repo_id
stringlengths
4
110
author
stringlengths
2
27
model_type
stringlengths
2
29
files_per_repo
int64
2
15.4k
downloads_30d
int64
0
19.9M
library
stringlengths
2
37
likes
int64
0
4.34k
pipeline
stringlengths
5
30
pytorch
bool
2 classes
tensorflow
bool
2 classes
jax
bool
2 classes
license
stringlengths
2
30
languages
stringlengths
4
1.63k
datasets
stringlengths
2
2.58k
co2
stringclasses
29 values
prs_count
int64
0
125
prs_open
int64
0
120
prs_merged
int64
0
15
prs_closed
int64
0
28
discussions_count
int64
0
218
discussions_open
int64
0
148
discussions_closed
int64
0
70
tags
stringlengths
2
513
has_model_index
bool
2 classes
has_metadata
bool
1 class
has_text
bool
1 class
text_length
int64
401
598k
is_nc
bool
1 class
readme
stringlengths
0
598k
hash
stringlengths
32
32
Richard0113/distilbert-base-uncased-finetuned-cola
Richard0113
distilbert
24
2
transformers
0
text-classification
true
false
false
apache-2.0
null
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,571
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8311 - Matthews Correlation: 0.5199 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5263 | 1.0 | 535 | 0.5272 | 0.4152 | | 0.3504 | 2.0 | 1070 | 0.4835 | 0.5021 | | 0.2372 | 3.0 | 1605 | 0.6059 | 0.5056 | | 0.182 | 4.0 | 2140 | 0.7617 | 0.5179 | | 0.1319 | 5.0 | 2675 | 0.8311 | 0.5199 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
22473d96a6b3119cb7082ebf68fcef88
DOOGLAK/Article_100v9_NER_Model_3Epochs_AUGMENTED
DOOGLAK
bert
13
5
transformers
0
token-classification
true
false
false
apache-2.0
null
['article100v9_wikigold_split']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,559
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Article_100v9_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the article100v9_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.3011 - Precision: 0.4913 - Recall: 0.5293 - F1: 0.5096 - Accuracy: 0.8977 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 44 | 0.3780 | 0.3029 | 0.2939 | 0.2984 | 0.8623 | | No log | 2.0 | 88 | 0.3133 | 0.4705 | 0.4818 | 0.4761 | 0.8922 | | No log | 3.0 | 132 | 0.3011 | 0.4913 | 0.5293 | 0.5096 | 0.8977 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
478d523c37021d33d9c0d3ad80d9e1af
caffsean/bert-base-cased-deep-ritmo-sampa
caffsean
bert
11
6
transformers
0
fill-mask
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,255
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-deep-ritmo-sampa This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5550 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.4042 | 1.0 | 1875 | 3.0610 | | 2.8648 | 2.0 | 3750 | 2.6298 | | 2.6572 | 3.0 | 5625 | 2.5550 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
6361d26ed33844c366ba8cfee0bb32f9
facebook/mask2former-swin-large-cityscapes-semantic
facebook
mask2former
5
153
transformers
0
image-segmentation
true
false
false
other
null
['coco']
null
1
0
1
0
1
0
1
['vision', 'image-segmentation']
false
true
true
2,931
false
# Mask2Former Mask2Former model trained on Cityscapes semantic segmentation (large-sized version, Swin backbone). It was introduced in the paper [Masked-attention Mask Transformer for Universal Image Segmentation ](https://arxiv.org/abs/2112.01527) and first released in [this repository](https://github.com/facebookresearch/Mask2Former/). Disclaimer: The team releasing Mask2Former did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Mask2Former addresses instance, semantic and panoptic segmentation with the same paradigm: by predicting a set of masks and corresponding labels. Hence, all 3 tasks are treated as if they were instance segmentation. Mask2Former outperforms the previous SOTA, [MaskFormer](https://arxiv.org/abs/2107.06278) both in terms of performance an efficiency by (i) replacing the pixel decoder with a more advanced multi-scale deformable attention Transformer, (ii) adopting a Transformer decoder with masked attention to boost performance without without introducing additional computation and (iii) improving training efficiency by calculating the loss on subsampled points instead of whole masks. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/mask2former_architecture.png) ## Intended uses & limitations You can use this particular checkpoint for panoptic segmentation. See the [model hub](https://huggingface.co/models?search=mask2former) to look for other fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python import requests import torch from PIL import Image from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation # load Mask2Former fine-tuned on Cityscapes semantic segmentation processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-large-cityscapes-semantic") model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-large-cityscapes-semantic") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) # model predicts class_queries_logits of shape `(batch_size, num_queries)` # and masks_queries_logits of shape `(batch_size, num_queries, height, width)` class_queries_logits = outputs.class_queries_logits masks_queries_logits = outputs.masks_queries_logits # you can pass them to processor for postprocessing predicted_semantic_map = processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0] # we refer to the demo notebooks for visualization (see "Resources" section in the Mask2Former docs) ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/mask2former).
d7e81a703415c161af740493ce7e12d8
yam1ke/distilbert-base-uncased-finetuned-ner
yam1ke
distilbert
10
22
transformers
0
token-classification
true
false
false
apache-2.0
null
['conll2003']
null
1
1
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,549
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0607 - Precision: 0.9285 - Recall: 0.9362 - F1: 0.9324 - Accuracy: 0.9839 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2452 | 1.0 | 878 | 0.0709 | 0.9184 | 0.9206 | 0.9195 | 0.9803 | | 0.0501 | 2.0 | 1756 | 0.0621 | 0.9212 | 0.9328 | 0.9270 | 0.9830 | | 0.0299 | 3.0 | 2634 | 0.0607 | 0.9285 | 0.9362 | 0.9324 | 0.9839 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0 - Datasets 2.3.2 - Tokenizers 0.12.1
56d2b58d7e41e0a908072f2b7180b68e
rajat99/Fine_Tuning_XLSR_300M_testing_model
rajat99
wav2vec2
9
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,347
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Fine_Tuning_XLSR_300M_testing_model This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2861 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 5.5178 | 23.53 | 400 | 3.2861 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
3ee93b8bb85d51bba1ed800c4fdc573a
Wizounovziki/t5-small-devices-sum-ver3
Wizounovziki
t5
11
4
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,350
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-devices-sum-ver3 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1325 - Rouge1: 95.6631 - Rouge2: 83.6149 - Rougel: 95.6622 - Rougelsum: 95.6632 - Gen Len: 4.9279 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 467 | 0.3307 | 90.9817 | 74.3762 | 90.9596 | 90.9781 | 4.7527 | | 1.0254 | 2.0 | 934 | 0.2365 | 92.6761 | 78.1252 | 92.6664 | 92.6682 | 4.8004 | | 0.3526 | 3.0 | 1401 | 0.1904 | 93.8503 | 80.4523 | 93.8286 | 93.8338 | 4.8221 | | 0.2643 | 4.0 | 1868 | 0.1638 | 94.8079 | 82.1779 | 94.7815 | 94.7853 | 4.917 | | 0.2075 | 5.0 | 2335 | 0.1503 | 95.1619 | 82.6284 | 95.1533 | 95.1578 | 4.9263 | | 0.1831 | 6.0 | 2802 | 0.1408 | 95.2357 | 82.8152 | 95.2261 | 95.2263 | 4.9287 | | 0.161 | 7.0 | 3269 | 0.1386 | 95.4993 | 83.2609 | 95.4935 | 95.4933 | 4.9269 | | 0.1589 | 8.0 | 3736 | 0.1344 | 95.6363 | 83.4727 | 95.6304 | 95.632 | 4.9309 | | 0.1517 | 9.0 | 4203 | 0.1330 | 95.6702 | 83.6329 | 95.6669 | 95.6736 | 4.9301 | | 0.1436 | 10.0 | 4670 | 0.1325 | 95.6631 | 83.6149 | 95.6622 | 95.6632 | 4.9279 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
b46294928425f3e120964e95d3d1d26d
cartesinus/multilingual_minilm-amazon_massive-intent_eu6_noen
cartesinus
bert
12
36
transformers
0
text-classification
true
false
false
mit
['de', 'fr', 'it', 'pt', 'es', 'pl']
['AmazonScience/massive']
null
0
0
0
0
0
0
0
['generated_from_trainer', 'nlu', 'text-classification', 'intent-classification']
true
true
true
2,022
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # multilingual_minilm-amazon_massive-intent_eu_noen This model is a fine-tuned version of [microsoft/Multilingual-MiniLM-L12-H384](https://huggingface.co/microsoft/Multilingual-MiniLM-L12-H384) on the [MASSIVE1.1](https://huggingface.co/datasets/AmazonScience/massive) dataset. It achieves the following results on the evaluation set: - Loss: 0.7794 - Accuracy: 0.8551 - F1: 0.8551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 1.7624 | 1.0 | 4318 | 1.5462 | 0.6331 | 0.6331 | | 0.9535 | 2.0 | 8636 | 0.9628 | 0.7698 | 0.7698 | | 0.6849 | 3.0 | 12954 | 0.8034 | 0.8097 | 0.8097 | | 0.5163 | 4.0 | 17272 | 0.7444 | 0.8290 | 0.8290 | | 0.3973 | 5.0 | 21590 | 0.7346 | 0.8383 | 0.8383 | | 0.331 | 6.0 | 25908 | 0.7369 | 0.8453 | 0.8453 | | 0.2876 | 7.0 | 30226 | 0.7325 | 0.8510 | 0.8510 | | 0.2319 | 8.0 | 34544 | 0.7726 | 0.8496 | 0.8496 | | 0.2098 | 9.0 | 38862 | 0.7803 | 0.8543 | 0.8543 | | 0.1863 | 10.0 | 43180 | 0.7794 | 0.8551 | 0.8551 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
040e4028975297f8c00ba9c03272a79c
Jaiti/distilbert-base-uncased-finetuned-ner
Jaiti
distilbert
12
19
transformers
0
token-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
927
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
e24f7e4a705581d5c80a0448a518a8cb
eicu/avatar-jsjessy-low-facetuned-650
eicu
null
33
18
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
1
1
0
0
0
0
0
['text-to-image']
false
true
true
1,995
false
### avatar-jsjessy-low-facetuned-650 Dreambooth model trained by eicu with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: jsjessy (use that on your prompt) ![jsjessy 0](https://huggingface.co/eicu/avatar-jsjessy-low-facetuned-650/resolve/main/concept_images/jsjessy_%281%29.jpg)![jsjessy 1](https://huggingface.co/eicu/avatar-jsjessy-low-facetuned-650/resolve/main/concept_images/jsjessy_%282%29.jpg)![jsjessy 2](https://huggingface.co/eicu/avatar-jsjessy-low-facetuned-650/resolve/main/concept_images/jsjessy_%283%29.jpg)![jsjessy 3](https://huggingface.co/eicu/avatar-jsjessy-low-facetuned-650/resolve/main/concept_images/jsjessy_%284%29.jpg)![jsjessy 4](https://huggingface.co/eicu/avatar-jsjessy-low-facetuned-650/resolve/main/concept_images/jsjessy_%285%29.jpg)![jsjessy 5](https://huggingface.co/eicu/avatar-jsjessy-low-facetuned-650/resolve/main/concept_images/jsjessy_%286%29.jpg)![jsjessy 6](https://huggingface.co/eicu/avatar-jsjessy-low-facetuned-650/resolve/main/concept_images/jsjessy_%287%29.jpg)![jsjessy 7](https://huggingface.co/eicu/avatar-jsjessy-low-facetuned-650/resolve/main/concept_images/jsjessy_%288%29.jpg)![jsjessy 8](https://huggingface.co/eicu/avatar-jsjessy-low-facetuned-650/resolve/main/concept_images/jsjessy_%289%29.jpg)![jsjessy 9](https://huggingface.co/eicu/avatar-jsjessy-low-facetuned-650/resolve/main/concept_images/jsjessy_%2810%29.jpg)![jsjessy 10](https://huggingface.co/eicu/avatar-jsjessy-low-facetuned-650/resolve/main/concept_images/jsjessy_%2811%29.jpg)![jsjessy 11](https://huggingface.co/eicu/avatar-jsjessy-low-facetuned-650/resolve/main/concept_images/jsjessy_%2812%29.jpg)
052ff355c1bceeba32fddbc7a15bf973
asalics/distilbert-base-uncased-finetuned-emotion
asalics
distilbert
12
3
transformers
0
text-classification
true
false
false
apache-2.0
null
['emotion']
null
1
1
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,344
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2207 - Accuracy: 0.924 - F1: 0.9244 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7914 | 1.0 | 250 | 0.3032 | 0.905 | 0.9030 | | 0.2379 | 2.0 | 500 | 0.2207 | 0.924 | 0.9244 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
a23a588d84a015e8c53ff8e6a39dc013
sd-concepts-library/isabell-schulte-pviii-4tiles-6000steps
sd-concepts-library
null
9
0
null
0
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,309
false
### Isabell Schulte - PVIII - 4tiles - 6000steps on Stable Diffusion This is the `<isabell-schulte-p8-style-4tiles-6000s>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<isabell-schulte-p8-style-4tiles-6000s> 0](https://huggingface.co/sd-concepts-library/isabell-schulte-pviii-4tiles-6000steps/resolve/main/concept_images/0.jpeg) ![<isabell-schulte-p8-style-4tiles-6000s> 1](https://huggingface.co/sd-concepts-library/isabell-schulte-pviii-4tiles-6000steps/resolve/main/concept_images/1.jpeg) ![<isabell-schulte-p8-style-4tiles-6000s> 2](https://huggingface.co/sd-concepts-library/isabell-schulte-pviii-4tiles-6000steps/resolve/main/concept_images/3.jpeg) ![<isabell-schulte-p8-style-4tiles-6000s> 3](https://huggingface.co/sd-concepts-library/isabell-schulte-pviii-4tiles-6000steps/resolve/main/concept_images/2.jpeg)
b913c9630d6c55a621dce163b11e7c3d
gagan3012/k2t-new
gagan3012
t5
9
88
transformers
0
text2text-generation
true
false
true
mit
['en']
['common_gen']
null
0
0
0
0
0
0
0
['keytotext', 'k2t', 'Keywords to Sentences']
false
true
true
2,195
false
# keytotext ![keytotext (1)](https://user-images.githubusercontent.com/49101362/116334480-f5e57a00-a7dd-11eb-987c-186477f94b6e.png) Idea is to build a model which will take keywords as inputs and generate sentences as outputs. ### Keytotext is powered by Huggingface 🤗 [![pypi Version](https://img.shields.io/pypi/v/keytotext.svg?style=flat-square&logo=pypi&logoColor=white)](https://pypi.org/project/keytotext/) [![Downloads](https://static.pepy.tech/personalized-badge/keytotext?period=total&units=none&left_color=grey&right_color=orange&left_text=Pip%20Downloads)](https://pepy.tech/project/keytotext) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/Examples/K2T.ipynb) [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) ## Model: Keytotext is based on the Amazing T5 Model: - `k2t`: [Model](https://huggingface.co/gagan3012/k2t) - `k2t-tiny`: [Model](https://huggingface.co/gagan3012/k2t-tiny) - `k2t-base`: [Model](https://huggingface.co/gagan3012/k2t-base) Training Notebooks can be found in the [`Training Notebooks`](https://github.com/gagan3012/keytotext/tree/master/Training%20Notebooks) Folder ## Usage: Example usage: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/Examples/K2T.ipynb) Example Notebooks can be found in the [`Notebooks`](https://github.com/gagan3012/keytotext/tree/master/Examples) Folder ``` pip install keytotext ``` ![carbon (3)](https://user-images.githubusercontent.com/49101362/116220679-90e64180-a755-11eb-9246-82d93d924a6c.png) ## UI: UI: [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) ``` pip install streamlit-tags ``` This uses a custom streamlit component built by me: [GitHub](https://github.com/gagan3012/streamlit-tags) ![image](https://user-images.githubusercontent.com/49101362/116162205-fc042980-a6fd-11eb-892e-8f6902f193f4.png)
1d38f438a110eb61e4d3e51e15116dd1
milyiyo/distilbert-base-uncased-finetuned-amazon-review
milyiyo
distilbert
12
27
transformers
0
text-classification
true
false
false
apache-2.0
null
['amazon_reviews_multi']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,219
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-amazon-review This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 1.3494 - Accuracy: 0.693 - F1: 0.7003 - Precision: 0.7095 - Recall: 0.693 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 0.5 | 500 | 0.8287 | 0.7104 | 0.7120 | 0.7152 | 0.7104 | | 0.4238 | 1.0 | 1000 | 0.8917 | 0.7094 | 0.6989 | 0.6917 | 0.7094 | | 0.4238 | 1.5 | 1500 | 0.9367 | 0.6884 | 0.6983 | 0.7151 | 0.6884 | | 0.3152 | 2.0 | 2000 | 0.9845 | 0.7116 | 0.7144 | 0.7176 | 0.7116 | | 0.3152 | 2.5 | 2500 | 1.0752 | 0.6814 | 0.6968 | 0.7232 | 0.6814 | | 0.2454 | 3.0 | 3000 | 1.1215 | 0.6918 | 0.6954 | 0.7068 | 0.6918 | | 0.2454 | 3.5 | 3500 | 1.2905 | 0.6976 | 0.7048 | 0.7138 | 0.6976 | | 0.1989 | 4.0 | 4000 | 1.2938 | 0.694 | 0.7016 | 0.7113 | 0.694 | | 0.1989 | 4.5 | 4500 | 1.3623 | 0.6972 | 0.7014 | 0.7062 | 0.6972 | | 0.1746 | 5.0 | 5000 | 1.3494 | 0.693 | 0.7003 | 0.7095 | 0.693 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
7e10ea7475a81b1dd2b09d96c55daf4e
gokuls/bert-base-uncased-wnli
gokuls
bert
17
61
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,675
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-wnli This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6968 - Accuracy: 0.4789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7192 | 1.0 | 5 | 0.6968 | 0.4789 | | 0.6928 | 2.0 | 10 | 0.7003 | 0.2676 | | 0.6921 | 3.0 | 15 | 0.7057 | 0.5211 | | 0.6931 | 4.0 | 20 | 0.7282 | 0.3944 | | 0.6922 | 5.0 | 25 | 0.7579 | 0.2535 | | 0.68 | 6.0 | 30 | 0.8314 | 0.2254 | | 0.6652 | 7.0 | 35 | 0.8990 | 0.1831 | | 0.627 | 8.0 | 40 | 1.0187 | 0.2254 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
1b7c43519b30566b6153333a05ecd9fa
orkg/orkgnlp-bioassays-semantification
orkg
null
5
0
null
0
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
431
false
This Repository includes the files required to run the `BioAssays Semantification` ORKG-NLP service. Please check [this article](https://orkg-nlp-pypi.readthedocs.io/en/latest/services/services.html) for more details about the service. The [Scikit-Learn](https://scikit-learn.org/stable/) models are converted using [skl2onnx](https://github.com/onnx/sklearn-onnx) and may not include all original scikit-learn functionalities.
