repo_id
stringlengths
4
110
author
stringlengths
2
27
model_type
stringlengths
2
29
files_per_repo
int64
2
15.4k
downloads_30d
int64
0
19.9M
library
stringlengths
2
37
likes
int64
0
4.34k
pipeline
stringlengths
5
30
pytorch
bool
2 classes
tensorflow
bool
2 classes
jax
bool
2 classes
license
stringlengths
2
30
languages
stringlengths
4
1.63k
datasets
stringlengths
2
2.58k
co2
stringclasses
29 values
prs_count
int64
0
125
prs_open
int64
0
120
prs_merged
int64
0
15
prs_closed
int64
0
28
discussions_count
int64
0
218
discussions_open
int64
0
148
discussions_closed
int64
0
70
tags
stringlengths
2
513
has_model_index
bool
2 classes
has_metadata
bool
1 class
has_text
bool
1 class
text_length
int64
401
598k
is_nc
bool
1 class
readme
stringlengths
0
598k
hash
stringlengths
32
32
susnato/bert-base-uncased-issues-128
susnato
bert
10
0
transformers
0
fill-mask
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,918
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-issues-128 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0940 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1003 | 1.0 | 291 | 1.6578 | | 1.6211 | 2.0 | 582 | 1.4140 | | 1.4964 | 3.0 | 873 | 1.3040 | | 1.41 | 4.0 | 1164 | 1.3011 | | 1.336 | 5.0 | 1455 | 1.3095 | | 1.2862 | 6.0 | 1746 | 1.3739 | | 1.2271 | 7.0 | 2037 | 1.2743 | | 1.2043 | 8.0 | 2328 | 1.2019 | | 1.1701 | 9.0 | 2619 | 1.2696 | | 1.1498 | 10.0 | 2910 | 1.2507 | | 1.1194 | 11.0 | 3201 | 1.1398 | | 1.1094 | 12.0 | 3492 | 1.1309 | | 1.0913 | 13.0 | 3783 | 1.0740 | | 1.0683 | 14.0 | 4074 | 1.1201 | | 1.0607 | 15.0 | 4365 | 1.1690 | | 1.0558 | 16.0 | 4656 | 1.0940 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.12.1
0c36919bc38928cbfe31f404bdbe6315
FUXI/yuyan-11b
FUXI
null
9
0
null
1
text-generation
true
false
false
apache-2.0
['zh']
null
null
0
0
0
0
0
0
0
['text-generation', 'story-generation', 'pytorch', 'inference acceleration', 'gpt2', 'gpt3']
false
true
true
4,725
false
# YuYan: Pre-training of Language Models for Story Generation YuYan is a series of Chinese language models with different size, developed by Fuxi AI lab, Netease.Inc. They are trained on a large Chinese novel dataset of high quality. YuYan is in the same family of decoder-only models like [GPT2 and GPT-3](https://arxiv.org/abs/2005.14165). As such, it was pretrained using the self-supervised causal language modedling objective. Because the training data is mainly the novel, the model is good at generating the next plot given the story context. ## Model Inference Acceleration As the model size increases, the model inference time increases and more computational resources are required. Therefore, we developed our own transformer model inference acceleration framework, [EET](https://github.com/NetEase-FuXi/EET.git). More details are in [Easy and Efficient Transformer: Scalable Inference Solution For Large NLP Model](https://aclanthology.org/2022.naacl-industry.8/). We combine our language model with the EET inference framework to provide industrial-grade inference reasoning performance. ## How to use Our model is trained based on the [fairseq](https://github.com/facebookresearch/fairseq). As a result, the inference and finetuning depend on it. For inference, we modify some parts of the original fairseq codes. Mainly > fairseq-0.12.2/fairseq/sequence_generator.py We integrate the EET with sequence_generator. We replace the eos token to a token unlikely to be sampled to ensure the generated text length. The repetition penalty trick is also modified. You can change the penalty strength by adjusting the value of `self.ban_weight`. Then, to keep the eos token in the final generated text, we change the line 75 `include_eos=False` to `include_eos=True` in > fairseq-0.12.2/fairseq/data/dictionary.py Finally, to pass in parameters in python scripts, we remove the line 67 ~ line 69 in >fairseq-0.12.2/fairseq/dataclass/utils.py Below are the install tutorial. ``` # install pytorch pip install torch==1.8.1 # install pytorch # install fairseq unzip fairseq-0.12.2.zip cd fairseq-0.12.2 pip install. # install EET git clone https://github.com/NetEase-FuXi/EET.git cd EET pip install . # install transformers (EET requirements) pip install transformers==4.23 # make a folder, move the dictionary file and model file into it. mkdir transformer_lm_gpt2_xxl mv dict.txt transformer_lm_gpt2_xxl/ mv checkpoint_best_part_*.pt transformer_lm_gpt2_xxl/ ``` `inference.py` is a script to provide a interface to initialize the EET object and sequence_generator. In addition, It includes some pre-process and post-process functions for text input and output. You can modify the script according to your needs. After the environment is ready, several lines of codes can realize the inference. ``` python from inference import Inference model_path = "transformer_lm_gpt2_xxl/checkpoint_best.pt" data_path = "transformer_lm_gpt2_xxl" eet_batch_size = 10 # max inference batch size, adjust according to cuda memory, 40GB memory is necessary inference = Inference(model_path, data_path, eet_batch_size) inp = "田园一听这话,轻挑的嘴角放了下来,两腿叉开,踱着方步,跨过汤婆子,一屁股坐在了老人面前。</s>刘萌和健军一左一右站在他身旁,像是王朝、马汉护着包公断案。" text = inference([inp] * 10, append_right_eos=True) ``` This interface supports batch inputs, so if you need to generate multiple results for one input, you can copy the input multiple times. The interface supports results generated for multiple different inputs, e.g. ```python text = inference(["四个月后,正是草长花秾的暮春季节。</s>令狐冲和盈盈新婚燕尔,携手共赴华山。","院子中传来急促的脚步声,他停下手中的招式,将开元刀插入刀鞘。"]) ``` ## Citation If you find the technical report or resource is useful, please cite the following technical report in your paper. - https://aclanthology.org/2022.naacl-industry.8/ ``` @inproceedings{li-etal-2022-easy, title = "Easy and Efficient Transformer: Scalable Inference Solution For Large {NLP} Model", author = "Li, Gongzheng and Xi, Yadong and Ding, Jingzhen and Wang, Duan and Luo, Ziyang and Zhang, Rongsheng and Liu, Bai and Fan, Changjie and Mao, Xiaoxi and Zhao, Zeng", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Track", month = jul, year = "2022", address = "Hybrid: Seattle, Washington + Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.naacl-industry.8", doi = "10.18653/v1/2022.naacl-industry.8", pages = "62--68" } ``` ## Contact Us You can also contact us by email: [email protected], [email protected]
e0e9f748f8efa87c14cb74d862837ee0
sanchit-gandhi/whisper-medium-es-4k-1e-7-bs-32
sanchit-gandhi
whisper
15
6
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['es']
['facebook/multilingual_librispeech']
null
0
0
0
0
0
0
0
['hf-asr-leaderboard', 'generated_from_trainer']
true
true
true
1,557
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Es - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Multilingual LibriSpeech dataset. It achieves the following results on the evaluation set: - Loss: 0.1694 - Wer: 7.3696 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-07 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.7733 | 0.25 | 1000 | 0.6193 | 17.9946 | | 0.2991 | 0.5 | 2000 | 0.3162 | 14.2555 | | 0.2929 | 0.75 | 3000 | 0.1799 | 7.7752 | | 0.3099 | 1.0 | 4000 | 0.1694 | 7.3696 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.0 - Datasets 2.6.2.dev0 - Tokenizers 0.12.1
7430e5605e8ff17d8bcb630a664acd5b
sd-concepts-library/venice
sd-concepts-library
null
13
0
null
1
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,390
false
### venice on Stable Diffusion This is the `<venice>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<venice> 0](https://huggingface.co/sd-concepts-library/venice/resolve/main/concept_images/1.jpeg) ![<venice> 1](https://huggingface.co/sd-concepts-library/venice/resolve/main/concept_images/5.jpeg) ![<venice> 2](https://huggingface.co/sd-concepts-library/venice/resolve/main/concept_images/7.jpeg) ![<venice> 3](https://huggingface.co/sd-concepts-library/venice/resolve/main/concept_images/3.jpeg) ![<venice> 4](https://huggingface.co/sd-concepts-library/venice/resolve/main/concept_images/2.jpeg) ![<venice> 5](https://huggingface.co/sd-concepts-library/venice/resolve/main/concept_images/6.jpeg) ![<venice> 6](https://huggingface.co/sd-concepts-library/venice/resolve/main/concept_images/0.jpeg) ![<venice> 7](https://huggingface.co/sd-concepts-library/venice/resolve/main/concept_images/4.jpeg)
ad6d3718973b8a107b34fa7c3e95a842
Krishadow/biobert-finetuned-ner
Krishadow
bert
8
3
transformers
0
token-classification
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,531
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Krishadow/biobert-finetuned-ner This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0450 - Validation Loss: 0.0593 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 678, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1443 | 0.0597 | 0 | | 0.0450 | 0.0593 | 1 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.1.0 - Tokenizers 0.12.1
695315c94aaa7e69fc27cf0665f4099a
adsjklfsd/distilbert-base-uncased-finetuned-emotion
adsjklfsd
distilbert
12
6
transformers
0
text-classification
true
false
false
apache-2.0
null
['emotion']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,344
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2226 - Accuracy: 0.9245 - F1: 0.9248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8222 | 1.0 | 250 | 0.3162 | 0.9085 | 0.9063 | | 0.2501 | 2.0 | 500 | 0.2226 | 0.9245 | 0.9248 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.10.1+cu113 - Datasets 2.9.0 - Tokenizers 0.13.2
981ca25bc509683a4189970673e54e90
hkunlp/instructor-xl
hkunlp
t5
14
279
sentence-transformers
12
sentence-similarity
true
false
false
apache-2.0
['en']
null
null
1
0
1
0
0
0
0
['text-embedding', 'embeddings', 'information-retrieval', 'beir', 'text-classification', 'language-model', 'text-clustering', 'text-semantic-similarity', 'text-evaluation', 'prompt-retrieval', 'text-reranking', 'sentence-transformers', 'feature-extraction', 'sentence-similarity', 'transformers', 't5', 'English', 'Sentence Similarity', 'natural_questions', 'ms_marco', 'fever', 'hotpot_qa', 'mteb']
true
true
true
6,303
false
