repository_name
stringlengths 5
67
| func_path_in_repository
stringlengths 4
234
| func_name
stringlengths 0
314
| whole_func_string
stringlengths 52
3.87M
| language
stringclasses 6
values | func_code_string
stringlengths 52
3.87M
| func_documentation_string
stringlengths 1
47.2k
| func_code_url
stringlengths 85
339
|
---|---|---|---|---|---|---|---|
salu133445/pypianoroll | pypianoroll/multitrack.py | Multitrack.transpose | def transpose(self, semitone):
"""
Transpose the pianorolls of all tracks by a number of semitones, where
positive values are for higher key, while negative values are for lower
key. The drum tracks are ignored.
Parameters
----------
semitone : int
The number of semitones to transpose the pianorolls.
"""
for track in self.tracks:
if not track.is_drum:
track.transpose(semitone) | python | def transpose(self, semitone):
"""
Transpose the pianorolls of all tracks by a number of semitones, where
positive values are for higher key, while negative values are for lower
key. The drum tracks are ignored.
Parameters
----------
semitone : int
The number of semitones to transpose the pianorolls.
"""
for track in self.tracks:
if not track.is_drum:
track.transpose(semitone) | Transpose the pianorolls of all tracks by a number of semitones, where
positive values are for higher key, while negative values are for lower
key. The drum tracks are ignored.
Parameters
----------
semitone : int
The number of semitones to transpose the pianorolls. | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/multitrack.py#L954-L968 |
salu133445/pypianoroll | pypianoroll/multitrack.py | Multitrack.trim_trailing_silence | def trim_trailing_silence(self):
"""Trim the trailing silences of the pianorolls of all tracks. Trailing
silences are considered globally."""
active_length = self.get_active_length()
for track in self.tracks:
track.pianoroll = track.pianoroll[:active_length] | python | def trim_trailing_silence(self):
"""Trim the trailing silences of the pianorolls of all tracks. Trailing
silences are considered globally."""
active_length = self.get_active_length()
for track in self.tracks:
track.pianoroll = track.pianoroll[:active_length] | Trim the trailing silences of the pianorolls of all tracks. Trailing
silences are considered globally. | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/multitrack.py#L970-L975 |
salu133445/pypianoroll | pypianoroll/multitrack.py | Multitrack.write | def write(self, filename):
"""
Write the multitrack pianoroll to a MIDI file.
Parameters
----------
filename : str
The name of the MIDI file to which the multitrack pianoroll is
written.
"""
if not filename.endswith(('.mid', '.midi', '.MID', '.MIDI')):
filename = filename + '.mid'
pm = self.to_pretty_midi()
pm.write(filename) | python | def write(self, filename):
"""
Write the multitrack pianoroll to a MIDI file.
Parameters
----------
filename : str
The name of the MIDI file to which the multitrack pianoroll is
written.
"""
if not filename.endswith(('.mid', '.midi', '.MID', '.MIDI')):
filename = filename + '.mid'
pm = self.to_pretty_midi()
pm.write(filename) | Write the multitrack pianoroll to a MIDI file.
Parameters
----------
filename : str
The name of the MIDI file to which the multitrack pianoroll is
written. | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/multitrack.py#L977-L991 |
salu133445/pypianoroll | pypianoroll/utilities.py | check_pianoroll | def check_pianoroll(arr):
"""
Return True if the array is a standard piano-roll matrix. Otherwise,
return False. Raise TypeError if the input object is not a numpy array.
"""
if not isinstance(arr, np.ndarray):
raise TypeError("`arr` must be of np.ndarray type")
if not (np.issubdtype(arr.dtype, np.bool_)
or np.issubdtype(arr.dtype, np.number)):
return False
if arr.ndim != 2:
return False
if arr.shape[1] != 128:
return False
return True | python | def check_pianoroll(arr):
"""
Return True if the array is a standard piano-roll matrix. Otherwise,
return False. Raise TypeError if the input object is not a numpy array.
"""
if not isinstance(arr, np.ndarray):
raise TypeError("`arr` must be of np.ndarray type")
if not (np.issubdtype(arr.dtype, np.bool_)
or np.issubdtype(arr.dtype, np.number)):
return False
if arr.ndim != 2:
return False
if arr.shape[1] != 128:
return False
return True | Return True if the array is a standard piano-roll matrix. Otherwise,
return False. Raise TypeError if the input object is not a numpy array. | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/utilities.py#L20-L35 |
salu133445/pypianoroll | pypianoroll/utilities.py | binarize | def binarize(obj, threshold=0):
"""
Return a copy of the object with binarized piano-roll(s).
Parameters
----------
threshold : int or float
Threshold to binarize the piano-roll(s). Default to zero.
"""
_check_supported(obj)
copied = deepcopy(obj)
copied.binarize(threshold)
return copied | python | def binarize(obj, threshold=0):
"""
Return a copy of the object with binarized piano-roll(s).
Parameters
----------
threshold : int or float
Threshold to binarize the piano-roll(s). Default to zero.
"""
_check_supported(obj)
copied = deepcopy(obj)
copied.binarize(threshold)
return copied | Return a copy of the object with binarized piano-roll(s).
Parameters
----------
threshold : int or float
Threshold to binarize the piano-roll(s). Default to zero. | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/utilities.py#L53-L66 |
salu133445/pypianoroll | pypianoroll/utilities.py | clip | def clip(obj, lower=0, upper=127):
"""
Return a copy of the object with piano-roll(s) clipped by a lower bound
and an upper bound specified by `lower` and `upper`, respectively.
Parameters
----------
lower : int or float
The lower bound to clip the piano-roll. Default to 0.
upper : int or float
The upper bound to clip the piano-roll. Default to 127.
"""
_check_supported(obj)
copied = deepcopy(obj)
copied.clip(lower, upper)
return copied | python | def clip(obj, lower=0, upper=127):
"""
Return a copy of the object with piano-roll(s) clipped by a lower bound
and an upper bound specified by `lower` and `upper`, respectively.
Parameters
----------
lower : int or float
The lower bound to clip the piano-roll. Default to 0.
upper : int or float
The upper bound to clip the piano-roll. Default to 127.
"""
_check_supported(obj)
copied = deepcopy(obj)
copied.clip(lower, upper)
return copied | Return a copy of the object with piano-roll(s) clipped by a lower bound
and an upper bound specified by `lower` and `upper`, respectively.
Parameters
----------
lower : int or float
The lower bound to clip the piano-roll. Default to 0.
upper : int or float
The upper bound to clip the piano-roll. Default to 127. | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/utilities.py#L68-L84 |
salu133445/pypianoroll | pypianoroll/utilities.py | pad | def pad(obj, pad_length):
"""
Return a copy of the object with piano-roll padded with zeros at the end
along the time axis.
Parameters
----------
pad_length : int
The length to pad along the time axis with zeros.
"""
_check_supported(obj)
copied = deepcopy(obj)
copied.pad(pad_length)
return copied | python | def pad(obj, pad_length):
"""
Return a copy of the object with piano-roll padded with zeros at the end
along the time axis.
Parameters
----------
pad_length : int
The length to pad along the time axis with zeros.
"""
_check_supported(obj)
copied = deepcopy(obj)
copied.pad(pad_length)
return copied | Return a copy of the object with piano-roll padded with zeros at the end
along the time axis.
Parameters
----------
pad_length : int
The length to pad along the time axis with zeros. | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/utilities.py#L107-L121 |
salu133445/pypianoroll | pypianoroll/utilities.py | pad_to_multiple | def pad_to_multiple(obj, factor):
"""
Return a copy of the object with its piano-roll padded with zeros at the
end along the time axis with the minimal length that make the length of
the resulting piano-roll a multiple of `factor`.
Parameters
----------
factor : int
The value which the length of the resulting piano-roll will be
a multiple of.
"""
_check_supported(obj)
copied = deepcopy(obj)
copied.pad_to_multiple(factor)
return copied | python | def pad_to_multiple(obj, factor):
"""
Return a copy of the object with its piano-roll padded with zeros at the
end along the time axis with the minimal length that make the length of
the resulting piano-roll a multiple of `factor`.
Parameters
----------
factor : int
The value which the length of the resulting piano-roll will be
a multiple of.
"""
_check_supported(obj)
copied = deepcopy(obj)
copied.pad_to_multiple(factor)
return copied | Return a copy of the object with its piano-roll padded with zeros at the
end along the time axis with the minimal length that make the length of
the resulting piano-roll a multiple of `factor`.
Parameters
----------
factor : int
The value which the length of the resulting piano-roll will be
a multiple of. | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/utilities.py#L123-L139 |
salu133445/pypianoroll | pypianoroll/utilities.py | pad_to_same | def pad_to_same(obj):
"""
Return a copy of the object with shorter piano-rolls padded with zeros
at the end along the time axis to the length of the piano-roll with the
maximal length.
"""
if not isinstance(obj, Multitrack):
raise TypeError("Support only `pypianoroll.Multitrack` class objects")
copied = deepcopy(obj)
copied.pad_to_same()
return copied | python | def pad_to_same(obj):
"""
Return a copy of the object with shorter piano-rolls padded with zeros
at the end along the time axis to the length of the piano-roll with the
maximal length.
"""
if not isinstance(obj, Multitrack):
raise TypeError("Support only `pypianoroll.Multitrack` class objects")
copied = deepcopy(obj)
copied.pad_to_same()
return copied | Return a copy of the object with shorter piano-rolls padded with zeros
at the end along the time axis to the length of the piano-roll with the
maximal length. | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/utilities.py#L141-L152 |
salu133445/pypianoroll | pypianoroll/utilities.py | parse | def parse(filepath, beat_resolution=24, name='unknown'):
"""
Return a :class:`pypianoroll.Multitrack` object loaded from a MIDI
(.mid, .midi, .MID, .MIDI) file.
Parameters
----------
filepath : str
The file path to the MIDI file.
"""
if not filepath.endswith(('.mid', '.midi', '.MID', '.MIDI')):
raise ValueError("Only MIDI files are supported")
return Multitrack(filepath, beat_resolution=beat_resolution, name=name) | python | def parse(filepath, beat_resolution=24, name='unknown'):
"""
Return a :class:`pypianoroll.Multitrack` object loaded from a MIDI
(.mid, .midi, .MID, .MIDI) file.
Parameters
----------
filepath : str
The file path to the MIDI file.
"""
if not filepath.endswith(('.mid', '.midi', '.MID', '.MIDI')):
raise ValueError("Only MIDI files are supported")
return Multitrack(filepath, beat_resolution=beat_resolution, name=name) | Return a :class:`pypianoroll.Multitrack` object loaded from a MIDI
(.mid, .midi, .MID, .MIDI) file.
Parameters
----------
filepath : str
The file path to the MIDI file. | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/utilities.py#L154-L167 |
salu133445/pypianoroll | pypianoroll/utilities.py | save | def save(filepath, obj, compressed=True):
"""
Save the object to a .npz file.
Parameters
----------
filepath : str
The path to save the file.
obj: `pypianoroll.Multitrack` objects
The object to be saved.
"""
if not isinstance(obj, Multitrack):
raise TypeError("Support only `pypianoroll.Multitrack` class objects")
obj.save(filepath, compressed) | python | def save(filepath, obj, compressed=True):
"""
Save the object to a .npz file.
Parameters
----------
filepath : str
The path to save the file.
obj: `pypianoroll.Multitrack` objects
The object to be saved.
"""
if not isinstance(obj, Multitrack):
raise TypeError("Support only `pypianoroll.Multitrack` class objects")
obj.save(filepath, compressed) | Save the object to a .npz file.
Parameters
----------
filepath : str
The path to save the file.
obj: `pypianoroll.Multitrack` objects
The object to be saved. | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/utilities.py#L178-L192 |
salu133445/pypianoroll | pypianoroll/utilities.py | transpose | def transpose(obj, semitone):
"""
Return a copy of the object with piano-roll(s) transposed by `semitones`
semitones.
Parameters
----------
semitone : int
Number of semitones to transpose the piano-roll(s).
"""
_check_supported(obj)
copied = deepcopy(obj)
copied.transpose(semitone)
return copied | python | def transpose(obj, semitone):
"""
Return a copy of the object with piano-roll(s) transposed by `semitones`
semitones.
Parameters
----------
semitone : int
Number of semitones to transpose the piano-roll(s).
"""
_check_supported(obj)
copied = deepcopy(obj)
copied.transpose(semitone)
return copied | Return a copy of the object with piano-roll(s) transposed by `semitones`
semitones.
Parameters
----------
semitone : int
Number of semitones to transpose the piano-roll(s). | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/utilities.py#L194-L208 |
salu133445/pypianoroll | pypianoroll/utilities.py | trim_trailing_silence | def trim_trailing_silence(obj):
"""
Return a copy of the object with trimmed trailing silence of the
piano-roll(s).
"""
_check_supported(obj)
copied = deepcopy(obj)
length = copied.get_active_length()
copied.pianoroll = copied.pianoroll[:length]
return copied | python | def trim_trailing_silence(obj):
"""
Return a copy of the object with trimmed trailing silence of the
piano-roll(s).
"""
_check_supported(obj)
copied = deepcopy(obj)
length = copied.get_active_length()
copied.pianoroll = copied.pianoroll[:length]
return copied | Return a copy of the object with trimmed trailing silence of the
piano-roll(s). | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/utilities.py#L210-L220 |
salu133445/pypianoroll | pypianoroll/utilities.py | write | def write(obj, filepath):
"""
Write the object to a MIDI file.
Parameters
----------
filepath : str
The path to write the MIDI file.
"""
if not isinstance(obj, Multitrack):
raise TypeError("Support only `pypianoroll.Multitrack` class objects")
obj.write(filepath) | python | def write(obj, filepath):
"""
Write the object to a MIDI file.
Parameters
----------
filepath : str
The path to write the MIDI file.
"""
if not isinstance(obj, Multitrack):
raise TypeError("Support only `pypianoroll.Multitrack` class objects")
obj.write(filepath) | Write the object to a MIDI file.
Parameters
----------
filepath : str
The path to write the MIDI file. | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/utilities.py#L222-L234 |
salu133445/pypianoroll | pypianoroll/metrics.py | _validate_pianoroll | def _validate_pianoroll(pianoroll):
"""Raise an error if the input array is not a standard pianoroll."""
if not isinstance(pianoroll, np.ndarray):
raise TypeError("`pianoroll` must be of np.ndarray type.")
if not (np.issubdtype(pianoroll.dtype, np.bool_)
or np.issubdtype(pianoroll.dtype, np.number)):
raise TypeError("The data type of `pianoroll` must be np.bool_ or a "
"subdtype of np.number.")
if pianoroll.ndim != 2:
raise ValueError("`pianoroll` must have exactly two dimensions.")
if pianoroll.shape[1] != 128:
raise ValueError("The length of the second axis of `pianoroll` must be "
"128.") | python | def _validate_pianoroll(pianoroll):
"""Raise an error if the input array is not a standard pianoroll."""
if not isinstance(pianoroll, np.ndarray):
raise TypeError("`pianoroll` must be of np.ndarray type.")
if not (np.issubdtype(pianoroll.dtype, np.bool_)
or np.issubdtype(pianoroll.dtype, np.number)):
raise TypeError("The data type of `pianoroll` must be np.bool_ or a "
"subdtype of np.number.")
if pianoroll.ndim != 2:
raise ValueError("`pianoroll` must have exactly two dimensions.")
if pianoroll.shape[1] != 128:
raise ValueError("The length of the second axis of `pianoroll` must be "
"128.") | Raise an error if the input array is not a standard pianoroll. | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/metrics.py#L7-L19 |
salu133445/pypianoroll | pypianoroll/metrics.py | _to_chroma | def _to_chroma(pianoroll):
"""Return the unnormalized chroma features of a pianoroll."""
_validate_pianoroll(pianoroll)
reshaped = pianoroll[:, :120].reshape(-1, 12, 10)
reshaped[..., :8] += pianoroll[:, 120:].reshape(-1, 1, 8)
return np.sum(reshaped, 1) | python | def _to_chroma(pianoroll):
"""Return the unnormalized chroma features of a pianoroll."""
_validate_pianoroll(pianoroll)
reshaped = pianoroll[:, :120].reshape(-1, 12, 10)
reshaped[..., :8] += pianoroll[:, 120:].reshape(-1, 1, 8)
return np.sum(reshaped, 1) | Return the unnormalized chroma features of a pianoroll. | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/metrics.py#L21-L26 |
salu133445/pypianoroll | pypianoroll/metrics.py | empty_beat_rate | def empty_beat_rate(pianoroll, beat_resolution):
"""Return the ratio of empty beats to the total number of beats in a
pianoroll."""
_validate_pianoroll(pianoroll)
reshaped = pianoroll.reshape(-1, beat_resolution * pianoroll.shape[1])
n_empty_beats = np.count_nonzero(reshaped.any(1))
return n_empty_beats / len(reshaped) | python | def empty_beat_rate(pianoroll, beat_resolution):
"""Return the ratio of empty beats to the total number of beats in a
pianoroll."""
_validate_pianoroll(pianoroll)
reshaped = pianoroll.reshape(-1, beat_resolution * pianoroll.shape[1])
n_empty_beats = np.count_nonzero(reshaped.any(1))
return n_empty_beats / len(reshaped) | Return the ratio of empty beats to the total number of beats in a
pianoroll. | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/metrics.py#L28-L34 |
salu133445/pypianoroll | pypianoroll/metrics.py | n_pitche_classes_used | def n_pitche_classes_used(pianoroll):
"""Return the number of unique pitch classes used in a pianoroll."""
