator Applicants must have a bachelor's degree with teaching experience, including work at the kindergarten through twelfth grade level. An advanced degree, such as a master's degree or a doctoral degree, is not required, but is strongly desired. Mission Specialist Educators, or "Educator Astronauts", were first selected in 2004, and as of 2007, there are three NASA Educator astronauts: Joseph M. Acaba, Richard R. Arnold, and Dorothy Metcalf-Lindenburger. Barbara Morgan, selected as back-up teacher to Christa McAuliffe in 1985, is considered to be the first Educator astronaut by the media, but she trained as a mission specialist. The Educator Astronaut program is a successor to the Teacher in Space program from the 1980s. Health risks of space travel Astronauts are susceptible to a variety of health risks including decompression sickness, barotrauma, immunodeficiencies, loss of bone and muscle, loss of eyesight, orthostatic intolerance, sleep disturbances, and radiation injury. A variety of large scale medical studies are being conducted in space via the National Space Biomedical Research Institute (NSBRI) to address these issues. Prominent among these is the Advanced Diagnostic Ultrasound in Microgravity Study in which astronauts (including former ISS commanders Leroy Chiao and Gennady Padalka) perform ultrasound scans under the guidance of remote experts to diagnose and potentially treat hundreds of medical conditions in space. This study's techniques are now being applied to cover professional and Olympic sports injuries as well as ultrasound performed by non-expert operators in medical and high school students. It is anticipated that remote guided ultrasound will have application on Earth in emergency and rural care situations, where access to a trained physician is often rare. A 2006 Space Shuttle experiment found that Salmonella typhimurium, a bacterium that can cause food poisoning, became more virulent when cultivated in space. More recently, in 2017, bacteria were found to be more resistant to antibiotics and to thrive in the near-weightlessness of space. Microorganisms have been observed to survive the vacuum of outer space. On 31 December 2012, a NASA-supported study reported that human spaceflight may harm the brain and accelerate the onset of Alzheimer's disease. In October 2015, the NASA Office of Inspector General issued a health hazards report related to space exploration, including a human mission to Mars. Over the last decade, flight surgeons and scientists at NASA have seen a pattern of vision problems in astronauts on long-duration space missions. The syndrome, known as visual impairment intracranial pressure (VIIP), has been reported in nearly two-thirds of space explorers after long periods spent aboard the International Space Station (ISS). On 2 November 2017, scientists reported that significant changes in the position and structure of the brain have been found in astronauts who have taken trips in space, based on MRI studies. Astronauts who took longer space trips were associated with greater brain changes. Being in space can be physiologically deconditioning on the body. It can affect the otolith organs and adaptive capabilities of the central nervous system.
Mission Specialist Educator Applicants must have a bachelor's degree with teaching experience, including work at the kindergarten through twelfth grade level. An advanced degree, such as a master's degree or a doctoral degree, is not required, but is strongly desired. Mission Specialist Educators, or "Educator Astronauts", were first selected in 2004, and as of 2007, there are three NASA Educator astronauts: Joseph M. Acaba, Richard R. Arnold, and Dorothy Metcalf-Lindenburger. Barbara Morgan, selected as back-up teacher to Christa McAuliffe in 1985, is considered to be the first Educator astronaut by the media, but she trained as a mission specialist. The Educator Astronaut program is a successor to the Teacher in Space program from the 1980s. Health risks of space travel Astronauts are susceptible to a variety of health risks including decompression sickness, barotrauma, immunodeficiencies, loss of bone and muscle, loss of eyesight, orthostatic intolerance, sleep disturbances, and radiation injury. A variety of large scale medical studies are being conducted in space via the National Space Biomedical Research Institute (NSBRI) to address these issues. Prominent among these is the Advanced Diagnostic Ultrasound in Microgravity Study in which astronauts (including former ISS commanders Leroy Chiao and Gennady Padalka) perform ultrasound scans under the guidance of remote experts to diagnose and potentially treat hundreds of medical conditions in space. This study's techniques are now being applied to cover professional and Olympic sports injuries as well as ultrasound performed by non-expert operators in medical and high school students. It is anticipated that remote guided ultrasound will have application on Earth in emergency and rural care situations, where access to a trained physician is often rare. A 2006 Space Shuttle experiment found that Salmonella typhimurium, a bacterium that can cause food poisoning, became more virulent when cultivated in space. More recently, in 2017, bacteria were found to be more resistant to antibiotics and to thrive in the near-weightlessness of space. Microorganisms have been observed to survive the vacuum of outer space. On 31 December 2012, a NASA-supported study reported that human spaceflight may harm the brain and accelerate the onset of Alzheimer's disease. In October 2015, the NASA Office of Inspector General issued a health hazards report related to space exploration, including a human mission to Mars. Over the last decade, flight surgeons and scientists at NASA have seen a pattern of vision problems in astronauts on long-duration space missions. The syndrome, known as visual impairment intracranial pressure (VIIP), has been reported in nearly two-thirds of space explorers after long periods spent aboard the International Space Station (ISS). On 2 November 2017, scientists reported that significant changes in the position and structure of the brain have been found in astronauts who have taken trips in space, based on MRI studies. Astronauts who took longer space trips were associated with greater brain changes. Being in space can be physiologically deconditioning on the body. It can affect the otolith organs and adaptive capabilities of the central nervous system.
Mission Specialist Educator Applicants must have a bachelor's degree with teaching experience, including work at the kindergarten through twelfth grade level. An advanced degree, such as a master's degree or a doctoral degree, is not required, but is strongly desired. Mission Specialist Educators, or "Educator Astronauts", were first selected in 2004, and as of 2007, there are three NASA Educator astronauts: Joseph M. Acaba, Richard R. Arnold, and Dorothy Metcalf-Lindenburger. Barbara Morgan, selected as back-up teacher to Christa McAuliffe in 1985, is considered to be the first Educator astronaut by the media, but she trained as a mission specialist. The Educator Astronaut program is a successor to the Teacher in Space program from the 1980s. Health risks of space travel Astronauts are susceptible to a variety of health risks including decompression sickness, barotrauma, immunodeficiencies, loss of bone and muscle, loss of eyesight, orthostatic intolerance, sleep disturbances, and radiation injury. A variety of large scale medical studies are being conducted in space via the National Space Biomedical Research Institute (NSBRI) to address these issues. Prominent among these is the Advanced Diagnostic Ultrasound in Microgravity Study in which astronauts (including former ISS commanders Leroy Chiao and Gennady Padalka) perform ultrasound scans under the guidance of remote experts to diagnose and potentially treat hundreds of medical conditions in space. This study's techniques are now being applied to cover professional and Olympic sports injuries as well as ultrasound performed by non-expert operators in medical and high school students. It is anticipated that remote guided ultrasound will have application on Earth in emergency and rural care situations, where access to a trained physician is often rare. A 2006 Space Shuttle experiment found that Salmonella typhimurium, a bacterium that can cause food poisoning, became more virulent when cultivated in space. More recently, in 2017, bacteria were found to be more resistant to antibiotics and to thrive in the near-weightlessness of space. Microorganisms have been observed to survive the vacuum of outer space. On 31 December 2012, a NASA-supported study reported that human spaceflight may harm the brain and accelerate the onset of Alzheimer's disease. In October 2015, the NASA Office of Inspector General issued a health hazards report related to space exploration, including a human mission to Mars. Over the last decade, flight surgeons and scientists at NASA have seen a pattern of vision problems in astronauts on long-duration space missions. The syndrome, known as visual impairment intracranial pressure (VIIP), has been reported in nearly two-thirds of space explorers after long periods spent aboard the International Space Station (ISS). On 2 November 2017, scientists reported that significant changes in the position and structure of the brain have been found in astronauts who have taken trips in space, based on MRI studies. Astronauts who took longer space trips were associated with greater brain changes. Being in space can be physiologically deconditioning on the body. It can affect the otolith organs and adaptive capabilities of the central nervous system.
Zero gravity and cosmic rays can cause many implications for astronauts. In October 2018, NASA-funded researchers found that lengthy journeys into outer space, including travel to the planet Mars, may substantially damage the gastrointestinal tissues of astronauts. The studies support earlier work that found such journeys could significantly damage the brains of astronauts, and age them prematurely. Researchers in 2018 reported, after detecting the presence on the International Space Station (ISS) of five Enterobacter bugandensis bacterial strains, none pathogenic to humans, that microorganisms on ISS should be carefully monitored to continue assuring a medically healthy environment for astronauts. A study by Russian scientists published in April 2019 stated that astronauts facing space radiation could face temporary hindrance of their memory centers. While this does not affect their intellectual capabilities, it temporarily hinders formation of new cells in brain's memory centers. The study conducted by Moscow Institute of Physics and Technology (MIPT) concluded this after they observed that mice exposed to neutron and gamma radiation did not impact the rodents' intellectual capabilities. A 2020 study conducted on the brains of eight male Russian cosmonauts after they returned from long stays aboard the International Space Station showed that long-duration spaceflight causes many physiological adaptions, including macro- and microstructural changes. While scientists still know little about the effects of spaceflight on brain structure, this study showed that space travel can lead to new motor skills (dexterity), but also slightly weaker vision, both of which could possibly be long lasting. It was the first study to provide clear evidence of sensorimotor neuroplasticity, which is the brain's ability to change through growth and reorganization. Food and drink An astronaut on the International Space Station requires about mass of food per meal each day (inclusive of about packaging mass per meal). Space Shuttle astronauts worked with nutritionists to select menus that appealed to their individual tastes. Five months before flight, menus were selected and analyzed for nutritional content by the shuttle dietician. Foods are tested to see how they will react in a reduced gravity environment. Caloric requirements are determined using a basal energy expenditure (BEE) formula. On Earth, the average American uses about of water every day. On board the ISS astronauts limit water use to only about per day. Insignia In Russia, cosmonauts are awarded Pilot-Cosmonaut of the Russian Federation upon completion of their missions, often accompanied with the award of Hero of the Russian Federation. This follows the practice established in the USSR where cosmonauts were usually awarded the title Hero of the Soviet Union. At NASA, those who complete astronaut candidate training receive a silver lapel pin. Once they have flown in space, they receive a gold pin. U.S. astronauts who also have active-duty military status receive a special qualification badge, known as the Astronaut Badge, after participation on a spaceflight. The United States Air Force also presents an Astronaut Badge to its pilots who exceed in altitude.
Zero gravity and cosmic rays can cause many implications for astronauts. In October 2018, NASA-funded researchers found that lengthy journeys into outer space, including travel to the planet Mars, may substantially damage the gastrointestinal tissues of astronauts. The studies support earlier work that found such journeys could significantly damage the brains of astronauts, and age them prematurely. Researchers in 2018 reported, after detecting the presence on the International Space Station (ISS) of five Enterobacter bugandensis bacterial strains, none pathogenic to humans, that microorganisms on ISS should be carefully monitored to continue assuring a medically healthy environment for astronauts. A study by Russian scientists published in April 2019 stated that astronauts facing space radiation could face temporary hindrance of their memory centers. While this does not affect their intellectual capabilities, it temporarily hinders formation of new cells in brain's memory centers. The study conducted by Moscow Institute of Physics and Technology (MIPT) concluded this after they observed that mice exposed to neutron and gamma radiation did not impact the rodents' intellectual capabilities. A 2020 study conducted on the brains of eight male Russian cosmonauts after they returned from long stays aboard the International Space Station showed that long-duration spaceflight causes many physiological adaptions, including macro- and microstructural changes. While scientists still know little about the effects of spaceflight on brain structure, this study showed that space travel can lead to new motor skills (dexterity), but also slightly weaker vision, both of which could possibly be long lasting. It was the first study to provide clear evidence of sensorimotor neuroplasticity, which is the brain's ability to change through growth and reorganization. Food and drink An astronaut on the International Space Station requires about mass of food per meal each day (inclusive of about packaging mass per meal). Space Shuttle astronauts worked with nutritionists to select menus that appealed to their individual tastes. Five months before flight, menus were selected and analyzed for nutritional content by the shuttle dietician. Foods are tested to see how they will react in a reduced gravity environment. Caloric requirements are determined using a basal energy expenditure (BEE) formula. On Earth, the average American uses about of water every day. On board the ISS astronauts limit water use to only about per day. Insignia In Russia, cosmonauts are awarded Pilot-Cosmonaut of the Russian Federation upon completion of their missions, often accompanied with the award of Hero of the Russian Federation. This follows the practice established in the USSR where cosmonauts were usually awarded the title Hero of the Soviet Union. At NASA, those who complete astronaut candidate training receive a silver lapel pin. Once they have flown in space, they receive a gold pin. U.S. astronauts who also have active-duty military status receive a special qualification badge, known as the Astronaut Badge, after participation on a spaceflight. The United States Air Force also presents an Astronaut Badge to its pilots who exceed in altitude.
Zero gravity and cosmic rays can cause many implications for astronauts. In October 2018, NASA-funded researchers found that lengthy journeys into outer space, including travel to the planet Mars, may substantially damage the gastrointestinal tissues of astronauts. The studies support earlier work that found such journeys could significantly damage the brains of astronauts, and age them prematurely. Researchers in 2018 reported, after detecting the presence on the International Space Station (ISS) of five Enterobacter bugandensis bacterial strains, none pathogenic to humans, that microorganisms on ISS should be carefully monitored to continue assuring a medically healthy environment for astronauts. A study by Russian scientists published in April 2019 stated that astronauts facing space radiation could face temporary hindrance of their memory centers. While this does not affect their intellectual capabilities, it temporarily hinders formation of new cells in brain's memory centers. The study conducted by Moscow Institute of Physics and Technology (MIPT) concluded this after they observed that mice exposed to neutron and gamma radiation did not impact the rodents' intellectual capabilities. A 2020 study conducted on the brains of eight male Russian cosmonauts after they returned from long stays aboard the International Space Station showed that long-duration spaceflight causes many physiological adaptions, including macro- and microstructural changes. While scientists still know little about the effects of spaceflight on brain structure, this study showed that space travel can lead to new motor skills (dexterity), but also slightly weaker vision, both of which could possibly be long lasting. It was the first study to provide clear evidence of sensorimotor neuroplasticity, which is the brain's ability to change through growth and reorganization. Food and drink An astronaut on the International Space Station requires about mass of food per meal each day (inclusive of about packaging mass per meal). Space Shuttle astronauts worked with nutritionists to select menus that appealed to their individual tastes. Five months before flight, menus were selected and analyzed for nutritional content by the shuttle dietician. Foods are tested to see how they will react in a reduced gravity environment. Caloric requirements are determined using a basal energy expenditure (BEE) formula. On Earth, the average American uses about of water every day. On board the ISS astronauts limit water use to only about per day. Insignia In Russia, cosmonauts are awarded Pilot-Cosmonaut of the Russian Federation upon completion of their missions, often accompanied with the award of Hero of the Russian Federation. This follows the practice established in the USSR where cosmonauts were usually awarded the title Hero of the Soviet Union. At NASA, those who complete astronaut candidate training receive a silver lapel pin. Once they have flown in space, they receive a gold pin. U.S. astronauts who also have active-duty military status receive a special qualification badge, known as the Astronaut Badge, after participation on a spaceflight. The United States Air Force also presents an Astronaut Badge to its pilots who exceed in altitude.
Deaths , eighteen astronauts (fourteen men and four women) have lost their lives during four space flights. By nationality, thirteen were American, four were Russian (Soviet Union), and one was Israeli. , eleven people (all men) have lost their lives training for spaceflight: eight Americans and three Russians. Six of these were in crashes of training jet aircraft, one drowned during water recovery training, and four were due to fires in pure oxygen environments. Astronaut David Scott left a memorial consisting of a statuette titled Fallen Astronaut on the surface of the Moon during his 1971 Apollo 15 mission, along with a list of the names of eight of the astronauts and six cosmonauts known at the time to have died in service. The Space Mirror Memorial, which stands on the grounds of the Kennedy Space Center Visitor Complex, is maintained by the Astronauts Memorial Foundation and commemorates the lives of the men and women who have died during spaceflight and during training in the space programs of the United States. In addition to twenty NASA career astronauts, the memorial includes the names of an X-15 test pilot, a U.S. Air Force officer who died while training for a then-classified military space program, and a civilian spaceflight participant. See also Notes References External links NASA: How to become an astronaut 101 List of International partnership organizations Encyclopedia Astronautica: Phantom cosmonauts collectSPACE: Astronaut appearances calendar spacefacts Spacefacts.de Manned astronautics: facts and figures Astronaut Candidate Brochure online Science occupations 1959 introductions
Deaths , eighteen astronauts (fourteen men and four women) have lost their lives during four space flights. By nationality, thirteen were American, four were Russian (Soviet Union), and one was Israeli. , eleven people (all men) have lost their lives training for spaceflight: eight Americans and three Russians. Six of these were in crashes of training jet aircraft, one drowned during water recovery training, and four were due to fires in pure oxygen environments. Astronaut David Scott left a memorial consisting of a statuette titled Fallen Astronaut on the surface of the Moon during his 1971 Apollo 15 mission, along with a list of the names of eight of the astronauts and six cosmonauts known at the time to have died in service. The Space Mirror Memorial, which stands on the grounds of the Kennedy Space Center Visitor Complex, is maintained by the Astronauts Memorial Foundation and commemorates the lives of the men and women who have died during spaceflight and during training in the space programs of the United States. In addition to twenty NASA career astronauts, the memorial includes the names of an X-15 test pilot, a U.S. Air Force officer who died while training for a then-classified military space program, and a civilian spaceflight participant. See also Notes References External links NASA: How to become an astronaut 101 List of International partnership organizations Encyclopedia Astronautica: Phantom cosmonauts collectSPACE: Astronaut appearances calendar spacefacts Spacefacts.de Manned astronautics: facts and figures Astronaut Candidate Brochure online Science occupations 1959 introductions
Deaths , eighteen astronauts (fourteen men and four women) have lost their lives during four space flights. By nationality, thirteen were American, four were Russian (Soviet Union), and one was Israeli. , eleven people (all men) have lost their lives training for spaceflight: eight Americans and three Russians. Six of these were in crashes of training jet aircraft, one drowned during water recovery training, and four were due to fires in pure oxygen environments. Astronaut David Scott left a memorial consisting of a statuette titled Fallen Astronaut on the surface of the Moon during his 1971 Apollo 15 mission, along with a list of the names of eight of the astronauts and six cosmonauts known at the time to have died in service. The Space Mirror Memorial, which stands on the grounds of the Kennedy Space Center Visitor Complex, is maintained by the Astronauts Memorial Foundation and commemorates the lives of the men and women who have died during spaceflight and during training in the space programs of the United States. In addition to twenty NASA career astronauts, the memorial includes the names of an X-15 test pilot, a U.S. Air Force officer who died while training for a then-classified military space program, and a civilian spaceflight participant. See also Notes References External links NASA: How to become an astronaut 101 List of International partnership organizations Encyclopedia Astronautica: Phantom cosmonauts collectSPACE: Astronaut appearances calendar spacefacts Spacefacts.de Manned astronautics: facts and figures Astronaut Candidate Brochure online Science occupations 1959 introductions
A Modest Proposal A Modest Proposal For preventing the Children of Poor People From being a Burthen to Their Parents or Country, and For making them Beneficial to the Publick, commonly referred to as A Modest Proposal, is a Juvenalian satirical essay written and published anonymously by Jonathan Swift in 1729. The essay suggests that the impoverished Irish might ease their economic troubles by selling their children as food to rich gentlemen and ladies. This satirical hyperbole mocked heartless attitudes towards the poor, predominantly Irish Catholic (i.e., "Papists") as well as British policy toward the Irish in general. In English writing, the phrase "a modest proposal" is now conventionally an allusion to this style of straight-faced satire. Synopsis Swift's essay is widely held to be one of the greatest examples of sustained irony in the history of the English language. Much of its shock value derives from the fact that the first portion of the essay describes the plight of starving beggars in Ireland, so that the reader is unprepared for the surprise of Swift's solution when he states: "A young healthy child well nursed, is, at a year old, a most delicious nourishing and wholesome food, whether stewed, roasted, baked, or boiled; and I make no doubt that it will equally serve in a fricassee, or a ragout." Swift goes to great lengths to support his argument, including a list of possible preparation styles for the children, and calculations showing the financial benefits of his suggestion. He uses methods of argument throughout his essay which lampoon the then-influential William Petty and the social engineering popular among followers of Francis Bacon. These lampoons include appealing to the authority of "a very knowing American of my acquaintance in London" and "the famous Psalmanazar, a native of the island Formosa" (who had already confessed to not being from Formosa in 1706). In the tradition of Roman satire, Swift introduces the reforms he is actually suggesting by paralipsis: Population solutions George Wittkowsky argued that Swift's main target in A Modest Proposal was not the conditions in Ireland, but rather the can-do spirit of the times that led people to devise a number of illogical schemes that would purportedly solve social and economic ills. Swift was especially attacking projects that tried to fix population and labour issues with a simple cure-all solution. A memorable example of these sorts of schemes "involved the idea of running the poor through a joint-stock company". In response, Swift's Modest Proposal was "a burlesque of projects concerning the poor" that were in vogue during the early 18th century. A Modest Proposal also targets the calculating way people perceived the poor in designing their projects. The pamphlet targets reformers who "regard people as commodities". In the piece, Swift adopts the "technique of a political arithmetician" to show the utter ridiculousness of trying to prove any proposal with dispassionate statistics. Critics differ about Swift's intentions in using this faux-mathematical philosophy.
A Modest Proposal A Modest Proposal For preventing the Children of Poor People From being a Burthen to Their Parents or Country, and For making them Beneficial to the Publick, commonly referred to as A Modest Proposal, is a Juvenalian satirical essay written and published anonymously by Jonathan Swift in 1729. The essay suggests that the impoverished Irish might ease their economic troubles by selling their children as food to rich gentlemen and ladies. This satirical hyperbole mocked heartless attitudes towards the poor, predominantly Irish Catholic (i.e., "Papists") as well as British policy toward the Irish in general. In English writing, the phrase "a modest proposal" is now conventionally an allusion to this style of straight-faced satire. Synopsis Swift's essay is widely held to be one of the greatest examples of sustained irony in the history of the English language. Much of its shock value derives from the fact that the first portion of the essay describes the plight of starving beggars in Ireland, so that the reader is unprepared for the surprise of Swift's solution when he states: "A young healthy child well nursed, is, at a year old, a most delicious nourishing and wholesome food, whether stewed, roasted, baked, or boiled; and I make no doubt that it will equally serve in a fricassee, or a ragout." Swift goes to great lengths to support his argument, including a list of possible preparation styles for the children, and calculations showing the financial benefits of his suggestion. He uses methods of argument throughout his essay which lampoon the then-influential William Petty and the social engineering popular among followers of Francis Bacon. These lampoons include appealing to the authority of "a very knowing American of my acquaintance in London" and "the famous Psalmanazar, a native of the island Formosa" (who had already confessed to not being from Formosa in 1706). In the tradition of Roman satire, Swift introduces the reforms he is actually suggesting by paralipsis: Population solutions George Wittkowsky argued that Swift's main target in A Modest Proposal was not the conditions in Ireland, but rather the can-do spirit of the times that led people to devise a number of illogical schemes that would purportedly solve social and economic ills. Swift was especially attacking projects that tried to fix population and labour issues with a simple cure-all solution. A memorable example of these sorts of schemes "involved the idea of running the poor through a joint-stock company". In response, Swift's Modest Proposal was "a burlesque of projects concerning the poor" that were in vogue during the early 18th century. A Modest Proposal also targets the calculating way people perceived the poor in designing their projects. The pamphlet targets reformers who "regard people as commodities". In the piece, Swift adopts the "technique of a political arithmetician" to show the utter ridiculousness of trying to prove any proposal with dispassionate statistics. Critics differ about Swift's intentions in using this faux-mathematical philosophy.
Edmund Wilson argues that statistically "the logic of the 'Modest proposal' can be compared with defence of crime (arrogated to Marx) in which he argues that crime takes care of the superfluous population". Wittkowsky counters that Swift's satiric use of statistical analysis is an effort to enhance his satire that "springs from a spirit of bitter mockery, not from the delight in calculations for their own sake". Rhetoric Author Charles K. Smith argues that Swift's rhetorical style persuades the reader to detest the speaker and pity the Irish. Swift's specific strategy is twofold, using a "trap" to create sympathy for the Irish and a dislike of the narrator who, in the span of one sentence, "details vividly and with rhetorical emphasis the grinding poverty" but feels emotion solely for members of his own class. Swift's use of gripping details of poverty and his narrator's cool approach towards them create "two opposing points of view" that "alienate the reader, perhaps unconsciously, from a narrator who can view with 'melancholy' detachment a subject that Swift has directed us, rhetorically, to see in a much less detached way." Swift has his proposer further degrade the Irish by using language ordinarily reserved for animals. Lewis argues that the speaker uses "the vocabulary of animal husbandry" to describe the Irish. Once the children have been commodified, Swift's rhetoric can easily turn "people into animals, then meat, and from meat, logically, into tonnage worth a price per pound". Swift uses the proposer's serious tone to highlight the absurdity of his proposal. In making his argument, the speaker uses the conventional, textbook-approved order of argument from Swift's time (which was derived from the Latin rhetorician Quintilian). The contrast between the "careful control against the almost inconceivable perversion of his scheme" and "the ridiculousness of the proposal" create a situation in which the reader has "to consider just what perverted values and assumptions would allow such a diligent, thoughtful, and conventional man to propose so perverse a plan". Influences Scholars have speculated about which earlier works Swift may have had in mind when he wrote A Modest Proposal. Tertullian's Apology James William Johnson argues that A Modest Proposal was largely influenced and inspired by Tertullian's Apology: a satirical attack against early Roman persecution of Christianity. Johnson believes that Swift saw major similarities between the two situations. Johnson notes Swift's obvious affinity for Tertullian and the bold stylistic and structural similarities between the works A Modest Proposal and Apology. In structure, Johnson points out the same central theme, that of cannibalism and the eating of babies as well as the same final argument, that "human depravity is such that men will attempt to justify their own cruelty by accusing their victims of being lower than human". Stylistically, Swift and Tertullian share the same command of sarcasm and language. In agreement with Johnson, Donald C. Baker points out the similarity between both authors' tones and use of irony.
Edmund Wilson argues that statistically "the logic of the 'Modest proposal' can be compared with defence of crime (arrogated to Marx) in which he argues that crime takes care of the superfluous population". Wittkowsky counters that Swift's satiric use of statistical analysis is an effort to enhance his satire that "springs from a spirit of bitter mockery, not from the delight in calculations for their own sake". Rhetoric Author Charles K. Smith argues that Swift's rhetorical style persuades the reader to detest the speaker and pity the Irish. Swift's specific strategy is twofold, using a "trap" to create sympathy for the Irish and a dislike of the narrator who, in the span of one sentence, "details vividly and with rhetorical emphasis the grinding poverty" but feels emotion solely for members of his own class. Swift's use of gripping details of poverty and his narrator's cool approach towards them create "two opposing points of view" that "alienate the reader, perhaps unconsciously, from a narrator who can view with 'melancholy' detachment a subject that Swift has directed us, rhetorically, to see in a much less detached way." Swift has his proposer further degrade the Irish by using language ordinarily reserved for animals. Lewis argues that the speaker uses "the vocabulary of animal husbandry" to describe the Irish. Once the children have been commodified, Swift's rhetoric can easily turn "people into animals, then meat, and from meat, logically, into tonnage worth a price per pound". Swift uses the proposer's serious tone to highlight the absurdity of his proposal. In making his argument, the speaker uses the conventional, textbook-approved order of argument from Swift's time (which was derived from the Latin rhetorician Quintilian). The contrast between the "careful control against the almost inconceivable perversion of his scheme" and "the ridiculousness of the proposal" create a situation in which the reader has "to consider just what perverted values and assumptions would allow such a diligent, thoughtful, and conventional man to propose so perverse a plan". Influences Scholars have speculated about which earlier works Swift may have had in mind when he wrote A Modest Proposal. Tertullian's Apology James William Johnson argues that A Modest Proposal was largely influenced and inspired by Tertullian's Apology: a satirical attack against early Roman persecution of Christianity. Johnson believes that Swift saw major similarities between the two situations. Johnson notes Swift's obvious affinity for Tertullian and the bold stylistic and structural similarities between the works A Modest Proposal and Apology. In structure, Johnson points out the same central theme, that of cannibalism and the eating of babies as well as the same final argument, that "human depravity is such that men will attempt to justify their own cruelty by accusing their victims of being lower than human". Stylistically, Swift and Tertullian share the same command of sarcasm and language. In agreement with Johnson, Donald C. Baker points out the similarity between both authors' tones and use of irony.
Edmund Wilson argues that statistically "the logic of the 'Modest proposal' can be compared with defence of crime (arrogated to Marx) in which he argues that crime takes care of the superfluous population". Wittkowsky counters that Swift's satiric use of statistical analysis is an effort to enhance his satire that "springs from a spirit of bitter mockery, not from the delight in calculations for their own sake". Rhetoric Author Charles K. Smith argues that Swift's rhetorical style persuades the reader to detest the speaker and pity the Irish. Swift's specific strategy is twofold, using a "trap" to create sympathy for the Irish and a dislike of the narrator who, in the span of one sentence, "details vividly and with rhetorical emphasis the grinding poverty" but feels emotion solely for members of his own class. Swift's use of gripping details of poverty and his narrator's cool approach towards them create "two opposing points of view" that "alienate the reader, perhaps unconsciously, from a narrator who can view with 'melancholy' detachment a subject that Swift has directed us, rhetorically, to see in a much less detached way." Swift has his proposer further degrade the Irish by using language ordinarily reserved for animals. Lewis argues that the speaker uses "the vocabulary of animal husbandry" to describe the Irish. Once the children have been commodified, Swift's rhetoric can easily turn "people into animals, then meat, and from meat, logically, into tonnage worth a price per pound". Swift uses the proposer's serious tone to highlight the absurdity of his proposal. In making his argument, the speaker uses the conventional, textbook-approved order of argument from Swift's time (which was derived from the Latin rhetorician Quintilian). The contrast between the "careful control against the almost inconceivable perversion of his scheme" and "the ridiculousness of the proposal" create a situation in which the reader has "to consider just what perverted values and assumptions would allow such a diligent, thoughtful, and conventional man to propose so perverse a plan". Influences Scholars have speculated about which earlier works Swift may have had in mind when he wrote A Modest Proposal. Tertullian's Apology James William Johnson argues that A Modest Proposal was largely influenced and inspired by Tertullian's Apology: a satirical attack against early Roman persecution of Christianity. Johnson believes that Swift saw major similarities between the two situations. Johnson notes Swift's obvious affinity for Tertullian and the bold stylistic and structural similarities between the works A Modest Proposal and Apology. In structure, Johnson points out the same central theme, that of cannibalism and the eating of babies as well as the same final argument, that "human depravity is such that men will attempt to justify their own cruelty by accusing their victims of being lower than human". Stylistically, Swift and Tertullian share the same command of sarcasm and language. In agreement with Johnson, Donald C. Baker points out the similarity between both authors' tones and use of irony.
Baker notes the uncanny way that both authors imply an ironic "justification by ownership" over the subject of sacrificing children—Tertullian while attacking pagan parents, and Swift while attacking the English mistreatment of the Irish poor. Defoe's The Generous Projector It has also been argued that A Modest Proposal was, at least in part, a response to the 1728 essay The Generous Projector or, A Friendly Proposal to Prevent Murder and Other Enormous Abuses, By Erecting an Hospital for Foundlings and Bastard Children by Swift's rival Daniel Defoe. Mandeville's Modest Defence of Publick Stews Bernard Mandeville's Modest Defence of Publick Stews asked to introduce public and state controlled bordellos. The 1726 paper acknowledges women's interests andwhile not being a completely satirical texthas also been discussed as an inspiration for Jonathan Swift's title. Mandeville had by 1705 already become famous for the Fable of The Bees and deliberations on private vices and public benefits. John Locke's First Treatise of Government John Locke commented: "Be it then as Sir Robert says, that Anciently, it was usual for Men to sell and Castrate their Children. Let it be, that they exposed them; Add to it, if you please, for this is still greater Power, that they begat them for their Tables to fat and eat them: If this proves a right to do so, we may, by the same Argument, justifie Adultery, Incest and Sodomy, for there are examples of these too, both Ancient and Modern; Sins, which I suppose, have the Principle Aggravation from this, that they cross the main intention of Nature, which willeth the increase of Mankind, and the continuation of the Species in the highest perfection, and the distinction of Families, with the Security of the Marriage Bed, as necessary thereunto". (First Treatise, sec. 59). Economic themes Robert Phiddian's article "Have you eaten yet? The Reader in A Modest Proposal" focuses on two aspects of A Modest Proposal: the voice of Swift and the voice of the Proposer. Phiddian stresses that a reader of the pamphlet must learn to distinguish between the satirical voice of Jonathan Swift and the apparent economic projections of the Proposer. He reminds readers that "there is a gap between the narrator's meaning and the text's, and that a moral-political argument is being carried out by means of parody". While Swift's proposal is obviously not a serious economic proposal, George Wittkowsky, author of "Swift's Modest Proposal: The Biography of an Early Georgian Pamphlet", argues that to understand the piece fully it is important to understand the economics of Swift's time. Wittowsky argues that not enough critics have taken the time to focus directly on the mercantilism and theories of labour in 18th century England. "If one regards the Modest Proposal simply as a criticism of condition, about all one can say is that conditions were bad and that Swift's irony brilliantly underscored this fact".
Baker notes the uncanny way that both authors imply an ironic "justification by ownership" over the subject of sacrificing children—Tertullian while attacking pagan parents, and Swift while attacking the English mistreatment of the Irish poor. Defoe's The Generous Projector It has also been argued that A Modest Proposal was, at least in part, a response to the 1728 essay The Generous Projector or, A Friendly Proposal to Prevent Murder and Other Enormous Abuses, By Erecting an Hospital for Foundlings and Bastard Children by Swift's rival Daniel Defoe. Mandeville's Modest Defence of Publick Stews Bernard Mandeville's Modest Defence of Publick Stews asked to introduce public and state controlled bordellos. The 1726 paper acknowledges women's interests andwhile not being a completely satirical texthas also been discussed as an inspiration for Jonathan Swift's title. Mandeville had by 1705 already become famous for the Fable of The Bees and deliberations on private vices and public benefits. John Locke's First Treatise of Government John Locke commented: "Be it then as Sir Robert says, that Anciently, it was usual for Men to sell and Castrate their Children. Let it be, that they exposed them; Add to it, if you please, for this is still greater Power, that they begat them for their Tables to fat and eat them: If this proves a right to do so, we may, by the same Argument, justifie Adultery, Incest and Sodomy, for there are examples of these too, both Ancient and Modern; Sins, which I suppose, have the Principle Aggravation from this, that they cross the main intention of Nature, which willeth the increase of Mankind, and the continuation of the Species in the highest perfection, and the distinction of Families, with the Security of the Marriage Bed, as necessary thereunto". (First Treatise, sec. 59). Economic themes Robert Phiddian's article "Have you eaten yet? The Reader in A Modest Proposal" focuses on two aspects of A Modest Proposal: the voice of Swift and the voice of the Proposer. Phiddian stresses that a reader of the pamphlet must learn to distinguish between the satirical voice of Jonathan Swift and the apparent economic projections of the Proposer. He reminds readers that "there is a gap between the narrator's meaning and the text's, and that a moral-political argument is being carried out by means of parody". While Swift's proposal is obviously not a serious economic proposal, George Wittkowsky, author of "Swift's Modest Proposal: The Biography of an Early Georgian Pamphlet", argues that to understand the piece fully it is important to understand the economics of Swift's time. Wittowsky argues that not enough critics have taken the time to focus directly on the mercantilism and theories of labour in 18th century England. "If one regards the Modest Proposal simply as a criticism of condition, about all one can say is that conditions were bad and that Swift's irony brilliantly underscored this fact".
Baker notes the uncanny way that both authors imply an ironic "justification by ownership" over the subject of sacrificing children—Tertullian while attacking pagan parents, and Swift while attacking the English mistreatment of the Irish poor. Defoe's The Generous Projector It has also been argued that A Modest Proposal was, at least in part, a response to the 1728 essay The Generous Projector or, A Friendly Proposal to Prevent Murder and Other Enormous Abuses, By Erecting an Hospital for Foundlings and Bastard Children by Swift's rival Daniel Defoe. Mandeville's Modest Defence of Publick Stews Bernard Mandeville's Modest Defence of Publick Stews asked to introduce public and state controlled bordellos. The 1726 paper acknowledges women's interests andwhile not being a completely satirical texthas also been discussed as an inspiration for Jonathan Swift's title. Mandeville had by 1705 already become famous for the Fable of The Bees and deliberations on private vices and public benefits. John Locke's First Treatise of Government John Locke commented: "Be it then as Sir Robert says, that Anciently, it was usual for Men to sell and Castrate their Children. Let it be, that they exposed them; Add to it, if you please, for this is still greater Power, that they begat them for their Tables to fat and eat them: If this proves a right to do so, we may, by the same Argument, justifie Adultery, Incest and Sodomy, for there are examples of these too, both Ancient and Modern; Sins, which I suppose, have the Principle Aggravation from this, that they cross the main intention of Nature, which willeth the increase of Mankind, and the continuation of the Species in the highest perfection, and the distinction of Families, with the Security of the Marriage Bed, as necessary thereunto". (First Treatise, sec. 59). Economic themes Robert Phiddian's article "Have you eaten yet? The Reader in A Modest Proposal" focuses on two aspects of A Modest Proposal: the voice of Swift and the voice of the Proposer. Phiddian stresses that a reader of the pamphlet must learn to distinguish between the satirical voice of Jonathan Swift and the apparent economic projections of the Proposer. He reminds readers that "there is a gap between the narrator's meaning and the text's, and that a moral-political argument is being carried out by means of parody". While Swift's proposal is obviously not a serious economic proposal, George Wittkowsky, author of "Swift's Modest Proposal: The Biography of an Early Georgian Pamphlet", argues that to understand the piece fully it is important to understand the economics of Swift's time. Wittowsky argues that not enough critics have taken the time to focus directly on the mercantilism and theories of labour in 18th century England. "If one regards the Modest Proposal simply as a criticism of condition, about all one can say is that conditions were bad and that Swift's irony brilliantly underscored this fact".
"People are the riches of a nation" At the start of a new industrial age in the 18th century, it was believed that "people are the riches of the nation", and there was a general faith in an economy that paid its workers low wages because high wages meant workers would work less. Furthermore, "in the mercantilist view no child was too young to go into industry". In those times, the "somewhat more humane attitudes of an earlier day had all but disappeared and the laborer had come to be regarded as a commodity". Louis A. Landa composed a conducive analysis when he noted that it would have been healthier for the Irish economy to more appropriately utilize their human assets by giving the people an opportunity to "become a source of wealth to the nation" or else they "must turn to begging and thievery". This opportunity may have included giving the farmers more coin to work for, diversifying their professions, or even consider enslaving their people to lower coin usage and build up financial stock in Ireland. Landa wrote that, "Swift is maintaining that the maxim—people are the riches of a nation—applies to Ireland only if Ireland is permitted slavery or cannibalism" Landa presents Swift's A Modest Proposal as a critique of the popular and unjustified maxim of mercantilism in the 18th century that "people are the riches of a nation". Swift presents the dire state of Ireland and shows that mere population itself, in Ireland's case, did not always mean greater wealth and economy. The uncontrolled maxim fails to take into account that a person who does not produce in an economic or political way makes a country poorer, not richer. Swift also recognises the implications of this fact in making mercantilist philosophy a paradox: the wealth of a country is based on the poverty of the majority of its citizens. Swift however, Landa argues, is not merely criticising economic maxims but also addressing the fact that England was denying Irish citizens their natural rights and dehumanising them by viewing them as a mere commodity. The public's reaction Swift's essay created a backlash within the community after its publication. The work was aimed at the aristocracy, and they responded in turn. Several members of society wrote to Swift regarding the work. Lord Bathurst's letter intimated that he certainly understood the message, and interpreted it as a work of comedy: 12 February 1729–30: Modern usage A Modest Proposal is included in many literature courses as an example of early modern western satire. It also serves as an introduction to the concept and use of argumentative language, lending itself to secondary and post-secondary essay courses. Outside of the realm of English studies, A Modest Proposal is included in many comparative and global literature and history courses, as well as those of numerous other disciplines in the arts, humanities, and even the social sciences. The essay's approach has been copied many times.
"People are the riches of a nation" At the start of a new industrial age in the 18th century, it was believed that "people are the riches of the nation", and there was a general faith in an economy that paid its workers low wages because high wages meant workers would work less. Furthermore, "in the mercantilist view no child was too young to go into industry". In those times, the "somewhat more humane attitudes of an earlier day had all but disappeared and the laborer had come to be regarded as a commodity". Louis A. Landa composed a conducive analysis when he noted that it would have been healthier for the Irish economy to more appropriately utilize their human assets by giving the people an opportunity to "become a source of wealth to the nation" or else they "must turn to begging and thievery". This opportunity may have included giving the farmers more coin to work for, diversifying their professions, or even consider enslaving their people to lower coin usage and build up financial stock in Ireland. Landa wrote that, "Swift is maintaining that the maxim—people are the riches of a nation—applies to Ireland only if Ireland is permitted slavery or cannibalism" Landa presents Swift's A Modest Proposal as a critique of the popular and unjustified maxim of mercantilism in the 18th century that "people are the riches of a nation". Swift presents the dire state of Ireland and shows that mere population itself, in Ireland's case, did not always mean greater wealth and economy. The uncontrolled maxim fails to take into account that a person who does not produce in an economic or political way makes a country poorer, not richer. Swift also recognises the implications of this fact in making mercantilist philosophy a paradox: the wealth of a country is based on the poverty of the majority of its citizens. Swift however, Landa argues, is not merely criticising economic maxims but also addressing the fact that England was denying Irish citizens their natural rights and dehumanising them by viewing them as a mere commodity. The public's reaction Swift's essay created a backlash within the community after its publication. The work was aimed at the aristocracy, and they responded in turn. Several members of society wrote to Swift regarding the work. Lord Bathurst's letter intimated that he certainly understood the message, and interpreted it as a work of comedy: 12 February 1729–30: Modern usage A Modest Proposal is included in many literature courses as an example of early modern western satire. It also serves as an introduction to the concept and use of argumentative language, lending itself to secondary and post-secondary essay courses. Outside of the realm of English studies, A Modest Proposal is included in many comparative and global literature and history courses, as well as those of numerous other disciplines in the arts, humanities, and even the social sciences. The essay's approach has been copied many times.
"People are the riches of a nation" At the start of a new industrial age in the 18th century, it was believed that "people are the riches of the nation", and there was a general faith in an economy that paid its workers low wages because high wages meant workers would work less. Furthermore, "in the mercantilist view no child was too young to go into industry". In those times, the "somewhat more humane attitudes of an earlier day had all but disappeared and the laborer had come to be regarded as a commodity". Louis A. Landa composed a conducive analysis when he noted that it would have been healthier for the Irish economy to more appropriately utilize their human assets by giving the people an opportunity to "become a source of wealth to the nation" or else they "must turn to begging and thievery". This opportunity may have included giving the farmers more coin to work for, diversifying their professions, or even consider enslaving their people to lower coin usage and build up financial stock in Ireland. Landa wrote that, "Swift is maintaining that the maxim—people are the riches of a nation—applies to Ireland only if Ireland is permitted slavery or cannibalism" Landa presents Swift's A Modest Proposal as a critique of the popular and unjustified maxim of mercantilism in the 18th century that "people are the riches of a nation". Swift presents the dire state of Ireland and shows that mere population itself, in Ireland's case, did not always mean greater wealth and economy. The uncontrolled maxim fails to take into account that a person who does not produce in an economic or political way makes a country poorer, not richer. Swift also recognises the implications of this fact in making mercantilist philosophy a paradox: the wealth of a country is based on the poverty of the majority of its citizens. Swift however, Landa argues, is not merely criticising economic maxims but also addressing the fact that England was denying Irish citizens their natural rights and dehumanising them by viewing them as a mere commodity. The public's reaction Swift's essay created a backlash within the community after its publication. The work was aimed at the aristocracy, and they responded in turn. Several members of society wrote to Swift regarding the work. Lord Bathurst's letter intimated that he certainly understood the message, and interpreted it as a work of comedy: 12 February 1729–30: Modern usage A Modest Proposal is included in many literature courses as an example of early modern western satire. It also serves as an introduction to the concept and use of argumentative language, lending itself to secondary and post-secondary essay courses. Outside of the realm of English studies, A Modest Proposal is included in many comparative and global literature and history courses, as well as those of numerous other disciplines in the arts, humanities, and even the social sciences. The essay's approach has been copied many times.
In his book A Modest Proposal (1984), the evangelical author Francis Schaeffer emulated Swift's work in a social conservative polemic against abortion and euthanasia, imagining a future dystopia that advocates recycling of aborted embryos, fetuses, and some disabled infants with compound intellectual, physical and physiological difficulties. (Such Baby Doe Rules cases were then a major concern of the US anti-abortion movement of the early 1980s, which viewed selective treatment of those infants as disability discrimination.) In his book A Modest Proposal for America (2013), statistician Howard Friedman opens with a satirical reflection of the extreme drive to fiscal stability by ultra-conservatives. In the 1998 edition of The Handmaid's Tale by Margaret Atwood there is a quote from A Modest Proposal before the introduction. A Modest Video Game Proposal is the title of an open letter sent by activist/former attorney Jack Thompson on 10 October 2005. He proposed that someone should "create, manufacture, distribute, and sell a video game" that would allow players to act out a scenario in which the game character kills video game developers. Hunter S. Thompson's Fear and Loathing in America: The Brutal Odyssey of an Outlaw Journalist includes a letter in which he uses Swift's approach in connection with the Vietnam War. Thompson writes a letter to a local Aspen newspaper informing them that, on Christmas Eve, he is going to use napalm to burn a number of dogs and hopefully any humans they find. The letter protests against the burning of Vietnamese people occurring overseas. The 2013 horror film Butcher Boys, written by the original The Texas Chain Saw Massacre scribe Kim Henkel, is said to be an updating of Jonathan Swift's A Modest Proposal. Henkel imagined the descendants of folks who actually took Swift up on his proposal. The film opens with a quote from J. Swift. On 30 November 2017, Jonathan Swift's 350th birthday, The Washington Post published a column entitled "Why Alabamians should consider eating Democrats' babies", by Alexandra Petri. In July 2019, E. Jean Carroll published a book titled What Do We Need Men For? : A Modest Proposal, discussing problematic behaviour of male humans. On 3 October 2019, a satirist spoke up at an event for Alexandria Ocasio-Cortez, claiming that a solution to the climate crisis was "we need to eat the babies". The individual also wore a T-shirt saying "Save The Planet, Eat The Children". This stunt was understood by many as a modern application of A Modest Proposal. On 16 January 2022, San Francisco Chronicle published an editorial by Joe Matthews titled "Opinion: Want true equity? I propose, modestly, forcing California parents to swap children" in which the author makes "a modest proposal" recommending that rich people give their children to poor people and poor people give their children to rich people as a way of achieving class equity.
In his book A Modest Proposal (1984), the evangelical author Francis Schaeffer emulated Swift's work in a social conservative polemic against abortion and euthanasia, imagining a future dystopia that advocates recycling of aborted embryos, fetuses, and some disabled infants with compound intellectual, physical and physiological difficulties. (Such Baby Doe Rules cases were then a major concern of the US anti-abortion movement of the early 1980s, which viewed selective treatment of those infants as disability discrimination.) In his book A Modest Proposal for America (2013), statistician Howard Friedman opens with a satirical reflection of the extreme drive to fiscal stability by ultra-conservatives. In the 1998 edition of The Handmaid's Tale by Margaret Atwood there is a quote from A Modest Proposal before the introduction. A Modest Video Game Proposal is the title of an open letter sent by activist/former attorney Jack Thompson on 10 October 2005. He proposed that someone should "create, manufacture, distribute, and sell a video game" that would allow players to act out a scenario in which the game character kills video game developers. Hunter S. Thompson's Fear and Loathing in America: The Brutal Odyssey of an Outlaw Journalist includes a letter in which he uses Swift's approach in connection with the Vietnam War. Thompson writes a letter to a local Aspen newspaper informing them that, on Christmas Eve, he is going to use napalm to burn a number of dogs and hopefully any humans they find. The letter protests against the burning of Vietnamese people occurring overseas. The 2013 horror film Butcher Boys, written by the original The Texas Chain Saw Massacre scribe Kim Henkel, is said to be an updating of Jonathan Swift's A Modest Proposal. Henkel imagined the descendants of folks who actually took Swift up on his proposal. The film opens with a quote from J. Swift. On 30 November 2017, Jonathan Swift's 350th birthday, The Washington Post published a column entitled "Why Alabamians should consider eating Democrats' babies", by Alexandra Petri. In July 2019, E. Jean Carroll published a book titled What Do We Need Men For? : A Modest Proposal, discussing problematic behaviour of male humans. On 3 October 2019, a satirist spoke up at an event for Alexandria Ocasio-Cortez, claiming that a solution to the climate crisis was "we need to eat the babies". The individual also wore a T-shirt saying "Save The Planet, Eat The Children". This stunt was understood by many as a modern application of A Modest Proposal. On 16 January 2022, San Francisco Chronicle published an editorial by Joe Matthews titled "Opinion: Want true equity? I propose, modestly, forcing California parents to swap children" in which the author makes "a modest proposal" recommending that rich people give their children to poor people and poor people give their children to rich people as a way of achieving class equity.
In his book A Modest Proposal (1984), the evangelical author Francis Schaeffer emulated Swift's work in a social conservative polemic against abortion and euthanasia, imagining a future dystopia that advocates recycling of aborted embryos, fetuses, and some disabled infants with compound intellectual, physical and physiological difficulties. (Such Baby Doe Rules cases were then a major concern of the US anti-abortion movement of the early 1980s, which viewed selective treatment of those infants as disability discrimination.) In his book A Modest Proposal for America (2013), statistician Howard Friedman opens with a satirical reflection of the extreme drive to fiscal stability by ultra-conservatives. In the 1998 edition of The Handmaid's Tale by Margaret Atwood there is a quote from A Modest Proposal before the introduction. A Modest Video Game Proposal is the title of an open letter sent by activist/former attorney Jack Thompson on 10 October 2005. He proposed that someone should "create, manufacture, distribute, and sell a video game" that would allow players to act out a scenario in which the game character kills video game developers. Hunter S. Thompson's Fear and Loathing in America: The Brutal Odyssey of an Outlaw Journalist includes a letter in which he uses Swift's approach in connection with the Vietnam War. Thompson writes a letter to a local Aspen newspaper informing them that, on Christmas Eve, he is going to use napalm to burn a number of dogs and hopefully any humans they find. The letter protests against the burning of Vietnamese people occurring overseas. The 2013 horror film Butcher Boys, written by the original The Texas Chain Saw Massacre scribe Kim Henkel, is said to be an updating of Jonathan Swift's A Modest Proposal. Henkel imagined the descendants of folks who actually took Swift up on his proposal. The film opens with a quote from J. Swift. On 30 November 2017, Jonathan Swift's 350th birthday, The Washington Post published a column entitled "Why Alabamians should consider eating Democrats' babies", by Alexandra Petri. In July 2019, E. Jean Carroll published a book titled What Do We Need Men For? : A Modest Proposal, discussing problematic behaviour of male humans. On 3 October 2019, a satirist spoke up at an event for Alexandria Ocasio-Cortez, claiming that a solution to the climate crisis was "we need to eat the babies". The individual also wore a T-shirt saying "Save The Planet, Eat The Children". This stunt was understood by many as a modern application of A Modest Proposal. On 16 January 2022, San Francisco Chronicle published an editorial by Joe Matthews titled "Opinion: Want true equity? I propose, modestly, forcing California parents to swap children" in which the author makes "a modest proposal" recommending that rich people give their children to poor people and poor people give their children to rich people as a way of achieving class equity.
Notes References (subscription needed) External links A Modest Proposal (CELT) A Modest Proposal (Gutenberg) A Modest Proposal – Annotated text aligned to Common Core Standards A Modest Proposal BBC Radio 4 In Our Time with Melvyn Bragg 'A modest proposal For preventing the children of poor people From being a Burthen to their Parents or the Country, And for making them Beneficial to the publick. The Third Edition, Dublin, Printed: And Reprinted at London, for Weaver Bickerton, in Devereux-Court near the Middle-Temple, 1730. Proposal to eat the children a short movie based upon Swift's novel. Essays by Jonathan Swift Satirical essays Pamphlets 18th-century essays Works published anonymously British satire 1729 in Great Britain Cannibalism in fiction 1729 books
Notes References (subscription needed) External links A Modest Proposal (CELT) A Modest Proposal (Gutenberg) A Modest Proposal – Annotated text aligned to Common Core Standards A Modest Proposal BBC Radio 4 In Our Time with Melvyn Bragg 'A modest proposal For preventing the children of poor people From being a Burthen to their Parents or the Country, And for making them Beneficial to the publick. The Third Edition, Dublin, Printed: And Reprinted at London, for Weaver Bickerton, in Devereux-Court near the Middle-Temple, 1730. Proposal to eat the children a short movie based upon Swift's novel. Essays by Jonathan Swift Satirical essays Pamphlets 18th-century essays Works published anonymously British satire 1729 in Great Britain Cannibalism in fiction 1729 books
Notes References (subscription needed) External links A Modest Proposal (CELT) A Modest Proposal (Gutenberg) A Modest Proposal – Annotated text aligned to Common Core Standards A Modest Proposal BBC Radio 4 In Our Time with Melvyn Bragg 'A modest proposal For preventing the children of poor people From being a Burthen to their Parents or the Country, And for making them Beneficial to the publick. The Third Edition, Dublin, Printed: And Reprinted at London, for Weaver Bickerton, in Devereux-Court near the Middle-Temple, 1730. Proposal to eat the children a short movie based upon Swift's novel. Essays by Jonathan Swift Satirical essays Pamphlets 18th-century essays Works published anonymously British satire 1729 in Great Britain Cannibalism in fiction 1729 books
Alkali metal The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K), rubidium (Rb), caesium (Cs), and francium (Fr). Together with hydrogen they constitute group 1, which lies in the s-block of the periodic table. All alkali metals have their outermost electron in an s-orbital: this shared electron configuration results in their having very similar characteristic properties. Indeed, the alkali metals provide the best example of group trends in properties in the periodic table, with elements exhibiting well-characterised homologous behaviour. This family of elements is also known as the lithium family after its leading element. The alkali metals are all shiny, soft, highly reactive metals at standard temperature and pressure and readily lose their outermost electron to form cations with charge +1. They can all be cut easily with a knife due to their softness, exposing a shiny surface that tarnishes rapidly in air due to oxidation by atmospheric moisture and oxygen (and in the case of lithium, nitrogen). Because of their high reactivity, they must be stored under oil to prevent reaction with air, and are found naturally only in salts and never as the free elements. Caesium, the fifth alkali metal, is the most reactive of all the metals. All the alkali metals react with water, with the heavier alkali metals reacting more vigorously than the lighter ones. All of the discovered alkali metals occur in nature as their compounds: in order of abundance, sodium is the most abundant, followed by potassium, lithium, rubidium, caesium, and finally francium, which is very rare due to its extremely high radioactivity; francium occurs only in minute traces in nature as an intermediate step in some obscure side branches of the natural decay chains. Experiments have been conducted to attempt the synthesis of ununennium (Uue), which is likely to be the next member of the group; none was successful. However, ununennium may not be an alkali metal due to relativistic effects, which are predicted to have a large influence on the chemical properties of superheavy elements; even if it does turn out to be an alkali metal, it is predicted to have some differences in physical and chemical properties from its lighter homologues. Most alkali metals have many different applications. One of the best-known applications of the pure elements is the use of rubidium and caesium in atomic clocks, of which caesium atomic clocks form the basis of the second. A common application of the compounds of sodium is the sodium-vapour lamp, which emits light very efficiently. Table salt, or sodium chloride, has been used since antiquity. Lithium finds use as a psychiatric medication and as an anode in lithium batteries. Sodium and potassium are also essential elements, having major biological roles as electrolytes, and although the other alkali metals are not essential, they also have various effects on the body, both beneficial and harmful.
Alkali metal The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K), rubidium (Rb), caesium (Cs), and francium (Fr). Together with hydrogen they constitute group 1, which lies in the s-block of the periodic table. All alkali metals have their outermost electron in an s-orbital: this shared electron configuration results in their having very similar characteristic properties. Indeed, the alkali metals provide the best example of group trends in properties in the periodic table, with elements exhibiting well-characterised homologous behaviour. This family of elements is also known as the lithium family after its leading element. The alkali metals are all shiny, soft, highly reactive metals at standard temperature and pressure and readily lose their outermost electron to form cations with charge +1. They can all be cut easily with a knife due to their softness, exposing a shiny surface that tarnishes rapidly in air due to oxidation by atmospheric moisture and oxygen (and in the case of lithium, nitrogen). Because of their high reactivity, they must be stored under oil to prevent reaction with air, and are found naturally only in salts and never as the free elements. Caesium, the fifth alkali metal, is the most reactive of all the metals. All the alkali metals react with water, with the heavier alkali metals reacting more vigorously than the lighter ones. All of the discovered alkali metals occur in nature as their compounds: in order of abundance, sodium is the most abundant, followed by potassium, lithium, rubidium, caesium, and finally francium, which is very rare due to its extremely high radioactivity; francium occurs only in minute traces in nature as an intermediate step in some obscure side branches of the natural decay chains. Experiments have been conducted to attempt the synthesis of ununennium (Uue), which is likely to be the next member of the group; none was successful. However, ununennium may not be an alkali metal due to relativistic effects, which are predicted to have a large influence on the chemical properties of superheavy elements; even if it does turn out to be an alkali metal, it is predicted to have some differences in physical and chemical properties from its lighter homologues. Most alkali metals have many different applications. One of the best-known applications of the pure elements is the use of rubidium and caesium in atomic clocks, of which caesium atomic clocks form the basis of the second. A common application of the compounds of sodium is the sodium-vapour lamp, which emits light very efficiently. Table salt, or sodium chloride, has been used since antiquity. Lithium finds use as a psychiatric medication and as an anode in lithium batteries. Sodium and potassium are also essential elements, having major biological roles as electrolytes, and although the other alkali metals are not essential, they also have various effects on the body, both beneficial and harmful.