# hkunlp/instructor-xl We introduce **Instructor**👨‍🏫, an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g., classification, retrieval, clustering, text evaluation, etc.) and domains (e.g., science, finance, etc.) ***by simply providing the task instruction, without any finetuning***. Instructor👨‍ achieves sota on 70 diverse embedding tasks! The model is easy to use with **our customized** `sentence-transformer` library. For more details, check out [our paper](https://arxiv.org/abs/2212.09741) and [project page](https://instructor-embedding.github.io/)! **************************** **Updates** **************************** * 01/21: We released a new [checkpoint](https://huggingface.co/hkunlp/instructor-xl) trained with hard negatives, which gives better performance. * 12/21: We released our [paper](https://arxiv.org/abs/2212.09741), [code](https://github.com/HKUNLP/instructor-embedding), [checkpoint](https://huggingface.co/hkunlp/instructor-xl) and [project page](https://instructor-embedding.github.io/)! Check them out! ## Quick start <hr /> ## Installation ```bash pip install InstructorEmbedding ``` ## Compute your customized embeddings Then you can use the model like this to calculate domain-specific and task-aware embeddings: ```python from InstructorEmbedding import INSTRUCTOR model = INSTRUCTOR('hkunlp/instructor-xl') sentence = "3D ActionSLAM: wearable person tracking in multi-floor environments" instruction = "Represent the Science title:" embeddings = model.encode([[instruction,sentence]]) print(embeddings) ``` ## Use cases <hr /> ## Calculate embeddings for your customized texts If you want to calculate customized embeddings for specific sentences, you may follow the unified template to write instructions: &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Represent the `domain` `text_type` for `task_objective`: * `domain` is optional, and it specifies the domain of the text, e.g., science, finance, medicine, etc. * `text_type` is required, and it specifies the encoding unit, e.g., sentence, document, paragraph, etc. * `task_objective` is optional, and it specifies the objective of embedding, e.g., retrieve a document, classify the sentence, etc. ## Calculate Sentence similarities You can further use the model to compute similarities between two groups of sentences, with **customized embeddings**. ```python from sklearn.metrics.pairwise import cosine_similarity sentences_a = [['Represent the Science sentence: ','Parton energy loss in QCD matter'], ['Represent the Financial statement: ','The Federal Reserve on Wednesday raised its benchmark interest rate.']] sentences_b = [['Represent the Science sentence: ','The Chiral Phase Transition in Dissipative Dynamics'], ['Represent the Financial statement: ','The funds rose less than 0.5 per cent on Friday']] embeddings_a = model.encode(sentences_a) embeddings_b = model.encode(sentences_b) similarities = cosine_similarity(embeddings_a,embeddings_b) print(similarities) ``` ## Information Retrieval You can also use **customized embeddings** for information retrieval. ```python import numpy as np from sklearn.metrics.pairwise import cosine_similarity query = [['Represent the Wikipedia question for retrieving supporting documents: ','where is the food stored in a yam plant']] corpus = [['Represent the Wikipedia document for retrieval: ','Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that the term "mixed economies" more precisely describes most contemporary economies, due to their containing both private-owned and state-owned enterprises. In capitalism, prices determine the demand-supply scale. For example, higher demand for certain goods and services lead to higher prices and lower demand for certain goods lead to lower prices.'], ['Represent the Wikipedia document for retrieval: ',"The disparate impact theory is especially controversial under the Fair Housing Act because the Act regulates many activities relating to housing, insurance, and mortgage loans—and some scholars have argued that the theory's use under the Fair Housing Act, combined with extensions of the Community Reinvestment Act, contributed to rise of sub-prime lending and the crash of the U.S. housing market and ensuing global economic recession"], ['Represent the Wikipedia document for retrieval: ','Disparate impact in United States labor law refers to practices in employment, housing, and other areas that adversely affect one group of people of a protected characteristic more than another, even though rules applied by employers or landlords are formally neutral. Although the protected classes vary by statute, most federal civil rights laws protect based on race, color, religion, national origin, and sex as protected traits, and some laws include disability status and other traits as well.']] query_embeddings = model.encode(query) corpus_embeddings = model.encode(corpus) similarities = cosine_similarity(query_embeddings,corpus_embeddings) retrieved_doc_id = np.argmax(similarities) print(retrieved_doc_id) ``` ## Clustering Use **customized embeddings** for clustering texts in groups. ```python import sklearn.cluster sentences = [['Represent the Medicine sentence for clustering: ','Dynamical Scalar Degree of Freedom in Horava-Lifshitz Gravity'], ['Represent the Medicine sentence for clustering: ','Comparison of Atmospheric Neutrino Flux Calculations at Low Energies'], ['Represent the Medicine sentence for clustering: ','Fermion Bags in the Massive Gross-Neveu Model'], ['Represent the Medicine sentence for clustering: ',"QCD corrections to Associated t-tbar-H production at the Tevatron"], ['Represent the Medicine sentence for clustering: ','A New Analysis of the R Measurements: Resonance Parameters of the Higher, Vector States of Charmonium']] embeddings = model.encode(sentences) clustering_model = sklearn.cluster.MiniBatchKMeans(n_clusters=2) clustering_model.fit(embeddings) cluster_assignment = clustering_model.labels_ print(cluster_assignment) ```
23c06254f67b8ad723affed51716e3f4
mchochowski/test-model
mchochowski
null
4
14
transformers
0
image-classification
false
false
false
apache-2.0
null
['imagenet']
null
0
0
0
0
0
0
0
['image-classification', 'resnet']
false
true
true
4,180
false
### Model Description The ***ResNet50 v1.5*** model is a modified version of the [original ResNet50 v1 model](https://arxiv.org/abs/1512.03385). The difference between v1 and v1.5 is that, in the bottleneck blocks which requires downsampling, v1 has stride = 2 in the first 1x1 convolution, whereas v1.5 has stride = 2 in the 3x3 convolution. This difference makes ResNet50 v1.5 slightly more accurate (\~0.5% top1) than v1, but comes with a smallperformance drawback (\~5% imgs/sec). The model is initialized as described in [Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification](https://arxiv.org/pdf/1502.01852.pdf) This model is trained with mixed precision using Tensor Cores on Volta, Turing, and the NVIDIA Ampere GPU architectures. Therefore, researchers can get results over 2x faster than training without Tensor Cores, while experiencing the benefits of mixed precision training. This model is tested against each NGC monthly container release to ensure consistent accuracy and performance over time. Note that the ResNet50 v1.5 model can be deployed for inference on the [NVIDIA Triton Inference Server](https://github.com/NVIDIA/trtis-inference-server) using TorchScript, ONNX Runtime or TensorRT as an execution backend. For details check [NGC](https://ngc.nvidia.com/catalog/resources/nvidia:resnet_for_triton_from_pytorch) ### Example In the example below we will use the pretrained ***ResNet50 v1.5*** model to perform inference on ***image*** and present the result. To run the example you need some extra python packages installed. These are needed for preprocessing images and visualization. ```python !pip install validators matplotlib ``` ```python import torch from PIL import Image import torchvision.transforms as transforms import numpy as np import json import requests import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') %matplotlib inline device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") print(f'Using {device} for inference') ``` Load the model pretrained on IMAGENET dataset. ```python resnet50 = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_resnet50', pretrained=True) utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_convnets_processing_utils') resnet50.eval().to(device) ``` Prepare sample input data. ```python uris = [ 'http://images.cocodataset.org/test-stuff2017/000000024309.jpg', 'http://images.cocodataset.org/test-stuff2017/000000028117.jpg', 'http://images.cocodataset.org/test-stuff2017/000000006149.jpg', 'http://images.cocodataset.org/test-stuff2017/000000004954.jpg', ] batch = torch.cat( [utils.prepare_input_from_uri(uri) for uri in uris] ).to(device) ``` Run inference. Use `pick_n_best(predictions=output, n=topN)` helepr function to pick N most probably hypothesis according to the model. ```python with torch.no_grad(): output = torch.nn.functional.softmax(resnet50(batch), dim=1) results = utils.pick_n_best(predictions=output, n=5) ``` Display the result. ```python for uri, result in zip(uris, results): img = Image.open(requests.get(uri, stream=True).raw) img.thumbnail((256,256), Image.ANTIALIAS) plt.imshow(img) plt.show() print(result) ``` ### Details For detailed information on model input and output, training recipies, inference and performance visit: [github](https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/ConvNets/resnet50v1.5) and/or [NGC](https://ngc.nvidia.com/catalog/resources/nvidia:resnet_50_v1_5_for_pytorch) ### References - [Original ResNet50 v1 paper](https://arxiv.org/abs/1512.03385) - [Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification](https://arxiv.org/pdf/1502.01852.pdf) - [model on github](https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/ConvNets/resnet50v1.5) - [model on NGC](https://ngc.nvidia.com/catalog/resources/nvidia:resnet_50_v1_5_for_pytorch) - [pretrained model on NGC](https://ngc.nvidia.com/catalog/models/nvidia:resnet50_pyt_amp) ```python ```
0da925f8cdec0ab06a770d8ae3e5a813
abishanth/crpf_analysis_trail_1
abishanth
distilbert
15
1
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,037
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # crpf_analysis_trail_1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0301 - Accuracy: 0.9935 - F1: 0.8571 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
7294f44b996a90b477e343f6ae32cbc2
DrishtiSharma/whisper-large-v2-ml-700-steps
DrishtiSharma
whisper
15
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['ml']
['mozilla-foundation/common_voice_11_0']
null
0
0
0
0
0
0
0
['whisper-event', 'generated_from_trainer']
true
true
true
1,323
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Large V2 Malayalam- Drishti Sharma This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3159 - Wer: 28.2886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 700 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0002 | 12.96 | 700 | 0.3159 | 28.2886 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
e1ae60f04f4fe80440a79b9a17d03737
vishwasgautam/HuBERT-base-libriSpeech-demo-colab
vishwasgautam
hubert
12
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,359
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # HuBERT-base-libriSpeech-demo-colab This model is a fine-tuned version of [facebook/hubert-large-ls960-ft](https://huggingface.co/facebook/hubert-large-ls960-ft) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1456 - Wer: 0.2443 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 7.6395 | 13.51 | 500 | 3.1933 | 0.9930 | | 2.5994 | 27.03 | 1000 | 0.1456 | 0.2443 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
508ce17af20be0246419d3a38f6463d1
wietsedv/xlm-roberta-base-ft-udpos28-cy
wietsedv
xlm-roberta
8
13
transformers
0
token-classification
true
false
false
apache-2.0
['cy']
['universal_dependencies']
null
0
0
0
0
0
0
0
['part-of-speech', 'token-classification']
true
true
true
565
false
# XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Welsh This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-cy") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-cy") ```
8aa568fb46e55a8e84c605896eb885de
kingabzpro/wav2vec2-large-xls-r-300m-Indonesian
kingabzpro
wav2vec2
16
6
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['id']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'hf-asr-leaderboard', 'robust-speech-event']
true
true
true
1,927
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-Indonesian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4087 - Wer: 0.2461 - Cer: 0.0666 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 5.0788 | 4.26 | 200 | 2.9389 | 1.0 | 1.0 | | 2.8288 | 8.51 | 400 | 2.2535 | 1.0 | 0.8004 | | 0.907 | 12.77 | 600 | 0.4558 | 0.4243 | 0.1095 | | 0.4071 | 17.02 | 800 | 0.4013 | 0.3468 | 0.0913 | | 0.3 | 21.28 | 1000 | 0.4167 | 0.3075 | 0.0816 | | 0.2544 | 25.53 | 1200 | 0.4132 | 0.2835 | 0.0762 | | 0.2145 | 29.79 | 1400 | 0.3878 | 0.2693 | 0.0729 | | 0.1923 | 34.04 | 1600 | 0.4023 | 0.2623 | 0.0702 | | 0.1681 | 38.3 | 1800 | 0.3984 | 0.2581 | 0.0686 | | 0.1598 | 42.55 | 2000 | 0.3982 | 0.2493 | 0.0663 | | 0.1464 | 46.81 | 2200 | 0.4087 | 0.2461 | 0.0666 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