a5357898dc76891563a69c0b3ab9ff9a
Omerdor/wet
Omerdor
null
13
2
diffusers
0
null
false
false
false
apache-2.0
['en']
['imagefolder']
null
0
0
0
0
0
0
0
[]
false
true
true
1,168
false
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # wet ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/Omerdor/wet/tensorboard?#scalars)
0d55ed075a795719b18f372c66c7447a
aipicasso/cool-japan-diffusion-2-1-0-beta
aipicasso
null
18
988
diffusers
17
text-to-image
false
false
false
other
null
null
null
1
0
1
0
0
0
0
['stable-diffusion', 'text-to-image']
false
true
true
6,427
false
# Cool Japan Diffusion 2.1.0 Beta Model Card ![アイキャッチ](eyecatch.jpg) [注意事项。从2023年1月10日起,中国将对图像生成的人工智能实施法律限制。 ](http://www.cac.gov.cn/2022-12/11/c_1672221949318230.htm) (中国国内にいる人への警告) English version is [here](README_en.md). # はじめに 学習用Cool Japan DiffusionはStable Diffsionをファインチューニングして、アニメやマンガ、ゲームなどのクールジャパンを表現することに特化したモデルです。なお、内閣府のクールジャパン戦略とは特に関係はありません。 # ライセンスについて ライセンスについては、もとのライセンス CreativeML Open RAIL++-M License に例外を除き商用利用禁止を追加しただけです。 例外を除き商用利用禁止を追加した理由は創作業界に悪影響を及ぼしかねないという懸念からです。 この懸念が払拭されれば、次のバージョンから元のライセンスに戻し、商用利用可能とします。 ちなみに、元のライセンスの日本語訳は[こちら](https://qiita.com/robitan/items/887d9f3153963114823d)になります。 営利企業にいる方は法務部にいる人と相談してください。 趣味で利用する方はあまり気にしなくても一般常識を守れば大丈夫なはずです。 なお、ライセンスにある通り、このモデルを改造しても、このライセンスを引き継ぐ必要があります。 # 法律や倫理について 本モデルは日本にて作成されました。したがって、日本の法律が適用されます。 本モデルの学習は、著作権法第30条の4に基づき、合法であると主張します。 また、本モデルの配布については、著作権法や刑法175条に照らしてみても、 正犯や幇助犯にも該当しないと主張します。詳しくは柿沼弁護士の[見解](https://twitter.com/tka0120/status/1601483633436393473?s=20&t=yvM9EX0Em-_7lh8NJln3IQ)を御覧ください。 ただし、ライセンスにもある通り、本モデルの生成物は各種法令に従って取り扱って下さい。 しかし、本モデルを配布する行為が倫理的に良くないとは作者は思っています。 これは学習する著作物に対して著作者の許可を得ていないためです。 ただし、学習するには著作者の許可は法律上必要もなく、検索エンジンと同様法律上は問題はありません。 したがって、法的な側面ではなく、倫理的な側面を調査する目的も本配布は兼ねていると考えてください。 # 使い方 手軽に楽しみたい方は、パソコンならば右上側にあるテキストフォームに入れて生成してみてください。 スマートフォンならば、上に戻って生成してみてください。 詳しい本モデルの取り扱い方は[こちらの取扱説明書](https://alfredplpl.hatenablog.com/entry/2022/12/30/102636)にかかれています。 モデルは[ここ](https://huggingface.co/aipicasso/cool-japan-diffusion-2-1-0-beta/resolve/main/v2-1-0-beta.ckpt)からダウンロードできます。 以下、一般的なモデルカードの日本語訳です。 ## モデル詳細 - **開発者:** Robin Rombach, Patrick Esser, Alfred Increment - **モデルタイプ:** 拡散モデルベースの text-to-image 生成モデル - **言語:** 日本語 - **ライセンス:** CreativeML Open RAIL++-M-NC License - **モデルの説明:** このモデルはプロンプトに応じて適切な画像を生成することができます。アルゴリズムは [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) と [OpenCLIP-ViT/H](https://github.com/mlfoundations/open_clip) です。 - **補足:** - **参考文献:** @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } ## モデルの使用例 Stable Diffusion v2と同じ使い方です。 たくさんの方法がありますが、2つのパターンを提供します。 - Web UI - Diffusers ### Web UIの場合 こちらの[取扱説明書](https://alfredplpl.hatenablog.com/entry/2022/12/30/102636)に従って作成してください。 ### Diffusersの場合 [🤗's Diffusers library](https://github.com/huggingface/diffusers) を使ってください。 まずは、以下のスクリプトを実行し、ライブラリをいれてください。 ```bash pip install --upgrade git+https://github.com/huggingface/diffusers.git transformers accelerate scipy ``` 次のスクリプトを実行し、画像を生成してください。 ```python from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler import torch model_id = "aipicasso/cool-japan-diffusion-2-1-0-beta" scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "anime, a portrait of a girl with black short hair and red eyes, kimono, full color illustration, official art, 4k, detailed" negative_prompt="low quality, bad face, bad anatomy, bad hand, lowres, jpeg artifacts, 2d, 3d, cg, text" image = pipe(prompt,negative_prompt=negative_prompt).images[0] image.save("girl.png") ``` **注意**: - [xformers](https://github.com/facebookresearch/xformers) を使うと早くなるらしいです。 - GPUを使う際にGPUのメモリが少ない人は `pipe.enable_attention_slicing()` を使ってください。 #### 想定される用途 - コンテスト - [AIアートグランプリ](https://www.aiartgrandprix.com/)への投稿 - ファインチューニングに用いた全データを開示し、審査基準を満たしていることを判断してもらうようにします。また、事前に申請して、確認を取るようにします。 - コンテストに向けて、要望があれば、Hugging Face の Community などで私に伝えてください。 - 画像生成AIに関する報道 - 公共放送だけでなく、営利企業でも可能 - 画像合成AIに関する情報を「知る権利」は創作業界に悪影響を及ぼさないと判断したためです。また、報道の自由などを尊重しました。 - クールジャパンの紹介 - 他国の人にクールジャパンとはなにかを説明すること。 - 他国の留学生はクールジャパンに惹かれて日本に来ることがおおくあります。そこで、クールジャパンが日本では「クールでない」とされていることにがっかりされることがとても多いとAlfred Incrementは感じております。他国の人が憧れる自国の文化をもっと誇りに思ってください。 - 研究開発 - Discord上でのモデルの利用 - プロンプトエンジニアリング - ファインチューニング(追加学習とも) - DreamBooth など - 他のモデルとのマージ - Latent Diffusion Modelとクールジャパンとの相性 - 本モデルの性能をFIDなどで調べること - 本モデルがStable Diffusion以外のモデルとは独立であることをチェックサムやハッシュ関数などで調べること - 教育 - 美大生や専門学校生の卒業制作 - 大学生の卒業論文や課題制作 - 先生が画像生成AIの現状を伝えること - 自己表現 - SNS上で自分の感情や思考を表現すること - Hugging Face の Community にかいてある用途 - 日本語か英語で質問してください #### 想定されない用途 - 物事を事実として表現するようなこと - 収益化されているYouTubeなどのコンテンツへの使用 - 商用のサービスとして直接提供すること - 先生を困らせるようなこと - その他、創作業界に悪影響を及ぼすこと # 使用してはいけない用途や悪意のある用途 - デジタル贋作 ([Digital Forgery](https://arxiv.org/abs/2212.03860)) は公開しないでください(著作権法に違反するおそれ) - 特に既存のキャラクターは公開しないでください(著作権法に違反するおそれ) - なお、学習していない[キャラクターも生成できる](https://twitter.com/ThePioneerJPnew/status/1609074173892235264?s=20&t=-rY1ufzNeIDT3Fm5YdME6g)そうです。(このツイート自体は研究目的として許可しています。) - 他人の作品を無断でImage-to-Imageしないでください(著作権法に違反するおそれ) - わいせつ物を頒布しないでください (刑法175条に違反するおそれ) - いわゆる業界のマナーを守らないようなこと - 事実に基づかないことを事実のように語らないようにしてください(威力業務妨害罪が適用されるおそれ) - フェイクニュース ## モデルの限界やバイアス ### モデルの限界 - よくわかっていない ### バイアス Stable Diffusionと同じバイアスが掛かっています。 気をつけてください。 ## 学習 **学習データ** 次のデータを主に使ってStable Diffusionをファインチューニングしています。 - VAEについて - Danbooruなどの無断転載サイトを除いた日本の国内法を遵守したデータ: 60万種類 (データ拡張により無限枚作成) - U-Netについて - Danbooruなどの無断転載サイトを除いた日本の国内法を遵守したデータ: 40万ペア **学習プロセス** Stable DiffusionのVAEとU-Netをファインチューニングしました。 - **ハードウェア:** RTX 3090 - **オプティマイザー:** AdamW - **Gradient Accumulations**: 1 - **バッチサイズ:** 1 ## 評価結果 ## 環境への影響 ほとんどありません。 - **ハードウェアタイプ:** RTX 3090 - **使用時間(単位は時間):** 300 - **クラウド事業者:** なし - **学習した場所:** 日本 - **カーボン排出量:** そんなにない ## 参考文献 @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } *このモデルカードは [Stable Diffusion v2](https://huggingface.co/stabilityai/stable-diffusion-2/raw/main/README.md) に基づいて、Alfred Incrementがかきました。
91468e31578e85464518be2462953747
Hazam/distilbert-base-uncased-finetuned-imdb
Hazam
distilbert
9
2
transformers
0
fill-mask
true
false
false
apache-2.0
null
['imdb']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,318
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4898 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
771b8561a3d9f3e73585c8afeb56bcce
Psunrise/finetuning-customer-sentiment-model-300-samples
Psunrise
roberta
21
1
transformers
0
text-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,030
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-customer-sentiment-model-300-samples This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5949 - Accuracy: 0.7558 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
8efe64a74690ffbad3caa3342cf33fd9
MultiBertGunjanPatrick/multiberts-seed-1-400k
MultiBertGunjanPatrick
bert
7
2
transformers
0
null
true
false
false
apache-2.0
['en']
['bookcorpus', 'wikipedia']
null
0
0
0
0
0
0
0
['exbert', 'multiberts', 'multiberts-seed-1']
false
true
true
6,483
false
# MultiBERTs Seed 1 Checkpoint 400k (uncased) Seed 1 intermediate checkpoint 400k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint. The final checkpoint can be found at [multiberts-seed-1](https://hf.co/multberts-seed-1). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-1-400k') model = BertModel.from_pretrained("multiberts-seed-1-400k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
91183398ccc9c4b5e3a9794ac73a3d49
musika/nes-acoustic-more-energy-vocals
musika
null
13
0
null
0
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
['audio', 'music', 'generation', 'tensorflow']
false
true
true
1,081
false
# Musika Model: Nes_Acoustic_More_Energy_Vocals ## Model provided by: nakas Pretrained Nes_Acoustic_More_Energy_Vocals model for the [Musika system](https://github.com/marcoppasini/musika) for fast infinite waveform music generation. Introduced in [this paper](https://arxiv.org/abs/2208.08706). ## How to use You can generate music from this pretrained Nes_Acoustic_More_Energy_Vocals model using the notebook available [here](https://colab.research.google.com/drive/1HJWliBXPi-Xlx3gY8cjFI5-xaZgrTD7r). ### Model description This pretrained GAN system consists of a ResNet-style generator and discriminator. During training, stability is controlled by adapting the strength of gradient penalty regularization on-the-fly. The gradient penalty weighting term is contained in *switch.npy*. The generator is conditioned on a latent coordinate system to produce samples of arbitrary length. The latent representations produced by the generator are then passed to a decoder which converts them into waveform audio. The generator has a context window of about 12 seconds of audio.
872729c11313a074070ac07f59bcf4a5
google/bigbird-roberta-large
google
big_bird
8
1,016
transformers
8
fill-mask
true
false
true
apache-2.0
['en']
['bookcorpus', 'wikipedia', 'cc_news']
null
0
0
0
0
0
0
0
[]
false
true
true
2,769
false
# BigBird large model BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. Moreover, BigBird comes along with a theoretical understanding of the capabilities of a complete transformer that the sparse model can handle. It is a pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in this [paper](https://arxiv.org/abs/2007.14062) and first released in this [repository](https://github.com/google-research/bigbird). Disclaimer: The team releasing BigBird did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BigBird relies on **block sparse attention** instead of normal attention (i.e. BERT's attention) and can handle sequences up to a length of 4096 at a much lower compute cost compared to BERT. It has achieved SOTA on various tasks involving very long sequences such as long documents summarization, question-answering with long contexts. ## How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BigBirdModel # by default its in `block_sparse` mode with num_random_blocks=3, block_size=64 model = BigBirdModel.from_pretrained("google/bigbird-roberta-large") # you can change `attention_type` to full attention like this: model = BigBirdModel.from_pretrained("google/bigbird-roberta-large", attention_type="original_full") # you can change `block_size` & `num_random_blocks` like this: model = BigBirdModel.from_pretrained("google/bigbird-roberta-large", block_size=16, num_random_blocks=2) text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Training Data This model is pre-trained on four publicly available datasets: **Books**, **CC-News**, **Stories** and **Wikipedia**. It used same sentencepiece vocabulary as RoBERTa (which is in turn borrowed from GPT2). ## Training Procedure Document longer than 4096 were split into multiple documents and documents that were much smaller than 4096 were joined. Following the original BERT training, 15% of tokens were masked and model is trained to predict the mask. Model is warm started from RoBERTa’s checkpoint. ## BibTeX entry and citation info ```tex @misc{zaheer2021big, title={Big Bird: Transformers for Longer Sequences}, author={Manzil Zaheer and Guru Guruganesh and Avinava Dubey and Joshua Ainslie and Chris Alberti and Santiago Ontanon and Philip Pham and Anirudh Ravula and Qifan Wang and Li Yang and Amr Ahmed}, year={2021}, eprint={2007.14062}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
a5048e278d01469b41a96db2697645c8
ErykWdowiak/GPTalian
ErykWdowiak
gpt2
15
8
transformers
0
text-generation
true
false
true
apache-2.0
['en', 'it', 'scn', 'nap']
null
null
1
1
0
0
0
0
0
['exbert', 'gpt2']
false
true
true
610
false
# GPTalian This is a GPT2 model of Italian regional languages trained on [collections of Italian "dialect poetry"](http://dialectpoetry.com) by Luigi Bonaffini. This is a multilingual model. Italians use the word "dialect" to describe their regional languages, but they are separate languages. And there's a lot of English in this dataset too. The challenge of this project is to train a model to write the languages of Italy. For those who do not know Italian, here's some (lowercase) text that you can type into the API box: - oggi si parla il dialetto - la sua poesia viene di - ma non sempre trova
eb8b0916a49be434d607c700c1cfa0bc
Helsinki-NLP/opus-mt-niu-sv
Helsinki-NLP
marian
10
8
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
776
false
### opus-mt-niu-sv * source languages: niu * target languages: sv * OPUS readme: [niu-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/niu-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/niu-sv/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/niu-sv/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/niu-sv/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.niu.sv | 29.2 | 0.478 |
78f64c167cc4ad2e2fa593985db7c2c5
patrickvonplaten/wav2vec2-large-xls-r-300m-turkish-colab
patrickvonplaten
wav2vec2
15
11
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
['common_voice']
null
1
1
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,791
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3864 - Wer: 0.3570 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.8302 | 3.67 | 400 | 0.6702 | 0.6903 | | 0.4098 | 7.34 | 800 | 0.4574 | 0.4939 | | 0.1908 | 11.01 | 1200 | 0.4350 | 0.4557 | | 0.1279 | 14.68 | 1600 | 0.4204 | 0.4213 | | 0.0966 | 18.35 | 2000 | 0.4238 | 0.3991 | | 0.0782 | 22.02 | 2400 | 0.3822 | 0.3906 | | 0.0613 | 25.69 | 2800 | 0.3982 | 0.3714 | | 0.0477 | 29.36 | 3200 | 0.3864 | 0.3570 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
7ef74c984e640c499b9d903eb98cf0a8
tomekkorbak/kind_torvalds
tomekkorbak
null
2
0
null
0
null
false
false
false
mit
['en']
['tomekkorbak/pii-pile-chunk3-0-50000', 'tomekkorbak/pii-pile-chunk3-50000-100000', 'tomekkorbak/pii-pile-chunk3-100000-150000', 'tomekkorbak/pii-pile-chunk3-150000-200000', 'tomekkorbak/pii-pile-chunk3-200000-250000', 'tomekkorbak/pii-pile-chunk3-250000-300000', 'tomekkorbak/pii-pile-chunk3-300000-350000', 'tomekkorbak/pii-pile-chunk3-350000-400000', 'tomekkorbak/pii-pile-chunk3-400000-450000', 'tomekkorbak/pii-pile-chunk3-450000-500000', 'tomekkorbak/pii-pile-chunk3-500000-550000', 'tomekkorbak/pii-pile-chunk3-550000-600000', 'tomekkorbak/pii-pile-chunk3-600000-650000', 'tomekkorbak/pii-pile-chunk3-650000-700000', 'tomekkorbak/pii-pile-chunk3-700000-750000', 'tomekkorbak/pii-pile-chunk3-750000-800000', 'tomekkorbak/pii-pile-chunk3-800000-850000', 'tomekkorbak/pii-pile-chunk3-850000-900000', 'tomekkorbak/pii-pile-chunk3-900000-950000', 'tomekkorbak/pii-pile-chunk3-950000-1000000', 'tomekkorbak/pii-pile-chunk3-1000000-1050000', 'tomekkorbak/pii-pile-chunk3-1050000-1100000', 'tomekkorbak/pii-pile-chunk3-1100000-1150000', 'tomekkorbak/pii-pile-chunk3-1150000-1200000', 'tomekkorbak/pii-pile-chunk3-1200000-1250000', 'tomekkorbak/pii-pile-chunk3-1250000-1300000', 'tomekkorbak/pii-pile-chunk3-1300000-1350000', 'tomekkorbak/pii-pile-chunk3-1350000-1400000', 'tomekkorbak/pii-pile-chunk3-1400000-1450000', 'tomekkorbak/pii-pile-chunk3-1450000-1500000', 'tomekkorbak/pii-pile-chunk3-1500000-1550000', 'tomekkorbak/pii-pile-chunk3-1550000-1600000', 'tomekkorbak/pii-pile-chunk3-1600000-1650000', 'tomekkorbak/pii-pile-chunk3-1650000-1700000', 'tomekkorbak/pii-pile-chunk3-1700000-1750000', 'tomekkorbak/pii-pile-chunk3-1750000-1800000', 'tomekkorbak/pii-pile-chunk3-1800000-1850000', 'tomekkorbak/pii-pile-chunk3-1850000-1900000', 'tomekkorbak/pii-pile-chunk3-1900000-1950000']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
7,874