History Sodium compounds have been known since ancient times; salt (sodium chloride) has been an important commodity in human activities, as testified by the English word salary, referring to salarium, money paid to Roman soldiers for the purchase of salt. While potash has been used since ancient times, it was not understood for most of its history to be a fundamentally different substance from sodium mineral salts. Georg Ernst Stahl obtained experimental evidence which led him to suggest the fundamental difference of sodium and potassium salts in 1702, and Henri-Louis Duhamel du Monceau was able to prove this difference in 1736. The exact chemical composition of potassium and sodium compounds, and the status as chemical element of potassium and sodium, was not known then, and thus Antoine Lavoisier did not include either alkali in his list of chemical elements in 1789. Pure potassium was first isolated in 1807 in England by Humphry Davy, who derived it from caustic potash (KOH, potassium hydroxide) by the use of electrolysis of the molten salt with the newly invented voltaic pile. Previous attempts at electrolysis of the aqueous salt were unsuccessful due to potassium's extreme reactivity. Potassium was the first metal that was isolated by electrolysis. Later that same year, Davy reported extraction of sodium from the similar substance caustic soda (NaOH, lye) by a similar technique, demonstrating the elements, and thus the salts, to be different. Petalite (Li Al Si4O10) was discovered in 1800 by the Brazilian chemist José Bonifácio de Andrada in a mine on the island of Utö, Sweden. However, it was not until 1817 that Johan August Arfwedson, then working in the laboratory of the chemist Jöns Jacob Berzelius, detected the presence of a new element while analysing petalite ore. This new element was noted by him to form compounds similar to those of sodium and potassium, though its carbonate and hydroxide were less soluble in water and more alkaline than the other alkali metals. Berzelius gave the unknown material the name "lithion/lithina", from the Greek word λιθoς (transliterated as lithos, meaning "stone"), to reflect its discovery in a solid mineral, as opposed to potassium, which had been discovered in plant ashes, and sodium, which was known partly for its high abundance in animal blood. He named the metal inside the material "lithium". Lithium, sodium, and potassium were part of the discovery of periodicity, as they are among a series of triads of elements in the same group that were noted by Johann Wolfgang Döbereiner in 1850 as having similar properties. Rubidium and caesium were the first elements to be discovered using the spectroscope, invented in 1859 by Robert Bunsen and Gustav Kirchhoff. The next year, they discovered caesium in the mineral water from Bad Dürkheim, Germany. Their discovery of rubidium came the following year in Heidelberg, Germany, finding it in the mineral lepidolite.
History Sodium compounds have been known since ancient times; salt (sodium chloride) has been an important commodity in human activities, as testified by the English word salary, referring to salarium, money paid to Roman soldiers for the purchase of salt. While potash has been used since ancient times, it was not understood for most of its history to be a fundamentally different substance from sodium mineral salts. Georg Ernst Stahl obtained experimental evidence which led him to suggest the fundamental difference of sodium and potassium salts in 1702, and Henri-Louis Duhamel du Monceau was able to prove this difference in 1736. The exact chemical composition of potassium and sodium compounds, and the status as chemical element of potassium and sodium, was not known then, and thus Antoine Lavoisier did not include either alkali in his list of chemical elements in 1789. Pure potassium was first isolated in 1807 in England by Humphry Davy, who derived it from caustic potash (KOH, potassium hydroxide) by the use of electrolysis of the molten salt with the newly invented voltaic pile. Previous attempts at electrolysis of the aqueous salt were unsuccessful due to potassium's extreme reactivity. Potassium was the first metal that was isolated by electrolysis. Later that same year, Davy reported extraction of sodium from the similar substance caustic soda (NaOH, lye) by a similar technique, demonstrating the elements, and thus the salts, to be different. Petalite (Li Al Si4O10) was discovered in 1800 by the Brazilian chemist José Bonifácio de Andrada in a mine on the island of Utö, Sweden. However, it was not until 1817 that Johan August Arfwedson, then working in the laboratory of the chemist Jöns Jacob Berzelius, detected the presence of a new element while analysing petalite ore. This new element was noted by him to form compounds similar to those of sodium and potassium, though its carbonate and hydroxide were less soluble in water and more alkaline than the other alkali metals. Berzelius gave the unknown material the name "lithion/lithina", from the Greek word λιθoς (transliterated as lithos, meaning "stone"), to reflect its discovery in a solid mineral, as opposed to potassium, which had been discovered in plant ashes, and sodium, which was known partly for its high abundance in animal blood. He named the metal inside the material "lithium". Lithium, sodium, and potassium were part of the discovery of periodicity, as they are among a series of triads of elements in the same group that were noted by Johann Wolfgang Döbereiner in 1850 as having similar properties. Rubidium and caesium were the first elements to be discovered using the spectroscope, invented in 1859 by Robert Bunsen and Gustav Kirchhoff. The next year, they discovered caesium in the mineral water from Bad Dürkheim, Germany. Their discovery of rubidium came the following year in Heidelberg, Germany, finding it in the mineral lepidolite.
History Sodium compounds have been known since ancient times; salt (sodium chloride) has been an important commodity in human activities, as testified by the English word salary, referring to salarium, money paid to Roman soldiers for the purchase of salt. While potash has been used since ancient times, it was not understood for most of its history to be a fundamentally different substance from sodium mineral salts. Georg Ernst Stahl obtained experimental evidence which led him to suggest the fundamental difference of sodium and potassium salts in 1702, and Henri-Louis Duhamel du Monceau was able to prove this difference in 1736. The exact chemical composition of potassium and sodium compounds, and the status as chemical element of potassium and sodium, was not known then, and thus Antoine Lavoisier did not include either alkali in his list of chemical elements in 1789. Pure potassium was first isolated in 1807 in England by Humphry Davy, who derived it from caustic potash (KOH, potassium hydroxide) by the use of electrolysis of the molten salt with the newly invented voltaic pile. Previous attempts at electrolysis of the aqueous salt were unsuccessful due to potassium's extreme reactivity. Potassium was the first metal that was isolated by electrolysis. Later that same year, Davy reported extraction of sodium from the similar substance caustic soda (NaOH, lye) by a similar technique, demonstrating the elements, and thus the salts, to be different. Petalite (Li Al Si4O10) was discovered in 1800 by the Brazilian chemist José Bonifácio de Andrada in a mine on the island of Utö, Sweden. However, it was not until 1817 that Johan August Arfwedson, then working in the laboratory of the chemist Jöns Jacob Berzelius, detected the presence of a new element while analysing petalite ore. This new element was noted by him to form compounds similar to those of sodium and potassium, though its carbonate and hydroxide were less soluble in water and more alkaline than the other alkali metals. Berzelius gave the unknown material the name "lithion/lithina", from the Greek word λιθoς (transliterated as lithos, meaning "stone"), to reflect its discovery in a solid mineral, as opposed to potassium, which had been discovered in plant ashes, and sodium, which was known partly for its high abundance in animal blood. He named the metal inside the material "lithium". Lithium, sodium, and potassium were part of the discovery of periodicity, as they are among a series of triads of elements in the same group that were noted by Johann Wolfgang Döbereiner in 1850 as having similar properties. Rubidium and caesium were the first elements to be discovered using the spectroscope, invented in 1859 by Robert Bunsen and Gustav Kirchhoff. The next year, they discovered caesium in the mineral water from Bad Dürkheim, Germany. Their discovery of rubidium came the following year in Heidelberg, Germany, finding it in the mineral lepidolite.
The names of rubidium and caesium come from the most prominent lines in their emission spectra: a bright red line for rubidium (from the Latin word rubidus, meaning dark red or bright red), and a sky-blue line for caesium (derived from the Latin word caesius, meaning sky-blue). Around 1865 John Newlands produced a series of papers where he listed the elements in order of increasing atomic weight and similar physical and chemical properties that recurred at intervals of eight; he likened such periodicity to the octaves of music, where notes an octave apart have similar musical functions. His version put all the alkali metals then known (lithium to caesium), as well as copper, silver, and thallium (which show the +1 oxidation state characteristic of the alkali metals), together into a group. His table placed hydrogen with the halogens. After 1869, Dmitri Mendeleev proposed his periodic table placing lithium at the top of a group with sodium, potassium, rubidium, caesium, and thallium. Two years later, Mendeleev revised his table, placing hydrogen in group 1 above lithium, and also moving thallium to the boron group. In this 1871 version, copper, silver, and gold were placed twice, once as part of group IB, and once as part of a "group VIII" encompassing today's groups 8 to 11. After the introduction of the 18-column table, the group IB elements were moved to their current position in the d-block, while alkali metals were left in group IA. Later the group's name was changed to group 1 in 1988. The trivial name "alkali metals" comes from the fact that the hydroxides of the group 1 elements are all strong alkalis when dissolved in water. There were at least four erroneous and incomplete discoveries before Marguerite Perey of the Curie Institute in Paris, France discovered francium in 1939 by purifying a sample of actinium-227, which had been reported to have a decay energy of 220 keV. However, Perey noticed decay particles with an energy level below 80 keV. Perey thought this decay activity might have been caused by a previously unidentified decay product, one that was separated during purification, but emerged again out of the pure actinium-227. Various tests eliminated the possibility of the unknown element being thorium, radium, lead, bismuth, or thallium. The new product exhibited chemical properties of an alkali metal (such as coprecipitating with caesium salts), which led Perey to believe that it was element 87, caused by the alpha decay of actinium-227. Perey then attempted to determine the proportion of beta decay to alpha decay in actinium-227. Her first test put the alpha branching at 0.6%, a figure that she later revised to 1%. The next element below francium (eka-francium) in the periodic table would be ununennium (Uue), element 119. The synthesis of ununennium was first attempted in 1985 by bombarding a target of einsteinium-254 with calcium-48 ions at the superHILAC accelerator at Berkeley, California. No atoms were identified, leading to a limiting yield of 300 nb.
The names of rubidium and caesium come from the most prominent lines in their emission spectra: a bright red line for rubidium (from the Latin word rubidus, meaning dark red or bright red), and a sky-blue line for caesium (derived from the Latin word caesius, meaning sky-blue). Around 1865 John Newlands produced a series of papers where he listed the elements in order of increasing atomic weight and similar physical and chemical properties that recurred at intervals of eight; he likened such periodicity to the octaves of music, where notes an octave apart have similar musical functions. His version put all the alkali metals then known (lithium to caesium), as well as copper, silver, and thallium (which show the +1 oxidation state characteristic of the alkali metals), together into a group. His table placed hydrogen with the halogens. After 1869, Dmitri Mendeleev proposed his periodic table placing lithium at the top of a group with sodium, potassium, rubidium, caesium, and thallium. Two years later, Mendeleev revised his table, placing hydrogen in group 1 above lithium, and also moving thallium to the boron group. In this 1871 version, copper, silver, and gold were placed twice, once as part of group IB, and once as part of a "group VIII" encompassing today's groups 8 to 11. After the introduction of the 18-column table, the group IB elements were moved to their current position in the d-block, while alkali metals were left in group IA. Later the group's name was changed to group 1 in 1988. The trivial name "alkali metals" comes from the fact that the hydroxides of the group 1 elements are all strong alkalis when dissolved in water. There were at least four erroneous and incomplete discoveries before Marguerite Perey of the Curie Institute in Paris, France discovered francium in 1939 by purifying a sample of actinium-227, which had been reported to have a decay energy of 220 keV. However, Perey noticed decay particles with an energy level below 80 keV. Perey thought this decay activity might have been caused by a previously unidentified decay product, one that was separated during purification, but emerged again out of the pure actinium-227. Various tests eliminated the possibility of the unknown element being thorium, radium, lead, bismuth, or thallium. The new product exhibited chemical properties of an alkali metal (such as coprecipitating with caesium salts), which led Perey to believe that it was element 87, caused by the alpha decay of actinium-227. Perey then attempted to determine the proportion of beta decay to alpha decay in actinium-227. Her first test put the alpha branching at 0.6%, a figure that she later revised to 1%. The next element below francium (eka-francium) in the periodic table would be ununennium (Uue), element 119. The synthesis of ununennium was first attempted in 1985 by bombarding a target of einsteinium-254 with calcium-48 ions at the superHILAC accelerator at Berkeley, California. No atoms were identified, leading to a limiting yield of 300 nb.
The names of rubidium and caesium come from the most prominent lines in their emission spectra: a bright red line for rubidium (from the Latin word rubidus, meaning dark red or bright red), and a sky-blue line for caesium (derived from the Latin word caesius, meaning sky-blue). Around 1865 John Newlands produced a series of papers where he listed the elements in order of increasing atomic weight and similar physical and chemical properties that recurred at intervals of eight; he likened such periodicity to the octaves of music, where notes an octave apart have similar musical functions. His version put all the alkali metals then known (lithium to caesium), as well as copper, silver, and thallium (which show the +1 oxidation state characteristic of the alkali metals), together into a group. His table placed hydrogen with the halogens. After 1869, Dmitri Mendeleev proposed his periodic table placing lithium at the top of a group with sodium, potassium, rubidium, caesium, and thallium. Two years later, Mendeleev revised his table, placing hydrogen in group 1 above lithium, and also moving thallium to the boron group. In this 1871 version, copper, silver, and gold were placed twice, once as part of group IB, and once as part of a "group VIII" encompassing today's groups 8 to 11. After the introduction of the 18-column table, the group IB elements were moved to their current position in the d-block, while alkali metals were left in group IA. Later the group's name was changed to group 1 in 1988. The trivial name "alkali metals" comes from the fact that the hydroxides of the group 1 elements are all strong alkalis when dissolved in water. There were at least four erroneous and incomplete discoveries before Marguerite Perey of the Curie Institute in Paris, France discovered francium in 1939 by purifying a sample of actinium-227, which had been reported to have a decay energy of 220 keV. However, Perey noticed decay particles with an energy level below 80 keV. Perey thought this decay activity might have been caused by a previously unidentified decay product, one that was separated during purification, but emerged again out of the pure actinium-227. Various tests eliminated the possibility of the unknown element being thorium, radium, lead, bismuth, or thallium. The new product exhibited chemical properties of an alkali metal (such as coprecipitating with caesium salts), which led Perey to believe that it was element 87, caused by the alpha decay of actinium-227. Perey then attempted to determine the proportion of beta decay to alpha decay in actinium-227. Her first test put the alpha branching at 0.6%, a figure that she later revised to 1%. The next element below francium (eka-francium) in the periodic table would be ununennium (Uue), element 119. The synthesis of ununennium was first attempted in 1985 by bombarding a target of einsteinium-254 with calcium-48 ions at the superHILAC accelerator at Berkeley, California. No atoms were identified, leading to a limiting yield of 300 nb.
+ → * → no atoms It is highly unlikely that this reaction will be able to create any atoms of ununennium in the near future, given the extremely difficult task of making sufficient amounts of einsteinium-254, which is favoured for production of ultraheavy elements because of its large mass, relatively long half-life of 270 days, and availability in significant amounts of several micrograms, to make a large enough target to increase the sensitivity of the experiment to the required level; einsteinium has not been found in nature and has only been produced in laboratories, and in quantities smaller than those needed for effective synthesis of superheavy elements. However, given that ununennium is only the first period 8 element on the extended periodic table, it may well be discovered in the near future through other reactions, and indeed an attempt to synthesise it is currently ongoing in Japan. Currently, none of the period 8 elements has been discovered yet, and it is also possible, due to drip instabilities, that only the lower period 8 elements, up to around element 128, are physically possible. No attempts at synthesis have been made for any heavier alkali metals: due to their extremely high atomic number, they would require new, more powerful methods and technology to make. Occurrence In the Solar System The Oddo–Harkins rule holds that elements with even atomic numbers are more common that those with odd atomic numbers, with the exception of hydrogen. This rule argues that elements with odd atomic numbers have one unpaired proton and are more likely to capture another, thus increasing their atomic number. In elements with even atomic numbers, protons are paired, with each member of the pair offsetting the spin of the other, enhancing stability. All the alkali metals have odd atomic numbers and they are not as common as the elements with even atomic numbers adjacent to them (the noble gases and the alkaline earth metals) in the Solar System. The heavier alkali metals are also less abundant than the lighter ones as the alkali metals from rubidium onward can only be synthesised in supernovae and not in stellar nucleosynthesis. Lithium is also much less abundant than sodium and potassium as it is poorly synthesised in both Big Bang nucleosynthesis and in stars: the Big Bang could only produce trace quantities of lithium, beryllium and boron due to the absence of a stable nucleus with 5 or 8 nucleons, and stellar nucleosynthesis could only pass this bottleneck by the triple-alpha process, fusing three helium nuclei to form carbon, and skipping over those three elements. On Earth The Earth formed from the same cloud of matter that formed the Sun, but the planets acquired different compositions during the formation and evolution of the solar system. In turn, the natural history of the Earth caused parts of this planet to have differing concentrations of the elements. The mass of the Earth is approximately 5.98 kg.
+ → * → no atoms It is highly unlikely that this reaction will be able to create any atoms of ununennium in the near future, given the extremely difficult task of making sufficient amounts of einsteinium-254, which is favoured for production of ultraheavy elements because of its large mass, relatively long half-life of 270 days, and availability in significant amounts of several micrograms, to make a large enough target to increase the sensitivity of the experiment to the required level; einsteinium has not been found in nature and has only been produced in laboratories, and in quantities smaller than those needed for effective synthesis of superheavy elements. However, given that ununennium is only the first period 8 element on the extended periodic table, it may well be discovered in the near future through other reactions, and indeed an attempt to synthesise it is currently ongoing in Japan. Currently, none of the period 8 elements has been discovered yet, and it is also possible, due to drip instabilities, that only the lower period 8 elements, up to around element 128, are physically possible. No attempts at synthesis have been made for any heavier alkali metals: due to their extremely high atomic number, they would require new, more powerful methods and technology to make. Occurrence In the Solar System The Oddo–Harkins rule holds that elements with even atomic numbers are more common that those with odd atomic numbers, with the exception of hydrogen. This rule argues that elements with odd atomic numbers have one unpaired proton and are more likely to capture another, thus increasing their atomic number. In elements with even atomic numbers, protons are paired, with each member of the pair offsetting the spin of the other, enhancing stability. All the alkali metals have odd atomic numbers and they are not as common as the elements with even atomic numbers adjacent to them (the noble gases and the alkaline earth metals) in the Solar System. The heavier alkali metals are also less abundant than the lighter ones as the alkali metals from rubidium onward can only be synthesised in supernovae and not in stellar nucleosynthesis. Lithium is also much less abundant than sodium and potassium as it is poorly synthesised in both Big Bang nucleosynthesis and in stars: the Big Bang could only produce trace quantities of lithium, beryllium and boron due to the absence of a stable nucleus with 5 or 8 nucleons, and stellar nucleosynthesis could only pass this bottleneck by the triple-alpha process, fusing three helium nuclei to form carbon, and skipping over those three elements. On Earth The Earth formed from the same cloud of matter that formed the Sun, but the planets acquired different compositions during the formation and evolution of the solar system. In turn, the natural history of the Earth caused parts of this planet to have differing concentrations of the elements. The mass of the Earth is approximately 5.98 kg.
+ → * → no atoms It is highly unlikely that this reaction will be able to create any atoms of ununennium in the near future, given the extremely difficult task of making sufficient amounts of einsteinium-254, which is favoured for production of ultraheavy elements because of its large mass, relatively long half-life of 270 days, and availability in significant amounts of several micrograms, to make a large enough target to increase the sensitivity of the experiment to the required level; einsteinium has not been found in nature and has only been produced in laboratories, and in quantities smaller than those needed for effective synthesis of superheavy elements. However, given that ununennium is only the first period 8 element on the extended periodic table, it may well be discovered in the near future through other reactions, and indeed an attempt to synthesise it is currently ongoing in Japan. Currently, none of the period 8 elements has been discovered yet, and it is also possible, due to drip instabilities, that only the lower period 8 elements, up to around element 128, are physically possible. No attempts at synthesis have been made for any heavier alkali metals: due to their extremely high atomic number, they would require new, more powerful methods and technology to make. Occurrence In the Solar System The Oddo–Harkins rule holds that elements with even atomic numbers are more common that those with odd atomic numbers, with the exception of hydrogen. This rule argues that elements with odd atomic numbers have one unpaired proton and are more likely to capture another, thus increasing their atomic number. In elements with even atomic numbers, protons are paired, with each member of the pair offsetting the spin of the other, enhancing stability. All the alkali metals have odd atomic numbers and they are not as common as the elements with even atomic numbers adjacent to them (the noble gases and the alkaline earth metals) in the Solar System. The heavier alkali metals are also less abundant than the lighter ones as the alkali metals from rubidium onward can only be synthesised in supernovae and not in stellar nucleosynthesis. Lithium is also much less abundant than sodium and potassium as it is poorly synthesised in both Big Bang nucleosynthesis and in stars: the Big Bang could only produce trace quantities of lithium, beryllium and boron due to the absence of a stable nucleus with 5 or 8 nucleons, and stellar nucleosynthesis could only pass this bottleneck by the triple-alpha process, fusing three helium nuclei to form carbon, and skipping over those three elements. On Earth The Earth formed from the same cloud of matter that formed the Sun, but the planets acquired different compositions during the formation and evolution of the solar system. In turn, the natural history of the Earth caused parts of this planet to have differing concentrations of the elements. The mass of the Earth is approximately 5.98 kg.
It is composed mostly of iron (32.1%), oxygen (30.1%), silicon (15.1%), magnesium (13.9%), sulfur (2.9%), nickel (1.8%), calcium (1.5%), and aluminium (1.4%); with the remaining 1.2% consisting of trace amounts of other elements. Due to planetary differentiation, the core region is believed to be primarily composed of iron (88.8%), with smaller amounts of nickel (5.8%), sulfur (4.5%), and less than 1% trace elements. The alkali metals, due to their high reactivity, do not occur naturally in pure form in nature. They are lithophiles and therefore remain close to the Earth's surface because they combine readily with oxygen and so associate strongly with silica, forming relatively low-density minerals that do not sink down into the Earth's core. Potassium, rubidium and caesium are also incompatible elements due to their large ionic radii. Sodium and potassium are very abundant in earth, both being among the ten most common elements in Earth's crust; sodium makes up approximately 2.6% of the Earth's crust measured by weight, making it the sixth most abundant element overall and the most abundant alkali metal. Potassium makes up approximately 1.5% of the Earth's crust and is the seventh most abundant element. Sodium is found in many different minerals, of which the most common is ordinary salt (sodium chloride), which occurs in vast quantities dissolved in seawater. Other solid deposits include halite, amphibole, cryolite, nitratine, and zeolite. Many of these solid deposits occur as a result of ancient seas evaporating, which still occurs now in places such as Utah's Great Salt Lake and the Dead Sea. Despite their near-equal abundance in Earth's crust, sodium is far more common than potassium in the ocean, both because potassium's larger size makes its salts less soluble, and because potassium is bound by silicates in soil and what potassium leaches is absorbed far more readily by plant life than sodium. Despite its chemical similarity, lithium typically does not occur together with sodium or potassium due to its smaller size. Due to its relatively low reactivity, it can be found in seawater in large amounts; it is estimated that seawater is approximately 0.14 to 0.25 parts per million (ppm) or 25 micromolar. Its diagonal relationship with magnesium often allows it to replace magnesium in ferromagnesium minerals, where its crustal concentration is about 18 ppm, comparable to that of gallium and niobium. Commercially, the most important lithium mineral is spodumene, which occurs in large deposits worldwide. Rubidium is approximately as abundant as zinc and more abundant than copper. It occurs naturally in the minerals leucite, pollucite, carnallite, zinnwaldite, and lepidolite, although none of these contain only rubidium and no other alkali metals. Caesium is more abundant than some commonly known elements, such as antimony, cadmium, tin, and tungsten, but is much less abundant than rubidium. Francium-223, the only naturally occurring isotope of francium, is the product of the alpha decay of actinium-227 and can be found in trace amounts in uranium minerals.
It is composed mostly of iron (32.1%), oxygen (30.1%), silicon (15.1%), magnesium (13.9%), sulfur (2.9%), nickel (1.8%), calcium (1.5%), and aluminium (1.4%); with the remaining 1.2% consisting of trace amounts of other elements. Due to planetary differentiation, the core region is believed to be primarily composed of iron (88.8%), with smaller amounts of nickel (5.8%), sulfur (4.5%), and less than 1% trace elements. The alkali metals, due to their high reactivity, do not occur naturally in pure form in nature. They are lithophiles and therefore remain close to the Earth's surface because they combine readily with oxygen and so associate strongly with silica, forming relatively low-density minerals that do not sink down into the Earth's core. Potassium, rubidium and caesium are also incompatible elements due to their large ionic radii. Sodium and potassium are very abundant in earth, both being among the ten most common elements in Earth's crust; sodium makes up approximately 2.6% of the Earth's crust measured by weight, making it the sixth most abundant element overall and the most abundant alkali metal. Potassium makes up approximately 1.5% of the Earth's crust and is the seventh most abundant element. Sodium is found in many different minerals, of which the most common is ordinary salt (sodium chloride), which occurs in vast quantities dissolved in seawater. Other solid deposits include halite, amphibole, cryolite, nitratine, and zeolite. Many of these solid deposits occur as a result of ancient seas evaporating, which still occurs now in places such as Utah's Great Salt Lake and the Dead Sea. Despite their near-equal abundance in Earth's crust, sodium is far more common than potassium in the ocean, both because potassium's larger size makes its salts less soluble, and because potassium is bound by silicates in soil and what potassium leaches is absorbed far more readily by plant life than sodium. Despite its chemical similarity, lithium typically does not occur together with sodium or potassium due to its smaller size. Due to its relatively low reactivity, it can be found in seawater in large amounts; it is estimated that seawater is approximately 0.14 to 0.25 parts per million (ppm) or 25 micromolar. Its diagonal relationship with magnesium often allows it to replace magnesium in ferromagnesium minerals, where its crustal concentration is about 18 ppm, comparable to that of gallium and niobium. Commercially, the most important lithium mineral is spodumene, which occurs in large deposits worldwide. Rubidium is approximately as abundant as zinc and more abundant than copper. It occurs naturally in the minerals leucite, pollucite, carnallite, zinnwaldite, and lepidolite, although none of these contain only rubidium and no other alkali metals. Caesium is more abundant than some commonly known elements, such as antimony, cadmium, tin, and tungsten, but is much less abundant than rubidium. Francium-223, the only naturally occurring isotope of francium, is the product of the alpha decay of actinium-227 and can be found in trace amounts in uranium minerals.
It is composed mostly of iron (32.1%), oxygen (30.1%), silicon (15.1%), magnesium (13.9%), sulfur (2.9%), nickel (1.8%), calcium (1.5%), and aluminium (1.4%); with the remaining 1.2% consisting of trace amounts of other elements. Due to planetary differentiation, the core region is believed to be primarily composed of iron (88.8%), with smaller amounts of nickel (5.8%), sulfur (4.5%), and less than 1% trace elements. The alkali metals, due to their high reactivity, do not occur naturally in pure form in nature. They are lithophiles and therefore remain close to the Earth's surface because they combine readily with oxygen and so associate strongly with silica, forming relatively low-density minerals that do not sink down into the Earth's core. Potassium, rubidium and caesium are also incompatible elements due to their large ionic radii. Sodium and potassium are very abundant in earth, both being among the ten most common elements in Earth's crust; sodium makes up approximately 2.6% of the Earth's crust measured by weight, making it the sixth most abundant element overall and the most abundant alkali metal. Potassium makes up approximately 1.5% of the Earth's crust and is the seventh most abundant element. Sodium is found in many different minerals, of which the most common is ordinary salt (sodium chloride), which occurs in vast quantities dissolved in seawater. Other solid deposits include halite, amphibole, cryolite, nitratine, and zeolite. Many of these solid deposits occur as a result of ancient seas evaporating, which still occurs now in places such as Utah's Great Salt Lake and the Dead Sea. Despite their near-equal abundance in Earth's crust, sodium is far more common than potassium in the ocean, both because potassium's larger size makes its salts less soluble, and because potassium is bound by silicates in soil and what potassium leaches is absorbed far more readily by plant life than sodium. Despite its chemical similarity, lithium typically does not occur together with sodium or potassium due to its smaller size. Due to its relatively low reactivity, it can be found in seawater in large amounts; it is estimated that seawater is approximately 0.14 to 0.25 parts per million (ppm) or 25 micromolar. Its diagonal relationship with magnesium often allows it to replace magnesium in ferromagnesium minerals, where its crustal concentration is about 18 ppm, comparable to that of gallium and niobium. Commercially, the most important lithium mineral is spodumene, which occurs in large deposits worldwide. Rubidium is approximately as abundant as zinc and more abundant than copper. It occurs naturally in the minerals leucite, pollucite, carnallite, zinnwaldite, and lepidolite, although none of these contain only rubidium and no other alkali metals. Caesium is more abundant than some commonly known elements, such as antimony, cadmium, tin, and tungsten, but is much less abundant than rubidium. Francium-223, the only naturally occurring isotope of francium, is the product of the alpha decay of actinium-227 and can be found in trace amounts in uranium minerals.
In a given sample of uranium, there is estimated to be only one francium atom for every 1018 uranium atoms. It has been calculated that there are at most 30 grams of francium in the earth's crust at any time, due to its extremely short half-life of 22 minutes. Properties Physical and chemical The physical and chemical properties of the alkali metals can be readily explained by their having an ns1 valence electron configuration, which results in weak metallic bonding. Hence, all the alkali metals are soft and have low densities, melting and boiling points, as well as heats of sublimation, vaporisation, and dissociation. They all crystallise in the body-centered cubic crystal structure, and have distinctive flame colours because their outer s electron is very easily excited. The ns1 configuration also results in the alkali metals having very large atomic and ionic radii, as well as very high thermal and electrical conductivity. Their chemistry is dominated by the loss of their lone valence electron in the outermost s-orbital to form the +1 oxidation state, due to the ease of ionising this electron and the very high second ionisation energy. Most of the chemistry has been observed only for the first five members of the group. The chemistry of francium is not well established due to its extreme radioactivity; thus, the presentation of its properties here is limited. What little is known about francium shows that it is very close in behaviour to caesium, as expected. The physical properties of francium are even sketchier because the bulk element has never been observed; hence any data that may be found in the literature are certainly speculative extrapolations. The alkali metals are more similar to each other than the elements in any other group are to each other. Indeed, the similarity is so great that it is quite difficult to separate potassium, rubidium, and caesium, due to their similar ionic radii; lithium and sodium are more distinct. For instance, when moving down the table, all known alkali metals show increasing atomic radius, decreasing electronegativity, increasing reactivity, and decreasing melting and boiling points as well as heats of fusion and vaporisation. In general, their densities increase when moving down the table, with the exception that potassium is less dense than sodium. One of the very few properties of the alkali metals that does not display a very smooth trend is their reduction potentials: lithium's value is anomalous, being more negative than the others. This is because the Li+ ion has a very high hydration energy in the gas phase: though the lithium ion disrupts the structure of water significantly, causing a higher change in entropy, this high hydration energy is enough to make the reduction potentials indicate it as being the most electropositive alkali metal, despite the difficulty of ionising it in the gas phase.
In a given sample of uranium, there is estimated to be only one francium atom for every 1018 uranium atoms. It has been calculated that there are at most 30 grams of francium in the earth's crust at any time, due to its extremely short half-life of 22 minutes. Properties Physical and chemical The physical and chemical properties of the alkali metals can be readily explained by their having an ns1 valence electron configuration, which results in weak metallic bonding. Hence, all the alkali metals are soft and have low densities, melting and boiling points, as well as heats of sublimation, vaporisation, and dissociation. They all crystallise in the body-centered cubic crystal structure, and have distinctive flame colours because their outer s electron is very easily excited. The ns1 configuration also results in the alkali metals having very large atomic and ionic radii, as well as very high thermal and electrical conductivity. Their chemistry is dominated by the loss of their lone valence electron in the outermost s-orbital to form the +1 oxidation state, due to the ease of ionising this electron and the very high second ionisation energy. Most of the chemistry has been observed only for the first five members of the group. The chemistry of francium is not well established due to its extreme radioactivity; thus, the presentation of its properties here is limited. What little is known about francium shows that it is very close in behaviour to caesium, as expected. The physical properties of francium are even sketchier because the bulk element has never been observed; hence any data that may be found in the literature are certainly speculative extrapolations. The alkali metals are more similar to each other than the elements in any other group are to each other. Indeed, the similarity is so great that it is quite difficult to separate potassium, rubidium, and caesium, due to their similar ionic radii; lithium and sodium are more distinct. For instance, when moving down the table, all known alkali metals show increasing atomic radius, decreasing electronegativity, increasing reactivity, and decreasing melting and boiling points as well as heats of fusion and vaporisation. In general, their densities increase when moving down the table, with the exception that potassium is less dense than sodium. One of the very few properties of the alkali metals that does not display a very smooth trend is their reduction potentials: lithium's value is anomalous, being more negative than the others. This is because the Li+ ion has a very high hydration energy in the gas phase: though the lithium ion disrupts the structure of water significantly, causing a higher change in entropy, this high hydration energy is enough to make the reduction potentials indicate it as being the most electropositive alkali metal, despite the difficulty of ionising it in the gas phase.
In a given sample of uranium, there is estimated to be only one francium atom for every 1018 uranium atoms. It has been calculated that there are at most 30 grams of francium in the earth's crust at any time, due to its extremely short half-life of 22 minutes. Properties Physical and chemical The physical and chemical properties of the alkali metals can be readily explained by their having an ns1 valence electron configuration, which results in weak metallic bonding. Hence, all the alkali metals are soft and have low densities, melting and boiling points, as well as heats of sublimation, vaporisation, and dissociation. They all crystallise in the body-centered cubic crystal structure, and have distinctive flame colours because their outer s electron is very easily excited. The ns1 configuration also results in the alkali metals having very large atomic and ionic radii, as well as very high thermal and electrical conductivity. Their chemistry is dominated by the loss of their lone valence electron in the outermost s-orbital to form the +1 oxidation state, due to the ease of ionising this electron and the very high second ionisation energy. Most of the chemistry has been observed only for the first five members of the group. The chemistry of francium is not well established due to its extreme radioactivity; thus, the presentation of its properties here is limited. What little is known about francium shows that it is very close in behaviour to caesium, as expected. The physical properties of francium are even sketchier because the bulk element has never been observed; hence any data that may be found in the literature are certainly speculative extrapolations. The alkali metals are more similar to each other than the elements in any other group are to each other. Indeed, the similarity is so great that it is quite difficult to separate potassium, rubidium, and caesium, due to their similar ionic radii; lithium and sodium are more distinct. For instance, when moving down the table, all known alkali metals show increasing atomic radius, decreasing electronegativity, increasing reactivity, and decreasing melting and boiling points as well as heats of fusion and vaporisation. In general, their densities increase when moving down the table, with the exception that potassium is less dense than sodium. One of the very few properties of the alkali metals that does not display a very smooth trend is their reduction potentials: lithium's value is anomalous, being more negative than the others. This is because the Li+ ion has a very high hydration energy in the gas phase: though the lithium ion disrupts the structure of water significantly, causing a higher change in entropy, this high hydration energy is enough to make the reduction potentials indicate it as being the most electropositive alkali metal, despite the difficulty of ionising it in the gas phase.
The stable alkali metals are all silver-coloured metals except for caesium, which has a pale golden tint: it is one of only three metals that are clearly coloured (the other two being copper and gold). Additionally, the heavy alkaline earth metals calcium, strontium, and barium, as well as the divalent lanthanides europium and ytterbium, are pale yellow, though the colour is much less prominent than it is for caesium. Their lustre tarnishes rapidly in air due to oxidation. They all crystallise in the body-centered cubic crystal structure, and have distinctive flame colours because their outer s electron is very easily excited. Indeed, these flame test colours are the most common way of identifying them since all their salts with common ions are soluble. All the alkali metals are highly reactive and are never found in elemental forms in nature. Because of this, they are usually stored in mineral oil or kerosene (paraffin oil). They react aggressively with the halogens to form the alkali metal halides, which are white ionic crystalline compounds that are all soluble in water except lithium fluoride (Li F). The alkali metals also react with water to form strongly alkaline hydroxides and thus should be handled with great care. The heavier alkali metals react more vigorously than the lighter ones; for example, when dropped into water, caesium produces a larger explosion than potassium if the same number of moles of each metal is used. The alkali metals have the lowest first ionisation energies in their respective periods of the periodic table because of their low effective nuclear charge and the ability to attain a noble gas configuration by losing just one electron. Not only do the alkali metals react with water, but also with proton donors like alcohols and phenols, gaseous ammonia, and alkynes, the last demonstrating the phenomenal degree of their reactivity. Their great power as reducing agents makes them very useful in liberating other metals from their oxides or halides. The second ionisation energy of all of the alkali metals is very high as it is in a full shell that is also closer to the nucleus; thus, they almost always lose a single electron, forming cations. The alkalides are an exception: they are unstable compounds which contain alkali metals in a −1 oxidation state, which is very unusual as before the discovery of the alkalides, the alkali metals were not expected to be able to form anions and were thought to be able to appear in salts only as cations. The alkalide anions have filled s-subshells, which gives them enough stability to exist. All the stable alkali metals except lithium are known to be able to form alkalides, and the alkalides have much theoretical interest due to their unusual stoichiometry and low ionisation potentials. Alkalides are chemically similar to the electrides, which are salts with trapped electrons acting as anions.
The stable alkali metals are all silver-coloured metals except for caesium, which has a pale golden tint: it is one of only three metals that are clearly coloured (the other two being copper and gold). Additionally, the heavy alkaline earth metals calcium, strontium, and barium, as well as the divalent lanthanides europium and ytterbium, are pale yellow, though the colour is much less prominent than it is for caesium. Their lustre tarnishes rapidly in air due to oxidation. They all crystallise in the body-centered cubic crystal structure, and have distinctive flame colours because their outer s electron is very easily excited. Indeed, these flame test colours are the most common way of identifying them since all their salts with common ions are soluble. All the alkali metals are highly reactive and are never found in elemental forms in nature. Because of this, they are usually stored in mineral oil or kerosene (paraffin oil). They react aggressively with the halogens to form the alkali metal halides, which are white ionic crystalline compounds that are all soluble in water except lithium fluoride (Li F). The alkali metals also react with water to form strongly alkaline hydroxides and thus should be handled with great care. The heavier alkali metals react more vigorously than the lighter ones; for example, when dropped into water, caesium produces a larger explosion than potassium if the same number of moles of each metal is used. The alkali metals have the lowest first ionisation energies in their respective periods of the periodic table because of their low effective nuclear charge and the ability to attain a noble gas configuration by losing just one electron. Not only do the alkali metals react with water, but also with proton donors like alcohols and phenols, gaseous ammonia, and alkynes, the last demonstrating the phenomenal degree of their reactivity. Their great power as reducing agents makes them very useful in liberating other metals from their oxides or halides. The second ionisation energy of all of the alkali metals is very high as it is in a full shell that is also closer to the nucleus; thus, they almost always lose a single electron, forming cations. The alkalides are an exception: they are unstable compounds which contain alkali metals in a −1 oxidation state, which is very unusual as before the discovery of the alkalides, the alkali metals were not expected to be able to form anions and were thought to be able to appear in salts only as cations. The alkalide anions have filled s-subshells, which gives them enough stability to exist. All the stable alkali metals except lithium are known to be able to form alkalides, and the alkalides have much theoretical interest due to their unusual stoichiometry and low ionisation potentials. Alkalides are chemically similar to the electrides, which are salts with trapped electrons acting as anions.
The stable alkali metals are all silver-coloured metals except for caesium, which has a pale golden tint: it is one of only three metals that are clearly coloured (the other two being copper and gold). Additionally, the heavy alkaline earth metals calcium, strontium, and barium, as well as the divalent lanthanides europium and ytterbium, are pale yellow, though the colour is much less prominent than it is for caesium. Their lustre tarnishes rapidly in air due to oxidation. They all crystallise in the body-centered cubic crystal structure, and have distinctive flame colours because their outer s electron is very easily excited. Indeed, these flame test colours are the most common way of identifying them since all their salts with common ions are soluble. All the alkali metals are highly reactive and are never found in elemental forms in nature. Because of this, they are usually stored in mineral oil or kerosene (paraffin oil). They react aggressively with the halogens to form the alkali metal halides, which are white ionic crystalline compounds that are all soluble in water except lithium fluoride (Li F). The alkali metals also react with water to form strongly alkaline hydroxides and thus should be handled with great care. The heavier alkali metals react more vigorously than the lighter ones; for example, when dropped into water, caesium produces a larger explosion than potassium if the same number of moles of each metal is used. The alkali metals have the lowest first ionisation energies in their respective periods of the periodic table because of their low effective nuclear charge and the ability to attain a noble gas configuration by losing just one electron. Not only do the alkali metals react with water, but also with proton donors like alcohols and phenols, gaseous ammonia, and alkynes, the last demonstrating the phenomenal degree of their reactivity. Their great power as reducing agents makes them very useful in liberating other metals from their oxides or halides. The second ionisation energy of all of the alkali metals is very high as it is in a full shell that is also closer to the nucleus; thus, they almost always lose a single electron, forming cations. The alkalides are an exception: they are unstable compounds which contain alkali metals in a −1 oxidation state, which is very unusual as before the discovery of the alkalides, the alkali metals were not expected to be able to form anions and were thought to be able to appear in salts only as cations. The alkalide anions have filled s-subshells, which gives them enough stability to exist. All the stable alkali metals except lithium are known to be able to form alkalides, and the alkalides have much theoretical interest due to their unusual stoichiometry and low ionisation potentials. Alkalides are chemically similar to the electrides, which are salts with trapped electrons acting as anions.
A particularly striking example of an alkalide is "inverse sodium hydride", H+Na− (both ions being complexed), as opposed to the usual sodium hydride, Na+H−: it is unstable in isolation, due to its high energy resulting from the displacement of two electrons from hydrogen to sodium, although several derivatives are predicted to be metastable or stable. In aqueous solution, the alkali metal ions form aqua ions of the formula [M(H2O)n]+, where n is the solvation number. Their coordination numbers and shapes agree well with those expected from their ionic radii. In aqueous solution the water molecules directly attached to the metal ion are said to belong to the first coordination sphere, also known as the first, or primary, solvation shell. The bond between a water molecule and the metal ion is a dative covalent bond, with the oxygen atom donating both electrons to the bond. Each coordinated water molecule may be attached by hydrogen bonds to other water molecules. The latter are said to reside in the second coordination sphere. However, for the alkali metal cations, the second coordination sphere is not well-defined as the +1 charge on the cation is not high enough to polarise the water molecules in the primary solvation shell enough for them to form strong hydrogen bonds with those in the second coordination sphere, producing a more stable entity. The solvation number for Li+ has been experimentally determined to be 4, forming the tetrahedral [Li(H2O)4]+: while solvation numbers of 3 to 6 have been found for lithium aqua ions, solvation numbers less than 4 may be the result of the formation of contact ion pairs, and the higher solvation numbers may be interpreted in terms of water molecules that approach [Li(H2O)4]+ through a face of the tetrahedron, though molecular dynamic simulations may indicate the existence of an octahedral hexaaqua ion. There are also probably six water molecules in the primary solvation sphere of the sodium ion, forming the octahedral [Na(H2O)6]+ ion. While it was previously thought that the heavier alkali metals also formed octahedral hexaaqua ions, it has since been found that potassium and rubidium probably form the [K(H2O)8]+ and [Rb(H2O)8]+ ions, which have the square antiprismatic structure, and that caesium forms the 12-coordinate [Cs(H2O)12]+ ion. Lithium The chemistry of lithium shows several differences from that of the rest of the group as the small Li+ cation polarises anions and gives its compounds a more covalent character. Lithium and magnesium have a diagonal relationship due to their similar atomic radii, so that they show some similarities. For example, lithium forms a stable nitride, a property common among all the alkaline earth metals (magnesium's group) but unique among the alkali metals. In addition, among their respective groups, only lithium and magnesium form organometallic compounds with significant covalent character (e.g. LiMe and MgMe2). Lithium fluoride is the only alkali metal halide that is poorly soluble in water, and lithium hydroxide is the only alkali metal hydroxide that is not deliquescent.
A particularly striking example of an alkalide is "inverse sodium hydride", H+Na− (both ions being complexed), as opposed to the usual sodium hydride, Na+H−: it is unstable in isolation, due to its high energy resulting from the displacement of two electrons from hydrogen to sodium, although several derivatives are predicted to be metastable or stable. In aqueous solution, the alkali metal ions form aqua ions of the formula [M(H2O)n]+, where n is the solvation number. Their coordination numbers and shapes agree well with those expected from their ionic radii. In aqueous solution the water molecules directly attached to the metal ion are said to belong to the first coordination sphere, also known as the first, or primary, solvation shell. The bond between a water molecule and the metal ion is a dative covalent bond, with the oxygen atom donating both electrons to the bond. Each coordinated water molecule may be attached by hydrogen bonds to other water molecules. The latter are said to reside in the second coordination sphere. However, for the alkali metal cations, the second coordination sphere is not well-defined as the +1 charge on the cation is not high enough to polarise the water molecules in the primary solvation shell enough for them to form strong hydrogen bonds with those in the second coordination sphere, producing a more stable entity. The solvation number for Li+ has been experimentally determined to be 4, forming the tetrahedral [Li(H2O)4]+: while solvation numbers of 3 to 6 have been found for lithium aqua ions, solvation numbers less than 4 may be the result of the formation of contact ion pairs, and the higher solvation numbers may be interpreted in terms of water molecules that approach [Li(H2O)4]+ through a face of the tetrahedron, though molecular dynamic simulations may indicate the existence of an octahedral hexaaqua ion. There are also probably six water molecules in the primary solvation sphere of the sodium ion, forming the octahedral [Na(H2O)6]+ ion. While it was previously thought that the heavier alkali metals also formed octahedral hexaaqua ions, it has since been found that potassium and rubidium probably form the [K(H2O)8]+ and [Rb(H2O)8]+ ions, which have the square antiprismatic structure, and that caesium forms the 12-coordinate [Cs(H2O)12]+ ion. Lithium The chemistry of lithium shows several differences from that of the rest of the group as the small Li+ cation polarises anions and gives its compounds a more covalent character. Lithium and magnesium have a diagonal relationship due to their similar atomic radii, so that they show some similarities. For example, lithium forms a stable nitride, a property common among all the alkaline earth metals (magnesium's group) but unique among the alkali metals. In addition, among their respective groups, only lithium and magnesium form organometallic compounds with significant covalent character (e.g. LiMe and MgMe2). Lithium fluoride is the only alkali metal halide that is poorly soluble in water, and lithium hydroxide is the only alkali metal hydroxide that is not deliquescent.
A particularly striking example of an alkalide is "inverse sodium hydride", H+Na− (both ions being complexed), as opposed to the usual sodium hydride, Na+H−: it is unstable in isolation, due to its high energy resulting from the displacement of two electrons from hydrogen to sodium, although several derivatives are predicted to be metastable or stable. In aqueous solution, the alkali metal ions form aqua ions of the formula [M(H2O)n]+, where n is the solvation number. Their coordination numbers and shapes agree well with those expected from their ionic radii. In aqueous solution the water molecules directly attached to the metal ion are said to belong to the first coordination sphere, also known as the first, or primary, solvation shell. The bond between a water molecule and the metal ion is a dative covalent bond, with the oxygen atom donating both electrons to the bond. Each coordinated water molecule may be attached by hydrogen bonds to other water molecules. The latter are said to reside in the second coordination sphere. However, for the alkali metal cations, the second coordination sphere is not well-defined as the +1 charge on the cation is not high enough to polarise the water molecules in the primary solvation shell enough for them to form strong hydrogen bonds with those in the second coordination sphere, producing a more stable entity. The solvation number for Li+ has been experimentally determined to be 4, forming the tetrahedral [Li(H2O)4]+: while solvation numbers of 3 to 6 have been found for lithium aqua ions, solvation numbers less than 4 may be the result of the formation of contact ion pairs, and the higher solvation numbers may be interpreted in terms of water molecules that approach [Li(H2O)4]+ through a face of the tetrahedron, though molecular dynamic simulations may indicate the existence of an octahedral hexaaqua ion. There are also probably six water molecules in the primary solvation sphere of the sodium ion, forming the octahedral [Na(H2O)6]+ ion. While it was previously thought that the heavier alkali metals also formed octahedral hexaaqua ions, it has since been found that potassium and rubidium probably form the [K(H2O)8]+ and [Rb(H2O)8]+ ions, which have the square antiprismatic structure, and that caesium forms the 12-coordinate [Cs(H2O)12]+ ion. Lithium The chemistry of lithium shows several differences from that of the rest of the group as the small Li+ cation polarises anions and gives its compounds a more covalent character. Lithium and magnesium have a diagonal relationship due to their similar atomic radii, so that they show some similarities. For example, lithium forms a stable nitride, a property common among all the alkaline earth metals (magnesium's group) but unique among the alkali metals. In addition, among their respective groups, only lithium and magnesium form organometallic compounds with significant covalent character (e.g. LiMe and MgMe2). Lithium fluoride is the only alkali metal halide that is poorly soluble in water, and lithium hydroxide is the only alkali metal hydroxide that is not deliquescent.
Conversely, lithium perchlorate and other lithium salts with large anions that cannot be polarised are much more stable than the analogous compounds of the other alkali metals, probably because Li+ has a high solvation energy. This effect also means that most simple lithium salts are commonly encountered in hydrated form, because the anhydrous forms are extremely hygroscopic: this allows salts like lithium chloride and lithium bromide to be used in dehumidifiers and air-conditioners. Francium Francium is also predicted to show some differences due to its high atomic weight, causing its electrons to travel at considerable fractions of the speed of light and thus making relativistic effects more prominent. In contrast to the trend of decreasing electronegativities and ionisation energies of the alkali metals, francium's electronegativity and ionisation energy are predicted to be higher than caesium's due to the relativistic stabilisation of the 7s electrons; also, its atomic radius is expected to be abnormally low. Thus, contrary to expectation, caesium is the most reactive of the alkali metals, not francium. All known physical properties of francium also deviate from the clear trends going from lithium to caesium, such as the first ionisation energy, electron affinity, and anion polarisability, though due to the paucity of known data about francium many sources give extrapolated values, ignoring that relativistic effects make the trend from lithium to caesium become inapplicable at francium. Some of the few properties of francium that have been predicted taking relativity into account are the electron affinity (47.2 kJ/mol) and the enthalpy of dissociation of the Fr2 molecule (42.1 kJ/mol). The CsFr molecule is polarised as Cs+Fr−, showing that the 7s subshell of francium is much more strongly affected by relativistic effects than the 6s subshell of caesium. Additionally, francium superoxide (FrO2) is expected to have significant covalent character, unlike the other alkali metal superoxides, because of bonding contributions from the 6p electrons of francium. Nuclear All the alkali metals have odd atomic numbers; hence, their isotopes must be either odd–odd (both proton and neutron number are odd) or odd–even (proton number is odd, but neutron number is even). Odd–odd nuclei have even mass numbers, whereas odd–even nuclei have odd mass numbers. Odd–odd primordial nuclides are rare because most odd–odd nuclei are highly unstable with respect to beta decay, because the decay products are even–even, and are therefore more strongly bound, due to nuclear pairing effects. Due to the great rarity of odd–odd nuclei, almost all the primordial isotopes of the alkali metals are odd–even (the exceptions being the light stable isotope lithium-6 and the long-lived radioisotope potassium-40). For a given odd mass number, there can be only a single beta-stable nuclide, since there is not a difference in binding energy between even–odd and odd–even comparable to that between even–even and odd–odd, leaving other nuclides of the same mass number (isobars) free to beta decay toward the lowest-mass nuclide.
Conversely, lithium perchlorate and other lithium salts with large anions that cannot be polarised are much more stable than the analogous compounds of the other alkali metals, probably because Li+ has a high solvation energy. This effect also means that most simple lithium salts are commonly encountered in hydrated form, because the anhydrous forms are extremely hygroscopic: this allows salts like lithium chloride and lithium bromide to be used in dehumidifiers and air-conditioners. Francium Francium is also predicted to show some differences due to its high atomic weight, causing its electrons to travel at considerable fractions of the speed of light and thus making relativistic effects more prominent. In contrast to the trend of decreasing electronegativities and ionisation energies of the alkali metals, francium's electronegativity and ionisation energy are predicted to be higher than caesium's due to the relativistic stabilisation of the 7s electrons; also, its atomic radius is expected to be abnormally low. Thus, contrary to expectation, caesium is the most reactive of the alkali metals, not francium. All known physical properties of francium also deviate from the clear trends going from lithium to caesium, such as the first ionisation energy, electron affinity, and anion polarisability, though due to the paucity of known data about francium many sources give extrapolated values, ignoring that relativistic effects make the trend from lithium to caesium become inapplicable at francium. Some of the few properties of francium that have been predicted taking relativity into account are the electron affinity (47.2 kJ/mol) and the enthalpy of dissociation of the Fr2 molecule (42.1 kJ/mol). The CsFr molecule is polarised as Cs+Fr−, showing that the 7s subshell of francium is much more strongly affected by relativistic effects than the 6s subshell of caesium. Additionally, francium superoxide (FrO2) is expected to have significant covalent character, unlike the other alkali metal superoxides, because of bonding contributions from the 6p electrons of francium. Nuclear All the alkali metals have odd atomic numbers; hence, their isotopes must be either odd–odd (both proton and neutron number are odd) or odd–even (proton number is odd, but neutron number is even). Odd–odd nuclei have even mass numbers, whereas odd–even nuclei have odd mass numbers. Odd–odd primordial nuclides are rare because most odd–odd nuclei are highly unstable with respect to beta decay, because the decay products are even–even, and are therefore more strongly bound, due to nuclear pairing effects. Due to the great rarity of odd–odd nuclei, almost all the primordial isotopes of the alkali metals are odd–even (the exceptions being the light stable isotope lithium-6 and the long-lived radioisotope potassium-40). For a given odd mass number, there can be only a single beta-stable nuclide, since there is not a difference in binding energy between even–odd and odd–even comparable to that between even–even and odd–odd, leaving other nuclides of the same mass number (isobars) free to beta decay toward the lowest-mass nuclide.
Conversely, lithium perchlorate and other lithium salts with large anions that cannot be polarised are much more stable than the analogous compounds of the other alkali metals, probably because Li+ has a high solvation energy. This effect also means that most simple lithium salts are commonly encountered in hydrated form, because the anhydrous forms are extremely hygroscopic: this allows salts like lithium chloride and lithium bromide to be used in dehumidifiers and air-conditioners. Francium Francium is also predicted to show some differences due to its high atomic weight, causing its electrons to travel at considerable fractions of the speed of light and thus making relativistic effects more prominent. In contrast to the trend of decreasing electronegativities and ionisation energies of the alkali metals, francium's electronegativity and ionisation energy are predicted to be higher than caesium's due to the relativistic stabilisation of the 7s electrons; also, its atomic radius is expected to be abnormally low. Thus, contrary to expectation, caesium is the most reactive of the alkali metals, not francium. All known physical properties of francium also deviate from the clear trends going from lithium to caesium, such as the first ionisation energy, electron affinity, and anion polarisability, though due to the paucity of known data about francium many sources give extrapolated values, ignoring that relativistic effects make the trend from lithium to caesium become inapplicable at francium. Some of the few properties of francium that have been predicted taking relativity into account are the electron affinity (47.2 kJ/mol) and the enthalpy of dissociation of the Fr2 molecule (42.1 kJ/mol). The CsFr molecule is polarised as Cs+Fr−, showing that the 7s subshell of francium is much more strongly affected by relativistic effects than the 6s subshell of caesium. Additionally, francium superoxide (FrO2) is expected to have significant covalent character, unlike the other alkali metal superoxides, because of bonding contributions from the 6p electrons of francium. Nuclear All the alkali metals have odd atomic numbers; hence, their isotopes must be either odd–odd (both proton and neutron number are odd) or odd–even (proton number is odd, but neutron number is even). Odd–odd nuclei have even mass numbers, whereas odd–even nuclei have odd mass numbers. Odd–odd primordial nuclides are rare because most odd–odd nuclei are highly unstable with respect to beta decay, because the decay products are even–even, and are therefore more strongly bound, due to nuclear pairing effects. Due to the great rarity of odd–odd nuclei, almost all the primordial isotopes of the alkali metals are odd–even (the exceptions being the light stable isotope lithium-6 and the long-lived radioisotope potassium-40). For a given odd mass number, there can be only a single beta-stable nuclide, since there is not a difference in binding energy between even–odd and odd–even comparable to that between even–even and odd–odd, leaving other nuclides of the same mass number (isobars) free to beta decay toward the lowest-mass nuclide.
An effect of the instability of an odd number of either type of nucleons is that odd-numbered elements, such as the alkali metals, tend to have fewer stable isotopes than even-numbered elements. Of the 26 monoisotopic elements that have only a single stable isotope, all but one have an odd atomic number and all but one also have an even number of neutrons. Beryllium is the single exception to both rules, due to its low atomic number. All of the alkali metals except lithium and caesium have at least one naturally occurring radioisotope: sodium-22 and sodium-24 are trace radioisotopes produced cosmogenically, potassium-40 and rubidium-87 have very long half-lives and thus occur naturally, and all isotopes of francium are radioactive. Caesium was also thought to be radioactive in the early 20th century, although it has no naturally occurring radioisotopes. (Francium had not been discovered yet at that time.) The natural long-lived radioisotope of potassium, potassium-40, makes up about 0.012% of natural potassium, and thus natural potassium is weakly radioactive. This natural radioactivity became a basis for a mistaken claim of the discovery for element 87 (the next alkali metal after caesium) in 1925. Natural rubidium is similarly slightly radioactive, with 27.83% being the long-lived radioisotope rubidium-87. Caesium-137, with a half-life of 30.17 years, is one of the two principal medium-lived fission products, along with strontium-90, which are responsible for most of the radioactivity of spent nuclear fuel after several years of cooling, up to several hundred years after use. It constitutes most of the radioactivity still left from the Chernobyl accident. Caesium-137 undergoes high-energy beta decay and eventually becomes stable barium-137. It is a strong emitter of gamma radiation. Caesium-137 has a very low rate of neutron capture and cannot be feasibly disposed of in this way, but must be allowed to decay. Caesium-137 has been used as a tracer in hydrologic studies, analogous to the use of tritium. Small amounts of caesium-134 and caesium-137 were released into the environment during nearly all nuclear weapon tests and some nuclear accidents, most notably the Goiânia accident and the Chernobyl disaster. As of 2005, caesium-137 is the principal source of radiation in the zone of alienation around the Chernobyl nuclear power plant. Its chemical properties as one of the alkali metals make it one of most problematic of the short-to-medium-lifetime fission products because it easily moves and spreads in nature due to the high water solubility of its salts, and is taken up by the body, which mistakes it for its essential congeners sodium and potassium. Periodic trends The alkali metals are more similar to each other than the elements in any other group are to each other. For instance, when moving down the table, all known alkali metals show increasing atomic radius, decreasing electronegativity, increasing reactivity, and decreasing melting and boiling points as well as heats of fusion and vaporisation. In general, their densities increase when moving down the table, with the exception that potassium is less dense than sodium.
An effect of the instability of an odd number of either type of nucleons is that odd-numbered elements, such as the alkali metals, tend to have fewer stable isotopes than even-numbered elements. Of the 26 monoisotopic elements that have only a single stable isotope, all but one have an odd atomic number and all but one also have an even number of neutrons. Beryllium is the single exception to both rules, due to its low atomic number. All of the alkali metals except lithium and caesium have at least one naturally occurring radioisotope: sodium-22 and sodium-24 are trace radioisotopes produced cosmogenically, potassium-40 and rubidium-87 have very long half-lives and thus occur naturally, and all isotopes of francium are radioactive. Caesium was also thought to be radioactive in the early 20th century, although it has no naturally occurring radioisotopes. (Francium had not been discovered yet at that time.) The natural long-lived radioisotope of potassium, potassium-40, makes up about 0.012% of natural potassium, and thus natural potassium is weakly radioactive. This natural radioactivity became a basis for a mistaken claim of the discovery for element 87 (the next alkali metal after caesium) in 1925. Natural rubidium is similarly slightly radioactive, with 27.83% being the long-lived radioisotope rubidium-87. Caesium-137, with a half-life of 30.17 years, is one of the two principal medium-lived fission products, along with strontium-90, which are responsible for most of the radioactivity of spent nuclear fuel after several years of cooling, up to several hundred years after use. It constitutes most of the radioactivity still left from the Chernobyl accident. Caesium-137 undergoes high-energy beta decay and eventually becomes stable barium-137. It is a strong emitter of gamma radiation. Caesium-137 has a very low rate of neutron capture and cannot be feasibly disposed of in this way, but must be allowed to decay. Caesium-137 has been used as a tracer in hydrologic studies, analogous to the use of tritium. Small amounts of caesium-134 and caesium-137 were released into the environment during nearly all nuclear weapon tests and some nuclear accidents, most notably the Goiânia accident and the Chernobyl disaster. As of 2005, caesium-137 is the principal source of radiation in the zone of alienation around the Chernobyl nuclear power plant. Its chemical properties as one of the alkali metals make it one of most problematic of the short-to-medium-lifetime fission products because it easily moves and spreads in nature due to the high water solubility of its salts, and is taken up by the body, which mistakes it for its essential congeners sodium and potassium. Periodic trends The alkali metals are more similar to each other than the elements in any other group are to each other. For instance, when moving down the table, all known alkali metals show increasing atomic radius, decreasing electronegativity, increasing reactivity, and decreasing melting and boiling points as well as heats of fusion and vaporisation. In general, their densities increase when moving down the table, with the exception that potassium is less dense than sodium.