_validate_pianoroll(pianoroll)
chroma = _to_chroma(pianoroll)
return np.count_nonzero(np.any(chroma, 0)) | python | def n_pitche_classes_used(pianoroll):
"""Return the number of unique pitch classes used in a pianoroll."""
_validate_pianoroll(pianoroll)
chroma = _to_chroma(pianoroll)
return np.count_nonzero(np.any(chroma, 0)) | Return the number of unique pitch classes used in a pianoroll. | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/metrics.py#L41-L45 |
salu133445/pypianoroll | pypianoroll/metrics.py | qualified_note_rate | def qualified_note_rate(pianoroll, threshold=2):
"""Return the ratio of the number of the qualified notes (notes longer than
`threshold` (in time step)) to the total number of notes in a pianoroll."""
_validate_pianoroll(pianoroll)
if np.issubdtype(pianoroll.dtype, np.bool_):
pianoroll = pianoroll.astype(np.uint8)
padded = np.pad(pianoroll, ((1, 1), (0, 0)), 'constant')
diff = np.diff(padded, axis=0).reshape(-1)
onsets = (diff > 0).nonzero()[0]
offsets = (diff < 0).nonzero()[0]
n_qualified_notes = np.count_nonzero(offsets - onsets >= threshold)
return n_qualified_notes / len(onsets) | python | def qualified_note_rate(pianoroll, threshold=2):
"""Return the ratio of the number of the qualified notes (notes longer than
`threshold` (in time step)) to the total number of notes in a pianoroll."""
_validate_pianoroll(pianoroll)
if np.issubdtype(pianoroll.dtype, np.bool_):
pianoroll = pianoroll.astype(np.uint8)
padded = np.pad(pianoroll, ((1, 1), (0, 0)), 'constant')
diff = np.diff(padded, axis=0).reshape(-1)
onsets = (diff > 0).nonzero()[0]
offsets = (diff < 0).nonzero()[0]
n_qualified_notes = np.count_nonzero(offsets - onsets >= threshold)
return n_qualified_notes / len(onsets) | Return the ratio of the number of the qualified notes (notes longer than
`threshold` (in time step)) to the total number of notes in a pianoroll. | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/metrics.py#L47-L58 |
salu133445/pypianoroll | pypianoroll/metrics.py | polyphonic_rate | def polyphonic_rate(pianoroll, threshold=2):
"""Return the ratio of the number of time steps where the number of pitches
being played is larger than `threshold` to the total number of time steps
in a pianoroll."""
_validate_pianoroll(pianoroll)
n_poly = np.count_nonzero(np.count_nonzero(pianoroll, 1) > threshold)
return n_poly / len(pianoroll) | python | def polyphonic_rate(pianoroll, threshold=2):
"""Return the ratio of the number of time steps where the number of pitches
being played is larger than `threshold` to the total number of time steps
in a pianoroll."""
_validate_pianoroll(pianoroll)
n_poly = np.count_nonzero(np.count_nonzero(pianoroll, 1) > threshold)
return n_poly / len(pianoroll) | Return the ratio of the number of time steps where the number of pitches
being played is larger than `threshold` to the total number of time steps
in a pianoroll. | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/metrics.py#L60-L66 |
salu133445/pypianoroll | pypianoroll/metrics.py | drum_in_pattern_rate | def drum_in_pattern_rate(pianoroll, beat_resolution, tolerance=0.1):
"""Return the ratio of the number of drum notes that lie on the drum
pattern (i.e., at certain time steps) to the total number of drum notes."""
if beat_resolution not in (4, 6, 8, 9, 12, 16, 18, 24):
raise ValueError("Unsupported beat resolution. Only 4, 6, 8 ,9, 12, "
"16, 18, 42 are supported.")
_validate_pianoroll(pianoroll)
def _drum_pattern_mask(res, tol):
"""Return a drum pattern mask with the given tolerance."""
if res == 24:
drum_pattern_mask = np.tile([1., tol, 0., 0., 0., tol], 4)
elif res == 12:
drum_pattern_mask = np.tile([1., tol, tol], 4)
elif res == 6:
drum_pattern_mask = np.tile([1., tol, tol], 2)
elif res == 18:
drum_pattern_mask = np.tile([1., tol, 0., 0., 0., tol], 3)
elif res == 9:
drum_pattern_mask = np.tile([1., tol, tol], 3)
elif res == 16:
drum_pattern_mask = np.tile([1., tol, 0., tol], 4)
elif res == 8:
drum_pattern_mask = np.tile([1., tol], 4)
elif res == 4:
drum_pattern_mask = np.tile([1., tol], 2)
return drum_pattern_mask
drum_pattern_mask = _drum_pattern_mask(beat_resolution, tolerance)
n_in_pattern = np.sum(drum_pattern_mask * np.count_nonzero(pianoroll, 1))
return n_in_pattern / np.count_nonzero(pianoroll) | python | def drum_in_pattern_rate(pianoroll, beat_resolution, tolerance=0.1):
"""Return the ratio of the number of drum notes that lie on the drum
pattern (i.e., at certain time steps) to the total number of drum notes."""
if beat_resolution not in (4, 6, 8, 9, 12, 16, 18, 24):
raise ValueError("Unsupported beat resolution. Only 4, 6, 8 ,9, 12, "
"16, 18, 42 are supported.")
_validate_pianoroll(pianoroll)
def _drum_pattern_mask(res, tol):
"""Return a drum pattern mask with the given tolerance."""
if res == 24:
drum_pattern_mask = np.tile([1., tol, 0., 0., 0., tol], 4)
elif res == 12:
drum_pattern_mask = np.tile([1., tol, tol], 4)
elif res == 6:
drum_pattern_mask = np.tile([1., tol, tol], 2)
elif res == 18:
drum_pattern_mask = np.tile([1., tol, 0., 0., 0., tol], 3)
elif res == 9:
drum_pattern_mask = np.tile([1., tol, tol], 3)
elif res == 16:
drum_pattern_mask = np.tile([1., tol, 0., tol], 4)
elif res == 8:
drum_pattern_mask = np.tile([1., tol], 4)
elif res == 4:
drum_pattern_mask = np.tile([1., tol], 2)
return drum_pattern_mask
drum_pattern_mask = _drum_pattern_mask(beat_resolution, tolerance)
n_in_pattern = np.sum(drum_pattern_mask * np.count_nonzero(pianoroll, 1))
return n_in_pattern / np.count_nonzero(pianoroll) | Return the ratio of the number of drum notes that lie on the drum
pattern (i.e., at certain time steps) to the total number of drum notes. | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/metrics.py#L68-L98 |
salu133445/pypianoroll | pypianoroll/metrics.py | in_scale_rate | def in_scale_rate(pianoroll, key=3, kind='major'):
"""Return the ratio of the number of nonzero entries that lie in a specific
scale to the total number of nonzero entries in a pianoroll. Default to C
major scale."""
if not isinstance(key, int):
raise TypeError("`key` must an integer.")
if key > 11 or key < 0:
raise ValueError("`key` must be in an integer in between 0 and 11.")
if kind not in ('major', 'minor'):
raise ValueError("`kind` must be one of 'major' or 'minor'.")
_validate_pianoroll(pianoroll)
def _scale_mask(key, kind):
"""Return a scale mask for the given key. Default to C major scale."""
if kind == 'major':
a_scale_mask = np.array([0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1], bool)
else:
a_scale_mask = np.array([1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1], bool)
return np.roll(a_scale_mask, key)
chroma = _to_chroma(pianoroll)
scale_mask = _scale_mask(key, kind)
n_in_scale = np.sum(scale_mask.reshape(-1, 12) * chroma)
return n_in_scale / np.count_nonzero(pianoroll) | python | def in_scale_rate(pianoroll, key=3, kind='major'):
"""Return the ratio of the number of nonzero entries that lie in a specific
scale to the total number of nonzero entries in a pianoroll. Default to C
major scale."""
if not isinstance(key, int):
raise TypeError("`key` must an integer.")
if key > 11 or key < 0:
raise ValueError("`key` must be in an integer in between 0 and 11.")
if kind not in ('major', 'minor'):
raise ValueError("`kind` must be one of 'major' or 'minor'.")
_validate_pianoroll(pianoroll)
def _scale_mask(key, kind):
"""Return a scale mask for the given key. Default to C major scale."""
if kind == 'major':
a_scale_mask = np.array([0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1], bool)
else:
a_scale_mask = np.array([1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1], bool)
return np.roll(a_scale_mask, key)
chroma = _to_chroma(pianoroll)
scale_mask = _scale_mask(key, kind)
n_in_scale = np.sum(scale_mask.reshape(-1, 12) * chroma)
return n_in_scale / np.count_nonzero(pianoroll) | Return the ratio of the number of nonzero entries that lie in a specific
scale to the total number of nonzero entries in a pianoroll. Default to C
major scale. | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/metrics.py#L100-L123 |
salu133445/pypianoroll | pypianoroll/metrics.py | tonal_distance | def tonal_distance(pianoroll_1, pianoroll_2, beat_resolution, r1=1.0, r2=1.0,
r3=0.5):
"""Return the tonal distance [1] between the two input pianorolls.
[1] Christopher Harte, Mark Sandler, and Martin Gasser. Detecting
harmonic change in musical audio. In Proc. ACM Workshop on Audio and
Music Computing Multimedia, 2006.
"""
_validate_pianoroll(pianoroll_1)
_validate_pianoroll(pianoroll_2)
assert len(pianoroll_1) == len(pianoroll_2), (
"Input pianorolls must have the same length.")
def _tonal_matrix(r1, r2, r3):
"""Return a tonal matrix for computing the tonal distance."""
tonal_matrix = np.empty((6, 12))
tonal_matrix[0] = r1 * np.sin(np.arange(12) * (7. / 6.) * np.pi)
tonal_matrix[1] = r1 * np.cos(np.arange(12) * (7. / 6.) * np.pi)
tonal_matrix[2] = r2 * np.sin(np.arange(12) * (3. / 2.) * np.pi)
tonal_matrix[3] = r2 * np.cos(np.arange(12) * (3. / 2.) * np.pi)
tonal_matrix[4] = r3 * np.sin(np.arange(12) * (2. / 3.) * np.pi)
tonal_matrix[5] = r3 * np.cos(np.arange(12) * (2. / 3.) * np.pi)
return tonal_matrix
def _to_tonal_space(pianoroll, tonal_matrix):
"""Return the tensor in tonal space where chroma features are normalized
per beat."""
beat_chroma = _to_chroma(pianoroll).reshape(-1, beat_resolution, 12)
beat_chroma = beat_chroma / np.sum(beat_chroma, 2, keepdims=True)
return np.matmul(tonal_matrix, beat_chroma.T).T
tonal_matrix = _tonal_matrix(r1, r2, r3)
mapped_1 = _to_tonal_space(pianoroll_1, tonal_matrix)
mapped_2 = _to_tonal_space(pianoroll_2, tonal_matrix)
return np.linalg.norm(mapped_1 - mapped_2) | python | def tonal_distance(pianoroll_1, pianoroll_2, beat_resolution, r1=1.0, r2=1.0,
r3=0.5):
"""Return the tonal distance [1] between the two input pianorolls.
[1] Christopher Harte, Mark Sandler, and Martin Gasser. Detecting
harmonic change in musical audio. In Proc. ACM Workshop on Audio and
Music Computing Multimedia, 2006.
"""
_validate_pianoroll(pianoroll_1)
_validate_pianoroll(pianoroll_2)
assert len(pianoroll_1) == len(pianoroll_2), (
"Input pianorolls must have the same length.")
def _tonal_matrix(r1, r2, r3):
"""Return a tonal matrix for computing the tonal distance."""
tonal_matrix = np.empty((6, 12))
tonal_matrix[0] = r1 * np.sin(np.arange(12) * (7. / 6.) * np.pi)
tonal_matrix[1] = r1 * np.cos(np.arange(12) * (7. / 6.) * np.pi)
tonal_matrix[2] = r2 * np.sin(np.arange(12) * (3. / 2.) * np.pi)
tonal_matrix[3] = r2 * np.cos(np.arange(12) * (3. / 2.) * np.pi)
tonal_matrix[4] = r3 * np.sin(np.arange(12) * (2. / 3.) * np.pi)
tonal_matrix[5] = r3 * np.cos(np.arange(12) * (2. / 3.) * np.pi)
return tonal_matrix
def _to_tonal_space(pianoroll, tonal_matrix):
"""Return the tensor in tonal space where chroma features are normalized
per beat."""
beat_chroma = _to_chroma(pianoroll).reshape(-1, beat_resolution, 12)
beat_chroma = beat_chroma / np.sum(beat_chroma, 2, keepdims=True)
return np.matmul(tonal_matrix, beat_chroma.T).T
tonal_matrix = _tonal_matrix(r1, r2, r3)
mapped_1 = _to_tonal_space(pianoroll_1, tonal_matrix)
mapped_2 = _to_tonal_space(pianoroll_2, tonal_matrix)
return np.linalg.norm(mapped_1 - mapped_2) | Return the tonal distance [1] between the two input pianorolls.
[1] Christopher Harte, Mark Sandler, and Martin Gasser. Detecting
harmonic change in musical audio. In Proc. ACM Workshop on Audio and
Music Computing Multimedia, 2006. | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/metrics.py#L125-L160 |
salu133445/pypianoroll | pypianoroll/track.py | Track.assign_constant | def assign_constant(self, value, dtype=None):
"""
Assign a constant value to all nonzeros in the pianoroll. If the
pianoroll is not binarized, its data type will be preserved. If the
pianoroll is binarized, it will be casted to the type of `value`.
Arguments
---------
value : int or float
The constant value to be assigned to all the nonzeros in the
pianoroll.
"""
if not self.is_binarized():
self.pianoroll[self.pianoroll.nonzero()] = value
return
if dtype is None:
if isinstance(value, int):
dtype = int
elif isinstance(value, float):
dtype = float
nonzero = self.pianoroll.nonzero()
self.pianoroll = np.zeros(self.pianoroll.shape, dtype)
self.pianoroll[nonzero] = value | python | def assign_constant(self, value, dtype=None):
"""
Assign a constant value to all nonzeros in the pianoroll. If the
pianoroll is not binarized, its data type will be preserved. If the
pianoroll is binarized, it will be casted to the type of `value`.
Arguments
---------
value : int or float
The constant value to be assigned to all the nonzeros in the
pianoroll.
"""
if not self.is_binarized():
self.pianoroll[self.pianoroll.nonzero()] = value
return
if dtype is None:
if isinstance(value, int):
dtype = int
elif isinstance(value, float):
dtype = float
nonzero = self.pianoroll.nonzero()
self.pianoroll = np.zeros(self.pianoroll.shape, dtype)
self.pianoroll[nonzero] = value | Assign a constant value to all nonzeros in the pianoroll. If the
pianoroll is not binarized, its data type will be preserved. If the
pianoroll is binarized, it will be casted to the type of `value`.
Arguments
---------
value : int or float
The constant value to be assigned to all the nonzeros in the
pianoroll. | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/track.py#L76-L99 |
salu133445/pypianoroll | pypianoroll/track.py | Track.binarize | def binarize(self, threshold=0):
"""
Binarize the pianoroll.
Parameters
----------
threshold : int or float
A threshold used to binarize the pianorolls. Defaults to zero.
"""
if not self.is_binarized():
self.pianoroll = (self.pianoroll > threshold) | python | def binarize(self, threshold=0):
"""
Binarize the pianoroll.
Parameters
----------
threshold : int or float
A threshold used to binarize the pianorolls. Defaults to zero.
"""
if not self.is_binarized():
self.pianoroll = (self.pianoroll > threshold) | Binarize the pianoroll.
Parameters
----------
threshold : int or float
A threshold used to binarize the pianorolls. Defaults to zero. | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/track.py#L101-L112 |
salu133445/pypianoroll | pypianoroll/track.py | Track.check_validity | def check_validity(self):
""""Raise error if any invalid attribute found."""
# pianoroll
if not isinstance(self.pianoroll, np.ndarray):
raise TypeError("`pianoroll` must be a numpy array.")
if not (np.issubdtype(self.pianoroll.dtype, np.bool_)
or np.issubdtype(self.pianoroll.dtype, np.number)):
raise TypeError("The data type of `pianoroll` must be np.bool_ or "
"a subdtype of np.number.")
if self.pianoroll.ndim != 2:
raise ValueError("`pianoroll` must have exactly two dimensions.")
if self.pianoroll.shape[1] != 128:
raise ValueError("The length of the second axis of `pianoroll` "
"must be 128.")
# program
if not isinstance(self.program, int):
raise TypeError("`program` must be int.")
if self.program < 0 or self.program > 127:
raise ValueError("`program` must be in between 0 to 127.")
# is_drum
if not isinstance(self.is_drum, bool):
raise TypeError("`is_drum` must be bool.")
# name
if not isinstance(self.name, string_types):
raise TypeError("`name` must be a string.") | python | def check_validity(self):
""""Raise error if any invalid attribute found."""