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kind_torvalds This model was trained from scratch on the tomekkorbak/pii-pile-chunk3-0-50000, the tomekkorbak/pii-pile-chunk3-50000-100000, the tomekkorbak/pii-pile-chunk3-100000-150000, the tomekkorbak/pii-pile-chunk3-150000-200000, the tomekkorbak/pii-pile-chunk3-200000-250000, the tomekkorbak/pii-pile-chunk3-250000-300000, the tomekkorbak/pii-pile-chunk3-300000-350000, the tomekkorbak/pii-pile-chunk3-350000-400000, the tomekkorbak/pii-pile-chunk3-400000-450000, the tomekkorbak/pii-pile-chunk3-450000-500000, the tomekkorbak/pii-pile-chunk3-500000-550000, the tomekkorbak/pii-pile-chunk3-550000-600000, the tomekkorbak/pii-pile-chunk3-600000-650000, the tomekkorbak/pii-pile-chunk3-650000-700000, the tomekkorbak/pii-pile-chunk3-700000-750000, the tomekkorbak/pii-pile-chunk3-750000-800000, the tomekkorbak/pii-pile-chunk3-800000-850000, the tomekkorbak/pii-pile-chunk3-850000-900000, the tomekkorbak/pii-pile-chunk3-900000-950000, the tomekkorbak/pii-pile-chunk3-950000-1000000, the tomekkorbak/pii-pile-chunk3-1000000-1050000, the tomekkorbak/pii-pile-chunk3-1050000-1100000, the tomekkorbak/pii-pile-chunk3-1100000-1150000, the tomekkorbak/pii-pile-chunk3-1150000-1200000, the tomekkorbak/pii-pile-chunk3-1200000-1250000, the tomekkorbak/pii-pile-chunk3-1250000-1300000, the tomekkorbak/pii-pile-chunk3-1300000-1350000, the tomekkorbak/pii-pile-chunk3-1350000-1400000, the tomekkorbak/pii-pile-chunk3-1400000-1450000, the tomekkorbak/pii-pile-chunk3-1450000-1500000, the tomekkorbak/pii-pile-chunk3-1500000-1550000, the tomekkorbak/pii-pile-chunk3-1550000-1600000, the tomekkorbak/pii-pile-chunk3-1600000-1650000, the tomekkorbak/pii-pile-chunk3-1650000-1700000, the tomekkorbak/pii-pile-chunk3-1700000-1750000, the tomekkorbak/pii-pile-chunk3-1750000-1800000, the tomekkorbak/pii-pile-chunk3-1800000-1850000, the tomekkorbak/pii-pile-chunk3-1850000-1900000 and the tomekkorbak/pii-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 12588 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/pii-pile-chunk3-0-50000', 'tomekkorbak/pii-pile-chunk3-50000-100000', 'tomekkorbak/pii-pile-chunk3-100000-150000', 'tomekkorbak/pii-pile-chunk3-150000-200000', 'tomekkorbak/pii-pile-chunk3-200000-250000', 'tomekkorbak/pii-pile-chunk3-250000-300000', 'tomekkorbak/pii-pile-chunk3-300000-350000', 'tomekkorbak/pii-pile-chunk3-350000-400000', 'tomekkorbak/pii-pile-chunk3-400000-450000', 'tomekkorbak/pii-pile-chunk3-450000-500000', 'tomekkorbak/pii-pile-chunk3-500000-550000', 'tomekkorbak/pii-pile-chunk3-550000-600000', 'tomekkorbak/pii-pile-chunk3-600000-650000', 'tomekkorbak/pii-pile-chunk3-650000-700000', 'tomekkorbak/pii-pile-chunk3-700000-750000', 'tomekkorbak/pii-pile-chunk3-750000-800000', 'tomekkorbak/pii-pile-chunk3-800000-850000', 'tomekkorbak/pii-pile-chunk3-850000-900000', 'tomekkorbak/pii-pile-chunk3-900000-950000', 'tomekkorbak/pii-pile-chunk3-950000-1000000', 'tomekkorbak/pii-pile-chunk3-1000000-1050000', 'tomekkorbak/pii-pile-chunk3-1050000-1100000', 'tomekkorbak/pii-pile-chunk3-1100000-1150000', 'tomekkorbak/pii-pile-chunk3-1150000-1200000', 'tomekkorbak/pii-pile-chunk3-1200000-1250000', 'tomekkorbak/pii-pile-chunk3-1250000-1300000', 'tomekkorbak/pii-pile-chunk3-1300000-1350000', 'tomekkorbak/pii-pile-chunk3-1350000-1400000', 'tomekkorbak/pii-pile-chunk3-1400000-1450000', 'tomekkorbak/pii-pile-chunk3-1450000-1500000', 'tomekkorbak/pii-pile-chunk3-1500000-1550000', 'tomekkorbak/pii-pile-chunk3-1550000-1600000', 'tomekkorbak/pii-pile-chunk3-1600000-1650000', 'tomekkorbak/pii-pile-chunk3-1650000-1700000', 'tomekkorbak/pii-pile-chunk3-1700000-1750000', 'tomekkorbak/pii-pile-chunk3-1750000-1800000', 'tomekkorbak/pii-pile-chunk3-1800000-1850000', 'tomekkorbak/pii-pile-chunk3-1850000-1900000', 'tomekkorbak/pii-pile-chunk3-1900000-1950000'], 'filter_threshold': 0.000286, 'is_split_by_sentences': True, 'skip_tokens': 1649999872}, 'generation': {'force_call_on': [25177], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}], 'scorer_config': {}}, 'kl_gpt3_callback': {'force_call_on': [25177], 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': False, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'model_kwargs': {'revision': '9e6c78543a6ff1e4089002c38864d5a9cf71ec90'}, 'path_or_name': 'tomekkorbak/nervous_wozniak'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 128, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'kind_torvalds', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0001, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output2', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25177, 'save_strategy': 'steps', 'seed': 42, 'tokens_already_seen': 1649999872, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/3663m9qy
7cd1f4141409f5af192379cc0ebe8032
deval/distilbert-base-uncased-finetuned-ner
deval
distilbert
13
3
transformers
0
token-classification
true
false
false
apache-2.0
null
['conll2003']
null
1
1
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,555
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0606 - Precision: 0.9277 - Recall: 0.9385 - F1: 0.9330 - Accuracy: 0.9844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2454 | 1.0 | 878 | 0.0692 | 0.9106 | 0.9212 | 0.9159 | 0.9809 | | 0.0517 | 2.0 | 1756 | 0.0616 | 0.9203 | 0.9352 | 0.9277 | 0.9834 | | 0.0314 | 3.0 | 2634 | 0.0606 | 0.9277 | 0.9385 | 0.9330 | 0.9844 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.0 - Tokenizers 0.10.3
fb8b5760f5c401871cb80cfc6c706a5d
muhtasham/small-mlm-rotten_tomatoes-custom-tokenizer
muhtasham
bert
10
0
transformers
1
fill-mask
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,468
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # small-mlm-rotten_tomatoes-custom-tokenizer This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the None dataset. It achieves the following results on the evaluation set: - Loss: 7.0377 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.6287 | 0.47 | 500 | 7.2726 | | 7.0283 | 0.94 | 1000 | 7.0982 | | 6.7115 | 1.41 | 1500 | 6.9665 | | 6.695 | 1.87 | 2000 | 7.2285 | | 6.55 | 2.34 | 2500 | 6.9906 | | 6.4289 | 2.81 | 3000 | 7.0377 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
540f8ab1fc0ad9f19fc486d86e1b3adc
arvalinno/distilbert-base-uncased-finetuned-indosquad-v2
arvalinno
distilbert
12
7
transformers
0
question-answering
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,345
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-indosquad-v2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6650 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.9015 | 1.0 | 9676 | 1.5706 | | 1.6438 | 2.0 | 19352 | 1.5926 | | 1.4714 | 3.0 | 29028 | 1.5253 | | 1.3486 | 4.0 | 38704 | 1.6650 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
82466442732bd1064c56e07417dc1e99
alk/mt5-small-finetuned-cnn_dailymail-en-es
alk
mt5
8
1
transformers
0
text2text-generation
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,647
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # alk/mt5-small-finetuned-cnn_dailymail-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.9490 - Validation Loss: 1.6920 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 287112, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.9445 | 1.9068 | 0 | | 2.2439 | 1.8106 | 1 | | 2.1301 | 1.7582 | 2 | | 2.0643 | 1.7378 | 3 | | 2.0191 | 1.7181 | 4 | | 1.9870 | 1.7033 | 5 | | 1.9646 | 1.7015 | 6 | | 1.9490 | 1.6920 | 7 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.2.1 - Tokenizers 0.12.1
247770dbe9161cbdd92021a0fc081a35
gokuls/distilbert_add_GLUE_Experiment_stsb
gokuls
distilbert
17
4
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,883
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_add_GLUE_Experiment_stsb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 2.2770 - Pearson: 0.0450 - Spearmanr: 0.0447 - Combined Score: 0.0448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 4.11 | 1.0 | 23 | 2.2770 | 0.0450 | 0.0447 | 0.0448 | | 2.2155 | 2.0 | 46 | 2.4336 | 0.0499 | 0.0451 | 0.0475 | | 2.1634 | 3.0 | 69 | 2.3207 | 0.0729 | 0.0634 | 0.0681 | | 2.0618 | 4.0 | 92 | 2.6080 | 0.0787 | 0.0783 | 0.0785 | | 1.8586 | 5.0 | 115 | 2.4988 | 0.1020 | 0.1017 | 0.1018 | | 1.6977 | 6.0 | 138 | 2.6166 | 0.1187 | 0.1137 | 0.1162 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
9119dc822e4b692f7fe4848325a4d301
OpenMatch/ance-tele_triviaqa_qry-encoder
OpenMatch
bert
7
2
transformers
0
feature-extraction
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
904
false
This model is the **query** encoder of ANCE-Tele trained on TriviaQA, described in the EMNLP 2022 paper ["Reduce Catastrophic Forgetting of Dense Retrieval Training with Teleportation Negatives"](https://arxiv.org/pdf/2210.17167.pdf). The associated GitHub repository is available at https://github.com/OpenMatch/ANCE-Tele. ANCE-Tele only trains with self-mined negatives (teleportation negatives) without using additional negatives (e.g., BM25, other DR systems) and eliminates the dependency on filtering strategies and distillation modules. |NQ (Test)|R@5|R@20|R@20| |:---|:---|:---|:---| |ANCE-Tele|76.9|83.4|87.3| ``` @inproceedings{sun2022ancetele, title={Reduce Catastrophic Forgetting of Dense Retrieval Training with Teleportation Negatives}, author={Si Sun, Chenyan Xiong, Yue Yu, Arnold Overwijk, Zhiyuan Liu and Jie Bao}, booktitle={Proceedings of EMNLP 2022}, year={2022} } ```
c69de658d979e50bf8324d62ca760835
grinman/AIsee
grinman
null
6
0
null
0
null
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,896
false
Made using highly curated best quality masterful artwork from an ancient indonesian stone carving website, with some help from their independent doodling connoisseur brothers in arms, 3000 pieces of their best work. Prompt used: aiseeic aisee_10000.ckpt was made with Anything v.3. aiseeic_15000.ckpt was made with SD 1.5. AIsee (Anything) examples ![00043-170289776-Emma Watson full shot modeling as Jessica Rabbit, (EOS 5DS R, ISO100, f_8, 1_125, 84mm, postprocessed, crisp face, facial featur.png](https://s3.amazonaws.com/moonup/production/uploads/1669095647555-637c5f1b9495870ef76f1472.png) ![00042-3508825484-Emma Watson full shot modeling as Jessica Rabbit, (EOS 5DS R, ISO100, f_8, 1_125, 84mm, postprocessed, crisp face, facial featur.png](https://s3.amazonaws.com/moonup/production/uploads/1669095647512-637c5f1b9495870ef76f1472.png) ![00045-2382850738-Emma Watson full shot modeling as Jessica Rabbit, (EOS 5DS R, ISO100, f_8, 1_125, 84mm, postprocessed, crisp face, facial featur.png](https://s3.amazonaws.com/moonup/production/uploads/1669095647489-637c5f1b9495870ef76f1472.png) AIsee SD examples ![00053-758175738-aiseeic, Emma Watson full shot modeling as Jessica Rabbit, (EOS 5DS R, ISO100, f_8, 1_125, 84mm, postprocessed, crisp face, faci.png](https://s3.amazonaws.com/moonup/production/uploads/1669095834760-637c5f1b9495870ef76f1472.png) ![00039-477119149-Emma Watson full shot modeling as Jessica Rabbit, (EOS 5DS R, ISO100, f_8, 1_125, 84mm, postprocessed, crisp face, facial featur.png](https://s3.amazonaws.com/moonup/production/uploads/1669095834642-637c5f1b9495870ef76f1472.png) ![00057-2487031390-aiseeic, Emma Watson full shot modeling as Jessica Rabbit, (EOS 5DS R, ISO100, f_8, 1_125, 84mm, postprocessed, crisp face, faci.png](https://s3.amazonaws.com/moonup/production/uploads/1669095834700-637c5f1b9495870ef76f1472.png) I own nothing and I will be happy.
a8bc2c02a0125c1ffe6d07f78dfe5c9c
versae/whisper-large-nob-ncc-s
versae
whisper
27
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['no', 'nb']
['NbAiLab/NCC_S']
null
1
1
0
0
0
0
0
['whisper-event', 'generated_from_trainer']
true
true
true
1,576
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Large Norwegian This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the NbAiLab/NCC_S dataset. It achieves the following results on the evaluation set: - Loss: 0.2776 - Wer: 12.5152 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 12 - eval_batch_size: 6 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.6892 | 0.2 | 1000 | 0.3177 | 15.1035 | | 0.6782 | 0.4 | 2000 | 0.3033 | 13.4592 | | 0.6317 | 0.6 | 3000 | 0.2909 | 13.7637 | | 0.5609 | 0.8 | 4000 | 0.2803 | 12.6675 | | 0.5726 | 1.0 | 5000 | 0.2776 | 12.5152 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.11.0
d2855e58ec813c9d00624b5e7a6db4c3
rhizomuser/ddpm-butterflies-128
rhizomuser
null
11
1
diffusers
0
null
false
false
false
apache-2.0
['en']
['huggan/smithsonian_butterflies_subset']
null
0
0
0
0
0
0
0
[]
false
true
true
1,232
false
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/rhizomuser/ddpm-butterflies-128/tensorboard?#scalars)
196e0393073407cad34ea685f9380926
DrishtiSharma/wav2vec2-large-xls-r-300m-sat-a3
DrishtiSharma
wav2vec2
12
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['sat']
['mozilla-foundation/common_voice_8_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'mozilla-foundation/common_voice_8_0', 'generated_from_trainer', 'sat', 'robust-speech-event', 'model_for_talk', 'hf-asr-leaderboard']
true
true
true
1,923
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-sat-a3 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SAT dataset. It achieves the following results on the evaluation set: - Loss: 0.8961 - Wer: 0.3976 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sat-a3 --dataset mozilla-foundation/common_voice_8_0 --config sat --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Note: Santali (Ol Chiki) language not found in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 11.1266 | 33.29 | 100 | 2.8577 | 1.0 | | 2.1549 | 66.57 | 200 | 1.0799 | 0.5542 | | 0.5628 | 99.86 | 300 | 0.7973 | 0.4016 | | 0.0779 | 133.29 | 400 | 0.8424 | 0.4177 | | 0.0404 | 166.57 | 500 | 0.9048 | 0.4137 | | 0.0212 | 199.86 | 600 | 0.8961 | 0.3976 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
84277fe6533a06beb0f5a730f7ecde7b
davidaponte/mikovelliaponte-dog
davidaponte
null
17
6
diffusers
0
text-to-image
true
false
false
creativeml-openrail-m
null
null
null
1
1
0
0
0
0
0
['pytorch', 'diffusers', 'stable-diffusion', 'text-to-image', 'diffusion-models-class', 'dreambooth-hackathon', 'animal']
false
true
true
785
false
# DreamBooth model for the mikovelliaponte concept trained by davidaponte on the davidaponte/dreambooth-hackathon-images-miko dataset. This is a Stable Diffusion model fine-tuned on the mikovelliaponte concept with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of mikovelliaponte dog** This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Description This is a Stable Diffusion model fine-tuned on `dog` images for the animal theme. ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('davidaponte/mikovelliaponte-dog') image = pipeline().images[0] image ```
df0186e5ce46add2996b1bebb2d21377
tomekkorbak/quirky_ritchie
tomekkorbak
null
2
0
null
0
null
false
false
false
mit
['en']
['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
8,760
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # quirky_ritchie This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 50354 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'], 'is_split_by_sentences': True}, 'generation': {'force_call_on': [25354], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}, {'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 2048, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'force_call_on': [25354], 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'path_or_name': 'gpt2'}, 'objective': {'alpha': 1, 'name': 'Unlikelihood', 'score_threshold': 0.00078}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'quirky_ritchie', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output104340', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25354, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/xb3x3sd4
5321432c5a5126d5767edd0737ab9b4c
cduncanja/emotion_model
cduncanja
bert
24
2
transformers
0
text-classification
true
false
false
mit
null
['emotion']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,447
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_model This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 1.7815 - F1: 0.1455 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.7968 | 1.0 | 2 | 1.7804 | 0.2286 | | 1.7918 | 2.0 | 4 | 1.7812 | 0.2286 | | 1.7867 | 3.0 | 6 | 1.7822 | 0.08 | | 1.7884 | 4.0 | 8 | 1.7816 | 0.08 | | 1.7833 | 5.0 | 10 | 1.7815 | 0.1455 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1 - Datasets 2.5.2 - Tokenizers 0.11.0
df75601d6e8ebd532fe3e7fa8b11861d
Geotrend/bert-base-en-fr-zh-ja-vi-cased
Geotrend
bert
8
2
transformers
0
fill-mask
true
true
true
apache-2.0
['multilingual']
['wikipedia']
null
1
1
0
0
0
0
0
[]
false
true
true
1,319
false
# bert-base-en-fr-zh-ja-vi-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-fr-zh-ja-vi-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-fr-zh-ja-vi-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
084234962dad937d3aea84d70c96b829
Geotrend/distilbert-base-en-es-it-cased
Geotrend
distilbert
6
3
transformers
0
fill-mask
true
false
false
apache-2.0
['multilingual']
['wikipedia']
null
1
1
0
0
0
0
0
[]
false
true
true
1,233
false
# distilbert-base-en-es-it-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-es-it-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-es-it-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
bec0355dc2e3bd0dfd40e755dc3ea9f1
fusing/glide-base
fusing
null
16
0
null
1
null
false
false
false
apache-2.0
null
null
null
0
0
0
0
1
1
0
[]
false
true
true
1,891
false
GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models **Paper**: [GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models](https://arxiv.org/abs/2112.10741) **Abstract**: *Diffusion models have recently been shown to generate high-quality synthetic images, especially when paired with a guidance technique to trade off diversity for fidelity. We explore diffusion models for the problem of text-conditional image synthesis and compare two different guidance strategies: CLIP guidance and classifier-free guidance. We find that the latter is preferred by human evaluators for both photorealism and caption similarity, and often produces photorealistic samples. Samples from a 3.5 billion parameter text-conditional diffusion model using classifier-free guidance are favored by human evaluators to those from DALL-E, even when the latter uses expensive CLIP reranking. Additionally, we find that our models can be fine-tuned to perform image inpainting, enabling powerful text-driven image editing.* ## Usage ```python # !pip install diffusers import torch from diffusers import DiffusionPipeline import PIL.Image model_id = "fusing/glide-base" # load model and scheduler pipeline = DiffusionPipeline.from_pretrained(model_id) # run inference (text-conditioned denoising + upscaling) img = pipeline("a crayon drawing of a corgi") # process image to PIL img = img.squeeze(0) img = ((img + 1)*127.5).round().clamp(0, 255).to(torch.uint8).cpu().numpy() image_pil = PIL.Image.fromarray(img) # save image image_pil.save("test.png") ``` ## Samples 1. ![sample_1](https://huggingface.co/datasets/anton-l/images/resolve/main/glide1.png) 2. ![sample_2](https://huggingface.co/datasets/anton-l/images/resolve/main/glide2.png) 3. ![sample_3](https://huggingface.co/datasets/anton-l/images/resolve/main/glide3.png)
b4e6a980656da4307c2ef54292ca986f
JulienDespres/whisper-small-fr
JulienDespres
whisper
7
3
transformers
1
automatic-speech-recognition
true
false
false
apache-2.0
['fr']
['mozilla-foundation/common_voice_11_0']
null
0
0
0
0
0
0
0
['hf-asr-leaderboard', 'generated_from_trainer']
true
true
true
1,006
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Fri - Despres Julien This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 600 - training_steps: 6000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.11.0 - Datasets 2.5.2 - Tokenizers 0.12.1
5692d83fdc2dfed71e10667ab610ca63
ufal/byt5-small-multilexnorm2021-trde
ufal
t5
6
4
transformers
1
text2text-generation
true
false
false
apache-2.0
['tr', 'de', 'multilingual']
['mc4', 'wikipedia', 'multilexnorm']
null
1
0
0
1
0
0
0
['lexical normalization']
false
true
true
2,766
false
# Fine-tuned ByT5-small for MultiLexNorm (Turkish-German version) ![model image](https://github.com/ufal/multilexnorm2021/raw/master/img/overall.png) This is the official release of the fine-tuned models for **the winning entry** to the [*W-NUT 2021: Multilingual Lexical Normalization (MultiLexNorm)* shared task](https://noisy-text.github.io/2021/multi-lexnorm.html), which evaluates lexical-normalization systems on 12 social media datasets in 11 languages. Our system is based on [ByT5](https://arxiv.org/abs/2105.13626), which we first pre-train on synthetic data and then fine-tune on authentic normalization data. It achieves the best performance by a wide margin in intrinsic evaluation, and also the best performance in extrinsic evaluation through dependency parsing. In addition to these fine-tuned models, we also release the source files on [GitHub](https://github.com/ufal/multilexnorm2021) and an interactive demo on [Google Colab](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing). ## How to use The model was *not* fine-tuned in a standard sentence-to-sentence setting – instead, it was tailored to the token-to-token definition of MultiLexNorm data. Please refer to [**the interactive demo on Colab notebook**](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing) to learn how to use these models. ## How to cite ```bibtex @inproceedings{wnut-ufal, title= "{ÚFAL} at {MultiLexNorm} 2021: Improving Multilingual Lexical Normalization by Fine-tuning {ByT5}", author = "Samuel, David and Straka, Milan", booktitle = "Proceedings of the 7th Workshop on Noisy User-generated Text (W-NUT 2021)", year = "2021", publisher = "Association for Computational Linguistics", address = "Punta Cana, Dominican Republic" } ``` ## ByT5 - Small ByT5 is a tokenizer-free version of [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and generally follows the architecture of [MT5](https://huggingface.co/google/mt5-small). ByT5 was only pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) excluding any supervised training with an average span-mask of 20 UTF-8 characters. Therefore, this model has to be fine-tuned before it is useable on a downstream task. ByT5 works especially well on noisy text data,*e.g.*, `google/byt5-small` significantly outperforms [mt5-small](https://huggingface.co/google/mt5-small) on [TweetQA](https://arxiv.org/abs/1907.06292). Paper: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) Authors: *Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel*
4621735d4626bc5220d8c0abb695c485
lmqg/mt5-base-frquad-qag
lmqg
mt5
13
72
transformers
0
text2text-generation
true
false
false
cc-by-4.0
['fr']
['lmqg/qag_frquad']
null
0
0
0
0
0
0
0
['questions and answers generation']
true
true
true
4,117
false
# Model Card of `lmqg/mt5-base-frquad-qag` This model is fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) for question & answer pair generation task on the [lmqg/qag_frquad](https://huggingface.co/datasets/lmqg/qag_frquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [google/mt5-base](https://huggingface.co/google/mt5-base) - **Language:** fr - **Training data:** [lmqg/qag_frquad](https://huggingface.co/datasets/lmqg/qag_frquad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="fr", model="lmqg/mt5-base-frquad-qag") # model prediction question_answer_pairs = model.generate_qa("Créateur » (Maker), lui aussi au singulier, « le Suprême Berger » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/mt5-base-frquad-qag") output = pipe("Créateur » (Maker), lui aussi au singulier, « le Suprême Berger » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.") ``` ## Evaluation - ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-base-frquad-qag/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qag_frquad.default.json) | | Score | Type | Dataset | |:--------------------------------|--------:|:--------|:-------------------------------------------------------------------| | QAAlignedF1Score (BERTScore) | 78.28 | default | [lmqg/qag_frquad](https://huggingface.co/datasets/lmqg/qag_frquad) | | QAAlignedF1Score (MoverScore) | 51.66 | default | [lmqg/qag_frquad](https://huggingface.co/datasets/lmqg/qag_frquad) | | QAAlignedPrecision (BERTScore) | 78.36 | default | [lmqg/qag_frquad](https://huggingface.co/datasets/lmqg/qag_frquad) | | QAAlignedPrecision (MoverScore) | 51.73 | default | [lmqg/qag_frquad](https://huggingface.co/datasets/lmqg/qag_frquad) | | QAAlignedRecall (BERTScore) | 78.21 | default | [lmqg/qag_frquad](https://huggingface.co/datasets/lmqg/qag_frquad) | | QAAlignedRecall (MoverScore) | 51.59 | default | [lmqg/qag_frquad](https://huggingface.co/datasets/lmqg/qag_frquad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qag_frquad - dataset_name: default - input_types: ['paragraph'] - output_types: ['questions_answers'] - prefix_types: None - model: google/mt5-base - max_length: 512 - max_length_output: 256 - epoch: 11 - batch: 8 - lr: 0.001 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 16 - label_smoothing: 0.0 The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-base-frquad-qag/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
378fe61d00994caabefa7319ae9a2914
Helsinki-NLP/opus-mt-sv-ho
Helsinki-NLP
marian
10
8
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
768
false
### opus-mt-sv-ho * source languages: sv * target languages: ho * OPUS readme: [sv-ho](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sv-ho/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/sv-ho/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-ho/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-ho/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sv.ho | 26.7 | 0.503 |
da789960dbca84aab4c0336148cde753
ejin/bert-base-cased-finetuned-ner
ejin
bert
13
5
transformers
0
token-classification
true
false
false
apache-2.0
null
['conll2003']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,345
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0919 - Precision: 0.8940 - Recall: 0.9009 - F1: 0.8974 - Accuracy: 0.9750 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1147 | 1.0 | 1756 | 0.0919 | 0.8940 | 0.9009 | 0.8974 | 0.9750 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
77cb7333f27b92b522772a4a3ec4743d
sentence-transformers/xlm-r-bert-base-nli-mean-tokens
sentence-transformers
xlm-roberta
13
293
sentence-transformers
0
sentence-similarity
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['sentence-transformers', 'feature-extraction', 'sentence-similarity', 'transformers']
false
true
true
3,835
false
**⚠️ This model is deprecated. Please don't use it as it produces sentence embeddings of low quality. You can find recommended sentence embedding models here: [SBERT.net - Pretrained Models](https://www.sbert.net/docs/pretrained_models.html)** # sentence-transformers/xlm-r-bert-base-nli-mean-tokens This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/xlm-r-bert-base-nli-mean-tokens') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/xlm-r-bert-base-nli-mean-tokens') model = AutoModel.from_pretrained('sentence-transformers/xlm-r-bert-base-nli-mean-tokens') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/xlm-r-bert-base-nli-mean-tokens) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
e55f5d76b5093675ab25ebded54c8cef
Geotrend/bert-base-pl-cased
Geotrend
bert
8
7
transformers
0
fill-mask
true
true
true
apache-2.0
['pl']
['wikipedia']
null
0
0
0
0
0
0
0
[]
false
true
true
1,283
false
# bert-base-pl-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-pl-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-pl-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
511ca290044fc7bf12e4c46b96dc6e52
aliprf/Ad-Corre
aliprf
null
25
0
null
0
null
false
false
false
mit
['en']
null
null
0
0
0
0
0
0
0
['Ad-Corre', 'facial expression recognition', 'emotion recognition', 'expression recognition', 'computer vision', 'CNN', 'loss', 'IEEE Access', 'Tensor Flow']
false
true
true
5,134
false
# Ad-Corre Ad-Corre: Adaptive Correlation-Based Loss for Facial Expression Recognition in the Wild [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/ad-corre-adaptive-correlation-based-loss-for/facial-expression-recognition-on-raf-db)](https://paperswithcode.com/sota/facial-expression-recognition-on-raf-db?p=ad-corre-adaptive-correlation-based-loss-for) <!-- [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/ad-corre-adaptive-correlation-based-loss-for/facial-expression-recognition-on-affectnet)](https://paperswithcode.com/sota/facial-expression-recognition-on-affectnet?p=ad-corre-adaptive-correlation-based-loss-for) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/ad-corre-adaptive-correlation-based-loss-for/facial-expression-recognition-on-fer2013)](https://paperswithcode.com/sota/facial-expression-recognition-on-fer2013?p=ad-corre-adaptive-correlation-based-loss-for) --> #### Link to the paper (open access): https://ieeexplore.ieee.org/document/9727163 #### Link to the paperswithcode.com: https://paperswithcode.com/paper/ad-corre-adaptive-correlation-based-loss-for ``` Please cite this work as: @ARTICLE{9727163, author={Fard, Ali Pourramezan and Mahoor, Mohammad H.}, journal={IEEE Access}, title={Ad-Corre: Adaptive Correlation-Based Loss for Facial Expression Recognition in the Wild}, year={2022}, volume={}, number={}, pages={1-1}, doi={10.1109/ACCESS.2022.3156598}} ``` ## Introduction Automated Facial Expression Recognition (FER) in the wild using deep neural networks is still challenging due to intra-class variations and inter-class similarities in facial images. Deep Metric Learning (DML) is among the widely used methods to deal with these issues by improving the discriminative power of the learned embedded features. This paper proposes an Adaptive Correlation (Ad-Corre) Loss to guide the network towards generating embedded feature vectors with high correlation for within-class samples and less correlation for between-class samples. Ad-Corre consists of 3 components called Feature Discriminator, Mean Discriminator, and Embedding Discriminator. We design the Feature Discriminator component to guide the network to create the embedded feature vectors to be highly correlated if they belong to a similar class, and less correlated if they belong to different classes. In addition, the Mean Discriminator component leads the network to make the mean embedded feature vectors of different classes to be less similar to each other.We use Xception network as the backbone of our model, and contrary to previous work, we propose an embedding feature space that contains k feature vectors. Then, the Embedding Discriminator component penalizes the network to generate the embedded feature vectors, which are dissimilar.We trained our model using the combination of our proposed loss functions called Ad-Corre Loss jointly with the cross-entropy loss. We achieved a very promising recognition accuracy on AffectNet, RAF-DB, and FER-2013. Our extensive experiments and ablation study indicate the power of our method to cope well with challenging FER tasks in the wild. ## Evaluation and Samples The following samples are taken from the paper: ![Samples](https://github.com/aliprf/Ad-Corre/blob/main/paper_graphical_items/samples.jpg?raw=true) ---------------------------------------------------------------------------------------------------------------------------------- ## Installing the requirements In order to run the code you need to install python >= 3.5. The requirements and the libraries needed to run the code can be installed using the following command: ``` pip install -r requirements.txt ``` ## Using the pre-trained models The pretrained models for Affectnet, RafDB, and Fer2013 are provided in the [Trained_Models](https://github.com/aliprf/Ad-Corre/tree/main/Trained_Models) folder. You can use the following code to predict the facial emotionn of a facial image: ``` tester = TestModels(h5_address='./trained_models/AffectNet_6336.h5') tester.recognize_fer(img_path='./img.jpg') ``` plaese see the following [main.py](https://github.com/aliprf/Ad-Corre/tree/main/main.py) file. ## Training Network from scratch The information and the code to train the model is provided in train.py .Plaese see the following [main.py](https://github.com/aliprf/Ad-Corre/tree/main/main.py) file: ``` '''training part''' trainer = TrainModel(dataset_name=DatasetName.affectnet, ds_type=DatasetType.train_7) trainer.train(arch="xcp", weight_path="./") ``` ### Preparing Data Data needs to be normalized and saved in npy format. --------------------------------------------------------------- ``` Please cite this work as: @ARTICLE{9727163, author={Fard, Ali Pourramezan and Mahoor, Mohammad H.}, journal={IEEE Access}, title={Ad-Corre: Adaptive Correlation-Based Loss for Facial Expression Recognition in the Wild}, year={2022}, volume={}, number={}, pages={1-1}, doi={10.1109/ACCESS.2022.3156598}} ```
115c4bfed6d214c694295064d53b59e6
Filial/distilbert-base-uncased-finetuned-squad
Filial
distilbert
12
3
transformers
0
question-answering
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,284
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.218 | 1.0 | 5533 | 1.1630 | | 0.9616 | 2.0 | 11066 | 1.1310 | | 0.7547 | 3.0 | 16599 | 1.1581 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
aa0d84e088b733e8e51aa191c4425b21
theojolliffe/bart-cnn-pubmed-arxiv-pubmed-v3-e12
theojolliffe
bart
13
3
transformers
0
text2text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,642
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-pubmed-arxiv-pubmed-v3-e12 This model is a fine-tuned version of [theojolliffe/bart-cnn-pubmed-arxiv-pubmed](https://huggingface.co/theojolliffe/bart-cnn-pubmed-arxiv-pubmed) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8658 - Rouge1: 57.2678 - Rouge2: 43.347 - Rougel: 47.0854 - Rougelsum: 55.4167 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 1.2548 | 1.0 | 795 | 0.9154 | 53.4249 | 34.0377 | 36.4396 | 50.9884 | 141.8889 | | 0.6994 | 2.0 | 1590 | 0.8213 | 54.7613 | 35.9428 | 38.3899 | 51.9527 | 142.0 | | 0.5272 | 3.0 | 2385 | 0.7703 | 53.8561 | 35.4871 | 38.0502 | 51.131 | 141.8889 | | 0.3407 | 4.0 | 3180 | 0.7764 | 53.9514 | 35.8553 | 39.1935 | 51.7005 | 142.0 | | 0.2612 | 5.0 | 3975 | 0.7529 | 54.4056 | 36.2605 | 40.8003 | 52.0424 | 142.0 | | 0.1702 | 6.0 | 4770 | 0.8105 | 54.2251 | 37.1441 | 41.2472 | 52.2803 | 142.0 | | 0.1276 | 7.0 | 5565 | 0.8004 | 56.49 | 40.4009 | 44.018 | 54.2404 | 141.5556 | | 0.0978 | 8.0 | 6360 | 0.7890 | 56.6339 | 40.9867 | 43.9603 | 54.4468 | 142.0 | | 0.0711 | 9.0 | 7155 | 0.8285 | 56.0469 | 40.7758 | 44.1395 | 53.9668 | 142.0 | | 0.0649 | 10.0 | 7950 | 0.8498 | 56.9873 | 42.4721 | 46.705 | 55.2188 | 142.0 | | 0.0471 | 11.0 | 8745 | 0.8547 | 57.7898 | 43.4238 | 46.5868 | 56.0858 | 142.0 | | 0.0336 | 12.0 | 9540 | 0.8658 | 57.2678 | 43.347 | 47.0854 | 55.4167 | 142.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