An effect of the instability of an odd number of either type of nucleons is that odd-numbered elements, such as the alkali metals, tend to have fewer stable isotopes than even-numbered elements. Of the 26 monoisotopic elements that have only a single stable isotope, all but one have an odd atomic number and all but one also have an even number of neutrons. Beryllium is the single exception to both rules, due to its low atomic number. All of the alkali metals except lithium and caesium have at least one naturally occurring radioisotope: sodium-22 and sodium-24 are trace radioisotopes produced cosmogenically, potassium-40 and rubidium-87 have very long half-lives and thus occur naturally, and all isotopes of francium are radioactive. Caesium was also thought to be radioactive in the early 20th century, although it has no naturally occurring radioisotopes. (Francium had not been discovered yet at that time.) The natural long-lived radioisotope of potassium, potassium-40, makes up about 0.012% of natural potassium, and thus natural potassium is weakly radioactive. This natural radioactivity became a basis for a mistaken claim of the discovery for element 87 (the next alkali metal after caesium) in 1925. Natural rubidium is similarly slightly radioactive, with 27.83% being the long-lived radioisotope rubidium-87. Caesium-137, with a half-life of 30.17 years, is one of the two principal medium-lived fission products, along with strontium-90, which are responsible for most of the radioactivity of spent nuclear fuel after several years of cooling, up to several hundred years after use. It constitutes most of the radioactivity still left from the Chernobyl accident. Caesium-137 undergoes high-energy beta decay and eventually becomes stable barium-137. It is a strong emitter of gamma radiation. Caesium-137 has a very low rate of neutron capture and cannot be feasibly disposed of in this way, but must be allowed to decay. Caesium-137 has been used as a tracer in hydrologic studies, analogous to the use of tritium. Small amounts of caesium-134 and caesium-137 were released into the environment during nearly all nuclear weapon tests and some nuclear accidents, most notably the Goiânia accident and the Chernobyl disaster. As of 2005, caesium-137 is the principal source of radiation in the zone of alienation around the Chernobyl nuclear power plant. Its chemical properties as one of the alkali metals make it one of most problematic of the short-to-medium-lifetime fission products because it easily moves and spreads in nature due to the high water solubility of its salts, and is taken up by the body, which mistakes it for its essential congeners sodium and potassium. Periodic trends The alkali metals are more similar to each other than the elements in any other group are to each other. For instance, when moving down the table, all known alkali metals show increasing atomic radius, decreasing electronegativity, increasing reactivity, and decreasing melting and boiling points as well as heats of fusion and vaporisation. In general, their densities increase when moving down the table, with the exception that potassium is less dense than sodium.
Atomic and ionic radii The atomic radii of the alkali metals increase going down the group. Because of the shielding effect, when an atom has more than one electron shell, each electron feels electric repulsion from the other electrons as well as electric attraction from the nucleus. In the alkali metals, the outermost electron only feels a net charge of +1, as some of the nuclear charge (which is equal to the atomic number) is cancelled by the inner electrons; the number of inner electrons of an alkali metal is always one less than the nuclear charge. Therefore, the only factor which affects the atomic radius of the alkali metals is the number of electron shells. Since this number increases down the group, the atomic radius must also increase down the group. The ionic radii of the alkali metals are much smaller than their atomic radii. This is because the outermost electron of the alkali metals is in a different electron shell than the inner electrons, and thus when it is removed the resulting atom has one fewer electron shell and is smaller. Additionally, the effective nuclear charge has increased, and thus the electrons are attracted more strongly towards the nucleus and the ionic radius decreases. First ionisation energy The first ionisation energy of an element or molecule is the energy required to move the most loosely held electron from one mole of gaseous atoms of the element or molecules to form one mole of gaseous ions with electric charge +1. The factors affecting the first ionisation energy are the nuclear charge, the amount of shielding by the inner electrons and the distance from the most loosely held electron from the nucleus, which is always an outer electron in main group elements. The first two factors change the effective nuclear charge the most loosely held electron feels. Since the outermost electron of alkali metals always feels the same effective nuclear charge (+1), the only factor which affects the first ionisation energy is the distance from the outermost electron to the nucleus. Since this distance increases down the group, the outermost electron feels less attraction from the nucleus and thus the first ionisation energy decreases. (This trend is broken in francium due to the relativistic stabilisation and contraction of the 7s orbital, bringing francium's valence electron closer to the nucleus than would be expected from non-relativistic calculations. This makes francium's outermost electron feel more attraction from the nucleus, increasing its first ionisation energy slightly beyond that of caesium.) The second ionisation energy of the alkali metals is much higher than the first as the second-most loosely held electron is part of a fully filled electron shell and is thus difficult to remove. Reactivity The reactivities of the alkali metals increase going down the group. This is the result of a combination of two factors: the first ionisation energies and atomisation energies of the alkali metals.
Atomic and ionic radii The atomic radii of the alkali metals increase going down the group. Because of the shielding effect, when an atom has more than one electron shell, each electron feels electric repulsion from the other electrons as well as electric attraction from the nucleus. In the alkali metals, the outermost electron only feels a net charge of +1, as some of the nuclear charge (which is equal to the atomic number) is cancelled by the inner electrons; the number of inner electrons of an alkali metal is always one less than the nuclear charge. Therefore, the only factor which affects the atomic radius of the alkali metals is the number of electron shells. Since this number increases down the group, the atomic radius must also increase down the group. The ionic radii of the alkali metals are much smaller than their atomic radii. This is because the outermost electron of the alkali metals is in a different electron shell than the inner electrons, and thus when it is removed the resulting atom has one fewer electron shell and is smaller. Additionally, the effective nuclear charge has increased, and thus the electrons are attracted more strongly towards the nucleus and the ionic radius decreases. First ionisation energy The first ionisation energy of an element or molecule is the energy required to move the most loosely held electron from one mole of gaseous atoms of the element or molecules to form one mole of gaseous ions with electric charge +1. The factors affecting the first ionisation energy are the nuclear charge, the amount of shielding by the inner electrons and the distance from the most loosely held electron from the nucleus, which is always an outer electron in main group elements. The first two factors change the effective nuclear charge the most loosely held electron feels. Since the outermost electron of alkali metals always feels the same effective nuclear charge (+1), the only factor which affects the first ionisation energy is the distance from the outermost electron to the nucleus. Since this distance increases down the group, the outermost electron feels less attraction from the nucleus and thus the first ionisation energy decreases. (This trend is broken in francium due to the relativistic stabilisation and contraction of the 7s orbital, bringing francium's valence electron closer to the nucleus than would be expected from non-relativistic calculations. This makes francium's outermost electron feel more attraction from the nucleus, increasing its first ionisation energy slightly beyond that of caesium.) The second ionisation energy of the alkali metals is much higher than the first as the second-most loosely held electron is part of a fully filled electron shell and is thus difficult to remove. Reactivity The reactivities of the alkali metals increase going down the group. This is the result of a combination of two factors: the first ionisation energies and atomisation energies of the alkali metals.
Atomic and ionic radii The atomic radii of the alkali metals increase going down the group. Because of the shielding effect, when an atom has more than one electron shell, each electron feels electric repulsion from the other electrons as well as electric attraction from the nucleus. In the alkali metals, the outermost electron only feels a net charge of +1, as some of the nuclear charge (which is equal to the atomic number) is cancelled by the inner electrons; the number of inner electrons of an alkali metal is always one less than the nuclear charge. Therefore, the only factor which affects the atomic radius of the alkali metals is the number of electron shells. Since this number increases down the group, the atomic radius must also increase down the group. The ionic radii of the alkali metals are much smaller than their atomic radii. This is because the outermost electron of the alkali metals is in a different electron shell than the inner electrons, and thus when it is removed the resulting atom has one fewer electron shell and is smaller. Additionally, the effective nuclear charge has increased, and thus the electrons are attracted more strongly towards the nucleus and the ionic radius decreases. First ionisation energy The first ionisation energy of an element or molecule is the energy required to move the most loosely held electron from one mole of gaseous atoms of the element or molecules to form one mole of gaseous ions with electric charge +1. The factors affecting the first ionisation energy are the nuclear charge, the amount of shielding by the inner electrons and the distance from the most loosely held electron from the nucleus, which is always an outer electron in main group elements. The first two factors change the effective nuclear charge the most loosely held electron feels. Since the outermost electron of alkali metals always feels the same effective nuclear charge (+1), the only factor which affects the first ionisation energy is the distance from the outermost electron to the nucleus. Since this distance increases down the group, the outermost electron feels less attraction from the nucleus and thus the first ionisation energy decreases. (This trend is broken in francium due to the relativistic stabilisation and contraction of the 7s orbital, bringing francium's valence electron closer to the nucleus than would be expected from non-relativistic calculations. This makes francium's outermost electron feel more attraction from the nucleus, increasing its first ionisation energy slightly beyond that of caesium.) The second ionisation energy of the alkali metals is much higher than the first as the second-most loosely held electron is part of a fully filled electron shell and is thus difficult to remove. Reactivity The reactivities of the alkali metals increase going down the group. This is the result of a combination of two factors: the first ionisation energies and atomisation energies of the alkali metals.
Because the first ionisation energy of the alkali metals decreases down the group, it is easier for the outermost electron to be removed from the atom and participate in chemical reactions, thus increasing reactivity down the group. The atomisation energy measures the strength of the metallic bond of an element, which falls down the group as the atoms increase in radius and thus the metallic bond must increase in length, making the delocalised electrons further away from the attraction of the nuclei of the heavier alkali metals. Adding the atomisation and first ionisation energies gives a quantity closely related to (but not equal to) the activation energy of the reaction of an alkali metal with another substance. This quantity decreases going down the group, and so does the activation energy; thus, chemical reactions can occur faster and the reactivity increases down the group. Electronegativity Electronegativity is a chemical property that describes the tendency of an atom or a functional group to attract electrons (or electron density) towards itself. If the bond between sodium and chlorine in sodium chloride were covalent, the pair of shared electrons would be attracted to the chlorine because the effective nuclear charge on the outer electrons is +7 in chlorine but is only +1 in sodium. The electron pair is attracted so close to the chlorine atom that they are practically transferred to the chlorine atom (an ionic bond). However, if the sodium atom was replaced by a lithium atom, the electrons will not be attracted as close to the chlorine atom as before because the lithium atom is smaller, making the electron pair more strongly attracted to the closer effective nuclear charge from lithium. Hence, the larger alkali metal atoms (further down the group) will be less electronegative as the bonding pair is less strongly attracted towards them. As mentioned previously, francium is expected to be an exception. Because of the higher electronegativity of lithium, some of its compounds have a more covalent character. For example, lithium iodide (Li I) will dissolve in organic solvents, a property of most covalent compounds. Lithium fluoride (LiF) is the only alkali halide that is not soluble in water, and lithium hydroxide (LiOH) is the only alkali metal hydroxide that is not deliquescent. Melting and boiling points The melting point of a substance is the point where it changes state from solid to liquid while the boiling point of a substance (in liquid state) is the point where the vapour pressure of the liquid equals the environmental pressure surrounding the liquid and all the liquid changes state to gas. As a metal is heated to its melting point, the metallic bonds keeping the atoms in place weaken so that the atoms can move around, and the metallic bonds eventually break completely at the metal's boiling point. Therefore, the falling melting and boiling points of the alkali metals indicate that the strength of the metallic bonds of the alkali metals decreases down the group.
Because the first ionisation energy of the alkali metals decreases down the group, it is easier for the outermost electron to be removed from the atom and participate in chemical reactions, thus increasing reactivity down the group. The atomisation energy measures the strength of the metallic bond of an element, which falls down the group as the atoms increase in radius and thus the metallic bond must increase in length, making the delocalised electrons further away from the attraction of the nuclei of the heavier alkali metals. Adding the atomisation and first ionisation energies gives a quantity closely related to (but not equal to) the activation energy of the reaction of an alkali metal with another substance. This quantity decreases going down the group, and so does the activation energy; thus, chemical reactions can occur faster and the reactivity increases down the group. Electronegativity Electronegativity is a chemical property that describes the tendency of an atom or a functional group to attract electrons (or electron density) towards itself. If the bond between sodium and chlorine in sodium chloride were covalent, the pair of shared electrons would be attracted to the chlorine because the effective nuclear charge on the outer electrons is +7 in chlorine but is only +1 in sodium. The electron pair is attracted so close to the chlorine atom that they are practically transferred to the chlorine atom (an ionic bond). However, if the sodium atom was replaced by a lithium atom, the electrons will not be attracted as close to the chlorine atom as before because the lithium atom is smaller, making the electron pair more strongly attracted to the closer effective nuclear charge from lithium. Hence, the larger alkali metal atoms (further down the group) will be less electronegative as the bonding pair is less strongly attracted towards them. As mentioned previously, francium is expected to be an exception. Because of the higher electronegativity of lithium, some of its compounds have a more covalent character. For example, lithium iodide (Li I) will dissolve in organic solvents, a property of most covalent compounds. Lithium fluoride (LiF) is the only alkali halide that is not soluble in water, and lithium hydroxide (LiOH) is the only alkali metal hydroxide that is not deliquescent. Melting and boiling points The melting point of a substance is the point where it changes state from solid to liquid while the boiling point of a substance (in liquid state) is the point where the vapour pressure of the liquid equals the environmental pressure surrounding the liquid and all the liquid changes state to gas. As a metal is heated to its melting point, the metallic bonds keeping the atoms in place weaken so that the atoms can move around, and the metallic bonds eventually break completely at the metal's boiling point. Therefore, the falling melting and boiling points of the alkali metals indicate that the strength of the metallic bonds of the alkali metals decreases down the group.
Because the first ionisation energy of the alkali metals decreases down the group, it is easier for the outermost electron to be removed from the atom and participate in chemical reactions, thus increasing reactivity down the group. The atomisation energy measures the strength of the metallic bond of an element, which falls down the group as the atoms increase in radius and thus the metallic bond must increase in length, making the delocalised electrons further away from the attraction of the nuclei of the heavier alkali metals. Adding the atomisation and first ionisation energies gives a quantity closely related to (but not equal to) the activation energy of the reaction of an alkali metal with another substance. This quantity decreases going down the group, and so does the activation energy; thus, chemical reactions can occur faster and the reactivity increases down the group. Electronegativity Electronegativity is a chemical property that describes the tendency of an atom or a functional group to attract electrons (or electron density) towards itself. If the bond between sodium and chlorine in sodium chloride were covalent, the pair of shared electrons would be attracted to the chlorine because the effective nuclear charge on the outer electrons is +7 in chlorine but is only +1 in sodium. The electron pair is attracted so close to the chlorine atom that they are practically transferred to the chlorine atom (an ionic bond). However, if the sodium atom was replaced by a lithium atom, the electrons will not be attracted as close to the chlorine atom as before because the lithium atom is smaller, making the electron pair more strongly attracted to the closer effective nuclear charge from lithium. Hence, the larger alkali metal atoms (further down the group) will be less electronegative as the bonding pair is less strongly attracted towards them. As mentioned previously, francium is expected to be an exception. Because of the higher electronegativity of lithium, some of its compounds have a more covalent character. For example, lithium iodide (Li I) will dissolve in organic solvents, a property of most covalent compounds. Lithium fluoride (LiF) is the only alkali halide that is not soluble in water, and lithium hydroxide (LiOH) is the only alkali metal hydroxide that is not deliquescent. Melting and boiling points The melting point of a substance is the point where it changes state from solid to liquid while the boiling point of a substance (in liquid state) is the point where the vapour pressure of the liquid equals the environmental pressure surrounding the liquid and all the liquid changes state to gas. As a metal is heated to its melting point, the metallic bonds keeping the atoms in place weaken so that the atoms can move around, and the metallic bonds eventually break completely at the metal's boiling point. Therefore, the falling melting and boiling points of the alkali metals indicate that the strength of the metallic bonds of the alkali metals decreases down the group.
This is because metal atoms are held together by the electromagnetic attraction from the positive ions to the delocalised electrons. As the atoms increase in size going down the group (because their atomic radius increases), the nuclei of the ions move further away from the delocalised electrons and hence the metallic bond becomes weaker so that the metal can more easily melt and boil, thus lowering the melting and boiling points. (The increased nuclear charge is not a relevant factor due to the shielding effect.) Density The alkali metals all have the same crystal structure (body-centred cubic) and thus the only relevant factors are the number of atoms that can fit into a certain volume and the mass of one of the atoms, since density is defined as mass per unit volume. The first factor depends on the volume of the atom and thus the atomic radius, which increases going down the group; thus, the volume of an alkali metal atom increases going down the group. The mass of an alkali metal atom also increases going down the group. Thus, the trend for the densities of the alkali metals depends on their atomic weights and atomic radii; if figures for these two factors are known, the ratios between the densities of the alkali metals can then be calculated. The resultant trend is that the densities of the alkali metals increase down the table, with an exception at potassium. Due to having the lowest atomic weight and the largest atomic radius of all the elements in their periods, the alkali metals are the least dense metals in the periodic table. Lithium, sodium, and potassium are the only three metals in the periodic table that are less dense than water: in fact, lithium is the least dense known solid at room temperature. Compounds The alkali metals form complete series of compounds with all usually encountered anions, which well illustrate group trends. These compounds can be described as involving the alkali metals losing electrons to acceptor species and forming monopositive ions. This description is most accurate for alkali halides and becomes less and less accurate as cationic and anionic charge increase, and as the anion becomes larger and more polarisable. For instance, ionic bonding gives way to metallic bonding along the series NaCl, Na2O, Na2S, Na3P, Na3As, Na3Sb, Na3Bi, Na. Hydroxides All the alkali metals react vigorously or explosively with cold water, producing an aqueous solution of a strongly basic alkali metal hydroxide and releasing hydrogen gas. This reaction becomes more vigorous going down the group: lithium reacts steadily with effervescence, but sodium and potassium can ignite, and rubidium and caesium sink in water and generate hydrogen gas so rapidly that shock waves form in the water that may shatter glass containers. When an alkali metal is dropped into water, it produces an explosion, of which there are two separate stages.
This is because metal atoms are held together by the electromagnetic attraction from the positive ions to the delocalised electrons. As the atoms increase in size going down the group (because their atomic radius increases), the nuclei of the ions move further away from the delocalised electrons and hence the metallic bond becomes weaker so that the metal can more easily melt and boil, thus lowering the melting and boiling points. (The increased nuclear charge is not a relevant factor due to the shielding effect.) Density The alkali metals all have the same crystal structure (body-centred cubic) and thus the only relevant factors are the number of atoms that can fit into a certain volume and the mass of one of the atoms, since density is defined as mass per unit volume. The first factor depends on the volume of the atom and thus the atomic radius, which increases going down the group; thus, the volume of an alkali metal atom increases going down the group. The mass of an alkali metal atom also increases going down the group. Thus, the trend for the densities of the alkali metals depends on their atomic weights and atomic radii; if figures for these two factors are known, the ratios between the densities of the alkali metals can then be calculated. The resultant trend is that the densities of the alkali metals increase down the table, with an exception at potassium. Due to having the lowest atomic weight and the largest atomic radius of all the elements in their periods, the alkali metals are the least dense metals in the periodic table. Lithium, sodium, and potassium are the only three metals in the periodic table that are less dense than water: in fact, lithium is the least dense known solid at room temperature. Compounds The alkali metals form complete series of compounds with all usually encountered anions, which well illustrate group trends. These compounds can be described as involving the alkali metals losing electrons to acceptor species and forming monopositive ions. This description is most accurate for alkali halides and becomes less and less accurate as cationic and anionic charge increase, and as the anion becomes larger and more polarisable. For instance, ionic bonding gives way to metallic bonding along the series NaCl, Na2O, Na2S, Na3P, Na3As, Na3Sb, Na3Bi, Na. Hydroxides All the alkali metals react vigorously or explosively with cold water, producing an aqueous solution of a strongly basic alkali metal hydroxide and releasing hydrogen gas. This reaction becomes more vigorous going down the group: lithium reacts steadily with effervescence, but sodium and potassium can ignite, and rubidium and caesium sink in water and generate hydrogen gas so rapidly that shock waves form in the water that may shatter glass containers. When an alkali metal is dropped into water, it produces an explosion, of which there are two separate stages.
This is because metal atoms are held together by the electromagnetic attraction from the positive ions to the delocalised electrons. As the atoms increase in size going down the group (because their atomic radius increases), the nuclei of the ions move further away from the delocalised electrons and hence the metallic bond becomes weaker so that the metal can more easily melt and boil, thus lowering the melting and boiling points. (The increased nuclear charge is not a relevant factor due to the shielding effect.) Density The alkali metals all have the same crystal structure (body-centred cubic) and thus the only relevant factors are the number of atoms that can fit into a certain volume and the mass of one of the atoms, since density is defined as mass per unit volume. The first factor depends on the volume of the atom and thus the atomic radius, which increases going down the group; thus, the volume of an alkali metal atom increases going down the group. The mass of an alkali metal atom also increases going down the group. Thus, the trend for the densities of the alkali metals depends on their atomic weights and atomic radii; if figures for these two factors are known, the ratios between the densities of the alkali metals can then be calculated. The resultant trend is that the densities of the alkali metals increase down the table, with an exception at potassium. Due to having the lowest atomic weight and the largest atomic radius of all the elements in their periods, the alkali metals are the least dense metals in the periodic table. Lithium, sodium, and potassium are the only three metals in the periodic table that are less dense than water: in fact, lithium is the least dense known solid at room temperature. Compounds The alkali metals form complete series of compounds with all usually encountered anions, which well illustrate group trends. These compounds can be described as involving the alkali metals losing electrons to acceptor species and forming monopositive ions. This description is most accurate for alkali halides and becomes less and less accurate as cationic and anionic charge increase, and as the anion becomes larger and more polarisable. For instance, ionic bonding gives way to metallic bonding along the series NaCl, Na2O, Na2S, Na3P, Na3As, Na3Sb, Na3Bi, Na. Hydroxides All the alkali metals react vigorously or explosively with cold water, producing an aqueous solution of a strongly basic alkali metal hydroxide and releasing hydrogen gas. This reaction becomes more vigorous going down the group: lithium reacts steadily with effervescence, but sodium and potassium can ignite, and rubidium and caesium sink in water and generate hydrogen gas so rapidly that shock waves form in the water that may shatter glass containers. When an alkali metal is dropped into water, it produces an explosion, of which there are two separate stages.
The metal reacts with the water first, breaking the hydrogen bonds in the water and producing hydrogen gas; this takes place faster for the more reactive heavier alkali metals. Second, the heat generated by the first part of the reaction often ignites the hydrogen gas, causing it to burn explosively into the surrounding air. This secondary hydrogen gas explosion produces the visible flame above the bowl of water, lake or other body of water, not the initial reaction of the metal with water (which tends to happen mostly under water). The alkali metal hydroxides are the most basic known hydroxides. Recent research has suggested that the explosive behavior of alkali metals in water is driven by a Coulomb explosion rather than solely by rapid generation of hydrogen itself. All alkali metals melt as a part of the reaction with water. Water molecules ionise the bare metallic surface of the liquid metal, leaving a positively charged metal surface and negatively charged water ions. The attraction between the charged metal and water ions will rapidly increase the surface area, causing an exponential increase of ionisation. When the repulsive forces within the liquid metal surface exceeds the forces of the surface tension, it vigorously explodes. The hydroxides themselves are the most basic hydroxides known, reacting with acids to give salts and with alcohols to give oligomeric alkoxides. They easily react with carbon dioxide to form carbonates or bicarbonates, or with hydrogen sulfide to form sulfides or bisulfides, and may be used to separate thiols from petroleum. They react with amphoteric oxides: for example, the oxides of aluminium, zinc, tin, and lead react with the alkali metal hydroxides to give aluminates, zincates, stannates, and plumbates. Silicon dioxide is acidic, and thus the alkali metal hydroxides can also attack silicate glass. Intermetallic compounds The alkali metals form many intermetallic compounds with each other and the elements from groups 2 to 13 in the periodic table of varying stoichiometries, such as the sodium amalgams with mercury, including Na5Hg8 and Na3Hg. Some of these have ionic characteristics: taking the alloys with gold, the most electronegative of metals, as an example, NaAu and KAu are metallic, but RbAu and CsAu are semiconductors. NaK is an alloy of sodium and potassium that is very useful because it is liquid at room temperature, although precautions must be taken due to its extreme reactivity towards water and air. The eutectic mixture melts at −12.6 °C. An alloy of 41% caesium, 47% sodium, and 12% potassium has the lowest known melting point of any metal or alloy, −78 °C. Compounds with the group 13 elements The intermetallic compounds of the alkali metals with the heavier group 13 elements (aluminium, gallium, indium, and thallium), such as NaTl, are poor conductors or semiconductors, unlike the normal alloys with the preceding elements, implying that the alkali metal involved has lost an electron to the Zintl anions involved.
The metal reacts with the water first, breaking the hydrogen bonds in the water and producing hydrogen gas; this takes place faster for the more reactive heavier alkali metals. Second, the heat generated by the first part of the reaction often ignites the hydrogen gas, causing it to burn explosively into the surrounding air. This secondary hydrogen gas explosion produces the visible flame above the bowl of water, lake or other body of water, not the initial reaction of the metal with water (which tends to happen mostly under water). The alkali metal hydroxides are the most basic known hydroxides. Recent research has suggested that the explosive behavior of alkali metals in water is driven by a Coulomb explosion rather than solely by rapid generation of hydrogen itself. All alkali metals melt as a part of the reaction with water. Water molecules ionise the bare metallic surface of the liquid metal, leaving a positively charged metal surface and negatively charged water ions. The attraction between the charged metal and water ions will rapidly increase the surface area, causing an exponential increase of ionisation. When the repulsive forces within the liquid metal surface exceeds the forces of the surface tension, it vigorously explodes. The hydroxides themselves are the most basic hydroxides known, reacting with acids to give salts and with alcohols to give oligomeric alkoxides. They easily react with carbon dioxide to form carbonates or bicarbonates, or with hydrogen sulfide to form sulfides or bisulfides, and may be used to separate thiols from petroleum. They react with amphoteric oxides: for example, the oxides of aluminium, zinc, tin, and lead react with the alkali metal hydroxides to give aluminates, zincates, stannates, and plumbates. Silicon dioxide is acidic, and thus the alkali metal hydroxides can also attack silicate glass. Intermetallic compounds The alkali metals form many intermetallic compounds with each other and the elements from groups 2 to 13 in the periodic table of varying stoichiometries, such as the sodium amalgams with mercury, including Na5Hg8 and Na3Hg. Some of these have ionic characteristics: taking the alloys with gold, the most electronegative of metals, as an example, NaAu and KAu are metallic, but RbAu and CsAu are semiconductors. NaK is an alloy of sodium and potassium that is very useful because it is liquid at room temperature, although precautions must be taken due to its extreme reactivity towards water and air. The eutectic mixture melts at −12.6 °C. An alloy of 41% caesium, 47% sodium, and 12% potassium has the lowest known melting point of any metal or alloy, −78 °C. Compounds with the group 13 elements The intermetallic compounds of the alkali metals with the heavier group 13 elements (aluminium, gallium, indium, and thallium), such as NaTl, are poor conductors or semiconductors, unlike the normal alloys with the preceding elements, implying that the alkali metal involved has lost an electron to the Zintl anions involved.
The metal reacts with the water first, breaking the hydrogen bonds in the water and producing hydrogen gas; this takes place faster for the more reactive heavier alkali metals. Second, the heat generated by the first part of the reaction often ignites the hydrogen gas, causing it to burn explosively into the surrounding air. This secondary hydrogen gas explosion produces the visible flame above the bowl of water, lake or other body of water, not the initial reaction of the metal with water (which tends to happen mostly under water). The alkali metal hydroxides are the most basic known hydroxides. Recent research has suggested that the explosive behavior of alkali metals in water is driven by a Coulomb explosion rather than solely by rapid generation of hydrogen itself. All alkali metals melt as a part of the reaction with water. Water molecules ionise the bare metallic surface of the liquid metal, leaving a positively charged metal surface and negatively charged water ions. The attraction between the charged metal and water ions will rapidly increase the surface area, causing an exponential increase of ionisation. When the repulsive forces within the liquid metal surface exceeds the forces of the surface tension, it vigorously explodes. The hydroxides themselves are the most basic hydroxides known, reacting with acids to give salts and with alcohols to give oligomeric alkoxides. They easily react with carbon dioxide to form carbonates or bicarbonates, or with hydrogen sulfide to form sulfides or bisulfides, and may be used to separate thiols from petroleum. They react with amphoteric oxides: for example, the oxides of aluminium, zinc, tin, and lead react with the alkali metal hydroxides to give aluminates, zincates, stannates, and plumbates. Silicon dioxide is acidic, and thus the alkali metal hydroxides can also attack silicate glass. Intermetallic compounds The alkali metals form many intermetallic compounds with each other and the elements from groups 2 to 13 in the periodic table of varying stoichiometries, such as the sodium amalgams with mercury, including Na5Hg8 and Na3Hg. Some of these have ionic characteristics: taking the alloys with gold, the most electronegative of metals, as an example, NaAu and KAu are metallic, but RbAu and CsAu are semiconductors. NaK is an alloy of sodium and potassium that is very useful because it is liquid at room temperature, although precautions must be taken due to its extreme reactivity towards water and air. The eutectic mixture melts at −12.6 °C. An alloy of 41% caesium, 47% sodium, and 12% potassium has the lowest known melting point of any metal or alloy, −78 °C. Compounds with the group 13 elements The intermetallic compounds of the alkali metals with the heavier group 13 elements (aluminium, gallium, indium, and thallium), such as NaTl, are poor conductors or semiconductors, unlike the normal alloys with the preceding elements, implying that the alkali metal involved has lost an electron to the Zintl anions involved.
Nevertheless, while the elements in group 14 and beyond tend to form discrete anionic clusters, group 13 elements tend to form polymeric ions with the alkali metal cations located between the giant ionic lattice. For example, NaTl consists of a polymeric anion (—Tl−—)n with a covalent diamond cubic structure with Na+ ions located between the anionic lattice. The larger alkali metals cannot fit similarly into an anionic lattice and tend to force the heavier group 13 elements to form anionic clusters. Boron is a special case, being the only nonmetal in group 13. The alkali metal borides tend to be boron-rich, involving appreciable boron–boron bonding involving deltahedral structures, and are thermally unstable due to the alkali metals having a very high vapour pressure at elevated temperatures. This makes direct synthesis problematic because the alkali metals do not react with boron below 700 °C, and thus this must be accomplished in sealed containers with the alkali metal in excess. Furthermore, exceptionally in this group, reactivity with boron decreases down the group: lithium reacts completely at 700 °C, but sodium at 900 °C and potassium not until 1200 °C, and the reaction is instantaneous for lithium but takes hours for potassium. Rubidium and caesium borides have not even been characterised. Various phases are known, such as LiB10, NaB6, NaB15, and KB6. Under high pressure the boron–boron bonding in the lithium borides changes from following Wade's rules to forming Zintl anions like the rest of group 13. Compounds with the group 14 elements Lithium and sodium react with carbon to form acetylides, Li2C2 and Na2C2, which can also be obtained by reaction of the metal with acetylene. Potassium, rubidium, and caesium react with graphite; their atoms are intercalated between the hexagonal graphite layers, forming graphite intercalation compounds of formulae MC60 (dark grey, almost black), MC48 (dark grey, almost black), MC36 (blue), MC24 (steel blue), and MC8 (bronze) (M = K, Rb, or Cs). These compounds are over 200 times more electrically conductive than pure graphite, suggesting that the valence electron of the alkali metal is transferred to the graphite layers (e.g. ). Upon heating of KC8, the elimination of potassium atoms results in the conversion in sequence to KC24, KC36, KC48 and finally KC60. KC8 is a very strong reducing agent and is pyrophoric and explodes on contact with water. While the larger alkali metals (K, Rb, and Cs) initially form MC8, the smaller ones initially form MC6, and indeed they require reaction of the metals with graphite at high temperatures around 500 °C to form. Apart from this, the alkali metals are such strong reducing agents that they can even reduce buckminsterfullerene to produce solid fullerides MnC60; sodium, potassium, rubidium, and caesium can form fullerides where n = 2, 3, 4, or 6, and rubidium and caesium additionally can achieve n = 1.
Nevertheless, while the elements in group 14 and beyond tend to form discrete anionic clusters, group 13 elements tend to form polymeric ions with the alkali metal cations located between the giant ionic lattice. For example, NaTl consists of a polymeric anion (—Tl−—)n with a covalent diamond cubic structure with Na+ ions located between the anionic lattice. The larger alkali metals cannot fit similarly into an anionic lattice and tend to force the heavier group 13 elements to form anionic clusters. Boron is a special case, being the only nonmetal in group 13. The alkali metal borides tend to be boron-rich, involving appreciable boron–boron bonding involving deltahedral structures, and are thermally unstable due to the alkali metals having a very high vapour pressure at elevated temperatures. This makes direct synthesis problematic because the alkali metals do not react with boron below 700 °C, and thus this must be accomplished in sealed containers with the alkali metal in excess. Furthermore, exceptionally in this group, reactivity with boron decreases down the group: lithium reacts completely at 700 °C, but sodium at 900 °C and potassium not until 1200 °C, and the reaction is instantaneous for lithium but takes hours for potassium. Rubidium and caesium borides have not even been characterised. Various phases are known, such as LiB10, NaB6, NaB15, and KB6. Under high pressure the boron–boron bonding in the lithium borides changes from following Wade's rules to forming Zintl anions like the rest of group 13. Compounds with the group 14 elements Lithium and sodium react with carbon to form acetylides, Li2C2 and Na2C2, which can also be obtained by reaction of the metal with acetylene. Potassium, rubidium, and caesium react with graphite; their atoms are intercalated between the hexagonal graphite layers, forming graphite intercalation compounds of formulae MC60 (dark grey, almost black), MC48 (dark grey, almost black), MC36 (blue), MC24 (steel blue), and MC8 (bronze) (M = K, Rb, or Cs). These compounds are over 200 times more electrically conductive than pure graphite, suggesting that the valence electron of the alkali metal is transferred to the graphite layers (e.g. ). Upon heating of KC8, the elimination of potassium atoms results in the conversion in sequence to KC24, KC36, KC48 and finally KC60. KC8 is a very strong reducing agent and is pyrophoric and explodes on contact with water. While the larger alkali metals (K, Rb, and Cs) initially form MC8, the smaller ones initially form MC6, and indeed they require reaction of the metals with graphite at high temperatures around 500 °C to form. Apart from this, the alkali metals are such strong reducing agents that they can even reduce buckminsterfullerene to produce solid fullerides MnC60; sodium, potassium, rubidium, and caesium can form fullerides where n = 2, 3, 4, or 6, and rubidium and caesium additionally can achieve n = 1.
Nevertheless, while the elements in group 14 and beyond tend to form discrete anionic clusters, group 13 elements tend to form polymeric ions with the alkali metal cations located between the giant ionic lattice. For example, NaTl consists of a polymeric anion (—Tl−—)n with a covalent diamond cubic structure with Na+ ions located between the anionic lattice. The larger alkali metals cannot fit similarly into an anionic lattice and tend to force the heavier group 13 elements to form anionic clusters. Boron is a special case, being the only nonmetal in group 13. The alkali metal borides tend to be boron-rich, involving appreciable boron–boron bonding involving deltahedral structures, and are thermally unstable due to the alkali metals having a very high vapour pressure at elevated temperatures. This makes direct synthesis problematic because the alkali metals do not react with boron below 700 °C, and thus this must be accomplished in sealed containers with the alkali metal in excess. Furthermore, exceptionally in this group, reactivity with boron decreases down the group: lithium reacts completely at 700 °C, but sodium at 900 °C and potassium not until 1200 °C, and the reaction is instantaneous for lithium but takes hours for potassium. Rubidium and caesium borides have not even been characterised. Various phases are known, such as LiB10, NaB6, NaB15, and KB6. Under high pressure the boron–boron bonding in the lithium borides changes from following Wade's rules to forming Zintl anions like the rest of group 13. Compounds with the group 14 elements Lithium and sodium react with carbon to form acetylides, Li2C2 and Na2C2, which can also be obtained by reaction of the metal with acetylene. Potassium, rubidium, and caesium react with graphite; their atoms are intercalated between the hexagonal graphite layers, forming graphite intercalation compounds of formulae MC60 (dark grey, almost black), MC48 (dark grey, almost black), MC36 (blue), MC24 (steel blue), and MC8 (bronze) (M = K, Rb, or Cs). These compounds are over 200 times more electrically conductive than pure graphite, suggesting that the valence electron of the alkali metal is transferred to the graphite layers (e.g. ). Upon heating of KC8, the elimination of potassium atoms results in the conversion in sequence to KC24, KC36, KC48 and finally KC60. KC8 is a very strong reducing agent and is pyrophoric and explodes on contact with water. While the larger alkali metals (K, Rb, and Cs) initially form MC8, the smaller ones initially form MC6, and indeed they require reaction of the metals with graphite at high temperatures around 500 °C to form. Apart from this, the alkali metals are such strong reducing agents that they can even reduce buckminsterfullerene to produce solid fullerides MnC60; sodium, potassium, rubidium, and caesium can form fullerides where n = 2, 3, 4, or 6, and rubidium and caesium additionally can achieve n = 1.
When the alkali metals react with the heavier elements in the carbon group (silicon, germanium, tin, and lead), ionic substances with cage-like structures are formed, such as the silicides M4Si4 (M = K, Rb, or Cs), which contains M+ and tetrahedral ions. The chemistry of alkali metal germanides, involving the germanide ion Ge4− and other cluster (Zintl) ions such as , , , and [(Ge9)2]6−, is largely analogous to that of the corresponding silicides. Alkali metal stannides are mostly ionic, sometimes with the stannide ion (Sn4−), and sometimes with more complex Zintl ions such as , which appears in tetrapotassium nonastannide (K4Sn9). The monatomic plumbide ion (Pb4−) is unknown, and indeed its formation is predicted to be energetically unfavourable; alkali metal plumbides have complex Zintl ions, such as . These alkali metal germanides, stannides, and plumbides may be produced by reducing germanium, tin, and lead with sodium metal in liquid ammonia. Nitrides and pnictides Lithium, the lightest of the alkali metals, is the only alkali metal which reacts with nitrogen at standard conditions, and its nitride is the only stable alkali metal nitride. Nitrogen is an unreactive gas because breaking the strong triple bond in the dinitrogen molecule (N2) requires a lot of energy. The formation of an alkali metal nitride would consume the ionisation energy of the alkali metal (forming M+ ions), the energy required to break the triple bond in N2 and the formation of N3− ions, and all the energy released from the formation of an alkali metal nitride is from the lattice energy of the alkali metal nitride. The lattice energy is maximised with small, highly charged ions; the alkali metals do not form highly charged ions, only forming ions with a charge of +1, so only lithium, the smallest alkali metal, can release enough lattice energy to make the reaction with nitrogen exothermic, forming lithium nitride. The reactions of the other alkali metals with nitrogen would not release enough lattice energy and would thus be endothermic, so they do not form nitrides at standard conditions. Sodium nitride (Na3N) and potassium nitride (K3N), while existing, are extremely unstable, being prone to decomposing back into their constituent elements, and cannot be produced by reacting the elements with each other at standard conditions. Steric hindrance forbids the existence of rubidium or caesium nitride. However, sodium and potassium form colourless azide salts involving the linear anion; due to the large size of the alkali metal cations, they are thermally stable enough to be able to melt before decomposing. All the alkali metals react readily with phosphorus and arsenic to form phosphides and arsenides with the formula M3Pn (where M represents an alkali metal and Pn represents a pnictogen – phosphorus, arsenic, antimony, or bismuth). This is due to the greater size of the P3− and As3− ions, so that less lattice energy needs to be released for the salts to form.
When the alkali metals react with the heavier elements in the carbon group (silicon, germanium, tin, and lead), ionic substances with cage-like structures are formed, such as the silicides M4Si4 (M = K, Rb, or Cs), which contains M+ and tetrahedral ions. The chemistry of alkali metal germanides, involving the germanide ion Ge4− and other cluster (Zintl) ions such as , , , and [(Ge9)2]6−, is largely analogous to that of the corresponding silicides. Alkali metal stannides are mostly ionic, sometimes with the stannide ion (Sn4−), and sometimes with more complex Zintl ions such as , which appears in tetrapotassium nonastannide (K4Sn9). The monatomic plumbide ion (Pb4−) is unknown, and indeed its formation is predicted to be energetically unfavourable; alkali metal plumbides have complex Zintl ions, such as . These alkali metal germanides, stannides, and plumbides may be produced by reducing germanium, tin, and lead with sodium metal in liquid ammonia. Nitrides and pnictides Lithium, the lightest of the alkali metals, is the only alkali metal which reacts with nitrogen at standard conditions, and its nitride is the only stable alkali metal nitride. Nitrogen is an unreactive gas because breaking the strong triple bond in the dinitrogen molecule (N2) requires a lot of energy. The formation of an alkali metal nitride would consume the ionisation energy of the alkali metal (forming M+ ions), the energy required to break the triple bond in N2 and the formation of N3− ions, and all the energy released from the formation of an alkali metal nitride is from the lattice energy of the alkali metal nitride. The lattice energy is maximised with small, highly charged ions; the alkali metals do not form highly charged ions, only forming ions with a charge of +1, so only lithium, the smallest alkali metal, can release enough lattice energy to make the reaction with nitrogen exothermic, forming lithium nitride. The reactions of the other alkali metals with nitrogen would not release enough lattice energy and would thus be endothermic, so they do not form nitrides at standard conditions. Sodium nitride (Na3N) and potassium nitride (K3N), while existing, are extremely unstable, being prone to decomposing back into their constituent elements, and cannot be produced by reacting the elements with each other at standard conditions. Steric hindrance forbids the existence of rubidium or caesium nitride. However, sodium and potassium form colourless azide salts involving the linear anion; due to the large size of the alkali metal cations, they are thermally stable enough to be able to melt before decomposing. All the alkali metals react readily with phosphorus and arsenic to form phosphides and arsenides with the formula M3Pn (where M represents an alkali metal and Pn represents a pnictogen – phosphorus, arsenic, antimony, or bismuth). This is due to the greater size of the P3− and As3− ions, so that less lattice energy needs to be released for the salts to form.
When the alkali metals react with the heavier elements in the carbon group (silicon, germanium, tin, and lead), ionic substances with cage-like structures are formed, such as the silicides M4Si4 (M = K, Rb, or Cs), which contains M+ and tetrahedral ions. The chemistry of alkali metal germanides, involving the germanide ion Ge4− and other cluster (Zintl) ions such as , , , and [(Ge9)2]6−, is largely analogous to that of the corresponding silicides. Alkali metal stannides are mostly ionic, sometimes with the stannide ion (Sn4−), and sometimes with more complex Zintl ions such as , which appears in tetrapotassium nonastannide (K4Sn9). The monatomic plumbide ion (Pb4−) is unknown, and indeed its formation is predicted to be energetically unfavourable; alkali metal plumbides have complex Zintl ions, such as . These alkali metal germanides, stannides, and plumbides may be produced by reducing germanium, tin, and lead with sodium metal in liquid ammonia. Nitrides and pnictides Lithium, the lightest of the alkali metals, is the only alkali metal which reacts with nitrogen at standard conditions, and its nitride is the only stable alkali metal nitride. Nitrogen is an unreactive gas because breaking the strong triple bond in the dinitrogen molecule (N2) requires a lot of energy. The formation of an alkali metal nitride would consume the ionisation energy of the alkali metal (forming M+ ions), the energy required to break the triple bond in N2 and the formation of N3− ions, and all the energy released from the formation of an alkali metal nitride is from the lattice energy of the alkali metal nitride. The lattice energy is maximised with small, highly charged ions; the alkali metals do not form highly charged ions, only forming ions with a charge of +1, so only lithium, the smallest alkali metal, can release enough lattice energy to make the reaction with nitrogen exothermic, forming lithium nitride. The reactions of the other alkali metals with nitrogen would not release enough lattice energy and would thus be endothermic, so they do not form nitrides at standard conditions. Sodium nitride (Na3N) and potassium nitride (K3N), while existing, are extremely unstable, being prone to decomposing back into their constituent elements, and cannot be produced by reacting the elements with each other at standard conditions. Steric hindrance forbids the existence of rubidium or caesium nitride. However, sodium and potassium form colourless azide salts involving the linear anion; due to the large size of the alkali metal cations, they are thermally stable enough to be able to melt before decomposing. All the alkali metals react readily with phosphorus and arsenic to form phosphides and arsenides with the formula M3Pn (where M represents an alkali metal and Pn represents a pnictogen – phosphorus, arsenic, antimony, or bismuth). This is due to the greater size of the P3− and As3− ions, so that less lattice energy needs to be released for the salts to form.
These are not the only phosphides and arsenides of the alkali metals: for example, potassium has nine different known phosphides, with formulae K3P, K4P3, K5P4, KP, K4P6, K3P7, K3P11, KP10.3, and KP15. While most metals form arsenides, only the alkali and alkaline earth metals form mostly ionic arsenides. The structure of Na3As is complex with unusually short Na–Na distances of 328–330 pm which are shorter than in sodium metal, and this indicates that even with these electropositive metals the bonding cannot be straightforwardly ionic. Other alkali metal arsenides not conforming to the formula M3As are known, such as LiAs, which has a metallic lustre and electrical conductivity indicating the presence of some metallic bonding. The antimonides are unstable and reactive as the Sb3− ion is a strong reducing agent; reaction of them with acids form the toxic and unstable gas stibine (SbH3). Indeed, they have some metallic properties, and the alkali metal antimonides of stoichiometry MSb involve antimony atoms bonded in a spiral Zintl structure. Bismuthides are not even wholly ionic; they are intermetallic compounds containing partially metallic and partially ionic bonds. Oxides and chalcogenides All the alkali metals react vigorously with oxygen at standard conditions. They form various types of oxides, such as simple oxides (containing the O2− ion), peroxides (containing the ion, where there is a single bond between the two oxygen atoms), superoxides (containing the ion), and many others. Lithium burns in air to form lithium oxide, but sodium reacts with oxygen to form a mixture of sodium oxide and sodium peroxide. Potassium forms a mixture of potassium peroxide and potassium superoxide, while rubidium and caesium form the superoxide exclusively. Their reactivity increases going down the group: while lithium, sodium and potassium merely burn in air, rubidium and caesium are pyrophoric (spontaneously catch fire in air). The smaller alkali metals tend to polarise the larger anions (the peroxide and superoxide) due to their small size. This attracts the electrons in the more complex anions towards one of its constituent oxygen atoms, forming an oxide ion and an oxygen atom. This causes lithium to form the oxide exclusively on reaction with oxygen at room temperature. This effect becomes drastically weaker for the larger sodium and potassium, allowing them to form the less stable peroxides. Rubidium and caesium, at the bottom of the group, are so large that even the least stable superoxides can form. Because the superoxide releases the most energy when formed, the superoxide is preferentially formed for the larger alkali metals where the more complex anions are not polarised. (The oxides and peroxides for these alkali metals do exist, but do not form upon direct reaction of the metal with oxygen at standard conditions.) In addition, the small size of the Li+ and O2− ions contributes to their forming a stable ionic lattice structure. Under controlled conditions, however, all the alkali metals, with the exception of francium, are known to form their oxides, peroxides, and superoxides. The alkali metal peroxides and superoxides are powerful oxidising agents.
These are not the only phosphides and arsenides of the alkali metals: for example, potassium has nine different known phosphides, with formulae K3P, K4P3, K5P4, KP, K4P6, K3P7, K3P11, KP10.3, and KP15. While most metals form arsenides, only the alkali and alkaline earth metals form mostly ionic arsenides. The structure of Na3As is complex with unusually short Na–Na distances of 328–330 pm which are shorter than in sodium metal, and this indicates that even with these electropositive metals the bonding cannot be straightforwardly ionic. Other alkali metal arsenides not conforming to the formula M3As are known, such as LiAs, which has a metallic lustre and electrical conductivity indicating the presence of some metallic bonding. The antimonides are unstable and reactive as the Sb3− ion is a strong reducing agent; reaction of them with acids form the toxic and unstable gas stibine (SbH3). Indeed, they have some metallic properties, and the alkali metal antimonides of stoichiometry MSb involve antimony atoms bonded in a spiral Zintl structure. Bismuthides are not even wholly ionic; they are intermetallic compounds containing partially metallic and partially ionic bonds. Oxides and chalcogenides All the alkali metals react vigorously with oxygen at standard conditions. They form various types of oxides, such as simple oxides (containing the O2− ion), peroxides (containing the ion, where there is a single bond between the two oxygen atoms), superoxides (containing the ion), and many others. Lithium burns in air to form lithium oxide, but sodium reacts with oxygen to form a mixture of sodium oxide and sodium peroxide. Potassium forms a mixture of potassium peroxide and potassium superoxide, while rubidium and caesium form the superoxide exclusively. Their reactivity increases going down the group: while lithium, sodium and potassium merely burn in air, rubidium and caesium are pyrophoric (spontaneously catch fire in air). The smaller alkali metals tend to polarise the larger anions (the peroxide and superoxide) due to their small size. This attracts the electrons in the more complex anions towards one of its constituent oxygen atoms, forming an oxide ion and an oxygen atom. This causes lithium to form the oxide exclusively on reaction with oxygen at room temperature. This effect becomes drastically weaker for the larger sodium and potassium, allowing them to form the less stable peroxides. Rubidium and caesium, at the bottom of the group, are so large that even the least stable superoxides can form. Because the superoxide releases the most energy when formed, the superoxide is preferentially formed for the larger alkali metals where the more complex anions are not polarised. (The oxides and peroxides for these alkali metals do exist, but do not form upon direct reaction of the metal with oxygen at standard conditions.) In addition, the small size of the Li+ and O2− ions contributes to their forming a stable ionic lattice structure. Under controlled conditions, however, all the alkali metals, with the exception of francium, are known to form their oxides, peroxides, and superoxides. The alkali metal peroxides and superoxides are powerful oxidising agents.
These are not the only phosphides and arsenides of the alkali metals: for example, potassium has nine different known phosphides, with formulae K3P, K4P3, K5P4, KP, K4P6, K3P7, K3P11, KP10.3, and KP15. While most metals form arsenides, only the alkali and alkaline earth metals form mostly ionic arsenides. The structure of Na3As is complex with unusually short Na–Na distances of 328–330 pm which are shorter than in sodium metal, and this indicates that even with these electropositive metals the bonding cannot be straightforwardly ionic. Other alkali metal arsenides not conforming to the formula M3As are known, such as LiAs, which has a metallic lustre and electrical conductivity indicating the presence of some metallic bonding. The antimonides are unstable and reactive as the Sb3− ion is a strong reducing agent; reaction of them with acids form the toxic and unstable gas stibine (SbH3). Indeed, they have some metallic properties, and the alkali metal antimonides of stoichiometry MSb involve antimony atoms bonded in a spiral Zintl structure. Bismuthides are not even wholly ionic; they are intermetallic compounds containing partially metallic and partially ionic bonds. Oxides and chalcogenides All the alkali metals react vigorously with oxygen at standard conditions. They form various types of oxides, such as simple oxides (containing the O2− ion), peroxides (containing the ion, where there is a single bond between the two oxygen atoms), superoxides (containing the ion), and many others. Lithium burns in air to form lithium oxide, but sodium reacts with oxygen to form a mixture of sodium oxide and sodium peroxide. Potassium forms a mixture of potassium peroxide and potassium superoxide, while rubidium and caesium form the superoxide exclusively. Their reactivity increases going down the group: while lithium, sodium and potassium merely burn in air, rubidium and caesium are pyrophoric (spontaneously catch fire in air). The smaller alkali metals tend to polarise the larger anions (the peroxide and superoxide) due to their small size. This attracts the electrons in the more complex anions towards one of its constituent oxygen atoms, forming an oxide ion and an oxygen atom. This causes lithium to form the oxide exclusively on reaction with oxygen at room temperature. This effect becomes drastically weaker for the larger sodium and potassium, allowing them to form the less stable peroxides. Rubidium and caesium, at the bottom of the group, are so large that even the least stable superoxides can form. Because the superoxide releases the most energy when formed, the superoxide is preferentially formed for the larger alkali metals where the more complex anions are not polarised. (The oxides and peroxides for these alkali metals do exist, but do not form upon direct reaction of the metal with oxygen at standard conditions.) In addition, the small size of the Li+ and O2− ions contributes to their forming a stable ionic lattice structure. Under controlled conditions, however, all the alkali metals, with the exception of francium, are known to form their oxides, peroxides, and superoxides. The alkali metal peroxides and superoxides are powerful oxidising agents.
Sodium peroxide and potassium superoxide react with carbon dioxide to form the alkali metal carbonate and oxygen gas, which allows them to be used in submarine air purifiers; the presence of water vapour, naturally present in breath, makes the removal of carbon dioxide by potassium superoxide even more efficient. All the stable alkali metals except lithium can form red ozonides (MO3) through low-temperature reaction of the powdered anhydrous hydroxide with ozone: the ozonides may be then extracted using liquid ammonia. They slowly decompose at standard conditions to the superoxides and oxygen, and hydrolyse immediately to the hydroxides when in contact with water. Potassium, rubidium, and caesium also form sesquioxides M2O3, which may be better considered peroxide disuperoxides, . Rubidium and caesium can form a great variety of suboxides with the metals in formal oxidation states below +1. Rubidium can form Rb6O and Rb9O2 (copper-coloured) upon oxidation in air, while caesium forms an immense variety of oxides, such as the ozonide CsO3 and several brightly coloured suboxides, such as Cs7O (bronze), Cs4O (red-violet), Cs11O3 (violet), Cs3O (dark green), CsO, Cs3O2, as well as Cs7O2. The last of these may be heated under vacuum to generate Cs2O. The alkali metals can also react analogously with the heavier chalcogens (sulfur, selenium, tellurium, and polonium), and all the alkali metal chalcogenides are known (with the exception of francium's). Reaction with an excess of the chalcogen can similarly result in lower chalcogenides, with chalcogen ions containing chains of the chalcogen atoms in question. For example, sodium can react with sulfur to form the sulfide (Na2S) and various polysulfides with the formula Na2Sx (x from 2 to 6), containing the ions. Due to the basicity of the Se2− and Te2− ions, the alkali metal selenides and tellurides are alkaline in solution; when reacted directly with selenium and tellurium, alkali metal polyselenides and polytellurides are formed along with the selenides and tellurides with the and ions. They may be obtained directly from the elements in liquid ammonia or when air is not present, and are colourless, water-soluble compounds that air oxidises quickly back to selenium or tellurium. The alkali metal polonides are all ionic compounds containing the Po2− ion; they are very chemically stable and can be produced by direct reaction of the elements at around 300–400 °C. Halides, hydrides, and pseudohalides The alkali metals are among the most electropositive elements on the periodic table and thus tend to bond ionically to the most electronegative elements on the periodic table, the halogens (fluorine, chlorine, bromine, iodine, and astatine), forming salts known as the alkali metal halides. The reaction is very vigorous and can sometimes result in explosions. All twenty stable alkali metal halides are known; the unstable ones are not known, with the exception of sodium astatide, because of the great instability and rarity of astatine and francium. The most well-known of the twenty is certainly sodium chloride, otherwise known as common salt.
Sodium peroxide and potassium superoxide react with carbon dioxide to form the alkali metal carbonate and oxygen gas, which allows them to be used in submarine air purifiers; the presence of water vapour, naturally present in breath, makes the removal of carbon dioxide by potassium superoxide even more efficient. All the stable alkali metals except lithium can form red ozonides (MO3) through low-temperature reaction of the powdered anhydrous hydroxide with ozone: the ozonides may be then extracted using liquid ammonia. They slowly decompose at standard conditions to the superoxides and oxygen, and hydrolyse immediately to the hydroxides when in contact with water. Potassium, rubidium, and caesium also form sesquioxides M2O3, which may be better considered peroxide disuperoxides, . Rubidium and caesium can form a great variety of suboxides with the metals in formal oxidation states below +1. Rubidium can form Rb6O and Rb9O2 (copper-coloured) upon oxidation in air, while caesium forms an immense variety of oxides, such as the ozonide CsO3 and several brightly coloured suboxides, such as Cs7O (bronze), Cs4O (red-violet), Cs11O3 (violet), Cs3O (dark green), CsO, Cs3O2, as well as Cs7O2. The last of these may be heated under vacuum to generate Cs2O. The alkali metals can also react analogously with the heavier chalcogens (sulfur, selenium, tellurium, and polonium), and all the alkali metal chalcogenides are known (with the exception of francium's). Reaction with an excess of the chalcogen can similarly result in lower chalcogenides, with chalcogen ions containing chains of the chalcogen atoms in question. For example, sodium can react with sulfur to form the sulfide (Na2S) and various polysulfides with the formula Na2Sx (x from 2 to 6), containing the ions. Due to the basicity of the Se2− and Te2− ions, the alkali metal selenides and tellurides are alkaline in solution; when reacted directly with selenium and tellurium, alkali metal polyselenides and polytellurides are formed along with the selenides and tellurides with the and ions. They may be obtained directly from the elements in liquid ammonia or when air is not present, and are colourless, water-soluble compounds that air oxidises quickly back to selenium or tellurium. The alkali metal polonides are all ionic compounds containing the Po2− ion; they are very chemically stable and can be produced by direct reaction of the elements at around 300–400 °C. Halides, hydrides, and pseudohalides The alkali metals are among the most electropositive elements on the periodic table and thus tend to bond ionically to the most electronegative elements on the periodic table, the halogens (fluorine, chlorine, bromine, iodine, and astatine), forming salts known as the alkali metal halides. The reaction is very vigorous and can sometimes result in explosions. All twenty stable alkali metal halides are known; the unstable ones are not known, with the exception of sodium astatide, because of the great instability and rarity of astatine and francium. The most well-known of the twenty is certainly sodium chloride, otherwise known as common salt.