# pianoroll
if not isinstance(self.pianoroll, np.ndarray):
raise TypeError("`pianoroll` must be a numpy array.")
if not (np.issubdtype(self.pianoroll.dtype, np.bool_)
or np.issubdtype(self.pianoroll.dtype, np.number)):
raise TypeError("The data type of `pianoroll` must be np.bool_ or "
"a subdtype of np.number.")
if self.pianoroll.ndim != 2:
raise ValueError("`pianoroll` must have exactly two dimensions.")
if self.pianoroll.shape[1] != 128:
raise ValueError("The length of the second axis of `pianoroll` "
"must be 128.")
# program
if not isinstance(self.program, int):
raise TypeError("`program` must be int.")
if self.program < 0 or self.program > 127:
raise ValueError("`program` must be in between 0 to 127.")
# is_drum
if not isinstance(self.is_drum, bool):
raise TypeError("`is_drum` must be bool.")
# name
if not isinstance(self.name, string_types):
raise TypeError("`name` must be a string.") | Raise error if any invalid attribute found. | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/track.py#L114-L138 |
salu133445/pypianoroll | pypianoroll/track.py | Track.clip | def clip(self, lower=0, upper=127):
"""
Clip the pianoroll by the given lower and upper bounds.
Parameters
----------
lower : int or float
The lower bound to clip the pianoroll. Defaults to 0.
upper : int or float
The upper bound to clip the pianoroll. Defaults to 127.
"""
self.pianoroll = self.pianoroll.clip(lower, upper) | python | def clip(self, lower=0, upper=127):
"""
Clip the pianoroll by the given lower and upper bounds.
Parameters
----------
lower : int or float
The lower bound to clip the pianoroll. Defaults to 0.
upper : int or float
The upper bound to clip the pianoroll. Defaults to 127.
"""
self.pianoroll = self.pianoroll.clip(lower, upper) | Clip the pianoroll by the given lower and upper bounds.
Parameters
----------
lower : int or float
The lower bound to clip the pianoroll. Defaults to 0.
upper : int or float
The upper bound to clip the pianoroll. Defaults to 127. | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/track.py#L140-L152 |
salu133445/pypianoroll | pypianoroll/track.py | Track.get_active_length | def get_active_length(self):
"""
Return the active length (i.e., without trailing silence) of the
pianoroll. The unit is time step.
Returns
-------
active_length : int
The active length (i.e., without trailing silence) of the pianoroll.
"""
nonzero_steps = np.any(self.pianoroll, axis=1)
inv_last_nonzero_step = np.argmax(np.flip(nonzero_steps, axis=0))
active_length = self.pianoroll.shape[0] - inv_last_nonzero_step
return active_length | python | def get_active_length(self):
"""
Return the active length (i.e., without trailing silence) of the
pianoroll. The unit is time step.
Returns
-------
active_length : int
The active length (i.e., without trailing silence) of the pianoroll.
"""
nonzero_steps = np.any(self.pianoroll, axis=1)
inv_last_nonzero_step = np.argmax(np.flip(nonzero_steps, axis=0))
active_length = self.pianoroll.shape[0] - inv_last_nonzero_step
return active_length | Return the active length (i.e., without trailing silence) of the
pianoroll. The unit is time step.
Returns
-------
active_length : int
The active length (i.e., without trailing silence) of the pianoroll. | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/track.py#L167-L181 |
salu133445/pypianoroll | pypianoroll/track.py | Track.get_active_pitch_range | def get_active_pitch_range(self):
"""
Return the active pitch range as a tuple (lowest, highest).
Returns
-------
lowest : int
The lowest active pitch in the pianoroll.
highest : int
The highest active pitch in the pianoroll.
"""
if self.pianoroll.shape[1] < 1:
raise ValueError("Cannot compute the active pitch range for an "
"empty pianoroll")
lowest = 0
highest = 127
while lowest < highest:
if np.any(self.pianoroll[:, lowest]):
break
lowest += 1
if lowest == highest:
raise ValueError("Cannot compute the active pitch range for an "
"empty pianoroll")
while not np.any(self.pianoroll[:, highest]):
highest -= 1
return lowest, highest | python | def get_active_pitch_range(self):
"""
Return the active pitch range as a tuple (lowest, highest).
Returns
-------
lowest : int
The lowest active pitch in the pianoroll.
highest : int
The highest active pitch in the pianoroll.
"""
if self.pianoroll.shape[1] < 1:
raise ValueError("Cannot compute the active pitch range for an "
"empty pianoroll")
lowest = 0
highest = 127
while lowest < highest:
if np.any(self.pianoroll[:, lowest]):
break
lowest += 1
if lowest == highest:
raise ValueError("Cannot compute the active pitch range for an "
"empty pianoroll")
while not np.any(self.pianoroll[:, highest]):
highest -= 1
return lowest, highest | Return the active pitch range as a tuple (lowest, highest).
Returns
-------
lowest : int
The lowest active pitch in the pianoroll.
highest : int
The highest active pitch in the pianoroll. | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/track.py#L183-L210 |
salu133445/pypianoroll | pypianoroll/track.py | Track.is_binarized | def is_binarized(self):
"""
Return True if the pianoroll is already binarized. Otherwise, return
False.
Returns
-------
is_binarized : bool
True if the pianoroll is already binarized; otherwise, False.
"""
is_binarized = np.issubdtype(self.pianoroll.dtype, np.bool_)
return is_binarized | python | def is_binarized(self):
"""
Return True if the pianoroll is already binarized. Otherwise, return
False.
Returns
-------
is_binarized : bool
True if the pianoroll is already binarized; otherwise, False.
"""
is_binarized = np.issubdtype(self.pianoroll.dtype, np.bool_)
return is_binarized | Return True if the pianoroll is already binarized. Otherwise, return
False.
Returns
-------
is_binarized : bool
True if the pianoroll is already binarized; otherwise, False. | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/track.py#L225-L237 |
salu133445/pypianoroll | pypianoroll/track.py | Track.pad | def pad(self, pad_length):
"""
Pad the pianoroll with zeros at the end along the time axis.
Parameters
----------
pad_length : int
The length to pad with zeros along the time axis.
"""
self.pianoroll = np.pad(
self.pianoroll, ((0, pad_length), (0, 0)), 'constant') | python | def pad(self, pad_length):
"""
Pad the pianoroll with zeros at the end along the time axis.
Parameters
----------
pad_length : int
The length to pad with zeros along the time axis.
"""
self.pianoroll = np.pad(
self.pianoroll, ((0, pad_length), (0, 0)), 'constant') | Pad the pianoroll with zeros at the end along the time axis.
Parameters
----------
pad_length : int
The length to pad with zeros along the time axis. | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/track.py#L239-L250 |
salu133445/pypianoroll | pypianoroll/track.py | Track.pad_to_multiple | def pad_to_multiple(self, factor):
"""
Pad the pianoroll with zeros at the end along the time axis with the
minimum length that makes the resulting pianoroll length a multiple of
`factor`.
Parameters
----------
factor : int
The value which the length of the resulting pianoroll will be
a multiple of.
"""
remainder = self.pianoroll.shape[0] % factor
if remainder:
pad_width = ((0, (factor - remainder)), (0, 0))
self.pianoroll = np.pad(self.pianoroll, pad_width, 'constant') | python | def pad_to_multiple(self, factor):
"""
Pad the pianoroll with zeros at the end along the time axis with the
minimum length that makes the resulting pianoroll length a multiple of
`factor`.
Parameters
----------
factor : int
The value which the length of the resulting pianoroll will be
a multiple of.
"""
remainder = self.pianoroll.shape[0] % factor
if remainder:
pad_width = ((0, (factor - remainder)), (0, 0))
self.pianoroll = np.pad(self.pianoroll, pad_width, 'constant') | Pad the pianoroll with zeros at the end along the time axis with the
minimum length that makes the resulting pianoroll length a multiple of
`factor`.
Parameters
----------
factor : int
The value which the length of the resulting pianoroll will be
a multiple of. | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/track.py#L252-L268 |
salu133445/pypianoroll | pypianoroll/track.py | Track.transpose | def transpose(self, semitone):
"""
Transpose the pianoroll by a number of semitones, where positive
values are for higher key, while negative values are for lower key.
Parameters
----------
semitone : int
The number of semitones to transpose the pianoroll.
"""
if semitone > 0 and semitone < 128:
self.pianoroll[:, semitone:] = self.pianoroll[:, :(128 - semitone)]
self.pianoroll[:, :semitone] = 0
elif semitone < 0 and semitone > -128:
self.pianoroll[:, :(128 + semitone)] = self.pianoroll[:, -semitone:]
self.pianoroll[:, (128 + semitone):] = 0 | python | def transpose(self, semitone):
"""
Transpose the pianoroll by a number of semitones, where positive
values are for higher key, while negative values are for lower key.
Parameters
----------
semitone : int
The number of semitones to transpose the pianoroll.
"""
if semitone > 0 and semitone < 128:
self.pianoroll[:, semitone:] = self.pianoroll[:, :(128 - semitone)]
self.pianoroll[:, :semitone] = 0
elif semitone < 0 and semitone > -128:
self.pianoroll[:, :(128 + semitone)] = self.pianoroll[:, -semitone:]
self.pianoroll[:, (128 + semitone):] = 0 | Transpose the pianoroll by a number of semitones, where positive
values are for higher key, while negative values are for lower key.
Parameters
----------
semitone : int
The number of semitones to transpose the pianoroll. | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/track.py#L275-L291 |
salu133445/pypianoroll | pypianoroll/track.py | Track.trim_trailing_silence | def trim_trailing_silence(self):
"""Trim the trailing silence of the pianoroll."""
length = self.get_active_length()
self.pianoroll = self.pianoroll[:length] | python | def trim_trailing_silence(self):
"""Trim the trailing silence of the pianoroll."""
length = self.get_active_length()
self.pianoroll = self.pianoroll[:length] | Trim the trailing silence of the pianoroll. | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/track.py#L293-L296 |
dnouri/nolearn | nolearn/lasagne/visualize.py | plot_conv_weights | def plot_conv_weights(layer, figsize=(6, 6)):
"""Plot the weights of a specific layer.
Only really makes sense with convolutional layers.
Parameters
----------
layer : lasagne.layers.Layer
"""
W = layer.W.get_value()
shape = W.shape
nrows = np.ceil(np.sqrt(shape[0])).astype(int)
ncols = nrows
for feature_map in range(shape[1]):
figs, axes = plt.subplots(nrows, ncols, figsize=figsize, squeeze=False)
for ax in axes.flatten():
ax.set_xticks([])
ax.set_yticks([])
ax.axis('off')
for i, (r, c) in enumerate(product(range(nrows), range(ncols))):
if i >= shape[0]:
break
axes[r, c].imshow(W[i, feature_map], cmap='gray',
interpolation='none')
return plt | python | def plot_conv_weights(layer, figsize=(6, 6)):
"""Plot the weights of a specific layer.
Only really makes sense with convolutional layers.
Parameters
----------
layer : lasagne.layers.Layer
"""
W = layer.W.get_value()
shape = W.shape
nrows = np.ceil(np.sqrt(shape[0])).astype(int)
ncols = nrows
for feature_map in range(shape[1]):
figs, axes = plt.subplots(nrows, ncols, figsize=figsize, squeeze=False)
for ax in axes.flatten():
ax.set_xticks([])
ax.set_yticks([])
ax.axis('off')
for i, (r, c) in enumerate(product(range(nrows), range(ncols))):
if i >= shape[0]:
break
axes[r, c].imshow(W[i, feature_map], cmap='gray',
interpolation='none')
return plt | Plot the weights of a specific layer.
Only really makes sense with convolutional layers.
Parameters
----------
layer : lasagne.layers.Layer | https://github.com/dnouri/nolearn/blob/2ef346c869e80fc90247916e4aea5cfa7cf2edda/nolearn/lasagne/visualize.py#L26-L54 |
dnouri/nolearn | nolearn/lasagne/visualize.py | plot_conv_activity | def plot_conv_activity(layer, x, figsize=(6, 8)):
"""Plot the acitivities of a specific layer.
Only really makes sense with layers that work 2D data (2D
convolutional layers, 2D pooling layers ...).
Parameters
----------
layer : lasagne.layers.Layer
x : numpy.ndarray
Only takes one sample at a time, i.e. x.shape[0] == 1.
"""
if x.shape[0] != 1:
raise ValueError("Only one sample can be plotted at a time.")
# compile theano function
xs = T.tensor4('xs').astype(theano.config.floatX)
get_activity = theano.function([xs], get_output(layer, xs))
activity = get_activity(x)
shape = activity.shape
nrows = np.ceil(np.sqrt(shape[1])).astype(int)
ncols = nrows
figs, axes = plt.subplots(nrows + 1, ncols, figsize=figsize, squeeze=False)
axes[0, ncols // 2].imshow(1 - x[0][0], cmap='gray',
interpolation='none')
axes[0, ncols // 2].set_title('original')
for ax in axes.flatten():
ax.set_xticks([])
ax.set_yticks([])
ax.axis('off')
for i, (r, c) in enumerate(product(range(nrows), range(ncols))):
if i >= shape[1]:
break
ndim = activity[0][i].ndim
if ndim != 2:
raise ValueError("Wrong number of dimensions, image data should "
"have 2, instead got {}".format(ndim))
axes[r + 1, c].imshow(-activity[0][i], cmap='gray',
interpolation='none')
return plt | python | def plot_conv_activity(layer, x, figsize=(6, 8)):
"""Plot the acitivities of a specific layer.
Only really makes sense with layers that work 2D data (2D
convolutional layers, 2D pooling layers ...).
Parameters
----------
layer : lasagne.layers.Layer
x : numpy.ndarray
Only takes one sample at a time, i.e. x.shape[0] == 1.
"""
if x.shape[0] != 1:
raise ValueError("Only one sample can be plotted at a time.")
# compile theano function
xs = T.tensor4('xs').astype(theano.config.floatX)
get_activity = theano.function([xs], get_output(layer, xs))
activity = get_activity(x)
shape = activity.shape
nrows = np.ceil(np.sqrt(shape[1])).astype(int)
ncols = nrows
figs, axes = plt.subplots(nrows + 1, ncols, figsize=figsize, squeeze=False)
axes[0, ncols // 2].imshow(1 - x[0][0], cmap='gray',
interpolation='none')
axes[0, ncols // 2].set_title('original')
for ax in axes.flatten():
ax.set_xticks([])
ax.set_yticks([])
ax.axis('off')
for i, (r, c) in enumerate(product(range(nrows), range(ncols))):
if i >= shape[1]:
break
ndim = activity[0][i].ndim
if ndim != 2:
raise ValueError("Wrong number of dimensions, image data should "
"have 2, instead got {}".format(ndim))
axes[r + 1, c].imshow(-activity[0][i], cmap='gray',
interpolation='none')
return plt | Plot the acitivities of a specific layer.
Only really makes sense with layers that work 2D data (2D
convolutional layers, 2D pooling layers ...).
Parameters
----------
layer : lasagne.layers.Layer
x : numpy.ndarray
Only takes one sample at a time, i.e. x.shape[0] == 1. | https://github.com/dnouri/nolearn/blob/2ef346c869e80fc90247916e4aea5cfa7cf2edda/nolearn/lasagne/visualize.py#L57-L102 |
dnouri/nolearn | nolearn/lasagne/visualize.py | occlusion_heatmap | def occlusion_heatmap(net, x, target, square_length=7):
"""An occlusion test that checks an image for its critical parts.
In this function, a square part of the image is occluded (i.e. set
to 0) and then the net is tested for its propensity to predict the
correct label. One should expect that this propensity shrinks of
critical parts of the image are occluded. If not, this indicates
overfitting.
Depending on the depth of the net and the size of the image, this
function may take awhile to finish, since one prediction for each
pixel of the image is made.
Currently, all color channels are occluded at the same time. Also,
this does not really work if images are randomly distorted by the
batch iterator.
See paper: Zeiler, Fergus 2013
Parameters
----------
net : NeuralNet instance
The neural net to test.
x : np.array
The input data, should be of shape (1, c, x, y). Only makes
sense with image data.
target : int
The true value of the image. If the net makes several
predictions, say 10 classes, this indicates which one to look
at.
square_length : int (default=7)
The length of the side of the square that occludes the image.
Must be an odd number.
Results
-------
heat_array : np.array (with same size as image)
An 2D np.array that at each point (i, j) contains the predicted
probability of the correct class if the image is occluded by a
square with center (i, j).
"""
if (x.ndim != 4) or x.shape[0] != 1:
raise ValueError("This function requires the input data to be of "
"shape (1, c, x, y), instead got {}".format(x.shape))
if square_length % 2 == 0:
raise ValueError("Square length has to be an odd number, instead "
"got {}.".format(square_length))
num_classes = get_output_shape(net.layers_[-1])[1]
img = x[0].copy()
bs, col, s0, s1 = x.shape
heat_array = np.zeros((s0, s1))
pad = square_length // 2 + 1
x_occluded = np.zeros((s1, col, s0, s1), dtype=img.dtype)
probs = np.zeros((s0, s1, num_classes))
# generate occluded images
for i in range(s0):
# batch s1 occluded images for faster prediction
for j in range(s1):
x_pad = np.pad(img, ((0, 0), (pad, pad), (pad, pad)), 'constant')
x_pad[:, i:i + square_length, j:j + square_length] = 0.
x_occluded[j] = x_pad[:, pad:-pad, pad:-pad]
y_proba = net.predict_proba(x_occluded)
probs[i] = y_proba.reshape(s1, num_classes)
# from predicted probabilities, pick only those of target class
for i in range(s0):
for j in range(s1):
heat_array[i, j] = probs[i, j, target]
return heat_array | python | def occlusion_heatmap(net, x, target, square_length=7):
"""An occlusion test that checks an image for its critical parts.