5ff1480d945c8538c543ce5b6910f35a
anton-l/wav2vec2-large-xlsr-53-romanian
anton-l
wav2vec2
9
391
transformers
0
automatic-speech-recognition
true
false
true
apache-2.0
['ro']
['common_voice']
null
0
0
0
0
0
0
0
['audio', 'automatic-speech-recognition', 'speech', 'xlsr-fine-tuning-week']
true
true
true
3,670
false
# Wav2Vec2-Large-XLSR-53-Romanian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Romanian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ro", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-romanian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-romanian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Romanian test data of Common Voice. ```python import torch import torchaudio import urllib.request import tarfile import pandas as pd from tqdm.auto import tqdm from datasets import load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # Download the raw data instead of using HF datasets to save disk space data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/ro.tar.gz" filestream = urllib.request.urlopen(data_url) data_file = tarfile.open(fileobj=filestream, mode="r|gz") data_file.extractall() wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-romanian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-romanian") model.to("cuda") cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/ro/test.tsv", sep='\t') clips_path = "cv-corpus-6.1-2020-12-11/ro/clips/" def clean_sentence(sent): sent = sent.lower() # replace non-alpha characters with space sent = "".join(ch if ch.isalpha() else " " for ch in sent) # remove repeated spaces sent = " ".join(sent.split()) return sent targets = [] preds = [] for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]): row["sentence"] = clean_sentence(row["sentence"]) speech_array, sampling_rate = torchaudio.load(clips_path + row["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) row["speech"] = resampler(speech_array).squeeze().numpy() inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) targets.append(row["sentence"]) preds.append(processor.batch_decode(pred_ids)[0]) print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets))) ``` **Test Result**: 24.84 % ## Training The Common Voice `train` and `validation` datasets were used for training.
6ecad321ef52a49a551921f924582909
gokuls/distilbert_sa_GLUE_Experiment_logit_kd_rte_96
gokuls
distilbert
17
2
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,058
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_logit_kd_rte_96 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.4234 - Accuracy: 0.4729 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4577 | 1.0 | 10 | 0.4423 | 0.4729 | | 0.4372 | 2.0 | 20 | 0.4341 | 0.4729 | | 0.43 | 3.0 | 30 | 0.4300 | 0.4729 | | 0.4261 | 4.0 | 40 | 0.4273 | 0.4729 | | 0.4229 | 5.0 | 50 | 0.4253 | 0.4729 | | 0.42 | 6.0 | 60 | 0.4241 | 0.4729 | | 0.4188 | 7.0 | 70 | 0.4236 | 0.4729 | | 0.4179 | 8.0 | 80 | 0.4234 | 0.4729 | | 0.4176 | 9.0 | 90 | 0.4235 | 0.4729 | | 0.4165 | 10.0 | 100 | 0.4235 | 0.4729 | | 0.418 | 11.0 | 110 | 0.4238 | 0.4729 | | 0.4174 | 12.0 | 120 | 0.4238 | 0.4729 | | 0.4171 | 13.0 | 130 | 0.4237 | 0.4729 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
1f2a071596e810d9a070673b07da56fb
gokuls/distilbert_sa_GLUE_Experiment_data_aug_wnli_96
gokuls
distilbert
17
0
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,626
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_data_aug_wnli_96 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6935 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.693 | 1.0 | 218 | 0.6935 | 0.5634 | | 0.6226 | 2.0 | 436 | 1.4150 | 0.1549 | | 0.5091 | 3.0 | 654 | 1.7966 | 0.1268 | | 0.4594 | 4.0 | 872 | 2.1812 | 0.1127 | | 0.4125 | 5.0 | 1090 | 2.6036 | 0.0845 | | 0.3697 | 6.0 | 1308 | 3.0124 | 0.0704 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
fbd171bc876c4f84b04fab0101474a4c
Helsinki-NLP/opus-mt-sv-tw
Helsinki-NLP
marian
10
7
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
768
false
### opus-mt-sv-tw * source languages: sv * target languages: tw * OPUS readme: [sv-tw](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sv-tw/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/sv-tw/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-tw/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-tw/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sv.tw | 30.7 | 0.509 |
68f57a615f861ffa5515b4ddc57abf4b
cat666/VToooo
cat666
null
20
44
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
['en']
null
null
1
0
1
0
0
0
0
['stable-diffusion', 'stable-diffusion-diffusers', 'text-to-image', 'diffusers']
false
true
true
1,476
false
learning_rate 2.5e-6, training with a6000x1, because I am too busy recently, I should not be able to actively do it, and the funds are slightly insufficient ,Forget it, I'm overtraining, take it as an interesting model,(Warning: above 768x832 is recommended, I found that the results below seem to be less than ideal) Will be uploading actively in the near future If you need my help or have better suggestions, come to [Discord server](https://discord.gg/BHb4HvTc6t) [![Discord Server](https://media.discordapp.net/attachments/738013665286160445/1059013462925254676/image.png)](https://discord.gg/BHb4HvTc6t) ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
276b40c8f98502947a7f42cac18d7028
Helsinki-NLP/opus-mt-taw-en
Helsinki-NLP
marian
11
10
transformers
0
translation
true
true
false
apache-2.0
['lo', 'th', 'taw', 'en']
null
null
1
1
0
0
0
0
0
['translation']
false
true
true
2,102
false
### taw-eng * source group: Tai * target group: English * OPUS readme: [taw-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/taw-eng/README.md) * model: transformer * source language(s): lao tha * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-28.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/taw-eng/opus-2020-06-28.zip) * test set translations: [opus-2020-06-28.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/taw-eng/opus-2020-06-28.test.txt) * test set scores: [opus-2020-06-28.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/taw-eng/opus-2020-06-28.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.lao-eng.lao.eng | 1.1 | 0.133 | | Tatoeba-test.multi.eng | 38.9 | 0.572 | | Tatoeba-test.tha-eng.tha.eng | 40.6 | 0.588 | ### System Info: - hf_name: taw-eng - source_languages: taw - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/taw-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['lo', 'th', 'taw', 'en'] - src_constituents: {'lao', 'tha'} - tgt_constituents: {'eng'} - src_multilingual: True - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/taw-eng/opus-2020-06-28.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/taw-eng/opus-2020-06-28.test.txt - src_alpha3: taw - tgt_alpha3: eng - short_pair: taw-en - chrF2_score: 0.5720000000000001 - bleu: 38.9 - brevity_penalty: 1.0 - ref_len: 7630.0 - src_name: Tai - tgt_name: English - train_date: 2020-06-28 - src_alpha2: taw - tgt_alpha2: en - prefer_old: False - long_pair: taw-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
5b6b8edc19603c0f7486adf026f45ae9
Hoax0930/marian-finetuned-kde4-en-to-ja
Hoax0930
marian
16
1
transformers
0
translation
true
false
false
apache-2.0
null
['kde4']
null
0
0
0
0
0
0
0
['translation', 'generated_from_trainer']
true
true
true
1,085
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-ja This model is a fine-tuned version of [Helsinki-NLP/opus-tatoeba-en-ja](https://huggingface.co/Helsinki-NLP/opus-tatoeba-en-ja) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.9825 - Bleu: 37.1098 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
54e634c96e859fdfd5aa3b482998b3cd
paola-md/recipe-gauss-2
paola-md
roberta
6
1
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,984
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-gauss-2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4204 - Rmse: 0.6484 - Mse: 0.4204 - Mae: 0.4557 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:| | 0.4002 | 1.0 | 3029 | 0.4228 | 0.6502 | 0.4228 | 0.4485 | | 0.3986 | 2.0 | 6058 | 0.4200 | 0.6481 | 0.4200 | 0.4566 | | 0.3985 | 3.0 | 9087 | 0.4217 | 0.6494 | 0.4217 | 0.4515 | | 0.3977 | 4.0 | 12116 | 0.4212 | 0.6490 | 0.4212 | 0.4528 | | 0.397 | 5.0 | 15145 | 0.4251 | 0.6520 | 0.4251 | 0.4461 | | 0.397 | 6.0 | 18174 | 0.4203 | 0.6483 | 0.4203 | 0.4665 | | 0.3968 | 7.0 | 21203 | 0.4211 | 0.6489 | 0.4211 | 0.4533 | | 0.3964 | 8.0 | 24232 | 0.4208 | 0.6487 | 0.4208 | 0.4543 | | 0.3963 | 9.0 | 27261 | 0.4199 | 0.6480 | 0.4199 | 0.4604 | | 0.3961 | 10.0 | 30290 | 0.4204 | 0.6484 | 0.4204 | 0.4557 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
ec7d9002cb62aa9522c162ff415798df
sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned
sentence-transformers
distilbert
13
230
sentence-transformers
2
sentence-similarity
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['sentence-transformers', 'feature-extraction', 'sentence-similarity', 'transformers']
false
true
true
3,714
false
# sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned') model = AutoModel.from_pretrained('sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 300, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
9309359a30dc7181fbb5e4b5affa3f7b
shila/distilbert-base-uncased-finetuned-squad
shila
distilbert
14
2
transformers
0
question-answering
true
false
false
apache-2.0
null
['squad_v2_loading_script']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,297
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2_loading_script dataset. It achieves the following results on the evaluation set: - Loss: 4.9348 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 15 | 5.4661 | | No log | 2.0 | 30 | 5.0915 | | No log | 3.0 | 45 | 4.9348 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
28b032adefa395d8e426ad66174916d4
gokuls/distilbert_sa_GLUE_Experiment_cola_256
gokuls
distilbert
17
4
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,945
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_cola_256 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6165 - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6103 | 1.0 | 34 | 0.6217 | 0.0 | | 0.6077 | 2.0 | 68 | 0.6179 | 0.0 | | 0.606 | 3.0 | 102 | 0.6182 | 0.0 | | 0.6062 | 4.0 | 136 | 0.6165 | 0.0 | | 0.5906 | 5.0 | 170 | 0.6183 | 0.0961 | | 0.5491 | 6.0 | 204 | 0.6250 | 0.0495 | | 0.512 | 7.0 | 238 | 0.6579 | 0.1173 | | 0.4877 | 8.0 | 272 | 0.6908 | 0.1043 | | 0.464 | 9.0 | 306 | 0.6860 | 0.1197 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
f77b9ff2f305f57643374bd17c75d7eb
PeterBanning71/t5-small-finetuned-eLife
PeterBanning71
t5
14
0
transformers
0
summarization
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['summarization', 'generated_from_trainer']
true
true
true
1,576
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-eLife This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8960 - Rouge1: 14.7239 - Rouge2: 2.8698 - Rougel: 11.0202 - Rougelsum: 13.3642 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 3.3558 | 1.0 | 544 | 2.9587 | 13.7915 | 2.6556 | 10.3265 | 12.5097 | 19.0 | | 3.1299 | 2.0 | 1088 | 2.9079 | 14.7136 | 2.7492 | 10.836 | 13.3664 | 19.0 | | 3.0917 | 3.0 | 1632 | 2.8960 | 14.7239 | 2.8698 | 11.0202 | 13.3642 | 19.0 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
683eb141592b6db8ff0f9b5b0e28d71c
Jingmiao/whisper-small-zh_tw
Jingmiao
whisper
30
31
transformers
1
automatic-speech-recognition
true
false
false
apache-2.0
['zh']
['mozilla-foundation/common_voice_11_0']
null
0
0
0
0
0
0
0
['whisper-event', 'generated_from_trainer']
true
true
true
1,578
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Chinese (Taiwan) This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 zh-TW dataset. It achieves the following results on the evaluation set: - Loss: 0.2283 - Wer: 41.9652 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0049 | 6.02 | 1000 | 0.2283 | 41.9652 | | 0.0008 | 13.02 | 2000 | 0.2556 | 42.0266 | | 0.0004 | 20.01 | 3000 | 0.2690 | 42.4156 | | 0.0003 | 27.0 | 4000 | 0.2788 | 42.7840 | | 0.0002 | 33.02 | 5000 | 0.2826 | 43.0297 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
a8a753097ef44ab09bf5c7f29e453051
d0r1h/testt5
d0r1h
t5
13
2
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,064
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5_assets This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8718 - Rouge1: 35.7712 - Rouge2: 15.2129 - Rougel: 25.9007 - Rougelsum: 33.3105 - Gen Len: 64.7175 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
422e310037f1786b7e15bbd3cfc0379b
KarelDO/gpt2.CEBaB_confounding.food_service_positive.absa.5-class.seed_44
KarelDO
gpt2
15
2
transformers
0
null
true
false
false
mit
['en']
['OpenTable']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,099
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2.CEBaB_confounding.food_service_positive.absa.5-class.seed_44 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the OpenTable OPENTABLE-ABSA dataset. It achieves the following results on the evaluation set: - Loss: 0.8418 - Accuracy: 0.7528 - Macro-f1: 0.7495 - Weighted-macro-f1: 0.7542 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 44 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.5.2 - Tokenizers 0.12.1
fada9c0b9ff0be2541571bb391584faa
omkarp/vit-base-patch16-224-finetuned-eurosat
omkarp
vit
24
3
transformers
0
image-classification
true
false
false
apache-2.0
null
['imagefolder']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,337
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-eurosat This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3905 - Accuracy: 0.4865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.6128 | 0.97 | 15 | 1.3905 | 0.4865 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
15243a426221ac1592e33ff56902ca6f
ImageIN/convnext-tiny-224_finetuned
ImageIN
convnext
7
9
transformers
0
image-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,230
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext-tiny-224_finetuned This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0895 - Precision: 0.9807 - Recall: 0.9608 - F1: 0.9702 - Accuracy: 0.9776 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 46 | 0.3080 | 0.9096 | 0.6852 | 0.7206 | 0.8365 | | No log | 2.0 | 92 | 0.1644 | 0.9660 | 0.9176 | 0.9386 | 0.9551 | | No log | 3.0 | 138 | 0.0974 | 0.9742 | 0.9586 | 0.9661 | 0.9744 | | No log | 4.0 | 184 | 0.0795 | 0.9829 | 0.9670 | 0.9746 | 0.9808 | | No log | 5.0 | 230 | 0.0838 | 0.9807 | 0.9608 | 0.9702 | 0.9776 | | No log | 6.0 | 276 | 0.0838 | 0.9807 | 0.9608 | 0.9702 | 0.9776 | | No log | 7.0 | 322 | 0.0803 | 0.9829 | 0.9670 | 0.9746 | 0.9808 | | No log | 8.0 | 368 | 0.0869 | 0.9807 | 0.9608 | 0.9702 | 0.9776 | | No log | 9.0 | 414 | 0.0897 | 0.9807 | 0.9608 | 0.9702 | 0.9776 | | No log | 10.0 | 460 | 0.0895 | 0.9807 | 0.9608 | 0.9702 | 0.9776 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
81aeca2a363ad57bf36ae8a6996d1142
google/multiberts-seed_3-step_40k
google
bert
8
15
transformers
0
null
true
true
false
apache-2.0
['en']
null
null
0
0
0
0
0
0
0
['multiberts', 'multiberts-seed_3', 'multiberts-seed_3-step_40k']
false
true
true
3,515
false
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 40k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 40k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_40k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_40k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_40k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_40k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
b557bca715a47963bed13bb11a16b3bf
jmassot/distilbert-base-uncased-jm-distilled-clinc_hub
jmassot
distilbert
10
1
transformers
0
text-classification
true
false
false
apache-2.0
null
['clinc_oos']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,800
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-jm-distilled-clinc_hub This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.1291 - Accuracy: 0.9426 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1473 | 1.0 | 318 | 0.7476 | 0.7529 | | 0.5789 | 2.0 | 636 | 0.3733 | 0.8858 | | 0.3175 | 3.0 | 954 | 0.2273 | 0.9194 | | 0.2106 | 4.0 | 1272 | 0.1733 | 0.9335 | | 0.1666 | 5.0 | 1590 | 0.1521 | 0.9365 | | 0.1452 | 6.0 | 1908 | 0.1408 | 0.9416 | | 0.133 | 7.0 | 2226 | 0.1349 | 0.9432 | | 0.1257 | 8.0 | 2544 | 0.1316 | 0.9439 | | 0.1218 | 9.0 | 2862 | 0.1298 | 0.9426 | | 0.1197 | 10.0 | 3180 | 0.1291 | 0.9426 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.1
074535520e9875095ef4cf60a5efdb22
anas-awadalla/roberta-base-few-shot-k-16-finetuned-squad-seed-2
anas-awadalla
roberta
17
5
transformers
0