Sodium peroxide and potassium superoxide react with carbon dioxide to form the alkali metal carbonate and oxygen gas, which allows them to be used in submarine air purifiers; the presence of water vapour, naturally present in breath, makes the removal of carbon dioxide by potassium superoxide even more efficient. All the stable alkali metals except lithium can form red ozonides (MO3) through low-temperature reaction of the powdered anhydrous hydroxide with ozone: the ozonides may be then extracted using liquid ammonia. They slowly decompose at standard conditions to the superoxides and oxygen, and hydrolyse immediately to the hydroxides when in contact with water. Potassium, rubidium, and caesium also form sesquioxides M2O3, which may be better considered peroxide disuperoxides, . Rubidium and caesium can form a great variety of suboxides with the metals in formal oxidation states below +1. Rubidium can form Rb6O and Rb9O2 (copper-coloured) upon oxidation in air, while caesium forms an immense variety of oxides, such as the ozonide CsO3 and several brightly coloured suboxides, such as Cs7O (bronze), Cs4O (red-violet), Cs11O3 (violet), Cs3O (dark green), CsO, Cs3O2, as well as Cs7O2. The last of these may be heated under vacuum to generate Cs2O. The alkali metals can also react analogously with the heavier chalcogens (sulfur, selenium, tellurium, and polonium), and all the alkali metal chalcogenides are known (with the exception of francium's). Reaction with an excess of the chalcogen can similarly result in lower chalcogenides, with chalcogen ions containing chains of the chalcogen atoms in question. For example, sodium can react with sulfur to form the sulfide (Na2S) and various polysulfides with the formula Na2Sx (x from 2 to 6), containing the ions. Due to the basicity of the Se2− and Te2− ions, the alkali metal selenides and tellurides are alkaline in solution; when reacted directly with selenium and tellurium, alkali metal polyselenides and polytellurides are formed along with the selenides and tellurides with the and ions. They may be obtained directly from the elements in liquid ammonia or when air is not present, and are colourless, water-soluble compounds that air oxidises quickly back to selenium or tellurium. The alkali metal polonides are all ionic compounds containing the Po2− ion; they are very chemically stable and can be produced by direct reaction of the elements at around 300–400 °C. Halides, hydrides, and pseudohalides The alkali metals are among the most electropositive elements on the periodic table and thus tend to bond ionically to the most electronegative elements on the periodic table, the halogens (fluorine, chlorine, bromine, iodine, and astatine), forming salts known as the alkali metal halides. The reaction is very vigorous and can sometimes result in explosions. All twenty stable alkali metal halides are known; the unstable ones are not known, with the exception of sodium astatide, because of the great instability and rarity of astatine and francium. The most well-known of the twenty is certainly sodium chloride, otherwise known as common salt.
All of the stable alkali metal halides have the formula MX where M is an alkali metal and X is a halogen. They are all white ionic crystalline solids that have high melting points. All the alkali metal halides are soluble in water except for lithium fluoride (LiF), which is insoluble in water due to its very high lattice enthalpy. The high lattice enthalpy of lithium fluoride is due to the small sizes of the Li+ and F− ions, causing the electrostatic interactions between them to be strong: a similar effect occurs for magnesium fluoride, consistent with the diagonal relationship between lithium and magnesium. The alkali metals also react similarly with hydrogen to form ionic alkali metal hydrides, where the hydride anion acts as a pseudohalide: these are often used as reducing agents, producing hydrides, complex metal hydrides, or hydrogen gas. Other pseudohalides are also known, notably the cyanides. These are isostructural to the respective halides except for lithium cyanide, indicating that the cyanide ions may rotate freely. Ternary alkali metal halide oxides, such as Na3ClO, K3BrO (yellow), Na4Br2O, Na4I2O, and K4Br2O, are also known. The polyhalides are rather unstable, although those of rubidium and caesium are greatly stabilised by the feeble polarising power of these extremely large cations. Coordination complexes Alkali metal cations do not usually form coordination complexes with simple Lewis bases due to their low charge of just +1 and their relatively large size; thus the Li+ ion forms most complexes and the heavier alkali metal ions form less and less (though exceptions occur for weak complexes). Lithium in particular has a very rich coordination chemistry in which it exhibits coordination numbers from 1 to 12, although octahedral hexacoordination is its preferred mode. In aqueous solution, the alkali metal ions exist as octahedral hexahydrate complexes ([M(H2O)6)]+), with the exception of the lithium ion, which due to its small size forms tetrahedral tetrahydrate complexes ([Li(H2O)4)]+); the alkali metals form these complexes because their ions are attracted by electrostatic forces of attraction to the polar water molecules. Because of this, anhydrous salts containing alkali metal cations are often used as desiccants. Alkali metals also readily form complexes with crown ethers (e.g. 12-crown-4 for Li+, 15-crown-5 for Na+, 18-crown-6 for K+, and 21-crown-7 for Rb+) and cryptands due to electrostatic attraction. Ammonia solutions The alkali metals dissolve slowly in liquid ammonia, forming ammoniacal solutions of solvated metal cation M+ and solvated electron e−, which react to form hydrogen gas and the alkali metal amide (MNH2, where M represents an alkali metal): this was first noted by Humphry Davy in 1809 and rediscovered by W. Weyl in 1864. The process may be speeded up by a catalyst. Similar solutions are formed by the heavy divalent alkaline earth metals calcium, strontium, barium, as well as the divalent lanthanides, europium and ytterbium. The amide salt is quite insoluble and readily precipitates out of solution, leaving intensely coloured ammonia solutions of the alkali metals.
All of the stable alkali metal halides have the formula MX where M is an alkali metal and X is a halogen. They are all white ionic crystalline solids that have high melting points. All the alkali metal halides are soluble in water except for lithium fluoride (LiF), which is insoluble in water due to its very high lattice enthalpy. The high lattice enthalpy of lithium fluoride is due to the small sizes of the Li+ and F− ions, causing the electrostatic interactions between them to be strong: a similar effect occurs for magnesium fluoride, consistent with the diagonal relationship between lithium and magnesium. The alkali metals also react similarly with hydrogen to form ionic alkali metal hydrides, where the hydride anion acts as a pseudohalide: these are often used as reducing agents, producing hydrides, complex metal hydrides, or hydrogen gas. Other pseudohalides are also known, notably the cyanides. These are isostructural to the respective halides except for lithium cyanide, indicating that the cyanide ions may rotate freely. Ternary alkali metal halide oxides, such as Na3ClO, K3BrO (yellow), Na4Br2O, Na4I2O, and K4Br2O, are also known. The polyhalides are rather unstable, although those of rubidium and caesium are greatly stabilised by the feeble polarising power of these extremely large cations. Coordination complexes Alkali metal cations do not usually form coordination complexes with simple Lewis bases due to their low charge of just +1 and their relatively large size; thus the Li+ ion forms most complexes and the heavier alkali metal ions form less and less (though exceptions occur for weak complexes). Lithium in particular has a very rich coordination chemistry in which it exhibits coordination numbers from 1 to 12, although octahedral hexacoordination is its preferred mode. In aqueous solution, the alkali metal ions exist as octahedral hexahydrate complexes ([M(H2O)6)]+), with the exception of the lithium ion, which due to its small size forms tetrahedral tetrahydrate complexes ([Li(H2O)4)]+); the alkali metals form these complexes because their ions are attracted by electrostatic forces of attraction to the polar water molecules. Because of this, anhydrous salts containing alkali metal cations are often used as desiccants. Alkali metals also readily form complexes with crown ethers (e.g. 12-crown-4 for Li+, 15-crown-5 for Na+, 18-crown-6 for K+, and 21-crown-7 for Rb+) and cryptands due to electrostatic attraction. Ammonia solutions The alkali metals dissolve slowly in liquid ammonia, forming ammoniacal solutions of solvated metal cation M+ and solvated electron e−, which react to form hydrogen gas and the alkali metal amide (MNH2, where M represents an alkali metal): this was first noted by Humphry Davy in 1809 and rediscovered by W. Weyl in 1864. The process may be speeded up by a catalyst. Similar solutions are formed by the heavy divalent alkaline earth metals calcium, strontium, barium, as well as the divalent lanthanides, europium and ytterbium. The amide salt is quite insoluble and readily precipitates out of solution, leaving intensely coloured ammonia solutions of the alkali metals.
All of the stable alkali metal halides have the formula MX where M is an alkali metal and X is a halogen. They are all white ionic crystalline solids that have high melting points. All the alkali metal halides are soluble in water except for lithium fluoride (LiF), which is insoluble in water due to its very high lattice enthalpy. The high lattice enthalpy of lithium fluoride is due to the small sizes of the Li+ and F− ions, causing the electrostatic interactions between them to be strong: a similar effect occurs for magnesium fluoride, consistent with the diagonal relationship between lithium and magnesium. The alkali metals also react similarly with hydrogen to form ionic alkali metal hydrides, where the hydride anion acts as a pseudohalide: these are often used as reducing agents, producing hydrides, complex metal hydrides, or hydrogen gas. Other pseudohalides are also known, notably the cyanides. These are isostructural to the respective halides except for lithium cyanide, indicating that the cyanide ions may rotate freely. Ternary alkali metal halide oxides, such as Na3ClO, K3BrO (yellow), Na4Br2O, Na4I2O, and K4Br2O, are also known. The polyhalides are rather unstable, although those of rubidium and caesium are greatly stabilised by the feeble polarising power of these extremely large cations. Coordination complexes Alkali metal cations do not usually form coordination complexes with simple Lewis bases due to their low charge of just +1 and their relatively large size; thus the Li+ ion forms most complexes and the heavier alkali metal ions form less and less (though exceptions occur for weak complexes). Lithium in particular has a very rich coordination chemistry in which it exhibits coordination numbers from 1 to 12, although octahedral hexacoordination is its preferred mode. In aqueous solution, the alkali metal ions exist as octahedral hexahydrate complexes ([M(H2O)6)]+), with the exception of the lithium ion, which due to its small size forms tetrahedral tetrahydrate complexes ([Li(H2O)4)]+); the alkali metals form these complexes because their ions are attracted by electrostatic forces of attraction to the polar water molecules. Because of this, anhydrous salts containing alkali metal cations are often used as desiccants. Alkali metals also readily form complexes with crown ethers (e.g. 12-crown-4 for Li+, 15-crown-5 for Na+, 18-crown-6 for K+, and 21-crown-7 for Rb+) and cryptands due to electrostatic attraction. Ammonia solutions The alkali metals dissolve slowly in liquid ammonia, forming ammoniacal solutions of solvated metal cation M+ and solvated electron e−, which react to form hydrogen gas and the alkali metal amide (MNH2, where M represents an alkali metal): this was first noted by Humphry Davy in 1809 and rediscovered by W. Weyl in 1864. The process may be speeded up by a catalyst. Similar solutions are formed by the heavy divalent alkaline earth metals calcium, strontium, barium, as well as the divalent lanthanides, europium and ytterbium. The amide salt is quite insoluble and readily precipitates out of solution, leaving intensely coloured ammonia solutions of the alkali metals.
In 1907, Charles Krause identified the colour as being due to the presence of solvated electrons, which contribute to the high electrical conductivity of these solutions. At low concentrations (below 3 M), the solution is dark blue and has ten times the conductivity of aqueous sodium chloride; at higher concentrations (above 3 M), the solution is copper-coloured and has approximately the conductivity of liquid metals like mercury. In addition to the alkali metal amide salt and solvated electrons, such ammonia solutions also contain the alkali metal cation (M+), the neutral alkali metal atom (M), diatomic alkali metal molecules (M2) and alkali metal anions (M−). These are unstable and eventually become the more thermodynamically stable alkali metal amide and hydrogen gas. Solvated electrons are powerful reducing agents and are often used in chemical synthesis. Organometallic Organolithium Being the smallest alkali metal, lithium forms the widest variety of and most stable organometallic compounds, which are bonded covalently. Organolithium compounds are electrically non-conducting volatile solids or liquids that melt at low temperatures, and tend to form oligomers with the structure (RLi)x where R is the organic group. As the electropositive nature of lithium puts most of the charge density of the bond on the carbon atom, effectively creating a carbanion, organolithium compounds are extremely powerful bases and nucleophiles. For use as bases, butyllithiums are often used and are commercially available. An example of an organolithium compound is methyllithium ((CH3Li)x), which exists in tetrameric (x = 4, tetrahedral) and hexameric (x = 6, octahedral) forms. Organolithium compounds, especially n-butyllithium, are useful reagents in organic synthesis, as might be expected given lithium's diagonal relationship with magnesium, which plays an important role in the Grignard reaction. For example, alkyllithiums and aryllithiums may be used to synthesise aldehydes and ketones by reaction with metal carbonyls. The reaction with nickel tetracarbonyl, for example, proceeds through an unstable acyl nickel carbonyl complex which then undergoes electrophilic substitution to give the desired aldehyde (using H+ as the electrophile) or ketone (using an alkyl halide) product. LiR + [Ni(CO)4] Li+[RCONi(CO)3]− Li+[RCONi(CO)3]− Li+ + RCHO + [(solvent)Ni(CO)3] Li+[RCONi(CO)3]− Li+ + R'COR + [(solvent)Ni(CO)3] Alkyllithiums and aryllithiums may also react with N,N-disubstituted amides to give aldehydes and ketones, and symmetrical ketones by reacting with carbon monoxide. They thermally decompose to eliminate a β-hydrogen, producing alkenes and lithium hydride: another route is the reaction of ethers with alkyl- and aryllithiums that act as strong bases. In non-polar solvents, aryllithiums react as the carbanions they effectively are, turning carbon dioxide to aromatic carboxylic acids (ArCO2H) and aryl ketones to tertiary carbinols (Ar'2C(Ar)OH). Finally, they may be used to synthesise other organometallic compounds through metal-halogen exchange. Heavier alkali metals Unlike the organolithium compounds, the organometallic compounds of the heavier alkali metals are predominantly ionic. The application of organosodium compounds in chemistry is limited in part due to competition from organolithium compounds, which are commercially available and exhibit more convenient reactivity. The principal organosodium compound of commercial importance is sodium cyclopentadienide.
In 1907, Charles Krause identified the colour as being due to the presence of solvated electrons, which contribute to the high electrical conductivity of these solutions. At low concentrations (below 3 M), the solution is dark blue and has ten times the conductivity of aqueous sodium chloride; at higher concentrations (above 3 M), the solution is copper-coloured and has approximately the conductivity of liquid metals like mercury. In addition to the alkali metal amide salt and solvated electrons, such ammonia solutions also contain the alkali metal cation (M+), the neutral alkali metal atom (M), diatomic alkali metal molecules (M2) and alkali metal anions (M−). These are unstable and eventually become the more thermodynamically stable alkali metal amide and hydrogen gas. Solvated electrons are powerful reducing agents and are often used in chemical synthesis. Organometallic Organolithium Being the smallest alkali metal, lithium forms the widest variety of and most stable organometallic compounds, which are bonded covalently. Organolithium compounds are electrically non-conducting volatile solids or liquids that melt at low temperatures, and tend to form oligomers with the structure (RLi)x where R is the organic group. As the electropositive nature of lithium puts most of the charge density of the bond on the carbon atom, effectively creating a carbanion, organolithium compounds are extremely powerful bases and nucleophiles. For use as bases, butyllithiums are often used and are commercially available. An example of an organolithium compound is methyllithium ((CH3Li)x), which exists in tetrameric (x = 4, tetrahedral) and hexameric (x = 6, octahedral) forms. Organolithium compounds, especially n-butyllithium, are useful reagents in organic synthesis, as might be expected given lithium's diagonal relationship with magnesium, which plays an important role in the Grignard reaction. For example, alkyllithiums and aryllithiums may be used to synthesise aldehydes and ketones by reaction with metal carbonyls. The reaction with nickel tetracarbonyl, for example, proceeds through an unstable acyl nickel carbonyl complex which then undergoes electrophilic substitution to give the desired aldehyde (using H+ as the electrophile) or ketone (using an alkyl halide) product. LiR + [Ni(CO)4] Li+[RCONi(CO)3]− Li+[RCONi(CO)3]− Li+ + RCHO + [(solvent)Ni(CO)3] Li+[RCONi(CO)3]− Li+ + R'COR + [(solvent)Ni(CO)3] Alkyllithiums and aryllithiums may also react with N,N-disubstituted amides to give aldehydes and ketones, and symmetrical ketones by reacting with carbon monoxide. They thermally decompose to eliminate a β-hydrogen, producing alkenes and lithium hydride: another route is the reaction of ethers with alkyl- and aryllithiums that act as strong bases. In non-polar solvents, aryllithiums react as the carbanions they effectively are, turning carbon dioxide to aromatic carboxylic acids (ArCO2H) and aryl ketones to tertiary carbinols (Ar'2C(Ar)OH). Finally, they may be used to synthesise other organometallic compounds through metal-halogen exchange. Heavier alkali metals Unlike the organolithium compounds, the organometallic compounds of the heavier alkali metals are predominantly ionic. The application of organosodium compounds in chemistry is limited in part due to competition from organolithium compounds, which are commercially available and exhibit more convenient reactivity. The principal organosodium compound of commercial importance is sodium cyclopentadienide.
In 1907, Charles Krause identified the colour as being due to the presence of solvated electrons, which contribute to the high electrical conductivity of these solutions. At low concentrations (below 3 M), the solution is dark blue and has ten times the conductivity of aqueous sodium chloride; at higher concentrations (above 3 M), the solution is copper-coloured and has approximately the conductivity of liquid metals like mercury. In addition to the alkali metal amide salt and solvated electrons, such ammonia solutions also contain the alkali metal cation (M+), the neutral alkali metal atom (M), diatomic alkali metal molecules (M2) and alkali metal anions (M−). These are unstable and eventually become the more thermodynamically stable alkali metal amide and hydrogen gas. Solvated electrons are powerful reducing agents and are often used in chemical synthesis. Organometallic Organolithium Being the smallest alkali metal, lithium forms the widest variety of and most stable organometallic compounds, which are bonded covalently. Organolithium compounds are electrically non-conducting volatile solids or liquids that melt at low temperatures, and tend to form oligomers with the structure (RLi)x where R is the organic group. As the electropositive nature of lithium puts most of the charge density of the bond on the carbon atom, effectively creating a carbanion, organolithium compounds are extremely powerful bases and nucleophiles. For use as bases, butyllithiums are often used and are commercially available. An example of an organolithium compound is methyllithium ((CH3Li)x), which exists in tetrameric (x = 4, tetrahedral) and hexameric (x = 6, octahedral) forms. Organolithium compounds, especially n-butyllithium, are useful reagents in organic synthesis, as might be expected given lithium's diagonal relationship with magnesium, which plays an important role in the Grignard reaction. For example, alkyllithiums and aryllithiums may be used to synthesise aldehydes and ketones by reaction with metal carbonyls. The reaction with nickel tetracarbonyl, for example, proceeds through an unstable acyl nickel carbonyl complex which then undergoes electrophilic substitution to give the desired aldehyde (using H+ as the electrophile) or ketone (using an alkyl halide) product. LiR + [Ni(CO)4] Li+[RCONi(CO)3]− Li+[RCONi(CO)3]− Li+ + RCHO + [(solvent)Ni(CO)3] Li+[RCONi(CO)3]− Li+ + R'COR + [(solvent)Ni(CO)3] Alkyllithiums and aryllithiums may also react with N,N-disubstituted amides to give aldehydes and ketones, and symmetrical ketones by reacting with carbon monoxide. They thermally decompose to eliminate a β-hydrogen, producing alkenes and lithium hydride: another route is the reaction of ethers with alkyl- and aryllithiums that act as strong bases. In non-polar solvents, aryllithiums react as the carbanions they effectively are, turning carbon dioxide to aromatic carboxylic acids (ArCO2H) and aryl ketones to tertiary carbinols (Ar'2C(Ar)OH). Finally, they may be used to synthesise other organometallic compounds through metal-halogen exchange. Heavier alkali metals Unlike the organolithium compounds, the organometallic compounds of the heavier alkali metals are predominantly ionic. The application of organosodium compounds in chemistry is limited in part due to competition from organolithium compounds, which are commercially available and exhibit more convenient reactivity. The principal organosodium compound of commercial importance is sodium cyclopentadienide.
Sodium tetraphenylborate can also be classified as an organosodium compound since in the solid state sodium is bound to the aryl groups. Organometallic compounds of the higher alkali metals are even more reactive than organosodium compounds and of limited utility. A notable reagent is Schlosser's base, a mixture of n-butyllithium and potassium tert-butoxide. This reagent reacts with propene to form the compound allylpotassium (KCH2CHCH2). cis-2-Butene and trans-2-butene equilibrate when in contact with alkali metals. Whereas isomerisation is fast with lithium and sodium, it is slow with the heavier alkali metals. The heavier alkali metals also favour the sterically congested conformation. Several crystal structures of organopotassium compounds have been reported, establishing that they, like the sodium compounds, are polymeric. Organosodium, organopotassium, organorubidium and organocaesium compounds are all mostly ionic and are insoluble (or nearly so) in nonpolar solvents. Alkyl and aryl derivatives of sodium and potassium tend to react with air. They cause the cleavage of ethers, generating alkoxides. Unlike alkyllithium compounds, alkylsodiums and alkylpotassiums cannot be made by reacting the metals with alkyl halides because Wurtz coupling occurs: RM + R'X → R–R' + MX As such, they have to be made by reacting alkylmercury compounds with sodium or potassium metal in inert hydrocarbon solvents. While methylsodium forms tetramers like methyllithium, methylpotassium is more ionic and has the nickel arsenide structure with discrete methyl anions and potassium cations. The alkali metals and their hydrides react with acidic hydrocarbons, for example cyclopentadienes and terminal alkynes, to give salts. Liquid ammonia, ether, or hydrocarbon solvents are used, the most common of which being tetrahydrofuran. The most important of these compounds is sodium cyclopentadienide, NaC5H5, an important precursor to many transition metal cyclopentadienyl derivatives. Similarly, the alkali metals react with cyclooctatetraene in tetrahydrofuran to give alkali metal cyclooctatetraenides; for example, dipotassium cyclooctatetraenide (K2C8H8) is an important precursor to many metal cyclooctatetraenyl derivatives, such as uranocene. The large and very weakly polarising alkali metal cations can stabilise large, aromatic, polarisable radical anions, such as the dark-green sodium naphthalenide, Na+[C10H8•]−, a strong reducing agent. Representative reactions of alkali metals Reaction with oxygen Upon reacting with oxygen, alkali metals form oxides, peroxides, superoxides and suboxides. However, the first three are more common. The table below shows the types of compounds formed in reaction with oxygen. The compound in brackets represents the minor product of combustion. The alkali metal peroxides are ionic compounds that are unstable in water. The peroxide anion is weakly bound to the cation, and it is hydrolysed, forming stronger covalent bonds. Na2O2 + 2H2O → 2NaOH + H2O2 The other oxygen compounds are also unstable in water. 2KO2 + 2H2O → 2KOH + H2O2 + O2 Li2O + H2O → 2LiOH Reaction with sulfur With sulfur, they form sulfides and polysulfides. 2Na + 1/8S8 → Na2S + 1/8S8 → Na2S2...Na2S7 Because alkali metal sulfides are essentially salts of a weak acid and a strong base, they form basic solutions.
Sodium tetraphenylborate can also be classified as an organosodium compound since in the solid state sodium is bound to the aryl groups. Organometallic compounds of the higher alkali metals are even more reactive than organosodium compounds and of limited utility. A notable reagent is Schlosser's base, a mixture of n-butyllithium and potassium tert-butoxide. This reagent reacts with propene to form the compound allylpotassium (KCH2CHCH2). cis-2-Butene and trans-2-butene equilibrate when in contact with alkali metals. Whereas isomerisation is fast with lithium and sodium, it is slow with the heavier alkali metals. The heavier alkali metals also favour the sterically congested conformation. Several crystal structures of organopotassium compounds have been reported, establishing that they, like the sodium compounds, are polymeric. Organosodium, organopotassium, organorubidium and organocaesium compounds are all mostly ionic and are insoluble (or nearly so) in nonpolar solvents. Alkyl and aryl derivatives of sodium and potassium tend to react with air. They cause the cleavage of ethers, generating alkoxides. Unlike alkyllithium compounds, alkylsodiums and alkylpotassiums cannot be made by reacting the metals with alkyl halides because Wurtz coupling occurs: RM + R'X → R–R' + MX As such, they have to be made by reacting alkylmercury compounds with sodium or potassium metal in inert hydrocarbon solvents. While methylsodium forms tetramers like methyllithium, methylpotassium is more ionic and has the nickel arsenide structure with discrete methyl anions and potassium cations. The alkali metals and their hydrides react with acidic hydrocarbons, for example cyclopentadienes and terminal alkynes, to give salts. Liquid ammonia, ether, or hydrocarbon solvents are used, the most common of which being tetrahydrofuran. The most important of these compounds is sodium cyclopentadienide, NaC5H5, an important precursor to many transition metal cyclopentadienyl derivatives. Similarly, the alkali metals react with cyclooctatetraene in tetrahydrofuran to give alkali metal cyclooctatetraenides; for example, dipotassium cyclooctatetraenide (K2C8H8) is an important precursor to many metal cyclooctatetraenyl derivatives, such as uranocene. The large and very weakly polarising alkali metal cations can stabilise large, aromatic, polarisable radical anions, such as the dark-green sodium naphthalenide, Na+[C10H8•]−, a strong reducing agent. Representative reactions of alkali metals Reaction with oxygen Upon reacting with oxygen, alkali metals form oxides, peroxides, superoxides and suboxides. However, the first three are more common. The table below shows the types of compounds formed in reaction with oxygen. The compound in brackets represents the minor product of combustion. The alkali metal peroxides are ionic compounds that are unstable in water. The peroxide anion is weakly bound to the cation, and it is hydrolysed, forming stronger covalent bonds. Na2O2 + 2H2O → 2NaOH + H2O2 The other oxygen compounds are also unstable in water. 2KO2 + 2H2O → 2KOH + H2O2 + O2 Li2O + H2O → 2LiOH Reaction with sulfur With sulfur, they form sulfides and polysulfides. 2Na + 1/8S8 → Na2S + 1/8S8 → Na2S2...Na2S7 Because alkali metal sulfides are essentially salts of a weak acid and a strong base, they form basic solutions.
Sodium tetraphenylborate can also be classified as an organosodium compound since in the solid state sodium is bound to the aryl groups. Organometallic compounds of the higher alkali metals are even more reactive than organosodium compounds and of limited utility. A notable reagent is Schlosser's base, a mixture of n-butyllithium and potassium tert-butoxide. This reagent reacts with propene to form the compound allylpotassium (KCH2CHCH2). cis-2-Butene and trans-2-butene equilibrate when in contact with alkali metals. Whereas isomerisation is fast with lithium and sodium, it is slow with the heavier alkali metals. The heavier alkali metals also favour the sterically congested conformation. Several crystal structures of organopotassium compounds have been reported, establishing that they, like the sodium compounds, are polymeric. Organosodium, organopotassium, organorubidium and organocaesium compounds are all mostly ionic and are insoluble (or nearly so) in nonpolar solvents. Alkyl and aryl derivatives of sodium and potassium tend to react with air. They cause the cleavage of ethers, generating alkoxides. Unlike alkyllithium compounds, alkylsodiums and alkylpotassiums cannot be made by reacting the metals with alkyl halides because Wurtz coupling occurs: RM + R'X → R–R' + MX As such, they have to be made by reacting alkylmercury compounds with sodium or potassium metal in inert hydrocarbon solvents. While methylsodium forms tetramers like methyllithium, methylpotassium is more ionic and has the nickel arsenide structure with discrete methyl anions and potassium cations. The alkali metals and their hydrides react with acidic hydrocarbons, for example cyclopentadienes and terminal alkynes, to give salts. Liquid ammonia, ether, or hydrocarbon solvents are used, the most common of which being tetrahydrofuran. The most important of these compounds is sodium cyclopentadienide, NaC5H5, an important precursor to many transition metal cyclopentadienyl derivatives. Similarly, the alkali metals react with cyclooctatetraene in tetrahydrofuran to give alkali metal cyclooctatetraenides; for example, dipotassium cyclooctatetraenide (K2C8H8) is an important precursor to many metal cyclooctatetraenyl derivatives, such as uranocene. The large and very weakly polarising alkali metal cations can stabilise large, aromatic, polarisable radical anions, such as the dark-green sodium naphthalenide, Na+[C10H8•]−, a strong reducing agent. Representative reactions of alkali metals Reaction with oxygen Upon reacting with oxygen, alkali metals form oxides, peroxides, superoxides and suboxides. However, the first three are more common. The table below shows the types of compounds formed in reaction with oxygen. The compound in brackets represents the minor product of combustion. The alkali metal peroxides are ionic compounds that are unstable in water. The peroxide anion is weakly bound to the cation, and it is hydrolysed, forming stronger covalent bonds. Na2O2 + 2H2O → 2NaOH + H2O2 The other oxygen compounds are also unstable in water. 2KO2 + 2H2O → 2KOH + H2O2 + O2 Li2O + H2O → 2LiOH Reaction with sulfur With sulfur, they form sulfides and polysulfides. 2Na + 1/8S8 → Na2S + 1/8S8 → Na2S2...Na2S7 Because alkali metal sulfides are essentially salts of a weak acid and a strong base, they form basic solutions.
S2- + H2O → HS− + HO− HS− + H2O → H2S + HO− Reaction with nitrogen Lithium is the only metal that combines directly with nitrogen at room temperature. 3Li + 1/3N2 → Li3N Li3N can react with water to liberate ammonia. Li3N + 3H2O → 3LiOH + NH3 Reaction with hydrogen With hydrogen, alkali metals form saline hydrides that hydrolyse in water. Na + H2 → NaH (at high temperatures) NaH + H2O → NaOH + H2 Reaction with carbon Lithium is the only metal that reacts directly with carbon to give dilithium acetylide. Na and K can react with acetylene to give acetylides. 2Li + 2C → Li2C2 Na + C2H2 → NaC2H + 1/2H2 (at 1500C) Na + NaC2H → Na2C2 (at 2200C) Reaction with water On reaction with water, they generate hydroxide ions and hydrogen gas. This reaction is vigorous and highly exothermic and the hydrogen resulted may ignite in air or even explode in the case of Rb and Cs. Na + H2O → NaOH + 1/2H2 Reaction with other salts The alkali metals are very good reducing agents. They can reduce metal cations that are less electropositive. Titanium is produced industrially by the reduction of titanium tetrachloride with Na at 4000C (van Arkel–de Boer process). TiCl4 + 4Na → 4NaCl + Ti Reaction with organohalide compounds Alkali metals react with halogen derivatives to generate hydrocarbon via the Wurtz reaction. 2CH3-Cl + 2Na → H3C-CH3 + 2NaCl Alkali metals in liquid ammonia Alkali metals dissolve in liquid ammonia or other donor solvents like aliphatic amines or hexamethylphosphoramide to give blue solutions. These solutions are believed to contain free electrons. Na + xNH3 → Na+ + e(NH3)x− Due to the presence of solvated electrons, these solutions are very powerful reducing agents used in organic synthesis. Reaction 1) is known as Birch reduction. Other reductions that can be carried by these solutions are: S8 + 2e− → S82- Fe(CO)5 + 2e− → Fe(CO)42- + CO Extensions Although francium is the heaviest alkali metal that has been discovered, there has been some theoretical work predicting the physical and chemical characteristics of hypothetical heavier alkali metals. Being the first period 8 element, the undiscovered element ununennium (element 119) is predicted to be the next alkali metal after francium and behave much like their lighter congeners; however, it is also predicted to differ from the lighter alkali metals in some properties. Its chemistry is predicted to be closer to that of potassium or rubidium instead of caesium or francium. This is unusual as periodic trends, ignoring relativistic effects would predict ununennium to be even more reactive than caesium and francium. This lowered reactivity is due to the relativistic stabilisation of ununennium's valence electron, increasing ununennium's first ionisation energy and decreasing the metallic and ionic radii; this effect is already seen for francium. This assumes that ununennium will behave chemically as an alkali metal, which, although likely, may not be true due to relativistic effects.
S2- + H2O → HS− + HO− HS− + H2O → H2S + HO− Reaction with nitrogen Lithium is the only metal that combines directly with nitrogen at room temperature. 3Li + 1/3N2 → Li3N Li3N can react with water to liberate ammonia. Li3N + 3H2O → 3LiOH + NH3 Reaction with hydrogen With hydrogen, alkali metals form saline hydrides that hydrolyse in water. Na + H2 → NaH (at high temperatures) NaH + H2O → NaOH + H2 Reaction with carbon Lithium is the only metal that reacts directly with carbon to give dilithium acetylide. Na and K can react with acetylene to give acetylides. 2Li + 2C → Li2C2 Na + C2H2 → NaC2H + 1/2H2 (at 1500C) Na + NaC2H → Na2C2 (at 2200C) Reaction with water On reaction with water, they generate hydroxide ions and hydrogen gas. This reaction is vigorous and highly exothermic and the hydrogen resulted may ignite in air or even explode in the case of Rb and Cs. Na + H2O → NaOH + 1/2H2 Reaction with other salts The alkali metals are very good reducing agents. They can reduce metal cations that are less electropositive. Titanium is produced industrially by the reduction of titanium tetrachloride with Na at 4000C (van Arkel–de Boer process). TiCl4 + 4Na → 4NaCl + Ti Reaction with organohalide compounds Alkali metals react with halogen derivatives to generate hydrocarbon via the Wurtz reaction. 2CH3-Cl + 2Na → H3C-CH3 + 2NaCl Alkali metals in liquid ammonia Alkali metals dissolve in liquid ammonia or other donor solvents like aliphatic amines or hexamethylphosphoramide to give blue solutions. These solutions are believed to contain free electrons. Na + xNH3 → Na+ + e(NH3)x− Due to the presence of solvated electrons, these solutions are very powerful reducing agents used in organic synthesis. Reaction 1) is known as Birch reduction. Other reductions that can be carried by these solutions are: S8 + 2e− → S82- Fe(CO)5 + 2e− → Fe(CO)42- + CO Extensions Although francium is the heaviest alkali metal that has been discovered, there has been some theoretical work predicting the physical and chemical characteristics of hypothetical heavier alkali metals. Being the first period 8 element, the undiscovered element ununennium (element 119) is predicted to be the next alkali metal after francium and behave much like their lighter congeners; however, it is also predicted to differ from the lighter alkali metals in some properties. Its chemistry is predicted to be closer to that of potassium or rubidium instead of caesium or francium. This is unusual as periodic trends, ignoring relativistic effects would predict ununennium to be even more reactive than caesium and francium. This lowered reactivity is due to the relativistic stabilisation of ununennium's valence electron, increasing ununennium's first ionisation energy and decreasing the metallic and ionic radii; this effect is already seen for francium. This assumes that ununennium will behave chemically as an alkali metal, which, although likely, may not be true due to relativistic effects.
S2- + H2O → HS− + HO− HS− + H2O → H2S + HO− Reaction with nitrogen Lithium is the only metal that combines directly with nitrogen at room temperature. 3Li + 1/3N2 → Li3N Li3N can react with water to liberate ammonia. Li3N + 3H2O → 3LiOH + NH3 Reaction with hydrogen With hydrogen, alkali metals form saline hydrides that hydrolyse in water. Na + H2 → NaH (at high temperatures) NaH + H2O → NaOH + H2 Reaction with carbon Lithium is the only metal that reacts directly with carbon to give dilithium acetylide. Na and K can react with acetylene to give acetylides. 2Li + 2C → Li2C2 Na + C2H2 → NaC2H + 1/2H2 (at 1500C) Na + NaC2H → Na2C2 (at 2200C) Reaction with water On reaction with water, they generate hydroxide ions and hydrogen gas. This reaction is vigorous and highly exothermic and the hydrogen resulted may ignite in air or even explode in the case of Rb and Cs. Na + H2O → NaOH + 1/2H2 Reaction with other salts The alkali metals are very good reducing agents. They can reduce metal cations that are less electropositive. Titanium is produced industrially by the reduction of titanium tetrachloride with Na at 4000C (van Arkel–de Boer process). TiCl4 + 4Na → 4NaCl + Ti Reaction with organohalide compounds Alkali metals react with halogen derivatives to generate hydrocarbon via the Wurtz reaction. 2CH3-Cl + 2Na → H3C-CH3 + 2NaCl Alkali metals in liquid ammonia Alkali metals dissolve in liquid ammonia or other donor solvents like aliphatic amines or hexamethylphosphoramide to give blue solutions. These solutions are believed to contain free electrons. Na + xNH3 → Na+ + e(NH3)x− Due to the presence of solvated electrons, these solutions are very powerful reducing agents used in organic synthesis. Reaction 1) is known as Birch reduction. Other reductions that can be carried by these solutions are: S8 + 2e− → S82- Fe(CO)5 + 2e− → Fe(CO)42- + CO Extensions Although francium is the heaviest alkali metal that has been discovered, there has been some theoretical work predicting the physical and chemical characteristics of hypothetical heavier alkali metals. Being the first period 8 element, the undiscovered element ununennium (element 119) is predicted to be the next alkali metal after francium and behave much like their lighter congeners; however, it is also predicted to differ from the lighter alkali metals in some properties. Its chemistry is predicted to be closer to that of potassium or rubidium instead of caesium or francium. This is unusual as periodic trends, ignoring relativistic effects would predict ununennium to be even more reactive than caesium and francium. This lowered reactivity is due to the relativistic stabilisation of ununennium's valence electron, increasing ununennium's first ionisation energy and decreasing the metallic and ionic radii; this effect is already seen for francium. This assumes that ununennium will behave chemically as an alkali metal, which, although likely, may not be true due to relativistic effects.
The relativistic stabilisation of the 8s orbital also increases ununennium's electron affinity far beyond that of caesium and francium; indeed, ununennium is expected to have an electron affinity higher than all the alkali metals lighter than it. Relativistic effects also cause a very large drop in the polarisability of ununennium. On the other hand, ununennium is predicted to continue the trend of melting points decreasing going down the group, being expected to have a melting point between 0 °C and 30 °C. The stabilisation of ununennium's valence electron and thus the contraction of the 8s orbital cause its atomic radius to be lowered to 240 pm, very close to that of rubidium (247 pm), so that the chemistry of ununennium in the +1 oxidation state should be more similar to the chemistry of rubidium than to that of francium. On the other hand, the ionic radius of the Uue+ ion is predicted to be larger than that of Rb+, because the 7p orbitals are destabilised and are thus larger than the p-orbitals of the lower shells. Ununennium may also show the +3 oxidation state, which is not seen in any other alkali metal, in addition to the +1 oxidation state that is characteristic of the other alkali metals and is also the main oxidation state of all the known alkali metals: this is because of the destabilisation and expansion of the 7p3/2 spinor, causing its outermost electrons to have a lower ionisation energy than what would otherwise be expected. Indeed, many ununennium compounds are expected to have a large covalent character, due to the involvement of the 7p3/2 electrons in the bonding. Not as much work has been done predicting the properties of the alkali metals beyond ununennium. Although a simple extrapolation of the periodic table (by the aufbau principle) would put element 169, unhexennium, under ununennium, Dirac-Fock calculations predict that the next element after ununennium with alkali-metal-like properties may be element 165, unhexpentium, which is predicted to have the electron configuration [Og] 5g18 6f14 7d10 8s2 8p1/22 9s1. This element would be intermediate in properties between an alkali metal and a group 11 element, and while its physical and atomic properties would be closer to the former, its chemistry may be closer to that of the latter. Further calculations show that unhexpentium would follow the trend of increasing ionisation energy beyond caesium, having an ionisation energy comparable to that of sodium, and that it should also continue the trend of decreasing atomic radii beyond caesium, having an atomic radius comparable to that of potassium. However, the 7d electrons of unhexpentium may also be able to participate in chemical reactions along with the 9s electron, possibly allowing oxidation states beyond +1, whence the likely transition metal behaviour of unhexpentium. Due to the alkali and alkaline earth metals both being s-block elements, these predictions for the trends and properties of ununennium and unhexpentium also mostly hold quite similarly for the corresponding alkaline earth metals unbinilium (Ubn) and unhexhexium (Uhh).
The relativistic stabilisation of the 8s orbital also increases ununennium's electron affinity far beyond that of caesium and francium; indeed, ununennium is expected to have an electron affinity higher than all the alkali metals lighter than it. Relativistic effects also cause a very large drop in the polarisability of ununennium. On the other hand, ununennium is predicted to continue the trend of melting points decreasing going down the group, being expected to have a melting point between 0 °C and 30 °C. The stabilisation of ununennium's valence electron and thus the contraction of the 8s orbital cause its atomic radius to be lowered to 240 pm, very close to that of rubidium (247 pm), so that the chemistry of ununennium in the +1 oxidation state should be more similar to the chemistry of rubidium than to that of francium. On the other hand, the ionic radius of the Uue+ ion is predicted to be larger than that of Rb+, because the 7p orbitals are destabilised and are thus larger than the p-orbitals of the lower shells. Ununennium may also show the +3 oxidation state, which is not seen in any other alkali metal, in addition to the +1 oxidation state that is characteristic of the other alkali metals and is also the main oxidation state of all the known alkali metals: this is because of the destabilisation and expansion of the 7p3/2 spinor, causing its outermost electrons to have a lower ionisation energy than what would otherwise be expected. Indeed, many ununennium compounds are expected to have a large covalent character, due to the involvement of the 7p3/2 electrons in the bonding. Not as much work has been done predicting the properties of the alkali metals beyond ununennium. Although a simple extrapolation of the periodic table (by the aufbau principle) would put element 169, unhexennium, under ununennium, Dirac-Fock calculations predict that the next element after ununennium with alkali-metal-like properties may be element 165, unhexpentium, which is predicted to have the electron configuration [Og] 5g18 6f14 7d10 8s2 8p1/22 9s1. This element would be intermediate in properties between an alkali metal and a group 11 element, and while its physical and atomic properties would be closer to the former, its chemistry may be closer to that of the latter. Further calculations show that unhexpentium would follow the trend of increasing ionisation energy beyond caesium, having an ionisation energy comparable to that of sodium, and that it should also continue the trend of decreasing atomic radii beyond caesium, having an atomic radius comparable to that of potassium. However, the 7d electrons of unhexpentium may also be able to participate in chemical reactions along with the 9s electron, possibly allowing oxidation states beyond +1, whence the likely transition metal behaviour of unhexpentium. Due to the alkali and alkaline earth metals both being s-block elements, these predictions for the trends and properties of ununennium and unhexpentium also mostly hold quite similarly for the corresponding alkaline earth metals unbinilium (Ubn) and unhexhexium (Uhh).
The relativistic stabilisation of the 8s orbital also increases ununennium's electron affinity far beyond that of caesium and francium; indeed, ununennium is expected to have an electron affinity higher than all the alkali metals lighter than it. Relativistic effects also cause a very large drop in the polarisability of ununennium. On the other hand, ununennium is predicted to continue the trend of melting points decreasing going down the group, being expected to have a melting point between 0 °C and 30 °C. The stabilisation of ununennium's valence electron and thus the contraction of the 8s orbital cause its atomic radius to be lowered to 240 pm, very close to that of rubidium (247 pm), so that the chemistry of ununennium in the +1 oxidation state should be more similar to the chemistry of rubidium than to that of francium. On the other hand, the ionic radius of the Uue+ ion is predicted to be larger than that of Rb+, because the 7p orbitals are destabilised and are thus larger than the p-orbitals of the lower shells. Ununennium may also show the +3 oxidation state, which is not seen in any other alkali metal, in addition to the +1 oxidation state that is characteristic of the other alkali metals and is also the main oxidation state of all the known alkali metals: this is because of the destabilisation and expansion of the 7p3/2 spinor, causing its outermost electrons to have a lower ionisation energy than what would otherwise be expected. Indeed, many ununennium compounds are expected to have a large covalent character, due to the involvement of the 7p3/2 electrons in the bonding. Not as much work has been done predicting the properties of the alkali metals beyond ununennium. Although a simple extrapolation of the periodic table (by the aufbau principle) would put element 169, unhexennium, under ununennium, Dirac-Fock calculations predict that the next element after ununennium with alkali-metal-like properties may be element 165, unhexpentium, which is predicted to have the electron configuration [Og] 5g18 6f14 7d10 8s2 8p1/22 9s1. This element would be intermediate in properties between an alkali metal and a group 11 element, and while its physical and atomic properties would be closer to the former, its chemistry may be closer to that of the latter. Further calculations show that unhexpentium would follow the trend of increasing ionisation energy beyond caesium, having an ionisation energy comparable to that of sodium, and that it should also continue the trend of decreasing atomic radii beyond caesium, having an atomic radius comparable to that of potassium. However, the 7d electrons of unhexpentium may also be able to participate in chemical reactions along with the 9s electron, possibly allowing oxidation states beyond +1, whence the likely transition metal behaviour of unhexpentium. Due to the alkali and alkaline earth metals both being s-block elements, these predictions for the trends and properties of ununennium and unhexpentium also mostly hold quite similarly for the corresponding alkaline earth metals unbinilium (Ubn) and unhexhexium (Uhh).
Unsepttrium, element 173, may be an even better heavier homologue of ununennium; with a predicted electron configuration of [Usb] 6g1, it returns to the alkali-metal-like situation of having one easily removed electron far above a closed p-shell in energy, and is expected to be even more reactive than caesium. The probable properties of further alkali metals beyond unsepttrium have not been explored yet as of 2019, and they may or may not be able to exist. In periods 8 and above of the periodic table, relativistic and shell-structure effects become so strong that extrapolations from lighter congeners become completely inaccurate. In addition, the relativistic and shell-structure effects (which stabilise the s-orbitals and destabilise and expand the d-, f-, and g-orbitals of higher shells) have opposite effects, causing even larger difference between relativistic and non-relativistic calculations of the properties of elements with such high atomic numbers. Interest in the chemical properties of ununennium, unhexpentium, and unsepttrium stems from the fact that they are located close to the expected locations of islands of stability, centered at elements 122 (306Ubb) and 164 (482Uhq). Pseudo-alkali metals Many other substances are similar to the alkali metals in their tendency to form monopositive cations. Analogously to the pseudohalogens, they have sometimes been called "pseudo-alkali metals". These substances include some elements and many more polyatomic ions; the polyatomic ions are especially similar to the alkali metals in their large size and weak polarising power. Hydrogen The element hydrogen, with one electron per neutral atom, is usually placed at the top of Group 1 of the periodic table for convenience, but hydrogen is not normally considered to be an alkali metal; when it is considered to be an alkali metal, it is because of its atomic properties and not its chemical properties. Under typical conditions, pure hydrogen exists as a diatomic gas consisting of two atoms per molecule (H2); however, the alkali metals form diatomic molecules (such as dilithium, Li2) only at high temperatures, when they are in the gaseous state. Hydrogen, like the alkali metals, has one valence electron and reacts easily with the halogens, but the similarities mostly end there because of the small size of a bare proton H+ compared to the alkali metal cations. Its placement above lithium is primarily due to its electron configuration. It is sometimes placed above fluorine due to their similar chemical properties, though the resemblance is likewise not absolute. The first ionisation energy of hydrogen (1312.0 kJ/mol) is much higher than that of the alkali metals. As only one additional electron is required to fill in the outermost shell of the hydrogen atom, hydrogen often behaves like a halogen, forming the negative hydride ion, and is very occasionally considered to be a halogen on that basis. (The alkali metals can also form negative ions, known as alkalides, but these are little more than laboratory curiosities, being unstable.) An argument against this placement is that formation of hydride from hydrogen is endothermic, unlike the exothermic formation of halides from halogens.
Unsepttrium, element 173, may be an even better heavier homologue of ununennium; with a predicted electron configuration of [Usb] 6g1, it returns to the alkali-metal-like situation of having one easily removed electron far above a closed p-shell in energy, and is expected to be even more reactive than caesium. The probable properties of further alkali metals beyond unsepttrium have not been explored yet as of 2019, and they may or may not be able to exist. In periods 8 and above of the periodic table, relativistic and shell-structure effects become so strong that extrapolations from lighter congeners become completely inaccurate. In addition, the relativistic and shell-structure effects (which stabilise the s-orbitals and destabilise and expand the d-, f-, and g-orbitals of higher shells) have opposite effects, causing even larger difference between relativistic and non-relativistic calculations of the properties of elements with such high atomic numbers. Interest in the chemical properties of ununennium, unhexpentium, and unsepttrium stems from the fact that they are located close to the expected locations of islands of stability, centered at elements 122 (306Ubb) and 164 (482Uhq). Pseudo-alkali metals Many other substances are similar to the alkali metals in their tendency to form monopositive cations. Analogously to the pseudohalogens, they have sometimes been called "pseudo-alkali metals". These substances include some elements and many more polyatomic ions; the polyatomic ions are especially similar to the alkali metals in their large size and weak polarising power. Hydrogen The element hydrogen, with one electron per neutral atom, is usually placed at the top of Group 1 of the periodic table for convenience, but hydrogen is not normally considered to be an alkali metal; when it is considered to be an alkali metal, it is because of its atomic properties and not its chemical properties. Under typical conditions, pure hydrogen exists as a diatomic gas consisting of two atoms per molecule (H2); however, the alkali metals form diatomic molecules (such as dilithium, Li2) only at high temperatures, when they are in the gaseous state. Hydrogen, like the alkali metals, has one valence electron and reacts easily with the halogens, but the similarities mostly end there because of the small size of a bare proton H+ compared to the alkali metal cations. Its placement above lithium is primarily due to its electron configuration. It is sometimes placed above fluorine due to their similar chemical properties, though the resemblance is likewise not absolute. The first ionisation energy of hydrogen (1312.0 kJ/mol) is much higher than that of the alkali metals. As only one additional electron is required to fill in the outermost shell of the hydrogen atom, hydrogen often behaves like a halogen, forming the negative hydride ion, and is very occasionally considered to be a halogen on that basis. (The alkali metals can also form negative ions, known as alkalides, but these are little more than laboratory curiosities, being unstable.) An argument against this placement is that formation of hydride from hydrogen is endothermic, unlike the exothermic formation of halides from halogens.
Unsepttrium, element 173, may be an even better heavier homologue of ununennium; with a predicted electron configuration of [Usb] 6g1, it returns to the alkali-metal-like situation of having one easily removed electron far above a closed p-shell in energy, and is expected to be even more reactive than caesium. The probable properties of further alkali metals beyond unsepttrium have not been explored yet as of 2019, and they may or may not be able to exist. In periods 8 and above of the periodic table, relativistic and shell-structure effects become so strong that extrapolations from lighter congeners become completely inaccurate. In addition, the relativistic and shell-structure effects (which stabilise the s-orbitals and destabilise and expand the d-, f-, and g-orbitals of higher shells) have opposite effects, causing even larger difference between relativistic and non-relativistic calculations of the properties of elements with such high atomic numbers. Interest in the chemical properties of ununennium, unhexpentium, and unsepttrium stems from the fact that they are located close to the expected locations of islands of stability, centered at elements 122 (306Ubb) and 164 (482Uhq). Pseudo-alkali metals Many other substances are similar to the alkali metals in their tendency to form monopositive cations. Analogously to the pseudohalogens, they have sometimes been called "pseudo-alkali metals". These substances include some elements and many more polyatomic ions; the polyatomic ions are especially similar to the alkali metals in their large size and weak polarising power. Hydrogen The element hydrogen, with one electron per neutral atom, is usually placed at the top of Group 1 of the periodic table for convenience, but hydrogen is not normally considered to be an alkali metal; when it is considered to be an alkali metal, it is because of its atomic properties and not its chemical properties. Under typical conditions, pure hydrogen exists as a diatomic gas consisting of two atoms per molecule (H2); however, the alkali metals form diatomic molecules (such as dilithium, Li2) only at high temperatures, when they are in the gaseous state. Hydrogen, like the alkali metals, has one valence electron and reacts easily with the halogens, but the similarities mostly end there because of the small size of a bare proton H+ compared to the alkali metal cations. Its placement above lithium is primarily due to its electron configuration. It is sometimes placed above fluorine due to their similar chemical properties, though the resemblance is likewise not absolute. The first ionisation energy of hydrogen (1312.0 kJ/mol) is much higher than that of the alkali metals. As only one additional electron is required to fill in the outermost shell of the hydrogen atom, hydrogen often behaves like a halogen, forming the negative hydride ion, and is very occasionally considered to be a halogen on that basis. (The alkali metals can also form negative ions, known as alkalides, but these are little more than laboratory curiosities, being unstable.) An argument against this placement is that formation of hydride from hydrogen is endothermic, unlike the exothermic formation of halides from halogens.
The radius of the H− anion also does not fit the trend of increasing size going down the halogens: indeed, H− is very diffuse because its single proton cannot easily control both electrons. It was expected for some time that liquid hydrogen would show metallic properties; while this has been shown to not be the case, under extremely high pressures, such as those found at the cores of Jupiter and Saturn, hydrogen does become metallic and behaves like an alkali metal; in this phase, it is known as metallic hydrogen. The electrical resistivity of liquid metallic hydrogen at 3000 K is approximately equal to that of liquid rubidium and caesium at 2000 K at the respective pressures when they undergo a nonmetal-to-metal transition. The 1s1 electron configuration of hydrogen, while analogous to that of the alkali metals (ns1), is unique because there is no 1p subshell. Hence it can lose an electron to form the hydron H+, or gain one to form the hydride ion H−. In the former case it resembles superficially the alkali metals; in the latter case, the halogens, but the differences due to the lack of a 1p subshell are important enough that neither group fits the properties of hydrogen well. Group 14 is also a good fit in terms of thermodynamic properties such as ionisation energy and electron affinity, but hydrogen cannot be tetravalent. Thus none of the three placements are entirely satisfactory, although group 1 is the most common placement (if one is chosen) because the hydron is by far the most important of all monatomic hydrogen species, being the foundation of acid-base chemistry. As an example of hydrogen's unorthodox properties stemming from its unusual electron configuration and small size, the hydrogen ion is very small (radius around 150 fm compared to the 50–220 pm size of most other atoms and ions) and so is nonexistent in condensed systems other than in association with other atoms or molecules. Indeed, transferring of protons between chemicals is the basis of acid-base chemistry. Also unique is hydrogen's ability to form hydrogen bonds, which are an effect of charge-transfer, electrostatic, and electron correlative contributing phenomena. While analogous lithium bonds are also known, they are mostly electrostatic. Nevertheless, hydrogen can take on the same structural role as the alkali metals in some molecular crystals, and has a close relationship with the lightest alkali metals (especially lithium). Ammonium and derivatives The ammonium ion () has very similar properties to the heavier alkali metals, acting as an alkali metal intermediate between potassium and rubidium, and is often considered a close relative. For example, most alkali metal salts are soluble in water, a property which ammonium salts share.
The radius of the H− anion also does not fit the trend of increasing size going down the halogens: indeed, H− is very diffuse because its single proton cannot easily control both electrons. It was expected for some time that liquid hydrogen would show metallic properties; while this has been shown to not be the case, under extremely high pressures, such as those found at the cores of Jupiter and Saturn, hydrogen does become metallic and behaves like an alkali metal; in this phase, it is known as metallic hydrogen. The electrical resistivity of liquid metallic hydrogen at 3000 K is approximately equal to that of liquid rubidium and caesium at 2000 K at the respective pressures when they undergo a nonmetal-to-metal transition. The 1s1 electron configuration of hydrogen, while analogous to that of the alkali metals (ns1), is unique because there is no 1p subshell. Hence it can lose an electron to form the hydron H+, or gain one to form the hydride ion H−. In the former case it resembles superficially the alkali metals; in the latter case, the halogens, but the differences due to the lack of a 1p subshell are important enough that neither group fits the properties of hydrogen well. Group 14 is also a good fit in terms of thermodynamic properties such as ionisation energy and electron affinity, but hydrogen cannot be tetravalent. Thus none of the three placements are entirely satisfactory, although group 1 is the most common placement (if one is chosen) because the hydron is by far the most important of all monatomic hydrogen species, being the foundation of acid-base chemistry. As an example of hydrogen's unorthodox properties stemming from its unusual electron configuration and small size, the hydrogen ion is very small (radius around 150 fm compared to the 50–220 pm size of most other atoms and ions) and so is nonexistent in condensed systems other than in association with other atoms or molecules. Indeed, transferring of protons between chemicals is the basis of acid-base chemistry. Also unique is hydrogen's ability to form hydrogen bonds, which are an effect of charge-transfer, electrostatic, and electron correlative contributing phenomena. While analogous lithium bonds are also known, they are mostly electrostatic. Nevertheless, hydrogen can take on the same structural role as the alkali metals in some molecular crystals, and has a close relationship with the lightest alkali metals (especially lithium). Ammonium and derivatives The ammonium ion () has very similar properties to the heavier alkali metals, acting as an alkali metal intermediate between potassium and rubidium, and is often considered a close relative. For example, most alkali metal salts are soluble in water, a property which ammonium salts share.
The radius of the H− anion also does not fit the trend of increasing size going down the halogens: indeed, H− is very diffuse because its single proton cannot easily control both electrons. It was expected for some time that liquid hydrogen would show metallic properties; while this has been shown to not be the case, under extremely high pressures, such as those found at the cores of Jupiter and Saturn, hydrogen does become metallic and behaves like an alkali metal; in this phase, it is known as metallic hydrogen. The electrical resistivity of liquid metallic hydrogen at 3000 K is approximately equal to that of liquid rubidium and caesium at 2000 K at the respective pressures when they undergo a nonmetal-to-metal transition. The 1s1 electron configuration of hydrogen, while analogous to that of the alkali metals (ns1), is unique because there is no 1p subshell. Hence it can lose an electron to form the hydron H+, or gain one to form the hydride ion H−. In the former case it resembles superficially the alkali metals; in the latter case, the halogens, but the differences due to the lack of a 1p subshell are important enough that neither group fits the properties of hydrogen well. Group 14 is also a good fit in terms of thermodynamic properties such as ionisation energy and electron affinity, but hydrogen cannot be tetravalent. Thus none of the three placements are entirely satisfactory, although group 1 is the most common placement (if one is chosen) because the hydron is by far the most important of all monatomic hydrogen species, being the foundation of acid-base chemistry. As an example of hydrogen's unorthodox properties stemming from its unusual electron configuration and small size, the hydrogen ion is very small (radius around 150 fm compared to the 50–220 pm size of most other atoms and ions) and so is nonexistent in condensed systems other than in association with other atoms or molecules. Indeed, transferring of protons between chemicals is the basis of acid-base chemistry. Also unique is hydrogen's ability to form hydrogen bonds, which are an effect of charge-transfer, electrostatic, and electron correlative contributing phenomena. While analogous lithium bonds are also known, they are mostly electrostatic. Nevertheless, hydrogen can take on the same structural role as the alkali metals in some molecular crystals, and has a close relationship with the lightest alkali metals (especially lithium). Ammonium and derivatives The ammonium ion () has very similar properties to the heavier alkali metals, acting as an alkali metal intermediate between potassium and rubidium, and is often considered a close relative. For example, most alkali metal salts are soluble in water, a property which ammonium salts share.
Ammonium is expected to behave stably as a metal ( ions in a sea of delocalised electrons) at very high pressures (though less than the typical pressure where transitions from insulating to metallic behaviour occur around, 100 GPa), and could possibly occur inside the ice giants Uranus and Neptune, which may have significant impacts on their interior magnetic fields. It has been estimated that the transition from a mixture of ammonia and dihydrogen molecules to metallic ammonium may occur at pressures just below 25 GPa. Under standard conditions, ammonium can form a metallic amalgam with mercury. Other "pseudo-alkali metals" include the alkylammonium cations, in which some of the hydrogen atoms in the ammonium cation are replaced by alkyl or aryl groups. In particular, the quaternary ammonium cations () are very useful since they are permanently charged, and they are often used as an alternative to the expensive Cs+ to stabilise very large and very easily polarisable anions such as . Tetraalkylammonium hydroxides, like alkali metal hydroxides, are very strong bases that react with atmospheric carbon dioxide to form carbonates. Furthermore, the nitrogen atom may be replaced by a phosphorus, arsenic, or antimony atom (the heavier nonmetallic pnictogens), creating a phosphonium () or arsonium () cation that can itself be substituted similarly; while stibonium () itself is not known, some of its organic derivatives are characterised. Cobaltocene and derivatives Cobaltocene, Co(C5H5)2, is a metallocene, the cobalt analogue of ferrocene. It is a dark purple solid. Cobaltocene has 19 valence electrons, one more than usually found in organotransition metal complexes, such as its very stable relative, ferrocene, in accordance with the 18-electron rule. This additional electron occupies an orbital that is antibonding with respect to the Co–C bonds. Consequently, many chemical reactions of Co(C5H5)2 are characterized by its tendency to lose this "extra" electron, yielding a very stable 18-electron cation known as cobaltocenium. Many cobaltocenium salts coprecipitate with caesium salts, and cobaltocenium hydroxide is a strong base that absorbs atmospheric carbon dioxide to form cobaltocenium carbonate. Like the alkali metals, cobaltocene is a strong reducing agent, and decamethylcobaltocene is stronger still due to the combined inductive effect of the ten methyl groups. Cobalt may be substituted by its heavier congener rhodium to give rhodocene, an even stronger reducing agent. Iridocene (involving iridium) would presumably be still more potent, but is not very well-studied due to its instability. Thallium Thallium is the heaviest stable element in group 13 of the periodic table. At the bottom of the periodic table, the inert pair effect is quite strong, because of the relativistic stabilisation of the 6s orbital and the decreasing bond energy as the atoms increase in size so that the amount of energy released in forming two more bonds is not worth the high ionisation energies of the 6s electrons.