In this function, a square part of the image is occluded (i.e. set
to 0) and then the net is tested for its propensity to predict the
correct label. One should expect that this propensity shrinks of
critical parts of the image are occluded. If not, this indicates
overfitting.
Depending on the depth of the net and the size of the image, this
function may take awhile to finish, since one prediction for each
pixel of the image is made.
Currently, all color channels are occluded at the same time. Also,
this does not really work if images are randomly distorted by the
batch iterator.
See paper: Zeiler, Fergus 2013
Parameters
----------
net : NeuralNet instance
The neural net to test.
x : np.array
The input data, should be of shape (1, c, x, y). Only makes
sense with image data.
target : int
The true value of the image. If the net makes several
predictions, say 10 classes, this indicates which one to look
at.
square_length : int (default=7)
The length of the side of the square that occludes the image.
Must be an odd number.
Results
-------
heat_array : np.array (with same size as image)
An 2D np.array that at each point (i, j) contains the predicted
probability of the correct class if the image is occluded by a
square with center (i, j).
"""
if (x.ndim != 4) or x.shape[0] != 1:
raise ValueError("This function requires the input data to be of "
"shape (1, c, x, y), instead got {}".format(x.shape))
if square_length % 2 == 0:
raise ValueError("Square length has to be an odd number, instead "
"got {}.".format(square_length))
num_classes = get_output_shape(net.layers_[-1])[1]
img = x[0].copy()
bs, col, s0, s1 = x.shape
heat_array = np.zeros((s0, s1))
pad = square_length // 2 + 1
x_occluded = np.zeros((s1, col, s0, s1), dtype=img.dtype)
probs = np.zeros((s0, s1, num_classes))
# generate occluded images
for i in range(s0):
# batch s1 occluded images for faster prediction
for j in range(s1):
x_pad = np.pad(img, ((0, 0), (pad, pad), (pad, pad)), 'constant')
x_pad[:, i:i + square_length, j:j + square_length] = 0.
x_occluded[j] = x_pad[:, pad:-pad, pad:-pad]
y_proba = net.predict_proba(x_occluded)
probs[i] = y_proba.reshape(s1, num_classes)
# from predicted probabilities, pick only those of target class
for i in range(s0):
for j in range(s1):
heat_array[i, j] = probs[i, j, target]
return heat_array | An occlusion test that checks an image for its critical parts.
In this function, a square part of the image is occluded (i.e. set
to 0) and then the net is tested for its propensity to predict the
correct label. One should expect that this propensity shrinks of
critical parts of the image are occluded. If not, this indicates
overfitting.
Depending on the depth of the net and the size of the image, this
function may take awhile to finish, since one prediction for each
pixel of the image is made.
Currently, all color channels are occluded at the same time. Also,
this does not really work if images are randomly distorted by the
batch iterator.
See paper: Zeiler, Fergus 2013
Parameters
----------
net : NeuralNet instance
The neural net to test.
x : np.array
The input data, should be of shape (1, c, x, y). Only makes
sense with image data.
target : int
The true value of the image. If the net makes several
predictions, say 10 classes, this indicates which one to look
at.
square_length : int (default=7)
The length of the side of the square that occludes the image.
Must be an odd number.
Results
-------
heat_array : np.array (with same size as image)
An 2D np.array that at each point (i, j) contains the predicted
probability of the correct class if the image is occluded by a
square with center (i, j). | https://github.com/dnouri/nolearn/blob/2ef346c869e80fc90247916e4aea5cfa7cf2edda/nolearn/lasagne/visualize.py#L105-L180 |
dnouri/nolearn | nolearn/lasagne/visualize.py | plot_occlusion | def plot_occlusion(net, X, target, square_length=7, figsize=(9, None)):
"""Plot which parts of an image are particularly import for the
net to classify the image correctly.
See paper: Zeiler, Fergus 2013
Parameters
----------
net : NeuralNet instance
The neural net to test.
X : numpy.array
The input data, should be of shape (b, c, 0, 1). Only makes
sense with image data.
target : list or numpy.array of ints
The true values of the image. If the net makes several
predictions, say 10 classes, this indicates which one to look
at. If more than one sample is passed to X, each of them needs
its own target.
square_length : int (default=7)
The length of the side of the square that occludes the image.
Must be an odd number.
figsize : tuple (int, int)
Size of the figure.
Plots
-----
Figure with 3 subplots: the original image, the occlusion heatmap,
and both images super-imposed.
"""
return _plot_heat_map(
net, X, figsize, lambda net, X, n: occlusion_heatmap(
net, X, target[n], square_length)) | python | def plot_occlusion(net, X, target, square_length=7, figsize=(9, None)):
"""Plot which parts of an image are particularly import for the
net to classify the image correctly.
See paper: Zeiler, Fergus 2013
Parameters
----------
net : NeuralNet instance
The neural net to test.
X : numpy.array
The input data, should be of shape (b, c, 0, 1). Only makes
sense with image data.
target : list or numpy.array of ints
The true values of the image. If the net makes several
predictions, say 10 classes, this indicates which one to look
at. If more than one sample is passed to X, each of them needs
its own target.
square_length : int (default=7)
The length of the side of the square that occludes the image.
Must be an odd number.
figsize : tuple (int, int)
Size of the figure.
Plots
-----
Figure with 3 subplots: the original image, the occlusion heatmap,
and both images super-imposed.
"""
return _plot_heat_map(
net, X, figsize, lambda net, X, n: occlusion_heatmap(
net, X, target[n], square_length)) | Plot which parts of an image are particularly import for the
net to classify the image correctly.
See paper: Zeiler, Fergus 2013
Parameters
----------
net : NeuralNet instance
The neural net to test.
X : numpy.array
The input data, should be of shape (b, c, 0, 1). Only makes
sense with image data.
target : list or numpy.array of ints
The true values of the image. If the net makes several
predictions, say 10 classes, this indicates which one to look
at. If more than one sample is passed to X, each of them needs
its own target.
square_length : int (default=7)
The length of the side of the square that occludes the image.
Must be an odd number.
figsize : tuple (int, int)
Size of the figure.
Plots
-----
Figure with 3 subplots: the original image, the occlusion heatmap,
and both images super-imposed. | https://github.com/dnouri/nolearn/blob/2ef346c869e80fc90247916e4aea5cfa7cf2edda/nolearn/lasagne/visualize.py#L214-L250 |
dnouri/nolearn | nolearn/lasagne/visualize.py | get_hex_color | def get_hex_color(layer_type):
"""
Determines the hex color for a layer.
:parameters:
- layer_type : string
Class name of the layer
:returns:
- color : string containing a hex color for filling block.
"""
COLORS = ['#4A88B3', '#98C1DE', '#6CA2C8', '#3173A2', '#17649B',
'#FFBB60', '#FFDAA9', '#FFC981', '#FCAC41', '#F29416',
'#C54AAA', '#E698D4', '#D56CBE', '#B72F99', '#B0108D',
'#75DF54', '#B3F1A0', '#91E875', '#5DD637', '#3FCD12']
hashed = int(hash(layer_type)) % 5
if "conv" in layer_type.lower():
return COLORS[:5][hashed]
if layer_type in lasagne.layers.pool.__all__:
return COLORS[5:10][hashed]
if layer_type in lasagne.layers.recurrent.__all__:
return COLORS[10:15][hashed]
else:
return COLORS[15:20][hashed] | python | def get_hex_color(layer_type):
"""
Determines the hex color for a layer.
:parameters:
- layer_type : string
Class name of the layer
:returns:
- color : string containing a hex color for filling block.
"""
COLORS = ['#4A88B3', '#98C1DE', '#6CA2C8', '#3173A2', '#17649B',
'#FFBB60', '#FFDAA9', '#FFC981', '#FCAC41', '#F29416',
'#C54AAA', '#E698D4', '#D56CBE', '#B72F99', '#B0108D',
'#75DF54', '#B3F1A0', '#91E875', '#5DD637', '#3FCD12']
hashed = int(hash(layer_type)) % 5
if "conv" in layer_type.lower():
return COLORS[:5][hashed]
if layer_type in lasagne.layers.pool.__all__:
return COLORS[5:10][hashed]
if layer_type in lasagne.layers.recurrent.__all__:
return COLORS[10:15][hashed]
else:
return COLORS[15:20][hashed] | Determines the hex color for a layer.
:parameters:
- layer_type : string
Class name of the layer
:returns:
- color : string containing a hex color for filling block. | https://github.com/dnouri/nolearn/blob/2ef346c869e80fc90247916e4aea5cfa7cf2edda/nolearn/lasagne/visualize.py#L270-L293 |
dnouri/nolearn | nolearn/lasagne/visualize.py | make_pydot_graph | def make_pydot_graph(layers, output_shape=True, verbose=False):
"""
:parameters:
- layers : list
List of the layers, as obtained from lasagne.layers.get_all_layers
- output_shape: (default `True`)
If `True`, the output shape of each layer will be displayed.
- verbose: (default `False`)
If `True`, layer attributes like filter shape, stride, etc.
will be displayed.
:returns:
- pydot_graph : PyDot object containing the graph
"""
import pydotplus as pydot
pydot_graph = pydot.Dot('Network', graph_type='digraph')
pydot_nodes = {}
pydot_edges = []
for i, layer in enumerate(layers):
layer_name = getattr(layer, 'name', None)
if layer_name is None:
layer_name = layer.__class__.__name__
layer_type = '{0}'.format(layer_name)
key = repr(layer)
label = layer_type
color = get_hex_color(layer_type)
if verbose:
for attr in ['num_filters', 'num_units', 'ds',
'filter_shape', 'stride', 'strides', 'p']:
if hasattr(layer, attr):
label += '\n{0}: {1}'.format(attr, getattr(layer, attr))
if hasattr(layer, 'nonlinearity'):
try:
nonlinearity = layer.nonlinearity.__name__
except AttributeError:
nonlinearity = layer.nonlinearity.__class__.__name__
label += '\nnonlinearity: {0}'.format(nonlinearity)
if output_shape:
label += '\nOutput shape: {0}'.format(layer.output_shape)
pydot_nodes[key] = pydot.Node(
key, label=label, shape='record', fillcolor=color, style='filled')
if hasattr(layer, 'input_layers'):
for input_layer in layer.input_layers:
pydot_edges.append([repr(input_layer), key])
if hasattr(layer, 'input_layer'):
pydot_edges.append([repr(layer.input_layer), key])
for node in pydot_nodes.values():
pydot_graph.add_node(node)
for edges in pydot_edges:
pydot_graph.add_edge(
pydot.Edge(pydot_nodes[edges[0]], pydot_nodes[edges[1]]))
return pydot_graph | python | def make_pydot_graph(layers, output_shape=True, verbose=False):
"""
:parameters:
- layers : list
List of the layers, as obtained from lasagne.layers.get_all_layers
- output_shape: (default `True`)
If `True`, the output shape of each layer will be displayed.
- verbose: (default `False`)
If `True`, layer attributes like filter shape, stride, etc.
will be displayed.
:returns:
- pydot_graph : PyDot object containing the graph
"""
import pydotplus as pydot
pydot_graph = pydot.Dot('Network', graph_type='digraph')
pydot_nodes = {}
pydot_edges = []
for i, layer in enumerate(layers):
layer_name = getattr(layer, 'name', None)
if layer_name is None:
layer_name = layer.__class__.__name__
layer_type = '{0}'.format(layer_name)
key = repr(layer)
label = layer_type
color = get_hex_color(layer_type)
if verbose:
for attr in ['num_filters', 'num_units', 'ds',
'filter_shape', 'stride', 'strides', 'p']:
if hasattr(layer, attr):
label += '\n{0}: {1}'.format(attr, getattr(layer, attr))
if hasattr(layer, 'nonlinearity'):
try:
nonlinearity = layer.nonlinearity.__name__
except AttributeError:
nonlinearity = layer.nonlinearity.__class__.__name__
label += '\nnonlinearity: {0}'.format(nonlinearity)
if output_shape:
label += '\nOutput shape: {0}'.format(layer.output_shape)
pydot_nodes[key] = pydot.Node(
key, label=label, shape='record', fillcolor=color, style='filled')
if hasattr(layer, 'input_layers'):
for input_layer in layer.input_layers:
pydot_edges.append([repr(input_layer), key])
if hasattr(layer, 'input_layer'):
pydot_edges.append([repr(layer.input_layer), key])
for node in pydot_nodes.values():
pydot_graph.add_node(node)
for edges in pydot_edges:
pydot_graph.add_edge(
pydot.Edge(pydot_nodes[edges[0]], pydot_nodes[edges[1]]))
return pydot_graph | :parameters:
- layers : list
List of the layers, as obtained from lasagne.layers.get_all_layers
- output_shape: (default `True`)
If `True`, the output shape of each layer will be displayed.
- verbose: (default `False`)
If `True`, layer attributes like filter shape, stride, etc.
will be displayed.
:returns:
- pydot_graph : PyDot object containing the graph | https://github.com/dnouri/nolearn/blob/2ef346c869e80fc90247916e4aea5cfa7cf2edda/nolearn/lasagne/visualize.py#L296-L352 |
dnouri/nolearn | nolearn/lasagne/visualize.py | draw_to_file | def draw_to_file(layers, filename, **kwargs):
"""
Draws a network diagram to a file
:parameters:
- layers : list or NeuralNet instance
List of layers or the neural net to draw.
- filename : string
The filename to save output to
- **kwargs: see docstring of make_pydot_graph for other options
"""
layers = (layers.get_all_layers() if hasattr(layers, 'get_all_layers')
else layers)
dot = make_pydot_graph(layers, **kwargs)
ext = filename[filename.rfind('.') + 1:]
with io.open(filename, 'wb') as fid:
fid.write(dot.create(format=ext)) | python | def draw_to_file(layers, filename, **kwargs):
"""
Draws a network diagram to a file
:parameters:
- layers : list or NeuralNet instance
List of layers or the neural net to draw.
- filename : string
The filename to save output to
- **kwargs: see docstring of make_pydot_graph for other options
"""
layers = (layers.get_all_layers() if hasattr(layers, 'get_all_layers')
else layers)
dot = make_pydot_graph(layers, **kwargs)
ext = filename[filename.rfind('.') + 1:]
with io.open(filename, 'wb') as fid:
fid.write(dot.create(format=ext)) | Draws a network diagram to a file
:parameters:
- layers : list or NeuralNet instance
List of layers or the neural net to draw.
- filename : string
The filename to save output to
- **kwargs: see docstring of make_pydot_graph for other options | https://github.com/dnouri/nolearn/blob/2ef346c869e80fc90247916e4aea5cfa7cf2edda/nolearn/lasagne/visualize.py#L355-L370 |
dnouri/nolearn | nolearn/lasagne/visualize.py | draw_to_notebook | def draw_to_notebook(layers, **kwargs):
"""
Draws a network diagram in an IPython notebook
:parameters:
- layers : list or NeuralNet instance
List of layers or the neural net to draw.
- **kwargs : see the docstring of make_pydot_graph for other options
"""
from IPython.display import Image
layers = (layers.get_all_layers() if hasattr(layers, 'get_all_layers')
else layers)
dot = make_pydot_graph(layers, **kwargs)
return Image(dot.create_png()) | python | def draw_to_notebook(layers, **kwargs):
"""
Draws a network diagram in an IPython notebook
:parameters:
- layers : list or NeuralNet instance
List of layers or the neural net to draw.
- **kwargs : see the docstring of make_pydot_graph for other options
"""
from IPython.display import Image
layers = (layers.get_all_layers() if hasattr(layers, 'get_all_layers')
else layers)
dot = make_pydot_graph(layers, **kwargs)
return Image(dot.create_png()) | Draws a network diagram in an IPython notebook
:parameters:
- layers : list or NeuralNet instance
List of layers or the neural net to draw.
- **kwargs : see the docstring of make_pydot_graph for other options | https://github.com/dnouri/nolearn/blob/2ef346c869e80fc90247916e4aea5cfa7cf2edda/nolearn/lasagne/visualize.py#L373-L385 |
dnouri/nolearn | nolearn/lasagne/util.py | get_real_filter | def get_real_filter(layers, img_size):
"""Get the real filter sizes of each layer involved in
convoluation. See Xudong Cao:
https://www.kaggle.com/c/datasciencebowl/forums/t/13166/happy-lantern-festival-report-and-code
This does not yet take into consideration feature pooling,
padding, striding and similar gimmicks.
"""
real_filter = np.zeros((len(layers), 2))
conv_mode = True
first_conv_layer = True
expon = np.ones((1, 2))
for i, layer in enumerate(layers[1:]):
j = i + 1
if not conv_mode:
real_filter[j] = img_size
continue
if is_conv2d(layer):
if not first_conv_layer:
new_filter = np.array(layer.filter_size) * expon
real_filter[j] = new_filter
else:
new_filter = np.array(layer.filter_size) * expon
real_filter[j] = new_filter
first_conv_layer = False
elif is_maxpool2d(layer):
real_filter[j] = real_filter[i]
expon *= np.array(layer.pool_size)
else:
conv_mode = False
real_filter[j] = img_size
real_filter[0] = img_size
return real_filter | python | def get_real_filter(layers, img_size):
"""Get the real filter sizes of each layer involved in
convoluation. See Xudong Cao:
https://www.kaggle.com/c/datasciencebowl/forums/t/13166/happy-lantern-festival-report-and-code
This does not yet take into consideration feature pooling,
padding, striding and similar gimmicks.