2248a0490959902fdcd159557f83cf7e
AlekseyKorshuk/1.3b-dalio-principles-book
AlekseyKorshuk
opt
13
2
transformers
0
text-generation
true
false
false
other
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,115
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 1.3b-dalio-principles-book This model is a fine-tuned version of [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4512 - Accuracy: 0.4741 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 8 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.6914 | 0.14 | 1 | 2.6895 | 0.4477 | | 2.6897 | 0.29 | 2 | 2.6895 | 0.4477 | | 2.668 | 0.43 | 3 | 2.7031 | 0.4403 | | 2.7434 | 0.57 | 4 | 2.5918 | 0.4533 | | 2.6265 | 0.71 | 5 | 2.5410 | 0.4618 | | 2.5259 | 0.86 | 6 | 2.5156 | 0.4641 | | 2.5566 | 1.0 | 7 | 2.4902 | 0.4667 | | 2.2317 | 1.14 | 8 | 2.4766 | 0.4707 | | 2.2397 | 1.29 | 9 | 2.4727 | 0.4705 | | 2.0162 | 1.43 | 10 | 2.4766 | 0.4690 | | 2.0537 | 1.57 | 11 | 2.4805 | 0.4707 | | 2.1432 | 1.71 | 12 | 2.4707 | 0.4714 | | 2.0822 | 1.86 | 13 | 2.4570 | 0.4724 | | 1.9056 | 2.0 | 14 | 2.4512 | 0.4741 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
d325a95dafb4aba8931b374c744c2d02
sasuke/bert-base-uncased-finetuned-sst2
sasuke
bert
29
3
transformers
0
text-classification
true
false
false
apache-2.0
null
['glue']
null
1
1
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,463
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-sst2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2982 - Accuracy: 0.9323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1817 | 1.0 | 4210 | 0.2920 | 0.9186 | | 0.1297 | 2.0 | 8420 | 0.3069 | 0.9209 | | 0.0978 | 3.0 | 12630 | 0.2982 | 0.9323 | | 0.062 | 4.0 | 16840 | 0.3278 | 0.9312 | | 0.0303 | 5.0 | 21050 | 0.3642 | 0.9323 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
f51121dce2febf1abda52abda04cce20
jgammack/MTL-roberta-base
jgammack
roberta
22
4
transformers
0
fill-mask
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,884
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MTL-roberta-base This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 7 - eval_batch_size: 7 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8338 | 1.0 | 98 | 1.6750 | | 1.7732 | 2.0 | 196 | 1.6229 | | 1.7208 | 3.0 | 294 | 1.6131 | | 1.6917 | 4.0 | 392 | 1.5936 | | 1.6579 | 5.0 | 490 | 1.6183 | | 1.6246 | 6.0 | 588 | 1.6015 | | 1.6215 | 7.0 | 686 | 1.5248 | | 1.5743 | 8.0 | 784 | 1.5454 | | 1.5621 | 9.0 | 882 | 1.5925 | | 1.5652 | 10.0 | 980 | 1.5213 | | 1.5615 | 11.0 | 1078 | 1.4845 | | 1.5349 | 12.0 | 1176 | 1.5443 | | 1.5165 | 13.0 | 1274 | 1.5304 | | 1.5164 | 14.0 | 1372 | 1.4773 | | 1.5293 | 15.0 | 1470 | 1.5537 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
1a42fb08f72de6f194875a6f0d6a7d67
jonatasgrosman/exp_w2v2t_th_wav2vec2_s664
jonatasgrosman
wav2vec2
10
3
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['th']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'th']
false
true
true
459
false
# exp_w2v2t_th_wav2vec2_s664 Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition on Thai using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
f0b8c7bfbd1733bdfc143aec9d70d3f6
StarwingDigital/Oldjourney
StarwingDigital
null
25
0
diffusers
6
null
false
false
false
creativeml-openrail-m
['en']
null
null
0
0
0
0
0
0
0
['Text-to-image', 'Diffusers', 'stable-diffusion']
false
true
true
6,858
false
<b>Oldjourney</b> Oldjourney is a finetuned Stable Diffusion 2.1 model trained on images from Midjourney 3 using Dreambooth. That older version of Midjourney was often messy and imprecise, but had a great artistic style. These two versions of Oldjourney can recreate the essence of that art style with added details, precision, and quality. The two models, Oldjourney Ultra and Oldjourney Lite, are very similar, but they have different strengths. Ultra is better at people, while Lite is better at painterly style images. Use the keyword <b>Oldjourney</b> to trigger the style, and set the resolution to 768 x 768 or greater. Examples and sample prompts below. This is a model for Stable Diffusion 2.1, so make sure to download the yaml files. <b>Rendered with Oldjourney Lite</b> ![Oldjourney Lite.png](https://s3.amazonaws.com/moonup/production/uploads/1673363360976-6362b8dc2a84d82a8c91145c.png) <b>Rendered with Oldjourney Ultra</b> ![Oldjourney Ultra.png](https://s3.amazonaws.com/moonup/production/uploads/1673363412363-6362b8dc2a84d82a8c91145c.png) <b>Sample Prompts for Oldjourney Lite</b> <b>Sample 1</b> Oldjourney the legendary dream vortex and a dreamer, a boy laying on a bed in front of a vortex, ultrafine detailed painting, psychedelic art, watching the stars at night, pulled into the spiral vortex, videogame cover art, ... if only i could sleep, discord profile picture, time travel machine, photoshop render <b>Negative prompt:</b> pink, ugly, tiling, out of frame, body out of frame, blurry, blurred, grainy, cut off, draft, (cropped:1.2),(overexposure:1.2), (high contrast:1.2), (poorly drawn hands:1.2), (poorly drawn feet:1.2), (poorly drawn face:1.2), (too long neck:1:2), (extra limbs:1.2), (less than two arms:1.2), (less than two legs:1.2), disfigured, deformed,(bad anatomy:1.2), (watermark:1.2), (logo:1.2), (barcode:1.2), (UI:1.2), (signature:1.2), (text:1.2), (label:1.5), (error:1.2), (title:1.2), stickers, markings, speech bubbles, lines, cropped, low res, low quality, artifacts, low quality, worst quality, bad quality <i>Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 810775161, Size: 768x768, Model: Oldjourney Lite, ENSD: 1</i> <b>Sample 2</b> Oldjourney an image of a wizard with a glowing staff turned to the side, black background, light art, full of colors and rich detail, color grunge, profile picture 1024px, glowing liquid, high detailed colors, colorful fire, an old man, blacklight, discord profile picture <b>Negative prompt:</b> ugly, tiling, out of frame, body out of frame, blurry, blurred, grainy, cut off, draft, (cropped:1.2),(overexposure:1.2), (high contrast:1.2), (poorly drawn hands:1.2), (poorly drawn feet:1.2), (poorly drawn face:1.2), (too long neck:1:2), (extra limbs:1.2), (less than two arms:1.2), (less than two legs:1.2), disfigured, deformed,(bad anatomy:1.2), (watermark:1.2), (logo:1.2), (barcode:1.2), (UI:1.2), (signature:1.2), (text:1.2), (label:1.5), (error:1.2), (title:1.2), stickers, markings, speech bubbles, lines, cropped, low res, low quality, artifacts, low quality, worst quality, bad quality <i>Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 2371590421, Size: 768x768, Model: Oldjourney Lite, ENSD: 1</i> <b>Sample 3</b> Oldjourney a dog with a tiny top hat and steampunk goggles on its head and a steampunk collar, matte painting, insanely detailed, ultrafine details, hyperrealism <b>Negative prompt:</b> (cropped:1.2),(overexposure:1.2), (high contrast:1.2), (watermark:1.2), (logo:1.2), (barcode:1.2), (UI:1.2), (signature:1.2), (text:1.2), (label:1.5), (error:1.2), (title:1.2), stickers, markings, speech bubbles, lines, cropped, low res, low quality, artifacts, low quality, worst quality, bad quality <i>Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 3142299054, Size: 768x768, Model: Oldjourney Lite, ENSD: 1</i> <b>Sample Prompts for Oldjourney Ultra</b> <b>Sample 4</b> Oldjourney A woman facing the camera dancing aura of cosmic energy vortex of sparkling blue sand and glowing embers ((grunge)) smoke magical eerie noir lighting stars in the sky ethereal dream sandman surreal rembrandt artstation dark atmosphere 8k highly detailed atmospheric <b>Negative prompt:</b> ugly, tiling, (poorly drawn hands:1.2), (poorly drawn feet:1.2), (poorly drawn face:1.2), out of frame, extra limbs, less than two arms, less than two legs, disfigured, deformed, body out of frame, blurry, (bad anatomy:1.2), blurred, grainy, cut off, draft, (overexposure:1.2), (high contrast:1.2),(cropped:1.2), (watermark:1.2), (logo:1.2), (barcode:1.2), (UI:1.2), (signature:1.2), (text:1.2), (label:1.5), (error:1.2), (title:1.2), stickers, markings, speech bubbles, lines, cropped, low res, low quality, artifacts, low quality, worst quality, bad quality <i>Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 2676530026, Size: 768x768, Model: Oldjourney Ultra, ENSD: 1</i> <b>Sample 5</b> Oldjourney your fate revealed inside a crystal ball, crystal ball with swirling otherworldly fog reveals your fate, insanely detailed masterpiece Trending on Artstation 8k ray traced volumetric lighting ambient occlusion ultrafine details digital art painting <b>Negative prompt:</b> ugly, tiling, out of frame, body out of frame, blurry, blurred, grainy, cut off, draft, (cropped:1.2),(overexposure:1.2), (high contrast:1.2), (poorly drawn hands:1.2), (poorly drawn feet:1.2), (poorly drawn face:1.2), (too long neck:1:2), (extra limbs:1.2), (less than two arms:1.2), (less than two legs:1.2), disfigured, deformed,(bad anatomy:1.2), (watermark:1.2), (logo:1.2), (barcode:1.2), (UI:1.2), (signature:1.2), (text:1.2), (label:1.5), (error:1.2), (title:1.2), stickers, markings, speech bubbles, lines, cropped, low res, low quality, artifacts, low quality, worst quality, bad quality <i>Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 2555061923, Size: 768x768, Model: Oldjourney Ultra, ENSD: 1</i> <b>Sample 6</b> Oldjourney cosmic queen, ethereal woman with a crown on her head, head and shoulders portrait, fantasy art, star sky, star sky, face illuminated, sparkle, stars, cosmos, paticles <b>Negative prompt:</b> ugly, tiling, out of frame, body out of frame, blurry, blurred, grainy, cut off, draft, (cropped:1.2),(overexposure:1.2), (high contrast:1.2), (poorly drawn hands:1.2), (poorly drawn feet:1.2), (poorly drawn face:1.2), (too long neck:1:2), (extra limbs:1.2), (less than two arms:1.2), (less than two legs:1.2), disfigured, deformed,(bad anatomy:1.2), (watermark:1.2), (logo:1.2), (barcode:1.2), (UI:1.2), (signature:1.2), (text:1.2), (label:1.5), (error:1.2), (title:1.2), stickers, markings, speech bubbles, lines, cropped, low res, low quality, artifacts, low quality, worst quality, bad quality <i>Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 868461039, Face restoration: GFPGAN, Size: 768x768, Model: Oldjourney Ultra, ENSD: 1</i>
ce1c44f3f6793ffa1be68e8dd8177758
spacy/fr_core_news_lg
spacy
null
28
30
spacy
1
token-classification
false
false
false
lgpl-lr
['fr']
null
null
0
0
0
0
0
0
0
['spacy', 'token-classification']
false
true
true
11,828
false