Ammonium is expected to behave stably as a metal ( ions in a sea of delocalised electrons) at very high pressures (though less than the typical pressure where transitions from insulating to metallic behaviour occur around, 100 GPa), and could possibly occur inside the ice giants Uranus and Neptune, which may have significant impacts on their interior magnetic fields. It has been estimated that the transition from a mixture of ammonia and dihydrogen molecules to metallic ammonium may occur at pressures just below 25 GPa. Under standard conditions, ammonium can form a metallic amalgam with mercury. Other "pseudo-alkali metals" include the alkylammonium cations, in which some of the hydrogen atoms in the ammonium cation are replaced by alkyl or aryl groups. In particular, the quaternary ammonium cations () are very useful since they are permanently charged, and they are often used as an alternative to the expensive Cs+ to stabilise very large and very easily polarisable anions such as . Tetraalkylammonium hydroxides, like alkali metal hydroxides, are very strong bases that react with atmospheric carbon dioxide to form carbonates. Furthermore, the nitrogen atom may be replaced by a phosphorus, arsenic, or antimony atom (the heavier nonmetallic pnictogens), creating a phosphonium () or arsonium () cation that can itself be substituted similarly; while stibonium () itself is not known, some of its organic derivatives are characterised. Cobaltocene and derivatives Cobaltocene, Co(C5H5)2, is a metallocene, the cobalt analogue of ferrocene. It is a dark purple solid. Cobaltocene has 19 valence electrons, one more than usually found in organotransition metal complexes, such as its very stable relative, ferrocene, in accordance with the 18-electron rule. This additional electron occupies an orbital that is antibonding with respect to the Co–C bonds. Consequently, many chemical reactions of Co(C5H5)2 are characterized by its tendency to lose this "extra" electron, yielding a very stable 18-electron cation known as cobaltocenium. Many cobaltocenium salts coprecipitate with caesium salts, and cobaltocenium hydroxide is a strong base that absorbs atmospheric carbon dioxide to form cobaltocenium carbonate. Like the alkali metals, cobaltocene is a strong reducing agent, and decamethylcobaltocene is stronger still due to the combined inductive effect of the ten methyl groups. Cobalt may be substituted by its heavier congener rhodium to give rhodocene, an even stronger reducing agent. Iridocene (involving iridium) would presumably be still more potent, but is not very well-studied due to its instability. Thallium Thallium is the heaviest stable element in group 13 of the periodic table. At the bottom of the periodic table, the inert pair effect is quite strong, because of the relativistic stabilisation of the 6s orbital and the decreasing bond energy as the atoms increase in size so that the amount of energy released in forming two more bonds is not worth the high ionisation energies of the 6s electrons.
Ammonium is expected to behave stably as a metal ( ions in a sea of delocalised electrons) at very high pressures (though less than the typical pressure where transitions from insulating to metallic behaviour occur around, 100 GPa), and could possibly occur inside the ice giants Uranus and Neptune, which may have significant impacts on their interior magnetic fields. It has been estimated that the transition from a mixture of ammonia and dihydrogen molecules to metallic ammonium may occur at pressures just below 25 GPa. Under standard conditions, ammonium can form a metallic amalgam with mercury. Other "pseudo-alkali metals" include the alkylammonium cations, in which some of the hydrogen atoms in the ammonium cation are replaced by alkyl or aryl groups. In particular, the quaternary ammonium cations () are very useful since they are permanently charged, and they are often used as an alternative to the expensive Cs+ to stabilise very large and very easily polarisable anions such as . Tetraalkylammonium hydroxides, like alkali metal hydroxides, are very strong bases that react with atmospheric carbon dioxide to form carbonates. Furthermore, the nitrogen atom may be replaced by a phosphorus, arsenic, or antimony atom (the heavier nonmetallic pnictogens), creating a phosphonium () or arsonium () cation that can itself be substituted similarly; while stibonium () itself is not known, some of its organic derivatives are characterised. Cobaltocene and derivatives Cobaltocene, Co(C5H5)2, is a metallocene, the cobalt analogue of ferrocene. It is a dark purple solid. Cobaltocene has 19 valence electrons, one more than usually found in organotransition metal complexes, such as its very stable relative, ferrocene, in accordance with the 18-electron rule. This additional electron occupies an orbital that is antibonding with respect to the Co–C bonds. Consequently, many chemical reactions of Co(C5H5)2 are characterized by its tendency to lose this "extra" electron, yielding a very stable 18-electron cation known as cobaltocenium. Many cobaltocenium salts coprecipitate with caesium salts, and cobaltocenium hydroxide is a strong base that absorbs atmospheric carbon dioxide to form cobaltocenium carbonate. Like the alkali metals, cobaltocene is a strong reducing agent, and decamethylcobaltocene is stronger still due to the combined inductive effect of the ten methyl groups. Cobalt may be substituted by its heavier congener rhodium to give rhodocene, an even stronger reducing agent. Iridocene (involving iridium) would presumably be still more potent, but is not very well-studied due to its instability. Thallium Thallium is the heaviest stable element in group 13 of the periodic table. At the bottom of the periodic table, the inert pair effect is quite strong, because of the relativistic stabilisation of the 6s orbital and the decreasing bond energy as the atoms increase in size so that the amount of energy released in forming two more bonds is not worth the high ionisation energies of the 6s electrons.
It displays the +1 oxidation state that all the known alkali metals display, and thallium compounds with thallium in its +1 oxidation state closely resemble the corresponding potassium or silver compounds stoichiometrically due to the similar ionic radii of the Tl+ (164 pm), K+ (152 pm) and Ag+ (129 pm) ions. It was sometimes considered an alkali metal in continental Europe (but not in England) in the years immediately following its discovery, and was placed just after caesium as the sixth alkali metal in Dmitri Mendeleev's 1869 periodic table and Julius Lothar Meyer's 1868 periodic table. (Mendeleev's 1871 periodic table and Meyer's 1870 periodic table put thallium in its current position in the boron group and left the space below caesium blank.) However, thallium also displays the oxidation state +3, which no known alkali metal displays (although ununennium, the undiscovered seventh alkali metal, is predicted to possibly display the +3 oxidation state). The sixth alkali metal is now considered to be francium. While Tl+ is stabilised by the inert pair effect, this inert pair of 6s electrons is still able to participate chemically, so that these electrons are stereochemically active in aqueous solution. Additionally, the thallium halides (except TlF) are quite insoluble in water, and TlI has an unusual structure because of the presence of the stereochemically active inert pair in thallium. Copper, silver, and gold The group 11 metals (or coinage metals), copper, silver, and gold, are typically categorised as transition metals given they can form ions with incomplete d-shells. Physically, they have the relatively low melting points and high electronegativity values associated with post-transition metals. "The filled d subshell and free s electron of Cu, Ag, and Au contribute to their high electrical and thermal conductivity. Transition metals to the left of group 11 experience interactions between s electrons and the partially filled d subshell that lower electron mobility." Chemically, the group 11 metals behave like main-group metals in their +1 valence states, and are hence somewhat related to the alkali metals: this is one reason for their previously being labelled as "group IB", paralleling the alkali metals' "group IA". They are occasionally classified as post-transition metals. Their spectra are analogous to those of the alkali metals. Their monopositive ions are paramagnetic and contribute no colour to their salts, like those of the alkali metals. In Mendeleev's 1871 periodic table, copper, silver, and gold are listed twice, once under group VIII (with the iron triad and platinum group metals), and once under group IB. Group IB was nonetheless parenthesised to note that it was tentative. Mendeleev's main criterion for group assignment was the maximum oxidation state of an element: on that basis, the group 11 elements could not be classified in group IB, due to the existence of copper(II) and gold(III) compounds being known at that time. However, eliminating group IB would make group I the only main group (group VIII was labelled a transition group) to lack an A–B bifurcation.
It displays the +1 oxidation state that all the known alkali metals display, and thallium compounds with thallium in its +1 oxidation state closely resemble the corresponding potassium or silver compounds stoichiometrically due to the similar ionic radii of the Tl+ (164 pm), K+ (152 pm) and Ag+ (129 pm) ions. It was sometimes considered an alkali metal in continental Europe (but not in England) in the years immediately following its discovery, and was placed just after caesium as the sixth alkali metal in Dmitri Mendeleev's 1869 periodic table and Julius Lothar Meyer's 1868 periodic table. (Mendeleev's 1871 periodic table and Meyer's 1870 periodic table put thallium in its current position in the boron group and left the space below caesium blank.) However, thallium also displays the oxidation state +3, which no known alkali metal displays (although ununennium, the undiscovered seventh alkali metal, is predicted to possibly display the +3 oxidation state). The sixth alkali metal is now considered to be francium. While Tl+ is stabilised by the inert pair effect, this inert pair of 6s electrons is still able to participate chemically, so that these electrons are stereochemically active in aqueous solution. Additionally, the thallium halides (except TlF) are quite insoluble in water, and TlI has an unusual structure because of the presence of the stereochemically active inert pair in thallium. Copper, silver, and gold The group 11 metals (or coinage metals), copper, silver, and gold, are typically categorised as transition metals given they can form ions with incomplete d-shells. Physically, they have the relatively low melting points and high electronegativity values associated with post-transition metals. "The filled d subshell and free s electron of Cu, Ag, and Au contribute to their high electrical and thermal conductivity. Transition metals to the left of group 11 experience interactions between s electrons and the partially filled d subshell that lower electron mobility." Chemically, the group 11 metals behave like main-group metals in their +1 valence states, and are hence somewhat related to the alkali metals: this is one reason for their previously being labelled as "group IB", paralleling the alkali metals' "group IA". They are occasionally classified as post-transition metals. Their spectra are analogous to those of the alkali metals. Their monopositive ions are paramagnetic and contribute no colour to their salts, like those of the alkali metals. In Mendeleev's 1871 periodic table, copper, silver, and gold are listed twice, once under group VIII (with the iron triad and platinum group metals), and once under group IB. Group IB was nonetheless parenthesised to note that it was tentative. Mendeleev's main criterion for group assignment was the maximum oxidation state of an element: on that basis, the group 11 elements could not be classified in group IB, due to the existence of copper(II) and gold(III) compounds being known at that time. However, eliminating group IB would make group I the only main group (group VIII was labelled a transition group) to lack an A–B bifurcation.
It displays the +1 oxidation state that all the known alkali metals display, and thallium compounds with thallium in its +1 oxidation state closely resemble the corresponding potassium or silver compounds stoichiometrically due to the similar ionic radii of the Tl+ (164 pm), K+ (152 pm) and Ag+ (129 pm) ions. It was sometimes considered an alkali metal in continental Europe (but not in England) in the years immediately following its discovery, and was placed just after caesium as the sixth alkali metal in Dmitri Mendeleev's 1869 periodic table and Julius Lothar Meyer's 1868 periodic table. (Mendeleev's 1871 periodic table and Meyer's 1870 periodic table put thallium in its current position in the boron group and left the space below caesium blank.) However, thallium also displays the oxidation state +3, which no known alkali metal displays (although ununennium, the undiscovered seventh alkali metal, is predicted to possibly display the +3 oxidation state). The sixth alkali metal is now considered to be francium. While Tl+ is stabilised by the inert pair effect, this inert pair of 6s electrons is still able to participate chemically, so that these electrons are stereochemically active in aqueous solution. Additionally, the thallium halides (except TlF) are quite insoluble in water, and TlI has an unusual structure because of the presence of the stereochemically active inert pair in thallium. Copper, silver, and gold The group 11 metals (or coinage metals), copper, silver, and gold, are typically categorised as transition metals given they can form ions with incomplete d-shells. Physically, they have the relatively low melting points and high electronegativity values associated with post-transition metals. "The filled d subshell and free s electron of Cu, Ag, and Au contribute to their high electrical and thermal conductivity. Transition metals to the left of group 11 experience interactions between s electrons and the partially filled d subshell that lower electron mobility." Chemically, the group 11 metals behave like main-group metals in their +1 valence states, and are hence somewhat related to the alkali metals: this is one reason for their previously being labelled as "group IB", paralleling the alkali metals' "group IA". They are occasionally classified as post-transition metals. Their spectra are analogous to those of the alkali metals. Their monopositive ions are paramagnetic and contribute no colour to their salts, like those of the alkali metals. In Mendeleev's 1871 periodic table, copper, silver, and gold are listed twice, once under group VIII (with the iron triad and platinum group metals), and once under group IB. Group IB was nonetheless parenthesised to note that it was tentative. Mendeleev's main criterion for group assignment was the maximum oxidation state of an element: on that basis, the group 11 elements could not be classified in group IB, due to the existence of copper(II) and gold(III) compounds being known at that time. However, eliminating group IB would make group I the only main group (group VIII was labelled a transition group) to lack an A–B bifurcation.
Soon afterward, a majority of chemists chose to classify these elements in group IB and remove them from group VIII for the resulting symmetry: this was the predominant classification until the rise of the modern medium-long 18-column periodic table, which separated the alkali metals and group 11 metals. The coinage metals were traditionally regarded as a subdivision of the alkali metal group, due to them sharing the characteristic s1 electron configuration of the alkali metals (group 1: p6s1; group 11: d10s1). However, the similarities are largely confined to the stoichiometries of the +1 compounds of both groups, and not their chemical properties. This stems from the filled d subshell providing a much weaker shielding effect on the outermost s electron than the filled p subshell, so that the coinage metals have much higher first ionisation energies and smaller ionic radii than do the corresponding alkali metals. Furthermore, they have higher melting points, hardnesses, and densities, and lower reactivities and solubilities in liquid ammonia, as well as having more covalent character in their compounds. Finally, the alkali metals are at the top of the electrochemical series, whereas the coinage metals are almost at the very bottom. The coinage metals' filled d shell is much more easily disrupted than the alkali metals' filled p shell, so that the second and third ionisation energies are lower, enabling higher oxidation states than +1 and a richer coordination chemistry, thus giving the group 11 metals clear transition metal character. Particularly noteworthy is gold forming ionic compounds with rubidium and caesium, in which it forms the auride ion (Au−) which also occurs in solvated form in liquid ammonia solution: here gold behaves as a pseudohalogen because its 5d106s1 configuration has one electron less than the quasi-closed shell 5d106s2 configuration of mercury. Production and isolation The production of pure alkali metals is somewhat complicated due to their extreme reactivity with commonly used substances, such as water. From their silicate ores, all the stable alkali metals may be obtained the same way: sulfuric acid is first used to dissolve the desired alkali metal ion and aluminium(III) ions from the ore (leaching), whereupon basic precipitation removes aluminium ions from the mixture by precipitating it as the hydroxide. The remaining insoluble alkali metal carbonate is then precipitated selectively; the salt is then dissolved in hydrochloric acid to produce the chloride. The result is then left to evaporate and the alkali metal can then be isolated. Lithium and sodium are typically isolated through electrolysis from their liquid chlorides, with calcium chloride typically added to lower the melting point of the mixture. The heavier alkali metals, however, are more typically isolated in a different way, where a reducing agent (typically sodium for potassium and magnesium or calcium for the heaviest alkali metals) is used to reduce the alkali metal chloride. The liquid or gaseous product (the alkali metal) then undergoes fractional distillation for purification.
Soon afterward, a majority of chemists chose to classify these elements in group IB and remove them from group VIII for the resulting symmetry: this was the predominant classification until the rise of the modern medium-long 18-column periodic table, which separated the alkali metals and group 11 metals. The coinage metals were traditionally regarded as a subdivision of the alkali metal group, due to them sharing the characteristic s1 electron configuration of the alkali metals (group 1: p6s1; group 11: d10s1). However, the similarities are largely confined to the stoichiometries of the +1 compounds of both groups, and not their chemical properties. This stems from the filled d subshell providing a much weaker shielding effect on the outermost s electron than the filled p subshell, so that the coinage metals have much higher first ionisation energies and smaller ionic radii than do the corresponding alkali metals. Furthermore, they have higher melting points, hardnesses, and densities, and lower reactivities and solubilities in liquid ammonia, as well as having more covalent character in their compounds. Finally, the alkali metals are at the top of the electrochemical series, whereas the coinage metals are almost at the very bottom. The coinage metals' filled d shell is much more easily disrupted than the alkali metals' filled p shell, so that the second and third ionisation energies are lower, enabling higher oxidation states than +1 and a richer coordination chemistry, thus giving the group 11 metals clear transition metal character. Particularly noteworthy is gold forming ionic compounds with rubidium and caesium, in which it forms the auride ion (Au−) which also occurs in solvated form in liquid ammonia solution: here gold behaves as a pseudohalogen because its 5d106s1 configuration has one electron less than the quasi-closed shell 5d106s2 configuration of mercury. Production and isolation The production of pure alkali metals is somewhat complicated due to their extreme reactivity with commonly used substances, such as water. From their silicate ores, all the stable alkali metals may be obtained the same way: sulfuric acid is first used to dissolve the desired alkali metal ion and aluminium(III) ions from the ore (leaching), whereupon basic precipitation removes aluminium ions from the mixture by precipitating it as the hydroxide. The remaining insoluble alkali metal carbonate is then precipitated selectively; the salt is then dissolved in hydrochloric acid to produce the chloride. The result is then left to evaporate and the alkali metal can then be isolated. Lithium and sodium are typically isolated through electrolysis from their liquid chlorides, with calcium chloride typically added to lower the melting point of the mixture. The heavier alkali metals, however, are more typically isolated in a different way, where a reducing agent (typically sodium for potassium and magnesium or calcium for the heaviest alkali metals) is used to reduce the alkali metal chloride. The liquid or gaseous product (the alkali metal) then undergoes fractional distillation for purification.
Soon afterward, a majority of chemists chose to classify these elements in group IB and remove them from group VIII for the resulting symmetry: this was the predominant classification until the rise of the modern medium-long 18-column periodic table, which separated the alkali metals and group 11 metals. The coinage metals were traditionally regarded as a subdivision of the alkali metal group, due to them sharing the characteristic s1 electron configuration of the alkali metals (group 1: p6s1; group 11: d10s1). However, the similarities are largely confined to the stoichiometries of the +1 compounds of both groups, and not their chemical properties. This stems from the filled d subshell providing a much weaker shielding effect on the outermost s electron than the filled p subshell, so that the coinage metals have much higher first ionisation energies and smaller ionic radii than do the corresponding alkali metals. Furthermore, they have higher melting points, hardnesses, and densities, and lower reactivities and solubilities in liquid ammonia, as well as having more covalent character in their compounds. Finally, the alkali metals are at the top of the electrochemical series, whereas the coinage metals are almost at the very bottom. The coinage metals' filled d shell is much more easily disrupted than the alkali metals' filled p shell, so that the second and third ionisation energies are lower, enabling higher oxidation states than +1 and a richer coordination chemistry, thus giving the group 11 metals clear transition metal character. Particularly noteworthy is gold forming ionic compounds with rubidium and caesium, in which it forms the auride ion (Au−) which also occurs in solvated form in liquid ammonia solution: here gold behaves as a pseudohalogen because its 5d106s1 configuration has one electron less than the quasi-closed shell 5d106s2 configuration of mercury. Production and isolation The production of pure alkali metals is somewhat complicated due to their extreme reactivity with commonly used substances, such as water. From their silicate ores, all the stable alkali metals may be obtained the same way: sulfuric acid is first used to dissolve the desired alkali metal ion and aluminium(III) ions from the ore (leaching), whereupon basic precipitation removes aluminium ions from the mixture by precipitating it as the hydroxide. The remaining insoluble alkali metal carbonate is then precipitated selectively; the salt is then dissolved in hydrochloric acid to produce the chloride. The result is then left to evaporate and the alkali metal can then be isolated. Lithium and sodium are typically isolated through electrolysis from their liquid chlorides, with calcium chloride typically added to lower the melting point of the mixture. The heavier alkali metals, however, are more typically isolated in a different way, where a reducing agent (typically sodium for potassium and magnesium or calcium for the heaviest alkali metals) is used to reduce the alkali metal chloride. The liquid or gaseous product (the alkali metal) then undergoes fractional distillation for purification.
Most routes to the pure alkali metals require the use of electrolysis due to their high reactivity; one of the few which does not is the pyrolysis of the corresponding alkali metal azide, which yields the metal for sodium, potassium, rubidium, and caesium and the nitride for lithium. Lithium salts have to be extracted from the water of mineral springs, brine pools, and brine deposits. The metal is produced electrolytically from a mixture of fused lithium chloride and potassium chloride. Sodium occurs mostly in seawater and dried seabed, but is now produced through electrolysis of sodium chloride by lowering the melting point of the substance to below 700 °C through the use of a Downs cell. Extremely pure sodium can be produced through the thermal decomposition of sodium azide. Potassium occurs in many minerals, such as sylvite (potassium chloride). Previously, potassium was generally made from the electrolysis of potassium chloride or potassium hydroxide, found extensively in places such as Canada, Russia, Belarus, Germany, Israel, United States, and Jordan, in a method similar to how sodium was produced in the late 1800s and early 1900s. It can also be produced from seawater. However, these methods are problematic because the potassium metal tends to dissolve in its molten chloride and vaporises significantly at the operating temperatures, potentially forming the explosive superoxide. As a result, pure potassium metal is now produced by reducing molten potassium chloride with sodium metal at 850 °C. Na (g) + KCl (l) NaCl (l) + K (g) Although sodium is less reactive than potassium, this process works because at such high temperatures potassium is more volatile than sodium and can easily be distilled off, so that the equilibrium shifts towards the right to produce more potassium gas and proceeds almost to completion. Metals like sodium are obtained by electrolysis of molten salts. Rb & Cs obtained mainly as by products of Li processing. To make pure cesium, ores of cesium and rubidium are crushed and heated to 650 °C with sodium metal, generating an alloy that can then be separated via a fractional distillation technique. Because metallic cesium is too reactive to handle, it is normally offered as cesium azide (CsN3). Cesium hydroxide is formed when cesium interacts aggressively with water and ice (CsOH). Rubidium is the 16th most prevalent element in the earth's crust, however it is quite rare. Some minerals found in North America, South Africa, Russia, and Canada contain rubidium. Some potassium minerals (lepidolites, biotites, feldspar, carnallite) contain it, together with caesium. Pollucite, carnallite, leucite, and lepidolite are all minerals that contain rubidium. As a by-product of lithium extraction, it is commercially obtained from lepidolite. Rubidium is also found in potassium rocks and brines, which is a commercial supply. The majority of rubidium is now obtained as a byproduct of refining lithium. Rubidium is used in vacuum tubes as a getter, a material that combines with and removes trace gases from vacuum tubes.
Most routes to the pure alkali metals require the use of electrolysis due to their high reactivity; one of the few which does not is the pyrolysis of the corresponding alkali metal azide, which yields the metal for sodium, potassium, rubidium, and caesium and the nitride for lithium. Lithium salts have to be extracted from the water of mineral springs, brine pools, and brine deposits. The metal is produced electrolytically from a mixture of fused lithium chloride and potassium chloride. Sodium occurs mostly in seawater and dried seabed, but is now produced through electrolysis of sodium chloride by lowering the melting point of the substance to below 700 °C through the use of a Downs cell. Extremely pure sodium can be produced through the thermal decomposition of sodium azide. Potassium occurs in many minerals, such as sylvite (potassium chloride). Previously, potassium was generally made from the electrolysis of potassium chloride or potassium hydroxide, found extensively in places such as Canada, Russia, Belarus, Germany, Israel, United States, and Jordan, in a method similar to how sodium was produced in the late 1800s and early 1900s. It can also be produced from seawater. However, these methods are problematic because the potassium metal tends to dissolve in its molten chloride and vaporises significantly at the operating temperatures, potentially forming the explosive superoxide. As a result, pure potassium metal is now produced by reducing molten potassium chloride with sodium metal at 850 °C. Na (g) + KCl (l) NaCl (l) + K (g) Although sodium is less reactive than potassium, this process works because at such high temperatures potassium is more volatile than sodium and can easily be distilled off, so that the equilibrium shifts towards the right to produce more potassium gas and proceeds almost to completion. Metals like sodium are obtained by electrolysis of molten salts. Rb & Cs obtained mainly as by products of Li processing. To make pure cesium, ores of cesium and rubidium are crushed and heated to 650 °C with sodium metal, generating an alloy that can then be separated via a fractional distillation technique. Because metallic cesium is too reactive to handle, it is normally offered as cesium azide (CsN3). Cesium hydroxide is formed when cesium interacts aggressively with water and ice (CsOH). Rubidium is the 16th most prevalent element in the earth's crust, however it is quite rare. Some minerals found in North America, South Africa, Russia, and Canada contain rubidium. Some potassium minerals (lepidolites, biotites, feldspar, carnallite) contain it, together with caesium. Pollucite, carnallite, leucite, and lepidolite are all minerals that contain rubidium. As a by-product of lithium extraction, it is commercially obtained from lepidolite. Rubidium is also found in potassium rocks and brines, which is a commercial supply. The majority of rubidium is now obtained as a byproduct of refining lithium. Rubidium is used in vacuum tubes as a getter, a material that combines with and removes trace gases from vacuum tubes.
Most routes to the pure alkali metals require the use of electrolysis due to their high reactivity; one of the few which does not is the pyrolysis of the corresponding alkali metal azide, which yields the metal for sodium, potassium, rubidium, and caesium and the nitride for lithium. Lithium salts have to be extracted from the water of mineral springs, brine pools, and brine deposits. The metal is produced electrolytically from a mixture of fused lithium chloride and potassium chloride. Sodium occurs mostly in seawater and dried seabed, but is now produced through electrolysis of sodium chloride by lowering the melting point of the substance to below 700 °C through the use of a Downs cell. Extremely pure sodium can be produced through the thermal decomposition of sodium azide. Potassium occurs in many minerals, such as sylvite (potassium chloride). Previously, potassium was generally made from the electrolysis of potassium chloride or potassium hydroxide, found extensively in places such as Canada, Russia, Belarus, Germany, Israel, United States, and Jordan, in a method similar to how sodium was produced in the late 1800s and early 1900s. It can also be produced from seawater. However, these methods are problematic because the potassium metal tends to dissolve in its molten chloride and vaporises significantly at the operating temperatures, potentially forming the explosive superoxide. As a result, pure potassium metal is now produced by reducing molten potassium chloride with sodium metal at 850 °C. Na (g) + KCl (l) NaCl (l) + K (g) Although sodium is less reactive than potassium, this process works because at such high temperatures potassium is more volatile than sodium and can easily be distilled off, so that the equilibrium shifts towards the right to produce more potassium gas and proceeds almost to completion. Metals like sodium are obtained by electrolysis of molten salts. Rb & Cs obtained mainly as by products of Li processing. To make pure cesium, ores of cesium and rubidium are crushed and heated to 650 °C with sodium metal, generating an alloy that can then be separated via a fractional distillation technique. Because metallic cesium is too reactive to handle, it is normally offered as cesium azide (CsN3). Cesium hydroxide is formed when cesium interacts aggressively with water and ice (CsOH). Rubidium is the 16th most prevalent element in the earth's crust, however it is quite rare. Some minerals found in North America, South Africa, Russia, and Canada contain rubidium. Some potassium minerals (lepidolites, biotites, feldspar, carnallite) contain it, together with caesium. Pollucite, carnallite, leucite, and lepidolite are all minerals that contain rubidium. As a by-product of lithium extraction, it is commercially obtained from lepidolite. Rubidium is also found in potassium rocks and brines, which is a commercial supply. The majority of rubidium is now obtained as a byproduct of refining lithium. Rubidium is used in vacuum tubes as a getter, a material that combines with and removes trace gases from vacuum tubes.
For several years in the 1950s and 1960s, a by-product of the potassium production called Alkarb was a main source for rubidium. Alkarb contained 21% rubidium while the rest was potassium and a small fraction of caesium. Today the largest producers of caesium, for example the Tanco Mine in Manitoba, Canada, produce rubidium as by-product from pollucite. Today, a common method for separating rubidium from potassium and caesium is the fractional crystallisation of a rubidium and caesium alum (Cs, Rb)Al(SO4)2·12H2O, which yields pure rubidium alum after approximately 30 recrystallisations. The limited applications and the lack of a mineral rich in rubidium limit the production of rubidium compounds to 2 to 4 tonnes per year. Caesium, however, is not produced from the above reaction. Instead, the mining of pollucite ore is the main method of obtaining pure caesium, extracted from the ore mainly by three methods: acid digestion, alkaline decomposition, and direct reduction. Both metals are produced as by-products of lithium production: after 1958, when interest in lithium's thermonuclear properties increased sharply, the production of rubidium and caesium also increased correspondingly. Pure rubidium and caesium metals are produced by reducing their chlorides with calcium metal at 750 °C and low pressure. As a result of its extreme rarity in nature, most francium is synthesised in the nuclear reaction 197Au + 18O → 210Fr + 5 n, yielding francium-209, francium-210, and francium-211. The greatest quantity of francium ever assembled to date is about 300,000 neutral atoms, which were synthesised using the nuclear reaction given above. When the only natural isotope francium-223 is specifically required, it is produced as the alpha daughter of actinium-227, itself produced synthetically from the neutron irradiation of natural radium-226, one of the daughters of natural uranium-238. Applications Lithium, sodium, and potassium have many applications, while rubidium and caesium are very useful in academic contexts but do not have many applications yet. Lithium is often used in lithium-ion batteries, and lithium oxide can help process silica. Lithium stearate is a thickener and can be used to make lubricating greases; it is produced from lithium hydroxide, which is also used to absorb carbon dioxide in space capsules and submarines. Lithium chloride is used as a brazing alloy for aluminium parts. Metallic lithium is used in alloys with magnesium and aluminium to give very tough and light alloys. Sodium compounds have many applications, the most well-known being sodium chloride as table salt. Sodium salts of fatty acids are used as soap. Pure sodium metal also has many applications, including use in sodium-vapour lamps, which produce very efficient light compared to other types of lighting, and can help smooth the surface of other metals. Being a strong reducing agent, it is often used to reduce many other metals, such as titanium and zirconium, from their chlorides. Furthermore, it is very useful as a heat-exchange liquid in fast breeder nuclear reactors due to its low melting point, viscosity, and cross-section towards neutron absorption.
For several years in the 1950s and 1960s, a by-product of the potassium production called Alkarb was a main source for rubidium. Alkarb contained 21% rubidium while the rest was potassium and a small fraction of caesium. Today the largest producers of caesium, for example the Tanco Mine in Manitoba, Canada, produce rubidium as by-product from pollucite. Today, a common method for separating rubidium from potassium and caesium is the fractional crystallisation of a rubidium and caesium alum (Cs, Rb)Al(SO4)2·12H2O, which yields pure rubidium alum after approximately 30 recrystallisations. The limited applications and the lack of a mineral rich in rubidium limit the production of rubidium compounds to 2 to 4 tonnes per year. Caesium, however, is not produced from the above reaction. Instead, the mining of pollucite ore is the main method of obtaining pure caesium, extracted from the ore mainly by three methods: acid digestion, alkaline decomposition, and direct reduction. Both metals are produced as by-products of lithium production: after 1958, when interest in lithium's thermonuclear properties increased sharply, the production of rubidium and caesium also increased correspondingly. Pure rubidium and caesium metals are produced by reducing their chlorides with calcium metal at 750 °C and low pressure. As a result of its extreme rarity in nature, most francium is synthesised in the nuclear reaction 197Au + 18O → 210Fr + 5 n, yielding francium-209, francium-210, and francium-211. The greatest quantity of francium ever assembled to date is about 300,000 neutral atoms, which were synthesised using the nuclear reaction given above. When the only natural isotope francium-223 is specifically required, it is produced as the alpha daughter of actinium-227, itself produced synthetically from the neutron irradiation of natural radium-226, one of the daughters of natural uranium-238. Applications Lithium, sodium, and potassium have many applications, while rubidium and caesium are very useful in academic contexts but do not have many applications yet. Lithium is often used in lithium-ion batteries, and lithium oxide can help process silica. Lithium stearate is a thickener and can be used to make lubricating greases; it is produced from lithium hydroxide, which is also used to absorb carbon dioxide in space capsules and submarines. Lithium chloride is used as a brazing alloy for aluminium parts. Metallic lithium is used in alloys with magnesium and aluminium to give very tough and light alloys. Sodium compounds have many applications, the most well-known being sodium chloride as table salt. Sodium salts of fatty acids are used as soap. Pure sodium metal also has many applications, including use in sodium-vapour lamps, which produce very efficient light compared to other types of lighting, and can help smooth the surface of other metals. Being a strong reducing agent, it is often used to reduce many other metals, such as titanium and zirconium, from their chlorides. Furthermore, it is very useful as a heat-exchange liquid in fast breeder nuclear reactors due to its low melting point, viscosity, and cross-section towards neutron absorption.
For several years in the 1950s and 1960s, a by-product of the potassium production called Alkarb was a main source for rubidium. Alkarb contained 21% rubidium while the rest was potassium and a small fraction of caesium. Today the largest producers of caesium, for example the Tanco Mine in Manitoba, Canada, produce rubidium as by-product from pollucite. Today, a common method for separating rubidium from potassium and caesium is the fractional crystallisation of a rubidium and caesium alum (Cs, Rb)Al(SO4)2·12H2O, which yields pure rubidium alum after approximately 30 recrystallisations. The limited applications and the lack of a mineral rich in rubidium limit the production of rubidium compounds to 2 to 4 tonnes per year. Caesium, however, is not produced from the above reaction. Instead, the mining of pollucite ore is the main method of obtaining pure caesium, extracted from the ore mainly by three methods: acid digestion, alkaline decomposition, and direct reduction. Both metals are produced as by-products of lithium production: after 1958, when interest in lithium's thermonuclear properties increased sharply, the production of rubidium and caesium also increased correspondingly. Pure rubidium and caesium metals are produced by reducing their chlorides with calcium metal at 750 °C and low pressure. As a result of its extreme rarity in nature, most francium is synthesised in the nuclear reaction 197Au + 18O → 210Fr + 5 n, yielding francium-209, francium-210, and francium-211. The greatest quantity of francium ever assembled to date is about 300,000 neutral atoms, which were synthesised using the nuclear reaction given above. When the only natural isotope francium-223 is specifically required, it is produced as the alpha daughter of actinium-227, itself produced synthetically from the neutron irradiation of natural radium-226, one of the daughters of natural uranium-238. Applications Lithium, sodium, and potassium have many applications, while rubidium and caesium are very useful in academic contexts but do not have many applications yet. Lithium is often used in lithium-ion batteries, and lithium oxide can help process silica. Lithium stearate is a thickener and can be used to make lubricating greases; it is produced from lithium hydroxide, which is also used to absorb carbon dioxide in space capsules and submarines. Lithium chloride is used as a brazing alloy for aluminium parts. Metallic lithium is used in alloys with magnesium and aluminium to give very tough and light alloys. Sodium compounds have many applications, the most well-known being sodium chloride as table salt. Sodium salts of fatty acids are used as soap. Pure sodium metal also has many applications, including use in sodium-vapour lamps, which produce very efficient light compared to other types of lighting, and can help smooth the surface of other metals. Being a strong reducing agent, it is often used to reduce many other metals, such as titanium and zirconium, from their chlorides. Furthermore, it is very useful as a heat-exchange liquid in fast breeder nuclear reactors due to its low melting point, viscosity, and cross-section towards neutron absorption.
Potassium compounds are often used as fertilisers as potassium is an important element for plant nutrition. Potassium hydroxide is a very strong base, and is used to control the pH of various substances. Potassium nitrate and potassium permanganate are often used as powerful oxidising agents. Potassium superoxide is used in breathing masks, as it reacts with carbon dioxide to give potassium carbonate and oxygen gas. Pure potassium metal is not often used, but its alloys with sodium may substitute for pure sodium in fast breeder nuclear reactors. Rubidium and caesium are often used in atomic clocks. Caesium atomic clocks are extraordinarily accurate; if a clock had been made at the time of the dinosaurs, it would be off by less than four seconds (after 80 million years). For that reason, caesium atoms are used as the definition of the second. Rubidium ions are often used in purple fireworks, and caesium is often used in drilling fluids in the petroleum industry. Francium has no commercial applications, but because of francium's relatively simple atomic structure, among other things, it has been used in spectroscopy experiments, leading to more information regarding energy levels and the coupling constants between subatomic particles. Studies on the light emitted by laser-trapped francium-210 ions have provided accurate data on transitions between atomic energy levels, similar to those predicted by quantum theory. Biological role and precautions Metals Pure alkali metals are dangerously reactive with air and water and must be kept away from heat, fire, oxidising agents, acids, most organic compounds, halocarbons, plastics, and moisture. They also react with carbon dioxide and carbon tetrachloride, so that normal fire extinguishers are counterproductive when used on alkali metal fires. Some Class D dry powder extinguishers designed for metal fires are effective, depriving the fire of oxygen and cooling the alkali metal. Experiments are usually conducted using only small quantities of a few grams in a fume hood. Small quantities of lithium may be disposed of by reaction with cool water, but the heavier alkali metals should be dissolved in the less reactive isopropanol. The alkali metals must be stored under mineral oil or an inert atmosphere. The inert atmosphere used may be argon or nitrogen gas, except for lithium, which reacts with nitrogen. Rubidium and caesium must be kept away from air, even under oil, because even a small amount of air diffused into the oil may trigger formation of the dangerously explosive peroxide; for the same reason, potassium should not be stored under oil in an oxygen-containing atmosphere for longer than 6 months. Ions The bioinorganic chemistry of the alkali metal ions has been extensively reviewed. Solid state crystal structures have been determined for many complexes of alkali metal ions in small peptides, nucleic acid constituents, carbohydrates and ionophore complexes. Lithium naturally only occurs in traces in biological systems and has no known biological role, but does have effects on the body when ingested.
Potassium compounds are often used as fertilisers as potassium is an important element for plant nutrition. Potassium hydroxide is a very strong base, and is used to control the pH of various substances. Potassium nitrate and potassium permanganate are often used as powerful oxidising agents. Potassium superoxide is used in breathing masks, as it reacts with carbon dioxide to give potassium carbonate and oxygen gas. Pure potassium metal is not often used, but its alloys with sodium may substitute for pure sodium in fast breeder nuclear reactors. Rubidium and caesium are often used in atomic clocks. Caesium atomic clocks are extraordinarily accurate; if a clock had been made at the time of the dinosaurs, it would be off by less than four seconds (after 80 million years). For that reason, caesium atoms are used as the definition of the second. Rubidium ions are often used in purple fireworks, and caesium is often used in drilling fluids in the petroleum industry. Francium has no commercial applications, but because of francium's relatively simple atomic structure, among other things, it has been used in spectroscopy experiments, leading to more information regarding energy levels and the coupling constants between subatomic particles. Studies on the light emitted by laser-trapped francium-210 ions have provided accurate data on transitions between atomic energy levels, similar to those predicted by quantum theory. Biological role and precautions Metals Pure alkali metals are dangerously reactive with air and water and must be kept away from heat, fire, oxidising agents, acids, most organic compounds, halocarbons, plastics, and moisture. They also react with carbon dioxide and carbon tetrachloride, so that normal fire extinguishers are counterproductive when used on alkali metal fires. Some Class D dry powder extinguishers designed for metal fires are effective, depriving the fire of oxygen and cooling the alkali metal. Experiments are usually conducted using only small quantities of a few grams in a fume hood. Small quantities of lithium may be disposed of by reaction with cool water, but the heavier alkali metals should be dissolved in the less reactive isopropanol. The alkali metals must be stored under mineral oil or an inert atmosphere. The inert atmosphere used may be argon or nitrogen gas, except for lithium, which reacts with nitrogen. Rubidium and caesium must be kept away from air, even under oil, because even a small amount of air diffused into the oil may trigger formation of the dangerously explosive peroxide; for the same reason, potassium should not be stored under oil in an oxygen-containing atmosphere for longer than 6 months. Ions The bioinorganic chemistry of the alkali metal ions has been extensively reviewed. Solid state crystal structures have been determined for many complexes of alkali metal ions in small peptides, nucleic acid constituents, carbohydrates and ionophore complexes. Lithium naturally only occurs in traces in biological systems and has no known biological role, but does have effects on the body when ingested.
Potassium compounds are often used as fertilisers as potassium is an important element for plant nutrition. Potassium hydroxide is a very strong base, and is used to control the pH of various substances. Potassium nitrate and potassium permanganate are often used as powerful oxidising agents. Potassium superoxide is used in breathing masks, as it reacts with carbon dioxide to give potassium carbonate and oxygen gas. Pure potassium metal is not often used, but its alloys with sodium may substitute for pure sodium in fast breeder nuclear reactors. Rubidium and caesium are often used in atomic clocks. Caesium atomic clocks are extraordinarily accurate; if a clock had been made at the time of the dinosaurs, it would be off by less than four seconds (after 80 million years). For that reason, caesium atoms are used as the definition of the second. Rubidium ions are often used in purple fireworks, and caesium is often used in drilling fluids in the petroleum industry. Francium has no commercial applications, but because of francium's relatively simple atomic structure, among other things, it has been used in spectroscopy experiments, leading to more information regarding energy levels and the coupling constants between subatomic particles. Studies on the light emitted by laser-trapped francium-210 ions have provided accurate data on transitions between atomic energy levels, similar to those predicted by quantum theory. Biological role and precautions Metals Pure alkali metals are dangerously reactive with air and water and must be kept away from heat, fire, oxidising agents, acids, most organic compounds, halocarbons, plastics, and moisture. They also react with carbon dioxide and carbon tetrachloride, so that normal fire extinguishers are counterproductive when used on alkali metal fires. Some Class D dry powder extinguishers designed for metal fires are effective, depriving the fire of oxygen and cooling the alkali metal. Experiments are usually conducted using only small quantities of a few grams in a fume hood. Small quantities of lithium may be disposed of by reaction with cool water, but the heavier alkali metals should be dissolved in the less reactive isopropanol. The alkali metals must be stored under mineral oil or an inert atmosphere. The inert atmosphere used may be argon or nitrogen gas, except for lithium, which reacts with nitrogen. Rubidium and caesium must be kept away from air, even under oil, because even a small amount of air diffused into the oil may trigger formation of the dangerously explosive peroxide; for the same reason, potassium should not be stored under oil in an oxygen-containing atmosphere for longer than 6 months. Ions The bioinorganic chemistry of the alkali metal ions has been extensively reviewed. Solid state crystal structures have been determined for many complexes of alkali metal ions in small peptides, nucleic acid constituents, carbohydrates and ionophore complexes. Lithium naturally only occurs in traces in biological systems and has no known biological role, but does have effects on the body when ingested.
Lithium carbonate is used as a mood stabiliser in psychiatry to treat bipolar disorder (manic-depression) in daily doses of about 0.5 to 2 grams, although there are side-effects. Excessive ingestion of lithium causes drowsiness, slurred speech and vomiting, among other symptoms, and poisons the central nervous system, which is dangerous as the required dosage of lithium to treat bipolar disorder is only slightly lower than the toxic dosage. Its biochemistry, the way it is handled by the human body and studies using rats and goats suggest that it is an essential trace element, although the natural biological function of lithium in humans has yet to be identified. Sodium and potassium occur in all known biological systems, generally functioning as electrolytes inside and outside cells. Sodium is an essential nutrient that regulates blood volume, blood pressure, osmotic equilibrium and pH; the minimum physiological requirement for sodium is 500 milligrams per day. Sodium chloride (also known as common salt) is the principal source of sodium in the diet, and is used as seasoning and preservative, such as for pickling and jerky; most of it comes from processed foods. The Dietary Reference Intake for sodium is 1.5 grams per day, but most people in the United States consume more than 2.3 grams per day, the minimum amount that promotes hypertension; this in turn causes 7.6 million premature deaths worldwide. Potassium is the major cation (positive ion) inside animal cells, while sodium is the major cation outside animal cells. The concentration differences of these charged particles causes a difference in electric potential between the inside and outside of cells, known as the membrane potential. The balance between potassium and sodium is maintained by ion transporter proteins in the cell membrane. The cell membrane potential created by potassium and sodium ions allows the cell to generate an action potential—a "spike" of electrical discharge. The ability of cells to produce electrical discharge is critical for body functions such as neurotransmission, muscle contraction, and heart function. Disruption of this balance may thus be fatal: for example, ingestion of large amounts of potassium compounds can lead to hyperkalemia strongly influencing the cardiovascular system. Potassium chloride is used in the United States for lethal injection executions. Due to their similar atomic radii, rubidium and caesium in the body mimic potassium and are taken up similarly. Rubidium has no known biological role, but may help stimulate metabolism, and, similarly to caesium, replace potassium in the body causing potassium deficiency. Partial substitution is quite possible and rather non-toxic: a 70 kg person contains on average 0.36 g of rubidium, and an increase in this value by 50 to 100 times did not show negative effects in test persons. Rats can survive up to 50% substitution of potassium by rubidium. Rubidium (and to a much lesser extent caesium) can function as temporary cures for hypokalemia; while rubidium can adequately physiologically substitute potassium in some systems, caesium is never able to do so.
Lithium carbonate is used as a mood stabiliser in psychiatry to treat bipolar disorder (manic-depression) in daily doses of about 0.5 to 2 grams, although there are side-effects. Excessive ingestion of lithium causes drowsiness, slurred speech and vomiting, among other symptoms, and poisons the central nervous system, which is dangerous as the required dosage of lithium to treat bipolar disorder is only slightly lower than the toxic dosage. Its biochemistry, the way it is handled by the human body and studies using rats and goats suggest that it is an essential trace element, although the natural biological function of lithium in humans has yet to be identified. Sodium and potassium occur in all known biological systems, generally functioning as electrolytes inside and outside cells. Sodium is an essential nutrient that regulates blood volume, blood pressure, osmotic equilibrium and pH; the minimum physiological requirement for sodium is 500 milligrams per day. Sodium chloride (also known as common salt) is the principal source of sodium in the diet, and is used as seasoning and preservative, such as for pickling and jerky; most of it comes from processed foods. The Dietary Reference Intake for sodium is 1.5 grams per day, but most people in the United States consume more than 2.3 grams per day, the minimum amount that promotes hypertension; this in turn causes 7.6 million premature deaths worldwide. Potassium is the major cation (positive ion) inside animal cells, while sodium is the major cation outside animal cells. The concentration differences of these charged particles causes a difference in electric potential between the inside and outside of cells, known as the membrane potential. The balance between potassium and sodium is maintained by ion transporter proteins in the cell membrane. The cell membrane potential created by potassium and sodium ions allows the cell to generate an action potential—a "spike" of electrical discharge. The ability of cells to produce electrical discharge is critical for body functions such as neurotransmission, muscle contraction, and heart function. Disruption of this balance may thus be fatal: for example, ingestion of large amounts of potassium compounds can lead to hyperkalemia strongly influencing the cardiovascular system. Potassium chloride is used in the United States for lethal injection executions. Due to their similar atomic radii, rubidium and caesium in the body mimic potassium and are taken up similarly. Rubidium has no known biological role, but may help stimulate metabolism, and, similarly to caesium, replace potassium in the body causing potassium deficiency. Partial substitution is quite possible and rather non-toxic: a 70 kg person contains on average 0.36 g of rubidium, and an increase in this value by 50 to 100 times did not show negative effects in test persons. Rats can survive up to 50% substitution of potassium by rubidium. Rubidium (and to a much lesser extent caesium) can function as temporary cures for hypokalemia; while rubidium can adequately physiologically substitute potassium in some systems, caesium is never able to do so.
Lithium carbonate is used as a mood stabiliser in psychiatry to treat bipolar disorder (manic-depression) in daily doses of about 0.5 to 2 grams, although there are side-effects. Excessive ingestion of lithium causes drowsiness, slurred speech and vomiting, among other symptoms, and poisons the central nervous system, which is dangerous as the required dosage of lithium to treat bipolar disorder is only slightly lower than the toxic dosage. Its biochemistry, the way it is handled by the human body and studies using rats and goats suggest that it is an essential trace element, although the natural biological function of lithium in humans has yet to be identified. Sodium and potassium occur in all known biological systems, generally functioning as electrolytes inside and outside cells. Sodium is an essential nutrient that regulates blood volume, blood pressure, osmotic equilibrium and pH; the minimum physiological requirement for sodium is 500 milligrams per day. Sodium chloride (also known as common salt) is the principal source of sodium in the diet, and is used as seasoning and preservative, such as for pickling and jerky; most of it comes from processed foods. The Dietary Reference Intake for sodium is 1.5 grams per day, but most people in the United States consume more than 2.3 grams per day, the minimum amount that promotes hypertension; this in turn causes 7.6 million premature deaths worldwide. Potassium is the major cation (positive ion) inside animal cells, while sodium is the major cation outside animal cells. The concentration differences of these charged particles causes a difference in electric potential between the inside and outside of cells, known as the membrane potential. The balance between potassium and sodium is maintained by ion transporter proteins in the cell membrane. The cell membrane potential created by potassium and sodium ions allows the cell to generate an action potential—a "spike" of electrical discharge. The ability of cells to produce electrical discharge is critical for body functions such as neurotransmission, muscle contraction, and heart function. Disruption of this balance may thus be fatal: for example, ingestion of large amounts of potassium compounds can lead to hyperkalemia strongly influencing the cardiovascular system. Potassium chloride is used in the United States for lethal injection executions. Due to their similar atomic radii, rubidium and caesium in the body mimic potassium and are taken up similarly. Rubidium has no known biological role, but may help stimulate metabolism, and, similarly to caesium, replace potassium in the body causing potassium deficiency. Partial substitution is quite possible and rather non-toxic: a 70 kg person contains on average 0.36 g of rubidium, and an increase in this value by 50 to 100 times did not show negative effects in test persons. Rats can survive up to 50% substitution of potassium by rubidium. Rubidium (and to a much lesser extent caesium) can function as temporary cures for hypokalemia; while rubidium can adequately physiologically substitute potassium in some systems, caesium is never able to do so.
There is only very limited evidence in the form of deficiency symptoms for rubidium being possibly essential in goats; even if this is true, the trace amounts usually present in food are more than enough. Caesium compounds are rarely encountered by most people, but most caesium compounds are mildly toxic. Like rubidium, caesium tends to substitute potassium in the body, but is significantly larger and is therefore a poorer substitute. Excess caesium can lead to hypokalemia, arrythmia, and acute cardiac arrest, but such amounts would not ordinarily be encountered in natural sources. As such, caesium is not a major chemical environmental pollutant. The median lethal dose (LD50) value for caesium chloride in mice is 2.3 g per kilogram, which is comparable to the LD50 values of potassium chloride and sodium chloride. Caesium chloride has been promoted as an alternative cancer therapy, but has been linked to the deaths of over 50 patients, on whom it was used as part of a scientifically unvalidated cancer treatment. Radioisotopes of caesium require special precautions: the improper handling of caesium-137 gamma ray sources can lead to release of this radioisotope and radiation injuries. Perhaps the best-known case is the Goiânia accident of 1987, in which an improperly-disposed-of radiation therapy system from an abandoned clinic in the city of Goiânia, Brazil, was scavenged from a junkyard, and the glowing caesium salt sold to curious, uneducated buyers. This led to four deaths and serious injuries from radiation exposure. Together with caesium-134, iodine-131, and strontium-90, caesium-137 was among the isotopes distributed by the Chernobyl disaster which constitute the greatest risk to health. Radioisotopes of francium would presumably be dangerous as well due to their high decay energy and short half-life, but none have been produced in large enough amounts to pose any serious risk. Notes References A Groups (periodic table) Periodic table Articles containing video clips
There is only very limited evidence in the form of deficiency symptoms for rubidium being possibly essential in goats; even if this is true, the trace amounts usually present in food are more than enough. Caesium compounds are rarely encountered by most people, but most caesium compounds are mildly toxic. Like rubidium, caesium tends to substitute potassium in the body, but is significantly larger and is therefore a poorer substitute. Excess caesium can lead to hypokalemia, arrythmia, and acute cardiac arrest, but such amounts would not ordinarily be encountered in natural sources. As such, caesium is not a major chemical environmental pollutant. The median lethal dose (LD50) value for caesium chloride in mice is 2.3 g per kilogram, which is comparable to the LD50 values of potassium chloride and sodium chloride. Caesium chloride has been promoted as an alternative cancer therapy, but has been linked to the deaths of over 50 patients, on whom it was used as part of a scientifically unvalidated cancer treatment. Radioisotopes of caesium require special precautions: the improper handling of caesium-137 gamma ray sources can lead to release of this radioisotope and radiation injuries. Perhaps the best-known case is the Goiânia accident of 1987, in which an improperly-disposed-of radiation therapy system from an abandoned clinic in the city of Goiânia, Brazil, was scavenged from a junkyard, and the glowing caesium salt sold to curious, uneducated buyers. This led to four deaths and serious injuries from radiation exposure. Together with caesium-134, iodine-131, and strontium-90, caesium-137 was among the isotopes distributed by the Chernobyl disaster which constitute the greatest risk to health. Radioisotopes of francium would presumably be dangerous as well due to their high decay energy and short half-life, but none have been produced in large enough amounts to pose any serious risk. Notes References A Groups (periodic table) Periodic table Articles containing video clips
There is only very limited evidence in the form of deficiency symptoms for rubidium being possibly essential in goats; even if this is true, the trace amounts usually present in food are more than enough. Caesium compounds are rarely encountered by most people, but most caesium compounds are mildly toxic. Like rubidium, caesium tends to substitute potassium in the body, but is significantly larger and is therefore a poorer substitute. Excess caesium can lead to hypokalemia, arrythmia, and acute cardiac arrest, but such amounts would not ordinarily be encountered in natural sources. As such, caesium is not a major chemical environmental pollutant. The median lethal dose (LD50) value for caesium chloride in mice is 2.3 g per kilogram, which is comparable to the LD50 values of potassium chloride and sodium chloride. Caesium chloride has been promoted as an alternative cancer therapy, but has been linked to the deaths of over 50 patients, on whom it was used as part of a scientifically unvalidated cancer treatment. Radioisotopes of caesium require special precautions: the improper handling of caesium-137 gamma ray sources can lead to release of this radioisotope and radiation injuries. Perhaps the best-known case is the Goiânia accident of 1987, in which an improperly-disposed-of radiation therapy system from an abandoned clinic in the city of Goiânia, Brazil, was scavenged from a junkyard, and the glowing caesium salt sold to curious, uneducated buyers. This led to four deaths and serious injuries from radiation exposure. Together with caesium-134, iodine-131, and strontium-90, caesium-137 was among the isotopes distributed by the Chernobyl disaster which constitute the greatest risk to health. Radioisotopes of francium would presumably be dangerous as well due to their high decay energy and short half-life, but none have been produced in large enough amounts to pose any serious risk. Notes References A Groups (periodic table) Periodic table Articles containing video clips
Alphabet An alphabet is a standardized set of basic written symbols or graphemes (called letters) that represent the phonemes of certain spoken languages. Not all writing systems represent language in this way; in a syllabary, each character represents a syllable, for instance, and logographic systems use characters to represent words, morphemes, or other semantic units. The first fully phonemic script, the Proto-Canaanite script, later known as the Phoenician alphabet, is considered to be the first alphabet, and is the ancestor of most modern alphabets, including Arabic, Cyrillic, Greek, Hebrew, Latin, and possibly Brahmic. It was created by Semitic-speaking workers and slaves in the Sinai Peninsula (as the Proto-Sinaitic script), by selecting a small number of hieroglyphs commonly seen in their Egyptian surroundings to describe the sounds, as opposed to the semantic values, of their own Canaanite language. However, Peter T. Daniels distinguishes an abugida, or alphasyllabary, a set of graphemes that represent consonantal base letters which diacritics modify to represent vowels (as in Devanagari and other South Asian scripts), an abjad, in which letters predominantly or exclusively represent consonants (as in the original Phoenician, Hebrew or Arabic), and an "alphabet", a set of graphemes that represent both consonants and vowels. In this narrow sense of the word the first true alphabet was the Greek alphabet, which was developed on the basis of the earlier Phoenician alphabet. Of the dozens of alphabets in use today, the most popular is the Latin alphabet, which was derived from the Greek, and which is now used by many languages world-wide, often with the addition of extra letters or diacritical marks. While most alphabets have letters composed of lines (linear writing), there are also exceptions such as the alphabets used in Braille. The Khmer alphabet (for Khmer) is the longest, with 74 letters. Alphabets are usually associated with a standard ordering of letters. This makes them useful for purposes of collation, specifically by allowing words to be sorted in alphabetical order. It also means that their letters can be used as an alternative method of "numbering" ordered items, in such contexts as numbered lists and number placements. Etymology The English word alphabet came into Middle English from the Late Latin word alphabetum, which in turn originated in the Greek ἀλφάβητος (alphabētos). The Greek word was made from the first two letters, alpha (α) and beta (β). The names for the Greek letters came from the first two letters of the Phoenician alphabet; aleph, which also meant ox, and bet, which also meant house. Sometimes, like in the alphabet song in English, the term "ABCs" is used instead of the word "alphabet" (Now I know my ABCs...). "Knowing one's ABCs", in general, can be used as a metaphor for knowing the basics about anything. History Ancient Northeast African and Middle Eastern scripts The history of the alphabet started in ancient Egypt.
Alphabet An alphabet is a standardized set of basic written symbols or graphemes (called letters) that represent the phonemes of certain spoken languages. Not all writing systems represent language in this way; in a syllabary, each character represents a syllable, for instance, and logographic systems use characters to represent words, morphemes, or other semantic units. The first fully phonemic script, the Proto-Canaanite script, later known as the Phoenician alphabet, is considered to be the first alphabet, and is the ancestor of most modern alphabets, including Arabic, Cyrillic, Greek, Hebrew, Latin, and possibly Brahmic. It was created by Semitic-speaking workers and slaves in the Sinai Peninsula (as the Proto-Sinaitic script), by selecting a small number of hieroglyphs commonly seen in their Egyptian surroundings to describe the sounds, as opposed to the semantic values, of their own Canaanite language. However, Peter T. Daniels distinguishes an abugida, or alphasyllabary, a set of graphemes that represent consonantal base letters which diacritics modify to represent vowels (as in Devanagari and other South Asian scripts), an abjad, in which letters predominantly or exclusively represent consonants (as in the original Phoenician, Hebrew or Arabic), and an "alphabet", a set of graphemes that represent both consonants and vowels. In this narrow sense of the word the first true alphabet was the Greek alphabet, which was developed on the basis of the earlier Phoenician alphabet. Of the dozens of alphabets in use today, the most popular is the Latin alphabet, which was derived from the Greek, and which is now used by many languages world-wide, often with the addition of extra letters or diacritical marks. While most alphabets have letters composed of lines (linear writing), there are also exceptions such as the alphabets used in Braille. The Khmer alphabet (for Khmer) is the longest, with 74 letters. Alphabets are usually associated with a standard ordering of letters. This makes them useful for purposes of collation, specifically by allowing words to be sorted in alphabetical order. It also means that their letters can be used as an alternative method of "numbering" ordered items, in such contexts as numbered lists and number placements. Etymology The English word alphabet came into Middle English from the Late Latin word alphabetum, which in turn originated in the Greek ἀλφάβητος (alphabētos). The Greek word was made from the first two letters, alpha (α) and beta (β). The names for the Greek letters came from the first two letters of the Phoenician alphabet; aleph, which also meant ox, and bet, which also meant house. Sometimes, like in the alphabet song in English, the term "ABCs" is used instead of the word "alphabet" (Now I know my ABCs...). "Knowing one's ABCs", in general, can be used as a metaphor for knowing the basics about anything. History Ancient Northeast African and Middle Eastern scripts The history of the alphabet started in ancient Egypt.