"""
real_filter = np.zeros((len(layers), 2))
conv_mode = True
first_conv_layer = True
expon = np.ones((1, 2))
for i, layer in enumerate(layers[1:]):
j = i + 1
if not conv_mode:
real_filter[j] = img_size
continue
if is_conv2d(layer):
if not first_conv_layer:
new_filter = np.array(layer.filter_size) * expon
real_filter[j] = new_filter
else:
new_filter = np.array(layer.filter_size) * expon
real_filter[j] = new_filter
first_conv_layer = False
elif is_maxpool2d(layer):
real_filter[j] = real_filter[i]
expon *= np.array(layer.pool_size)
else:
conv_mode = False
real_filter[j] = img_size
real_filter[0] = img_size
return real_filter | Get the real filter sizes of each layer involved in
convoluation. See Xudong Cao:
https://www.kaggle.com/c/datasciencebowl/forums/t/13166/happy-lantern-festival-report-and-code
This does not yet take into consideration feature pooling,
padding, striding and similar gimmicks. | https://github.com/dnouri/nolearn/blob/2ef346c869e80fc90247916e4aea5cfa7cf2edda/nolearn/lasagne/util.py#L57-L91 |
dnouri/nolearn | nolearn/lasagne/util.py | get_receptive_field | def get_receptive_field(layers, img_size):
"""Get the real filter sizes of each layer involved in
convoluation. See Xudong Cao:
https://www.kaggle.com/c/datasciencebowl/forums/t/13166/happy-lantern-festival-report-and-code
This does not yet take into consideration feature pooling,
padding, striding and similar gimmicks.
"""
receptive_field = np.zeros((len(layers), 2))
conv_mode = True
first_conv_layer = True
expon = np.ones((1, 2))
for i, layer in enumerate(layers[1:]):
j = i + 1
if not conv_mode:
receptive_field[j] = img_size
continue
if is_conv2d(layer):
if not first_conv_layer:
last_field = receptive_field[i]
new_field = (last_field + expon *
(np.array(layer.filter_size) - 1))
receptive_field[j] = new_field
else:
receptive_field[j] = layer.filter_size
first_conv_layer = False
elif is_maxpool2d(layer):
receptive_field[j] = receptive_field[i]
expon *= np.array(layer.pool_size)
else:
conv_mode = False
receptive_field[j] = img_size
receptive_field[0] = img_size
return receptive_field | python | def get_receptive_field(layers, img_size):
"""Get the real filter sizes of each layer involved in
convoluation. See Xudong Cao:
https://www.kaggle.com/c/datasciencebowl/forums/t/13166/happy-lantern-festival-report-and-code
This does not yet take into consideration feature pooling,
padding, striding and similar gimmicks.
"""
receptive_field = np.zeros((len(layers), 2))
conv_mode = True
first_conv_layer = True
expon = np.ones((1, 2))
for i, layer in enumerate(layers[1:]):
j = i + 1
if not conv_mode:
receptive_field[j] = img_size
continue
if is_conv2d(layer):
if not first_conv_layer:
last_field = receptive_field[i]
new_field = (last_field + expon *
(np.array(layer.filter_size) - 1))
receptive_field[j] = new_field
else:
receptive_field[j] = layer.filter_size
first_conv_layer = False
elif is_maxpool2d(layer):
receptive_field[j] = receptive_field[i]
expon *= np.array(layer.pool_size)
else:
conv_mode = False
receptive_field[j] = img_size
receptive_field[0] = img_size
return receptive_field | Get the real filter sizes of each layer involved in
convoluation. See Xudong Cao:
https://www.kaggle.com/c/datasciencebowl/forums/t/13166/happy-lantern-festival-report-and-code
This does not yet take into consideration feature pooling,
padding, striding and similar gimmicks. | https://github.com/dnouri/nolearn/blob/2ef346c869e80fc90247916e4aea5cfa7cf2edda/nolearn/lasagne/util.py#L94-L129 |
dnouri/nolearn | nolearn/decaf.py | ConvNetFeatures.prepare_image | def prepare_image(self, image):
"""Returns image of shape `(256, 256, 3)`, as expected by
`transform` when `classify_direct = True`.
"""
from decaf.util import transform # soft dep
_JEFFNET_FLIP = True
# first, extract the 256x256 center.
image = transform.scale_and_extract(transform.as_rgb(image), 256)
# convert to [0,255] float32
image = image.astype(np.float32) * 255.
if _JEFFNET_FLIP:
# Flip the image if necessary, maintaining the c_contiguous order
image = image[::-1, :].copy()
# subtract the mean
image -= self.net_._data_mean
return image | python | def prepare_image(self, image):
"""Returns image of shape `(256, 256, 3)`, as expected by
`transform` when `classify_direct = True`.
"""
from decaf.util import transform # soft dep
_JEFFNET_FLIP = True
# first, extract the 256x256 center.
image = transform.scale_and_extract(transform.as_rgb(image), 256)
# convert to [0,255] float32
image = image.astype(np.float32) * 255.
if _JEFFNET_FLIP:
# Flip the image if necessary, maintaining the c_contiguous order
image = image[::-1, :].copy()
# subtract the mean
image -= self.net_._data_mean
return image | Returns image of shape `(256, 256, 3)`, as expected by
`transform` when `classify_direct = True`. | https://github.com/dnouri/nolearn/blob/2ef346c869e80fc90247916e4aea5cfa7cf2edda/nolearn/decaf.py#L138-L154 |
dnouri/nolearn | nolearn/metrics.py | multiclass_logloss | def multiclass_logloss(actual, predicted, eps=1e-15):
"""Multi class version of Logarithmic Loss metric.
:param actual: Array containing the actual target classes
:param predicted: Matrix with class predictions, one probability per class
"""
# Convert 'actual' to a binary array if it's not already:
if len(actual.shape) == 1:
actual2 = np.zeros((actual.shape[0], predicted.shape[1]))
for i, val in enumerate(actual):
actual2[i, val] = 1
actual = actual2
clip = np.clip(predicted, eps, 1 - eps)
rows = actual.shape[0]
vsota = np.sum(actual * np.log(clip))
return -1.0 / rows * vsota | python | def multiclass_logloss(actual, predicted, eps=1e-15):
"""Multi class version of Logarithmic Loss metric.
:param actual: Array containing the actual target classes
:param predicted: Matrix with class predictions, one probability per class
"""
# Convert 'actual' to a binary array if it's not already:
if len(actual.shape) == 1:
actual2 = np.zeros((actual.shape[0], predicted.shape[1]))
for i, val in enumerate(actual):
actual2[i, val] = 1
actual = actual2
clip = np.clip(predicted, eps, 1 - eps)
rows = actual.shape[0]
vsota = np.sum(actual * np.log(clip))
return -1.0 / rows * vsota | Multi class version of Logarithmic Loss metric.
:param actual: Array containing the actual target classes
:param predicted: Matrix with class predictions, one probability per class | https://github.com/dnouri/nolearn/blob/2ef346c869e80fc90247916e4aea5cfa7cf2edda/nolearn/metrics.py#L8-L24 |
dnouri/nolearn | nolearn/lasagne/base.py | objective | def objective(layers,
loss_function,
target,
aggregate=aggregate,
deterministic=False,
l1=0,
l2=0,
get_output_kw=None):
"""
Default implementation of the NeuralNet objective.
:param layers: The underlying layers of the NeuralNetwork
:param loss_function: The callable loss function to use
:param target: the expected output
:param aggregate: the aggregation function to use
:param deterministic: Whether or not to get a deterministic output
:param l1: Optional l1 regularization parameter
:param l2: Optional l2 regularization parameter
:param get_output_kw: optional kwargs to pass to
:meth:`NeuralNetwork.get_output`
:return: The total calculated loss
"""
if get_output_kw is None:
get_output_kw = {}
output_layer = layers[-1]
network_output = get_output(
output_layer, deterministic=deterministic, **get_output_kw)
loss = aggregate(loss_function(network_output, target))
if l1:
loss += regularization.regularize_layer_params(
layers.values(), regularization.l1) * l1
if l2:
loss += regularization.regularize_layer_params(
layers.values(), regularization.l2) * l2
return loss | python | def objective(layers,
loss_function,
target,
aggregate=aggregate,
deterministic=False,
l1=0,
l2=0,
get_output_kw=None):
"""
Default implementation of the NeuralNet objective.
:param layers: The underlying layers of the NeuralNetwork
:param loss_function: The callable loss function to use
:param target: the expected output
:param aggregate: the aggregation function to use
:param deterministic: Whether or not to get a deterministic output
:param l1: Optional l1 regularization parameter
:param l2: Optional l2 regularization parameter
:param get_output_kw: optional kwargs to pass to
:meth:`NeuralNetwork.get_output`
:return: The total calculated loss
"""
if get_output_kw is None:
get_output_kw = {}
output_layer = layers[-1]
network_output = get_output(
output_layer, deterministic=deterministic, **get_output_kw)
loss = aggregate(loss_function(network_output, target))
if l1:
loss += regularization.regularize_layer_params(
layers.values(), regularization.l1) * l1
if l2:
loss += regularization.regularize_layer_params(
layers.values(), regularization.l2) * l2
return loss | Default implementation of the NeuralNet objective.
:param layers: The underlying layers of the NeuralNetwork
:param loss_function: The callable loss function to use
:param target: the expected output
:param aggregate: the aggregation function to use
:param deterministic: Whether or not to get a deterministic output
:param l1: Optional l1 regularization parameter
:param l2: Optional l2 regularization parameter
:param get_output_kw: optional kwargs to pass to
:meth:`NeuralNetwork.get_output`
:return: The total calculated loss | https://github.com/dnouri/nolearn/blob/2ef346c869e80fc90247916e4aea5cfa7cf2edda/nolearn/lasagne/base.py#L166-L202 |
dnouri/nolearn | nolearn/lasagne/base.py | NeuralNet.initialize | def initialize(self):
"""Initializes the network. Checks that no extra kwargs were
passed to the constructor, and compiles the train, predict,
and evaluation functions.
Subsequent calls to this function will return without any action.
"""
if getattr(self, '_initialized', False):
return
out = getattr(self, '_output_layers', None)
if out is None:
self.initialize_layers()
self._check_for_unused_kwargs()
iter_funcs = self._create_iter_funcs(
self.layers_, self.objective, self.update,
self.y_tensor_type,
)
self.train_iter_, self.eval_iter_, self.predict_iter_ = iter_funcs
self._initialized = True | python | def initialize(self):
"""Initializes the network. Checks that no extra kwargs were
passed to the constructor, and compiles the train, predict,
and evaluation functions.
Subsequent calls to this function will return without any action.
"""
if getattr(self, '_initialized', False):
return
out = getattr(self, '_output_layers', None)
if out is None:
self.initialize_layers()
self._check_for_unused_kwargs()
iter_funcs = self._create_iter_funcs(
self.layers_, self.objective, self.update,
self.y_tensor_type,
)
self.train_iter_, self.eval_iter_, self.predict_iter_ = iter_funcs
self._initialized = True | Initializes the network. Checks that no extra kwargs were
passed to the constructor, and compiles the train, predict,
and evaluation functions.
Subsequent calls to this function will return without any action. | https://github.com/dnouri/nolearn/blob/2ef346c869e80fc90247916e4aea5cfa7cf2edda/nolearn/lasagne/base.py#L473-L493 |
dnouri/nolearn | nolearn/lasagne/base.py | NeuralNet.initialize_layers | def initialize_layers(self, layers=None):
"""Sets up the Lasagne layers
:param layers: The dictionary of layers, or a
:class:`lasagne.Layers` instance, describing the underlying
network
:return: the output layer of the underlying lasagne network.
:seealso: :ref:`layer-def`
"""
if layers is not None:
self.layers = layers
self.layers_ = Layers()
#If a Layer, or a list of Layers was passed in
if isinstance(self.layers[0], Layer):
for out_layer in self.layers:
for i, layer in enumerate(get_all_layers(out_layer)):
if layer not in self.layers_.values():
name = layer.name or self._layer_name(layer.__class__, i)
self.layers_[name] = layer
if self._get_params_for(name) != {}:
raise ValueError(
"You can't use keyword params when passing a Lasagne "
"instance object as the 'layers' parameter of "
"'NeuralNet'."
)
self._output_layers = self.layers
return self.layers
# 'self.layers' are a list of '(Layer class, kwargs)', so
# we'll have to actually instantiate the layers given the
# arguments:
layer = None
for i, layer_def in enumerate(self.layers):
if isinstance(layer_def[1], dict):
# Newer format: (Layer, {'layer': 'kwargs'})
layer_factory, layer_kw = layer_def
layer_kw = layer_kw.copy()
else:
# The legacy format: ('name', Layer)
layer_name, layer_factory = layer_def
layer_kw = {'name': layer_name}
if isinstance(layer_factory, str):
layer_factory = locate(layer_factory)
assert layer_factory is not None
if 'name' not in layer_kw:
layer_kw['name'] = self._layer_name(layer_factory, i)
more_params = self._get_params_for(layer_kw['name'])
layer_kw.update(more_params)
if layer_kw['name'] in self.layers_:
raise ValueError(
"Two layers with name {}.".format(layer_kw['name']))
# Any layers that aren't subclasses of InputLayer are
# assumed to require an 'incoming' paramter. By default,
# we'll use the previous layer as input:
try:
is_input_layer = issubclass(layer_factory, InputLayer)
except TypeError:
is_input_layer = False
if not is_input_layer:
if 'incoming' in layer_kw:
layer_kw['incoming'] = self.layers_[
layer_kw['incoming']]
elif 'incomings' in layer_kw:
layer_kw['incomings'] = [
self.layers_[name] for name in layer_kw['incomings']]
else:
layer_kw['incoming'] = layer
# Deal with additional string parameters that may
# reference other layers; currently only 'mask_input'.
for param in self.layer_reference_params:
if param in layer_kw:
val = layer_kw[param]
if isinstance(val, basestring):
layer_kw[param] = self.layers_[val]
for attr in ('W', 'b'):
if isinstance(layer_kw.get(attr), str):
name = layer_kw[attr]
layer_kw[attr] = getattr(self.layers_[name], attr, None)
try:
layer_wrapper = layer_kw.pop('layer_wrapper', None)
layer = layer_factory(**layer_kw)
except TypeError as e:
msg = ("Failed to instantiate {} with args {}.\n"
"Maybe parameter names have changed?".format(
layer_factory, layer_kw))
chain_exception(TypeError(msg), e)
self.layers_[layer_kw['name']] = layer
if layer_wrapper is not None:
layer = layer_wrapper(layer)
self.layers_["LW_%s" % layer_kw['name']] = layer
self._output_layers = [layer]
return [layer] | python | def initialize_layers(self, layers=None):
"""Sets up the Lasagne layers
:param layers: The dictionary of layers, or a
:class:`lasagne.Layers` instance, describing the underlying
network
:return: the output layer of the underlying lasagne network.
:seealso: :ref:`layer-def`
"""
if layers is not None:
self.layers = layers
self.layers_ = Layers()
#If a Layer, or a list of Layers was passed in
if isinstance(self.layers[0], Layer):
for out_layer in self.layers:
for i, layer in enumerate(get_all_layers(out_layer)):
if layer not in self.layers_.values():
name = layer.name or self._layer_name(layer.__class__, i)
self.layers_[name] = layer
if self._get_params_for(name) != {}:
raise ValueError(
"You can't use keyword params when passing a Lasagne "
"instance object as the 'layers' parameter of "
"'NeuralNet'."
)
self._output_layers = self.layers
return self.layers
# 'self.layers' are a list of '(Layer class, kwargs)', so
# we'll have to actually instantiate the layers given the
# arguments:
layer = None
for i, layer_def in enumerate(self.layers):
if isinstance(layer_def[1], dict):
# Newer format: (Layer, {'layer': 'kwargs'})
layer_factory, layer_kw = layer_def
layer_kw = layer_kw.copy()
else:
# The legacy format: ('name', Layer)
layer_name, layer_factory = layer_def
layer_kw = {'name': layer_name}
if isinstance(layer_factory, str):
layer_factory = locate(layer_factory)
assert layer_factory is not None
if 'name' not in layer_kw:
layer_kw['name'] = self._layer_name(layer_factory, i)
more_params = self._get_params_for(layer_kw['name'])
layer_kw.update(more_params)
if layer_kw['name'] in self.layers_:
raise ValueError(
"Two layers with name {}.".format(layer_kw['name']))
# Any layers that aren't subclasses of InputLayer are
# assumed to require an 'incoming' paramter. By default,
# we'll use the previous layer as input:
try:
is_input_layer = issubclass(layer_factory, InputLayer)
except TypeError:
is_input_layer = False
if not is_input_layer:
if 'incoming' in layer_kw:
layer_kw['incoming'] = self.layers_[
layer_kw['incoming']]
elif 'incomings' in layer_kw:
layer_kw['incomings'] = [
self.layers_[name] for name in layer_kw['incomings']]
else:
layer_kw['incoming'] = layer
# Deal with additional string parameters that may
# reference other layers; currently only 'mask_input'.
for param in self.layer_reference_params:
if param in layer_kw:
val = layer_kw[param]
if isinstance(val, basestring):
layer_kw[param] = self.layers_[val]
for attr in ('W', 'b'):
if isinstance(layer_kw.get(attr), str):
name = layer_kw[attr]
layer_kw[attr] = getattr(self.layers_[name], attr, None)
try:
layer_wrapper = layer_kw.pop('layer_wrapper', None)
layer = layer_factory(**layer_kw)
except TypeError as e:
msg = ("Failed to instantiate {} with args {}.\n"
"Maybe parameter names have changed?".format(
layer_factory, layer_kw))
chain_exception(TypeError(msg), e)
self.layers_[layer_kw['name']] = layer
if layer_wrapper is not None:
layer = layer_wrapper(layer)
self.layers_["LW_%s" % layer_kw['name']] = layer
self._output_layers = [layer]
return [layer] | Sets up the Lasagne layers
:param layers: The dictionary of layers, or a
:class:`lasagne.Layers` instance, describing the underlying
network
:return: the output layer of the underlying lasagne network.