### Details: https://spacy.io/models/fr#fr_core_news_lg French pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, senter, ner, attribute_ruler, lemmatizer. | Feature | Description | | --- | --- | | **Name** | `fr_core_news_lg` | | **Version** | `3.5.0` | | **spaCy** | `>=3.5.0,<3.6.0` | | **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` | | **Components** | `tok2vec`, `morphologizer`, `parser`, `senter`, `attribute_ruler`, `lemmatizer`, `ner` | | **Vectors** | 500000 keys, 500000 unique vectors (300 dimensions) | | **Sources** | [UD French Sequoia v2.8](https://github.com/UniversalDependencies/UD_French-Sequoia) (Candito, Marie; Seddah, Djamé; Perrier, Guy; Guillaume, Bruno)<br />[WikiNER](https://figshare.com/articles/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500) (Joel Nothman, Nicky Ringland, Will Radford, Tara Murphy, James R Curran)<br />[spaCy lookups data](https://github.com/explosion/spacy-lookups-data) (Explosion)<br />[Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia)](https://spacy.io) (Explosion) | | **License** | `LGPL-LR` | | **Author** | [Explosion](https://explosion.ai) | ### Label Scheme <details> <summary>View label scheme (237 labels for 3 components)</summary> | Component | Labels | | --- | --- | | **`morphologizer`** | `POS=PROPN`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=NOUN`, `Number=Plur\|POS=PRON\|Person=1`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=SCONJ`, `POS=ADP`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `NumType=Ord\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=PUNCT`, `Gender=Masc\|Number=Sing\|POS=PROPN`, `Number=Plur\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=NOUN`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `POS=ADV`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=PROPN`, `Definite=Def\|Number=Sing\|POS=DET\|PronType=Art`, `NumType=Card\|POS=NUM`, `Definite=Def\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `POS=CCONJ`, `Gender=Fem\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Gender=Fem\|Number=Plur\|POS=ADJ`, `POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `POS=PRON\|PronType=Rel`, `Number=Sing\|POS=DET\|Poss=Yes`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Art`, `Definite=Def\|Number=Plur\|POS=ADP\|PronType=Art`, `Definite=Ind\|Number=Plur\|POS=DET\|PronType=Art`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=VERB\|VerbForm=Inf`, `Gender=Fem\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3`, `Number=Plur\|POS=DET`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=ADV\|PronType=Int`, `POS=VERB\|Tense=Pres\|VerbForm=Part`, `Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Number=Plur\|POS=DET\|Poss=Yes`, `POS=AUX\|VerbForm=Inf`, `Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Gender=Masc\|POS=VERB\|Tense=Past\|VerbForm=Part`, `POS=ADV\|Polarity=Neg`, `Definite=Ind\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3`, `POS=PRON\|Person=3\|Reflex=Yes`, `Gender=Masc\|POS=NOUN`, `POS=AUX\|Tense=Past\|VerbForm=Part`, `POS=PRON\|Person=3`, `Number=Plur\|POS=NOUN`, `NumType=Ord\|Number=Sing\|POS=ADJ`, `POS=VERB\|Tense=Past\|VerbForm=Part`, `POS=AUX\|Tense=Pres\|VerbForm=Part`, `Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Number=Sing\|POS=PRON\|Person=3`, `Number=Sing\|POS=NOUN`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=3`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Number=Plur\|POS=PROPN`, `Number=Sing\|POS=PROPN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=DET`, `Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes`, `Gender=Masc\|POS=PRON`, `POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON`, `Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Number=Sing\|POS=PRON`, `Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Ind\|POS=VERB\|VerbForm=Fin`, `Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=PRON`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `POS=PRON`, `POS=NUM`, `Gender=Fem\|POS=NOUN`, `POS=SPACE`, `Gender=Fem\|Number=Plur\|POS=PRON`, `Number=Plur\|POS=PRON\|Person=3`, `Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Number=Sing\|POS=PRON\|Person=1`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=INTJ`, `Number=Plur\|POS=PRON\|Person=2`, `NumType=Card\|POS=PRON`, `Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `NumType=Card\|POS=NOUN`, `POS=PRON\|PronType=Int`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=3`, `Gender=Fem\|Number=Sing\|POS=DET`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=DET`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Gender=Masc\|Number=Plur\|POS=PROPN`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Number=Sing\|POS=DET`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Mood=Ind\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|POS=PRON`, `Gender=Masc\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part`, `POS=X`, `POS=SYM`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `POS=DET`, `Gender=Masc\|Number=Plur\|POS=PRON`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|POS=VERB\|Person=3\|VerbForm=Fin`, `Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Gender=Masc\|Number=Plur\|POS=DET`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Mood=Imp\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=2\|Reflex=Yes`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=1\|Reflex=Yes`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Number=Sing\|POS=PRON\|Person=1\|Reflex=Yes`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|POS=PROPN`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Imp\|VerbForm=Fin`, `Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Gender=Fem\|Number=Plur\|POS=PROPN`, `Gender=Masc\|NumType=Card\|POS=NUM` | | **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux:pass`, `aux:tense`, `case`, `cc`, `ccomp`, `conj`, `cop`, `dep`, `det`, `expl:comp`, `expl:pass`, `expl:subj`, `fixed`, `flat:foreign`, `flat:name`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl:agent`, `obl:arg`, `obl:mod`, `parataxis`, `punct`, `vocative`, `xcomp` | | **`ner`** | `LOC`, `MISC`, `ORG`, `PER` | </details> ### Accuracy | Type | Score | | --- | --- | | `TOKEN_ACC` | 99.80 | | `TOKEN_P` | 98.44 | | `TOKEN_R` | 98.96 | | `TOKEN_F` | 98.70 | | `POS_ACC` | 97.34 | | `MORPH_ACC` | 96.74 | | `MORPH_MICRO_P` | 98.91 | | `MORPH_MICRO_R` | 98.17 | | `MORPH_MICRO_F` | 98.54 | | `SENTS_P` | 85.92 | | `SENTS_R` | 89.26 | | `SENTS_F` | 87.35 | | `DEP_UAS` | 90.29 | | `DEP_LAS` | 86.54 | | `TAG_ACC` | 94.47 | | `LEMMA_ACC` | 91.36 | | `ENTS_P` | 83.99 | | `ENTS_R` | 83.87 | | `ENTS_F` | 83.93 |
5e2a6466e7c2ed2a03fe988d87d3486f
heziiiii/ddpm-butterflies-128
heziiiii
null
13
0
diffusers
0
null
false
false
false
apache-2.0
['en']
['huggan/smithsonian_butterflies_subset']
null
0
0
0
0
0
0
0
[]
false
true
true
1,230
false
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/heziiiii/ddpm-butterflies-128/tensorboard?#scalars)
1d9ac641223f45476fb771d4848b4b72
TheSkinnyRat/TI-EMB_elaina
TheSkinnyRat
null
23
0
null
4
null
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['stable-diffusion']
false
true
true
1,933
false
# Info > Trainer: [TheSkinnyRat](https://huggingface.co/TheSkinnyRat)\ > Type: Textual Inversion Embeddings # Description > Elaina (イレイナ, Ireina) is the main protagonist of the Wandering Witch series. > She is a witch with the witch name of The Ashen Witch. > ([Fandom](https://wandering-witch.fandom.com/wiki/Elaina)) # Download > [Model download](https://huggingface.co/TheSkinnyRat/TI-EMB_elaina/tree/main) # Training > Model Used: [nai-wd.ckpt](https://huggingface.co/andite/training_models/tree/main)\ > Dataset: 13 images\ > Size: 512x512\ > Steps: 7500\ > N Steps: 500 # Preview > **Model:** [anything-v4.5-pruned.ckpt](https://huggingface.co/andite/anything-v4.0/tree/main)\ > **Model VAE:** [anything-v4.0.vae.pt](https://huggingface.co/andite/anything-v4.0/tree/main)\ > **Prompt:** masterpiece, best quality, EMB_elaina-7500\ > **Negative Prompt:** obese, (ugly:1.3), (duplicate:1.3), (morbid), (mutilated), out of frame, extra fingers, mutated hands, (poorly drawn hands), (poorly drawn face), (mutation:1.3), (deformed:1.3), (amputee:1.3), blurry, bad anatomy, bad proportions, (extra limbs), cloned face, (disfigured:1.3), gross proportions, (malformed limbs), (missing arms), (missing legs), (extra arms), (extra legs), mutated hands, (fused fingers), (too many fingers), (long neck:1.3), lowres, text, error, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, black and white, monochrome, censored,empty ![Preview1](https://huggingface.co/TheSkinnyRat/TI-EMB_elaina/resolve/main/preview/1.png) ![Preview2](https://huggingface.co/TheSkinnyRat/TI-EMB_elaina/resolve/main/preview/2.png) ![Preview3](https://huggingface.co/TheSkinnyRat/TI-EMB_elaina/resolve/main/preview/3.png) ![Preview4](https://huggingface.co/TheSkinnyRat/TI-EMB_elaina/resolve/main/preview/4.png) ![Preview5](https://huggingface.co/TheSkinnyRat/TI-EMB_elaina/resolve/main/preview/5.png)
a6af81dbf17d0ce280f1fc326c07c815
annahaz/xlm-roberta-base-misogyny-sexism-tweets
annahaz
xlm-roberta
10
139
transformers
0
text-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,864
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-misogyny-sexism-tweets This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5009 - Accuracy: 0.796 - F1: 0.8132 - Precision: 0.75 - Recall: 0.888 - Mae: 0.204 - Tn: 352 - Fp: 148 - Fn: 56 - Tp: 444 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Mae | Tn | Fp | Fn | Tp | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-----:|:---:|:---:|:--:|:---:| | 0.4947 | 1.0 | 1646 | 0.4683 | 0.765 | 0.7866 | 0.7205 | 0.866 | 0.235 | 332 | 168 | 67 | 433 | | 0.4285 | 2.0 | 3292 | 0.4514 | 0.779 | 0.8004 | 0.7298 | 0.886 | 0.221 | 336 | 164 | 57 | 443 | | 0.3721 | 3.0 | 4938 | 0.4430 | 0.781 | 0.8060 | 0.7234 | 0.91 | 0.219 | 326 | 174 | 45 | 455 | | 0.3127 | 4.0 | 6584 | 0.5009 | 0.796 | 0.8132 | 0.75 | 0.888 | 0.204 | 352 | 148 | 56 | 444 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
904eb9c1e6f7faf20262fc071b839843
mattthew/technicolor-50s-diffusion
mattthew
null
9
0
null
0
null
false
false
false
cc-by-sa-4.0
null
null
null
1
0
0
1
0
0
0
[]
false
true
true
2,283
false
# 🌈 Technicolor-50s Diffusion ## Style Description - highly-saturated postcard-like colors, flat high-key lighting, strong rim-lighting, 40s and 50s lifestyle ## Sample Output (Raw Output) ![Asian woman](https://huggingface.co/mattthew/technicolor-50s-diffusion/resolve/main/00006-1638627547-tchnclr%20style.png) <sub>tchnclr style, a closeup portrait of Brenda Song, happy beaming content, glitter, glittery Negative prompt: b&w, lowres, text, error, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, ugly Steps: 40, Sampler: Euler, CFG scale: 7, Seed: 1638627547, Size: 512x512, Model hash: ed87e89c, Variation seed: 3476746822, Variation seed strength: 0.2</sub> ![White man loves dog](https://huggingface.co/mattthew/technicolor-50s-diffusion/resolve/main/00001-2257021426-closeup%20portr.png) <sub>Use PNG block tool to view the prompts and settings used to product these images</sub> ![Dapper Japanese man](https://huggingface.co/mattthew/technicolor-50s-diffusion/resolve/main/00003-706122643-tchnclr%20style%2C.png) ![Black sci-fi woman](https://huggingface.co/mattthew/technicolor-50s-diffusion/resolve/main/00000-1612917422-a%20closeup%20por.png) ![Man in glittery outfit](https://huggingface.co/mattthew/technicolor-50s-diffusion/resolve/main/00005-2202944893-tchnclr%20style.png) ![White woman with laptop](https://huggingface.co/mattthew/technicolor-50s-diffusion/resolve/main/00002-117811130-tchnclr%20style%2C.png) ## Recommended Usage - Your prompt must include "tchnclr style" - Use CFG of 7 or 8 for best results - The model was trained with and excels at closeup portraits of men and women - Try including "glitter" in your prompt! - Putting "b&w" as a negative prompt will help ensure color image ## Known Limitations - It strongly tries to insert 40s and 50s hairstyles, clothing, and scenery - As you can see from the examples, you can insert some modernity and blend with other styles. But if your prompt insists on modern elements, the technicolor effect may disappear. - The model tends to turn men into women. It also likes to add hats! ## Training Process 20 images from movies filmed in technicolor, 200 photo-like classifiers, 6000 steps, using the Dreambooth Extension for Automatic1111.