question-answering
true
false
false
mit
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
985
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-16-finetuned-squad-seed-2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
12e8da2198a0d6466841f1a6662737ce
jonatasgrosman/exp_w2v2t_th_r-wav2vec2_s730
jonatasgrosman
wav2vec2
10
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['th']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'th']
false
true
true
462
false
# exp_w2v2t_th_r-wav2vec2_s730 Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (th)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
d0527a8a42764aadbb7412bf2cce6440
valhalla/t5-base-qg-hl
valhalla
t5
10
72,604
transformers
2
text2text-generation
true
false
false
mit
null
['squad']
null
0
0
0
0
0
0
0
['question-generation']
false
true
true
1,091
false
## T5 for question-generation This is [t5-base](https://arxiv.org/abs/1910.10683) model trained for answer aware question generation task. The answer spans are highlighted within the text with special highlight tokens. You can play with the model using the inference API, just highlight the answer spans with `<hl>` tokens and end the text with `</s>`. For example `<hl> 42 <hl> is the answer to life, the universe and everything. </s>` For more deatils see [this](https://github.com/patil-suraj/question_generation) repo. ### Model in action 🚀 You'll need to clone the [repo](https://github.com/patil-suraj/question_generation). [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/question_generation/blob/master/question_generation.ipynb) ```python3 from pipelines import pipeline nlp = pipeline("question-generation", model="valhalla/t5-base-qg-hl") nlp("42 is the answer to life, universe and everything.") => [{'answer': '42', 'question': 'What is the answer to life, universe and everything?'}] ```
8760017ecd5a9ac3c4964a553bd46c8b
stockmark/bart-base-japanese-news
stockmark
bart
9
1,401
transformers
6
text2text-generation
true
true
false
mit
['ja']
null
null
0
0
0
0
0
0
0
['ja', 'japanese', 'bart', 'lm', 'nlp']
false
true
true
5,054
false
# bart-base-japanese-news(base-sized model) This repository provides a Japanese BART model. The model was trained by [Stockmark Inc.](https://stockmark.co.jp) An introductory article on the model can be found at the following URL. [https://tech.stockmark.co.jp/blog/bart-japanese-base-news/](https://tech.stockmark.co.jp/blog/bart-japanese-base-news/) ## Model description BART is a transformer encoder-decoder (seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder. BART is pre-trained by (1) corrupting text with an arbitrary noising function, and (2) learning a model to reconstruct the original text. BART is particularly effective when fine-tuned for text generation (e.g. summarization, translation) but also works well for comprehension tasks (e.g. text classification, question answering). ## Intended uses & limitations You can use the raw model for text infilling. However, the model is mostly meant to be fine-tuned on a supervised dataset. # How to use the model *NOTE:* Since we are using a custom tokenizer, please use `trust_remote_code=True` to initialize the tokenizer. ## Simple use ```python from transformers import AutoTokenizer, BartModel model_name = "stockmark/bart-base-japanese-news" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = BartModel.from_pretrained(model_name) inputs = tokenizer("今日は良い天気です。", return_tensors="pt") outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state ``` ## Sentence Permutation ```python import torch from transformers import AutoTokenizer, BartForConditionalGeneration model_name = "stockmark/bart-base-japanese-news" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = BartForConditionalGeneration.from_pretrained(model_name) if torch.cuda.is_available(): model = model.to("cuda") # correct order text is "明日は大雨です。電車は止まる可能性があります。ですから、自宅から働きます。" text = "電車は止まる可能性があります。ですから、自宅から働きます。明日は大雨です。" inputs = tokenizer([text], max_length=128, return_tensors="pt", truncation=True) text_ids = model.generate(inputs["input_ids"].to(model.device), num_beams=3, max_length=128) output = tokenizer.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] print(output) # sample output: 明日は大雨です。電車は止まる可能性があります。ですから、自宅から働きます。 ``` ## Mask filling ```python import torch from transformers import AutoTokenizer, BartForConditionalGeneration model_name = "stockmark/bart-base-japanese-news" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = BartForConditionalGeneration.from_pretrained(model_name) if torch.cuda.is_available(): model = model.to("cuda") text = "今日の天気は<mask>のため、傘が必要でしょう。" inputs = tokenizer([text], max_length=128, return_tensors="pt", truncation=True) text_ids = model.generate(inputs["input_ids"].to(model.device), num_beams=3, max_length=128) output = tokenizer.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] print(output) # sample output: 今日の天気は、雨のため、傘が必要でしょう。 ``` ## Text generation *NOTE:* You can use the raw model for text generation. However, the model is mostly meant to be fine-tuned on a supervised dataset. ```python import torch from transformers import AutoTokenizer, BartForConditionalGeneration model_name = "stockmark/bart-base-japanese-news" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = BartForConditionalGeneration.from_pretrained(model_name) if torch.cuda.is_available(): model = model.to("cuda") text = "自然言語処理(しぜんげんごしょり、略称:NLP)は、人間が日常的に使っている自然言語をコンピュータに処理させる一連の技術であり、人工知能と言語学の一分野である。「計算言語学」(computational linguistics)との類似もあるが、自然言語処理は工学的な視点からの言語処理をさすのに対して、計算言語学は言語学的視点を重視する手法をさす事が多い。" inputs = tokenizer([text], max_length=512, return_tensors="pt", truncation=True) text_ids = model.generate(inputs["input_ids"].to(model.device), num_beams=3, min_length=0, max_length=40) output = tokenizer.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] print(output) # sample output: 自然言語処理(しぜんげんごしょり、略称:NLP)は、人間が日常的に使っている自然言語をコンピュータに処理させる一連の技術であり、言語学の一分野である。 ``` # Training The model was trained on Japanese News Articles. # Tokenization The model uses a [sentencepiece](https://github.com/google/sentencepiece)-based tokenizer. The vocabulary was first trained on a selected subset from the training data using the official sentencepiece training script. # Licenses The pretrained models are distributed under the terms of the [MIT License](https://opensource.org/licenses/mit-license.php). *NOTE:* Only tokenization_bart_japanese_news.py is [Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0). Please see tokenization_bart_japanese_news.py for license details. # Contact If you have any questions, please contact us using [our contact form](https://stockmark.co.jp/contact). # Acknowledgement This comparison study supported with Cloud TPUs from Google’s TensorFlow Research Cloud (TFRC).
50a503423e8490be6d28e94b04a47095
naver-clova-ix/donut-base-finetuned-zhtrainticket
naver-clova-ix
vision-encoder-decoder
11
202
transformers
0
image-to-text
true
false
false
mit
null
null
null
1
0
1
0
0
0
0
['donut', 'image-to-text', 'vision']
false
true
true
1,973
false
# Donut (base-sized model, fine-tuned on ZhTrainTicket) Donut model fine-tuned on ZhTrainTicket. It was introduced in the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewok et al. and first released in [this repository](https://github.com/clovaai/donut). Disclaimer: The team releasing Donut did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Donut consists of a vision encoder (Swin Transformer) and a text decoder (BART). Given an image, the encoder first encodes the image into a tensor of embeddings (of shape batch_size, seq_len, hidden_size), after which the decoder autoregressively generates text, conditioned on the encoding of the encoder. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/donut_architecture.jpg) ## Intended uses & limitations This model is fine-tuned on ZhTrainTicket, a document parsing dataset. We refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/donut) which includes code examples. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2111-15664, author = {Geewook Kim and Teakgyu Hong and Moonbin Yim and Jinyoung Park and Jinyeong Yim and Wonseok Hwang and Sangdoo Yun and Dongyoon Han and Seunghyun Park}, title = {Donut: Document Understanding Transformer without {OCR}}, journal = {CoRR}, volume = {abs/2111.15664}, year = {2021}, url = {https://arxiv.org/abs/2111.15664}, eprinttype = {arXiv}, eprint = {2111.15664}, timestamp = {Thu, 02 Dec 2021 10:50:44 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2111-15664.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
26351ddf6bb66b12a5234066f6069247
nc33/my_awesome_wnut_model
nc33
roberta
16
0
transformers
0
token-classification
true
false
false
mit
null
['wnut_17']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,455
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_wnut_model This model is a fine-tuned version of [facebook/muppet-roberta-base](https://huggingface.co/facebook/muppet-roberta-base) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.2298 - Precision: 0.5607 - Recall: 0.5097 - F1: 0.5340 - Accuracy: 0.9501 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.2331 | 0.5333 | 0.4310 | 0.4767 | 0.9459 | | No log | 2.0 | 426 | 0.2298 | 0.5607 | 0.5097 | 0.5340 | 0.9501 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
7d638da2433a6bf66cb023420e8c885a
konrad-wesub/roberta-base-iphone-2
konrad-wesub
xlm-roberta
9
0
transformers
0
text-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,258
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-iphone-2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1359 - Accuracy: 0.9833 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 27 | 0.2765 | 0.8333 | | No log | 2.0 | 54 | 0.1359 | 0.9833 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
5afdb207c8037d5fb8035b9a23084c55
hfl/chinese-electra-180g-base-generator
hfl
electra
10
6
transformers
0
fill-mask
true
true
false
apache-2.0
['zh']
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,918
false
# This model is trained on 180G data, we recommend using this one than the original version. ## Chinese ELECTRA Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For further accelerating the research of the Chinese pre-trained model, the Joint Laboratory of HIT and iFLYTEK Research (HFL) has released the Chinese ELECTRA models based on the official code of ELECTRA. ELECTRA-small could reach similar or even higher scores on several NLP tasks with only 1/10 parameters compared to BERT and its variants. This project is based on the official code of ELECTRA: [https://github.com/google-research/electra](https://github.com/google-research/electra) You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
687792b21a34743cd8d89ef7638deee0
theta/mbti-career
theta
xlm-roberta
12
38
transformers
0
text-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,394
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbti-career This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3516 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.6547 | 0.59 | 100 | 0.6169 | | 0.5967 | 1.18 | 200 | 0.5943 | | 0.5872 | 1.76 | 300 | 0.5696 | | 0.554 | 2.35 | 400 | 0.5287 | | 0.5041 | 2.94 | 500 | 0.4890 | | 0.4773 | 3.53 | 600 | 0.4895 | | 0.4691 | 4.12 | 700 | 0.4840 | | 0.4253 | 4.71 | 800 | 0.4573 | | 0.4002 | 5.29 | 900 | 0.4240 | | 0.3813 | 5.88 | 1000 | 0.4031 | | 0.3561 | 6.47 | 1100 | 0.3943 | | 0.3359 | 7.06 | 1200 | 0.3864 | | 0.3126 | 7.65 | 1300 | 0.3889 | | 0.2948 | 8.24 | 1400 | 0.3869 | | 0.2816 | 8.82 | 1500 | 0.3788 | | 0.2522 | 9.41 | 1600 | 0.3891 | | 0.2451 | 10.0 | 1700 | 0.3849 | | 0.2148 | 10.59 | 1800 | 0.3784 | | 0.2132 | 11.18 | 1900 | 0.3716 | | 0.1882 | 11.76 | 2000 | 0.3659 | | 0.1754 | 12.35 | 2100 | 0.3737 | | 0.169 | 12.94 | 2200 | 0.3711 | | 0.1559 | 13.53 | 2300 | 0.3672 | | 0.1537 | 14.12 | 2400 | 0.3391 | | 0.1427 | 14.71 | 2500 | 0.3516 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
3df8d2eb6fa41dc4cbf474c371a786d8
Mallik/distilbert-base-uncased-finetuned-emotion
Mallik
distilbert
14
4
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,325
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2128 - Accuracy: 0.925 - F1: 0.9248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8215 | 1.0 | 250 | 0.3033 | 0.9105 | 0.9078 | | 0.2435 | 2.0 | 500 | 0.2128 | 0.925 | 0.9248 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Tokenizers 0.13.1
189f2f525dbfa58a040ed7ba74f55b44
mindwrapped/collaborative-filtering-movielens-copy
mindwrapped
null
10
4
keras
1
tabular-classification
false
false
false
['cc0-1.0']
null
null
null
1
0
1
0
0
0
0
['collaborative-filtering', 'recommender', 'tabular-classification']
false
true
true
1,368
false
## Model description This repo contains the model and the notebook on [how to build and train a Keras model for Collaborative Filtering for Movie Recommendations](https://keras.io/examples/structured_data/collaborative_filtering_movielens/). Full credits to [Siddhartha Banerjee](https://twitter.com/sidd2006). ## Intended uses & limitations Based on a user and movies they have rated highly in the past, this model outputs the predicted rating a user would give to a movie they haven't seen yet (between 0-1). This information can be used to find out the top recommended movies for this user. ## Training and evaluation data The dataset consists of user's ratings on specific movies. It also consists of the movie's specific genres. ## Training procedure The model was trained for 5 epochs with a batch size of 64. ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 0.001, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ## Training Metrics | Epochs | Train Loss | Validation Loss | |--- |--- |--- | | 1| 0.637| 0.619| | 2| 0.614| 0.616| | 3| 0.609| 0.611| | 4| 0.608| 0.61| | 5| 0.608| 0.609| ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
b630039a0ea8a2f8d7d9abd358be5d9d
anas-awadalla/bart-base-finetuned-squad-infilling-lr-3e-5-decay-001
anas-awadalla
bart
18
1
transformers
0
text2text-generation
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,066
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-squad-infilling-lr-3e-5-decay-001 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 24 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
2ab0e4098d030a6bca2a1d57dbd65186
horizonial/dogcg
horizonial
null
18
9
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
1
1
0
0
0
0
0
['text-to-image', 'stable-diffusion']
false
true
true
417
false
### dogcg Dreambooth model trained by horizonial with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
e322121ea14f73e753392454a072ea84
Pavithra/codeparrot-ds-500sample-gpt-neo-10epoch
Pavithra
gpt_neo
13
3
transformers
0
text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,262
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds-500sample-gpt-neo-10epoch This model is a fine-tuned version of [EleutherAI/gpt-neo-125M](https://huggingface.co/EleutherAI/gpt-neo-125M) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 1.5456 - eval_runtime: 87.6603 - eval_samples_per_second: 149.817 - eval_steps_per_second: 4.689 - epoch: 2.97 - step: 16000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
a24c3861f4466f415ec8e8925c69c0e2
lizaboiarchuk/results
lizaboiarchuk
bert
9
11
transformers
0
text-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,743
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2872 - F1: 0.6095 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 21 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.3356 | 1.0 | 1033 | 0.2558 | 0.3761 | | 0.2588 | 2.0 | 2066 | 0.2352 | 0.5246 | | 0.2252 | 3.0 | 3099 | 0.2292 | 0.5996 | | 0.2044 | 4.0 | 4132 | 0.2417 | 0.5950 | | 0.189 | 5.0 | 5165 | 0.2433 | 0.6102 | | 0.1718 | 6.0 | 6198 | 0.2671 | 0.5894 | | 0.1627 | 7.0 | 7231 | 0.2686 | 0.6319 | | 0.1513 | 8.0 | 8264 | 0.2779 | 0.6079 | | 0.1451 | 9.0 | 9297 | 0.2848 | 0.6195 | | 0.1429 | 10.0 | 10330 | 0.2872 | 0.6095 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
1caf4a466cee428344f2407cfdc9190e
charlemagne/distilbert-base-uncased-new3-cola
charlemagne
distilbert
13
2
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,469
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-new3-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2224 - Accuracy: 0.9465 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 164 | 0.4312 | 0.8747 | | No log | 2.0 | 328 | 0.2722 | 0.9290 | | No log | 3.0 | 492 | 0.2424 | 0.9404 | | 0.4446 | 4.0 | 656 | 0.2189 | 0.9450 | | 0.4446 | 5.0 | 820 | 0.2224 | 0.9465 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.8.0+cu111 - Datasets 2.1.0 - Tokenizers 0.11.6
21210d92a2e0dcbd44b7e611b6dd9544
vicl/canine-c-finetuned-cola
vicl
canine
11
113
transformers
0