:seealso: :ref:`layer-def` | https://github.com/dnouri/nolearn/blob/2ef346c869e80fc90247916e4aea5cfa7cf2edda/nolearn/lasagne/base.py#L512-L616 |
dnouri/nolearn | nolearn/lasagne/base.py | NeuralNet.fit | def fit(self, X, y, epochs=None):
"""
Runs the training loop for a given number of epochs
:param X: The input data
:param y: The ground truth
:param epochs: The number of epochs to run, if `None` runs for the
network's :attr:`max_epochs`
:return: This instance
"""
if self.check_input:
X, y = self._check_good_input(X, y)
if self.use_label_encoder:
self.enc_ = LabelEncoder()
y = self.enc_.fit_transform(y).astype(np.int32)
self.classes_ = self.enc_.classes_
self.initialize()
try:
self.train_loop(X, y, epochs=epochs)
except KeyboardInterrupt:
pass
return self | python | def fit(self, X, y, epochs=None):
"""
Runs the training loop for a given number of epochs
:param X: The input data
:param y: The ground truth
:param epochs: The number of epochs to run, if `None` runs for the
network's :attr:`max_epochs`
:return: This instance
"""
if self.check_input:
X, y = self._check_good_input(X, y)
if self.use_label_encoder:
self.enc_ = LabelEncoder()
y = self.enc_.fit_transform(y).astype(np.int32)
self.classes_ = self.enc_.classes_
self.initialize()
try:
self.train_loop(X, y, epochs=epochs)
except KeyboardInterrupt:
pass
return self | Runs the training loop for a given number of epochs
:param X: The input data
:param y: The ground truth
:param epochs: The number of epochs to run, if `None` runs for the
network's :attr:`max_epochs`
:return: This instance | https://github.com/dnouri/nolearn/blob/2ef346c869e80fc90247916e4aea5cfa7cf2edda/nolearn/lasagne/base.py#L680-L703 |
dnouri/nolearn | nolearn/lasagne/base.py | NeuralNet.partial_fit | def partial_fit(self, X, y, classes=None):
"""
Runs a single epoch using the provided data
:return: This instance
"""
return self.fit(X, y, epochs=1) | python | def partial_fit(self, X, y, classes=None):
"""
Runs a single epoch using the provided data
:return: This instance
"""
return self.fit(X, y, epochs=1) | Runs a single epoch using the provided data
:return: This instance | https://github.com/dnouri/nolearn/blob/2ef346c869e80fc90247916e4aea5cfa7cf2edda/nolearn/lasagne/base.py#L705-L711 |
pennersr/django-trackstats | trackstats/models.py | RegisterLazilyManagerMixin._register | def _register(self, defaults=None, **kwargs):
"""Fetch (update or create) an instance, lazily.
We're doing this lazily, so that it becomes possible to define
custom enums in your code, even before the Django ORM is fully
initialized.
Domain.objects.SHOPPING = Domain.objects.register(
ref='shopping',
name='Webshop')
Domain.objects.USERS = Domain.objects.register(
ref='users',
name='User Accounts')
"""
f = lambda: self.update_or_create(defaults=defaults, **kwargs)[0]
ret = SimpleLazyObject(f)
self._lazy_entries.append(ret)
return ret | python | def _register(self, defaults=None, **kwargs):
"""Fetch (update or create) an instance, lazily.
We're doing this lazily, so that it becomes possible to define
custom enums in your code, even before the Django ORM is fully
initialized.
Domain.objects.SHOPPING = Domain.objects.register(
ref='shopping',
name='Webshop')
Domain.objects.USERS = Domain.objects.register(
ref='users',
name='User Accounts')
"""
f = lambda: self.update_or_create(defaults=defaults, **kwargs)[0]
ret = SimpleLazyObject(f)
self._lazy_entries.append(ret)
return ret | Fetch (update or create) an instance, lazily.
We're doing this lazily, so that it becomes possible to define
custom enums in your code, even before the Django ORM is fully
initialized.
Domain.objects.SHOPPING = Domain.objects.register(
ref='shopping',
name='Webshop')
Domain.objects.USERS = Domain.objects.register(
ref='users',
name='User Accounts') | https://github.com/pennersr/django-trackstats/blob/4c36e769cb02017675a86de405afcd4e10ed3356/trackstats/models.py#L28-L45 |
pennersr/django-trackstats | trackstats/models.py | ByDateQuerySetMixin.narrow | def narrow(self, **kwargs):
"""Up-to including"""
from_date = kwargs.pop('from_date', None)
to_date = kwargs.pop('to_date', None)
date = kwargs.pop('date', None)
qs = self
if from_date:
qs = qs.filter(date__gte=from_date)
if to_date:
qs = qs.filter(date__lte=to_date)
if date:
qs = qs.filter(date=date)
return super(ByDateQuerySetMixin, qs).narrow(**kwargs) | python | def narrow(self, **kwargs):
"""Up-to including"""
from_date = kwargs.pop('from_date', None)
to_date = kwargs.pop('to_date', None)
date = kwargs.pop('date', None)
qs = self
if from_date:
qs = qs.filter(date__gte=from_date)
if to_date:
qs = qs.filter(date__lte=to_date)
if date:
qs = qs.filter(date=date)
return super(ByDateQuerySetMixin, qs).narrow(**kwargs) | Up-to including | https://github.com/pennersr/django-trackstats/blob/4c36e769cb02017675a86de405afcd4e10ed3356/trackstats/models.py#L230-L242 |
HDE/python-lambda-local | lambda_local/environment_variables.py | set_environment_variables | def set_environment_variables(json_file_path):
"""
Read and set environment variables from a flat json file.
Bear in mind that env vars set this way and later on read using
`os.getenv` function will be strings since after all env vars are just
that - plain strings.
Json file example:
```
{
"FOO": "bar",
"BAZ": true
}
```
:param json_file_path: path to flat json file
:type json_file_path: str
"""
if json_file_path:
with open(json_file_path) as json_file:
env_vars = json.loads(json_file.read())
export_variables(env_vars) | python | def set_environment_variables(json_file_path):
"""
Read and set environment variables from a flat json file.
Bear in mind that env vars set this way and later on read using
`os.getenv` function will be strings since after all env vars are just
that - plain strings.
Json file example:
```
{
"FOO": "bar",
"BAZ": true
}
```
:param json_file_path: path to flat json file
:type json_file_path: str
"""
if json_file_path:
with open(json_file_path) as json_file:
env_vars = json.loads(json_file.read())
export_variables(env_vars) | Read and set environment variables from a flat json file.
Bear in mind that env vars set this way and later on read using
`os.getenv` function will be strings since after all env vars are just
that - plain strings.
Json file example:
```
{
"FOO": "bar",
"BAZ": true
}
```
:param json_file_path: path to flat json file
:type json_file_path: str | https://github.com/HDE/python-lambda-local/blob/49ad011a039974f1d8f904435eb8db895558d2d9/lambda_local/environment_variables.py#L10-L33 |
HDE/python-lambda-local | lambda_local/context.py | millis_interval | def millis_interval(start, end):
"""start and end are datetime instances"""
diff = end - start
millis = diff.days * 24 * 60 * 60 * 1000
millis += diff.seconds * 1000
millis += diff.microseconds / 1000
return millis | python | def millis_interval(start, end):
"""start and end are datetime instances"""
diff = end - start
millis = diff.days * 24 * 60 * 60 * 1000
millis += diff.seconds * 1000
millis += diff.microseconds / 1000
return millis | start and end are datetime instances | https://github.com/HDE/python-lambda-local/blob/49ad011a039974f1d8f904435eb8db895558d2d9/lambda_local/context.py#L49-L55 |
locationlabs/mockredis | mockredis/script.py | Script._execute_lua | def _execute_lua(self, keys, args, client):
"""
Sets KEYS and ARGV alongwith redis.call() function in lua globals
and executes the lua redis script
"""
lua, lua_globals = Script._import_lua(self.load_dependencies)
lua_globals.KEYS = self._python_to_lua(keys)
lua_globals.ARGV = self._python_to_lua(args)
def _call(*call_args):
# redis-py and native redis commands are mostly compatible argument
# wise, but some exceptions need to be handled here:
if str(call_args[0]).lower() == 'lrem':
response = client.call(
call_args[0], call_args[1],
call_args[3], # "count", default is 0
call_args[2])
else:
response = client.call(*call_args)
return self._python_to_lua(response)
lua_globals.redis = {"call": _call}
return self._lua_to_python(lua.execute(self.script), return_status=True) | python | def _execute_lua(self, keys, args, client):
"""
Sets KEYS and ARGV alongwith redis.call() function in lua globals
and executes the lua redis script
"""
lua, lua_globals = Script._import_lua(self.load_dependencies)
lua_globals.KEYS = self._python_to_lua(keys)
lua_globals.ARGV = self._python_to_lua(args)
def _call(*call_args):
# redis-py and native redis commands are mostly compatible argument
# wise, but some exceptions need to be handled here:
if str(call_args[0]).lower() == 'lrem':
response = client.call(
call_args[0], call_args[1],
call_args[3], # "count", default is 0
call_args[2])
else:
response = client.call(*call_args)
return self._python_to_lua(response)
lua_globals.redis = {"call": _call}
return self._lua_to_python(lua.execute(self.script), return_status=True) | Sets KEYS and ARGV alongwith redis.call() function in lua globals
and executes the lua redis script | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/script.py#L29-L51 |
locationlabs/mockredis | mockredis/script.py | Script._import_lua | def _import_lua(load_dependencies=True):
"""
Import lua and dependencies.
:param load_dependencies: should Lua library dependencies be loaded?
:raises: RuntimeError if Lua is not available
"""
try:
import lua
except ImportError:
raise RuntimeError("Lua not installed")
lua_globals = lua.globals()
if load_dependencies:
Script._import_lua_dependencies(lua, lua_globals)
return lua, lua_globals | python | def _import_lua(load_dependencies=True):
"""
Import lua and dependencies.
:param load_dependencies: should Lua library dependencies be loaded?
:raises: RuntimeError if Lua is not available
"""
try:
import lua
except ImportError:
raise RuntimeError("Lua not installed")
lua_globals = lua.globals()
if load_dependencies:
Script._import_lua_dependencies(lua, lua_globals)
return lua, lua_globals | Import lua and dependencies.
:param load_dependencies: should Lua library dependencies be loaded?
:raises: RuntimeError if Lua is not available | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/script.py#L54-L69 |
locationlabs/mockredis | mockredis/script.py | Script._import_lua_dependencies | def _import_lua_dependencies(lua, lua_globals):
"""
Imports lua dependencies that are supported by redis lua scripts.
The current implementation is fragile to the target platform and lua version
and may be disabled if these imports are not needed.
Included:
- cjson lib.
Pending:
- base lib.
- table lib.
- string lib.
- math lib.
- debug lib.
- cmsgpack lib.
"""
if sys.platform not in ('darwin', 'windows'):
import ctypes
ctypes.CDLL('liblua5.2.so', mode=ctypes.RTLD_GLOBAL)
try:
lua_globals.cjson = lua.eval('require "cjson"')
except RuntimeError:
raise RuntimeError("cjson not installed") | python | def _import_lua_dependencies(lua, lua_globals):
"""
Imports lua dependencies that are supported by redis lua scripts.
The current implementation is fragile to the target platform and lua version
and may be disabled if these imports are not needed.
Included:
- cjson lib.
Pending:
- base lib.
- table lib.
- string lib.
- math lib.
- debug lib.
- cmsgpack lib.
"""
if sys.platform not in ('darwin', 'windows'):
import ctypes
ctypes.CDLL('liblua5.2.so', mode=ctypes.RTLD_GLOBAL)
try:
lua_globals.cjson = lua.eval('require "cjson"')
except RuntimeError:
raise RuntimeError("cjson not installed") | Imports lua dependencies that are supported by redis lua scripts.
The current implementation is fragile to the target platform and lua version
and may be disabled if these imports are not needed.
Included:
- cjson lib.
Pending:
- base lib.
- table lib.
- string lib.
- math lib.
- debug lib.
- cmsgpack lib. | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/script.py#L72-L96 |
locationlabs/mockredis | mockredis/script.py | Script._lua_to_python | def _lua_to_python(lval, return_status=False):
"""
Convert Lua object(s) into Python object(s), as at times Lua object(s)
are not compatible with Python functions
"""
import lua
lua_globals = lua.globals()
if lval is None:
# Lua None --> Python None
return None
if lua_globals.type(lval) == "table":
# Lua table --> Python list
pval = []
for i in lval:
if return_status:
if i == 'ok':
return lval[i]
if i == 'err':
raise ResponseError(lval[i])
pval.append(Script._lua_to_python(lval[i]))
return pval
elif isinstance(lval, long):
# Lua number --> Python long
return long(lval)
elif isinstance(lval, float):
# Lua number --> Python float
return float(lval)
elif lua_globals.type(lval) == "userdata":
# Lua userdata --> Python string
return str(lval)
elif lua_globals.type(lval) == "string":
# Lua string --> Python string
return lval
elif lua_globals.type(lval) == "boolean":
# Lua boolean --> Python bool
return bool(lval)
raise RuntimeError("Invalid Lua type: " + str(lua_globals.type(lval))) | python | def _lua_to_python(lval, return_status=False):
"""
Convert Lua object(s) into Python object(s), as at times Lua object(s)
are not compatible with Python functions
"""
import lua
lua_globals = lua.globals()
if lval is None:
# Lua None --> Python None
return None
if lua_globals.type(lval) == "table":
# Lua table --> Python list
pval = []
for i in lval:
if return_status:
if i == 'ok':
return lval[i]
if i == 'err':
raise ResponseError(lval[i])
pval.append(Script._lua_to_python(lval[i]))
return pval
elif isinstance(lval, long):
# Lua number --> Python long
return long(lval)
elif isinstance(lval, float):
# Lua number --> Python float
return float(lval)
elif lua_globals.type(lval) == "userdata":
# Lua userdata --> Python string
return str(lval)
elif lua_globals.type(lval) == "string":
# Lua string --> Python string
return lval
elif lua_globals.type(lval) == "boolean":
# Lua boolean --> Python bool
return bool(lval)
raise RuntimeError("Invalid Lua type: " + str(lua_globals.type(lval))) | Convert Lua object(s) into Python object(s), as at times Lua object(s)
are not compatible with Python functions | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/script.py#L99-L135 |
locationlabs/mockredis | mockredis/script.py | Script._python_to_lua | def _python_to_lua(pval):
"""
Convert Python object(s) into Lua object(s), as at times Python object(s)
are not compatible with Lua functions
"""
import lua
if pval is None:
# Python None --> Lua None
return lua.eval("")
if isinstance(pval, (list, tuple, set)):
# Python list --> Lua table
# e.g.: in lrange
# in Python returns: [v1, v2, v3]
# in Lua returns: {v1, v2, v3}
lua_list = lua.eval("{}")
lua_table = lua.eval("table")
for item in pval:
lua_table.insert(lua_list, Script._python_to_lua(item))
return lua_list
elif isinstance(pval, dict):
# Python dict --> Lua dict
# e.g.: in hgetall
# in Python returns: {k1:v1, k2:v2, k3:v3}
# in Lua returns: {k1, v1, k2, v2, k3, v3}
lua_dict = lua.eval("{}")
lua_table = lua.eval("table")
for k, v in pval.iteritems():
lua_table.insert(lua_dict, Script._python_to_lua(k))
lua_table.insert(lua_dict, Script._python_to_lua(v))
return lua_dict
elif isinstance(pval, str):
# Python string --> Lua userdata
return pval
elif isinstance(pval, bool):
# Python bool--> Lua boolean
return lua.eval(str(pval).lower())
elif isinstance(pval, (int, long, float)):
# Python int --> Lua number
lua_globals = lua.globals()
return lua_globals.tonumber(str(pval))
raise RuntimeError("Invalid Python type: " + str(type(pval))) | python | def _python_to_lua(pval):
"""
Convert Python object(s) into Lua object(s), as at times Python object(s)
are not compatible with Lua functions
"""
import lua
if pval is None:
# Python None --> Lua None
return lua.eval("")
if isinstance(pval, (list, tuple, set)):
# Python list --> Lua table
# e.g.: in lrange
# in Python returns: [v1, v2, v3]
# in Lua returns: {v1, v2, v3}
lua_list = lua.eval("{}")
lua_table = lua.eval("table")
for item in pval:
lua_table.insert(lua_list, Script._python_to_lua(item))
return lua_list
elif isinstance(pval, dict):
# Python dict --> Lua dict
# e.g.: in hgetall
# in Python returns: {k1:v1, k2:v2, k3:v3}
# in Lua returns: {k1, v1, k2, v2, k3, v3}
lua_dict = lua.eval("{}")
lua_table = lua.eval("table")
for k, v in pval.iteritems():
lua_table.insert(lua_dict, Script._python_to_lua(k))
lua_table.insert(lua_dict, Script._python_to_lua(v))
return lua_dict
elif isinstance(pval, str):
# Python string --> Lua userdata
return pval
elif isinstance(pval, bool):
# Python bool--> Lua boolean
return lua.eval(str(pval).lower())
elif isinstance(pval, (int, long, float)):
# Python int --> Lua number
lua_globals = lua.globals()
return lua_globals.tonumber(str(pval))
raise RuntimeError("Invalid Python type: " + str(type(pval))) | Convert Python object(s) into Lua object(s), as at times Python object(s)
are not compatible with Lua functions | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/script.py#L138-L179 |
locationlabs/mockredis | mockredis/client.py | MockRedis.lock | def lock(self, key, timeout=0, sleep=0):
"""Emulate lock."""
return MockRedisLock(self, key, timeout, sleep) | python | def lock(self, key, timeout=0, sleep=0):
"""Emulate lock."""
return MockRedisLock(self, key, timeout, sleep) | Emulate lock. | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L77-L79 |
locationlabs/mockredis | mockredis/client.py | MockRedis.keys | def keys(self, pattern='*'):
"""Emulate keys."""
