Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
English
Size:
10K - 100K
License:
annotations_creators: | |
- crowdsourced | |
language_creators: | |
- crowdsourced | |
language: | |
- en | |
license: | |
- unknown | |
multilinguality: | |
- monolingual | |
size_categories: | |
- 1K<n<10K | |
source_datasets: | |
- original | |
task_categories: | |
- text-classification | |
task_ids: | |
- sentiment-classification | |
paperswithcode_id: mr | |
pretty_name: RottenTomatoes - MR Movie Review Data | |
dataset_info: | |
features: | |
- name: text | |
dtype: string | |
- name: label | |
dtype: | |
class_label: | |
names: | |
'0': neg | |
'1': pos | |
splits: | |
- name: train | |
num_bytes: 1074810 | |
num_examples: 8530 | |
- name: validation | |
num_bytes: 134679 | |
num_examples: 1066 | |
- name: test | |
num_bytes: 135972 | |
num_examples: 1066 | |
download_size: 487770 | |
dataset_size: 1345461 | |
train-eval-index: | |
- config: default | |
task: text-classification | |
task_id: binary_classification | |
splits: | |
train_split: train | |
eval_split: test | |
col_mapping: | |
text: text | |
label: target | |
metrics: | |
- type: accuracy | |
name: Accuracy | |
- type: f1 | |
name: F1 | |
args: | |
average: binary | |
- type: f1 | |
name: F1 micro | |
args: | |
average: micro | |
- type: f1 | |
name: F1 weighted | |
args: | |
average: weighted | |
- type: precision | |
name: Precision macro | |
args: | |
average: macro | |
- type: precision | |
name: Precision micro | |
args: | |
average: micro | |
- type: precision | |
name: Precision weighted | |
args: | |
average: weighted | |
- type: recall | |
name: Recall macro | |
args: | |
average: macro | |
- type: recall | |
name: Recall micro | |
args: | |
average: micro | |
- type: recall | |
name: Recall weighted | |
args: | |
average: weighted | |
# Dataset Card for "rotten_tomatoes" | |
## Table of Contents | |
- [Dataset Description](#dataset-description) | |
- [Dataset Summary](#dataset-summary) | |
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) | |
- [Languages](#languages) | |
- [Dataset Structure](#dataset-structure) | |
- [Data Instances](#data-instances) | |
- [Data Fields](#data-fields) | |
- [Data Splits](#data-splits) | |
- [Dataset Creation](#dataset-creation) | |
- [Curation Rationale](#curation-rationale) | |
- [Source Data](#source-data) | |
- [Annotations](#annotations) | |
- [Personal and Sensitive Information](#personal-and-sensitive-information) | |
- [Considerations for Using the Data](#considerations-for-using-the-data) | |
- [Social Impact of Dataset](#social-impact-of-dataset) | |
- [Discussion of Biases](#discussion-of-biases) | |
- [Other Known Limitations](#other-known-limitations) | |
- [Additional Information](#additional-information) | |
- [Dataset Curators](#dataset-curators) | |
- [Licensing Information](#licensing-information) | |
- [Citation Information](#citation-information) | |
- [Contributions](#contributions) | |
## Dataset Description | |
- **Homepage:** [http://www.cs.cornell.edu/people/pabo/movie-review-data/](http://www.cs.cornell.edu/people/pabo/movie-review-data/) | |
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
- **Paper:** [https://arxiv.org/abs/cs/0506075](https://arxiv.org/abs/cs/0506075) | |
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
- **Size of downloaded dataset files:** 0.49 MB | |
- **Size of the generated dataset:** 1.34 MB | |
- **Total amount of disk used:** 1.84 MB | |
### Dataset Summary | |
Movie Review Dataset. | |
This is a dataset of containing 5,331 positive and 5,331 negative processed | |
sentences from Rotten Tomatoes movie reviews. This data was first used in Bo | |
Pang and Lillian Lee, ``Seeing stars: Exploiting class relationships for | |
sentiment categorization with respect to rating scales.'', Proceedings of the | |
ACL, 2005. | |
### Supported Tasks and Leaderboards | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
### Languages | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
## Dataset Structure | |
### Data Instances | |
#### default | |
- **Size of downloaded dataset files:** 0.49 MB | |
- **Size of the generated dataset:** 1.34 MB | |
- **Total amount of disk used:** 1.84 MB | |
An example of 'validation' looks as follows. | |
``` | |
{ | |
"label": 1, | |
"text": "Sometimes the days and nights just drag on -- it 's the morning that make me feel alive . And I have one thing to thank for that : pancakes . " | |
} | |
``` | |
### Data Fields | |
The data fields are the same among all splits. | |
#### default | |
- `text`: a `string` feature. | |
- `label`: a classification label, with possible values including `neg` (0), `pos` (1). | |
### Data Splits | |
Reads Rotten Tomatoes sentences and splits into 80% train, 10% validation, and 10% test, as is the practice set out in | |
Jinfeng Li, ``TEXTBUGGER: Generating Adversarial Text Against Real-world Applications.'' | |
| name |train|validation|test| | |
|-------|----:|---------:|---:| | |
|default| 8530| 1066|1066| | |
## Dataset Creation | |
### Curation Rationale | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
### Source Data | |
#### Initial Data Collection and Normalization | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
#### Who are the source language producers? | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
### Annotations | |
#### Annotation process | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
#### Who are the annotators? | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
### Personal and Sensitive Information | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
## Considerations for Using the Data | |
### Social Impact of Dataset | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
### Discussion of Biases | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
### Other Known Limitations | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
## Additional Information | |
### Dataset Curators | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
### Licensing Information | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
### Citation Information | |
``` | |
@InProceedings{Pang+Lee:05a, | |
author = {Bo Pang and Lillian Lee}, | |
title = {Seeing stars: Exploiting class relationships for sentiment | |
categorization with respect to rating scales}, | |
booktitle = {Proceedings of the ACL}, | |
year = 2005 | |
} | |
``` | |
### Contributions | |
Thanks to [@thomwolf](https://github.com/thomwolf), [@jxmorris12](https://github.com/jxmorris12) for adding this dataset. |