|
--- |
|
license: mit |
|
task_categories: |
|
- text-generation |
|
tags: |
|
- code |
|
- dataset |
|
size_categories: |
|
- n<1K |
|
language: |
|
- en |
|
pretty_name: CodeEval |
|
--- |
|
license: apache-2.0 |
|
--- |
|
# Dataset Card for Object-Oriented Programming |
|
|
|
## Dataset Description |
|
|
|
- **Repository:** [GitHub Repository](https://github.com/alphadl/OOP-eval) |
|
- **Paper:** [Object-Oriented Programming Evaluation Benchmark for LLMs](https://arxiv.org/abs/2401.06628) |
|
|
|
### Dataset Summary |
|
|
|
The OOP benchmark consists of 431 instances, and contains three difficulty levels: Simple-level OOP, Moderate-level OOP, and Difficult-level OOP. |
|
|
|
### Supported Tasks and Leaderboards |
|
|
|
### Languages |
|
|
|
The Object-Oriented Programming problems are written in Python and contain English natural text in comments and docstrings. |
|
|
|
## Dataset Structure |
|
|
|
```python |
|
from datasets import load_dataset |
|
load_dataset("oop") |
|
|
|
DatasetDict({ |
|
test: Dataset({ |
|
features: ['task_id', 'question', 'canonical_solution', 'test_list', 'test_function', 'entry_point', 'test_matching', 'test_match_function'], |
|
num_rows: 431 |
|
}) |
|
}) |
|
``` |
|
|
|
### Data Instances |
|
|
|
#### OOP benchmark |
|
``` |
|
{ |
|
'task_id': 'OOP/0', |
|
'question': 'First, write a **WDS** class using the Python language. Then, within the WDS class, create a public function called **without_duplicates** to implement finding the length of the longest substring in a given string **s** that does not contain any duplicate characters.', |
|
'test_function': 'def test_run(content1):\n return WDS().without_duplicates(content1)', |
|
'test_list': [ |
|
'assert candidate("abcabcbb")==3', |
|
'assert candidate("bbbbb")==1', |
|
'assert candidate("pwwkew")==3'], |
|
'entry_point': 'test_run', |
|
'test_matching': 'assert candidate([["class WDS", "def without_duplicates"]]) == True', |
|
'test_match_function': 'def matching_function(content):\n def run_match(text):\n for task in text:\n if task not in str_content:\n return False\n return True\n len_cont = len(content)\n if len_cont==1 and run_match(content[0]) == True:\n return True\n elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True):\n return True\n else:\n return False' |
|
} |
|
``` |
|
|
|
### Data Fields |
|
|
|
- `task_id`: identifier for the data sample |
|
- `question`: description of programming task |
|
- `test_function`: run function for the test |
|
- 'test_list': list of tests to verify solution |
|
- `entry_point`: entry point for test |
|
- 'test_matching': list of tests to verify solution |
|
- 'test_match_function': matching function for the test |
|
|
|
### Data Splits |
|
|
|
The OOP dataset only consists of a test split with 431 samples. |
|
|
|
## Dataset Creation |
|
|
|
See section 3.2 of original [paper](https://arxiv.org/abs/2401.06628). |
|
|
|
### Citation Information |
|
``` |
|
@inproceedings{wang2024oop, |
|
title={OOP: Object-Oriented Programming Evaluation Benchmark for Large Language Models}, |
|
author={Shuai Wang and Liang Ding and Li Shen and Yong Luo and Bo Du and Dacheng Tao}, |
|
year={2024}, |
|
booktitle={Findings of the Association for Computational Linguistics: ACL 2023}, |
|
url={https://arxiv.org/abs/2401.06628}, |
|
} |
|
``` |
|
|
|
### Contributions |
|
|
|
Thanks to [@lvwerra](https://github.com/lvwerra) for adding this dataset. |
|
|