# making sure the pattern is unicode/str.
try:
pattern = pattern.decode('utf-8')
# This throws an AttributeError in python 3, or an
# UnicodeEncodeError in python 2
except (AttributeError, UnicodeEncodeError):
pass
# Make regex out of glob styled pattern.
regex = fnmatch.translate(pattern)
regex = re.compile(re.sub(r'(^|[^\\])\.', r'\1[^/]', regex))
# Find every key that matches the pattern
return [key for key in self.redis.keys() if regex.match(key.decode('utf-8'))] | python | def keys(self, pattern='*'):
"""Emulate keys."""
# making sure the pattern is unicode/str.
try:
pattern = pattern.decode('utf-8')
# This throws an AttributeError in python 3, or an
# UnicodeEncodeError in python 2
except (AttributeError, UnicodeEncodeError):
pass
# Make regex out of glob styled pattern.
regex = fnmatch.translate(pattern)
regex = re.compile(re.sub(r'(^|[^\\])\.', r'\1[^/]', regex))
# Find every key that matches the pattern
return [key for key in self.redis.keys() if regex.match(key.decode('utf-8'))] | Emulate keys. | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L154-L169 |
locationlabs/mockredis | mockredis/client.py | MockRedis.delete | def delete(self, *keys):
"""Emulate delete."""
key_counter = 0
for key in map(self._encode, keys):
if key in self.redis:
del self.redis[key]
key_counter += 1
if key in self.timeouts:
del self.timeouts[key]
return key_counter | python | def delete(self, *keys):
"""Emulate delete."""
key_counter = 0
for key in map(self._encode, keys):
if key in self.redis:
del self.redis[key]
key_counter += 1
if key in self.timeouts:
del self.timeouts[key]
return key_counter | Emulate delete. | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L171-L180 |
locationlabs/mockredis | mockredis/client.py | MockRedis.expire | def expire(self, key, delta):
"""Emulate expire"""
delta = delta if isinstance(delta, timedelta) else timedelta(seconds=delta)
return self._expire(self._encode(key), delta) | python | def expire(self, key, delta):
"""Emulate expire"""
delta = delta if isinstance(delta, timedelta) else timedelta(seconds=delta)
return self._expire(self._encode(key), delta) | Emulate expire | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L199-L202 |
locationlabs/mockredis | mockredis/client.py | MockRedis.pexpire | def pexpire(self, key, milliseconds):
"""Emulate pexpire"""
return self._expire(self._encode(key), timedelta(milliseconds=milliseconds)) | python | def pexpire(self, key, milliseconds):
"""Emulate pexpire"""
return self._expire(self._encode(key), timedelta(milliseconds=milliseconds)) | Emulate pexpire | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L204-L206 |
locationlabs/mockredis | mockredis/client.py | MockRedis.expireat | def expireat(self, key, when):
"""Emulate expireat"""
expire_time = datetime.fromtimestamp(when)
key = self._encode(key)
if key in self.redis:
self.timeouts[key] = expire_time
return True
return False | python | def expireat(self, key, when):
"""Emulate expireat"""
expire_time = datetime.fromtimestamp(when)
key = self._encode(key)
if key in self.redis:
self.timeouts[key] = expire_time
return True
return False | Emulate expireat | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L208-L215 |
locationlabs/mockredis | mockredis/client.py | MockRedis.ttl | def ttl(self, key):
"""
Emulate ttl
Even though the official redis commands documentation at http://redis.io/commands/ttl
states "Return value: Integer reply: TTL in seconds, -2 when key does not exist or -1
when key does not have a timeout." the redis-py lib returns None for both these cases.
The lib behavior has been emulated here.
:param key: key for which ttl is requested.
:returns: the number of seconds till timeout, None if the key does not exist or if the
key has no timeout(as per the redis-py lib behavior).
"""
value = self.pttl(key)
if value is None or value < 0:
return value
return value // 1000 | python | def ttl(self, key):
"""
Emulate ttl
Even though the official redis commands documentation at http://redis.io/commands/ttl
states "Return value: Integer reply: TTL in seconds, -2 when key does not exist or -1
when key does not have a timeout." the redis-py lib returns None for both these cases.
The lib behavior has been emulated here.
:param key: key for which ttl is requested.
:returns: the number of seconds till timeout, None if the key does not exist or if the
key has no timeout(as per the redis-py lib behavior).
"""
value = self.pttl(key)
if value is None or value < 0:
return value
return value // 1000 | Emulate ttl
Even though the official redis commands documentation at http://redis.io/commands/ttl
states "Return value: Integer reply: TTL in seconds, -2 when key does not exist or -1
when key does not have a timeout." the redis-py lib returns None for both these cases.
The lib behavior has been emulated here.
:param key: key for which ttl is requested.
:returns: the number of seconds till timeout, None if the key does not exist or if the
key has no timeout(as per the redis-py lib behavior). | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L217-L233 |
locationlabs/mockredis | mockredis/client.py | MockRedis.pttl | def pttl(self, key):
"""
Emulate pttl
:param key: key for which pttl is requested.
:returns: the number of milliseconds till timeout, None if the key does not exist or if the
key has no timeout(as per the redis-py lib behavior).
"""
"""
Returns time to live in milliseconds if output_ms is True, else returns seconds.
"""
key = self._encode(key)
if key not in self.redis:
# as of redis 2.8, -2 is returned if the key does not exist
return long(-2) if self.strict else None
if key not in self.timeouts:
# as of redis 2.8, -1 is returned if the key is persistent
# redis-py returns None; command docs say -1
return long(-1) if self.strict else None
time_to_live = get_total_milliseconds(self.timeouts[key] - self.clock.now())
return long(max(-1, time_to_live)) | python | def pttl(self, key):
"""
Emulate pttl
:param key: key for which pttl is requested.
:returns: the number of milliseconds till timeout, None if the key does not exist or if the
key has no timeout(as per the redis-py lib behavior).
"""
"""
Returns time to live in milliseconds if output_ms is True, else returns seconds.
"""
key = self._encode(key)
if key not in self.redis:
# as of redis 2.8, -2 is returned if the key does not exist
return long(-2) if self.strict else None
if key not in self.timeouts:
# as of redis 2.8, -1 is returned if the key is persistent
# redis-py returns None; command docs say -1
return long(-1) if self.strict else None
time_to_live = get_total_milliseconds(self.timeouts[key] - self.clock.now())
return long(max(-1, time_to_live)) | Emulate pttl
:param key: key for which pttl is requested.
:returns: the number of milliseconds till timeout, None if the key does not exist or if the
key has no timeout(as per the redis-py lib behavior). | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L235-L256 |
locationlabs/mockredis | mockredis/client.py | MockRedis.do_expire | def do_expire(self):
"""
Expire objects assuming now == time
"""
# Deep copy to avoid RuntimeError: dictionary changed size during iteration
_timeouts = deepcopy(self.timeouts)
for key, value in _timeouts.items():
if value - self.clock.now() < timedelta(0):
del self.timeouts[key]
# removing the expired key
if key in self.redis:
self.redis.pop(key, None) | python | def do_expire(self):
"""
Expire objects assuming now == time
"""
# Deep copy to avoid RuntimeError: dictionary changed size during iteration
_timeouts = deepcopy(self.timeouts)
for key, value in _timeouts.items():
if value - self.clock.now() < timedelta(0):
del self.timeouts[key]
# removing the expired key
if key in self.redis:
self.redis.pop(key, None) | Expire objects assuming now == time | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L258-L269 |
locationlabs/mockredis | mockredis/client.py | MockRedis.set | def set(self, key, value, ex=None, px=None, nx=False, xx=False):
"""
Set the ``value`` for the ``key`` in the context of the provided kwargs.
As per the behavior of the redis-py lib:
If nx and xx are both set, the function does nothing and None is returned.
If px and ex are both set, the preference is given to px.
If the key is not set for some reason, the lib function returns None.
"""
key = self._encode(key)
value = self._encode(value)
if nx and xx:
return None
mode = "nx" if nx else "xx" if xx else None
if self._should_set(key, mode):
expire = None
if ex is not None:
expire = ex if isinstance(ex, timedelta) else timedelta(seconds=ex)
if px is not None:
expire = px if isinstance(px, timedelta) else timedelta(milliseconds=px)
if expire is not None and expire.total_seconds() <= 0:
raise ResponseError("invalid expire time in SETEX")
result = self._set(key, value)
if expire:
self._expire(key, expire)
return result | python | def set(self, key, value, ex=None, px=None, nx=False, xx=False):
"""
Set the ``value`` for the ``key`` in the context of the provided kwargs.
As per the behavior of the redis-py lib:
If nx and xx are both set, the function does nothing and None is returned.
If px and ex are both set, the preference is given to px.
If the key is not set for some reason, the lib function returns None.
"""
key = self._encode(key)
value = self._encode(value)
if nx and xx:
return None
mode = "nx" if nx else "xx" if xx else None
if self._should_set(key, mode):
expire = None
if ex is not None:
expire = ex if isinstance(ex, timedelta) else timedelta(seconds=ex)
if px is not None:
expire = px if isinstance(px, timedelta) else timedelta(milliseconds=px)
if expire is not None and expire.total_seconds() <= 0:
raise ResponseError("invalid expire time in SETEX")
result = self._set(key, value)
if expire:
self._expire(key, expire)
return result | Set the ``value`` for the ``key`` in the context of the provided kwargs.
As per the behavior of the redis-py lib:
If nx and xx are both set, the function does nothing and None is returned.
If px and ex are both set, the preference is given to px.
If the key is not set for some reason, the lib function returns None. | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L313-L342 |
locationlabs/mockredis | mockredis/client.py | MockRedis._should_set | def _should_set(self, key, mode):
"""
Determine if it is okay to set a key.
If the mode is None, returns True, otherwise, returns True of false based on
the value of ``key`` and the ``mode`` (nx | xx).
"""
if mode is None or mode not in ["nx", "xx"]:
return True
if mode == "nx":
if key in self.redis:
# nx means set only if key is absent
# false if the key already exists
return False
elif key not in self.redis:
# at this point mode can only be xx
# xx means set only if the key already exists
# false if is absent
return False
# for all other cases, return true
return True | python | def _should_set(self, key, mode):
"""
Determine if it is okay to set a key.
If the mode is None, returns True, otherwise, returns True of false based on
the value of ``key`` and the ``mode`` (nx | xx).
"""
if mode is None or mode not in ["nx", "xx"]:
return True
if mode == "nx":
if key in self.redis:
# nx means set only if key is absent
# false if the key already exists
return False
elif key not in self.redis:
# at this point mode can only be xx
# xx means set only if the key already exists
# false if is absent
return False
# for all other cases, return true
return True | Determine if it is okay to set a key.
If the mode is None, returns True, otherwise, returns True of false based on
the value of ``key`` and the ``mode`` (nx | xx). | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L359-L381 |
locationlabs/mockredis | mockredis/client.py | MockRedis.setex | def setex(self, name, time, value):
"""
Set the value of ``name`` to ``value`` that expires in ``time``
seconds. ``time`` can be represented by an integer or a Python
timedelta object.
"""
if not self.strict:
# when not strict mode swap value and time args order
time, value = value, time
return self.set(name, value, ex=time) | python | def setex(self, name, time, value):
"""
Set the value of ``name`` to ``value`` that expires in ``time``
seconds. ``time`` can be represented by an integer or a Python
timedelta object.
"""
if not self.strict:
# when not strict mode swap value and time args order
time, value = value, time
return self.set(name, value, ex=time) | Set the value of ``name`` to ``value`` that expires in ``time``
seconds. ``time`` can be represented by an integer or a Python
timedelta object. | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L383-L392 |
locationlabs/mockredis | mockredis/client.py | MockRedis.psetex | def psetex(self, key, time, value):
"""
Set the value of ``key`` to ``value`` that expires in ``time``
milliseconds. ``time`` can be represented by an integer or a Python
timedelta object.
"""
return self.set(key, value, px=time) | python | def psetex(self, key, time, value):
"""
Set the value of ``key`` to ``value`` that expires in ``time``
milliseconds. ``time`` can be represented by an integer or a Python
timedelta object.
"""
return self.set(key, value, px=time) | Set the value of ``key`` to ``value`` that expires in ``time``
milliseconds. ``time`` can be represented by an integer or a Python
timedelta object. | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L394-L400 |
locationlabs/mockredis | mockredis/client.py | MockRedis.setnx | def setnx(self, key, value):
"""Set the value of ``key`` to ``value`` if key doesn't exist"""
return self.set(key, value, nx=True) | python | def setnx(self, key, value):
"""Set the value of ``key`` to ``value`` if key doesn't exist"""
return self.set(key, value, nx=True) | Set the value of ``key`` to ``value`` if key doesn't exist | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L402-L404 |
locationlabs/mockredis | mockredis/client.py | MockRedis.mset | def mset(self, *args, **kwargs):
"""
Sets key/values based on a mapping. Mapping can be supplied as a single
dictionary argument or as kwargs.
"""
mapping = kwargs
if args:
if len(args) != 1 or not isinstance(args[0], dict):
raise RedisError('MSET requires **kwargs or a single dict arg')
mapping.update(args[0])
if len(mapping) == 0:
raise ResponseError("wrong number of arguments for 'mset' command")
for key, value in mapping.items():
self.set(key, value)
return True | python | def mset(self, *args, **kwargs):
"""
Sets key/values based on a mapping. Mapping can be supplied as a single
dictionary argument or as kwargs.
"""
mapping = kwargs
if args:
if len(args) != 1 or not isinstance(args[0], dict):
raise RedisError('MSET requires **kwargs or a single dict arg')
mapping.update(args[0])
if len(mapping) == 0:
raise ResponseError("wrong number of arguments for 'mset' command")
for key, value in mapping.items():
self.set(key, value)
return True | Sets key/values based on a mapping. Mapping can be supplied as a single
dictionary argument or as kwargs. | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L406-L422 |
locationlabs/mockredis | mockredis/client.py | MockRedis.msetnx | def msetnx(self, *args, **kwargs):
"""
Sets key/values based on a mapping if none of the keys are already set.
Mapping can be supplied as a single dictionary argument or as kwargs.
Returns a boolean indicating if the operation was successful.
"""
if args:
if len(args) != 1 or not isinstance(args[0], dict):
raise RedisError('MSETNX requires **kwargs or a single dict arg')
mapping = args[0]
else:
mapping = kwargs
if len(mapping) == 0:
raise ResponseError("wrong number of arguments for 'msetnx' command")
for key in mapping.keys():
if self._encode(key) in self.redis:
return False
for key, value in mapping.items():
self.set(key, value)
return True | python | def msetnx(self, *args, **kwargs):
"""
Sets key/values based on a mapping if none of the keys are already set.
Mapping can be supplied as a single dictionary argument or as kwargs.
Returns a boolean indicating if the operation was successful.
"""
if args:
if len(args) != 1 or not isinstance(args[0], dict):
raise RedisError('MSETNX requires **kwargs or a single dict arg')
mapping = args[0]
else:
mapping = kwargs
if len(mapping) == 0:
raise ResponseError("wrong number of arguments for 'msetnx' command")
for key in mapping.keys():
if self._encode(key) in self.redis:
return False
for key, value in mapping.items():
self.set(key, value)
return True | Sets key/values based on a mapping if none of the keys are already set.
Mapping can be supplied as a single dictionary argument or as kwargs.
Returns a boolean indicating if the operation was successful. | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L424-L446 |
locationlabs/mockredis | mockredis/client.py | MockRedis.setbit | def setbit(self, key, offset, value):
"""
Set the bit at ``offset`` in ``key`` to ``value``.