484c28e3c6b7e38859a451398a2bbbec
Zlikwid/zlikwidv2
Zlikwid
null
18
3
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
2
2
0
0
0
0
0
['text-to-image', 'stable-diffusion']
false
true
true
418
false
### ZlikwidV2 Dreambooth model trained by Zlikwid with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
2b49a1e7bf066806e97791b1feec57df
mrsteyk/openchatgpt-neo-125m
mrsteyk
gpt_neo
11
0
transformers
0
text-generation
true
false
false
mit
['en']
null
null
1
0
1
0
3
0
3
['generated_from_trainer', 'text generation', 'pytorch', 'casual-lm']
true
true
true
2,955
false
# --- Disclaimer --- # "Neo is an incredibly cursed codebase, it should not be used by anyone" (C) co-founder of EleutherAI - Connor Leahy # !!! USE [openchatgpt-neox-125m](https://huggingface.co/mrsteyk/openchatgpt-neox-125m) INSTEAD !!! # --- Archived --- # openchatgpt-neo-r1 This model is a fine-tuned version of [EleutherAI/gpt-neo-125M](https://huggingface.co/EleutherAI/gpt-neo-125M) on the openchatgpt safe-r1 dataset. It achieves the following results on the evaluation set: - Loss: 3.2156 - Accuracy: 0.8338 ## Model description Finetune based on the inner workings of ChatGPT. I won't elaborate on that. You must have a faint idea of how prompt is made for it to spit anything that's not garbled mess. This is effectively a schizophrenic idea that met the light of day. Practically a collab of 3 students in a virtual shed. ## Intended uses & limitations Intended uses & limitations fall in line with OpenAI's. Dataset used consists of safe texts (i.e. not highly sexual/erotica type stuff). NSFW version of the dataset is not planned to exist at the moment. Keep in mind that this is a 125m version of GPT-Neo. My 1050Ti Mobile couldn't even handle that without gradient thingmabobs. If anyone knows how to effectively finetune larger models on free colabs - feel free to let me know. Pile tokenizer also has one downside compared to native GPT-2/3 - `Assistant`. ## Training and evaluation data Data was split in ratio of 95%/5%. Preproccess included removing mentions of OpenAI wherever it was not deemed appropriete (GPT-2 has one of the appropriete mentions). Whole dataset consists of just shy off 3k input-output pairs. One input has multiple outputs (read as: one message has multiple variants of an answer). <<<1% (3 total) are curated lines (i.e. a huge mistake was spotted that needed corrections). Heavy bias on IT. ## Training procedure Input and output were straight up concatenated due to the nature of how ChatGPT works. Padding chosen was the same as the separator token, if that's not effective - please let me know as I am new to this stuff. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.9203 | 1.0 | 1378 | 5.1668 | 0.7274 | | 4.1368 | 2.0 | 2756 | 4.3841 | 0.7563 | | 3.4554 | 3.0 | 4134 | 3.8068 | 0.7875 | | 2.7598 | 4.0 | 5512 | 3.3097 | 0.8303 | | 2.5879 | 5.0 | 6890 | 3.2156 | 0.8338 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
363a38baa41437aac5164884c2768719
Siddu0406/gpt-2-model-2
Siddu0406
gpt2
13
0
transformers
0
text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,026
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-2-model-2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
f086e22089fd1f2875c22a8e19035a33
cammy/bart-large-cnn-100-lit-evalMA-NOpad2
cammy
bart
11
1
transformers
0
text2text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,552
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-100-lit-evalMA-NOpad2 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2126 - Rouge1: 25.6196 - Rouge2: 7.2753 - Rougel: 18.0987 - Rougelsum: 20.8416 - Gen Len: 67.3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 1.0 | 100 | 1.0890 | 23.5493 | 8.9875 | 17.1471 | 20.1643 | 67.8 | | No log | 2.0 | 200 | 1.2126 | 25.6196 | 7.2753 | 18.0987 | 20.8416 | 67.3 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
2904c5d06d606c80b84944cc19b49c00
Mehtap/whisper-base
Mehtap
whisper
25
20
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['tr']
null
null
0
0
0
0
0
0
0
['hf-asr-leaderboard', 'generated_from_trainer']
true
true
true
2,002
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Base Turkish Whisper (BTW) This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Ermetal Meetings dataset. It achieves the following results on the evaluation set: - Loss: 0.0009 - Wer: 0.0 - Cer: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 1.8786 | 6.63 | 100 | 1.3510 | 0.7866 | 0.6649 | | 0.4559 | 13.32 | 200 | 0.3395 | 0.3590 | 0.2157 | | 0.0793 | 19.95 | 300 | 0.0564 | 0.0996 | 0.0531 | | 0.0137 | 26.63 | 400 | 0.0120 | 0.0017 | 0.0017 | | 0.0042 | 33.32 | 500 | 0.0032 | 0.0 | 0.0 | | 0.0021 | 39.95 | 600 | 0.0018 | 0.0 | 0.0 | | 0.0014 | 46.63 | 700 | 0.0013 | 0.0 | 0.0 | | 0.0012 | 53.32 | 800 | 0.0011 | 0.0 | 0.0 | | 0.001 | 59.95 | 900 | 0.0010 | 0.0 | 0.0 | | 0.001 | 66.63 | 1000 | 0.0009 | 0.0 | 0.0 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.9.1+cu111 - Datasets 2.7.1 - Tokenizers 0.13.2
4de42494bf32c06be6b744bc961bde5e
fathyshalab/all-roberta-large-v1-meta-6-16-5
fathyshalab
roberta
11
3
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,507
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-meta-6-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4797 - Accuracy: 0.28 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7721 | 1.0 | 1 | 2.6529 | 0.1889 | | 2.2569 | 2.0 | 2 | 2.5866 | 0.2333 | | 1.9837 | 3.0 | 3 | 2.5340 | 0.2644 | | 1.6425 | 4.0 | 4 | 2.4980 | 0.2756 | | 1.4612 | 5.0 | 5 | 2.4797 | 0.28 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
f263b49c8773eee9a7f13bdb4ac4bad4
Helsinki-NLP/opus-mt-fi-xh
Helsinki-NLP
marian
10
8
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
768
false
### opus-mt-fi-xh * source languages: fi * target languages: xh * OPUS readme: [fi-xh](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-xh/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-xh/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-xh/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-xh/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.xh | 25.3 | 0.554 |
033987db784f4f88bd650c5730a9f0ac
lgris/bp500-base100k_voxpopuli
lgris
wav2vec2
9
8
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['pt']
['common_voice', 'mls', 'cetuc', 'lapsbm', 'voxforge', 'tedx', 'sid']
null
0
0
0
0
0
0
0
['audio', 'speech', 'wav2vec2', 'pt', 'portuguese-speech-corpus', 'automatic-speech-recognition', 'speech', 'PyTorch']
false
true
true
12,406
false
# bp500-base100k_voxpopuli: Wav2vec 2.0 with Brazilian Portuguese (BP) Dataset This is a the demonstration of a fine-tuned Wav2vec model for Brazilian Portuguese using the following datasets: - [CETUC](http://www02.smt.ufrj.br/~igor.quintanilha/alcaim.tar.gz): contains approximately 145 hours of Brazilian Portuguese speech distributed among 50 male and 50 female speakers, each pronouncing approximately 1,000 phonetically balanced sentences selected from the [CETEN-Folha](https://www.linguateca.pt/cetenfolha/) corpus. - [Common Voice 7.0](https://commonvoice.mozilla.org/pt): is a project proposed by Mozilla Foundation with the goal to create a wide open dataset in different languages. In this project, volunteers donate and validate speech using the [oficial site](https://commonvoice.mozilla.org/pt). - [Lapsbm](https://github.com/falabrasil/gitlab-resources): "Falabrasil - UFPA" is a dataset used by the Fala Brasil group to benchmark ASR systems in Brazilian Portuguese. Contains 35 speakers (10 females), each one pronouncing 20 unique sentences, totalling 700 utterances in Brazilian Portuguese. The audios were recorded in 22.05 kHz without environment control. - [Multilingual Librispeech (MLS)](https://arxiv.org/abs/2012.03411): a massive dataset available in many languages. The MLS is based on audiobook recordings in public domain like [LibriVox](https://librivox.org/). The dataset contains a total of 6k hours of transcribed data in many languages. The set in Portuguese [used in this work](http://www.openslr.org/94/) (mostly Brazilian variant) has approximately 284 hours of speech, obtained from 55 audiobooks read by 62 speakers. - [Multilingual TEDx](http://www.openslr.org/100): a collection of audio recordings from TEDx talks in 8 source languages. The Portuguese set (mostly Brazilian Portuguese variant) contains 164 hours of transcribed speech. - [Sidney](https://igormq.github.io/datasets/) (SID): contains 5,777 utterances recorded by 72 speakers (20 women) from 17 to 59 years old with fields such as place of birth, age, gender, education, and occupation; - [VoxForge](http://www.voxforge.org/): is a project with the goal to build open datasets for acoustic models. The corpus contains approximately 100 speakers and 4,130 utterances of Brazilian Portuguese, with sample rates varying from 16kHz to 44.1kHz. These datasets were combined to build a larger Brazilian Portuguese dataset. All data was used for training except Common Voice dev/test sets, that were used for validation/test respectively. We also made test sets for all the gathered datasets. | Dataset | Train | Valid | Test | |--------------------------------|-------:|------:|------:| | CETUC | 94.0h | -- | 5.4h | | Common