Egyptian writing had a set of some 24 hieroglyphs that are called uniliterals, to represent syllables that begin with a single consonant of their language, plus a vowel (or no vowel) to be supplied by the native speaker. These glyphs were used as pronunciation guides for logograms, to write grammatical inflections, and, later, to transcribe loan words and foreign names. In the Middle Bronze Age, an apparently "alphabetic" system known as the Proto-Sinaitic script appears in Egyptian turquoise mines in the Sinai peninsula dated to circa the 15th century BC, apparently left by Canaanite workers. In 1999, John and Deborah Darnell discovered an even earlier version of this first alphabet at Wadi el-Hol dated to circa 1800 BC and showing evidence of having been adapted from specific forms of Egyptian hieroglyphs that could be dated to circa 2000 BC, strongly suggesting that the first alphabet had been developed about that time. Based on letter appearances and names, it is believed to be based on Egyptian hieroglyphs. This script had no characters representing vowels, although originally it probably was a syllabary, but unneeded symbols were discarded. An alphabetic cuneiform script with 30 signs including three that indicate the following vowel was invented in Ugarit before the 15th century BC. This script was not used after the destruction of Ugarit. The Proto-Sinaitic script eventually developed into the Phoenician alphabet, which is conventionally called "Proto-Canaanite" before c. 1050 BC. The oldest text in Phoenician script is an inscription on the sarcophagus of King Ahiram. This script is the parent script of all western alphabets. By the tenth century, two other forms can be distinguished, namely Canaanite and Aramaic. The Aramaic gave rise to the Hebrew script. The South Arabian alphabet, a sister script to the Phoenician alphabet, is the script from which the Ge'ez alphabet (an abugida) is descended. Vowelless alphabets are called abjads, currently exemplified in scripts including Arabic, Hebrew, and Syriac. The omission of vowels was not always a satisfactory solution and some "weak" consonants are sometimes used to indicate the vowel quality of a syllable (matres lectionis). These letters have a dual function since they are also used as pure consonants. The Proto-Sinaitic or Proto-Canaanite script and the Ugaritic script were the first scripts with a limited number of signs, in contrast to the other widely used writing systems at the time, Cuneiform, Egyptian hieroglyphs, and Linear B. The Phoenician script was probably the first phonemic script and it contained only about two dozen distinct letters, making it a script simple enough for common traders to learn. Another advantage of Phoenician was that it could be used to write down many different languages, since it recorded words phonemically. The script was spread by the Phoenicians across the Mediterranean. In Greece, the script was modified to add vowels, giving rise to the ancestor of all alphabets in the West. It was the first alphabet in which vowels have independent letter forms separate from those of consonants.
Egyptian writing had a set of some 24 hieroglyphs that are called uniliterals, to represent syllables that begin with a single consonant of their language, plus a vowel (or no vowel) to be supplied by the native speaker. These glyphs were used as pronunciation guides for logograms, to write grammatical inflections, and, later, to transcribe loan words and foreign names. In the Middle Bronze Age, an apparently "alphabetic" system known as the Proto-Sinaitic script appears in Egyptian turquoise mines in the Sinai peninsula dated to circa the 15th century BC, apparently left by Canaanite workers. In 1999, John and Deborah Darnell discovered an even earlier version of this first alphabet at Wadi el-Hol dated to circa 1800 BC and showing evidence of having been adapted from specific forms of Egyptian hieroglyphs that could be dated to circa 2000 BC, strongly suggesting that the first alphabet had been developed about that time. Based on letter appearances and names, it is believed to be based on Egyptian hieroglyphs. This script had no characters representing vowels, although originally it probably was a syllabary, but unneeded symbols were discarded. An alphabetic cuneiform script with 30 signs including three that indicate the following vowel was invented in Ugarit before the 15th century BC. This script was not used after the destruction of Ugarit. The Proto-Sinaitic script eventually developed into the Phoenician alphabet, which is conventionally called "Proto-Canaanite" before c. 1050 BC. The oldest text in Phoenician script is an inscription on the sarcophagus of King Ahiram. This script is the parent script of all western alphabets. By the tenth century, two other forms can be distinguished, namely Canaanite and Aramaic. The Aramaic gave rise to the Hebrew script. The South Arabian alphabet, a sister script to the Phoenician alphabet, is the script from which the Ge'ez alphabet (an abugida) is descended. Vowelless alphabets are called abjads, currently exemplified in scripts including Arabic, Hebrew, and Syriac. The omission of vowels was not always a satisfactory solution and some "weak" consonants are sometimes used to indicate the vowel quality of a syllable (matres lectionis). These letters have a dual function since they are also used as pure consonants. The Proto-Sinaitic or Proto-Canaanite script and the Ugaritic script were the first scripts with a limited number of signs, in contrast to the other widely used writing systems at the time, Cuneiform, Egyptian hieroglyphs, and Linear B. The Phoenician script was probably the first phonemic script and it contained only about two dozen distinct letters, making it a script simple enough for common traders to learn. Another advantage of Phoenician was that it could be used to write down many different languages, since it recorded words phonemically. The script was spread by the Phoenicians across the Mediterranean. In Greece, the script was modified to add vowels, giving rise to the ancestor of all alphabets in the West. It was the first alphabet in which vowels have independent letter forms separate from those of consonants.
Egyptian writing had a set of some 24 hieroglyphs that are called uniliterals, to represent syllables that begin with a single consonant of their language, plus a vowel (or no vowel) to be supplied by the native speaker. These glyphs were used as pronunciation guides for logograms, to write grammatical inflections, and, later, to transcribe loan words and foreign names. In the Middle Bronze Age, an apparently "alphabetic" system known as the Proto-Sinaitic script appears in Egyptian turquoise mines in the Sinai peninsula dated to circa the 15th century BC, apparently left by Canaanite workers. In 1999, John and Deborah Darnell discovered an even earlier version of this first alphabet at Wadi el-Hol dated to circa 1800 BC and showing evidence of having been adapted from specific forms of Egyptian hieroglyphs that could be dated to circa 2000 BC, strongly suggesting that the first alphabet had been developed about that time. Based on letter appearances and names, it is believed to be based on Egyptian hieroglyphs. This script had no characters representing vowels, although originally it probably was a syllabary, but unneeded symbols were discarded. An alphabetic cuneiform script with 30 signs including three that indicate the following vowel was invented in Ugarit before the 15th century BC. This script was not used after the destruction of Ugarit. The Proto-Sinaitic script eventually developed into the Phoenician alphabet, which is conventionally called "Proto-Canaanite" before c. 1050 BC. The oldest text in Phoenician script is an inscription on the sarcophagus of King Ahiram. This script is the parent script of all western alphabets. By the tenth century, two other forms can be distinguished, namely Canaanite and Aramaic. The Aramaic gave rise to the Hebrew script. The South Arabian alphabet, a sister script to the Phoenician alphabet, is the script from which the Ge'ez alphabet (an abugida) is descended. Vowelless alphabets are called abjads, currently exemplified in scripts including Arabic, Hebrew, and Syriac. The omission of vowels was not always a satisfactory solution and some "weak" consonants are sometimes used to indicate the vowel quality of a syllable (matres lectionis). These letters have a dual function since they are also used as pure consonants. The Proto-Sinaitic or Proto-Canaanite script and the Ugaritic script were the first scripts with a limited number of signs, in contrast to the other widely used writing systems at the time, Cuneiform, Egyptian hieroglyphs, and Linear B. The Phoenician script was probably the first phonemic script and it contained only about two dozen distinct letters, making it a script simple enough for common traders to learn. Another advantage of Phoenician was that it could be used to write down many different languages, since it recorded words phonemically. The script was spread by the Phoenicians across the Mediterranean. In Greece, the script was modified to add vowels, giving rise to the ancestor of all alphabets in the West. It was the first alphabet in which vowels have independent letter forms separate from those of consonants.
The Greeks chose letters representing sounds that did not exist in Greek to represent vowels. Vowels are significant in the Greek language, and the syllabical Linear B script that was used by the Mycenaean Greeks from the 16th century BC had 87 symbols, including 5 vowels. In its early years, there were many variants of the Greek alphabet, a situation that caused many different alphabets to evolve from it. European alphabets The Greek alphabet, in its Euboean form, was carried over by Greek colonists to the Italian peninsula, where it gave rise to a variety of alphabets used to write the Italic languages. One of these became the Latin alphabet, which was spread across Europe as the Romans expanded their empire. Even after the fall of the Roman state, the alphabet survived in intellectual and religious works. It eventually became used for the descendant languages of Latin (the Romance languages) and then for most of the other languages of western and central Europe. Some adaptations of the Latin alphabet are augmented with ligatures, such as æ in Danish and Icelandic and Ȣ in Algonquian; by borrowings from other alphabets, such as the thorn þ in Old English and Icelandic, which came from the Futhark runes; and by modifying existing letters, such as the eth ð of Old English and Icelandic, which is a modified d. Other alphabets only use a subset of the Latin alphabet, such as Hawaiian, and Italian, which uses the letters j, k, x, y and w only in foreign words. Another notable script is Elder Futhark, which is believed to have evolved out of one of the Old Italic alphabets. Elder Futhark gave rise to a variety of alphabets known collectively as the Runic alphabets. The Runic alphabets were used for Germanic languages from AD 100 to the late Middle Ages. Its usage is mostly restricted to engravings on stone and jewelry, although inscriptions have also been found on bone and wood. These alphabets have since been replaced with the Latin alphabet, except for decorative usage for which the runes remained in use until the 20th century. The Old Hungarian script is a contemporary writing system of the Hungarians. It was in use during the entire history of Hungary, albeit not as an official writing system. From the 19th century it once again became more and more popular. The Glagolitic alphabet was the initial script of the liturgical language Old Church Slavonic and became, together with the Greek uncial script, the basis of the Cyrillic script. Cyrillic is one of the most widely used modern alphabetic scripts, and is notable for its use in Slavic languages and also for other languages within the former Soviet Union. Cyrillic alphabets include the Serbian, Macedonian, Bulgarian, Russian, Belarusian and Ukrainian. The Glagolitic alphabet is believed to have been created by Saints Cyril and Methodius, while the Cyrillic alphabet was invented by Clement of Ohrid, who was their disciple.
The Greeks chose letters representing sounds that did not exist in Greek to represent vowels. Vowels are significant in the Greek language, and the syllabical Linear B script that was used by the Mycenaean Greeks from the 16th century BC had 87 symbols, including 5 vowels. In its early years, there were many variants of the Greek alphabet, a situation that caused many different alphabets to evolve from it. European alphabets The Greek alphabet, in its Euboean form, was carried over by Greek colonists to the Italian peninsula, where it gave rise to a variety of alphabets used to write the Italic languages. One of these became the Latin alphabet, which was spread across Europe as the Romans expanded their empire. Even after the fall of the Roman state, the alphabet survived in intellectual and religious works. It eventually became used for the descendant languages of Latin (the Romance languages) and then for most of the other languages of western and central Europe. Some adaptations of the Latin alphabet are augmented with ligatures, such as æ in Danish and Icelandic and Ȣ in Algonquian; by borrowings from other alphabets, such as the thorn þ in Old English and Icelandic, which came from the Futhark runes; and by modifying existing letters, such as the eth ð of Old English and Icelandic, which is a modified d. Other alphabets only use a subset of the Latin alphabet, such as Hawaiian, and Italian, which uses the letters j, k, x, y and w only in foreign words. Another notable script is Elder Futhark, which is believed to have evolved out of one of the Old Italic alphabets. Elder Futhark gave rise to a variety of alphabets known collectively as the Runic alphabets. The Runic alphabets were used for Germanic languages from AD 100 to the late Middle Ages. Its usage is mostly restricted to engravings on stone and jewelry, although inscriptions have also been found on bone and wood. These alphabets have since been replaced with the Latin alphabet, except for decorative usage for which the runes remained in use until the 20th century. The Old Hungarian script is a contemporary writing system of the Hungarians. It was in use during the entire history of Hungary, albeit not as an official writing system. From the 19th century it once again became more and more popular. The Glagolitic alphabet was the initial script of the liturgical language Old Church Slavonic and became, together with the Greek uncial script, the basis of the Cyrillic script. Cyrillic is one of the most widely used modern alphabetic scripts, and is notable for its use in Slavic languages and also for other languages within the former Soviet Union. Cyrillic alphabets include the Serbian, Macedonian, Bulgarian, Russian, Belarusian and Ukrainian. The Glagolitic alphabet is believed to have been created by Saints Cyril and Methodius, while the Cyrillic alphabet was invented by Clement of Ohrid, who was their disciple.
The Greeks chose letters representing sounds that did not exist in Greek to represent vowels. Vowels are significant in the Greek language, and the syllabical Linear B script that was used by the Mycenaean Greeks from the 16th century BC had 87 symbols, including 5 vowels. In its early years, there were many variants of the Greek alphabet, a situation that caused many different alphabets to evolve from it. European alphabets The Greek alphabet, in its Euboean form, was carried over by Greek colonists to the Italian peninsula, where it gave rise to a variety of alphabets used to write the Italic languages. One of these became the Latin alphabet, which was spread across Europe as the Romans expanded their empire. Even after the fall of the Roman state, the alphabet survived in intellectual and religious works. It eventually became used for the descendant languages of Latin (the Romance languages) and then for most of the other languages of western and central Europe. Some adaptations of the Latin alphabet are augmented with ligatures, such as æ in Danish and Icelandic and Ȣ in Algonquian; by borrowings from other alphabets, such as the thorn þ in Old English and Icelandic, which came from the Futhark runes; and by modifying existing letters, such as the eth ð of Old English and Icelandic, which is a modified d. Other alphabets only use a subset of the Latin alphabet, such as Hawaiian, and Italian, which uses the letters j, k, x, y and w only in foreign words. Another notable script is Elder Futhark, which is believed to have evolved out of one of the Old Italic alphabets. Elder Futhark gave rise to a variety of alphabets known collectively as the Runic alphabets. The Runic alphabets were used for Germanic languages from AD 100 to the late Middle Ages. Its usage is mostly restricted to engravings on stone and jewelry, although inscriptions have also been found on bone and wood. These alphabets have since been replaced with the Latin alphabet, except for decorative usage for which the runes remained in use until the 20th century. The Old Hungarian script is a contemporary writing system of the Hungarians. It was in use during the entire history of Hungary, albeit not as an official writing system. From the 19th century it once again became more and more popular. The Glagolitic alphabet was the initial script of the liturgical language Old Church Slavonic and became, together with the Greek uncial script, the basis of the Cyrillic script. Cyrillic is one of the most widely used modern alphabetic scripts, and is notable for its use in Slavic languages and also for other languages within the former Soviet Union. Cyrillic alphabets include the Serbian, Macedonian, Bulgarian, Russian, Belarusian and Ukrainian. The Glagolitic alphabet is believed to have been created by Saints Cyril and Methodius, while the Cyrillic alphabet was invented by Clement of Ohrid, who was their disciple.
They feature many letters that appear to have been borrowed from or influenced by Greek and Hebrew. The longest European alphabet is the Latin-derived Slovak alphabet, which has 46 letters. Asian alphabets Beyond the logographic Chinese writing, many phonetic scripts are in existence in Asia. The Arabic alphabet, Hebrew alphabet, Syriac alphabet, and other abjads of the Middle East are developments of the Aramaic alphabet. Most alphabetic scripts of India and Eastern Asia are descended from the Brahmi script, which is often believed to be a descendant of Aramaic. In Korea, the Hangul alphabet was created by Sejong the Great. Hangul is a unique alphabet: it is a featural alphabet, where many of the letters are designed from a sound's place of articulation (P to look like the widened mouth, L to look like the tongue pulled in, etc. ); its design was planned by the government of the day; and it places individual letters in syllable clusters with equal dimensions, in the same way as Chinese characters, to allow for mixed-script writing (one syllable always takes up one type-space no matter how many letters get stacked into building that one sound-block). Zhuyin (sometimes called Bopomofo) is a semi-syllabary used to phonetically transcribe Mandarin Chinese in the Republic of China. After the later establishment of the People's Republic of China and its adoption of Hanyu Pinyin, the use of Zhuyin today is limited, but it is still widely used in Taiwan where the Republic of China still governs. Zhuyin developed out of a form of Chinese shorthand based on Chinese characters in the early 1900s and has elements of both an alphabet and a syllabary. Like an alphabet the phonemes of syllable initials are represented by individual symbols, but like a syllabary the phonemes of the syllable finals are not; rather, each possible final (excluding the medial glide) is represented by its own symbol. For example, luan is represented as ㄌㄨㄢ (l-u-an), where the last symbol ㄢ represents the entire final -an. While Zhuyin is not used as a mainstream writing system, it is still often used in ways similar to a romanization system—that is, for aiding in pronunciation and as an input method for Chinese characters on computers and cellphones. European alphabets, especially Latin and Cyrillic, have been adapted for many languages of Asia. Arabic is also widely used, sometimes as an abjad (as with Urdu and Persian) and sometimes as a complete alphabet (as with Kurdish and Uyghur). Types The term "alphabet" is used by linguists and paleographers in both a wide and a narrow sense. In the wider sense, an alphabet is a script that is segmental at the phoneme level—that is, it has separate glyphs for individual sounds and not for larger units such as syllables or words. In the narrower sense, some scholars distinguish "true" alphabets from two other types of segmental script, abjads and abugidas.
They feature many letters that appear to have been borrowed from or influenced by Greek and Hebrew. The longest European alphabet is the Latin-derived Slovak alphabet, which has 46 letters. Asian alphabets Beyond the logographic Chinese writing, many phonetic scripts are in existence in Asia. The Arabic alphabet, Hebrew alphabet, Syriac alphabet, and other abjads of the Middle East are developments of the Aramaic alphabet. Most alphabetic scripts of India and Eastern Asia are descended from the Brahmi script, which is often believed to be a descendant of Aramaic. In Korea, the Hangul alphabet was created by Sejong the Great. Hangul is a unique alphabet: it is a featural alphabet, where many of the letters are designed from a sound's place of articulation (P to look like the widened mouth, L to look like the tongue pulled in, etc. ); its design was planned by the government of the day; and it places individual letters in syllable clusters with equal dimensions, in the same way as Chinese characters, to allow for mixed-script writing (one syllable always takes up one type-space no matter how many letters get stacked into building that one sound-block). Zhuyin (sometimes called Bopomofo) is a semi-syllabary used to phonetically transcribe Mandarin Chinese in the Republic of China. After the later establishment of the People's Republic of China and its adoption of Hanyu Pinyin, the use of Zhuyin today is limited, but it is still widely used in Taiwan where the Republic of China still governs. Zhuyin developed out of a form of Chinese shorthand based on Chinese characters in the early 1900s and has elements of both an alphabet and a syllabary. Like an alphabet the phonemes of syllable initials are represented by individual symbols, but like a syllabary the phonemes of the syllable finals are not; rather, each possible final (excluding the medial glide) is represented by its own symbol. For example, luan is represented as ㄌㄨㄢ (l-u-an), where the last symbol ㄢ represents the entire final -an. While Zhuyin is not used as a mainstream writing system, it is still often used in ways similar to a romanization system—that is, for aiding in pronunciation and as an input method for Chinese characters on computers and cellphones. European alphabets, especially Latin and Cyrillic, have been adapted for many languages of Asia. Arabic is also widely used, sometimes as an abjad (as with Urdu and Persian) and sometimes as a complete alphabet (as with Kurdish and Uyghur). Types The term "alphabet" is used by linguists and paleographers in both a wide and a narrow sense. In the wider sense, an alphabet is a script that is segmental at the phoneme level—that is, it has separate glyphs for individual sounds and not for larger units such as syllables or words. In the narrower sense, some scholars distinguish "true" alphabets from two other types of segmental script, abjads and abugidas.
They feature many letters that appear to have been borrowed from or influenced by Greek and Hebrew. The longest European alphabet is the Latin-derived Slovak alphabet, which has 46 letters. Asian alphabets Beyond the logographic Chinese writing, many phonetic scripts are in existence in Asia. The Arabic alphabet, Hebrew alphabet, Syriac alphabet, and other abjads of the Middle East are developments of the Aramaic alphabet. Most alphabetic scripts of India and Eastern Asia are descended from the Brahmi script, which is often believed to be a descendant of Aramaic. In Korea, the Hangul alphabet was created by Sejong the Great. Hangul is a unique alphabet: it is a featural alphabet, where many of the letters are designed from a sound's place of articulation (P to look like the widened mouth, L to look like the tongue pulled in, etc. ); its design was planned by the government of the day; and it places individual letters in syllable clusters with equal dimensions, in the same way as Chinese characters, to allow for mixed-script writing (one syllable always takes up one type-space no matter how many letters get stacked into building that one sound-block). Zhuyin (sometimes called Bopomofo) is a semi-syllabary used to phonetically transcribe Mandarin Chinese in the Republic of China. After the later establishment of the People's Republic of China and its adoption of Hanyu Pinyin, the use of Zhuyin today is limited, but it is still widely used in Taiwan where the Republic of China still governs. Zhuyin developed out of a form of Chinese shorthand based on Chinese characters in the early 1900s and has elements of both an alphabet and a syllabary. Like an alphabet the phonemes of syllable initials are represented by individual symbols, but like a syllabary the phonemes of the syllable finals are not; rather, each possible final (excluding the medial glide) is represented by its own symbol. For example, luan is represented as ㄌㄨㄢ (l-u-an), where the last symbol ㄢ represents the entire final -an. While Zhuyin is not used as a mainstream writing system, it is still often used in ways similar to a romanization system—that is, for aiding in pronunciation and as an input method for Chinese characters on computers and cellphones. European alphabets, especially Latin and Cyrillic, have been adapted for many languages of Asia. Arabic is also widely used, sometimes as an abjad (as with Urdu and Persian) and sometimes as a complete alphabet (as with Kurdish and Uyghur). Types The term "alphabet" is used by linguists and paleographers in both a wide and a narrow sense. In the wider sense, an alphabet is a script that is segmental at the phoneme level—that is, it has separate glyphs for individual sounds and not for larger units such as syllables or words. In the narrower sense, some scholars distinguish "true" alphabets from two other types of segmental script, abjads and abugidas.
These three differ from each other in the way they treat vowels: abjads have letters for consonants and leave most vowels unexpressed; abugidas are also consonant-based, but indicate vowels with diacritics to or a systematic graphic modification of the consonants. In alphabets in the narrow sense, on the other hand, consonants and vowels are written as independent letters. The earliest known alphabet in the wider sense is the Wadi el-Hol script, believed to be an abjad, which through its successor Phoenician is the ancestor of modern alphabets, including Arabic, Greek, Latin (via the Old Italic alphabet), Cyrillic (via the Greek alphabet) and Hebrew (via Aramaic). Examples of present-day abjads are the Arabic and Hebrew scripts; true alphabets include Latin, Cyrillic, and Korean hangul; and abugidas are used to write Tigrinya, Amharic, Hindi, and Thai. The Canadian Aboriginal syllabics are also an abugida rather than a syllabary as their name would imply, since each glyph stands for a consonant that is modified by rotation to represent the following vowel. (In a true syllabary, each consonant-vowel combination would be represented by a separate glyph.) All three types may be augmented with syllabic glyphs. Ugaritic, for example, is basically an abjad, but has syllabic letters for . (These are the only time vowels are indicated.) Cyrillic is basically a true alphabet, but has syllabic letters for (я, е, ю); Coptic has a letter for . Devanagari is typically an abugida augmented with dedicated letters for initial vowels, though some traditions use अ as a zero consonant as the graphic base for such vowels. The boundaries between the three types of segmental scripts are not always clear-cut. For example, Sorani Kurdish is written in the Arabic script, which is normally an abjad. However, in Kurdish, writing the vowels is mandatory, and full letters are used, so the script is a true alphabet. Other languages may use a Semitic abjad with mandatory vowel diacritics, effectively making them abugidas. On the other hand, the Phagspa script of the Mongol Empire was based closely on the Tibetan abugida, but all vowel marks were written after the preceding consonant rather than as diacritic marks. Although short a was not written, as in the Indic abugidas, one could argue that the linear arrangement made this a true alphabet. Conversely, the vowel marks of the Tigrinya abugida and the Amharic abugida (ironically, the original source of the term "abugida") have been so completely assimilated into their consonants that the modifications are no longer systematic and have to be learned as a syllabary rather than as a segmental script. Even more extreme, the Pahlavi abjad eventually became logographic. (See below.) Thus the primary classification of alphabets reflects how they treat vowels. For tonal languages, further classification can be based on their treatment of tone, though names do not yet exist to distinguish the various types.
These three differ from each other in the way they treat vowels: abjads have letters for consonants and leave most vowels unexpressed; abugidas are also consonant-based, but indicate vowels with diacritics to or a systematic graphic modification of the consonants. In alphabets in the narrow sense, on the other hand, consonants and vowels are written as independent letters. The earliest known alphabet in the wider sense is the Wadi el-Hol script, believed to be an abjad, which through its successor Phoenician is the ancestor of modern alphabets, including Arabic, Greek, Latin (via the Old Italic alphabet), Cyrillic (via the Greek alphabet) and Hebrew (via Aramaic). Examples of present-day abjads are the Arabic and Hebrew scripts; true alphabets include Latin, Cyrillic, and Korean hangul; and abugidas are used to write Tigrinya, Amharic, Hindi, and Thai. The Canadian Aboriginal syllabics are also an abugida rather than a syllabary as their name would imply, since each glyph stands for a consonant that is modified by rotation to represent the following vowel. (In a true syllabary, each consonant-vowel combination would be represented by a separate glyph.) All three types may be augmented with syllabic glyphs. Ugaritic, for example, is basically an abjad, but has syllabic letters for . (These are the only time vowels are indicated.) Cyrillic is basically a true alphabet, but has syllabic letters for (я, е, ю); Coptic has a letter for . Devanagari is typically an abugida augmented with dedicated letters for initial vowels, though some traditions use अ as a zero consonant as the graphic base for such vowels. The boundaries between the three types of segmental scripts are not always clear-cut. For example, Sorani Kurdish is written in the Arabic script, which is normally an abjad. However, in Kurdish, writing the vowels is mandatory, and full letters are used, so the script is a true alphabet. Other languages may use a Semitic abjad with mandatory vowel diacritics, effectively making them abugidas. On the other hand, the Phagspa script of the Mongol Empire was based closely on the Tibetan abugida, but all vowel marks were written after the preceding consonant rather than as diacritic marks. Although short a was not written, as in the Indic abugidas, one could argue that the linear arrangement made this a true alphabet. Conversely, the vowel marks of the Tigrinya abugida and the Amharic abugida (ironically, the original source of the term "abugida") have been so completely assimilated into their consonants that the modifications are no longer systematic and have to be learned as a syllabary rather than as a segmental script. Even more extreme, the Pahlavi abjad eventually became logographic. (See below.) Thus the primary classification of alphabets reflects how they treat vowels. For tonal languages, further classification can be based on their treatment of tone, though names do not yet exist to distinguish the various types.
These three differ from each other in the way they treat vowels: abjads have letters for consonants and leave most vowels unexpressed; abugidas are also consonant-based, but indicate vowels with diacritics to or a systematic graphic modification of the consonants. In alphabets in the narrow sense, on the other hand, consonants and vowels are written as independent letters. The earliest known alphabet in the wider sense is the Wadi el-Hol script, believed to be an abjad, which through its successor Phoenician is the ancestor of modern alphabets, including Arabic, Greek, Latin (via the Old Italic alphabet), Cyrillic (via the Greek alphabet) and Hebrew (via Aramaic). Examples of present-day abjads are the Arabic and Hebrew scripts; true alphabets include Latin, Cyrillic, and Korean hangul; and abugidas are used to write Tigrinya, Amharic, Hindi, and Thai. The Canadian Aboriginal syllabics are also an abugida rather than a syllabary as their name would imply, since each glyph stands for a consonant that is modified by rotation to represent the following vowel. (In a true syllabary, each consonant-vowel combination would be represented by a separate glyph.) All three types may be augmented with syllabic glyphs. Ugaritic, for example, is basically an abjad, but has syllabic letters for . (These are the only time vowels are indicated.) Cyrillic is basically a true alphabet, but has syllabic letters for (я, е, ю); Coptic has a letter for . Devanagari is typically an abugida augmented with dedicated letters for initial vowels, though some traditions use अ as a zero consonant as the graphic base for such vowels. The boundaries between the three types of segmental scripts are not always clear-cut. For example, Sorani Kurdish is written in the Arabic script, which is normally an abjad. However, in Kurdish, writing the vowels is mandatory, and full letters are used, so the script is a true alphabet. Other languages may use a Semitic abjad with mandatory vowel diacritics, effectively making them abugidas. On the other hand, the Phagspa script of the Mongol Empire was based closely on the Tibetan abugida, but all vowel marks were written after the preceding consonant rather than as diacritic marks. Although short a was not written, as in the Indic abugidas, one could argue that the linear arrangement made this a true alphabet. Conversely, the vowel marks of the Tigrinya abugida and the Amharic abugida (ironically, the original source of the term "abugida") have been so completely assimilated into their consonants that the modifications are no longer systematic and have to be learned as a syllabary rather than as a segmental script. Even more extreme, the Pahlavi abjad eventually became logographic. (See below.) Thus the primary classification of alphabets reflects how they treat vowels. For tonal languages, further classification can be based on their treatment of tone, though names do not yet exist to distinguish the various types.
Some alphabets disregard tone entirely, especially when it does not carry a heavy functional load, as in Somali and many other languages of Africa and the Americas. Such scripts are to tone what abjads are to vowels. Most commonly, tones are indicated with diacritics, the way vowels are treated in abugidas. This is the case for Vietnamese (a true alphabet) and Thai (an abugida). In Thai, tone is determined primarily by the choice of consonant, with diacritics for disambiguation. In the Pollard script, an abugida, vowels are indicated by diacritics, but the placement of the diacritic relative to the consonant is modified to indicate the tone. More rarely, a script may have separate letters for tones, as is the case for Hmong and Zhuang. For most of these scripts, regardless of whether letters or diacritics are used, the most common tone is not marked, just as the most common vowel is not marked in Indic abugidas; in Zhuyin not only is one of the tones unmarked, but there is a diacritic to indicate lack of tone, like the virama of Indic. The number of letters in an alphabet can be quite small. The Book Pahlavi script, an abjad, had only twelve letters at one point, and may have had even fewer later on. Today the Rotokas alphabet has only twelve letters. (The Hawaiian alphabet is sometimes claimed to be as small, but it actually consists of 18 letters, including the ʻokina and five long vowels. However, Hawaiian Braille has only 13 letters.) While Rotokas has a small alphabet because it has few phonemes to represent (just eleven), Book Pahlavi was small because many letters had been conflated—that is, the graphic distinctions had been lost over time, and diacritics were not developed to compensate for this as they were in Arabic, another script that lost many of its distinct letter shapes. For example, a comma-shaped letter represented g, d, y, k, or j. However, such apparent simplifications can perversely make a script more complicated. In later Pahlavi papyri, up to half of the remaining graphic distinctions of these twelve letters were lost, and the script could no longer be read as a sequence of letters at all, but instead each word had to be learned as a whole—that is, they had become logograms as in Egyptian Demotic. The largest segmental script is probably an abugida, Devanagari. When written in Devanagari, Vedic Sanskrit has an alphabet of 53 letters, including the visarga mark for final aspiration and special letters for kš and jñ, though one of the letters is theoretical and not actually used. The Hindi alphabet must represent both Sanskrit and modern vocabulary, and so has been expanded to 58 with the khutma letters (letters with a dot added) to represent sounds from Persian and English. Thai has a total of 59 symbols, consisting of 44 consonants, 13 vowels and 2 syllabics, not including 4 diacritics for tone marks and one for vowel length.
Some alphabets disregard tone entirely, especially when it does not carry a heavy functional load, as in Somali and many other languages of Africa and the Americas. Such scripts are to tone what abjads are to vowels. Most commonly, tones are indicated with diacritics, the way vowels are treated in abugidas. This is the case for Vietnamese (a true alphabet) and Thai (an abugida). In Thai, tone is determined primarily by the choice of consonant, with diacritics for disambiguation. In the Pollard script, an abugida, vowels are indicated by diacritics, but the placement of the diacritic relative to the consonant is modified to indicate the tone. More rarely, a script may have separate letters for tones, as is the case for Hmong and Zhuang. For most of these scripts, regardless of whether letters or diacritics are used, the most common tone is not marked, just as the most common vowel is not marked in Indic abugidas; in Zhuyin not only is one of the tones unmarked, but there is a diacritic to indicate lack of tone, like the virama of Indic. The number of letters in an alphabet can be quite small. The Book Pahlavi script, an abjad, had only twelve letters at one point, and may have had even fewer later on. Today the Rotokas alphabet has only twelve letters. (The Hawaiian alphabet is sometimes claimed to be as small, but it actually consists of 18 letters, including the ʻokina and five long vowels. However, Hawaiian Braille has only 13 letters.) While Rotokas has a small alphabet because it has few phonemes to represent (just eleven), Book Pahlavi was small because many letters had been conflated—that is, the graphic distinctions had been lost over time, and diacritics were not developed to compensate for this as they were in Arabic, another script that lost many of its distinct letter shapes. For example, a comma-shaped letter represented g, d, y, k, or j. However, such apparent simplifications can perversely make a script more complicated. In later Pahlavi papyri, up to half of the remaining graphic distinctions of these twelve letters were lost, and the script could no longer be read as a sequence of letters at all, but instead each word had to be learned as a whole—that is, they had become logograms as in Egyptian Demotic. The largest segmental script is probably an abugida, Devanagari. When written in Devanagari, Vedic Sanskrit has an alphabet of 53 letters, including the visarga mark for final aspiration and special letters for kš and jñ, though one of the letters is theoretical and not actually used. The Hindi alphabet must represent both Sanskrit and modern vocabulary, and so has been expanded to 58 with the khutma letters (letters with a dot added) to represent sounds from Persian and English. Thai has a total of 59 symbols, consisting of 44 consonants, 13 vowels and 2 syllabics, not including 4 diacritics for tone marks and one for vowel length.
Some alphabets disregard tone entirely, especially when it does not carry a heavy functional load, as in Somali and many other languages of Africa and the Americas. Such scripts are to tone what abjads are to vowels. Most commonly, tones are indicated with diacritics, the way vowels are treated in abugidas. This is the case for Vietnamese (a true alphabet) and Thai (an abugida). In Thai, tone is determined primarily by the choice of consonant, with diacritics for disambiguation. In the Pollard script, an abugida, vowels are indicated by diacritics, but the placement of the diacritic relative to the consonant is modified to indicate the tone. More rarely, a script may have separate letters for tones, as is the case for Hmong and Zhuang. For most of these scripts, regardless of whether letters or diacritics are used, the most common tone is not marked, just as the most common vowel is not marked in Indic abugidas; in Zhuyin not only is one of the tones unmarked, but there is a diacritic to indicate lack of tone, like the virama of Indic. The number of letters in an alphabet can be quite small. The Book Pahlavi script, an abjad, had only twelve letters at one point, and may have had even fewer later on. Today the Rotokas alphabet has only twelve letters. (The Hawaiian alphabet is sometimes claimed to be as small, but it actually consists of 18 letters, including the ʻokina and five long vowels. However, Hawaiian Braille has only 13 letters.) While Rotokas has a small alphabet because it has few phonemes to represent (just eleven), Book Pahlavi was small because many letters had been conflated—that is, the graphic distinctions had been lost over time, and diacritics were not developed to compensate for this as they were in Arabic, another script that lost many of its distinct letter shapes. For example, a comma-shaped letter represented g, d, y, k, or j. However, such apparent simplifications can perversely make a script more complicated. In later Pahlavi papyri, up to half of the remaining graphic distinctions of these twelve letters were lost, and the script could no longer be read as a sequence of letters at all, but instead each word had to be learned as a whole—that is, they had become logograms as in Egyptian Demotic. The largest segmental script is probably an abugida, Devanagari. When written in Devanagari, Vedic Sanskrit has an alphabet of 53 letters, including the visarga mark for final aspiration and special letters for kš and jñ, though one of the letters is theoretical and not actually used. The Hindi alphabet must represent both Sanskrit and modern vocabulary, and so has been expanded to 58 with the khutma letters (letters with a dot added) to represent sounds from Persian and English. Thai has a total of 59 symbols, consisting of 44 consonants, 13 vowels and 2 syllabics, not including 4 diacritics for tone marks and one for vowel length.
The largest known abjad is Sindhi, with 51 letters. The largest alphabets in the narrow sense include Kabardian and Abkhaz (for Cyrillic), with 58 and 56 letters, respectively, and Slovak (for the Latin script), with 46. However, these scripts either count di- and tri-graphs as separate letters, as Spanish did with ch and ll until recently, or uses diacritics like Slovak č. The Georgian alphabet ( ) is an alphabetic writing system. With 33 letters, it is the largest true alphabet where each letter is graphically independent. The original Georgian alphabet had 38 letters but 5 letters were removed in the 19th century by Ilia Chavchavadze. The Georgian alphabet is much closer to Greek than the other Caucasian alphabets. The letter order parallels the Greek, with the consonants without a Greek equivalent organized at the end of the alphabet. The origins of the alphabet are still unknown. Some Armenian and Western scholars believe it was created by Mesrop Mashtots (Armenian: Մեսրոպ Մաշտոց Mesrop Maštoc') also known as Mesrob the Vartabed, who was an early medieval Armenian linguist, theologian, statesman and hymnologist, best known for inventing the Armenian alphabet c. 405 AD; other Georgian and Western scholars are against this theory. Most scholars link the creation of the Georgian script to the process of Christianization of Iberia, a core Georgian kingdom of Kartli. The alphabet was therefore most probably created between the conversion of Iberia under King Mirian III (326 or 337) and the Bir el Qutt inscriptions of 430, contemporaneously with the Armenian alphabet. Syllabaries typically contain 50 to 400 glyphs, and the glyphs of logographic systems typically number from the many hundreds into the thousands. Thus a simple count of the number of distinct symbols is an important clue to the nature of an unknown script. The Armenian alphabet ( or ) is a graphically unique alphabetical writing system that has been used to write the Armenian language. It was created in year 405 A.D. originally contained 36 letters. Two more letters, օ (o) and ֆ (f), were added in the Middle Ages. During the 1920s orthography reform, a new letter և (capital ԵՎ) was added, which was a ligature before ե+ւ, while the letter Ւ ւ was discarded and reintroduced as part of a new letter ՈՒ ու (which was a digraph before). The Armenian script's directionality is horizontal left-to-right, like the Latin and Greek alphabets. It also uses bicameral script like those. The Armenian word for "alphabet" is (), named after the first two letters of the Armenian alphabet Ա այբ ayb and Բ բեն ben. Alphabetical order Alphabets often come to be associated with a standard ordering of their letters, which can then be used for purposes of collation—namely for the listing of words and other items in what is called alphabetical order.
The largest known abjad is Sindhi, with 51 letters. The largest alphabets in the narrow sense include Kabardian and Abkhaz (for Cyrillic), with 58 and 56 letters, respectively, and Slovak (for the Latin script), with 46. However, these scripts either count di- and tri-graphs as separate letters, as Spanish did with ch and ll until recently, or uses diacritics like Slovak č. The Georgian alphabet ( ) is an alphabetic writing system. With 33 letters, it is the largest true alphabet where each letter is graphically independent. The original Georgian alphabet had 38 letters but 5 letters were removed in the 19th century by Ilia Chavchavadze. The Georgian alphabet is much closer to Greek than the other Caucasian alphabets. The letter order parallels the Greek, with the consonants without a Greek equivalent organized at the end of the alphabet. The origins of the alphabet are still unknown. Some Armenian and Western scholars believe it was created by Mesrop Mashtots (Armenian: Մեսրոպ Մաշտոց Mesrop Maštoc') also known as Mesrob the Vartabed, who was an early medieval Armenian linguist, theologian, statesman and hymnologist, best known for inventing the Armenian alphabet c. 405 AD; other Georgian and Western scholars are against this theory. Most scholars link the creation of the Georgian script to the process of Christianization of Iberia, a core Georgian kingdom of Kartli. The alphabet was therefore most probably created between the conversion of Iberia under King Mirian III (326 or 337) and the Bir el Qutt inscriptions of 430, contemporaneously with the Armenian alphabet. Syllabaries typically contain 50 to 400 glyphs, and the glyphs of logographic systems typically number from the many hundreds into the thousands. Thus a simple count of the number of distinct symbols is an important clue to the nature of an unknown script. The Armenian alphabet ( or ) is a graphically unique alphabetical writing system that has been used to write the Armenian language. It was created in year 405 A.D. originally contained 36 letters. Two more letters, օ (o) and ֆ (f), were added in the Middle Ages. During the 1920s orthography reform, a new letter և (capital ԵՎ) was added, which was a ligature before ե+ւ, while the letter Ւ ւ was discarded and reintroduced as part of a new letter ՈՒ ու (which was a digraph before). The Armenian script's directionality is horizontal left-to-right, like the Latin and Greek alphabets. It also uses bicameral script like those. The Armenian word for "alphabet" is (), named after the first two letters of the Armenian alphabet Ա այբ ayb and Բ բեն ben. Alphabetical order Alphabets often come to be associated with a standard ordering of their letters, which can then be used for purposes of collation—namely for the listing of words and other items in what is called alphabetical order.
The largest known abjad is Sindhi, with 51 letters. The largest alphabets in the narrow sense include Kabardian and Abkhaz (for Cyrillic), with 58 and 56 letters, respectively, and Slovak (for the Latin script), with 46. However, these scripts either count di- and tri-graphs as separate letters, as Spanish did with ch and ll until recently, or uses diacritics like Slovak č. The Georgian alphabet ( ) is an alphabetic writing system. With 33 letters, it is the largest true alphabet where each letter is graphically independent. The original Georgian alphabet had 38 letters but 5 letters were removed in the 19th century by Ilia Chavchavadze. The Georgian alphabet is much closer to Greek than the other Caucasian alphabets. The letter order parallels the Greek, with the consonants without a Greek equivalent organized at the end of the alphabet. The origins of the alphabet are still unknown. Some Armenian and Western scholars believe it was created by Mesrop Mashtots (Armenian: Մեսրոպ Մաշտոց Mesrop Maštoc') also known as Mesrob the Vartabed, who was an early medieval Armenian linguist, theologian, statesman and hymnologist, best known for inventing the Armenian alphabet c. 405 AD; other Georgian and Western scholars are against this theory. Most scholars link the creation of the Georgian script to the process of Christianization of Iberia, a core Georgian kingdom of Kartli. The alphabet was therefore most probably created between the conversion of Iberia under King Mirian III (326 or 337) and the Bir el Qutt inscriptions of 430, contemporaneously with the Armenian alphabet. Syllabaries typically contain 50 to 400 glyphs, and the glyphs of logographic systems typically number from the many hundreds into the thousands. Thus a simple count of the number of distinct symbols is an important clue to the nature of an unknown script. The Armenian alphabet ( or ) is a graphically unique alphabetical writing system that has been used to write the Armenian language. It was created in year 405 A.D. originally contained 36 letters. Two more letters, օ (o) and ֆ (f), were added in the Middle Ages. During the 1920s orthography reform, a new letter և (capital ԵՎ) was added, which was a ligature before ե+ւ, while the letter Ւ ւ was discarded and reintroduced as part of a new letter ՈՒ ու (which was a digraph before). The Armenian script's directionality is horizontal left-to-right, like the Latin and Greek alphabets. It also uses bicameral script like those. The Armenian word for "alphabet" is (), named after the first two letters of the Armenian alphabet Ա այբ ayb and Բ բեն ben. Alphabetical order Alphabets often come to be associated with a standard ordering of their letters, which can then be used for purposes of collation—namely for the listing of words and other items in what is called alphabetical order.
The basic ordering of the Latin alphabet (A B C D E F G H I J K L M N O P Q R S T U V W X Y Z), which is derived from the Northwest Semitic "Abgad" order, is well established, although languages using this alphabet have different conventions for their treatment of modified letters (such as the French é, à, and ô) and of certain combinations of letters (multigraphs). In French, these are not considered to be additional letters for the purposes of collation. However, in Icelandic, the accented letters such as á, í, and ö are considered distinct letters representing different vowel sounds from the sounds represented by their unaccented counterparts. In Spanish, ñ is considered a separate letter, but accented vowels such as á and é are not. The ll and ch were also considered single letters, but in 1994 the Real Academia Española changed the collating order so that ll is between lk and lm in the dictionary and ch is between cg and ci, and in 2010 the tenth congress of the Association of Spanish Language Academies changed it so they were no longer letters at all. In German, words starting with sch- (which spells the German phoneme ) are inserted between words with initial sca- and sci- (all incidentally loanwords) instead of appearing after initial sz, as though it were a single letter—in contrast to several languages such as Albanian, in which dh-, ë-, gj-, ll-, rr-, th-, xh- and zh- (all representing phonemes and considered separate single letters) would follow the letters d, e, g, l, n, r, t, x and z respectively, as well as Hungarian and Welsh. Further, German words with an umlaut are collated ignoring the umlaut—contrary to Turkish that adopted the graphemes ö and ü, and where a word like tüfek, would come after tuz, in the dictionary. An exception is the German telephone directory where umlauts are sorted like ä = ae since names such as Jäger also appear with the spelling Jaeger, and are not distinguished in the spoken language. The Danish and Norwegian alphabets end with æ—ø—å, whereas the Swedish and Finnish ones conventionally put å—ä—ö at the end. It is unknown whether the earliest alphabets had a defined sequence. Some alphabets today, such as the Hanuno'o script, are learned one letter at a time, in no particular order, and are not used for collation where a definite order is required. However, a dozen Ugaritic tablets from the fourteenth century BC preserve the alphabet in two sequences. One, the ABCDE order later used in Phoenician, has continued with minor changes in Hebrew, Greek, Armenian, Gothic, Cyrillic, and Latin; the other, HMĦLQ, was used in southern Arabia and is preserved today in Ethiopic. Both orders have therefore been stable for at least 3000 years. Runic used an unrelated Futhark sequence, which was later simplified. Arabic uses its own sequence, although Arabic retains the traditional abjadi order for numbering.
The basic ordering of the Latin alphabet (A B C D E F G H I J K L M N O P Q R S T U V W X Y Z), which is derived from the Northwest Semitic "Abgad" order, is well established, although languages using this alphabet have different conventions for their treatment of modified letters (such as the French é, à, and ô) and of certain combinations of letters (multigraphs). In French, these are not considered to be additional letters for the purposes of collation. However, in Icelandic, the accented letters such as á, í, and ö are considered distinct letters representing different vowel sounds from the sounds represented by their unaccented counterparts. In Spanish, ñ is considered a separate letter, but accented vowels such as á and é are not. The ll and ch were also considered single letters, but in 1994 the Real Academia Española changed the collating order so that ll is between lk and lm in the dictionary and ch is between cg and ci, and in 2010 the tenth congress of the Association of Spanish Language Academies changed it so they were no longer letters at all. In German, words starting with sch- (which spells the German phoneme ) are inserted between words with initial sca- and sci- (all incidentally loanwords) instead of appearing after initial sz, as though it were a single letter—in contrast to several languages such as Albanian, in which dh-, ë-, gj-, ll-, rr-, th-, xh- and zh- (all representing phonemes and considered separate single letters) would follow the letters d, e, g, l, n, r, t, x and z respectively, as well as Hungarian and Welsh. Further, German words with an umlaut are collated ignoring the umlaut—contrary to Turkish that adopted the graphemes ö and ü, and where a word like tüfek, would come after tuz, in the dictionary. An exception is the German telephone directory where umlauts are sorted like ä = ae since names such as Jäger also appear with the spelling Jaeger, and are not distinguished in the spoken language. The Danish and Norwegian alphabets end with æ—ø—å, whereas the Swedish and Finnish ones conventionally put å—ä—ö at the end. It is unknown whether the earliest alphabets had a defined sequence. Some alphabets today, such as the Hanuno'o script, are learned one letter at a time, in no particular order, and are not used for collation where a definite order is required. However, a dozen Ugaritic tablets from the fourteenth century BC preserve the alphabet in two sequences. One, the ABCDE order later used in Phoenician, has continued with minor changes in Hebrew, Greek, Armenian, Gothic, Cyrillic, and Latin; the other, HMĦLQ, was used in southern Arabia and is preserved today in Ethiopic. Both orders have therefore been stable for at least 3000 years. Runic used an unrelated Futhark sequence, which was later simplified. Arabic uses its own sequence, although Arabic retains the traditional abjadi order for numbering.
The basic ordering of the Latin alphabet (A B C D E F G H I J K L M N O P Q R S T U V W X Y Z), which is derived from the Northwest Semitic "Abgad" order, is well established, although languages using this alphabet have different conventions for their treatment of modified letters (such as the French é, à, and ô) and of certain combinations of letters (multigraphs). In French, these are not considered to be additional letters for the purposes of collation. However, in Icelandic, the accented letters such as á, í, and ö are considered distinct letters representing different vowel sounds from the sounds represented by their unaccented counterparts. In Spanish, ñ is considered a separate letter, but accented vowels such as á and é are not. The ll and ch were also considered single letters, but in 1994 the Real Academia Española changed the collating order so that ll is between lk and lm in the dictionary and ch is between cg and ci, and in 2010 the tenth congress of the Association of Spanish Language Academies changed it so they were no longer letters at all. In German, words starting with sch- (which spells the German phoneme ) are inserted between words with initial sca- and sci- (all incidentally loanwords) instead of appearing after initial sz, as though it were a single letter—in contrast to several languages such as Albanian, in which dh-, ë-, gj-, ll-, rr-, th-, xh- and zh- (all representing phonemes and considered separate single letters) would follow the letters d, e, g, l, n, r, t, x and z respectively, as well as Hungarian and Welsh. Further, German words with an umlaut are collated ignoring the umlaut—contrary to Turkish that adopted the graphemes ö and ü, and where a word like tüfek, would come after tuz, in the dictionary. An exception is the German telephone directory where umlauts are sorted like ä = ae since names such as Jäger also appear with the spelling Jaeger, and are not distinguished in the spoken language. The Danish and Norwegian alphabets end with æ—ø—å, whereas the Swedish and Finnish ones conventionally put å—ä—ö at the end. It is unknown whether the earliest alphabets had a defined sequence. Some alphabets today, such as the Hanuno'o script, are learned one letter at a time, in no particular order, and are not used for collation where a definite order is required. However, a dozen Ugaritic tablets from the fourteenth century BC preserve the alphabet in two sequences. One, the ABCDE order later used in Phoenician, has continued with minor changes in Hebrew, Greek, Armenian, Gothic, Cyrillic, and Latin; the other, HMĦLQ, was used in southern Arabia and is preserved today in Ethiopic. Both orders have therefore been stable for at least 3000 years. Runic used an unrelated Futhark sequence, which was later simplified. Arabic uses its own sequence, although Arabic retains the traditional abjadi order for numbering.
The Brahmic family of alphabets used in India use a unique order based on phonology: The letters are arranged according to how and where they are produced in the mouth. This organization is used in Southeast Asia, Tibet, Korean hangul, and even Japanese kana, which is not an alphabet. Names of letters The Phoenician letter names, in which each letter was associated with a word that begins with that sound (acrophony), continue to be used to varying degrees in Samaritan, Aramaic, Syriac, Hebrew, Greek and Arabic. The names were abandoned in Latin, which instead referred to the letters by adding a vowel (usually e) before or after the consonant; the two exceptions were Y and Z, which were borrowed from the Greek alphabet rather than Etruscan, and were known as Y Graeca "Greek Y" (pronounced I Graeca "Greek I") and zeta (from Greek)—this discrepancy was inherited by many European languages, as in the term zed for Z in all forms of English other than American English. Over time names sometimes shifted or were added, as in double U for W ("double V" in French), the English name for Y, and American zee for Z. Comparing names in English and French gives a clear reflection of the Great Vowel Shift: A, B, C and D are pronounced in today's English, but in contemporary French they are . The French names (from which the English names are derived) preserve the qualities of the English vowels from before the Great Vowel Shift. By contrast, the names of F, L, M, N and S () remain the same in both languages, because "short" vowels were largely unaffected by the Shift. In Cyrillic originally the letters were given names based on Slavic words; this was later abandoned as well in favor of a system similar to that used in Latin. Letters of Armenian alphabet also have distinct letter names. Orthography and pronunciation When an alphabet is adopted or developed to represent a given language, an orthography generally comes into being, providing rules for the spelling of words in that language. In accordance with the principle on which alphabets are based, these rules will generally map letters of the alphabet to the phonemes (significant sounds) of the spoken language. In a perfectly phonemic orthography there would be a consistent one-to-one correspondence between the letters and the phonemes, so that a writer could predict the spelling of a word given its pronunciation, and a speaker would always know the pronunciation of a word given its spelling, and vice versa. However, this ideal is not usually achieved in practice; some languages (such as Spanish and Finnish) come close to it, while others (such as English) deviate from it to a much larger degree.
The Brahmic family of alphabets used in India use a unique order based on phonology: The letters are arranged according to how and where they are produced in the mouth. This organization is used in Southeast Asia, Tibet, Korean hangul, and even Japanese kana, which is not an alphabet. Names of letters The Phoenician letter names, in which each letter was associated with a word that begins with that sound (acrophony), continue to be used to varying degrees in Samaritan, Aramaic, Syriac, Hebrew, Greek and Arabic. The names were abandoned in Latin, which instead referred to the letters by adding a vowel (usually e) before or after the consonant; the two exceptions were Y and Z, which were borrowed from the Greek alphabet rather than Etruscan, and were known as Y Graeca "Greek Y" (pronounced I Graeca "Greek I") and zeta (from Greek)—this discrepancy was inherited by many European languages, as in the term zed for Z in all forms of English other than American English. Over time names sometimes shifted or were added, as in double U for W ("double V" in French), the English name for Y, and American zee for Z. Comparing names in English and French gives a clear reflection of the Great Vowel Shift: A, B, C and D are pronounced in today's English, but in contemporary French they are . The French names (from which the English names are derived) preserve the qualities of the English vowels from before the Great Vowel Shift. By contrast, the names of F, L, M, N and S () remain the same in both languages, because "short" vowels were largely unaffected by the Shift. In Cyrillic originally the letters were given names based on Slavic words; this was later abandoned as well in favor of a system similar to that used in Latin. Letters of Armenian alphabet also have distinct letter names. Orthography and pronunciation When an alphabet is adopted or developed to represent a given language, an orthography generally comes into being, providing rules for the spelling of words in that language. In accordance with the principle on which alphabets are based, these rules will generally map letters of the alphabet to the phonemes (significant sounds) of the spoken language. In a perfectly phonemic orthography there would be a consistent one-to-one correspondence between the letters and the phonemes, so that a writer could predict the spelling of a word given its pronunciation, and a speaker would always know the pronunciation of a word given its spelling, and vice versa. However, this ideal is not usually achieved in practice; some languages (such as Spanish and Finnish) come close to it, while others (such as English) deviate from it to a much larger degree.
The Brahmic family of alphabets used in India use a unique order based on phonology: The letters are arranged according to how and where they are produced in the mouth. This organization is used in Southeast Asia, Tibet, Korean hangul, and even Japanese kana, which is not an alphabet. Names of letters The Phoenician letter names, in which each letter was associated with a word that begins with that sound (acrophony), continue to be used to varying degrees in Samaritan, Aramaic, Syriac, Hebrew, Greek and Arabic. The names were abandoned in Latin, which instead referred to the letters by adding a vowel (usually e) before or after the consonant; the two exceptions were Y and Z, which were borrowed from the Greek alphabet rather than Etruscan, and were known as Y Graeca "Greek Y" (pronounced I Graeca "Greek I") and zeta (from Greek)—this discrepancy was inherited by many European languages, as in the term zed for Z in all forms of English other than American English. Over time names sometimes shifted or were added, as in double U for W ("double V" in French), the English name for Y, and American zee for Z. Comparing names in English and French gives a clear reflection of the Great Vowel Shift: A, B, C and D are pronounced in today's English, but in contemporary French they are . The French names (from which the English names are derived) preserve the qualities of the English vowels from before the Great Vowel Shift. By contrast, the names of F, L, M, N and S () remain the same in both languages, because "short" vowels were largely unaffected by the Shift. In Cyrillic originally the letters were given names based on Slavic words; this was later abandoned as well in favor of a system similar to that used in Latin. Letters of Armenian alphabet also have distinct letter names. Orthography and pronunciation When an alphabet is adopted or developed to represent a given language, an orthography generally comes into being, providing rules for the spelling of words in that language. In accordance with the principle on which alphabets are based, these rules will generally map letters of the alphabet to the phonemes (significant sounds) of the spoken language. In a perfectly phonemic orthography there would be a consistent one-to-one correspondence between the letters and the phonemes, so that a writer could predict the spelling of a word given its pronunciation, and a speaker would always know the pronunciation of a word given its spelling, and vice versa. However, this ideal is not usually achieved in practice; some languages (such as Spanish and Finnish) come close to it, while others (such as English) deviate from it to a much larger degree.
The pronunciation of a language often evolves independently of its writing system, and writing systems have been borrowed for languages they were not designed for, so the degree to which letters of an alphabet correspond to phonemes of a language varies greatly from one language to another and even within a single language. Languages may fail to achieve a one-to-one correspondence between letters and sounds in any of several ways: A language may represent a given phoneme by a combination of letters rather than just a single letter. Two-letter combinations are called digraphs and three-letter groups are called trigraphs. German uses the tetragraphs (four letters) "tsch" for the phoneme and (in a few borrowed words) "dsch" for . Kabardian also uses a tetragraph for one of its phonemes, namely "кхъу". Two letters representing one sound occur in several instances in Hungarian as well (where, for instance, cs stands for [tʃ], sz for [s], zs for [ʒ], dzs for [dʒ]). A language may represent the same phoneme with two or more different letters or combinations of letters. An example is modern Greek which may write the phoneme in six different ways: , , , , , and (though the last is rare). A language may spell some words with unpronounced letters that exist for historical or other reasons. For example, the spelling of the Thai word for "beer" [เบียร์] retains a letter for the final consonant "r" present in the English word it was borrowed from, but silences it. Pronunciation of individual words may change according to the presence of surrounding words in a sentence (sandhi). Different dialects of a language may use different phonemes for the same word. A language may use different sets of symbols or different rules for distinct sets of vocabulary items, such as the Japanese hiragana and katakana syllabaries, or the various rules in English for spelling words from Latin and Greek, or the original Germanic vocabulary. National languages sometimes elect to address the problem of dialects by simply associating the alphabet with the national standard. Some national languages like Finnish, Armenian, Turkish, Russian, Serbo-Croatian (Serbian, Croatian and Bosnian) and Bulgarian have a very regular spelling system with a nearly one-to-one correspondence between letters and phonemes. Strictly speaking, these national languages lack a word corresponding to the verb "to spell" (meaning to split a word into its letters), the closest match being a verb meaning to split a word into its syllables. Similarly, the Italian verb corresponding to 'spell (out)', compitare, is unknown to many Italians because spelling is usually trivial, as Italian spelling is highly phonemic. In standard Spanish, one can tell the pronunciation of a word from its spelling, but not vice versa, as certain phonemes can be represented in more than one way, but a given letter is consistently pronounced.