"""
key = self._encode(key)
index, bits, mask = self._get_bits_and_offset(key, offset)
if index >= len(bits):
bits.extend(b"\x00" * (index + 1 - len(bits)))
prev_val = 1 if (bits[index] & mask) else 0
if value:
bits[index] |= mask
else:
bits[index] &= ~mask
self.redis[key] = bytes(bits)
return prev_val | python | def setbit(self, key, offset, value):
"""
Set the bit at ``offset`` in ``key`` to ``value``.
"""
key = self._encode(key)
index, bits, mask = self._get_bits_and_offset(key, offset)
if index >= len(bits):
bits.extend(b"\x00" * (index + 1 - len(bits)))
prev_val = 1 if (bits[index] & mask) else 0
if value:
bits[index] |= mask
else:
bits[index] &= ~mask
self.redis[key] = bytes(bits)
return prev_val | Set the bit at ``offset`` in ``key`` to ``value``. | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L465-L484 |
locationlabs/mockredis | mockredis/client.py | MockRedis.getbit | def getbit(self, key, offset):
"""
Returns the bit value at ``offset`` in ``key``.
"""
key = self._encode(key)
index, bits, mask = self._get_bits_and_offset(key, offset)
if index >= len(bits):
return 0
return 1 if (bits[index] & mask) else 0 | python | def getbit(self, key, offset):
"""
Returns the bit value at ``offset`` in ``key``.
"""
key = self._encode(key)
index, bits, mask = self._get_bits_and_offset(key, offset)
if index >= len(bits):
return 0
return 1 if (bits[index] & mask) else 0 | Returns the bit value at ``offset`` in ``key``. | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L486-L496 |
locationlabs/mockredis | mockredis/client.py | MockRedis.hexists | def hexists(self, hashkey, attribute):
"""Emulate hexists."""
redis_hash = self._get_hash(hashkey, 'HEXISTS')
return self._encode(attribute) in redis_hash | python | def hexists(self, hashkey, attribute):
"""Emulate hexists."""
redis_hash = self._get_hash(hashkey, 'HEXISTS')
return self._encode(attribute) in redis_hash | Emulate hexists. | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L506-L510 |
locationlabs/mockredis | mockredis/client.py | MockRedis.hget | def hget(self, hashkey, attribute):
"""Emulate hget."""
redis_hash = self._get_hash(hashkey, 'HGET')
return redis_hash.get(self._encode(attribute)) | python | def hget(self, hashkey, attribute):
"""Emulate hget."""
redis_hash = self._get_hash(hashkey, 'HGET')
return redis_hash.get(self._encode(attribute)) | Emulate hget. | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L512-L516 |
locationlabs/mockredis | mockredis/client.py | MockRedis.hdel | def hdel(self, hashkey, *keys):
"""Emulate hdel"""
redis_hash = self._get_hash(hashkey, 'HDEL')
count = 0
for key in keys:
attribute = self._encode(key)
if attribute in redis_hash:
count += 1
del redis_hash[attribute]
if not redis_hash:
self.delete(hashkey)
return count | python | def hdel(self, hashkey, *keys):
"""Emulate hdel"""
redis_hash = self._get_hash(hashkey, 'HDEL')
count = 0
for key in keys:
attribute = self._encode(key)
if attribute in redis_hash:
count += 1
del redis_hash[attribute]
if not redis_hash:
self.delete(hashkey)
return count | Emulate hdel | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L524-L536 |
locationlabs/mockredis | mockredis/client.py | MockRedis.hmset | def hmset(self, hashkey, value):
"""Emulate hmset."""
redis_hash = self._get_hash(hashkey, 'HMSET', create=True)
for key, value in value.items():
attribute = self._encode(key)
redis_hash[attribute] = self._encode(value)
return True | python | def hmset(self, hashkey, value):
"""Emulate hmset."""
redis_hash = self._get_hash(hashkey, 'HMSET', create=True)
for key, value in value.items():
attribute = self._encode(key)
redis_hash[attribute] = self._encode(value)
return True | Emulate hmset. | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L543-L550 |
locationlabs/mockredis | mockredis/client.py | MockRedis.hmget | def hmget(self, hashkey, keys, *args):
"""Emulate hmget."""
redis_hash = self._get_hash(hashkey, 'HMGET')
attributes = self._list_or_args(keys, args)
return [redis_hash.get(self._encode(attribute)) for attribute in attributes] | python | def hmget(self, hashkey, keys, *args):
"""Emulate hmget."""
redis_hash = self._get_hash(hashkey, 'HMGET')
attributes = self._list_or_args(keys, args)
return [redis_hash.get(self._encode(attribute)) for attribute in attributes] | Emulate hmget. | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L552-L557 |
locationlabs/mockredis | mockredis/client.py | MockRedis.hset | def hset(self, hashkey, attribute, value):
"""Emulate hset."""
redis_hash = self._get_hash(hashkey, 'HSET', create=True)
attribute = self._encode(attribute)
attribute_present = attribute in redis_hash
redis_hash[attribute] = self._encode(value)
return long(0) if attribute_present else long(1) | python | def hset(self, hashkey, attribute, value):
"""Emulate hset."""
redis_hash = self._get_hash(hashkey, 'HSET', create=True)
attribute = self._encode(attribute)
attribute_present = attribute in redis_hash
redis_hash[attribute] = self._encode(value)
return long(0) if attribute_present else long(1) | Emulate hset. | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L559-L566 |
locationlabs/mockredis | mockredis/client.py | MockRedis.hsetnx | def hsetnx(self, hashkey, attribute, value):
"""Emulate hsetnx."""
redis_hash = self._get_hash(hashkey, 'HSETNX', create=True)
attribute = self._encode(attribute)
if attribute in redis_hash:
return long(0)
else:
redis_hash[attribute] = self._encode(value)
return long(1) | python | def hsetnx(self, hashkey, attribute, value):
"""Emulate hsetnx."""
redis_hash = self._get_hash(hashkey, 'HSETNX', create=True)
attribute = self._encode(attribute)
if attribute in redis_hash:
return long(0)
else:
redis_hash[attribute] = self._encode(value)
return long(1) | Emulate hsetnx. | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L568-L577 |
locationlabs/mockredis | mockredis/client.py | MockRedis.hincrby | def hincrby(self, hashkey, attribute, increment=1):
"""Emulate hincrby."""
return self._hincrby(hashkey, attribute, 'HINCRBY', long, increment) | python | def hincrby(self, hashkey, attribute, increment=1):
"""Emulate hincrby."""
return self._hincrby(hashkey, attribute, 'HINCRBY', long, increment) | Emulate hincrby. | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L579-L582 |
locationlabs/mockredis | mockredis/client.py | MockRedis.hincrbyfloat | def hincrbyfloat(self, hashkey, attribute, increment=1.0):
"""Emulate hincrbyfloat."""
return self._hincrby(hashkey, attribute, 'HINCRBYFLOAT', float, increment) | python | def hincrbyfloat(self, hashkey, attribute, increment=1.0):
"""Emulate hincrbyfloat."""
return self._hincrby(hashkey, attribute, 'HINCRBYFLOAT', float, increment) | Emulate hincrbyfloat. | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L584-L587 |
locationlabs/mockredis | mockredis/client.py | MockRedis._hincrby | def _hincrby(self, hashkey, attribute, command, type_, increment):
"""Shared hincrby and hincrbyfloat routine"""
redis_hash = self._get_hash(hashkey, command, create=True)
attribute = self._encode(attribute)
previous_value = type_(redis_hash.get(attribute, '0'))
redis_hash[attribute] = self._encode(previous_value + increment)
return type_(redis_hash[attribute]) | python | def _hincrby(self, hashkey, attribute, command, type_, increment):
"""Shared hincrby and hincrbyfloat routine"""
redis_hash = self._get_hash(hashkey, command, create=True)
attribute = self._encode(attribute)
previous_value = type_(redis_hash.get(attribute, '0'))
redis_hash[attribute] = self._encode(previous_value + increment)
return type_(redis_hash[attribute]) | Shared hincrby and hincrbyfloat routine | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L589-L595 |
locationlabs/mockredis | mockredis/client.py | MockRedis.lrange | def lrange(self, key, start, stop):
"""Emulate lrange."""
redis_list = self._get_list(key, 'LRANGE')
start, stop = self._translate_range(len(redis_list), start, stop)
return redis_list[start:stop + 1] | python | def lrange(self, key, start, stop):
"""Emulate lrange."""
redis_list = self._get_list(key, 'LRANGE')
start, stop = self._translate_range(len(redis_list), start, stop)
return redis_list[start:stop + 1] | Emulate lrange. | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L611-L615 |
locationlabs/mockredis | mockredis/client.py | MockRedis.lindex | def lindex(self, key, index):
"""Emulate lindex."""
redis_list = self._get_list(key, 'LINDEX')
if self._encode(key) not in self.redis:
return None
try:
return redis_list[index]
except (IndexError):
# Redis returns nil if the index doesn't exist
return None | python | def lindex(self, key, index):
"""Emulate lindex."""
redis_list = self._get_list(key, 'LINDEX')
if self._encode(key) not in self.redis:
return None
try:
return redis_list[index]
except (IndexError):
# Redis returns nil if the index doesn't exist
return None | Emulate lindex. | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L617-L629 |
locationlabs/mockredis | mockredis/client.py | MockRedis._blocking_pop | def _blocking_pop(self, pop_func, keys, timeout):
"""Emulate blocking pop functionality"""
if not isinstance(timeout, (int, long)):
raise RuntimeError('timeout is not an integer or out of range')
if timeout is None or timeout == 0:
timeout = self.blocking_timeout
if isinstance(keys, basestring):
keys = [keys]
else:
keys = list(keys)
elapsed_time = 0
start = time.time()
while elapsed_time < timeout:
key, val = self._pop_first_available(pop_func, keys)
if val:
return key, val
# small delay to avoid high cpu utilization
time.sleep(self.blocking_sleep_interval)
elapsed_time = time.time() - start
return None | python | def _blocking_pop(self, pop_func, keys, timeout):
"""Emulate blocking pop functionality"""
if not isinstance(timeout, (int, long)):
raise RuntimeError('timeout is not an integer or out of range')
if timeout is None or timeout == 0:
timeout = self.blocking_timeout
if isinstance(keys, basestring):
keys = [keys]
else:
keys = list(keys)
elapsed_time = 0
start = time.time()
while elapsed_time < timeout:
key, val = self._pop_first_available(pop_func, keys)
if val:
return key, val
# small delay to avoid high cpu utilization
time.sleep(self.blocking_sleep_interval)
elapsed_time = time.time() - start
return None | Emulate blocking pop functionality | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L638-L660 |
locationlabs/mockredis | mockredis/client.py | MockRedis.blpop | def blpop(self, keys, timeout=0):
"""Emulate blpop"""
return self._blocking_pop(self.lpop, keys, timeout) | python | def blpop(self, keys, timeout=0):
"""Emulate blpop"""
return self._blocking_pop(self.lpop, keys, timeout) | Emulate blpop | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L669-L671 |
locationlabs/mockredis | mockredis/client.py | MockRedis.brpop | def brpop(self, keys, timeout=0):
"""Emulate brpop"""
return self._blocking_pop(self.rpop, keys, timeout) | python | def brpop(self, keys, timeout=0):
"""Emulate brpop"""
return self._blocking_pop(self.rpop, keys, timeout) | Emulate brpop | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L673-L675 |
locationlabs/mockredis | mockredis/client.py | MockRedis.lpush | def lpush(self, key, *args):
"""Emulate lpush."""
redis_list = self._get_list(key, 'LPUSH', create=True)
# Creates the list at this key if it doesn't exist, and appends args to its beginning
args_reversed = [self._encode(arg) for arg in args]
args_reversed.reverse()
updated_list = args_reversed + redis_list
self.redis[self._encode(key)] = updated_list
# Return the length of the list after the push operation
return len(updated_list) | python | def lpush(self, key, *args):
"""Emulate lpush."""
redis_list = self._get_list(key, 'LPUSH', create=True)
# Creates the list at this key if it doesn't exist, and appends args to its beginning
args_reversed = [self._encode(arg) for arg in args]
args_reversed.reverse()
updated_list = args_reversed + redis_list
self.redis[self._encode(key)] = updated_list
# Return the length of the list after the push operation
return len(updated_list) | Emulate lpush. | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L693-L704 |
locationlabs/mockredis | mockredis/client.py | MockRedis.rpop | def rpop(self, key):
"""Emulate lpop."""
redis_list = self._get_list(key, 'RPOP')
if self._encode(key) not in self.redis:
return None
try:
value = redis_list.pop()
if len(redis_list) == 0:
self.delete(key)
return value
except (IndexError):
# Redis returns nil if popping from an empty list
return None | python | def rpop(self, key):
"""Emulate lpop."""
redis_list = self._get_list(key, 'RPOP')
if self._encode(key) not in self.redis:
return None
try:
value = redis_list.pop()
if len(redis_list) == 0:
self.delete(key)
return value
except (IndexError):
# Redis returns nil if popping from an empty list
return None | Emulate lpop. | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L706-L720 |
locationlabs/mockredis | mockredis/client.py | MockRedis.rpush | def rpush(self, key, *args):
"""Emulate rpush."""
redis_list = self._get_list(key, 'RPUSH', create=True)
# Creates the list at this key if it doesn't exist, and appends args to it
redis_list.extend(map(self._encode, args))
# Return the length of the list after the push operation
return len(redis_list) | python | def rpush(self, key, *args):
"""Emulate rpush."""
redis_list = self._get_list(key, 'RPUSH', create=True)
# Creates the list at this key if it doesn't exist, and appends args to it
redis_list.extend(map(self._encode, args))
# Return the length of the list after the push operation
return len(redis_list) | Emulate rpush. | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L722-L730 |
locationlabs/mockredis | mockredis/client.py | MockRedis.lrem | def lrem(self, key, value, count=0):
"""Emulate lrem."""
value = self._encode(value)
redis_list = self._get_list(key, 'LREM')
removed_count = 0
if self._encode(key) in self.redis:
if count == 0:
# Remove all ocurrences
while redis_list.count(value):
redis_list.remove(value)
removed_count += 1
elif count > 0:
counter = 0
# remove first 'count' ocurrences
while redis_list.count(value):
redis_list.remove(value)
counter += 1
removed_count += 1
if counter >= count:
break
elif count < 0:
# remove last 'count' ocurrences
counter = -count
new_list = []
for v in reversed(redis_list):
if v == value and counter > 0:
counter -= 1
removed_count += 1
else:
new_list.append(v)
redis_list[:] = list(reversed(new_list))
if removed_count > 0 and len(redis_list) == 0:
self.delete(key)
return removed_count | python | def lrem(self, key, value, count=0):
"""Emulate lrem."""
value = self._encode(value)
redis_list = self._get_list(key, 'LREM')
removed_count = 0
if self._encode(key) in self.redis:
if count == 0:
# Remove all ocurrences
while redis_list.count(value):
redis_list.remove(value)
removed_count += 1
elif count > 0:
counter = 0
# remove first 'count' ocurrences
while redis_list.count(value):
redis_list.remove(value)
counter += 1
removed_count += 1
if counter >= count:
break
elif count < 0:
# remove last 'count' ocurrences
counter = -count
new_list = []
for v in reversed(redis_list):
if v == value and counter > 0:
counter -= 1
removed_count += 1
else:
new_list.append(v)
redis_list[:] = list(reversed(new_list))
if removed_count > 0 and len(redis_list) == 0:
self.delete(key)
return removed_count | Emulate lrem. | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L732-L765 |
locationlabs/mockredis | mockredis/client.py | MockRedis.ltrim | def ltrim(self, key, start, stop):
"""Emulate ltrim."""
redis_list = self._get_list(key, 'LTRIM')
if redis_list:
start, stop = self._translate_range(len(redis_list), start, stop)
self.redis[self._encode(key)] = redis_list[start:stop + 1]
return True | python | def ltrim(self, key, start, stop):
"""Emulate ltrim."""
redis_list = self._get_list(key, 'LTRIM')
if redis_list:
start, stop = self._translate_range(len(redis_list), start, stop)
self.redis[self._encode(key)] = redis_list[start:stop + 1]
return True | Emulate ltrim. | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L767-L773 |
locationlabs/mockredis | mockredis/client.py | MockRedis.rpoplpush | def rpoplpush(self, source, destination):
"""Emulate rpoplpush"""
transfer_item = self.rpop(source)
if transfer_item is not None:
self.lpush(destination, transfer_item)
return transfer_item | python | def rpoplpush(self, source, destination):
"""Emulate rpoplpush"""
transfer_item = self.rpop(source)
if transfer_item is not None:
self.lpush(destination, transfer_item)
return transfer_item | Emulate rpoplpush | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L775-L780 |
locationlabs/mockredis | mockredis/client.py | MockRedis.brpoplpush | def brpoplpush(self, source, destination, timeout=0):
"""Emulate brpoplpush"""
transfer_item = self.brpop(source, timeout)
if transfer_item is None:
return None
key, val = transfer_item
self.lpush(destination, val)
return val | python | def brpoplpush(self, source, destination, timeout=0):
"""Emulate brpoplpush"""
transfer_item = self.brpop(source, timeout)
if transfer_item is None:
return None
key, val = transfer_item
self.lpush(destination, val)
return val | Emulate brpoplpush | https://github.com/locationlabs/mockredis/blob/fd4e3117066ff0c24e86ebca007853a8092e3254/mockredis/client.py#L782-L790 |