Voice | 37.8h | 8.9h | 9.5h | | LaPS BM | 0.8h | -- | 0.1h | | MLS | 161.0h | -- | 3.7h | | Multilingual TEDx (Portuguese) | 148.9h | -- | 1.8h | | SID | 7.2h | -- | 1.0h | | VoxForge | 3.9h | -- | 0.1h | | Total | 453.6h | 8.9h | 21.6h | The original model was fine-tuned using [fairseq](https://github.com/pytorch/fairseq). This notebook uses a converted version of the original one. The link to the original fairseq model is available [here](https://drive.google.com/file/d/10iESR5AQxuxF5F7w3wLbpc_9YMsYbY9H/view?usp=sharing). #### Summary | | CETUC | CV | LaPS | MLS | SID | TEDx | VF | AVG | |----------------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | bp\_500-base100k_voxpopuli (demonstration below) | 0.142 | 0.201 | 0.052 | 0.224 | 0.102 | 0.317 | 0.048 | 0.155 | | bp\_500-base100k_voxpopuli + 4-gram (demonstration below) | 0.099 | 0.149 | 0.047 | 0.192 | 0.115 | 0.371 | 0.127 | 0.157 | #### Transcription examples | Text | Transcription | |------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------| |qual o instagram dele|**qualo** **está** **gramedele**| |o capitão foi expulso do exército porque era doido|o **capitãl** foi **exposo** do exército porque era doido| |também por que não|também **porque** não| |não existe tempo como o presente|não existe tempo como *o* presente| |eu pulei para salvar rachel|eu pulei para salvar **haquel**| |augusto cezar passos marinho|augusto **cesa** **passoesmarinho**| ## Demonstration ```python MODEL_NAME = "lgris/bp500-base100k_voxpopuli" ``` ### Imports and dependencies ```python %%capture !pip install torch==1.8.2+cu111 torchvision==0.9.2+cu111 torchaudio===0.8.2 -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html !pip install datasets !pip install jiwer !pip install transformers !pip install soundfile !pip install pyctcdecode !pip install https://github.com/kpu/kenlm/archive/master.zip ``` ```python import jiwer import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) from pyctcdecode import build_ctcdecoder import torch import re import sys ``` ### Helpers ```python chars_to_ignore_regex = '[\,\?\.\!\;\:\"]' # noqa: W605 def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = speech.squeeze(0).numpy() batch["sampling_rate"] = 16_000 batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") batch["target"] = batch["sentence"] return batch ``` ```python def calc_metrics(truths, hypos): wers = [] mers = [] wils = [] for t, h in zip(truths, hypos): try: wers.append(jiwer.wer(t, h)) mers.append(jiwer.mer(t, h)) wils.append(jiwer.wil(t, h)) except: # Empty string? pass wer = sum(wers)/len(wers) mer = sum(mers)/len(mers) wil = sum(wils)/len(wils) return wer, mer, wil ``` ```python def load_data(dataset): data_files = {'test': f'{dataset}/test.csv'} dataset = load_dataset('csv', data_files=data_files)["test"] return dataset.map(map_to_array) ``` ### Model ```python class STT: def __init__(self, model_name, device='cuda' if torch.cuda.is_available() else 'cpu', lm=None): self.model_name = model_name self.model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) self.processor = Wav2Vec2Processor.from_pretrained(model_name) self.vocab_dict = self.processor.tokenizer.get_vocab() self.sorted_dict = { k.lower(): v for k, v in sorted(self.vocab_dict.items(), key=lambda item: item[1]) } self.device = device self.lm = lm if self.lm: self.lm_decoder = build_ctcdecoder( list(self.sorted_dict.keys()), self.lm ) def batch_predict(self, batch): features = self.processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(self.device) with torch.no_grad(): logits = self.model(input_values).logits if self.lm: logits = logits.cpu().numpy() batch["predicted"] = [] for sample_logits in logits: batch["predicted"].append(self.lm_decoder.decode(sample_logits)) else: pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = self.processor.batch_decode(pred_ids) return batch ``` ### Download datasets ```python %%capture !gdown --id 1HFECzIizf-bmkQRLiQD0QVqcGtOG5upI !mkdir bp_dataset !unzip bp_dataset -d bp_dataset/ ``` ```python %cd bp_dataset ``` /content/bp_dataset ### Tests ```python stt = STT(MODEL_NAME) ``` #### CETUC ```python ds = load_data('cetuc_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CETUC WER:", wer) ``` CETUC WER: 0.1419179499917191 #### Common Voice ```python ds = load_data('commonvoice_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CV WER:", wer) ``` CV WER: 0.20079950312040154 #### LaPS ```python ds = load_data('lapsbm_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Laps WER:", wer) ``` Laps WER: 0.052780934343434324 #### MLS ```python ds = load_data('mls_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("MLS WER:", wer) ``` MLS WER: 0.22413887199364113 #### SID ```python ds = load_data('sid_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Sid WER:", wer) ``` Sid WER: 0.1019041538671034 #### TEDx ```python ds = load_data('tedx_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("TEDx WER:", wer) ``` TEDx WER: 0.31711268778273327 #### VoxForge ```python ds = load_data('voxforge_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("VoxForge WER:", wer) ``` VoxForge WER: 0.04826433982683982 ### Tests with LM ```python !rm -rf ~/.cache !gdown --id 1GJIKseP5ZkTbllQVgOL98R4yYAcIySFP # trained with wikipedia stt = STT(MODEL_NAME, lm='pt-BR-wiki.word.4-gram.arpa') # !gdown --id 1dLFldy7eguPtyJj5OAlI4Emnx0BpFywg # trained with bp # stt = STT(MODEL_NAME, lm='pt-BR.word.4-gram.arpa') ``` ### Cetuc ```python ds = load_data('cetuc_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CETUC WER:", wer) ``` CETUC WER: 0.099518615112877 #### Common Voice ```python ds = load_data('commonvoice_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CV WER:", wer) ``` CV WER: 0.1488912889506362 #### LaPS ```python ds = load_data('lapsbm_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Laps WER:", wer) ``` Laps WER: 0.047080176767676764 #### MLS ```python ds = load_data('mls_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("MLS WER:", wer) ``` MLS WER: 0.19220291966887196 #### SID ```python ds = load_data('sid_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Sid WER:", wer) ``` Sid WER: 0.11535498771650306 #### TEDx ```python ds = load_data('tedx_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("TEDx WER:", wer) ``` TEDx WER: 0.3707890073539895 #### VoxForge ```python ds = load_data('voxforge_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("VoxForge WER:", wer) ``` VoxForge WER: 0.12682088744588746
dfb57b0c3b85eeeade2b272e16bf346b
birgermoell/psst-fairseq-larger-rir
birgermoell
wav2vec2
5
7
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['en']
null
null
0
0
0
0
0
0
0
['automatic-speech-recognition']
false
true
true
410
false
This model is trained on the PSST Challenge data, with a subset of TIMIT that was augmented using Room Impulse Response (RIR). A file containing the list of TIMIT IDs is in the repository (`timit-ids.txt`) The model was finetuned on [Wav2vec 2.0 Large, No finetuning](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec), and the results on the validation set were **PER:** 21\.0%, **FER:** 9\.2%.
330b8788ffa202e8ee922d131a574a4e
Mizuiro-sakura/deberta-v2-base-japanese-finetuned-ner
Mizuiro-sakura
deberta-v2
12
10
transformers
0
token-classification
true
false
false
mit
['ja']
['wikipedia', 'cc100', 'oscar']
null
0
0
0
0
0
0
0
['pytorch', 'deberta', 'deberta-v2', 'named entity recognition', 'named-entity-recognition', 'ner']
false
true
true
2,101
false
# このモデルはdeberta-v2-base-japaneseをファインチューニングして固有表現抽出(NER)に用いれるようにしたものです。 このモデルはdeberta-v2-base-japaneseを Wikipediaを用いた日本語の固有表現抽出データセット(ストックマーク社、https://github.com/stockmarkteam/ner-wikipedia-dataset )を用いてファインチューニングしたものです。 # This model is fine-tuned model for Named Entity Recognition (NER) which is based on deberta-v2-base-japanese This model is fine-tuned by using Wikipedia dataset. You could use this model for NER tasks. # How to use 使い方 transformersおよびpytorch、sentencepiece、Juman++をインストールしてください。 以下のコードを実行することで、固有表現抽出タスクを解かせることができます。 please execute this code. ```python from transformers import AutoTokenizer,pipeline, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained('Mizuiro-sakura/deberta-v2-base-japanese-finetuned-ner') model=AutoModelForTokenClassification.from_pretrained('Mizuiro-sakura/deberta-v2-base-japanese-finetuned-ner') # 学習済みモデルの読み込み text=('昨日は東京で買い物をした') ner=pipeline('ner', model=model, tokenizer=tokenizer) result=ner(text) print(result) ``` # モデルの精度 accuracy of model precision recall f1-score support その他の組織名 0.73 0.75 0.74 238 イベント名 0.81 0.81 0.81 215 人名 0.84 0.87 0.85 547 地名 0.83 0.83 0.83 446 政治的組織名 0.82 0.85 0.83 263 施設名 0.74 0.86 0.80 241 法人名 0.81 0.82 0.82 487 製品名 0.68 0.73 0.71 252 micro avg 0.79 0.82 0.81 2689 macro avg 0.78 0.81 0.80 2689 weighted avg 0.79 0.82 0.81 2689 # deberta-v2-base-japaneseとは? 日本語Wikipedeia(3.2GB)および、cc100(85GB)、oscar(54GB)を用いて訓練されたモデルです。 京都大学黒橋研究室が公表されました。 # Model description This is a Japanese DeBERTa V2 base model pre-trained on Japanese Wikipedia, the Japanese portion of CC-100, and the Japanese portion of OSCAR. # Acknowledgments 謝辞 モデルを公開してくださった京都大学黒橋研究室には感謝いたします。 I would like to thank Kurohashi Lab at Kyoto University.