The pronunciation of a language often evolves independently of its writing system, and writing systems have been borrowed for languages they were not designed for, so the degree to which letters of an alphabet correspond to phonemes of a language varies greatly from one language to another and even within a single language. Languages may fail to achieve a one-to-one correspondence between letters and sounds in any of several ways: A language may represent a given phoneme by a combination of letters rather than just a single letter. Two-letter combinations are called digraphs and three-letter groups are called trigraphs. German uses the tetragraphs (four letters) "tsch" for the phoneme and (in a few borrowed words) "dsch" for . Kabardian also uses a tetragraph for one of its phonemes, namely "кхъу". Two letters representing one sound occur in several instances in Hungarian as well (where, for instance, cs stands for [tʃ], sz for [s], zs for [ʒ], dzs for [dʒ]). A language may represent the same phoneme with two or more different letters or combinations of letters. An example is modern Greek which may write the phoneme in six different ways: , , , , , and (though the last is rare). A language may spell some words with unpronounced letters that exist for historical or other reasons. For example, the spelling of the Thai word for "beer" [เบียร์] retains a letter for the final consonant "r" present in the English word it was borrowed from, but silences it. Pronunciation of individual words may change according to the presence of surrounding words in a sentence (sandhi). Different dialects of a language may use different phonemes for the same word. A language may use different sets of symbols or different rules for distinct sets of vocabulary items, such as the Japanese hiragana and katakana syllabaries, or the various rules in English for spelling words from Latin and Greek, or the original Germanic vocabulary. National languages sometimes elect to address the problem of dialects by simply associating the alphabet with the national standard. Some national languages like Finnish, Armenian, Turkish, Russian, Serbo-Croatian (Serbian, Croatian and Bosnian) and Bulgarian have a very regular spelling system with a nearly one-to-one correspondence between letters and phonemes. Strictly speaking, these national languages lack a word corresponding to the verb "to spell" (meaning to split a word into its letters), the closest match being a verb meaning to split a word into its syllables. Similarly, the Italian verb corresponding to 'spell (out)', compitare, is unknown to many Italians because spelling is usually trivial, as Italian spelling is highly phonemic. In standard Spanish, one can tell the pronunciation of a word from its spelling, but not vice versa, as certain phonemes can be represented in more than one way, but a given letter is consistently pronounced.
The pronunciation of a language often evolves independently of its writing system, and writing systems have been borrowed for languages they were not designed for, so the degree to which letters of an alphabet correspond to phonemes of a language varies greatly from one language to another and even within a single language. Languages may fail to achieve a one-to-one correspondence between letters and sounds in any of several ways: A language may represent a given phoneme by a combination of letters rather than just a single letter. Two-letter combinations are called digraphs and three-letter groups are called trigraphs. German uses the tetragraphs (four letters) "tsch" for the phoneme and (in a few borrowed words) "dsch" for . Kabardian also uses a tetragraph for one of its phonemes, namely "кхъу". Two letters representing one sound occur in several instances in Hungarian as well (where, for instance, cs stands for [tʃ], sz for [s], zs for [ʒ], dzs for [dʒ]). A language may represent the same phoneme with two or more different letters or combinations of letters. An example is modern Greek which may write the phoneme in six different ways: , , , , , and (though the last is rare). A language may spell some words with unpronounced letters that exist for historical or other reasons. For example, the spelling of the Thai word for "beer" [เบียร์] retains a letter for the final consonant "r" present in the English word it was borrowed from, but silences it. Pronunciation of individual words may change according to the presence of surrounding words in a sentence (sandhi). Different dialects of a language may use different phonemes for the same word. A language may use different sets of symbols or different rules for distinct sets of vocabulary items, such as the Japanese hiragana and katakana syllabaries, or the various rules in English for spelling words from Latin and Greek, or the original Germanic vocabulary. National languages sometimes elect to address the problem of dialects by simply associating the alphabet with the national standard. Some national languages like Finnish, Armenian, Turkish, Russian, Serbo-Croatian (Serbian, Croatian and Bosnian) and Bulgarian have a very regular spelling system with a nearly one-to-one correspondence between letters and phonemes. Strictly speaking, these national languages lack a word corresponding to the verb "to spell" (meaning to split a word into its letters), the closest match being a verb meaning to split a word into its syllables. Similarly, the Italian verb corresponding to 'spell (out)', compitare, is unknown to many Italians because spelling is usually trivial, as Italian spelling is highly phonemic. In standard Spanish, one can tell the pronunciation of a word from its spelling, but not vice versa, as certain phonemes can be represented in more than one way, but a given letter is consistently pronounced.
French, with its silent letters and its heavy use of nasal vowels and elision, may seem to lack much correspondence between spelling and pronunciation, but its rules on pronunciation, though complex, are actually consistent and predictable with a fair degree of accuracy. At the other extreme are languages such as English, where the pronunciations of many words simply have to be memorized as they do not correspond to the spelling in a consistent way. For English, this is partly because the Great Vowel Shift occurred after the orthography was established, and because English has acquired a large number of loanwords at different times, retaining their original spelling at varying levels. Even English has general, albeit complex, rules that predict pronunciation from spelling, and these rules are successful most of the time; rules to predict spelling from the pronunciation have a higher failure rate. Sometimes, countries have the written language undergo a spelling reform to realign the writing with the contemporary spoken language. These can range from simple spelling changes and word forms to switching the entire writing system itself, as when Turkey switched from the Arabic alphabet to a Latin-based Turkish alphabet, and as when Kazakh changes from an Arabic script to a Cyrillic script due to the Soviet Union's influence, and in 2021, having a transition to the Latin alphabet, just like Turkish. The Cyrillic script used to be official in Uzbekistan and Turkmenistan before they all switched to the Latin alphabets, including Uzbekistan that is having a reform of the alphabet to use diacritics on the letters that is marked by apostrophes and the letters that are digraphs. The standard system of symbols used by linguists to represent sounds in any language, independently of orthography, is called the International Phonetic Alphabet. See also A Is For Aardvark Abecedarium Acrophony Akshara Alphabet book Alphabet effect Alphabet song Alphabetical order Butterfly Alphabet Character encoding Constructed script Cyrillic English alphabet Hangul ICAO (NATO) spelling alphabet Lipogram List of writing systems Pangram Thai script Thoth Transliteration Unicode References Bibliography Overview of modern and some ancient writing systems. Chapter 3 traces and summarizes the invention of alphabetic writing. Chapter 4 traces the invention of writing External links The Origins of abc "Language, Writing and Alphabet: An Interview with Christophe Rico", Damqātum 3 (2007) Michael Everson's Alphabets of Europe Evolution of alphabets, animation by Prof. Robert Fradkin at the University of Maryland How the Alphabet Was Born from Hieroglyphs—Biblical Archaeology Review An Early Hellenic Alphabet Museum of the Alphabet The Alphabet, BBC Radio 4 discussion with Eleanor Robson, Alan Millard and Rosalind Thomas (In Our Time, 18 Dec. 2003) Orthography
French, with its silent letters and its heavy use of nasal vowels and elision, may seem to lack much correspondence between spelling and pronunciation, but its rules on pronunciation, though complex, are actually consistent and predictable with a fair degree of accuracy. At the other extreme are languages such as English, where the pronunciations of many words simply have to be memorized as they do not correspond to the spelling in a consistent way. For English, this is partly because the Great Vowel Shift occurred after the orthography was established, and because English has acquired a large number of loanwords at different times, retaining their original spelling at varying levels. Even English has general, albeit complex, rules that predict pronunciation from spelling, and these rules are successful most of the time; rules to predict spelling from the pronunciation have a higher failure rate. Sometimes, countries have the written language undergo a spelling reform to realign the writing with the contemporary spoken language. These can range from simple spelling changes and word forms to switching the entire writing system itself, as when Turkey switched from the Arabic alphabet to a Latin-based Turkish alphabet, and as when Kazakh changes from an Arabic script to a Cyrillic script due to the Soviet Union's influence, and in 2021, having a transition to the Latin alphabet, just like Turkish. The Cyrillic script used to be official in Uzbekistan and Turkmenistan before they all switched to the Latin alphabets, including Uzbekistan that is having a reform of the alphabet to use diacritics on the letters that is marked by apostrophes and the letters that are digraphs. The standard system of symbols used by linguists to represent sounds in any language, independently of orthography, is called the International Phonetic Alphabet. See also A Is For Aardvark Abecedarium Acrophony Akshara Alphabet book Alphabet effect Alphabet song Alphabetical order Butterfly Alphabet Character encoding Constructed script Cyrillic English alphabet Hangul ICAO (NATO) spelling alphabet Lipogram List of writing systems Pangram Thai script Thoth Transliteration Unicode References Bibliography Overview of modern and some ancient writing systems. Chapter 3 traces and summarizes the invention of alphabetic writing. Chapter 4 traces the invention of writing External links The Origins of abc "Language, Writing and Alphabet: An Interview with Christophe Rico", Damqātum 3 (2007) Michael Everson's Alphabets of Europe Evolution of alphabets, animation by Prof. Robert Fradkin at the University of Maryland How the Alphabet Was Born from Hieroglyphs—Biblical Archaeology Review An Early Hellenic Alphabet Museum of the Alphabet The Alphabet, BBC Radio 4 discussion with Eleanor Robson, Alan Millard and Rosalind Thomas (In Our Time, 18 Dec. 2003) Orthography
French, with its silent letters and its heavy use of nasal vowels and elision, may seem to lack much correspondence between spelling and pronunciation, but its rules on pronunciation, though complex, are actually consistent and predictable with a fair degree of accuracy. At the other extreme are languages such as English, where the pronunciations of many words simply have to be memorized as they do not correspond to the spelling in a consistent way. For English, this is partly because the Great Vowel Shift occurred after the orthography was established, and because English has acquired a large number of loanwords at different times, retaining their original spelling at varying levels. Even English has general, albeit complex, rules that predict pronunciation from spelling, and these rules are successful most of the time; rules to predict spelling from the pronunciation have a higher failure rate. Sometimes, countries have the written language undergo a spelling reform to realign the writing with the contemporary spoken language. These can range from simple spelling changes and word forms to switching the entire writing system itself, as when Turkey switched from the Arabic alphabet to a Latin-based Turkish alphabet, and as when Kazakh changes from an Arabic script to a Cyrillic script due to the Soviet Union's influence, and in 2021, having a transition to the Latin alphabet, just like Turkish. The Cyrillic script used to be official in Uzbekistan and Turkmenistan before they all switched to the Latin alphabets, including Uzbekistan that is having a reform of the alphabet to use diacritics on the letters that is marked by apostrophes and the letters that are digraphs. The standard system of symbols used by linguists to represent sounds in any language, independently of orthography, is called the International Phonetic Alphabet. See also A Is For Aardvark Abecedarium Acrophony Akshara Alphabet book Alphabet effect Alphabet song Alphabetical order Butterfly Alphabet Character encoding Constructed script Cyrillic English alphabet Hangul ICAO (NATO) spelling alphabet Lipogram List of writing systems Pangram Thai script Thoth Transliteration Unicode References Bibliography Overview of modern and some ancient writing systems. Chapter 3 traces and summarizes the invention of alphabetic writing. Chapter 4 traces the invention of writing External links The Origins of abc "Language, Writing and Alphabet: An Interview with Christophe Rico", Damqātum 3 (2007) Michael Everson's Alphabets of Europe Evolution of alphabets, animation by Prof. Robert Fradkin at the University of Maryland How the Alphabet Was Born from Hieroglyphs—Biblical Archaeology Review An Early Hellenic Alphabet Museum of the Alphabet The Alphabet, BBC Radio 4 discussion with Eleanor Robson, Alan Millard and Rosalind Thomas (In Our Time, 18 Dec. 2003) Orthography
Atomic number The atomic number or proton number (symbol Z) of a chemical element is the number of protons found in the nucleus of every atom of that element. The atomic number uniquely identifies a chemical element. It is identical to the charge number of the nucleus. In an uncharged atom, the atomic number is also equal to the number of electrons. The sum of the atomic number Z and the number of neutrons N gives the mass number A of an atom. Since protons and neutrons have approximately the same mass (and the mass of the electrons is negligible for many purposes) and the mass defect of nucleon binding is always small compared to the nucleon mass, the atomic mass of any atom, when expressed in unified atomic mass units (making a quantity called the "relative isotopic mass"), is within 1% of the whole number A. Atoms with the same atomic number but different neutron numbers, and hence different mass numbers, are known as isotopes. A little more than three-quarters of naturally occurring elements exist as a mixture of isotopes (see monoisotopic elements), and the average isotopic mass of an isotopic mixture for an element (called the relative atomic mass) in a defined environment on Earth, determines the element's standard atomic weight. Historically, it was these atomic weights of elements (in comparison to hydrogen) that were the quantities measurable by chemists in the 19th century. The conventional symbol Z comes from the German word 'number', which, before the modern synthesis of ideas from chemistry and physics, merely denoted an element's numerical place in the periodic table, whose order was then approximately, but not completely, consistent with the order of the elements by atomic weights. Only after 1915, with the suggestion and evidence that this Z number was also the nuclear charge and a physical characteristic of atoms, did the word (and its English equivalent atomic number) come into common use in this context. History The periodic table and a natural number for each element Loosely speaking, the existence or construction of a periodic table of elements creates an ordering of the elements, and so they can be numbered in order. Dmitri Mendeleev claimed that he arranged his first periodic tables (first published on March 6, 1869) in order of atomic weight ("Atomgewicht"). However, in consideration of the elements' observed chemical properties, he changed the order slightly and placed tellurium (atomic weight 127.6) ahead of iodine (atomic weight 126.9). This placement is consistent with the modern practice of ordering the elements by proton number, Z, but that number was not known or suspected at the time. A simple numbering based on periodic table position was never entirely satisfactory, however. Besides the case of iodine and tellurium, later several other pairs of elements (such as argon and potassium, cobalt and nickel) were known to have nearly identical or reversed atomic weights, thus requiring their placement in the periodic table to be determined by their chemical properties.
Atomic number The atomic number or proton number (symbol Z) of a chemical element is the number of protons found in the nucleus of every atom of that element. The atomic number uniquely identifies a chemical element. It is identical to the charge number of the nucleus. In an uncharged atom, the atomic number is also equal to the number of electrons. The sum of the atomic number Z and the number of neutrons N gives the mass number A of an atom. Since protons and neutrons have approximately the same mass (and the mass of the electrons is negligible for many purposes) and the mass defect of nucleon binding is always small compared to the nucleon mass, the atomic mass of any atom, when expressed in unified atomic mass units (making a quantity called the "relative isotopic mass"), is within 1% of the whole number A. Atoms with the same atomic number but different neutron numbers, and hence different mass numbers, are known as isotopes. A little more than three-quarters of naturally occurring elements exist as a mixture of isotopes (see monoisotopic elements), and the average isotopic mass of an isotopic mixture for an element (called the relative atomic mass) in a defined environment on Earth, determines the element's standard atomic weight. Historically, it was these atomic weights of elements (in comparison to hydrogen) that were the quantities measurable by chemists in the 19th century. The conventional symbol Z comes from the German word 'number', which, before the modern synthesis of ideas from chemistry and physics, merely denoted an element's numerical place in the periodic table, whose order was then approximately, but not completely, consistent with the order of the elements by atomic weights. Only after 1915, with the suggestion and evidence that this Z number was also the nuclear charge and a physical characteristic of atoms, did the word (and its English equivalent atomic number) come into common use in this context. History The periodic table and a natural number for each element Loosely speaking, the existence or construction of a periodic table of elements creates an ordering of the elements, and so they can be numbered in order. Dmitri Mendeleev claimed that he arranged his first periodic tables (first published on March 6, 1869) in order of atomic weight ("Atomgewicht"). However, in consideration of the elements' observed chemical properties, he changed the order slightly and placed tellurium (atomic weight 127.6) ahead of iodine (atomic weight 126.9). This placement is consistent with the modern practice of ordering the elements by proton number, Z, but that number was not known or suspected at the time. A simple numbering based on periodic table position was never entirely satisfactory, however. Besides the case of iodine and tellurium, later several other pairs of elements (such as argon and potassium, cobalt and nickel) were known to have nearly identical or reversed atomic weights, thus requiring their placement in the periodic table to be determined by their chemical properties.
However the gradual identification of more and more chemically similar lanthanide elements, whose atomic number was not obvious, led to inconsistency and uncertainty in the periodic numbering of elements at least from lutetium (element 71) onward (hafnium was not known at this time). The Rutherford-Bohr model and van den Broek In 1911, Ernest Rutherford gave a model of the atom in which a central nucleus held most of the atom's mass and a positive charge which, in units of the electron's charge, was to be approximately equal to half of the atom's atomic weight, expressed in numbers of hydrogen atoms. This central charge would thus be approximately half the atomic weight (though it was almost 25% different from the atomic number of gold , ), the single element from which Rutherford made his guess). Nevertheless, in spite of Rutherford's estimation that gold had a central charge of about 100 (but was element on the periodic table), a month after Rutherford's paper appeared, Antonius van den Broek first formally suggested that the central charge and number of electrons in an atom was exactly equal to its place in the periodic table (also known as element number, atomic number, and symbolized Z). This proved eventually to be the case. Moseley's 1913 experiment The experimental position improved dramatically after research by Henry Moseley in 1913. Moseley, after discussions with Bohr who was at the same lab (and who had used Van den Broek's hypothesis in his Bohr model of the atom), decided to test Van den Broek's and Bohr's hypothesis directly, by seeing if spectral lines emitted from excited atoms fitted the Bohr theory's postulation that the frequency of the spectral lines be proportional to the square of Z. To do this, Moseley measured the wavelengths of the innermost photon transitions (K and L lines) produced by the elements from aluminum (Z = 13) to gold (Z = 79) used as a series of movable anodic targets inside an x-ray tube. The square root of the frequency of these photons increased from one target to the next in an arithmetic progression. This led to the conclusion (Moseley's law) that the atomic number does closely correspond (with an offset of one unit for K-lines, in Moseley's work) to the calculated electric charge of the nucleus, i.e. the element number Z. Among other things, Moseley demonstrated that the lanthanide series (from lanthanum to lutetium inclusive) must have 15 members—no fewer and no more—which was far from obvious from known chemistry at that time. Missing elements After Moseley's death in 1915, the atomic numbers of all known elements from hydrogen to uranium (Z = 92) were examined by his method. There were seven elements (with Z < 92) which were not found and therefore identified as still undiscovered, corresponding to atomic numbers 43, 61, 72, 75, 85, 87 and 91. From 1918 to 1947, all seven of these missing elements were discovered.
However the gradual identification of more and more chemically similar lanthanide elements, whose atomic number was not obvious, led to inconsistency and uncertainty in the periodic numbering of elements at least from lutetium (element 71) onward (hafnium was not known at this time). The Rutherford-Bohr model and van den Broek In 1911, Ernest Rutherford gave a model of the atom in which a central nucleus held most of the atom's mass and a positive charge which, in units of the electron's charge, was to be approximately equal to half of the atom's atomic weight, expressed in numbers of hydrogen atoms. This central charge would thus be approximately half the atomic weight (though it was almost 25% different from the atomic number of gold , ), the single element from which Rutherford made his guess). Nevertheless, in spite of Rutherford's estimation that gold had a central charge of about 100 (but was element on the periodic table), a month after Rutherford's paper appeared, Antonius van den Broek first formally suggested that the central charge and number of electrons in an atom was exactly equal to its place in the periodic table (also known as element number, atomic number, and symbolized Z). This proved eventually to be the case. Moseley's 1913 experiment The experimental position improved dramatically after research by Henry Moseley in 1913. Moseley, after discussions with Bohr who was at the same lab (and who had used Van den Broek's hypothesis in his Bohr model of the atom), decided to test Van den Broek's and Bohr's hypothesis directly, by seeing if spectral lines emitted from excited atoms fitted the Bohr theory's postulation that the frequency of the spectral lines be proportional to the square of Z. To do this, Moseley measured the wavelengths of the innermost photon transitions (K and L lines) produced by the elements from aluminum (Z = 13) to gold (Z = 79) used as a series of movable anodic targets inside an x-ray tube. The square root of the frequency of these photons increased from one target to the next in an arithmetic progression. This led to the conclusion (Moseley's law) that the atomic number does closely correspond (with an offset of one unit for K-lines, in Moseley's work) to the calculated electric charge of the nucleus, i.e. the element number Z. Among other things, Moseley demonstrated that the lanthanide series (from lanthanum to lutetium inclusive) must have 15 members—no fewer and no more—which was far from obvious from known chemistry at that time. Missing elements After Moseley's death in 1915, the atomic numbers of all known elements from hydrogen to uranium (Z = 92) were examined by his method. There were seven elements (with Z < 92) which were not found and therefore identified as still undiscovered, corresponding to atomic numbers 43, 61, 72, 75, 85, 87 and 91. From 1918 to 1947, all seven of these missing elements were discovered.
However the gradual identification of more and more chemically similar lanthanide elements, whose atomic number was not obvious, led to inconsistency and uncertainty in the periodic numbering of elements at least from lutetium (element 71) onward (hafnium was not known at this time). The Rutherford-Bohr model and van den Broek In 1911, Ernest Rutherford gave a model of the atom in which a central nucleus held most of the atom's mass and a positive charge which, in units of the electron's charge, was to be approximately equal to half of the atom's atomic weight, expressed in numbers of hydrogen atoms. This central charge would thus be approximately half the atomic weight (though it was almost 25% different from the atomic number of gold , ), the single element from which Rutherford made his guess). Nevertheless, in spite of Rutherford's estimation that gold had a central charge of about 100 (but was element on the periodic table), a month after Rutherford's paper appeared, Antonius van den Broek first formally suggested that the central charge and number of electrons in an atom was exactly equal to its place in the periodic table (also known as element number, atomic number, and symbolized Z). This proved eventually to be the case. Moseley's 1913 experiment The experimental position improved dramatically after research by Henry Moseley in 1913. Moseley, after discussions with Bohr who was at the same lab (and who had used Van den Broek's hypothesis in his Bohr model of the atom), decided to test Van den Broek's and Bohr's hypothesis directly, by seeing if spectral lines emitted from excited atoms fitted the Bohr theory's postulation that the frequency of the spectral lines be proportional to the square of Z. To do this, Moseley measured the wavelengths of the innermost photon transitions (K and L lines) produced by the elements from aluminum (Z = 13) to gold (Z = 79) used as a series of movable anodic targets inside an x-ray tube. The square root of the frequency of these photons increased from one target to the next in an arithmetic progression. This led to the conclusion (Moseley's law) that the atomic number does closely correspond (with an offset of one unit for K-lines, in Moseley's work) to the calculated electric charge of the nucleus, i.e. the element number Z. Among other things, Moseley demonstrated that the lanthanide series (from lanthanum to lutetium inclusive) must have 15 members—no fewer and no more—which was far from obvious from known chemistry at that time. Missing elements After Moseley's death in 1915, the atomic numbers of all known elements from hydrogen to uranium (Z = 92) were examined by his method. There were seven elements (with Z < 92) which were not found and therefore identified as still undiscovered, corresponding to atomic numbers 43, 61, 72, 75, 85, 87 and 91. From 1918 to 1947, all seven of these missing elements were discovered.
By this time, the first four transuranium elements had also been discovered, so that the periodic table was complete with no gaps as far as curium (Z = 96). The proton and the idea of nuclear electrons In 1915, the reason for nuclear charge being quantized in units of Z, which were now recognized to be the same as the element number, was not understood. An old idea called Prout's hypothesis had postulated that the elements were all made of residues (or "protyles") of the lightest element hydrogen, which in the Bohr-Rutherford model had a single electron and a nuclear charge of one. However, as early as 1907, Rutherford and Thomas Royds had shown that alpha particles, which had a charge of +2, were the nuclei of helium atoms, which had a mass four times that of hydrogen, not two times. If Prout's hypothesis were true, something had to be neutralizing some of the charge of the hydrogen nuclei present in the nuclei of heavier atoms. In 1917, Rutherford succeeded in generating hydrogen nuclei from a nuclear reaction between alpha particles and nitrogen gas, and believed he had proven Prout's law. He called the new heavy nuclear particles protons in 1920 (alternate names being proutons and protyles). It had been immediately apparent from the work of Moseley that the nuclei of heavy atoms have more than twice as much mass as would be expected from their being made of hydrogen nuclei, and thus there was required a hypothesis for the neutralization of the extra protons presumed present in all heavy nuclei. A helium nucleus was presumed to be composed of four protons plus two "nuclear electrons" (electrons bound inside the nucleus) to cancel two of the charges. At the other end of the periodic table, a nucleus of gold with a mass 197 times that of hydrogen was thought to contain 118 nuclear electrons in the nucleus to give it a residual charge of +79, consistent with its atomic number. The discovery of the neutron makes Z the proton number All consideration of nuclear electrons ended with James Chadwick's discovery of the neutron in 1932. An atom of gold now was seen as containing 118 neutrons rather than 118 nuclear electrons, and its positive charge now was realized to come entirely from a content of 79 protons. After 1932, therefore, an element's atomic number Z was also realized to be identical to the proton number of its nuclei. Chemical properties Each element has a specific set of chemical properties as a consequence of the number of electrons present in the neutral atom, which is Z (the atomic number). The configuration of these electrons follows from the principles of quantum mechanics. The number of electrons in each element's electron shells, particularly the outermost valence shell, is the primary factor in determining its chemical bonding behavior.
By this time, the first four transuranium elements had also been discovered, so that the periodic table was complete with no gaps as far as curium (Z = 96). The proton and the idea of nuclear electrons In 1915, the reason for nuclear charge being quantized in units of Z, which were now recognized to be the same as the element number, was not understood. An old idea called Prout's hypothesis had postulated that the elements were all made of residues (or "protyles") of the lightest element hydrogen, which in the Bohr-Rutherford model had a single electron and a nuclear charge of one. However, as early as 1907, Rutherford and Thomas Royds had shown that alpha particles, which had a charge of +2, were the nuclei of helium atoms, which had a mass four times that of hydrogen, not two times. If Prout's hypothesis were true, something had to be neutralizing some of the charge of the hydrogen nuclei present in the nuclei of heavier atoms. In 1917, Rutherford succeeded in generating hydrogen nuclei from a nuclear reaction between alpha particles and nitrogen gas, and believed he had proven Prout's law. He called the new heavy nuclear particles protons in 1920 (alternate names being proutons and protyles). It had been immediately apparent from the work of Moseley that the nuclei of heavy atoms have more than twice as much mass as would be expected from their being made of hydrogen nuclei, and thus there was required a hypothesis for the neutralization of the extra protons presumed present in all heavy nuclei. A helium nucleus was presumed to be composed of four protons plus two "nuclear electrons" (electrons bound inside the nucleus) to cancel two of the charges. At the other end of the periodic table, a nucleus of gold with a mass 197 times that of hydrogen was thought to contain 118 nuclear electrons in the nucleus to give it a residual charge of +79, consistent with its atomic number. The discovery of the neutron makes Z the proton number All consideration of nuclear electrons ended with James Chadwick's discovery of the neutron in 1932. An atom of gold now was seen as containing 118 neutrons rather than 118 nuclear electrons, and its positive charge now was realized to come entirely from a content of 79 protons. After 1932, therefore, an element's atomic number Z was also realized to be identical to the proton number of its nuclei. Chemical properties Each element has a specific set of chemical properties as a consequence of the number of electrons present in the neutral atom, which is Z (the atomic number). The configuration of these electrons follows from the principles of quantum mechanics. The number of electrons in each element's electron shells, particularly the outermost valence shell, is the primary factor in determining its chemical bonding behavior.
By this time, the first four transuranium elements had also been discovered, so that the periodic table was complete with no gaps as far as curium (Z = 96). The proton and the idea of nuclear electrons In 1915, the reason for nuclear charge being quantized in units of Z, which were now recognized to be the same as the element number, was not understood. An old idea called Prout's hypothesis had postulated that the elements were all made of residues (or "protyles") of the lightest element hydrogen, which in the Bohr-Rutherford model had a single electron and a nuclear charge of one. However, as early as 1907, Rutherford and Thomas Royds had shown that alpha particles, which had a charge of +2, were the nuclei of helium atoms, which had a mass four times that of hydrogen, not two times. If Prout's hypothesis were true, something had to be neutralizing some of the charge of the hydrogen nuclei present in the nuclei of heavier atoms. In 1917, Rutherford succeeded in generating hydrogen nuclei from a nuclear reaction between alpha particles and nitrogen gas, and believed he had proven Prout's law. He called the new heavy nuclear particles protons in 1920 (alternate names being proutons and protyles). It had been immediately apparent from the work of Moseley that the nuclei of heavy atoms have more than twice as much mass as would be expected from their being made of hydrogen nuclei, and thus there was required a hypothesis for the neutralization of the extra protons presumed present in all heavy nuclei. A helium nucleus was presumed to be composed of four protons plus two "nuclear electrons" (electrons bound inside the nucleus) to cancel two of the charges. At the other end of the periodic table, a nucleus of gold with a mass 197 times that of hydrogen was thought to contain 118 nuclear electrons in the nucleus to give it a residual charge of +79, consistent with its atomic number. The discovery of the neutron makes Z the proton number All consideration of nuclear electrons ended with James Chadwick's discovery of the neutron in 1932. An atom of gold now was seen as containing 118 neutrons rather than 118 nuclear electrons, and its positive charge now was realized to come entirely from a content of 79 protons. After 1932, therefore, an element's atomic number Z was also realized to be identical to the proton number of its nuclei. Chemical properties Each element has a specific set of chemical properties as a consequence of the number of electrons present in the neutral atom, which is Z (the atomic number). The configuration of these electrons follows from the principles of quantum mechanics. The number of electrons in each element's electron shells, particularly the outermost valence shell, is the primary factor in determining its chemical bonding behavior.
Hence, it is the atomic number alone that determines the chemical properties of an element; and it is for this reason that an element can be defined as consisting of any mixture of atoms with a given atomic number. New elements The quest for new elements is usually described using atomic numbers. As of , all elements with atomic numbers 1 to 118 have been observed. Synthesis of new elements is accomplished by bombarding target atoms of heavy elements with ions, such that the sum of the atomic numbers of the target and ion elements equals the atomic number of the element being created. In general, the half-life of a nuclide becomes shorter as atomic number increases, though undiscovered nuclides with certain "magic" numbers of protons and neutrons may have relatively longer half-lives and comprise an island of stability. A hypothetical element composed only of neutrons has also been proposed and would have atomic number 0. See also Effective atomic number Mass number Neutron number Atomic theory Chemical element History of the periodic table List of elements by atomic number Prout's hypothesis References Chemical properties Nuclear physics Atoms Dimensionless numbers of chemistry Numbers
Hence, it is the atomic number alone that determines the chemical properties of an element; and it is for this reason that an element can be defined as consisting of any mixture of atoms with a given atomic number. New elements The quest for new elements is usually described using atomic numbers. As of , all elements with atomic numbers 1 to 118 have been observed. Synthesis of new elements is accomplished by bombarding target atoms of heavy elements with ions, such that the sum of the atomic numbers of the target and ion elements equals the atomic number of the element being created. In general, the half-life of a nuclide becomes shorter as atomic number increases, though undiscovered nuclides with certain "magic" numbers of protons and neutrons may have relatively longer half-lives and comprise an island of stability. A hypothetical element composed only of neutrons has also been proposed and would have atomic number 0. See also Effective atomic number Mass number Neutron number Atomic theory Chemical element History of the periodic table List of elements by atomic number Prout's hypothesis References Chemical properties Nuclear physics Atoms Dimensionless numbers of chemistry Numbers
Hence, it is the atomic number alone that determines the chemical properties of an element; and it is for this reason that an element can be defined as consisting of any mixture of atoms with a given atomic number. New elements The quest for new elements is usually described using atomic numbers. As of , all elements with atomic numbers 1 to 118 have been observed. Synthesis of new elements is accomplished by bombarding target atoms of heavy elements with ions, such that the sum of the atomic numbers of the target and ion elements equals the atomic number of the element being created. In general, the half-life of a nuclide becomes shorter as atomic number increases, though undiscovered nuclides with certain "magic" numbers of protons and neutrons may have relatively longer half-lives and comprise an island of stability. A hypothetical element composed only of neutrons has also been proposed and would have atomic number 0. See also Effective atomic number Mass number Neutron number Atomic theory Chemical element History of the periodic table List of elements by atomic number Prout's hypothesis References Chemical properties Nuclear physics Atoms Dimensionless numbers of chemistry Numbers
Anatomy Anatomy (Greek anatomē, 'dissection') is the branch of biology concerned with the study of the structure of organisms and their parts. Anatomy is a branch of natural science which deals with the structural organization of living things. It is an old science, having its beginnings in prehistoric times. Anatomy is inherently tied to developmental biology, embryology, comparative anatomy, evolutionary biology, and phylogeny, as these are the processes by which anatomy is generated, both over immediate and long-term timescales. Anatomy and physiology, which study the structure and function of organisms and their parts respectively, make a natural pair of related disciplines, and are often studied together. Human anatomy is one of the essential basic sciences that are applied in medicine. The discipline of anatomy is divided into macroscopic and microscopic. Macroscopic anatomy, or gross anatomy, is the examination of an animal's body parts using unaided eyesight. Gross anatomy also includes the branch of superficial anatomy. Microscopic anatomy involves the use of optical instruments in the study of the tissues of various structures, known as histology, and also in the study of cells. The history of anatomy is characterized by a progressive understanding of the functions of the organs and structures of the human body. Methods have also improved dramatically, advancing from the examination of animals by dissection of carcasses and cadavers (corpses) to 20th century medical imaging techniques including X-ray, ultrasound, and magnetic resonance imaging. Definition Derived from the Greek anatomē "dissection" (from anatémnō "I cut up, cut open" from ἀνά aná "up", and τέμνω témnō "I cut"), anatomy is the scientific study of the structure of organisms including their systems, organs and tissues. It includes the appearance and position of the various parts, the materials from which they are composed, their locations and their relationships with other parts. Anatomy is quite distinct from physiology and biochemistry, which deal respectively with the functions of those parts and the chemical processes involved. For example, an anatomist is concerned with the shape, size, position, structure, blood supply and innervation of an organ such as the liver; while a physiologist is interested in the production of bile, the role of the liver in nutrition and the regulation of bodily functions. The discipline of anatomy can be subdivided into a number of branches including gross or macroscopic anatomy and microscopic anatomy. Gross anatomy is the study of structures large enough to be seen with the naked eye, and also includes superficial anatomy or surface anatomy, the study by sight of the external body features. Microscopic anatomy is the study of structures on a microscopic scale, along with histology (the study of tissues), and embryology (the study of an organism in its immature condition). Anatomy can be studied using both invasive and non-invasive methods with the goal of obtaining information about the structure and organization of organs and systems.
Anatomy Anatomy (Greek anatomē, 'dissection') is the branch of biology concerned with the study of the structure of organisms and their parts. Anatomy is a branch of natural science which deals with the structural organization of living things. It is an old science, having its beginnings in prehistoric times. Anatomy is inherently tied to developmental biology, embryology, comparative anatomy, evolutionary biology, and phylogeny, as these are the processes by which anatomy is generated, both over immediate and long-term timescales. Anatomy and physiology, which study the structure and function of organisms and their parts respectively, make a natural pair of related disciplines, and are often studied together. Human anatomy is one of the essential basic sciences that are applied in medicine. The discipline of anatomy is divided into macroscopic and microscopic. Macroscopic anatomy, or gross anatomy, is the examination of an animal's body parts using unaided eyesight. Gross anatomy also includes the branch of superficial anatomy. Microscopic anatomy involves the use of optical instruments in the study of the tissues of various structures, known as histology, and also in the study of cells. The history of anatomy is characterized by a progressive understanding of the functions of the organs and structures of the human body. Methods have also improved dramatically, advancing from the examination of animals by dissection of carcasses and cadavers (corpses) to 20th century medical imaging techniques including X-ray, ultrasound, and magnetic resonance imaging. Definition Derived from the Greek anatomē "dissection" (from anatémnō "I cut up, cut open" from ἀνά aná "up", and τέμνω témnō "I cut"), anatomy is the scientific study of the structure of organisms including their systems, organs and tissues. It includes the appearance and position of the various parts, the materials from which they are composed, their locations and their relationships with other parts. Anatomy is quite distinct from physiology and biochemistry, which deal respectively with the functions of those parts and the chemical processes involved. For example, an anatomist is concerned with the shape, size, position, structure, blood supply and innervation of an organ such as the liver; while a physiologist is interested in the production of bile, the role of the liver in nutrition and the regulation of bodily functions. The discipline of anatomy can be subdivided into a number of branches including gross or macroscopic anatomy and microscopic anatomy. Gross anatomy is the study of structures large enough to be seen with the naked eye, and also includes superficial anatomy or surface anatomy, the study by sight of the external body features. Microscopic anatomy is the study of structures on a microscopic scale, along with histology (the study of tissues), and embryology (the study of an organism in its immature condition). Anatomy can be studied using both invasive and non-invasive methods with the goal of obtaining information about the structure and organization of organs and systems.
Methods used include dissection, in which a body is opened and its organs studied, and endoscopy, in which a video camera-equipped instrument is inserted through a small incision in the body wall and used to explore the internal organs and other structures. Angiography using X-rays or magnetic resonance angiography are methods to visualize blood vessels. The term "anatomy" is commonly taken to refer to human anatomy. However, substantially the same structures and tissues are found throughout the rest of the animal kingdom and the term also includes the anatomy of other animals. The term zootomy is also sometimes used to specifically refer to non-human animals. The structure and tissues of plants are of a dissimilar nature and they are studied in plant anatomy. Animal tissues The kingdom Animalia contains multicellular organisms that are heterotrophic and motile (although some have secondarily adopted a sessile lifestyle). Most animals have bodies differentiated into separate tissues and these animals are also known as eumetazoans. They have an internal digestive chamber, with one or two openings; the gametes are produced in multicellular sex organs, and the zygotes include a blastula stage in their embryonic development. Metazoans do not include the sponges, which have undifferentiated cells. Unlike plant cells, animal cells have neither a cell wall nor chloroplasts. Vacuoles, when present, are more in number and much smaller than those in the plant cell. The body tissues are composed of numerous types of cell, including those found in muscles, nerves and skin. Each typically has a cell membrane formed of phospholipids, cytoplasm and a nucleus. All of the different cells of an animal are derived from the embryonic germ layers. Those simpler invertebrates which are formed from two germ layers of ectoderm and endoderm are called diploblastic and the more developed animals whose structures and organs are formed from three germ layers are called triploblastic. All of a triploblastic animal's tissues and organs are derived from the three germ layers of the embryo, the ectoderm, mesoderm and endoderm. Animal tissues can be grouped into four basic types: connective, epithelial, muscle and nervous tissue. Connective tissue Connective tissues are fibrous and made up of cells scattered among inorganic material called the extracellular matrix. Connective tissue gives shape to organs and holds them in place. The main types are loose connective tissue, adipose tissue, fibrous connective tissue, cartilage and bone. The extracellular matrix contains proteins, the chief and most abundant of which is collagen. Collagen plays a major part in organizing and maintaining tissues. The matrix can be modified to form a skeleton to support or protect the body. An exoskeleton is a thickened, rigid cuticle which is stiffened by mineralization, as in crustaceans or by the cross-linking of its proteins as in insects. An endoskeleton is internal and present in all developed animals, as well as in many of those less developed. Epithelium Epithelial tissue is composed of closely packed cells, bound to each other by cell adhesion molecules, with little intercellular space.
Methods used include dissection, in which a body is opened and its organs studied, and endoscopy, in which a video camera-equipped instrument is inserted through a small incision in the body wall and used to explore the internal organs and other structures. Angiography using X-rays or magnetic resonance angiography are methods to visualize blood vessels. The term "anatomy" is commonly taken to refer to human anatomy. However, substantially the same structures and tissues are found throughout the rest of the animal kingdom and the term also includes the anatomy of other animals. The term zootomy is also sometimes used to specifically refer to non-human animals. The structure and tissues of plants are of a dissimilar nature and they are studied in plant anatomy. Animal tissues The kingdom Animalia contains multicellular organisms that are heterotrophic and motile (although some have secondarily adopted a sessile lifestyle). Most animals have bodies differentiated into separate tissues and these animals are also known as eumetazoans. They have an internal digestive chamber, with one or two openings; the gametes are produced in multicellular sex organs, and the zygotes include a blastula stage in their embryonic development. Metazoans do not include the sponges, which have undifferentiated cells. Unlike plant cells, animal cells have neither a cell wall nor chloroplasts. Vacuoles, when present, are more in number and much smaller than those in the plant cell. The body tissues are composed of numerous types of cell, including those found in muscles, nerves and skin. Each typically has a cell membrane formed of phospholipids, cytoplasm and a nucleus. All of the different cells of an animal are derived from the embryonic germ layers. Those simpler invertebrates which are formed from two germ layers of ectoderm and endoderm are called diploblastic and the more developed animals whose structures and organs are formed from three germ layers are called triploblastic. All of a triploblastic animal's tissues and organs are derived from the three germ layers of the embryo, the ectoderm, mesoderm and endoderm. Animal tissues can be grouped into four basic types: connective, epithelial, muscle and nervous tissue. Connective tissue Connective tissues are fibrous and made up of cells scattered among inorganic material called the extracellular matrix. Connective tissue gives shape to organs and holds them in place. The main types are loose connective tissue, adipose tissue, fibrous connective tissue, cartilage and bone. The extracellular matrix contains proteins, the chief and most abundant of which is collagen. Collagen plays a major part in organizing and maintaining tissues. The matrix can be modified to form a skeleton to support or protect the body. An exoskeleton is a thickened, rigid cuticle which is stiffened by mineralization, as in crustaceans or by the cross-linking of its proteins as in insects. An endoskeleton is internal and present in all developed animals, as well as in many of those less developed. Epithelium Epithelial tissue is composed of closely packed cells, bound to each other by cell adhesion molecules, with little intercellular space.
Methods used include dissection, in which a body is opened and its organs studied, and endoscopy, in which a video camera-equipped instrument is inserted through a small incision in the body wall and used to explore the internal organs and other structures. Angiography using X-rays or magnetic resonance angiography are methods to visualize blood vessels. The term "anatomy" is commonly taken to refer to human anatomy. However, substantially the same structures and tissues are found throughout the rest of the animal kingdom and the term also includes the anatomy of other animals. The term zootomy is also sometimes used to specifically refer to non-human animals. The structure and tissues of plants are of a dissimilar nature and they are studied in plant anatomy. Animal tissues The kingdom Animalia contains multicellular organisms that are heterotrophic and motile (although some have secondarily adopted a sessile lifestyle). Most animals have bodies differentiated into separate tissues and these animals are also known as eumetazoans. They have an internal digestive chamber, with one or two openings; the gametes are produced in multicellular sex organs, and the zygotes include a blastula stage in their embryonic development. Metazoans do not include the sponges, which have undifferentiated cells. Unlike plant cells, animal cells have neither a cell wall nor chloroplasts. Vacuoles, when present, are more in number and much smaller than those in the plant cell. The body tissues are composed of numerous types of cell, including those found in muscles, nerves and skin. Each typically has a cell membrane formed of phospholipids, cytoplasm and a nucleus. All of the different cells of an animal are derived from the embryonic germ layers. Those simpler invertebrates which are formed from two germ layers of ectoderm and endoderm are called diploblastic and the more developed animals whose structures and organs are formed from three germ layers are called triploblastic. All of a triploblastic animal's tissues and organs are derived from the three germ layers of the embryo, the ectoderm, mesoderm and endoderm. Animal tissues can be grouped into four basic types: connective, epithelial, muscle and nervous tissue. Connective tissue Connective tissues are fibrous and made up of cells scattered among inorganic material called the extracellular matrix. Connective tissue gives shape to organs and holds them in place. The main types are loose connective tissue, adipose tissue, fibrous connective tissue, cartilage and bone. The extracellular matrix contains proteins, the chief and most abundant of which is collagen. Collagen plays a major part in organizing and maintaining tissues. The matrix can be modified to form a skeleton to support or protect the body. An exoskeleton is a thickened, rigid cuticle which is stiffened by mineralization, as in crustaceans or by the cross-linking of its proteins as in insects. An endoskeleton is internal and present in all developed animals, as well as in many of those less developed. Epithelium Epithelial tissue is composed of closely packed cells, bound to each other by cell adhesion molecules, with little intercellular space.
Epithelial cells can be squamous (flat), cuboidal or columnar and rest on a basal lamina, the upper layer of the basement membrane, the lower layer is the reticular lamina lying next to the connective tissue in the extracellular matrix secreted by the epithelial cells. There are many different types of epithelium, modified to suit a particular function. In the respiratory tract there is a type of ciliated epithelial lining; in the small intestine there are microvilli on the epithelial lining and in the large intestine there are intestinal villi. Skin consists of an outer layer of keratinized stratified squamous epithelium that covers the exterior of the vertebrate body. Keratinocytes make up to 95% of the cells in the skin. The epithelial cells on the external surface of the body typically secrete an extracellular matrix in the form of a cuticle. In simple animals this may just be a coat of glycoproteins. In more advanced animals, many glands are formed of epithelial cells. Muscle tissue Muscle cells (myocytes) form the active contractile tissue of the body. Muscle tissue functions to produce force and cause motion, either locomotion or movement within internal organs. Muscle is formed of contractile filaments and is separated into three main types; smooth muscle, skeletal muscle and cardiac muscle. Smooth muscle has no striations when examined microscopically. It contracts slowly but maintains contractibility over a wide range of stretch lengths. It is found in such organs as sea anemone tentacles and the body wall of sea cucumbers. Skeletal muscle contracts rapidly but has a limited range of extension. It is found in the movement of appendages and jaws. Obliquely striated muscle is intermediate between the other two. The filaments are staggered and this is the type of muscle found in earthworms that can extend slowly or make rapid contractions. In higher animals striated muscles occur in bundles attached to bone to provide movement and are often arranged in antagonistic sets. Smooth muscle is found in the walls of the uterus, bladder, intestines, stomach, oesophagus, respiratory airways, and blood vessels. Cardiac muscle is found only in the heart, allowing it to contract and pump blood round the body. Nervous tissue Nervous tissue is composed of many nerve cells known as neurons which transmit information. In some slow-moving radially symmetrical marine animals such as ctenophores and cnidarians (including sea anemones and jellyfish), the nerves form a nerve net, but in most animals they are organized longitudinally into bundles. In simple animals, receptor neurons in the body wall cause a local reaction to a stimulus. In more complex animals, specialized receptor cells such as chemoreceptors and photoreceptors are found in groups and send messages along neural networks to other parts of the organism. Neurons can be connected together in ganglia. In higher animals, specialized receptors are the basis of sense organs and there is a central nervous system (brain and spinal cord) and a peripheral nervous system.
Epithelial cells can be squamous (flat), cuboidal or columnar and rest on a basal lamina, the upper layer of the basement membrane, the lower layer is the reticular lamina lying next to the connective tissue in the extracellular matrix secreted by the epithelial cells. There are many different types of epithelium, modified to suit a particular function. In the respiratory tract there is a type of ciliated epithelial lining; in the small intestine there are microvilli on the epithelial lining and in the large intestine there are intestinal villi. Skin consists of an outer layer of keratinized stratified squamous epithelium that covers the exterior of the vertebrate body. Keratinocytes make up to 95% of the cells in the skin. The epithelial cells on the external surface of the body typically secrete an extracellular matrix in the form of a cuticle. In simple animals this may just be a coat of glycoproteins. In more advanced animals, many glands are formed of epithelial cells. Muscle tissue Muscle cells (myocytes) form the active contractile tissue of the body. Muscle tissue functions to produce force and cause motion, either locomotion or movement within internal organs. Muscle is formed of contractile filaments and is separated into three main types; smooth muscle, skeletal muscle and cardiac muscle. Smooth muscle has no striations when examined microscopically. It contracts slowly but maintains contractibility over a wide range of stretch lengths. It is found in such organs as sea anemone tentacles and the body wall of sea cucumbers. Skeletal muscle contracts rapidly but has a limited range of extension. It is found in the movement of appendages and jaws. Obliquely striated muscle is intermediate between the other two. The filaments are staggered and this is the type of muscle found in earthworms that can extend slowly or make rapid contractions. In higher animals striated muscles occur in bundles attached to bone to provide movement and are often arranged in antagonistic sets. Smooth muscle is found in the walls of the uterus, bladder, intestines, stomach, oesophagus, respiratory airways, and blood vessels. Cardiac muscle is found only in the heart, allowing it to contract and pump blood round the body. Nervous tissue Nervous tissue is composed of many nerve cells known as neurons which transmit information. In some slow-moving radially symmetrical marine animals such as ctenophores and cnidarians (including sea anemones and jellyfish), the nerves form a nerve net, but in most animals they are organized longitudinally into bundles. In simple animals, receptor neurons in the body wall cause a local reaction to a stimulus. In more complex animals, specialized receptor cells such as chemoreceptors and photoreceptors are found in groups and send messages along neural networks to other parts of the organism. Neurons can be connected together in ganglia. In higher animals, specialized receptors are the basis of sense organs and there is a central nervous system (brain and spinal cord) and a peripheral nervous system.
Epithelial cells can be squamous (flat), cuboidal or columnar and rest on a basal lamina, the upper layer of the basement membrane, the lower layer is the reticular lamina lying next to the connective tissue in the extracellular matrix secreted by the epithelial cells. There are many different types of epithelium, modified to suit a particular function. In the respiratory tract there is a type of ciliated epithelial lining; in the small intestine there are microvilli on the epithelial lining and in the large intestine there are intestinal villi. Skin consists of an outer layer of keratinized stratified squamous epithelium that covers the exterior of the vertebrate body. Keratinocytes make up to 95% of the cells in the skin. The epithelial cells on the external surface of the body typically secrete an extracellular matrix in the form of a cuticle. In simple animals this may just be a coat of glycoproteins. In more advanced animals, many glands are formed of epithelial cells. Muscle tissue Muscle cells (myocytes) form the active contractile tissue of the body. Muscle tissue functions to produce force and cause motion, either locomotion or movement within internal organs. Muscle is formed of contractile filaments and is separated into three main types; smooth muscle, skeletal muscle and cardiac muscle. Smooth muscle has no striations when examined microscopically. It contracts slowly but maintains contractibility over a wide range of stretch lengths. It is found in such organs as sea anemone tentacles and the body wall of sea cucumbers. Skeletal muscle contracts rapidly but has a limited range of extension. It is found in the movement of appendages and jaws. Obliquely striated muscle is intermediate between the other two. The filaments are staggered and this is the type of muscle found in earthworms that can extend slowly or make rapid contractions. In higher animals striated muscles occur in bundles attached to bone to provide movement and are often arranged in antagonistic sets. Smooth muscle is found in the walls of the uterus, bladder, intestines, stomach, oesophagus, respiratory airways, and blood vessels. Cardiac muscle is found only in the heart, allowing it to contract and pump blood round the body. Nervous tissue Nervous tissue is composed of many nerve cells known as neurons which transmit information. In some slow-moving radially symmetrical marine animals such as ctenophores and cnidarians (including sea anemones and jellyfish), the nerves form a nerve net, but in most animals they are organized longitudinally into bundles. In simple animals, receptor neurons in the body wall cause a local reaction to a stimulus. In more complex animals, specialized receptor cells such as chemoreceptors and photoreceptors are found in groups and send messages along neural networks to other parts of the organism. Neurons can be connected together in ganglia. In higher animals, specialized receptors are the basis of sense organs and there is a central nervous system (brain and spinal cord) and a peripheral nervous system.
The latter consists of sensory nerves that transmit information from sense organs and motor nerves that influence target organs. The peripheral nervous system is divided into the somatic nervous system which conveys sensation and controls voluntary muscle, and the autonomic nervous system which involuntarily controls smooth muscle, certain glands and internal organs, including the stomach. Vertebrate anatomy All vertebrates have a similar basic body plan and at some point in their lives, mostly in the embryonic stage, share the major chordate characteristics; a stiffening rod, the notochord; a dorsal hollow tube of nervous material, the neural tube; pharyngeal arches; and a tail posterior to the anus. The spinal cord is protected by the vertebral column and is above the notochord and the gastrointestinal tract is below it. Nervous tissue is derived from the ectoderm, connective tissues are derived from mesoderm, and gut is derived from the endoderm. At the posterior end is a tail which continues the spinal cord and vertebrae but not the gut. The mouth is found at the anterior end of the animal, and the anus at the base of the tail. The defining characteristic of a vertebrate is the vertebral column, formed in the development of the segmented series of vertebrae. In most vertebrates the notochord becomes the nucleus pulposus of the intervertebral discs. However, a few vertebrates, such as the sturgeon and the coelacanth retain the notochord into adulthood. Jawed vertebrates are typified by paired appendages, fins or legs, which may be secondarily lost. The limbs of vertebrates are considered to be homologous because the same underlying skeletal structure was inherited from their last common ancestor. This is one of the arguments put forward by Charles Darwin to support his theory of evolution. Fish anatomy The body of a fish is divided into a head, trunk and tail, although the divisions between the three are not always externally visible. The skeleton, which forms the support structure inside the fish, is either made of cartilage, in cartilaginous fish, or bone in bony fish. The main skeletal element is the vertebral column, composed of articulating vertebrae which are lightweight yet strong. The ribs attach to the spine and there are no limbs or limb girdles. The main external features of the fish, the fins, are composed of either bony or soft spines called rays, which with the exception of the caudal fins, have no direct connection with the spine. They are supported by the muscles which compose the main part of the trunk. The heart has two chambers and pumps the blood through the respiratory surfaces of the gills and on round the body in a single circulatory loop. The eyes are adapted for seeing underwater and have only local vision. There is an inner ear but no external or middle ear. Low frequency vibrations are detected by the lateral line system of sense organs that run along the length of the sides of fish, and these respond to nearby movements and to changes in water pressure.
The latter consists of sensory nerves that transmit information from sense organs and motor nerves that influence target organs. The peripheral nervous system is divided into the somatic nervous system which conveys sensation and controls voluntary muscle, and the autonomic nervous system which involuntarily controls smooth muscle, certain glands and internal organs, including the stomach. Vertebrate anatomy All vertebrates have a similar basic body plan and at some point in their lives, mostly in the embryonic stage, share the major chordate characteristics; a stiffening rod, the notochord; a dorsal hollow tube of nervous material, the neural tube; pharyngeal arches; and a tail posterior to the anus. The spinal cord is protected by the vertebral column and is above the notochord and the gastrointestinal tract is below it. Nervous tissue is derived from the ectoderm, connective tissues are derived from mesoderm, and gut is derived from the endoderm. At the posterior end is a tail which continues the spinal cord and vertebrae but not the gut. The mouth is found at the anterior end of the animal, and the anus at the base of the tail. The defining characteristic of a vertebrate is the vertebral column, formed in the development of the segmented series of vertebrae. In most vertebrates the notochord becomes the nucleus pulposus of the intervertebral discs. However, a few vertebrates, such as the sturgeon and the coelacanth retain the notochord into adulthood. Jawed vertebrates are typified by paired appendages, fins or legs, which may be secondarily lost. The limbs of vertebrates are considered to be homologous because the same underlying skeletal structure was inherited from their last common ancestor. This is one of the arguments put forward by Charles Darwin to support his theory of evolution. Fish anatomy The body of a fish is divided into a head, trunk and tail, although the divisions between the three are not always externally visible. The skeleton, which forms the support structure inside the fish, is either made of cartilage, in cartilaginous fish, or bone in bony fish. The main skeletal element is the vertebral column, composed of articulating vertebrae which are lightweight yet strong. The ribs attach to the spine and there are no limbs or limb girdles. The main external features of the fish, the fins, are composed of either bony or soft spines called rays, which with the exception of the caudal fins, have no direct connection with the spine. They are supported by the muscles which compose the main part of the trunk. The heart has two chambers and pumps the blood through the respiratory surfaces of the gills and on round the body in a single circulatory loop. The eyes are adapted for seeing underwater and have only local vision. There is an inner ear but no external or middle ear. Low frequency vibrations are detected by the lateral line system of sense organs that run along the length of the sides of fish, and these respond to nearby movements and to changes in water pressure.
The latter consists of sensory nerves that transmit information from sense organs and motor nerves that influence target organs. The peripheral nervous system is divided into the somatic nervous system which conveys sensation and controls voluntary muscle, and the autonomic nervous system which involuntarily controls smooth muscle, certain glands and internal organs, including the stomach. Vertebrate anatomy All vertebrates have a similar basic body plan and at some point in their lives, mostly in the embryonic stage, share the major chordate characteristics; a stiffening rod, the notochord; a dorsal hollow tube of nervous material, the neural tube; pharyngeal arches; and a tail posterior to the anus. The spinal cord is protected by the vertebral column and is above the notochord and the gastrointestinal tract is below it. Nervous tissue is derived from the ectoderm, connective tissues are derived from mesoderm, and gut is derived from the endoderm. At the posterior end is a tail which continues the spinal cord and vertebrae but not the gut. The mouth is found at the anterior end of the animal, and the anus at the base of the tail. The defining characteristic of a vertebrate is the vertebral column, formed in the development of the segmented series of vertebrae. In most vertebrates the notochord becomes the nucleus pulposus of the intervertebral discs. However, a few vertebrates, such as the sturgeon and the coelacanth retain the notochord into adulthood. Jawed vertebrates are typified by paired appendages, fins or legs, which may be secondarily lost. The limbs of vertebrates are considered to be homologous because the same underlying skeletal structure was inherited from their last common ancestor. This is one of the arguments put forward by Charles Darwin to support his theory of evolution. Fish anatomy The body of a fish is divided into a head, trunk and tail, although the divisions between the three are not always externally visible. The skeleton, which forms the support structure inside the fish, is either made of cartilage, in cartilaginous fish, or bone in bony fish. The main skeletal element is the vertebral column, composed of articulating vertebrae which are lightweight yet strong. The ribs attach to the spine and there are no limbs or limb girdles. The main external features of the fish, the fins, are composed of either bony or soft spines called rays, which with the exception of the caudal fins, have no direct connection with the spine. They are supported by the muscles which compose the main part of the trunk. The heart has two chambers and pumps the blood through the respiratory surfaces of the gills and on round the body in a single circulatory loop. The eyes are adapted for seeing underwater and have only local vision. There is an inner ear but no external or middle ear. Low frequency vibrations are detected by the lateral line system of sense organs that run along the length of the sides of fish, and these respond to nearby movements and to changes in water pressure.