text-classification
true
false
false
apache-2.0
null
['glue']
null
1
1
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,540
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # canine-c-finetuned-cola This model is a fine-tuned version of [google/canine-c](https://huggingface.co/google/canine-c) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6246 - Matthews Correlation: 0.0990 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6142 | 1.0 | 535 | 0.6268 | 0.0 | | 0.607 | 2.0 | 1070 | 0.6234 | 0.0 | | 0.6104 | 3.0 | 1605 | 0.6226 | 0.0 | | 0.5725 | 4.0 | 2140 | 0.6246 | 0.0990 | | 0.5426 | 5.0 | 2675 | 0.6866 | 0.0495 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
82f51bd3147df6a80306ffc984bf5efe
apatidar0/anil_bert-finetuned-ner
apatidar0
bert
12
12
transformers
0
token-classification
true
false
false
apache-2.0
null
['conll2003']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,523
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # anil_bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0610 - Precision: 0.9352 - Recall: 0.9517 - F1: 0.9434 - Accuracy: 0.9862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0897 | 1.0 | 1756 | 0.0690 | 0.9246 | 0.9325 | 0.9285 | 0.9820 | | 0.0329 | 2.0 | 3512 | 0.0629 | 0.9301 | 0.9492 | 0.9395 | 0.9862 | | 0.0172 | 3.0 | 5268 | 0.0610 | 0.9352 | 0.9517 | 0.9434 | 0.9862 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
3a726a2d8192112ce94cfffc45c7ade3
mgoudarz/distilbert-base-uncased-finetunded-emotion
mgoudarz
distilbert
14
1
transformers
0
text-classification
true
false
false
apache-2.0
null
['emotion']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,422
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetunded-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1584 - Accuracuy: 0.9365 - F1: 0.9365 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracuy | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | No log | 1.0 | 250 | 0.2735 | 0.9155 | 0.9134 | | No log | 2.0 | 500 | 0.1727 | 0.932 | 0.9321 | | No log | 3.0 | 750 | 0.1584 | 0.9365 | 0.9365 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
c12459ab86168b7ab2ab4b63b5ffd970
superb/hubert-base-superb-sid
superb
hubert
5
72
transformers
0
audio-classification
true
false
false
apache-2.0
['en']
['superb']
null
0
0
0
0
1
1
0
['speech', 'audio', 'hubert', 'audio-classification']
false
true
true
3,038
false
# Hubert-Base for Speaker Identification ## Model description This is a ported version of [S3PRL's Hubert for the SUPERB Speaker Identification task](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/voxceleb1). The base model is [hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960), which is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. For more information refer to [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051) ## Task and dataset description Speaker Identification (SI) classifies each utterance for its speaker identity as a multi-class classification, where speakers are in the same predefined set for both training and testing. The widely used [VoxCeleb1](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html) dataset is adopted For the original model's training and evaluation instructions refer to the [S3PRL downstream task README](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream#sid-speaker-identification). ## Usage examples You can use the model via the Audio Classification pipeline: ```python from datasets import load_dataset from transformers import pipeline dataset = load_dataset("anton-l/superb_demo", "si", split="test") classifier = pipeline("audio-classification", model="superb/hubert-base-superb-sid") labels = classifier(dataset[0]["file"], top_k=5) ``` Or use the model directly: ```python import torch import librosa from datasets import load_dataset from transformers import HubertForSequenceClassification, Wav2Vec2FeatureExtractor def map_to_array(example): speech, _ = librosa.load(example["file"], sr=16000, mono=True) example["speech"] = speech return example # load a demo dataset and read audio files dataset = load_dataset("anton-l/superb_demo", "si", split="test") dataset = dataset.map(map_to_array) model = HubertForSequenceClassification.from_pretrained("superb/hubert-base-superb-sid") feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-base-superb-sid") # compute attention masks and normalize the waveform if needed inputs = feature_extractor(dataset[:2]["speech"], sampling_rate=16000, padding=True, return_tensors="pt") logits = model(**inputs).logits predicted_ids = torch.argmax(logits, dim=-1) labels = [model.config.id2label[_id] for _id in predicted_ids.tolist()] ``` ## Eval results The evaluation metric is accuracy. | | **s3prl** | **transformers** | |--------|-----------|------------------| |**test**| `0.8142` | `0.8071` | ### BibTeX entry and citation info ```bibtex @article{yang2021superb, title={SUPERB: Speech processing Universal PERformance Benchmark}, author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others}, journal={arXiv preprint arXiv:2105.01051}, year={2021} } ```
c243f8c4ed9bc892fb2c7fe2f042e87e
KenP/mt5-small-finetuned-amazon-en-es
KenP
mt5
8
1
transformers
0
text2text-generation
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,645
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # KenP/mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.0378 - Validation Loss: 3.3712 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 9672, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 9.9112 | 4.3131 | 0 | | 5.8947 | 3.7701 | 1 | | 5.1149 | 3.5826 | 2 | | 4.6940 | 3.5080 | 3 | | 4.4064 | 3.4388 | 4 | | 4.2301 | 3.4012 | 5 | | 4.1037 | 3.3755 | 6 | | 4.0378 | 3.3712 | 7 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.1.0 - Tokenizers 0.12.1
ad5b59e2887f8d064fffeb9371eb0553
radev/xlm-roberta-base-finetuned-panx-de
radev
xlm-roberta
18
14
transformers
0
token-classification
true
false
false
mit
null
['xtreme']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,320
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1345 - F1: 0.8593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 263 | 0.1807 | 0.8065 | | 0.2218 | 2.0 | 526 | 0.1365 | 0.8485 | | 0.2218 | 3.0 | 789 | 0.1345 | 0.8593 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
7c90f9eba006b620e6fade188352dae3
ethanyt/guwen-quote
ethanyt
roberta
7
11
transformers
0
token-classification
true
false
false
apache-2.0
['zh']
null
null
0
0
0
0
0
0
0
['chinese', 'classical chinese', 'literary chinese', 'ancient chinese', 'bert', 'pytorch', 'quotation detection']
false
true
true
1,098
false
# Guwen Quote A Classical Chinese Quotation Detector. Note: There are some problems with decoding using the default sequence classification model. Use the CRF model to achieve the best results. CRF related code please refer to [Guwen Models](https://github.com/ethan-yt/guwen-models). See also: <a href="https://github.com/ethan-yt/guwen-models"> <img align="center" width="400" src="https://github-readme-stats.vercel.app/api/pin/?username=ethan-yt&repo=guwen-models&bg_color=30,e96443,904e95&title_color=fff&text_color=fff&icon_color=fff&show_owner=true" /> </a> <a href="https://github.com/ethan-yt/cclue/"> <img align="center" width="400" src="https://github-readme-stats.vercel.app/api/pin/?username=ethan-yt&repo=cclue&bg_color=30,e96443,904e95&title_color=fff&text_color=fff&icon_color=fff&show_owner=true" /> </a> <a href="https://github.com/ethan-yt/guwenbert/"> <img align="center" width="400" src="https://github-readme-stats.vercel.app/api/pin/?username=ethan-yt&repo=guwenbert&bg_color=30,e96443,904e95&title_color=fff&text_color=fff&icon_color=fff&show_owner=true" /> </a>
3dee1dbfa6b9e1e16627e9cb69fe46a5
Hemanth045/wav2vec2-large-xls-r-300m-hindi-colab
Hemanth045
wav2vec2
27
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
['common_voice']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,369
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hindi-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 2.3273 - Wer: 0.9698 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.6006 | 44.42 | 400 | 2.3273 | 0.9698 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
ade29f80e72152a9a4e8ce1ea7f43d28
gokuls/distilbert_sa_GLUE_Experiment_data_aug_cola_96
gokuls
distilbert
17
0
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,734
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_data_aug_cola_96 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6274 - Matthews Correlation: 0.1072 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5845 | 1.0 | 835 | 0.6274 | 0.1072 | | 0.4862 | 2.0 | 1670 | 0.6843 | 0.1085 | | 0.4221 | 3.0 | 2505 | 0.7307 | 0.0681 | | 0.3829 | 4.0 | 3340 | 0.7969 | 0.1046 | | 0.3557 | 5.0 | 4175 | 0.8648 | 0.0959 | | 0.3328 | 6.0 | 5010 | 0.8932 | 0.0792 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
a060ee1a107bf184dc2c6762d2ceade3
yangwang825/ecapa-tdnn-vox2
yangwang825
null
6
1
speechbrain
0
null
true
false
false
apache-2.0
['en']
['voxceleb']
null
0
0
0
0
0
0
0
['speechbrain', 'embeddings', 'Speaker', 'Verification', 'Identification', 'pytorch', 'ECAPA-TDNN']
false
true
true
4,131
false
# Speaker Identification with ECAPA-TDNN embeddings on Voxceleb This repository provides a pretrained ECAPA-TDNN model using SpeechBrain. The system can be used to extract speaker embeddings as well. Since we can't find any resource that has SpeechBrain or HuggingFace compatible checkpoints that has only been trained on VoxCeleb2 development data, so we decide to pre-train an ECAPA-TDNN system from scratch. # Pipeline description This system is composed of an ECAPA-TDNN model. It is a combination of convolutional and residual blocks. The embeddings are extracted using attentive statistical pooling. The system is trained with Additive Margin Softmax Loss. We use FBank (16kHz, 25ms frame length, 10ms hop length, 80 filter-bank channels) as the input features. It was trained using initial learning rate of 0.001 and batch size of 512 with cyclical learning rate policy (CLR) for 20 epochs on 4 A100 GPUs. We employ additive noises and reverberation from [MUSAN](http://www.openslr.org/17/) and [RIR](http://www.openslr.org/28/) datasets to enrich the supervised information. The pre-training progress takes approximately ten days for the ECAPA-TDNN model. # Performance **VoxCeleb1-O** is the original verification test set from VoxCeleb1 consisting of 40 speakers. All speakers with names starting with "E" are reserved for testing. **VoxCeleb1-E** uses the entire VoxCeleb1 dataset, covering 1251 speakers. **VoxCeleb1-H** is a hard version of evaluation set consisting of 552536 pairs with 1190 speakers with the same nationality and gender. There are 18 nationality-gender combinations each with at least 5 individuals. | Splits | Backend | S-norm | EER(%) | minDCF(0.01) | |:-------------:|:--------------:|:--------------:|:--------------:|:--------------:| | VoxCeleb1-O | cosine | no | 1.29 | 0.13 | | VoxCeleb1-O | cosine | yes | 1.19 | 0.11 | | VoxCeleb1-E | cosine | no | 1.42 | 0.16 | | VoxCeleb1-E | cosine | yes | 1.31 | 0.14 | | VoxCeleb1-H | cosine | no | 2.66 | 0.26 | | VoxCeleb1-H | cosine | yes | 2.48 | 0.23 | - VoxCeleb1-O: includes 37611 test pairs with 40 speakers. - VoxCeleb1-E: includes 579818 test pairs with 1251 speakers. - VoxCeleb1-H: includes 550894 test pairs with 1190 speakers. # Compute the speaker embeddings The system is trained with recordings sampled at 16kHz (single channel). ```python import torch import torchaudio from speechbrain.pretrained.interfaces import Pretrained from speechbrain.pretrained import EncoderClassifier class Encoder(Pretrained): MODULES_NEEDED = [ "compute_features", "mean_var_norm", "embedding_model" ] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def encode_batch(self, wavs, wav_lens=None, normalize=False): # Manage single waveforms in input if len(wavs.shape) == 1: wavs = wavs.unsqueeze(0) # Assign full length if wav_lens is not assigned if wav_lens is None: wav_lens = torch.ones(wavs.shape[0], device=self.device) # Storing waveform in the specified device wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device) wavs = wavs.float() # Computing features and embeddings feats = self.mods.compute_features(wavs) feats = self.mods.mean_var_norm(feats, wav_lens) embeddings = self.mods.embedding_model(feats, wav_lens) if normalize: embeddings = self.hparams.mean_var_norm_emb( embeddings, torch.ones(embeddings.shape[0], device=self.device) ) return embeddings classifier = Encoder.from_hparams( source="yangwang825/ecapa-tdnn-vox2" ) signal, fs = torchaudio.load('spk1_snt1.wav') embeddings = classifier.encode_batch(signal) >>> torch.Size([1, 1, 192]) ``` We will release our training results (models, logs, etc) shortly. # References 1. Ravanelli et al., SpeechBrain: A General-Purpose Speech Toolkit, 2021 2. Desplanques et al., ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker Verification, 2020
40078ea9724044e169dea9a1f055ee84
OWG/bert-base-uncased
OWG
bert
4
4
transformers
0
fill-mask
false
false
false
apache-2.0
['en']
['bookcorpus', 'wikipedia']
null
0
0
0
0
0
0
0
['exbert']
false
true
true
1,389
false
# BERT base model (uncased) ## Model description Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in [this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference between english and English. ## Original implementation Follow [this link](https://huggingface.co/bert-base-uncased) to see the original implementation. ## How to use Download the model by cloning the repository via `git clone https://huggingface.co/OWG/bert-base-uncased`. Then you can use the model with the following code: ```python from onnxruntime import InferenceSession, SessionOptions, GraphOptimizationLevel from transformers import BertTokenizer tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") options = SessionOptions() options.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL session = InferenceSession("path/to/model.onnx", sess_options=options) session.disable_fallback() text = "Replace me by any text you want to encode." input_ids = tokenizer(text, return_tensors="pt", return_attention_mask=True) inputs = {k: v.cpu().detach().numpy() for k, v in input_ids.items()} outputs_name = session.get_outputs()[0].name outputs = session.run(output_names=[outputs_name], input_feed=inputs) ```
d46c38fe5324fa0bc8b6bd94e00c31cd
sw005320/aidatatang_200zh_conformer
sw005320
null
35
5
espnet
2
automatic-speech-recognition
false
false
false
cc-by-4.0
['zh']
['aidatatang_200zh']
null
0
0
0
0
0
0
0
['espnet', 'audio', 'automatic-speech-recognition']
false
true
true
22,467
false