08052a58606c65d69b357d8b908b6794
stanfordnlp/stanza-swl
stanfordnlp
null
6
4
stanza
0
token-classification
false
false
false
apache-2.0
['swl']
null
null
0
0
0
0
0
0
0
['stanza', 'token-classification']
false
true
true
595
false
# Stanza model for Swedish_Sign_Language (swl) Stanza is a collection of accurate and efficient tools for the linguistic analysis of many human languages. Starting from raw text to syntactic analysis and entity recognition, Stanza brings state-of-the-art NLP models to languages of your choosing. Find more about it in [our website](https://stanfordnlp.github.io/stanza) and our [GitHub repository](https://github.com/stanfordnlp/stanza). This card and repo were automatically prepared with `hugging_stanza.py` in the `stanfordnlp/huggingface-models` repo Last updated 2022-09-25 02:05:14.693
afd409c3b660a0f11d7a3218304d7115
muhtasham/small-mlm-glue-wnli
muhtasham
bert
12
0
transformers
0
fill-mask
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,025
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # small-mlm-glue-wnli This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1284 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.7452 | 6.25 | 500 | 1.2770 | | 0.9127 | 12.5 | 1000 | 0.8006 | | 0.6024 | 18.75 | 1500 | 0.5714 | | 0.3967 | 25.0 | 2000 | 0.6533 | | 0.3443 | 31.25 | 2500 | 0.3623 | | 0.2739 | 37.5 | 3000 | 0.3035 | | 0.2326 | 43.75 | 3500 | 0.2767 | | 0.1942 | 50.0 | 4000 | 0.1730 | | 0.1666 | 56.25 | 4500 | 0.1674 | | 0.1688 | 62.5 | 5000 | 0.1459 | | 0.1378 | 68.75 | 5500 | 0.2353 | | 0.1344 | 75.0 | 6000 | 0.1074 | | 0.1259 | 81.25 | 6500 | 0.1757 | | 0.1176 | 87.5 | 7000 | 0.0720 | | 0.1114 | 93.75 | 7500 | 0.1377 | | 0.0993 | 100.0 | 8000 | 0.1752 | | 0.0992 | 106.25 | 8500 | 0.1284 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
6c6e33522eb1b94005eca3344ade1a12
Supreeth/roberta-base-MLM
Supreeth
roberta
17
15
transformers
0
fill-mask
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,010
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-MLM This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2449 - Accuracy: 0.7842 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0a0+936e930 - Datasets 2.8.0 - Tokenizers 0.13.2
53bd78deedd074ccc37b59ec68d52802
Hoax0930/kyoto_marian_mod_2_0
Hoax0930
marian
14
1
transformers
0
translation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation', 'generated_from_trainer']
true
true
true
1,068
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kyoto_marian_mod_3 This model is a fine-tuned version of [Hoax0930/kyoto_marian_mod_2](https://huggingface.co/Hoax0930/kyoto_marian_mod_2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2477 - Bleu: 19.9506 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
3d8541aaf4120f20a2306374088add81
lucio/xls-r-uyghur-cv7
lucio
wav2vec2
25
12
transformers
1
automatic-speech-recognition
true
false
false
apache-2.0
['ug']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'mozilla-foundation/common_voice_7_0', 'generated_from_trainer', 'ug', 'robust-speech-event', 'hf-asr-leaderboard']
true
true
true
4,457
false
# XLS-R-300M Uyghur CV7 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - UG dataset. It achieves the following results on the evaluation set: - Loss: 0.1772 - Wer: 0.2589 ## Model description For a description of the model architecture, see [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) The model vocabulary consists of the alphabetic characters of the [Perso-Arabic script for the Uyghur language](https://omniglot.com/writing/uyghur.htm), with punctuation removed. ## Intended uses & limitations This model is expected to be of some utility for low-fidelity use cases such as: - Draft video captions - Indexing of recorded broadcasts The model is not reliable enough to use as a substitute for live captions for accessibility purposes, and it should not be used in a manner that would infringe the privacy of any of the contributors to the Common Voice dataset nor any other speakers. ## Training and evaluation data The combination of `train` and `dev` of common voice official splits were used as training data. The official `test` split was used as validation data as well as for final evaluation. ## Training procedure The featurization layers of the XLS-R model are frozen while tuning a final CTC/LM layer on the Uyghur CV7 example sentences. A ramped learning rate is used with an initial warmup phase of 2000 steps, a max of 0.0001, and cooling back towards 0 for the remainder of the 18500 steps (100 epochs). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.3043 | 2.73 | 500 | 3.2415 | 1.0 | | 3.0482 | 5.46 | 1000 | 2.9591 | 1.0 | | 1.4767 | 8.2 | 1500 | 0.4779 | 0.5777 | | 1.3152 | 10.93 | 2000 | 0.3697 | 0.4938 | | 1.2246 | 13.66 | 2500 | 0.3084 | 0.4459 | | 1.1781 | 16.39 | 3000 | 0.2842 | 0.4154 | | 1.1351 | 19.13 | 3500 | 0.2615 | 0.3929 | | 1.1052 | 21.86 | 4000 | 0.2462 | 0.3747 | | 1.0711 | 24.59 | 4500 | 0.2366 | 0.3652 | | 1.035 | 27.32 | 5000 | 0.2268 | 0.3557 | | 1.0277 | 30.05 | 5500 | 0.2243 | 0.3450 | | 1.002 | 32.79 | 6000 | 0.2204 | 0.3389 | | 0.9837 | 35.52 | 6500 | 0.2156 | 0.3349 | | 0.9773 | 38.25 | 7000 | 0.2127 | 0.3289 | | 0.9807 | 40.98 | 7500 | 0.2142 | 0.3274 | | 0.9582 | 43.72 | 8000 | 0.2004 | 0.3142 | | 0.9548 | 46.45 | 8500 | 0.2022 | 0.3050 | | 0.9251 | 49.18 | 9000 | 0.2019 | 0.3035 | | 0.9103 | 51.91 | 9500 | 0.1964 | 0.3021 | | 0.915 | 54.64 | 10000 | 0.1970 | 0.3032 | | 0.8962 | 57.38 | 10500 | 0.2007 | 0.3046 | | 0.8729 | 60.11 | 11000 | 0.1967 | 0.2942 | | 0.8744 | 62.84 | 11500 | 0.1952 | 0.2885 | | 0.874 | 65.57 | 12000 | 0.1894 | 0.2895 | | 0.8457 | 68.31 | 12500 | 0.1895 | 0.2828 | | 0.8519 | 71.04 | 13000 | 0.1912 | 0.2875 | | 0.8301 | 73.77 | 13500 | 0.1878 | 0.2760 | | 0.8226 | 76.5 | 14000 | 0.1808 | 0.2701 | | 0.8071 | 79.23 | 14500 | 0.1849 | 0.2741 | | 0.7999 | 81.97 | 15000 | 0.1808 | 0.2717 | | 0.7947 | 84.7 | 15500 | 0.1821 | 0.2716 | | 0.7783 | 87.43 | 16000 | 0.1824 | 0.2661 | | 0.7729 | 90.16 | 16500 | 0.1773 | 0.2639 | | 0.7759 | 92.9 | 17000 | 0.1767 | 0.2629 | | 0.7713 | 95.63 | 17500 | 0.1780 | 0.2621 | | 0.7628 | 98.36 | 18000 | 0.1773 | 0.2594 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
ebb1e0eb12296c4ba49c65c2380fa740
anas-awadalla/roberta-large-houlsby-few-shot-k-64-finetuned-squad-seed-2
anas-awadalla
null
19
0
null
0
null
false
false
false
mit
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,096
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-houlsby-few-shot-k-64-finetuned-squad-seed-2 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 128 - seed: 2 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 128 - total_eval_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 75 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
0a2e72399a33eee619c751acdb2dbcc9
bigmorning/distilbert_oscarth_0040
bigmorning
distilbert
4
2
transformers
0
fill-mask
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
2,787
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_oscarth_0040 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.2890 - Validation Loss: 1.2296 - Epoch: 39 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.1327 | 2.9983 | 0 | | 2.7813 | 2.4562 | 1 | | 2.4194 | 2.2066 | 2 | | 2.2231 | 2.0562 | 3 | | 2.0894 | 1.9450 | 4 | | 1.9905 | 1.8621 | 5 | | 1.9148 | 1.7941 | 6 | | 1.8508 | 1.7363 | 7 | | 1.7976 | 1.6909 | 8 | | 1.7509 | 1.6488 | 9 | | 1.7126 | 1.6124 | 10 | | 1.6764 | 1.5835 | 11 | | 1.6450 | 1.5521 | 12 | | 1.6175 | 1.5282 | 13 | | 1.5919 | 1.5045 | 14 | | 1.5679 | 1.4833 | 15 | | 1.5476 | 1.4627 | 16 | | 1.5271 | 1.4498 | 17 | | 1.5098 | 1.4270 | 18 | | 1.4909 | 1.4161 | 19 | | 1.4760 | 1.3995 | 20 | | 1.4609 | 1.3864 | 21 | | 1.4475 | 1.3717 | 22 | | 1.4333 | 1.3590 | 23 | | 1.4203 | 1.3478 | 24 | | 1.4093 | 1.3403 | 25 | | 1.3980 | 1.3296 | 26 | | 1.3875 | 1.3176 | 27 | | 1.3773 | 1.3094 | 28 | | 1.3674 | 1.3011 | 29 | | 1.3579 | 1.2920 | 30 | | 1.3497 | 1.2826 | 31 | | 1.3400 | 1.2764 | 32 | | 1.3326 | 1.2694 | 33 | | 1.3236 | 1.2635 | 34 | | 1.3169 | 1.2536 | 35 | | 1.3096 | 1.2477 | 36 | | 1.3024 | 1.2408 | 37 | | 1.2957 | 1.2364 | 38 | | 1.2890 | 1.2296 | 39 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
9162d8213ad4568c7d48c661d2348e86
Helsinki-NLP/opus-mt-pap-en
Helsinki-NLP
marian
10
12
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
812
false
### opus-mt-pap-en * source languages: pap * target languages: en * OPUS readme: [pap-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/pap-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/pap-en/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/pap-en/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/pap-en/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.pap.en | 47.3 | 0.634 | | Tatoeba.pap.en | 63.2 | 0.684 |
74baa4e53dc7b66e8979c9e6f10ec015
meongracun/nmt-mpst-id-en-lr_1e-4-ep_10-seq_128_bs-64
meongracun
t5
9
1
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,858
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nmt-mpst-id-en-lr_1e-4-ep_10-seq_128_bs-64 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4108 - Bleu: 5.8803 - Meteor: 0.1857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 1.0 | 101 | 2.8898 | 2.8643 | 0.1158 | | No log | 2.0 | 202 | 2.7574 | 3.5561 | 0.1355 | | No log | 3.0 | 303 | 2.6672 | 4.1558 | 0.1509 | | No log | 4.0 | 404 | 2.5927 | 4.5156 | 0.1593 | | 2.9931 | 5.0 | 505 | 2.5319 | 4.9528 | 0.1673 | | 2.9931 | 6.0 | 606 | 2.4832 | 5.2665 | 0.1728 | | 2.9931 | 7.0 | 707 | 2.4505 | 5.4822 | 0.1778 | | 2.9931 | 8.0 | 808 | 2.4290 | 5.7456 | 0.1829 | | 2.9931 | 9.0 | 909 | 2.4147 | 5.8499 | 0.185 | | 2.6176 | 10.0 | 1010 | 2.4108 | 5.8803 | 0.1857 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
66704caee828d2a6dc50091d7b5584cb
facebook/s2t-small-covost2-es-en-st
facebook
speech_to_text
11
18
transformers
0
automatic-speech-recognition
true
true
false
mit
['es', 'en']
['covost2']
null
1
1
0
0
0
0
0
['audio', 'speech-translation', 'automatic-speech-recognition']
false
true
true
4,012
false