Sharks and rays are basal fish with numerous primitive anatomical features similar to those of ancient fish, including skeletons composed of cartilage. Their bodies tend to be dorso-ventrally flattened, they usually have five pairs of gill slits and a large mouth set on the underside of the head. The dermis is covered with separate dermal placoid scales. They have a cloaca into which the urinary and genital passages open, but not a swim bladder. Cartilaginous fish produce a small number of large, yolky eggs. Some species are ovoviviparous and the young develop internally but others are oviparous and the larvae develop externally in egg cases. The bony fish lineage shows more derived anatomical traits, often with major evolutionary changes from the features of ancient fish. They have a bony skeleton, are generally laterally flattened, have five pairs of gills protected by an operculum, and a mouth at or near the tip of the snout. The dermis is covered with overlapping scales. Bony fish have a swim bladder which helps them maintain a constant depth in the water column, but not a cloaca. They mostly spawn a large number of small eggs with little yolk which they broadcast into the water column. Amphibian anatomy Amphibians are a class of animals comprising frogs, salamanders and caecilians. They are tetrapods, but the caecilians and a few species of salamander have either no limbs or their limbs are much reduced in size. Their main bones are hollow and lightweight and are fully ossified and the vertebrae interlock with each other and have articular processes. Their ribs are usually short and may be fused to the vertebrae. Their skulls are mostly broad and short, and are often incompletely ossified. Their skin contains little keratin and lacks scales, but contains many mucous glands and in some species, poison glands. The hearts of amphibians have three chambers, two atria and one ventricle. They have a urinary bladder and nitrogenous waste products are excreted primarily as urea. Amphibians breathe by means of buccal pumping, a pump action in which air is first drawn into the buccopharyngeal region through the nostrils. These are then closed and the air is forced into the lungs by contraction of the throat. They supplement this with gas exchange through the skin which needs to be kept moist. In frogs the pelvic girdle is robust and the hind legs are much longer and stronger than the forelimbs. The feet have four or five digits and the toes are often webbed for swimming or have suction pads for climbing. Frogs have large eyes and no tail. Salamanders resemble lizards in appearance; their short legs project sideways, the belly is close to or in contact with the ground and they have a long tail. Caecilians superficially resemble earthworms and are limbless. They burrow by means of zones of muscle contractions which move along the body and they swim by undulating their body from side to side.
Sharks and rays are basal fish with numerous primitive anatomical features similar to those of ancient fish, including skeletons composed of cartilage. Their bodies tend to be dorso-ventrally flattened, they usually have five pairs of gill slits and a large mouth set on the underside of the head. The dermis is covered with separate dermal placoid scales. They have a cloaca into which the urinary and genital passages open, but not a swim bladder. Cartilaginous fish produce a small number of large, yolky eggs. Some species are ovoviviparous and the young develop internally but others are oviparous and the larvae develop externally in egg cases. The bony fish lineage shows more derived anatomical traits, often with major evolutionary changes from the features of ancient fish. They have a bony skeleton, are generally laterally flattened, have five pairs of gills protected by an operculum, and a mouth at or near the tip of the snout. The dermis is covered with overlapping scales. Bony fish have a swim bladder which helps them maintain a constant depth in the water column, but not a cloaca. They mostly spawn a large number of small eggs with little yolk which they broadcast into the water column. Amphibian anatomy Amphibians are a class of animals comprising frogs, salamanders and caecilians. They are tetrapods, but the caecilians and a few species of salamander have either no limbs or their limbs are much reduced in size. Their main bones are hollow and lightweight and are fully ossified and the vertebrae interlock with each other and have articular processes. Their ribs are usually short and may be fused to the vertebrae. Their skulls are mostly broad and short, and are often incompletely ossified. Their skin contains little keratin and lacks scales, but contains many mucous glands and in some species, poison glands. The hearts of amphibians have three chambers, two atria and one ventricle. They have a urinary bladder and nitrogenous waste products are excreted primarily as urea. Amphibians breathe by means of buccal pumping, a pump action in which air is first drawn into the buccopharyngeal region through the nostrils. These are then closed and the air is forced into the lungs by contraction of the throat. They supplement this with gas exchange through the skin which needs to be kept moist. In frogs the pelvic girdle is robust and the hind legs are much longer and stronger than the forelimbs. The feet have four or five digits and the toes are often webbed for swimming or have suction pads for climbing. Frogs have large eyes and no tail. Salamanders resemble lizards in appearance; their short legs project sideways, the belly is close to or in contact with the ground and they have a long tail. Caecilians superficially resemble earthworms and are limbless. They burrow by means of zones of muscle contractions which move along the body and they swim by undulating their body from side to side.
Sharks and rays are basal fish with numerous primitive anatomical features similar to those of ancient fish, including skeletons composed of cartilage. Their bodies tend to be dorso-ventrally flattened, they usually have five pairs of gill slits and a large mouth set on the underside of the head. The dermis is covered with separate dermal placoid scales. They have a cloaca into which the urinary and genital passages open, but not a swim bladder. Cartilaginous fish produce a small number of large, yolky eggs. Some species are ovoviviparous and the young develop internally but others are oviparous and the larvae develop externally in egg cases. The bony fish lineage shows more derived anatomical traits, often with major evolutionary changes from the features of ancient fish. They have a bony skeleton, are generally laterally flattened, have five pairs of gills protected by an operculum, and a mouth at or near the tip of the snout. The dermis is covered with overlapping scales. Bony fish have a swim bladder which helps them maintain a constant depth in the water column, but not a cloaca. They mostly spawn a large number of small eggs with little yolk which they broadcast into the water column. Amphibian anatomy Amphibians are a class of animals comprising frogs, salamanders and caecilians. They are tetrapods, but the caecilians and a few species of salamander have either no limbs or their limbs are much reduced in size. Their main bones are hollow and lightweight and are fully ossified and the vertebrae interlock with each other and have articular processes. Their ribs are usually short and may be fused to the vertebrae. Their skulls are mostly broad and short, and are often incompletely ossified. Their skin contains little keratin and lacks scales, but contains many mucous glands and in some species, poison glands. The hearts of amphibians have three chambers, two atria and one ventricle. They have a urinary bladder and nitrogenous waste products are excreted primarily as urea. Amphibians breathe by means of buccal pumping, a pump action in which air is first drawn into the buccopharyngeal region through the nostrils. These are then closed and the air is forced into the lungs by contraction of the throat. They supplement this with gas exchange through the skin which needs to be kept moist. In frogs the pelvic girdle is robust and the hind legs are much longer and stronger than the forelimbs. The feet have four or five digits and the toes are often webbed for swimming or have suction pads for climbing. Frogs have large eyes and no tail. Salamanders resemble lizards in appearance; their short legs project sideways, the belly is close to or in contact with the ground and they have a long tail. Caecilians superficially resemble earthworms and are limbless. They burrow by means of zones of muscle contractions which move along the body and they swim by undulating their body from side to side.
Reptile anatomy Reptiles are a class of animals comprising turtles, tuataras, lizards, snakes and crocodiles. They are tetrapods, but the snakes and a few species of lizard either have no limbs or their limbs are much reduced in size. Their bones are better ossified and their skeletons stronger than those of amphibians. The teeth are conical and mostly uniform in size. The surface cells of the epidermis are modified into horny scales which create a waterproof layer. Reptiles are unable to use their skin for respiration as do amphibians and have a more efficient respiratory system drawing air into their lungs by expanding their chest walls. The heart resembles that of the amphibian but there is a septum which more completely separates the oxygenated and deoxygenated bloodstreams. The reproductive system has evolved for internal fertilization, with a copulatory organ present in most species. The eggs are surrounded by amniotic membranes which prevents them from drying out and are laid on land, or develop internally in some species. The bladder is small as nitrogenous waste is excreted as uric acid. Turtles are notable for their protective shells. They have an inflexible trunk encased in a horny carapace above and a plastron below. These are formed from bony plates embedded in the dermis which are overlain by horny ones and are partially fused with the ribs and spine. The neck is long and flexible and the head and the legs can be drawn back inside the shell. Turtles are vegetarians and the typical reptile teeth have been replaced by sharp, horny plates. In aquatic species, the front legs are modified into flippers. Tuataras superficially resemble lizards but the lineages diverged in the Triassic period. There is one living species, Sphenodon punctatus. The skull has two openings (fenestrae) on either side and the jaw is rigidly attached to the skull. There is one row of teeth in the lower jaw and this fits between the two rows in the upper jaw when the animal chews. The teeth are merely projections of bony material from the jaw and eventually wear down. The brain and heart are more primitive than those of other reptiles, and the lungs have a single chamber and lack bronchi. The tuatara has a well-developed parietal eye on its forehead. Lizards have skulls with only one fenestra on each side, the lower bar of bone below the second fenestra having been lost. This results in the jaws being less rigidly attached which allows the mouth to open wider. Lizards are mostly quadrupeds, with the trunk held off the ground by short, sideways-facing legs, but a few species have no limbs and resemble snakes. Lizards have moveable eyelids, eardrums are present and some species have a central parietal eye. Snakes are closely related to lizards, having branched off from a common ancestral lineage during the Cretaceous period, and they share many of the same features.
Reptile anatomy Reptiles are a class of animals comprising turtles, tuataras, lizards, snakes and crocodiles. They are tetrapods, but the snakes and a few species of lizard either have no limbs or their limbs are much reduced in size. Their bones are better ossified and their skeletons stronger than those of amphibians. The teeth are conical and mostly uniform in size. The surface cells of the epidermis are modified into horny scales which create a waterproof layer. Reptiles are unable to use their skin for respiration as do amphibians and have a more efficient respiratory system drawing air into their lungs by expanding their chest walls. The heart resembles that of the amphibian but there is a septum which more completely separates the oxygenated and deoxygenated bloodstreams. The reproductive system has evolved for internal fertilization, with a copulatory organ present in most species. The eggs are surrounded by amniotic membranes which prevents them from drying out and are laid on land, or develop internally in some species. The bladder is small as nitrogenous waste is excreted as uric acid. Turtles are notable for their protective shells. They have an inflexible trunk encased in a horny carapace above and a plastron below. These are formed from bony plates embedded in the dermis which are overlain by horny ones and are partially fused with the ribs and spine. The neck is long and flexible and the head and the legs can be drawn back inside the shell. Turtles are vegetarians and the typical reptile teeth have been replaced by sharp, horny plates. In aquatic species, the front legs are modified into flippers. Tuataras superficially resemble lizards but the lineages diverged in the Triassic period. There is one living species, Sphenodon punctatus. The skull has two openings (fenestrae) on either side and the jaw is rigidly attached to the skull. There is one row of teeth in the lower jaw and this fits between the two rows in the upper jaw when the animal chews. The teeth are merely projections of bony material from the jaw and eventually wear down. The brain and heart are more primitive than those of other reptiles, and the lungs have a single chamber and lack bronchi. The tuatara has a well-developed parietal eye on its forehead. Lizards have skulls with only one fenestra on each side, the lower bar of bone below the second fenestra having been lost. This results in the jaws being less rigidly attached which allows the mouth to open wider. Lizards are mostly quadrupeds, with the trunk held off the ground by short, sideways-facing legs, but a few species have no limbs and resemble snakes. Lizards have moveable eyelids, eardrums are present and some species have a central parietal eye. Snakes are closely related to lizards, having branched off from a common ancestral lineage during the Cretaceous period, and they share many of the same features.
Reptile anatomy Reptiles are a class of animals comprising turtles, tuataras, lizards, snakes and crocodiles. They are tetrapods, but the snakes and a few species of lizard either have no limbs or their limbs are much reduced in size. Their bones are better ossified and their skeletons stronger than those of amphibians. The teeth are conical and mostly uniform in size. The surface cells of the epidermis are modified into horny scales which create a waterproof layer. Reptiles are unable to use their skin for respiration as do amphibians and have a more efficient respiratory system drawing air into their lungs by expanding their chest walls. The heart resembles that of the amphibian but there is a septum which more completely separates the oxygenated and deoxygenated bloodstreams. The reproductive system has evolved for internal fertilization, with a copulatory organ present in most species. The eggs are surrounded by amniotic membranes which prevents them from drying out and are laid on land, or develop internally in some species. The bladder is small as nitrogenous waste is excreted as uric acid. Turtles are notable for their protective shells. They have an inflexible trunk encased in a horny carapace above and a plastron below. These are formed from bony plates embedded in the dermis which are overlain by horny ones and are partially fused with the ribs and spine. The neck is long and flexible and the head and the legs can be drawn back inside the shell. Turtles are vegetarians and the typical reptile teeth have been replaced by sharp, horny plates. In aquatic species, the front legs are modified into flippers. Tuataras superficially resemble lizards but the lineages diverged in the Triassic period. There is one living species, Sphenodon punctatus. The skull has two openings (fenestrae) on either side and the jaw is rigidly attached to the skull. There is one row of teeth in the lower jaw and this fits between the two rows in the upper jaw when the animal chews. The teeth are merely projections of bony material from the jaw and eventually wear down. The brain and heart are more primitive than those of other reptiles, and the lungs have a single chamber and lack bronchi. The tuatara has a well-developed parietal eye on its forehead. Lizards have skulls with only one fenestra on each side, the lower bar of bone below the second fenestra having been lost. This results in the jaws being less rigidly attached which allows the mouth to open wider. Lizards are mostly quadrupeds, with the trunk held off the ground by short, sideways-facing legs, but a few species have no limbs and resemble snakes. Lizards have moveable eyelids, eardrums are present and some species have a central parietal eye. Snakes are closely related to lizards, having branched off from a common ancestral lineage during the Cretaceous period, and they share many of the same features.
The skeleton consists of a skull, a hyoid bone, spine and ribs though a few species retain a vestige of the pelvis and rear limbs in the form of pelvic spurs. The bar under the second fenestra has also been lost and the jaws have extreme flexibility allowing the snake to swallow its prey whole. Snakes lack moveable eyelids, the eyes being covered by transparent "spectacle" scales. They do not have eardrums but can detect ground vibrations through the bones of their skull. Their forked tongues are used as organs of taste and smell and some species have sensory pits on their heads enabling them to locate warm-blooded prey. Crocodilians are large, low-slung aquatic reptiles with long snouts and large numbers of teeth. The head and trunk are dorso-ventrally flattened and the tail is laterally compressed. It undulates from side to side to force the animal through the water when swimming. The tough keratinized scales provide body armour and some are fused to the skull. The nostrils, eyes and ears are elevated above the top of the flat head enabling them to remain above the surface of the water when the animal is floating. Valves seal the nostrils and ears when it is submerged. Unlike other reptiles, crocodilians have hearts with four chambers allowing complete separation of oxygenated and deoxygenated blood. Bird anatomy Birds are tetrapods but though their hind limbs are used for walking or hopping, their front limbs are wings covered with feathers and adapted for flight. Birds are endothermic, have a high metabolic rate, a light skeletal system and powerful muscles. The long bones are thin, hollow and very light. Air sac extensions from the lungs occupy the centre of some bones. The sternum is wide and usually has a keel and the caudal vertebrae are fused. There are no teeth and the narrow jaws are adapted into a horn-covered beak. The eyes are relatively large, particularly in nocturnal species such as owls. They face forwards in predators and sideways in ducks. The feathers are outgrowths of the epidermis and are found in localized bands from where they fan out over the skin. Large flight feathers are found on the wings and tail, contour feathers cover the bird's surface and fine down occurs on young birds and under the contour feathers of water birds. The only cutaneous gland is the single uropygial gland near the base of the tail. This produces an oily secretion that waterproofs the feathers when the bird preens. There are scales on the legs, feet and claws on the tips of the toes. Mammal anatomy Mammals are a diverse class of animals, mostly terrestrial but some are aquatic and others have evolved flapping or gliding flight. They mostly have four limbs but some aquatic mammals have no limbs or limbs modified into fins and the forelimbs of bats are modified into wings. The legs of most mammals are situated below the trunk, which is held well clear of the ground.
The skeleton consists of a skull, a hyoid bone, spine and ribs though a few species retain a vestige of the pelvis and rear limbs in the form of pelvic spurs. The bar under the second fenestra has also been lost and the jaws have extreme flexibility allowing the snake to swallow its prey whole. Snakes lack moveable eyelids, the eyes being covered by transparent "spectacle" scales. They do not have eardrums but can detect ground vibrations through the bones of their skull. Their forked tongues are used as organs of taste and smell and some species have sensory pits on their heads enabling them to locate warm-blooded prey. Crocodilians are large, low-slung aquatic reptiles with long snouts and large numbers of teeth. The head and trunk are dorso-ventrally flattened and the tail is laterally compressed. It undulates from side to side to force the animal through the water when swimming. The tough keratinized scales provide body armour and some are fused to the skull. The nostrils, eyes and ears are elevated above the top of the flat head enabling them to remain above the surface of the water when the animal is floating. Valves seal the nostrils and ears when it is submerged. Unlike other reptiles, crocodilians have hearts with four chambers allowing complete separation of oxygenated and deoxygenated blood. Bird anatomy Birds are tetrapods but though their hind limbs are used for walking or hopping, their front limbs are wings covered with feathers and adapted for flight. Birds are endothermic, have a high metabolic rate, a light skeletal system and powerful muscles. The long bones are thin, hollow and very light. Air sac extensions from the lungs occupy the centre of some bones. The sternum is wide and usually has a keel and the caudal vertebrae are fused. There are no teeth and the narrow jaws are adapted into a horn-covered beak. The eyes are relatively large, particularly in nocturnal species such as owls. They face forwards in predators and sideways in ducks. The feathers are outgrowths of the epidermis and are found in localized bands from where they fan out over the skin. Large flight feathers are found on the wings and tail, contour feathers cover the bird's surface and fine down occurs on young birds and under the contour feathers of water birds. The only cutaneous gland is the single uropygial gland near the base of the tail. This produces an oily secretion that waterproofs the feathers when the bird preens. There are scales on the legs, feet and claws on the tips of the toes. Mammal anatomy Mammals are a diverse class of animals, mostly terrestrial but some are aquatic and others have evolved flapping or gliding flight. They mostly have four limbs but some aquatic mammals have no limbs or limbs modified into fins and the forelimbs of bats are modified into wings. The legs of most mammals are situated below the trunk, which is held well clear of the ground.
The skeleton consists of a skull, a hyoid bone, spine and ribs though a few species retain a vestige of the pelvis and rear limbs in the form of pelvic spurs. The bar under the second fenestra has also been lost and the jaws have extreme flexibility allowing the snake to swallow its prey whole. Snakes lack moveable eyelids, the eyes being covered by transparent "spectacle" scales. They do not have eardrums but can detect ground vibrations through the bones of their skull. Their forked tongues are used as organs of taste and smell and some species have sensory pits on their heads enabling them to locate warm-blooded prey. Crocodilians are large, low-slung aquatic reptiles with long snouts and large numbers of teeth. The head and trunk are dorso-ventrally flattened and the tail is laterally compressed. It undulates from side to side to force the animal through the water when swimming. The tough keratinized scales provide body armour and some are fused to the skull. The nostrils, eyes and ears are elevated above the top of the flat head enabling them to remain above the surface of the water when the animal is floating. Valves seal the nostrils and ears when it is submerged. Unlike other reptiles, crocodilians have hearts with four chambers allowing complete separation of oxygenated and deoxygenated blood. Bird anatomy Birds are tetrapods but though their hind limbs are used for walking or hopping, their front limbs are wings covered with feathers and adapted for flight. Birds are endothermic, have a high metabolic rate, a light skeletal system and powerful muscles. The long bones are thin, hollow and very light. Air sac extensions from the lungs occupy the centre of some bones. The sternum is wide and usually has a keel and the caudal vertebrae are fused. There are no teeth and the narrow jaws are adapted into a horn-covered beak. The eyes are relatively large, particularly in nocturnal species such as owls. They face forwards in predators and sideways in ducks. The feathers are outgrowths of the epidermis and are found in localized bands from where they fan out over the skin. Large flight feathers are found on the wings and tail, contour feathers cover the bird's surface and fine down occurs on young birds and under the contour feathers of water birds. The only cutaneous gland is the single uropygial gland near the base of the tail. This produces an oily secretion that waterproofs the feathers when the bird preens. There are scales on the legs, feet and claws on the tips of the toes. Mammal anatomy Mammals are a diverse class of animals, mostly terrestrial but some are aquatic and others have evolved flapping or gliding flight. They mostly have four limbs but some aquatic mammals have no limbs or limbs modified into fins and the forelimbs of bats are modified into wings. The legs of most mammals are situated below the trunk, which is held well clear of the ground.
The bones of mammals are well ossified and their teeth, which are usually differentiated, are coated in a layer of prismatic enamel. The teeth are shed once (milk teeth) during the animal's lifetime or not at all, as is the case in cetaceans. Mammals have three bones in the middle ear and a cochlea in the inner ear. They are clothed in hair and their skin contains glands which secrete sweat. Some of these glands are specialized as mammary glands, producing milk to feed the young. Mammals breathe with lungs and have a muscular diaphragm separating the thorax from the abdomen which helps them draw air into the lungs. The mammalian heart has four chambers and oxygenated and deoxygenated blood are kept entirely separate. Nitrogenous waste is excreted primarily as urea. Mammals are amniotes, and most are viviparous, giving birth to live young. The exception to this are the egg-laying monotremes, the platypus and the echidnas of Australia. Most other mammals have a placenta through which the developing foetus obtains nourishment, but in marsupials, the foetal stage is very short and the immature young is born and finds its way to its mother's pouch where it latches on to a nipple and completes its development. Human anatomy Humans have the overall body plan of a mammal. Humans have a head, neck, trunk (which includes the thorax and abdomen), two arms and hands, and two legs and feet. Generally, students of certain biological sciences, paramedics, prosthetists and orthotists, physiotherapists, occupational therapists, nurses, podiatrists, and medical students learn gross anatomy and microscopic anatomy from anatomical models, skeletons, textbooks, diagrams, photographs, lectures and tutorials and in addition, medical students generally also learn gross anatomy through practical experience of dissection and inspection of cadavers. The study of microscopic anatomy (or histology) can be aided by practical experience examining histological preparations (or slides) under a microscope. Human anatomy, physiology and biochemistry are complementary basic medical sciences, which are generally taught to medical students in their first year at medical school. Human anatomy can be taught regionally or systemically; that is, respectively, studying anatomy by bodily regions such as the head and chest, or studying by specific systems, such as the nervous or respiratory systems. The major anatomy textbook, Gray's Anatomy, has been reorganized from a systems format to a regional format, in line with modern teaching methods. A thorough working knowledge of anatomy is required by physicians, especially surgeons and doctors working in some diagnostic specialties, such as histopathology and radiology. Academic anatomists are usually employed by universities, medical schools or teaching hospitals. They are often involved in teaching anatomy, and research into certain systems, organs, tissues or cells. Invertebrate anatomy Invertebrates constitute a vast array of living organisms ranging from the simplest unicellular eukaryotes such as Paramecium to such complex multicellular animals as the octopus, lobster and dragonfly. They constitute about 95% of the animal species. By definition, none of these creatures has a backbone.
The bones of mammals are well ossified and their teeth, which are usually differentiated, are coated in a layer of prismatic enamel. The teeth are shed once (milk teeth) during the animal's lifetime or not at all, as is the case in cetaceans. Mammals have three bones in the middle ear and a cochlea in the inner ear. They are clothed in hair and their skin contains glands which secrete sweat. Some of these glands are specialized as mammary glands, producing milk to feed the young. Mammals breathe with lungs and have a muscular diaphragm separating the thorax from the abdomen which helps them draw air into the lungs. The mammalian heart has four chambers and oxygenated and deoxygenated blood are kept entirely separate. Nitrogenous waste is excreted primarily as urea. Mammals are amniotes, and most are viviparous, giving birth to live young. The exception to this are the egg-laying monotremes, the platypus and the echidnas of Australia. Most other mammals have a placenta through which the developing foetus obtains nourishment, but in marsupials, the foetal stage is very short and the immature young is born and finds its way to its mother's pouch where it latches on to a nipple and completes its development. Human anatomy Humans have the overall body plan of a mammal. Humans have a head, neck, trunk (which includes the thorax and abdomen), two arms and hands, and two legs and feet. Generally, students of certain biological sciences, paramedics, prosthetists and orthotists, physiotherapists, occupational therapists, nurses, podiatrists, and medical students learn gross anatomy and microscopic anatomy from anatomical models, skeletons, textbooks, diagrams, photographs, lectures and tutorials and in addition, medical students generally also learn gross anatomy through practical experience of dissection and inspection of cadavers. The study of microscopic anatomy (or histology) can be aided by practical experience examining histological preparations (or slides) under a microscope. Human anatomy, physiology and biochemistry are complementary basic medical sciences, which are generally taught to medical students in their first year at medical school. Human anatomy can be taught regionally or systemically; that is, respectively, studying anatomy by bodily regions such as the head and chest, or studying by specific systems, such as the nervous or respiratory systems. The major anatomy textbook, Gray's Anatomy, has been reorganized from a systems format to a regional format, in line with modern teaching methods. A thorough working knowledge of anatomy is required by physicians, especially surgeons and doctors working in some diagnostic specialties, such as histopathology and radiology. Academic anatomists are usually employed by universities, medical schools or teaching hospitals. They are often involved in teaching anatomy, and research into certain systems, organs, tissues or cells. Invertebrate anatomy Invertebrates constitute a vast array of living organisms ranging from the simplest unicellular eukaryotes such as Paramecium to such complex multicellular animals as the octopus, lobster and dragonfly. They constitute about 95% of the animal species. By definition, none of these creatures has a backbone.
The bones of mammals are well ossified and their teeth, which are usually differentiated, are coated in a layer of prismatic enamel. The teeth are shed once (milk teeth) during the animal's lifetime or not at all, as is the case in cetaceans. Mammals have three bones in the middle ear and a cochlea in the inner ear. They are clothed in hair and their skin contains glands which secrete sweat. Some of these glands are specialized as mammary glands, producing milk to feed the young. Mammals breathe with lungs and have a muscular diaphragm separating the thorax from the abdomen which helps them draw air into the lungs. The mammalian heart has four chambers and oxygenated and deoxygenated blood are kept entirely separate. Nitrogenous waste is excreted primarily as urea. Mammals are amniotes, and most are viviparous, giving birth to live young. The exception to this are the egg-laying monotremes, the platypus and the echidnas of Australia. Most other mammals have a placenta through which the developing foetus obtains nourishment, but in marsupials, the foetal stage is very short and the immature young is born and finds its way to its mother's pouch where it latches on to a nipple and completes its development. Human anatomy Humans have the overall body plan of a mammal. Humans have a head, neck, trunk (which includes the thorax and abdomen), two arms and hands, and two legs and feet. Generally, students of certain biological sciences, paramedics, prosthetists and orthotists, physiotherapists, occupational therapists, nurses, podiatrists, and medical students learn gross anatomy and microscopic anatomy from anatomical models, skeletons, textbooks, diagrams, photographs, lectures and tutorials and in addition, medical students generally also learn gross anatomy through practical experience of dissection and inspection of cadavers. The study of microscopic anatomy (or histology) can be aided by practical experience examining histological preparations (or slides) under a microscope. Human anatomy, physiology and biochemistry are complementary basic medical sciences, which are generally taught to medical students in their first year at medical school. Human anatomy can be taught regionally or systemically; that is, respectively, studying anatomy by bodily regions such as the head and chest, or studying by specific systems, such as the nervous or respiratory systems. The major anatomy textbook, Gray's Anatomy, has been reorganized from a systems format to a regional format, in line with modern teaching methods. A thorough working knowledge of anatomy is required by physicians, especially surgeons and doctors working in some diagnostic specialties, such as histopathology and radiology. Academic anatomists are usually employed by universities, medical schools or teaching hospitals. They are often involved in teaching anatomy, and research into certain systems, organs, tissues or cells. Invertebrate anatomy Invertebrates constitute a vast array of living organisms ranging from the simplest unicellular eukaryotes such as Paramecium to such complex multicellular animals as the octopus, lobster and dragonfly. They constitute about 95% of the animal species. By definition, none of these creatures has a backbone.
The cells of single-cell protozoans have the same basic structure as those of multicellular animals but some parts are specialized into the equivalent of tissues and organs. Locomotion is often provided by cilia or flagella or may proceed via the advance of pseudopodia, food may be gathered by phagocytosis, energy needs may be supplied by photosynthesis and the cell may be supported by an endoskeleton or an exoskeleton. Some protozoans can form multicellular colonies. Metazoans are a multicellular organism, with different groups of cells serving different functions. The most basic types of metazoan tissues are epithelium and connective tissue, both of which are present in nearly all invertebrates. The outer surface of the epidermis is normally formed of epithelial cells and secretes an extracellular matrix which provides support to the organism. An endoskeleton derived from the mesoderm is present in echinoderms, sponges and some cephalopods. Exoskeletons are derived from the epidermis and is composed of chitin in arthropods (insects, spiders, ticks, shrimps, crabs, lobsters). Calcium carbonate constitutes the shells of molluscs, brachiopods and some tube-building polychaete worms and silica forms the exoskeleton of the microscopic diatoms and radiolaria. Other invertebrates may have no rigid structures but the epidermis may secrete a variety of surface coatings such as the pinacoderm of sponges, the gelatinous cuticle of cnidarians (polyps, sea anemones, jellyfish) and the collagenous cuticle of annelids. The outer epithelial layer may include cells of several types including sensory cells, gland cells and stinging cells. There may also be protrusions such as microvilli, cilia, bristles, spines and tubercles. Marcello Malpighi, the father of microscopical anatomy, discovered that plants had tubules similar to those he saw in insects like the silk worm. He observed that when a ring-like portion of bark was removed on a trunk a swelling occurred in the tissues above the ring, and he unmistakably interpreted this as growth stimulated by food coming down from the leaves, and being captured above the ring. Arthropod anatomy Arthropods comprise the largest phylum in the animal kingdom with over a million known invertebrate species. Insects possess segmented bodies supported by a hard-jointed outer covering, the exoskeleton, made mostly of chitin. The segments of the body are organized into three distinct parts, a head, a thorax and an abdomen. The head typically bears a pair of sensory antennae, a pair of compound eyes, one to three simple eyes (ocelli) and three sets of modified appendages that form the mouthparts. The thorax has three pairs of segmented legs, one pair each for the three segments that compose the thorax and one or two pairs of wings. The abdomen is composed of eleven segments, some of which may be fused and houses the digestive, respiratory, excretory and reproductive systems. There is considerable variation between species and many adaptations to the body parts, especially wings, legs, antennae and mouthparts. Spiders a class of arachnids have four pairs of legs; a body of two segments—a cephalothorax and an abdomen. Spiders have no wings and no antennae.
The cells of single-cell protozoans have the same basic structure as those of multicellular animals but some parts are specialized into the equivalent of tissues and organs. Locomotion is often provided by cilia or flagella or may proceed via the advance of pseudopodia, food may be gathered by phagocytosis, energy needs may be supplied by photosynthesis and the cell may be supported by an endoskeleton or an exoskeleton. Some protozoans can form multicellular colonies. Metazoans are a multicellular organism, with different groups of cells serving different functions. The most basic types of metazoan tissues are epithelium and connective tissue, both of which are present in nearly all invertebrates. The outer surface of the epidermis is normally formed of epithelial cells and secretes an extracellular matrix which provides support to the organism. An endoskeleton derived from the mesoderm is present in echinoderms, sponges and some cephalopods. Exoskeletons are derived from the epidermis and is composed of chitin in arthropods (insects, spiders, ticks, shrimps, crabs, lobsters). Calcium carbonate constitutes the shells of molluscs, brachiopods and some tube-building polychaete worms and silica forms the exoskeleton of the microscopic diatoms and radiolaria. Other invertebrates may have no rigid structures but the epidermis may secrete a variety of surface coatings such as the pinacoderm of sponges, the gelatinous cuticle of cnidarians (polyps, sea anemones, jellyfish) and the collagenous cuticle of annelids. The outer epithelial layer may include cells of several types including sensory cells, gland cells and stinging cells. There may also be protrusions such as microvilli, cilia, bristles, spines and tubercles. Marcello Malpighi, the father of microscopical anatomy, discovered that plants had tubules similar to those he saw in insects like the silk worm. He observed that when a ring-like portion of bark was removed on a trunk a swelling occurred in the tissues above the ring, and he unmistakably interpreted this as growth stimulated by food coming down from the leaves, and being captured above the ring. Arthropod anatomy Arthropods comprise the largest phylum in the animal kingdom with over a million known invertebrate species. Insects possess segmented bodies supported by a hard-jointed outer covering, the exoskeleton, made mostly of chitin. The segments of the body are organized into three distinct parts, a head, a thorax and an abdomen. The head typically bears a pair of sensory antennae, a pair of compound eyes, one to three simple eyes (ocelli) and three sets of modified appendages that form the mouthparts. The thorax has three pairs of segmented legs, one pair each for the three segments that compose the thorax and one or two pairs of wings. The abdomen is composed of eleven segments, some of which may be fused and houses the digestive, respiratory, excretory and reproductive systems. There is considerable variation between species and many adaptations to the body parts, especially wings, legs, antennae and mouthparts. Spiders a class of arachnids have four pairs of legs; a body of two segments—a cephalothorax and an abdomen. Spiders have no wings and no antennae.
The cells of single-cell protozoans have the same basic structure as those of multicellular animals but some parts are specialized into the equivalent of tissues and organs. Locomotion is often provided by cilia or flagella or may proceed via the advance of pseudopodia, food may be gathered by phagocytosis, energy needs may be supplied by photosynthesis and the cell may be supported by an endoskeleton or an exoskeleton. Some protozoans can form multicellular colonies. Metazoans are a multicellular organism, with different groups of cells serving different functions. The most basic types of metazoan tissues are epithelium and connective tissue, both of which are present in nearly all invertebrates. The outer surface of the epidermis is normally formed of epithelial cells and secretes an extracellular matrix which provides support to the organism. An endoskeleton derived from the mesoderm is present in echinoderms, sponges and some cephalopods. Exoskeletons are derived from the epidermis and is composed of chitin in arthropods (insects, spiders, ticks, shrimps, crabs, lobsters). Calcium carbonate constitutes the shells of molluscs, brachiopods and some tube-building polychaete worms and silica forms the exoskeleton of the microscopic diatoms and radiolaria. Other invertebrates may have no rigid structures but the epidermis may secrete a variety of surface coatings such as the pinacoderm of sponges, the gelatinous cuticle of cnidarians (polyps, sea anemones, jellyfish) and the collagenous cuticle of annelids. The outer epithelial layer may include cells of several types including sensory cells, gland cells and stinging cells. There may also be protrusions such as microvilli, cilia, bristles, spines and tubercles. Marcello Malpighi, the father of microscopical anatomy, discovered that plants had tubules similar to those he saw in insects like the silk worm. He observed that when a ring-like portion of bark was removed on a trunk a swelling occurred in the tissues above the ring, and he unmistakably interpreted this as growth stimulated by food coming down from the leaves, and being captured above the ring. Arthropod anatomy Arthropods comprise the largest phylum in the animal kingdom with over a million known invertebrate species. Insects possess segmented bodies supported by a hard-jointed outer covering, the exoskeleton, made mostly of chitin. The segments of the body are organized into three distinct parts, a head, a thorax and an abdomen. The head typically bears a pair of sensory antennae, a pair of compound eyes, one to three simple eyes (ocelli) and three sets of modified appendages that form the mouthparts. The thorax has three pairs of segmented legs, one pair each for the three segments that compose the thorax and one or two pairs of wings. The abdomen is composed of eleven segments, some of which may be fused and houses the digestive, respiratory, excretory and reproductive systems. There is considerable variation between species and many adaptations to the body parts, especially wings, legs, antennae and mouthparts. Spiders a class of arachnids have four pairs of legs; a body of two segments—a cephalothorax and an abdomen. Spiders have no wings and no antennae.
They have mouthparts called chelicerae which are often connected to venom glands as most spiders are venomous. They have a second pair of appendages called pedipalps attached to the cephalothorax. These have similar segmentation to the legs and function as taste and smell organs. At the end of each male pedipalp is a spoon-shaped cymbium that acts to support the copulatory organ. Other branches of anatomy Superficial or surface anatomy is important as the study of anatomical landmarks that can be readily seen from the exterior contours of the body. It enables physicians or veterinary surgeons to gauge the position and anatomy of the associated deeper structures. Superficial is a directional term that indicates that structures are located relatively close to the surface of the body. Comparative anatomy relates to the comparison of anatomical structures (both gross and microscopic) in different animals. Artistic anatomy relates to anatomic studies for artistic reasons. History Ancient In 1600 BCE, the Edwin Smith Papyrus, an Ancient Egyptian medical text, described the heart, its vessels, liver, spleen, kidneys, hypothalamus, uterus and bladder, and showed the blood vessels diverging from the heart. The Ebers Papyrus (c. 1550 BCE) features a "treatise on the heart", with vessels carrying all the body's fluids to or from every member of the body. Ancient Greek anatomy and physiology underwent great changes and advances throughout the early medieval world. Over time, this medical practice expanded by a continually developing understanding of the functions of organs and structures in the body. Phenomenal anatomical observations of the human body were made, which have contributed towards the understanding of the brain, eye, liver, reproductive organs and the nervous system. The Hellenistic Egyptian city of Alexandria was the stepping-stone for Greek anatomy and physiology. Alexandria not only housed the biggest library for medical records and books of the liberal arts in the world during the time of the Greeks, but was also home to many medical practitioners and philosophers. Great patronage of the arts and sciences from the Ptolemy rulers helped raise Alexandria up, further rivalling the cultural and scientific achievements of other Greek states. Some of the most striking advances in early anatomy and physiology took place in Hellenistic Alexandria. Two of the most famous anatomists and physiologists of the third century were Herophilus and Erasistratus. These two physicians helped pioneer human dissection for medical research. They also conducted vivisections on the cadavers of condemned criminals, which was considered taboo until the Renaissance—Herophilus was recognized as the first person to perform systematic dissections. Herophilus became known for his anatomical works making impressing contributions to many branches of anatomy and many other aspects of medicine. Some of the works included classifying the system of the pulse, the discovery that human arteries had thicker walls than veins, and that the atria were parts of the heart. Herophilus's knowledge of the human body has provided vital input towards understanding the brain, eye, liver, reproductive organs and nervous system, and characterizing the course of disease.
They have mouthparts called chelicerae which are often connected to venom glands as most spiders are venomous. They have a second pair of appendages called pedipalps attached to the cephalothorax. These have similar segmentation to the legs and function as taste and smell organs. At the end of each male pedipalp is a spoon-shaped cymbium that acts to support the copulatory organ. Other branches of anatomy Superficial or surface anatomy is important as the study of anatomical landmarks that can be readily seen from the exterior contours of the body. It enables physicians or veterinary surgeons to gauge the position and anatomy of the associated deeper structures. Superficial is a directional term that indicates that structures are located relatively close to the surface of the body. Comparative anatomy relates to the comparison of anatomical structures (both gross and microscopic) in different animals. Artistic anatomy relates to anatomic studies for artistic reasons. History Ancient In 1600 BCE, the Edwin Smith Papyrus, an Ancient Egyptian medical text, described the heart, its vessels, liver, spleen, kidneys, hypothalamus, uterus and bladder, and showed the blood vessels diverging from the heart. The Ebers Papyrus (c. 1550 BCE) features a "treatise on the heart", with vessels carrying all the body's fluids to or from every member of the body. Ancient Greek anatomy and physiology underwent great changes and advances throughout the early medieval world. Over time, this medical practice expanded by a continually developing understanding of the functions of organs and structures in the body. Phenomenal anatomical observations of the human body were made, which have contributed towards the understanding of the brain, eye, liver, reproductive organs and the nervous system. The Hellenistic Egyptian city of Alexandria was the stepping-stone for Greek anatomy and physiology. Alexandria not only housed the biggest library for medical records and books of the liberal arts in the world during the time of the Greeks, but was also home to many medical practitioners and philosophers. Great patronage of the arts and sciences from the Ptolemy rulers helped raise Alexandria up, further rivalling the cultural and scientific achievements of other Greek states. Some of the most striking advances in early anatomy and physiology took place in Hellenistic Alexandria. Two of the most famous anatomists and physiologists of the third century were Herophilus and Erasistratus. These two physicians helped pioneer human dissection for medical research. They also conducted vivisections on the cadavers of condemned criminals, which was considered taboo until the Renaissance—Herophilus was recognized as the first person to perform systematic dissections. Herophilus became known for his anatomical works making impressing contributions to many branches of anatomy and many other aspects of medicine. Some of the works included classifying the system of the pulse, the discovery that human arteries had thicker walls than veins, and that the atria were parts of the heart. Herophilus's knowledge of the human body has provided vital input towards understanding the brain, eye, liver, reproductive organs and nervous system, and characterizing the course of disease.
They have mouthparts called chelicerae which are often connected to venom glands as most spiders are venomous. They have a second pair of appendages called pedipalps attached to the cephalothorax. These have similar segmentation to the legs and function as taste and smell organs. At the end of each male pedipalp is a spoon-shaped cymbium that acts to support the copulatory organ. Other branches of anatomy Superficial or surface anatomy is important as the study of anatomical landmarks that can be readily seen from the exterior contours of the body. It enables physicians or veterinary surgeons to gauge the position and anatomy of the associated deeper structures. Superficial is a directional term that indicates that structures are located relatively close to the surface of the body. Comparative anatomy relates to the comparison of anatomical structures (both gross and microscopic) in different animals. Artistic anatomy relates to anatomic studies for artistic reasons. History Ancient In 1600 BCE, the Edwin Smith Papyrus, an Ancient Egyptian medical text, described the heart, its vessels, liver, spleen, kidneys, hypothalamus, uterus and bladder, and showed the blood vessels diverging from the heart. The Ebers Papyrus (c. 1550 BCE) features a "treatise on the heart", with vessels carrying all the body's fluids to or from every member of the body. Ancient Greek anatomy and physiology underwent great changes and advances throughout the early medieval world. Over time, this medical practice expanded by a continually developing understanding of the functions of organs and structures in the body. Phenomenal anatomical observations of the human body were made, which have contributed towards the understanding of the brain, eye, liver, reproductive organs and the nervous system. The Hellenistic Egyptian city of Alexandria was the stepping-stone for Greek anatomy and physiology. Alexandria not only housed the biggest library for medical records and books of the liberal arts in the world during the time of the Greeks, but was also home to many medical practitioners and philosophers. Great patronage of the arts and sciences from the Ptolemy rulers helped raise Alexandria up, further rivalling the cultural and scientific achievements of other Greek states. Some of the most striking advances in early anatomy and physiology took place in Hellenistic Alexandria. Two of the most famous anatomists and physiologists of the third century were Herophilus and Erasistratus. These two physicians helped pioneer human dissection for medical research. They also conducted vivisections on the cadavers of condemned criminals, which was considered taboo until the Renaissance—Herophilus was recognized as the first person to perform systematic dissections. Herophilus became known for his anatomical works making impressing contributions to many branches of anatomy and many other aspects of medicine. Some of the works included classifying the system of the pulse, the discovery that human arteries had thicker walls than veins, and that the atria were parts of the heart. Herophilus's knowledge of the human body has provided vital input towards understanding the brain, eye, liver, reproductive organs and nervous system, and characterizing the course of disease.
Erasistratus accurately described the structure of the brain, including the cavities and membranes, and made a distinction between its cerebrum and cerebellum During his study in Alexandria, Erasistratus was particularly concerned with studies of the circulatory and nervous systems. He was able to distinguish the sensory and the motor nerves in the human body and believed that air entered the lungs and heart, which was then carried throughout the body. His distinction between the arteries and veins—the arteries carrying the air through the body, while the veins carried the blood from the heart was a great anatomical discovery. Erasistratus was also responsible for naming and describing the function of the epiglottis and the valves of the heart, including the tricuspid. During the third century, Greek physicians were able to differentiate nerves from blood vessels and tendons and to realize that the nerves convey neural impulses. It was Herophilus who made the point that damage to motor nerves induced paralysis. Herophilus named the meninges and ventricles in the brain, appreciated the division between cerebellum and cerebrum and recognized that the brain was the "seat of intellect" and not a "cooling chamber" as propounded by Aristotle Herophilus is also credited with describing the optic, oculomotor, motor division of the trigeminal, facial, vestibulocochlear and hypoglossal nerves. Great feats were made during the third century BCE in both the digestive and reproductive systems. Herophilus was able to discover and describe not only the salivary glands, but the small intestine and liver. He showed that the uterus is a hollow organ and described the ovaries and uterine tubes. He recognized that spermatozoa were produced by the testes and was the first to identify the prostate gland. The anatomy of the muscles and skeleton is described in the Hippocratic Corpus, an Ancient Greek medical work written by unknown authors. Aristotle described vertebrate anatomy based on animal dissection. Praxagoras identified the difference between arteries and veins. Also in the 4th century BCE, Herophilos and Erasistratus produced more accurate anatomical descriptions based on vivisection of criminals in Alexandria during the Ptolemaic dynasty. In the 2nd century, Galen of Pergamum, an anatomist, clinician, writer and philosopher, wrote the final and highly influential anatomy treatise of ancient times. He compiled existing knowledge and studied anatomy through dissection of animals. He was one of the first experimental physiologists through his vivisection experiments on animals. Galen's drawings, based mostly on dog anatomy, became effectively the only anatomical textbook for the next thousand years. His work was known to Renaissance doctors only through Islamic Golden Age medicine until it was translated from the Greek some time in the 15th century. Medieval to early modern Anatomy developed little from classical times until the sixteenth century; as the historian Marie Boas writes, "Progress in anatomy before the sixteenth century is as mysteriously slow as its development after 1500 is startlingly rapid".
Erasistratus accurately described the structure of the brain, including the cavities and membranes, and made a distinction between its cerebrum and cerebellum During his study in Alexandria, Erasistratus was particularly concerned with studies of the circulatory and nervous systems. He was able to distinguish the sensory and the motor nerves in the human body and believed that air entered the lungs and heart, which was then carried throughout the body. His distinction between the arteries and veins—the arteries carrying the air through the body, while the veins carried the blood from the heart was a great anatomical discovery. Erasistratus was also responsible for naming and describing the function of the epiglottis and the valves of the heart, including the tricuspid. During the third century, Greek physicians were able to differentiate nerves from blood vessels and tendons and to realize that the nerves convey neural impulses. It was Herophilus who made the point that damage to motor nerves induced paralysis. Herophilus named the meninges and ventricles in the brain, appreciated the division between cerebellum and cerebrum and recognized that the brain was the "seat of intellect" and not a "cooling chamber" as propounded by Aristotle Herophilus is also credited with describing the optic, oculomotor, motor division of the trigeminal, facial, vestibulocochlear and hypoglossal nerves. Great feats were made during the third century BCE in both the digestive and reproductive systems. Herophilus was able to discover and describe not only the salivary glands, but the small intestine and liver. He showed that the uterus is a hollow organ and described the ovaries and uterine tubes. He recognized that spermatozoa were produced by the testes and was the first to identify the prostate gland. The anatomy of the muscles and skeleton is described in the Hippocratic Corpus, an Ancient Greek medical work written by unknown authors. Aristotle described vertebrate anatomy based on animal dissection. Praxagoras identified the difference between arteries and veins. Also in the 4th century BCE, Herophilos and Erasistratus produced more accurate anatomical descriptions based on vivisection of criminals in Alexandria during the Ptolemaic dynasty. In the 2nd century, Galen of Pergamum, an anatomist, clinician, writer and philosopher, wrote the final and highly influential anatomy treatise of ancient times. He compiled existing knowledge and studied anatomy through dissection of animals. He was one of the first experimental physiologists through his vivisection experiments on animals. Galen's drawings, based mostly on dog anatomy, became effectively the only anatomical textbook for the next thousand years. His work was known to Renaissance doctors only through Islamic Golden Age medicine until it was translated from the Greek some time in the 15th century. Medieval to early modern Anatomy developed little from classical times until the sixteenth century; as the historian Marie Boas writes, "Progress in anatomy before the sixteenth century is as mysteriously slow as its development after 1500 is startlingly rapid".
Erasistratus accurately described the structure of the brain, including the cavities and membranes, and made a distinction between its cerebrum and cerebellum During his study in Alexandria, Erasistratus was particularly concerned with studies of the circulatory and nervous systems. He was able to distinguish the sensory and the motor nerves in the human body and believed that air entered the lungs and heart, which was then carried throughout the body. His distinction between the arteries and veins—the arteries carrying the air through the body, while the veins carried the blood from the heart was a great anatomical discovery. Erasistratus was also responsible for naming and describing the function of the epiglottis and the valves of the heart, including the tricuspid. During the third century, Greek physicians were able to differentiate nerves from blood vessels and tendons and to realize that the nerves convey neural impulses. It was Herophilus who made the point that damage to motor nerves induced paralysis. Herophilus named the meninges and ventricles in the brain, appreciated the division between cerebellum and cerebrum and recognized that the brain was the "seat of intellect" and not a "cooling chamber" as propounded by Aristotle Herophilus is also credited with describing the optic, oculomotor, motor division of the trigeminal, facial, vestibulocochlear and hypoglossal nerves. Great feats were made during the third century BCE in both the digestive and reproductive systems. Herophilus was able to discover and describe not only the salivary glands, but the small intestine and liver. He showed that the uterus is a hollow organ and described the ovaries and uterine tubes. He recognized that spermatozoa were produced by the testes and was the first to identify the prostate gland. The anatomy of the muscles and skeleton is described in the Hippocratic Corpus, an Ancient Greek medical work written by unknown authors. Aristotle described vertebrate anatomy based on animal dissection. Praxagoras identified the difference between arteries and veins. Also in the 4th century BCE, Herophilos and Erasistratus produced more accurate anatomical descriptions based on vivisection of criminals in Alexandria during the Ptolemaic dynasty. In the 2nd century, Galen of Pergamum, an anatomist, clinician, writer and philosopher, wrote the final and highly influential anatomy treatise of ancient times. He compiled existing knowledge and studied anatomy through dissection of animals. He was one of the first experimental physiologists through his vivisection experiments on animals. Galen's drawings, based mostly on dog anatomy, became effectively the only anatomical textbook for the next thousand years. His work was known to Renaissance doctors only through Islamic Golden Age medicine until it was translated from the Greek some time in the 15th century. Medieval to early modern Anatomy developed little from classical times until the sixteenth century; as the historian Marie Boas writes, "Progress in anatomy before the sixteenth century is as mysteriously slow as its development after 1500 is startlingly rapid".
Between 1275 and 1326, the anatomists Mondino de Luzzi, Alessandro Achillini and Antonio Benivieni at Bologna carried out the first systematic human dissections since ancient times. Mondino's Anatomy of 1316 was the first textbook in the medieval rediscovery of human anatomy. It describes the body in the order followed in Mondino's dissections, starting with the abdomen, then the thorax, then the head and limbs. It was the standard anatomy textbook for the next century. Leonardo da Vinci (1452–1519) was trained in anatomy by Andrea del Verrocchio. He made use of his anatomical knowledge in his artwork, making many sketches of skeletal structures, muscles and organs of humans and other vertebrates that he dissected. Andreas Vesalius (1514–1564), professor of anatomy at the University of Padua, is considered the founder of modern human anatomy. Originally from Brabant, Vesalius published the influential book De humani corporis fabrica ("the structure of the human body"), a large format book in seven volumes, in 1543. The accurate and intricately detailed illustrations, often in allegorical poses against Italianate landscapes, are thought to have been made by the artist Jan van Calcar, a pupil of Titian. In England, anatomy was the subject of the first public lectures given in any science; these were given by the Company of Barbers and Surgeons in the 16th century, joined in 1583 by the Lumleian lectures in surgery at the Royal College of Physicians. Late modern In the United States, medical schools began to be set up towards the end of the 18th century. Classes in anatomy needed a continual stream of cadavers for dissection and these were difficult to obtain. Philadelphia, Baltimore and New York were all renowned for body snatching activity as criminals raided graveyards at night, removing newly buried corpses from their coffins. A similar problem existed in Britain where demand for bodies became so great that grave-raiding and even anatomy murder were practised to obtain cadavers. Some graveyards were in consequence protected with watchtowers. The practice was halted in Britain by the Anatomy Act of 1832, while in the United States, similar legislation was enacted after the physician William S. Forbes of Jefferson Medical College was found guilty in 1882 of "complicity with resurrectionists in the despoliation of graves in Lebanon Cemetery". The teaching of anatomy in Britain was transformed by Sir John Struthers, Regius Professor of Anatomy at the University of Aberdeen from 1863 to 1889. He was responsible for setting up the system of three years of "pre-clinical" academic teaching in the sciences underlying medicine, including especially anatomy. This system lasted until the reform of medical training in 1993 and 2003. As well as teaching, he collected many vertebrate skeletons for his museum of comparative anatomy, published over 70 research papers, and became famous for his public dissection of the Tay Whale. From 1822 the Royal College of Surgeons regulated the teaching of anatomy in medical schools. Medical museums provided examples in comparative anatomy, and were often used in teaching.
Between 1275 and 1326, the anatomists Mondino de Luzzi, Alessandro Achillini and Antonio Benivieni at Bologna carried out the first systematic human dissections since ancient times. Mondino's Anatomy of 1316 was the first textbook in the medieval rediscovery of human anatomy. It describes the body in the order followed in Mondino's dissections, starting with the abdomen, then the thorax, then the head and limbs. It was the standard anatomy textbook for the next century. Leonardo da Vinci (1452–1519) was trained in anatomy by Andrea del Verrocchio. He made use of his anatomical knowledge in his artwork, making many sketches of skeletal structures, muscles and organs of humans and other vertebrates that he dissected. Andreas Vesalius (1514–1564), professor of anatomy at the University of Padua, is considered the founder of modern human anatomy. Originally from Brabant, Vesalius published the influential book De humani corporis fabrica ("the structure of the human body"), a large format book in seven volumes, in 1543. The accurate and intricately detailed illustrations, often in allegorical poses against Italianate landscapes, are thought to have been made by the artist Jan van Calcar, a pupil of Titian. In England, anatomy was the subject of the first public lectures given in any science; these were given by the Company of Barbers and Surgeons in the 16th century, joined in 1583 by the Lumleian lectures in surgery at the Royal College of Physicians. Late modern In the United States, medical schools began to be set up towards the end of the 18th century. Classes in anatomy needed a continual stream of cadavers for dissection and these were difficult to obtain. Philadelphia, Baltimore and New York were all renowned for body snatching activity as criminals raided graveyards at night, removing newly buried corpses from their coffins. A similar problem existed in Britain where demand for bodies became so great that grave-raiding and even anatomy murder were practised to obtain cadavers. Some graveyards were in consequence protected with watchtowers. The practice was halted in Britain by the Anatomy Act of 1832, while in the United States, similar legislation was enacted after the physician William S. Forbes of Jefferson Medical College was found guilty in 1882 of "complicity with resurrectionists in the despoliation of graves in Lebanon Cemetery". The teaching of anatomy in Britain was transformed by Sir John Struthers, Regius Professor of Anatomy at the University of Aberdeen from 1863 to 1889. He was responsible for setting up the system of three years of "pre-clinical" academic teaching in the sciences underlying medicine, including especially anatomy. This system lasted until the reform of medical training in 1993 and 2003. As well as teaching, he collected many vertebrate skeletons for his museum of comparative anatomy, published over 70 research papers, and became famous for his public dissection of the Tay Whale. From 1822 the Royal College of Surgeons regulated the teaching of anatomy in medical schools. Medical museums provided examples in comparative anatomy, and were often used in teaching.
Between 1275 and 1326, the anatomists Mondino de Luzzi, Alessandro Achillini and Antonio Benivieni at Bologna carried out the first systematic human dissections since ancient times. Mondino's Anatomy of 1316 was the first textbook in the medieval rediscovery of human anatomy. It describes the body in the order followed in Mondino's dissections, starting with the abdomen, then the thorax, then the head and limbs. It was the standard anatomy textbook for the next century. Leonardo da Vinci (1452–1519) was trained in anatomy by Andrea del Verrocchio. He made use of his anatomical knowledge in his artwork, making many sketches of skeletal structures, muscles and organs of humans and other vertebrates that he dissected. Andreas Vesalius (1514–1564), professor of anatomy at the University of Padua, is considered the founder of modern human anatomy. Originally from Brabant, Vesalius published the influential book De humani corporis fabrica ("the structure of the human body"), a large format book in seven volumes, in 1543. The accurate and intricately detailed illustrations, often in allegorical poses against Italianate landscapes, are thought to have been made by the artist Jan van Calcar, a pupil of Titian. In England, anatomy was the subject of the first public lectures given in any science; these were given by the Company of Barbers and Surgeons in the 16th century, joined in 1583 by the Lumleian lectures in surgery at the Royal College of Physicians. Late modern In the United States, medical schools began to be set up towards the end of the 18th century. Classes in anatomy needed a continual stream of cadavers for dissection and these were difficult to obtain. Philadelphia, Baltimore and New York were all renowned for body snatching activity as criminals raided graveyards at night, removing newly buried corpses from their coffins. A similar problem existed in Britain where demand for bodies became so great that grave-raiding and even anatomy murder were practised to obtain cadavers. Some graveyards were in consequence protected with watchtowers. The practice was halted in Britain by the Anatomy Act of 1832, while in the United States, similar legislation was enacted after the physician William S. Forbes of Jefferson Medical College was found guilty in 1882 of "complicity with resurrectionists in the despoliation of graves in Lebanon Cemetery". The teaching of anatomy in Britain was transformed by Sir John Struthers, Regius Professor of Anatomy at the University of Aberdeen from 1863 to 1889. He was responsible for setting up the system of three years of "pre-clinical" academic teaching in the sciences underlying medicine, including especially anatomy. This system lasted until the reform of medical training in 1993 and 2003. As well as teaching, he collected many vertebrate skeletons for his museum of comparative anatomy, published over 70 research papers, and became famous for his public dissection of the Tay Whale. From 1822 the Royal College of Surgeons regulated the teaching of anatomy in medical schools. Medical museums provided examples in comparative anatomy, and were often used in teaching.
Ignaz Semmelweis investigated puerperal fever and he discovered how it was caused. He noticed that the frequently fatal fever occurred more often in mothers examined by medical students than by midwives. The students went from the dissecting room to the hospital ward and examined women in childbirth. Semmelweis showed that when the trainees washed their hands in chlorinated lime before each clinical examination, the incidence of puerperal fever among the mothers could be reduced dramatically. Before the modern medical era, the main means for studying the internal structures of the body were dissection of the dead and inspection, palpation and auscultation of the living. It was the advent of microscopy that opened up an understanding of the building blocks that constituted living tissues. Technical advances in the development of achromatic lenses increased the resolving power of the microscope and around 1839, Matthias Jakob Schleiden and Theodor Schwann identified that cells were the fundamental unit of organization of all living things. Study of small structures involved passing light through them and the microtome was invented to provide sufficiently thin slices of tissue to examine. Staining techniques using artificial dyes were established to help distinguish between different types of tissue. Advances in the fields of histology and cytology began in the late 19th century along with advances in surgical techniques allowing for the painless and safe removal of biopsy specimens. The invention of the electron microscope brought a great advance in resolution power and allowed research into the ultrastructure of cells and the organelles and other structures within them. About the same time, in the 1950s, the use of X-ray diffraction for studying the crystal structures of proteins, nucleic acids and other biological molecules gave rise to a new field of molecular anatomy. Equally important advances have occurred in non-invasive techniques for examining the interior structures of the body. X-rays can be passed through the body and used in medical radiography and fluoroscopy to differentiate interior structures that have varying degrees of opaqueness. Magnetic resonance imaging, computed tomography, and ultrasound imaging have all enabled examination of internal structures in unprecedented detail to a degree far beyond the imagination of earlier generations. See also Anatomical model Outline of human anatomy Plastination Notes Bibliography "Anatomy of the Human Body". 20th edition. 1918. Henry Gray External links Anatomy, In Our Time. BBC Radio 4. Melvyn Bragg with guests Ruth Richardson, Andrew Cunningham and Harold Ellis. Anatomia Collection: anatomical plates 1522 to 1867 (digitized books and images) Lyman, Henry Munson. The Book of Health (1898). Science History Institute Digital Collections . Gunther von Hagens True Anatomy for New Ways of Teaching. Branches of biology Morphology (biology)