## ESPnet2 ASR model ### `sw005320/aidatatang_200zh_conformer` This model was trained by Shinji Watanabe using aidatatang_200zh recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 8ab3d9f2191f250cb62deff222d2e6addb3842dc pip install -e . cd egs2/aidatatang_200zh/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model sw005320/aidatatang_200zh_conformer ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Fri Dec 24 23:34:58 EST 2021` - python version: `3.8.5 (default, Sep 4 2020, 07:30:14) [GCC 7.3.0]` - espnet version: `espnet 0.10.5a1` - pytorch version: `pytorch 1.7.1` - Git hash: `a5bacd349a47889aef795f999563018cf201ae64` - Commit date: `Wed Dec 22 14:08:29 2021 -0500` ## asr_train_asr_conformer_raw_zh_char_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_transformer_zh_char_valid.loss.ave_asr_model_valid.acc.ave/dev|24216|24216|81.5|18.5|0.0|0.0|18.5|18.5| |decode_asr_lm_lm_train_lm_transformer_zh_char_valid.loss.ave_asr_model_valid.acc.ave/test|48144|48144|79.0|21.0|0.0|0.0|21.0|21.0| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_transformer_zh_char_valid.loss.ave_asr_model_valid.acc.ave/dev|24216|234524|96.6|3.0|0.5|0.1|3.6|18.5| |decode_asr_lm_lm_train_lm_transformer_zh_char_valid.loss.ave_asr_model_valid.acc.ave/test|48144|468933|95.9|3.6|0.4|0.2|4.3|21.0| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| ## ASR config <details><summary>expand</summary> ``` config: conf/train_asr_conformer.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer_raw_zh_char_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 50 patience: null val_scheduler_criterion: - valid - acc early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5 grad_clip_type: 2.0 grad_noise: false accum_grad: 4 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 4000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_zh_char_sp/train/speech_shape - exp/asr_stats_raw_zh_char_sp/train/text_shape.char valid_shape_file: - exp/asr_stats_raw_zh_char_sp/valid/speech_shape - exp/asr_stats_raw_zh_char_sp/valid/text_shape.char batch_type: numel valid_batch_type: null fold_length: - 51200 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_sp/wav.scp - speech - sound - - dump/raw/train_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - sound - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0005 scheduler: warmuplr scheduler_conf: warmup_steps: 30000 token_list: - <blank> - <unk> - 我 - 的 - 你 - 么 - 不 - 是 - 了 - 一 - 有 - 天 - 什 - 好 - 在 - 个 - 怎 - 吗 - 话 - 要 - 给 - 电 - 上 - 没 - 人 - 说 - 到 - 啊 - 就 - 这 - 时 - 来 - 下 - 想 - 打 - 点 - 去 - 还 - 看 - 道 - 多 - 明 - 那 - 知 - 以 - 今 - 能 - 会 - 哪 - 都 - 可 - 大 - 吧 - 机 - 样 - 里 - 十 - 现 - 们 - 过 - 吃 - 开 - 家 - 回 - 发 - 中 - 呢 - 听 - 候 - 为 - 也 - 日 - 爱 - 歌 - 三 - 起 - 小 - 二 - 心 - 子 - 手 - 生 - 最 - 儿 - 学 - 放 - 信 - 女 - 号 - 几 - 和 - 老 - 晚 - 少 - 车 - 叫 - 快 - 用 - 自 - 年 - 睡 - 问 - 事 - 后 - 五 - 乐 - 安 - 出 - 找 - 帮 - 意 - 觉 - 气 - 国 - 得 - 情 - 请 - 早 - 地 - 做 - 首 - 真 - 公 - 近 - 对 - 办 - 很 - 行 - 己 - 呀 - 八 - 友 - 如 - 六 - 节 - 喜 - 新 - 欢 - 西 - 间 - 月 - 班 - 他 - 网 - 方 - 分 - 播 - 笑 - 查 - 息 - 名 - 四 - 成 - 东 - 美 - 零 - 市 - 饭 - 世 - 朋 - 玩 - 州 - 果 - 才 - 七 - 别 - 把 - 谁 - 九 - 再 - 平 - 太 - 干 - 思 - 关 - 谢 - 高 - 语 - 理 - 些 - 界 - 着 - 长 - 钱 - 动 - 曲 - 感 - 聊 - 片 - 何 - 面 - 男 - 音 - 工 - 南 - 午 - 本 - 通 - 火 - 经 - 路 - 星 - 唱 - Q - 业 - 讲 - 英 - 北 - 服 - 短 - 妈 - 海 - 文 - 跟 - 作 - 票 - 只 - 等 - 刚 - 码 - 字 - 影 - 附 - 婆 - 见 - 又 - 祝 - 无 - 该 - 提 - 末 - 让 - 法 - 定 - 买 - 告 - 照 - 体 - 考 - 床 - 醒 - 记 - 前 - 题 - 走 - 加 - 主 - 从 - 视 - 张 - 身 - 两 - 钟 - 京 - 于 - 收 - 阳 - 哈 - 店 - 山 - 院 - 站 - 百 - 宝 - 所 - 诉 - 期 - 之 - 嘛 - 夜 - 第 - 游 - 比 - 系 - 昨 - 费 - 交 - 水 - 应 - 次 - 周 - 亲 - 联 - 全 - 福 - 江 - 孩 - 区 - 广 - 头 - 接 - O - 校 - 已 - 空 - 门 - 认 - 相 - 度 - 实 - 活 - 色 - 假 - 白 - 算 - 外 - 流 - 啦 - 花 - 然 - 结 - 每 - 休 - 边 - 部 - 位 - 场 - 半 - 王 - 声 - 件 - 力 - 金 - 重 - 识 - 正 - 华 - 光 - 衣 - 载 - 死 - 价 - 翻 - 图 - 城 - 脑 - 同 - 久 - 译 - 特 - 物 - 搜 - 务 - 报 - 线 - 哦 - 卡 - E - 当 - A - 爸 - 圣 - 完 - 幺 - 合 - P - 雨 - 黄 - 种 - 司 - 直 - I - 她 - 哥 - 书 - 银 - 试 - 解 - 穿 - 酒 - 准 - 换 - 望 - 被 - S - 原 - 内 - 诞 - 带 - 介 - 口 - 清 - N - 马 - 习 - 否 - 置 - 啥 - 索 - 戏 - 与 - 懂 - 飞 - 需 - 性 - 错 - 送 - 级 - 器 - 单 - 离 - 远 - 备 - 师 - 课 - 注 - 因 - 难 - 其 - 像 - 元 - 消 - 表 - 便 - 球 - 风 - 教 - 故 - 科 - 李 - 常 - 林 - 龙 - 呵 - 数 - 代 - 总 - 忘 - 商 - 变 - 婚 - 苹 - 红 - 格 - 坐 - 绍 - 答 - 量 - 冷 - 青 - 询 - 春 - 神 - 省 - 蛋 - 姐 - 陪 - 兴 - 利 - 台 - 句 - 万 - 计 - 保 - 刘 - 传 - 深 - 管 - 运 - 德 - 医 - 容 - 品 - 越 - 亮 - 词 - 河 - 化 - 宁 - 始 - 武 - 希 - 洗 - 复 - 设 - 处 - 技 - 房 - T - 您 - 取 - 眼 - 县 - 笨 - 术 - 温 - 永 - 受 - 更 - 先 - 尔 - 程 - 彩 - 演 - 忙 - 专 - 愿 - 进 - 湖 - 建 - 况 - 伤 - 喝 - 底 - 卖 - 功 - 录 - 改 - H - 剧 - 预 - 梦 - L - 达 - 连 - 馆 - 包 - 写 - 客 - C - 汉 - 条 - G - 幸 - 民 - 读 - 职 - 目 - 但 - 贝 - 妹 - 资 - 较 - 雪 - 赛 - 除 - 招 - 园 - 住 - 超 - 汽 - 病 - B - 软 - 反 - 而 - 证 - 员 - 黑 - 庆 - D - 求 - 排 - 装 - 岁 - 顾 - 产 - 航 - 言 - 斯 - 拨 - 历 - 烦 - 及 - 药 - 入 - 式 - 军 - 餐 - 志 - 至 - 双 - 米 - 版 - 掉 - 千 - 者 - 充 - 微 - 失 - 转 - M - 亚 - 克 - 座 - 丽 - 络 - 战 - 使 - 猪 - 具 - 闹 - 限 - 址 - 基 - 油 - 漂 - 陈 - Y - 川 - 强 - 挺 - 奇 - 杰 - 政 - 向 - 速 - 康 - 差 - 贵 - 搞 - 义 - 奖 - 份 - 户 - 楼 - 苏 - 任 - 健 - 易 - 毛 - 型 - 石 - 礼 - 款 - 持 - 卫 - 怕 - 恋 - 邮 - 集 - R - 铁 - 圳 - 拿 - 云 - 队 - 鱼 - 慢 - 顺 - 害 - 属 - 傻 - 营 - 菜 - 货 - 麻 - 咋 - 坏 - 冒 - 累 - 杨 - 闻 - 治 - 选 - 段 - K - 香 - 闭 - 兰 - 牌 - 局 - 留 - 舍 - 非 - 推 - 室 - 简 - 拉 - 修 - 终 - 郑 - 切 - U - 将 - 村 - 沙 - 存 - 帅 - 诗 - 率 - 密 - 巴 - 频 - 士 - 初 - 楚 - 股 - 热 - 古 - 制 - 支 - 肉 - 岛 - 统 - 适 - 肥 - 鸡 - 调 - 街 - 类 - 牛 - 导 - 农 - 值 - 食 - 镇 - 棍 - 移 - 韩 - W - 嗯 - 订 - 呼 - 命 - V - 必 - 宿 - 皮 - 升 - 确 - 随 - 步 - 育 - 标 - 唐 - 精 - 决 - 木 - 由 - 弟 - 往 - 肯 - 够 - 或 - 指 - 阿 - 象 - 料 - 念 - 助 - 许 - 共 - 母 - 约 - 罗 - 板 - 秋 - 配 - 魔 - 宜 - 般 - 荐 - 扰 - 舒 - 逼 - 狗 - 嘿 - 博 - 售 - 满 - 疼 - 脸 - 整 - 抱 - 季 - 减 - 养 - 怀 - 免 - 未 - 乘 - F - 社 - 妇 - 列 - 爷 - 删 - 旦 - 弄 - 概 - 停 - 拜 - 维 - 领 - 示 - 套 - 汇 - 昌 - 晨 - 痛 - 购 - 奥 - 铃 - 案 - 济 - 鬼 - 背 - 港 - 待 - 浪 - 桥 - 血 - 冬 - 烧 - 优 - 拍 - 际 - 急 - 杭 - 称 - 遇 - 赶 - 旅 - 智 - 角 - 财 - 玉 - 团 - 形 - 论 - 静 - 景 - 退 - 普 - 呗 - 乡 - 参 - 胡 - 伦 - 讨 - 艺 - 辈 - 毒 - 此 - 轻 - 苦 - 咱 - 画 - 泰 - 宾 - 雄 - 销 - 奶 - 突 - 波 - 各 - 冰 - 块 - 夏 - 低 - 兵 - 厅 - 羊 - 杀 - 紧 - 泉 - 朝 - 谈 - 足 - 孕 - 夫 - 厂 - 聪 - 续 - 庄 - 诺 - 牙 - 质 - 立 - 依 - 仙 - 跑 - 盘 - 豆 - 它 - 怪 - 猜 - 漫 - 毕 - 兄 - 颜 - 险 - 厦 - 验 - 防 - 登 - 敢 - 乖 - 晓 - 护 - 迎 - 逗 - 摩 - 佳 - 观 - 骗 - 烟 - 细 - 临 - 惠 - 围 - 寞 - 效 - 源 - 寂 - 肚 - 暖 - 饺 - 斗 - 模 - 端 - 疗 - 付 - 绝 - 秘 - 展 - 乎 - 按 - 富 - 靠 - 范 - 规 - 刻 - 折 - 娘 - 厌 - 申 - 章 - 补 - 笔 - 锅 - 破 - 田 - 齐 - 滨 - 皇 - 族 - 典 - 史 - 左 - 蓝 - 灵 - 澡 - 秀 - 诚 - 土 - 测 - 凤 - 剑 - 响 - 倒 - 睛 - 惯 - 乌 - 币 - 扣 - 吴 - 输 - 徐 - 弃 - 纪 - 堂 - 环 - 甲 - 菲 - 缘 - 讯 - 根 - 落 - 启 - 泡 - 饿 - 积 - 府 - 递 - 绩 - 择 - 吉 - 布 - 显 - 童 - 租 - 洋 - 组 - 划 - 编 - 签 - 舞 - 困 - 贴 - 负 - 派 - 裤 - 担 - 桂 - 却 - 丝 - 丰 - 箱 - 赵 - 群 - 序 - 训 - 酸 - 惜 - 圆 - 评 - 压 - 俩 - 状 - 官 - 酷 - 鲁 - 孙 - 草 - 极 - 势 - 斤 - 腾 - 泽 - 素 - 尽 - 姓 - 屏 - 聚 - 莞 - 乱 - 雅 - 尼 - 趣 - 伟 - 肤 - 勇 - 右 - 徽 - 投 - 丹 - 尾 - 托 - 争 - 鸟 - 激 - 印 - 良 - 眠 - 松 - 跳 - 途 - 篮 - 粉 - 脚 - 屁 - 鞋 - 麦 - 则 - 估 - 津 - 努 - 距 - 胸 - 央 - 珍 - 盖 - 哭 - 洲 - 练 - 敏 - 雷 - 曾 - 恩 - 挂 - 据 - 览 - 耳 - 材 - 泪 - 吸 - 味 - 劳 - 父 - 孤 - 玛 - 旁 - 阴 - 态 - 创 - 树 - 脱 - 研 - 驾 - 拾 - 灯 - 虎 - 爆 - 嘉 - 湾 - 躺 - 猫 - 莫 - 昆 - 痘 - 阅 - 射 - 刷 - 卓 - 珠 - 峰 - 胖 - 坚 - 造 - 举 - 棒 - 梅 - 引 - 吵 - 蒙 - 详 - 借 - 瓜 - 池 - 束 - 芳 - 淘 - 寻 - 释 - 沈 - 虑 - 锦 - 胜 - 荣 - 委 - 默 - 另 - 浏 - 并 - 检 - 冠 - 独 - 厉 - 顶 - 钓 - 骂 - 且 - 欧 - 威 - 熟 - 获 - 兽 - 严 - 炎 - 含 - 厕 - 盛 - 翼 - 盟 - 余 - 姨 - 洛 - 映 - 狼 - 谅 - 众 - 宽 - 断 - 止 - 狂 - 凉 - 姑 - 辉 - 若 - 册 - 谷 - 幻 - 篇 - 瓶 - 席 - 恐 - 柔 - 迪 - 供 - 追 - 控 - 爽 - 互 - 嫁 - 宋 - 宫 - 瑞 - 滚 - 增 - 额 - 页 - 刀 - 娱 - 茶 - 钢 - 疯 - 梁 - 承 - 娜 - 须 - 陆 - 燕 - 迟 - 君 - 恶 - 遍 - 纸 - 项 - 丁 - 腿 - 误 - 殊 - 迅 - 锁 - 宇 - 媳 - 培 - 居 - 寄 - 纯 - 嘴 - 浙 - 境 - 搭 - 杯 - 插 - 朱 - 溪 - 甘 - 权 - 窝 - 警 - 糖 - 迷 - 圈 - 凯 - 帝 - 暴 - 逛 - 艳 - 击 - 颗 - 坦 - 杂 - 冲 - 谓 - 救 - 轮 - 晕 - 虽 - 塔 - 叔 - 凰 - 懒 - 议 - 肖 - 郎 - 辛 - 透 - 拥 - 鼠 - 顿 - 批 - 兔 - 尚 - 聘 - 藏 - 赚 - 继 - 享 - 欺 - 潮 - 即 - 甜 - 骨 - 悲 - 幕 - 滴 - 闲 - 液 - 缺 - 琴 - 蜜 - 善 - 暗 - 镜 - 蔡 - 吹 - 核 - 忆 - 键 - 辑 - 岗 - 例 - 涛 - 宏 - 刺 - 郭 - 降 - 秦 - 剩 - 绿 - 桌 - 咖 - 呐 - 叶 - 贸 - 架 - 账 - 亡 - 佛 - 哎 - 乳 - 归 - 忍 - 异 - 侠 - 龄 - 炒 - 洁 - 似 - 虚 - 贷 - 征 - 抽 - 败 - 枪 - 幼 - 丫 - 危 - 慰 - 究 - 婷 - 肃 - 箭 - 灰 - 届 - 律 - 秒 - 淡 - 偷 - 炫 - 鲜 - 浦 - 萨 - 旧 - 硬 - 操 - 混 - 施 - 散 - 咨 - 妻 - 吻 - 榜 - 呆 - 废 - 野 - 糕 - 骑 - 炼 - 震 - 恭 - 悔 - 跨 - 曼 - 啡 - 俊 - 晶 - 胃 - 汤 - 尊 - 貌 - 封 - 羽 - 赞 - 尸 - 隐 - 丢 - 霸 - 醉 - 盗 - 盐 - 浩 - 著 - 档 - 赢 - 幽 - 责 - 鼻 - 辣 - 恒 - 朵 - 慕 - 旗 - 娃 - 饰 - 仁 - 亦 - 竟 - 柳 - 郁 - 唯 - 夕 - 钻 - 均 - 劲 - 庭 - 巧 - 饮 - 涨 - 辆 - 傅 - 企 - 趟 - 避 - 党 - 染 - 扬 - 玲 - 筋 - 烤 - 桃 - 唉 - 慧 - 欲 - 寒 - 闷 - 某 - 恨 - 私 - 淮 - 惊 - 弱 - 弹 - 沉 - 兼 - 弯 - 残 - 偶 - 锋 - 贺 - 咯 - 纳 - 戴 - 抢 - 宗 - 浴 - 宵 - 莲 - 嗨 - 喊 - 奕 - 壁 - 症 - 冻 - 致 - 屋 - 喽 - 伊 - 绵 - 玫 - 固 - 籍 - 监 - 耐 - 井 - 寝 - 露 - 虫 - 盒 - 凡 - 摇 - 傲 - 烈 - 姿 - 陕 - 裸 - 袋 - 帐 - 凌 - 寿 - 茂 - 鹏 - 寓 - 柴 - 妞 - 森 - 既 - 紫 - 萝 - 层 - 苗 - 腊 - 邓 - 宣 - 锡 - 袜 - 陌 - 狮 - 碰 - 晴 - 塘 - 妃 - 祥 - 苍 - 针 - 敌 - 腰 - 犯 - 欠 - 垃 - 卸 - 迹 - 暑 - 祖 - 泳 - 阵 - 熊 - 励 - 澳 - 添 - 拳 - 岳 - 益 - 瘦 - 虹 - 圾 - 植 - 坡 - 攻 - 略 - 墙 - 描 - 遗 - 噢 - 窗 - 吐 - 肌 - 陵 - 逃 - 浮 - 摸 - 戒 - 哟 - 翰 - 勿 - 库 - 涯 - 妖 - 宠 - 脾 - 革 - 探 - 糊 - 采 - 惹 - 衡 - 赤 - 魏 - 羡 - 综 - 舟 - 疆 - 痴 - 催 - 朗 - 坛 - 悠 - 岭 - 驶 - 括 - 嘻 - 辽 - 粥 - 煮 - 灭 - 杜 - 域 - 令 - 替 - 翔 - 坤 - 潘 - 抓 - 铜 - 构 - 卷 - 茫 - 丑 - 涂 - 掌 - 饱 - 肝 - 疾 - 罩 - 谱 - 愚 - 抗 - 琳 - 夸 - 汪 - 墨 - 沟 - 翅 - 肠 - 患 - 柏 - 僵 - 稳 - 延 - 胆 - 伴 - 爬 - 滋 - 歉 - 轩 - 尿 - 铺 - 忠 - 黎 - 膀 - 邯 - 郸 - 愉 - 霉 - 翁 - 妙 - 隆 - 鸭 - 锻 - 涵 - 挣 - 副 - 罪 - 穷 - 恢 - 巨 - 吓 - 眉 - 棉 - 汗 - 溜 - 奏 - 滩 - 愁 - X - 执 - 霞 - 魂 - 姆 - 摄 - 偏 - 纠 - 瑰 - 洪 - 协 - 牧 - 飘 - 炸 - 悦 - 艾 - 织 - 敬 - 驹 - 欣 - 董 - 邦 - 勒 - 守 - 伙 - 狐 - 税 - 湘 - 遥 - 储 - 脏 - 坊 - 腐 - 横 - 仔 - 仪 - 判 - 忽 - 哇 - 罚 - 爹 - 怖 - 竹 - 孔 - 捡 - 挑 - 肿 - 漠 - 尘 - 焦 - 塞 - 熬 - 谊 - 樱 - 返 - 莉 - 堵 - 捷 - 惑 - 绕 - 蛇 - 竞 - 耍 - 违 - 卧 - 蝶 - J - 俗 - 滑 - 占 - 怜 - 舅 - 乔 - 泸 - 臭 - 策 - 骚 - 莱 - 岩 - 魅 - 兑 - 姥 - 兆 - 萍 - 烂 - 损 - 述 - 撒 - 烫 - 炮 - 忧 - 遵 - 桑 - 俺 - 彭 - 净 - 胶 - 柯 - 绑 - 碟 - 卜 - 饼 - 船 - 佩 - 妆 - 齿 - 厚 - 娟 - 醋 - 丘 - 恼 - 萧 - 析 - 润 - 潭 - 番 - 鹰 - 葡 - 萄 - 唤 - 胎 - 逊 - 峡 - 舰 - 障 - 伯 - 猴 - 膜 - 访 - 贤 - 耀 - 晒 - 狠 - 豪 - 剪 - 帖 - 幂 - 融 - 诱 - 韶 - 晋 - 拼 - 洞 - 氧 - 察 - 裁 - 寨 - 熙 - 喂 - 拖 - 污 - 乾 - 湿 - 嫌 - 拒 - 蕉 - 哲 - 薇 - 绒 - 婴 - 莎 - 稿 - 瞎 - 寺 - 徒 - 伞 - 碎 - 阜 - 填 - 琪 - 敦 - 柜 - 侣 - 搬 - 孟 - 蓉 - 筒 - 偿 - 献 - 径 - 畅 - 粤 - 悟 - 隔 - 赖 - 慈 - 哄 - 襄 - 扮 - 睁 - 彻 - 陶 - 瓷 - 荷 - 寸 - 牵 - 痒 - 芝 - 繁 - 倍 - 闪 - 梧 - 怒 - 蝴 - 嵩 - 赣 - 嘞 - 狱 - 猛 - 咳 - 媒 - 斌 - 斑 - 奋 - 叉 - 龟 - 贱 - 疑 - 暂 - 靓 - 叹 - 仓 - 撞 - 姜 - 疤 - 矿 - 芬 - 勤 - 纱 - 帆 - 迁 - 囧 - 佑 - 囊 - 侯 - 鼓 - 葛 - 沃 - 莹 - 诊 - 筑 - 酱 - 咬 - 糟 - 拯 - 鹤 - 驴 - 胞 - 枝 - 俄 - 呃 - 鹿 - 磨 - 姚 - 灾 - 扫 - 荡 - 吊 - 犬 - 菊 - 茹 - 链 - 嫉 - 妒 - 旺 - 夺 - 裙 - 湛 - 氏 - 鞍 - 抵 - 娇 - 耶 - 截 - 辞 - 硫 - 禁 - 怡 - 跌 - 刮 - 苑 - 媛 - 摆 - 盾 - 械 - 旋 - 卢 - 霆 - 驰 - 擦 - 符 - 肺 - 谜 - 霍 - 仅 - 迈 - 碗 - 邪 - 曹 - 咪 - 煌 - 疫 - 屠 - 握 - 奔 - Z - 燃 - 沧 - 谦 - 馨 - 嫖 - 阻 - 冯 - 振 - 雕 - 闯 - 薄 - 宙 - 倾 - 嗽 - 椒 - 墓 - 尤 - 夹 - 潇 - 骤 - 壮 - 屈 - 颖 - 菠 - 吞 - 鸣 - 渴 - 堰 - 厨 - 督 - 驻 - 腹 - 岸 - 蛮 - 翠 - 肾 - 娼 - 券 - 尖 - 丸 - 鸿 - 厘 - 召 - 劝 - 牡 - 韦 - 拔 - 灏 - 弦 - 萌 - 惩 - 倩 - 诸 - 扎 - 庙 - 炉 - 潜 - 措 - 磊 - 脂 - 郊 - 虾 - 霜 - 猎 - 蝎 - 玄 - 钰 - 审 - 蜂 - 巷 - 敷 - 拟 - 钥 - 匙 - 婉 - 纽 - 芜 - 贾 - 串 - 靖 - 抛 - 彼 - 亏 - 挽 - 贼 - 穴 - 授 - 鼎 - 孝 - 玮 - 氓 - 劫 - 俞 - 谎 - 莆 - 隋 - 钠 - 赔 - 谐 - 纶 - 闰 - 昏 - 逆 - 璇 - 樊 - 禽 - 宅 - 碳 - 妮 - 亭 - 杆 - 蠢 - 鄙 - 蜀 - 阶 - 贫 - 辰 - 盼 - 呜 - 芦 - 株 - 腔 - 巾 - 羞 - 堡 - 亿 - 踩 - 憾 - 浓 - 阔 - 塑 - 趋 - 蓄 - 桶 - 葱 - 菇 - 咒 - 蟹 - 肩 - 柿 - 缓 - 漳 - 祸 - 挤 - 巢 - 抚 - 詹 - 豫 - 俱 - 悉 - 溶 - 粒 - 谭 - 诛 - 贡 - 沿 - 躲 - 慌 - 芙 - 蒋 - 乃 - 雀 - 姻 - 岂 - 悄 - 辕 - 斜 - 捕 - 扇 - 割 - 啤 - 纲 - 纤 - 祛 - 躁 - 殖 - 珊 - 氢 - 允 - 丈 - 蹈 - 邀 - 哼 - 坑 - 吾 - 淋 - 扩 - 愤 - 潍 - 尺 - 耗 - 鉴 - 闽 - 乙 - 渭 - 触 - 撑 - 咸 - 灿 - 缩 - 蔬 - 凑 - 渡 - 梭 - 粗 - 袁 - 菌 - 妓 - 稍 - 辐 - 哀 - 浆 - 厢 - 荆 - 踪 - 桐 - 邢 - 蜡 - 奉 - 淑 - 洒 - 扁 - 蕾 - 燥 - 硕 - 牢 - 蛙 - 仍 - 侵 - 稀 - 芒 - 吕 - 跪 - 绪 - 誓 - 旭 - 阁 - 屌 - 凭 - 裹 - 崇 - 纬 - 援 - 怨 - 茄 - 埋 - 棋 - 誉 - 瑜 - 蹲 - 扯 - 跃 - 昧 - 螺 - 毅 - 叮 - 喷 - 壶 - 喉 - 脆 - 瓦 - 碧 - 奴 - 煤 - 伍 - 娶 - 雁 - 骄 - 泣 - 眷 - 屯 - 赏 - 覆 - 揍 - 绯 - 逸 - 屎 - 彦 - 辨 - 攀 - 涉 - 泥 - 廊 - 菱 - 薛 - 衍 - 荒 - 铭 - 沂 - 麟 - 咏 - 扑 - 祈 - 喔 - 磁 - 歇 - 栋 - 沫 - 漏 - 玻 - 璃 - 逝 - 葵 - 溃 - 堆 - 锐 - 楠 - 毫 - 谋 - 勾 - 梯 - 氯 - 杏 - 赌 - 鑫 - 崔 - 颠 - 邱 - 肪 - 掘 - 昭 - 悬 - 奈 - 筷 - 轨 - 诵 - 葫 - 挡 - 梨 - 缠 - 僧 - 抬 - 邻 - 栏 - 饶 - 庚 - 灌 - 呦 - 摊 - 狄 - 汕 - 缴 - 罢 - 瞌 - 腺 - 辖 - 摔 - 棵 - 弗 - 琼 - 揭 - 淀 - 仑 - 粮 - 扔 - 剂 - 邵 - 辅 - 悍 - 袖 - 侨 - 巡 - 仗 - 逢 - 挥 - 翘 - 柱 - 狸 - 赫 - 耽 - 押 - 昂 - 瘤 - 枣 - 癌 - 伏 - 秤 - 脉 - 穹 - 敲 - 贪 - 促 - 拆 - 勉 - 祷 - 弊 - 膏 - 禾 - 契 - 挨 - 纵 - 疲 - 蜘 - 蛛 - 冈 - 雾 - 娄 - 甫 - 裂 - 侦 - 愈 - 臂 - 甩 - 戈 - 钙 - 簿 - 淄 - 蓬 - 夷 - 汁 - 凶 - 匹 - 皆 - 凝 - 仰 - 叛 - 蒲 - 谣 - 砖 - 呈 - 浅 - 瞬 - 丞 - 粘 - 痕 - 癫 - 禺 - 靴 - 尝 - 枫 - 鹅 - 衷 - 暮 - 媚 - 堪 - 臣 - 瑟 - 榕 - 蘑 - 遂 - 舌 - 藤 - 遭 - 芭 - 暧 - 犹 - 砸 - 浇 - 晰 - 矮 - 禹 - 隶 - 蚊 - 塌 - 峪 - 渊 - 摘 - 崩 - 瞧 - 炭 - 瑶 - 纷 - 毁 - 瞒 - 橙 - 渣 - 霹 - 雳 - 粽 - 侧 - 胀 - 捐 - 栈 - 颈 - 伪 - 役 - 予 - 钝 - 菏 - 铠 - 稻 - 赠 - 芽 - 龚 - 幅 - 莓 - 轿 - 炖 - 炬 - 溢 - 扭 - 垂 - 坎 - 嚏 - 枯 - 绣 - 蒸 - 旬 - 迫 - 浒 - 肇 - 庸 - 蒂 - 踏 - 雯 - 埃 - 础 - 狙 - 陷 - 伽 - 滔 - 沦 - 祭 - 唠 - 瀑 - 矛 - 乒 - 乓 - 窍 - 渠 - 泛 - 陇 - 蒜 - 捉 - 扶 - 诀 - 纹 - 踢 - 馋 - 薪 - 坪 - 廉 - 荔 - 骏 - 颁 - 伸 - 贞 - 沾 - 疮 - 兮 - 擎 - 驱 - 馒 - 挖 - 韵 - 姬 - 砍 - 矫 - 巫 - 疙 - 瘩 - 峨 - 抄 - 函 - 歪 - 倚 - 昔 - 涕 - 憨 - 淇 - 宴 - 埠 - 渐 - 胳 - 膊 - 趁 - 擅 - 刑 - 渝 - 噬 - 斋 - 妍 - 债 - 邹 - 嫂 - 娥 - 践 - 禅 - 牲 - 帽 - 吨 - 腻 - 掖 - 榴 - 啸 - 纺 - 鞭 - 豚 - 爵 - 蹄 - 咙 - 澈 - 疹 - 氛 - 抑 - 绸 - 抹 - 奎 - 酬 - 坟 - 诶 - 勋 - 卑 - 沪 - 蚁 - 揉 - 锄 - 泌 - 槽 - 镖 - 卿 - 甸 - 帕 - 镁 - 盲 - 汾 - 携 - 宰 - 虞 - 瓣 - 辩 - 豌 - 樟 - 璐 - 沁 - 钦 - 蔚 - 彬 - 卦 - 轰 - 锈 - 茎 - 蹦 - 拐 - 坝 - 饥 - 捏 - 碑 - 嗓 - 澄 - 惨 - 沽 - 鄂 - 逻 - 谍 - 屿 - 聋 - 憋 - 泼 - 枕 - 盆 - 衫 - 慎 - 黛 - 轶 - 咽 - 匠 - 蚂 - 捶 - 脊 - 蚌 - 剥 - 穆 - 喇 - 叭 - 凳 - 滥 - 撤 - 蓑 - 笠 - 黔 - 诡 - 颐 - 闵 - 稚 - 茨 - 捆 - 芯 - 涩 - 哑 - 盈 - 衰 - 奢 - 贩 - 循 - 韭 - 绘 - 鸳 - 唇 - 恳 - 妥 - 杠 - 刊 - 戚 - 巩 - 胁 - 蜗 - 筝 - 漆 - 劈 - 泄 - 噩 - 椎 - 渔 - 氨 - 橘 - 仲 - 洱 - 绥 - 仿 - 耿 - 蚕 - 倦 - 葬 - 捞 - 拓 - 冤 - 御 - 忌 - 慨 - 弥 - 寡 - 昵 - 撕 - 鲤 - 隧 - 倡 - 臀 - 毙 - 蕊 - 甚 - 睹 - 哒 - 仇 - 栓 - 抒 - 滁 - 讶 - 皱 - 剖 - 闸 - 耻 - 顽 - 茅 - 碱 - 霏 - 坠 - 邑 - 嗦 - 缝 - 枚 - 垫 - 畜 - 侄 - 悴 - 庞 - 鸯 - 俏 - 铅 - 衔 - 浑 - 抖 - 逮 - 犀 - 滕 - 遮 - 淹 - 挪 - 柠 - 檬 - 荨 - 沛 - 喻 - 尹 - 抉 - 爪 - 甄 - 冀 - 蝉 - 汰 - 丧 - 愧 - 畏 - 屑 - 屉 - 娩 - 艰 - 弓 - 炜 - 框 - 娅 - 酵 - 掩 - 宪 - 枉 - 淫 - 糗 - 奸 - 岚 - 诅 - 釜 - 萱 - 窦 - 喆 - 浣 - 庐 - 阑 - 劣 - 窄 - 赈 - 茉 - 帜 - 缸 - 嫩 - 迦 - 憔 - 鸽 - 朴 - 洽 - 榆 - 烹 - 箫 - 荚 - 箍 - 稣 - 肢 - 磷 - 袭 - 橡 - 鸦 - 瞅 - 匡 - 禧 - 痣 - 勃 - 翡 - 篱 - 烽 - 衢 - 讪 - 烛 - 宥 - 铝 - 镯 - 钉 - 披 - 昼 - 跆 - 笈 - 喘 - 惫 - 唧 - 螂 - 涌 - 揣 - 旨 - 袄 - 笼 - 蛔 - 毯 - 凸 - 倪 - 碌 - 懈 - 履 - 鱿 - 菩 - 汝 - 赴 - 焉 - 钛 - 畔 - 掰 - 骆 - 崖 - 髓 - 彪 - 啰 - 撸 - 拌 - 漯 - 犒 - 蔽 - 漱 - 赐 - 饪 - 玖 - 弘 - 卵 - 沭 - 梓 - 禄 - 晖 - 籁 - 熏 - 祠 - 荟 - 伐 - 柄 - 昕 - 琶 - 鞠 - 豹 - 萎 - 裕 - 曰 - 苇 - 沌 - 牺 - 轴 - 薯 - 潞 - 痫 - 曦 - 腋 - 坞 - 隙 - 妊 - 娠 - 蝙 - 蝠 - 赘 - 咧 - 翩 - 棚 - 冕 - 旱 - 棱 - 巍 - 偕 - 杉 - 梵 - 嫦 - 煎 - 泊 - 辟 - 丛 - 艘 - 懦 - 郫 - 搅 - 佬 - 阖 - 焰 - 澜 - 琢 - 挚 - 嫣 - 啧 - 兜 - 趴 - 皂 - 窃 - 嘟 - 崛 - 睿 - 刃 - 绳 - 哗 - 窟 - 嗑 - 吭 - 朔 - 喵 - 粹 - 酶 - 辜 - 诫 - 筹 - 亩 - 椅 - 佐 - 俑 - 狡 - 陛 - 曙 - 攒 - 诈 - 叙 - 杖 - 馅 - 锌 - 矜 - 绮 - 刁 - 阙 - 亢 - 讼 - 驼 - 晃 - 逍 - 仕 - 芋 - 拇 - 掏 - 瘾 - 腕 - 魁 - 鲍 - 殷 - 荤 - 亨 - 凄 - 硝 - 嬛 - 藻 - 诣 - 桔 - 疡 - 氰 - 佰 - 鸠 - 埔 - 皋 - 谚 - 麒 - 廖 - 鳄 - 蹉 - 阎 - 琦 - 丙 - 烯 - 涮 - 絮 - 潢 - 郴 - 遛 - 琵 - 殿 - 蹭 - 笛 - 钾 - 辙 - 炊 - 廷 - 拦 - 哆 - 逐 - 钞 - 赋 - 孽 - 沸 - 龈 - 雌 - 玟 - 麓 - 焊 - 谨 - 衬 - 灸 - 栖 - 卉 - 脐 - 栽 - 扒 - 酚 - 肱 - 闺 - 猥 - 钩 - 羁 - 吱 - 吼 - 蹊 - 跷 - 磕 - 坷 - 蝇 - 唔 - 褶 - 钮 - 鹭 - 咔 - 沐 - 棠 - 锷 - 滞 - 肛 - 糜 - 噜 - 涧 - 儒 - 琅 - 捎 - 泵 - 葩 - 芥 - 轲 - 猾 - 拱 - 墅 - 蕲 - 馁 - 佚 - 渤 - 崎 - 峻 - 赎 - 霄 - 羯 - 缅 - 韧 - 勘 - 皖 - 顷 - 喀 - 忏 - 圭 - 槟 - 榔 - 兹 - 坂 - 镒 - 堕 - 蟒 - 芹 - 浃 - 哉 - 晏 - 绐 - 陀 - 茵 - 倘 - 缆 - 浊 - 碍 - 惰 - 濮 - 杵 - 削 - 裘 - 嗅 - 呕 - 绊 - 哩 - 腩 - 撇 - 郝 - 铿 - 锵 - 赃 - 缪 - 卤 - 吝 - 涟 - 冶 - 匪 - 婿 - 蛳 - 搏 - 圩 - 旷 - 汞 - 鹦 - 茱 - 粪 - 崂 - 陋 - 掐 - 郡 - 哮 - 邸 - 帘 - 柚 - 鬓 - 剃 - 忻 - 羔 - 聆 - 刹 - 嗷 - 罕 - 沥 - 钗 - 尴 - 尬 - 莽 - 捧 - 拽 - 懵 - 噶 - 虐 - 囚 - 囡 - 颓 - 亥 - 傍 - 疏 - 乞 - 丐 - 皓 - 孜 - 愣 - 檐 - 橱 - 绅 - 噻 - 痊 - 鳞 - 瞳 - 衩 - 捂 - 吔 - 螳 - 暇 - 嘎 - 缤 - 镍 - 吟 - 斥 - 饲 - 鲢 - 猩 - 狒 - 腼 - 腆 - 轼 - 梗 - 熨 - 荫 - 糙 - 妾 - 粕 - 烘 - 壹 - 骥 - 秽 - 熔 - 歹 - 谬 - 侈 - 蜈 - 蚣 - 婵 - 渍 - 斩 - 棕 - 辱 - 醇 - 磅 - 礴 - 颊 - 彝 - 庾 - 叠 - 忒 - 稽 - 幢 - 嘱 - 醛 - 砂 - 炳 - 拂 - 殇 - 邬 - 冥 - 擒 - 汶 - 罐 - 镑 - 祁 - 氮 - 怆 - 羌 - 拧 - 芸 - 堀 - 婊 - 暄 - 挎 - 躬 - 噎 - 菅 - 奂 - 龌 - 龊 - 睬 - 燎 - 鲈 - 拢 - 啬 - 脖 - 尧 - 馗 - 皎 - 滤 - 镶 - 椭 - 狈 - 澎 - 阉 - 侃 - 婕 - 脓 - 桨 - 阪 - 湃 - 溏 - 箕 - 蚯 - 蚓 - 呛 - 矩 - 彤 - 惟 - 鹉 - 讽 - 募 - 惦 - 飓 - 抠 - 肮 - 溟 - 膝 - 芗 - 逞 - 娌 - 湮 - 舵 - 挫 - 椰 - 螃 - 绽 - 蟑 - 聂 - 拘 - 萸 - 洼 - 弛 - 澧 - 玺 - 芊 - 枢 - 鲨 - 毋 - 搂 - 跎 - 趾 - 琐 - 徘 - 徊 - 濡 - 咩 - 钏 - 舔 - 烷 - 胺 - 拙 - 溺 - 竖 - 蕴 - 巅 - 魄 - 吖 - 啵 - 庇 - 灼 - 遣 - 怠 - 枭 - 乏 - 缕 - 掂 - 秩 - 蜕 - 泾 - 汀 - 肆 - 倔 - 吒 - 矣 - 豁 - 仨 - 俯 - 嘲 - 瞪 - 唬 - 骋 - 辍 - 曝 - 泻 - 鼾 - 捣 - 妨 - 撵 - 撮 - 猕 - 浜 - 哺 - 睫 - 荧 - 噪 - 栗 - 垣 - 獒 - 冼 - 瞄 - 刍 - 硅 - 翊 - 泓 - 枥 - 凋 - 匣 - 孢 - 飙 - 俭 - 珑 - 嵊 - 佣 - 祟 - 枞 - 蓟 - 斧 - 镕 - 棺 - 痔 - 娴 - 苔 - 笙 - 蔻 - 芮 - 迭 - 暨 - 诏 - 癜 - 芷 - 臧 - 驿 - 珂 - 藕 - 笋 - 竭 - 歼 - 铉 - 恹 - 雇 - 诲 - 漓 - 扳 - 寰 - 颂 - 缈 - 砣 - 戳 - 疣 - 寮 - 甥 - 牦 - 衅 - 湄 - 汨 - 褐 - 腑 - 啼 - 惭 - 痰 - 梳 - 驮 - 阮 - 壳 - 慷 - 牟 - 捺 - 瘁 - 锂 - 狩 - 沱 - 烁 - 摞 - 楷 - 楞 - 瑾 - 饯 - 灶 - 薰 - 伎 - 忐 - 忑 - 煽 - 骁 - 娲 - 赁 - 锑 - 嵌 - 苞 - 咫 - 锴 - 岐 - 蓓 - 毽 - 黏 - 攸 - 恰 - 惶 - 矶 - 簸 - 坨 - 踝 - 掺 - 榨 - 阀 - 婢 - 纨 - 搓 - 闫 - 瘫 - 垢 - 蚀 - 貂 - 壑 - 婧 - 腥 - 兖 - 觅 - 壤 - 珉 - 胭 - 惧 - 僻 - 峥 - 炀 - 蔗 - 铂 - 宛 - 巳 - 氟 - 秸 - 菁 - 鹃 - 疱 - 矢 - 拭 - 缀 - 朦 - 胧 - 筏 - 贯 - 汐 - 蛤 - 蟆 - 迩 - 犁 - 馈 - 叽 - 喳 - 袈 - 裟 - 啃 - 敞 - 踊 - 雏 - 朽 - 撩 - 恙 - 亵 - 淤 - 垦 - 眺 - 熄 - 衲 - 伺 - 墟 - 孚 - 墩 - 猬 - 堤 - 鞘 - 署 - 陂 - 鬟 - 萤 - 悯 - 恃 - 峙 - 咄 - 奠 - 跺 - 笆 - 啄 - 殆 - 赅 - 锭 - 铛 - 枷 - 姗 - 驭 - 嘀 - 煲 - 腚 - 霖 - 孪 - 翟 - 濒 - 邂 - 逅 - 筱 - 霓 - 窈 - 窕 - 眨 - 耸 - 羚 - 尉 - 谀 - 竿 - 蛟 - 籽 - 铲 - 潼 - 匆 - 肽 - 戬 - 岔 - 奚 - 裴 - 嘏 - 玥 - 妯 - 昙 - 烨 - 吏 - 鼹 - 筵 - 崭 - 涪 - 來 - 瘆 - 彰 - 杞 - 疽 - 琥 - A - 栾 - 庵 - 窘 - 擀 - 痤 - 蟾 - 唾 - 嚼 - 癖 - 蛹 - 浸 - 狭 - 迂 - 脍 - 炙 - 覃 - 悖 - 阆 - 铸 - 洮 - 瑙 - 呷 - 呸 - 谛 - 膨 - 柑 - 眯 - 奘 - 吆 - 孰 - 珈 - 曜 - 拈 - 麝 - 嘘 - 缚 - 徕 - 糸 - 崴 - 藓 - 婺 - 揽 - 溧 - 熠 - 膳 - 犊 - 贬 - 脯 - 剿 - 鼬 - 焕 - 胛 - 拷 - 勺 - 鲫 - 炅 - 卒 - 刨 - 糯 - 瘪 - 雍 - 襟 - 酋 - 胤 - 戟 - 褔 - 惆 - 怅 - 阂 - 扉 - 锚 - 砌 - 祺 - 淅 - 濠 - 匀 - 隍 - 氦 - 绫 - 濑 - 佝 - 偻 - 翎 - 颌 - 咚 - 疖 - 媲 - 祗 - 寅 - 靡 - 稞 - 骝 - 锏 - 焖 - 栀 - 蝗 - 甭 - 罄 - 酪 - 酮 - 嘢 - 钨 - 涎 - 沼 - 嚯 - 阱 - 驸 - 爰 - 酌 - 绛 - 畴 - 辄 - 藜 - 碚 - 馥 - 茧 - 鲛 - 溅 - 浯 - 沮 - 蹿 - 诠 - 姊 - 藉 - 骡 - 褪 - 酞 - 臻 - 靛 - 譬 - 粼 - 肘 - 孺 - 苟 - 瓯 - 蕨 - 冉 - 稠 - 蒿 - 锤 - 焙 - 蜃 - 淌 - 瘸 - 汲 - 噼 - 啪 - 橇 - 虔 - 裳 - 煞 - 淳 - 锟 - 摧 - 篷 - 癞 - 凹 - 汹 - 樵 - 睐 - 叁 - 飒 - 舶 - 驷 - 嘚 - 垮 - 妩 - 焚 - 扪 - 溥 - 鹊 - 鹄 - 汴 - 妁 - 廓 - 谙 - 苛 - 喏 - 嬉 - 裆 - 谔 - 哝 - 岑 - 喧 - 咆 - 茁 - 霎 - 泷 - 笃 - 沣 - 戮 - 蓦 - 滢 - 碜 - 滇 - 妤 - 盯 - 眶 - 婶 - 侍 - 崽 - 辘 - 轳 - 斓 - 郢 - 泞 - 窖 - 镭 - 痹 - 缉 - 镐 - 膛 - 睦 - 歧 - 扦 - 筛 - 嵘 - 茗 - 戎 - 萦 - 柒 - 咀 - 诋 - 搁 - 婪 - 漾 - 瀚 - 绎 - 盏 - 庹 - 吩 - 咐 - 堇 - 矾 - 茯 - 苓 - 潦 - 嘁 - 噫 - 窑 - 鳗 - 孵 - 彷 - 徨 - 耕 - 晗 - 撂 - 猿 - 昊 - 淼 - 驯 - 垒 - 铤 - 胱 - 桦 - 铮 - 坳 - 厥 - 叨 - 烙 - 苷 - 殴 - 鸥 - 蜥 - 蜴 - 湟 - 衙 - 敖 - 阐 - 穗 - 攥 - 俾 - 锥 - 粱 - 绰 - 漕 - 钕 - 硼 - 蚤 - 铢 - 疚 - 挟 - 昱 - 栅 - 煦 - 鳝 - 枸 - 锯 - 茜 - 悼 - 跤 - 犍 - 衿 - 筐 - 恪 - 琛 - 砝 - 秆 - 歆 - 晾 - 慑 - 蜍 - 诃 - 盔 - 寇 - 璧 - 鹩 - 恤 - 匿 - 踉 - 焗 - 戍 - 憎 - 桓 - 裔 - 梢 - 蝼 - 贿 - 诽 - 橄 - 榄 - 蔺 - 鲅 - 鳖 - 荞 - 槐 - 砚 - 癣 - 胚 - 沅 - 菀 - 荀 - 亳 - 铵 - 垌 - 釉 - 摁 - 瑕 - 疵 - 泗 - 逵 - 饵 - 旌 - 磺 - 彗 - 娣 - 晟 - 惘 - 棘 - 屹 - 逾 - 淞 - 逑 - 茴 - 楹 - 珀 - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false use_preprocessor: true token_type: char bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_zh_char_sp/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 256 attention_heads: 4 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.0 input_layer: conv2d normalize_before: true pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish macaron_style: true use_cnn_module: true cnn_module_kernel: 15 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.0 src_attention_dropout_rate: 0.0 required: - output_dir - token_list version: 0.10.5a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
23f3f6d8b0b60152408dceddf2111f17