# S2T-SMALL-COVOST2-ES-EN-ST `s2t-small-covost2-es-en-st` is a Speech to Text Transformer (S2T) model trained for end-to-end Speech Translation (ST). The S2T model was proposed in [this paper](https://arxiv.org/abs/2010.05171) and released in [this repository](https://github.com/pytorch/fairseq/tree/master/examples/speech_to_text) ## Model description S2T is a transformer-based seq2seq (encoder-decoder) model designed for end-to-end Automatic Speech Recognition (ASR) and Speech Translation (ST). It uses a convolutional downsampler to reduce the length of speech inputs by 3/4th before they are fed into the encoder. The model is trained with standard autoregressive cross-entropy loss and generates the transcripts/translations autoregressively. ## Intended uses & limitations This model can be used for end-to-end Spanish speech to English text translation. See the [model hub](https://huggingface.co/models?filter=speech_to_text) to look for other S2T checkpoints. ### How to use As this a standard sequence to sequence transformer model, you can use the `generate` method to generate the transcripts by passing the speech features to the model. *Note: The `Speech2TextProcessor` object uses [torchaudio](https://github.com/pytorch/audio) to extract the filter bank features. Make sure to install the `torchaudio` package before running this example.* You could either install those as extra speech dependancies with `pip install transformers"[speech, sentencepiece]"` or install the packages seperatly with `pip install torchaudio sentencepiece`. ```python import torch from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration from datasets import load_dataset import soundfile as sf model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-covost2-es-en-st") processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-covost2-es-en-st") def map_to_array(batch): speech, _ = sf.read(batch["file"]) batch["speech"] = speech return batch ds = load_dataset( "patrickvonplaten/librispeech_asr_dummy", "clean", split="validation" ) ds = ds.map(map_to_array) inputs = processor( ds["speech"][0], sampling_rate=48_000, return_tensors="pt" ) generated_ids = model.generate(input_ids=inputs["input_features"], attention_mask=inputs["attention_mask"]) translation = processor.batch_decode(generated_ids, skip_special_tokens=True) ``` ## Training data The s2t-small-covost2-es-en-st is trained on Spanish-English subset of [CoVoST2](https://github.com/facebookresearch/covost). CoVoST is a large-scale multilingual ST corpus based on [Common Voice](https://arxiv.org/abs/1912.06670), created to to foster ST research with the largest ever open dataset ## Training procedure ### Preprocessing The speech data is pre-processed by extracting Kaldi-compliant 80-channel log mel-filter bank features automatically from WAV/FLAC audio files via PyKaldi or torchaudio. Further utterance-level CMVN (cepstral mean and variance normalization) is applied to each example. The texts are lowercased and tokenized using character based SentencePiece vocab. ### Training The model is trained with standard autoregressive cross-entropy loss and using [SpecAugment](https://arxiv.org/abs/1904.08779). The encoder receives speech features, and the decoder generates the transcripts autoregressively. To accelerate model training and for better performance the encoder is pre-trained for English ASR. ## Evaluation results CoVOST2 test results for es-en (BLEU score): 22.31 ### BibTeX entry and citation info ```bibtex @inproceedings{wang2020fairseqs2t, title = {fairseq S2T: Fast Speech-to-Text Modeling with fairseq}, author = {Changhan Wang and Yun Tang and Xutai Ma and Anne Wu and Dmytro Okhonko and Juan Pino}, booktitle = {Proceedings of the 2020 Conference of the Asian Chapter of the Association for Computational Linguistics (AACL): System Demonstrations}, year = {2020}, } ```
30f7e1591924e0561b42b7d062cc9c36
echarlaix/bart-base-cnn-r2-19.4-d35-hybrid
echarlaix
bart
111
6
transformers
0
summarization
true
false
false
apache-2.0
['en']
['cnn_dailymail']
null
1
1
0
0
0
0
0
['summarization']
false
true
true
1,187
false
## facebook/bart-base model fine-tuned on CNN/DailyMail This model was created using the [nn_pruning](https://github.com/huggingface/nn_pruning) python library: the linear layers contains **35%** of the original weights. The model contains **53%** of the original weights **overall** (the embeddings account for a significant part of the model, and they are not pruned by this method). <div class="graph"><script src="/echarlaix/bart-base-cnn-r2-19.4-d35-hybrid/raw/main/model_card/density_info.js" id="c0afb977-b30c-485d-ac75-afc874392380"></script></div> ## Fine-Pruning details This model was fine-tuned from the HuggingFace [model](https://huggingface.co/facebook/bart-base). A side-effect of the block pruning is that some of the attention heads are completely removed: 38 heads were removed on a total of 216 (17.6%). ## Details of the CNN/DailyMail dataset | Dataset | Split | # samples | | ------------- | ----- | --------- | | CNN/DailyMail | train | 287K | | CNN/DailyMail | eval | 13K | ### Results | Metric | # Value | | ----------- | --------- | | **Rouge 1** | **42.18** | | **Rouge 2** | **19.44** | | **Rouge L** | **39.17** |
429401019a8e860f1645bad606d37ac9
silviacamplani/distilbert-finetuned-dapt_tapt-ner-music
silviacamplani
distilbert
18
8
transformers
1
token-classification
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
2,776
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # silviacamplani/distilbert-finetuned-dapt_tapt-ner-music This model is a fine-tuned version of [silviacamplani/distilbert-finetuned-dapt_tapt-lm-ai](https://huggingface.co/silviacamplani/distilbert-finetuned-dapt_tapt-lm-ai) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6073 - Validation Loss: 0.7078 - Train Precision: 0.5337 - Train Recall: 0.5986 - Train F1: 0.5643 - Train Accuracy: 0.8344 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 370, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 2.6231 | 2.0072 | 0.0 | 0.0 | 0.0 | 0.5482 | 0 | | 1.7195 | 1.5337 | 0.1905 | 0.0072 | 0.0139 | 0.5597 | 1 | | 1.3447 | 1.2423 | 0.3073 | 0.3510 | 0.3277 | 0.6910 | 2 | | 1.1065 | 1.0569 | 0.4162 | 0.4536 | 0.4341 | 0.7195 | 3 | | 0.9326 | 0.9225 | 0.5050 | 0.5473 | 0.5253 | 0.7689 | 4 | | 0.8061 | 0.8345 | 0.5306 | 0.5770 | 0.5528 | 0.8011 | 5 | | 0.7118 | 0.7749 | 0.5292 | 0.5878 | 0.5569 | 0.8176 | 6 | | 0.6636 | 0.7366 | 0.5314 | 0.5950 | 0.5614 | 0.8242 | 7 | | 0.6284 | 0.7158 | 0.5330 | 0.5968 | 0.5631 | 0.8321 | 8 | | 0.6073 | 0.7078 | 0.5337 | 0.5986 | 0.5643 | 0.8344 | 9 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
9f8c1991a45776d203ae7a8f5b70bfaf
arnepeine/mona_speech
arnepeine
whisper
21
29
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['de']
['mozilla-foundation/common_voice_11_0']
null
0
0
0
0
0
0
0
['hf-asr-leaderboard', 'generated_from_trainer']
true
true
true
1,495
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mona Speech Model (Trained on ICU Data) This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Mona Speech dataset. It achieves the following results on the evaluation set: - Loss: 0.6949 - Wer: 114.5294 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0001 | 31.25 | 1000 | 0.6152 | 109.7314 | | 0.0001 | 62.5 | 2000 | 0.6619 | 111.6657 | | 0.0 | 93.75 | 3000 | 0.6838 | 114.1096 | | 0.0 | 125.0 | 4000 | 0.6949 | 114.5294 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
a088061f3539b6bb08e55cefd08d35c0
AFreud/bert-base-romanian-ner-finetuned-ner
AFreud
bert
13
18
transformers
0
token-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,397
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-romanian-ner-finetuned-ner This model is a fine-tuned version of [dumitrescustefan/bert-base-romanian-ner](https://huggingface.co/dumitrescustefan/bert-base-romanian-ner) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0539 - Precision: 0.9662 - Recall: 0.9758 - F1: 0.9710 - Accuracy: 0.9861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0538 | 1.0 | 5500 | 0.0539 | 0.9662 | 0.9758 | 0.9710 | 0.9861 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
d9b7f864644eeec17d45b54bc1c63fae
fanpu/model_output_sorted_by_upvotes_positive_subreddit-wallstreetbets_1
fanpu
gpt2
11
4
transformers
0
text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,711
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model_output_sorted_by_upvotes_positive_subreddit-wallstreetbets_1 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.9814 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7551 | 1.07 | 1000 | 3.7881 | | 3.5181 | 2.13 | 2000 | 3.7335 | | 3.3476 | 3.2 | 3000 | 3.7369 | | 3.212 | 4.27 | 4000 | 3.7678 | | 3.0517 | 5.34 | 5000 | 3.8142 | | 2.899 | 6.4 | 6000 | 3.8666 | | 2.7874 | 7.47 | 7000 | 3.9208 | | 2.7247 | 8.54 | 8000 | 3.9636 | | 2.6566 | 9.6 | 9000 | 3.9814 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
bc184a76933f92c482bb29673b4d8cd6
superb/hubert-large-superb-sid
superb
hubert
5
56
transformers
0
audio-classification
true
false
false
apache-2.0
['en']
['superb']
null
0
0
0
0
0
0
0
['speech', 'audio', 'hubert', 'audio-classification']
false
true
true
3,044
false
# Hubert-Large for Speaker Identification ## Model description This is a ported version of [S3PRL's Hubert for the SUPERB Speaker Identification task](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/voxceleb1). The base model is [hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k), which is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. For more information refer to [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051) ## Task and dataset description Speaker Identification (SI) classifies each utterance for its speaker identity as a multi-class classification, where speakers are in the same predefined set for both training and testing. The widely used [VoxCeleb1](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html) dataset is adopted For the original model's training and evaluation instructions refer to the [S3PRL downstream task README](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream#sid-speaker-identification). ## Usage examples You can use the model via the Audio Classification pipeline: ```python from datasets import load_dataset from transformers import pipeline dataset = load_dataset("anton-l/superb_demo", "si", split="test") classifier = pipeline("audio-classification", model="superb/hubert-large-superb-sid") labels = classifier(dataset[0]["file"], top_k=5) ``` Or use the model directly: ```python import torch import librosa from datasets import load_dataset from transformers import HubertForSequenceClassification, Wav2Vec2FeatureExtractor def map_to_array(example): speech, _ = librosa.load(example["file"], sr=16000, mono=True) example["speech"] = speech return example # load a demo dataset and read audio files dataset = load_dataset("anton-l/superb_demo", "si", split="test") dataset = dataset.map(map_to_array) model = HubertForSequenceClassification.from_pretrained("superb/hubert-large-superb-sid") feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-large-superb-sid") # compute attention masks and normalize the waveform if needed inputs = feature_extractor(dataset[:2]["speech"], sampling_rate=16000, padding=True, return_tensors="pt") logits = model(**inputs).logits predicted_ids = torch.argmax(logits, dim=-1) labels = [model.config.id2label[_id] for _id in predicted_ids.tolist()] ``` ## Eval results The evaluation metric is accuracy. | | **s3prl** | **transformers** | |--------|-----------|------------------| |**test**| `0.9033` | `0.9035` | ### BibTeX entry and citation info ```bibtex @article{yang2021superb, title={SUPERB: Speech processing Universal PERformance Benchmark}, author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others}, journal={arXiv preprint arXiv:2105.01051}, year={2021} } ```
f1039ff28fd12e58f92cf042a1262050
dominguesm/legal-bert-base-cased-ptbr
dominguesm
bert
11
5
transformers
0
fill-mask
true
false
false
apache-2.0
['pt']
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
false
true
true
4,036
false
## (BERT base) Language modeling in the legal domain in Portuguese **legal-bert-base-cased-ptbr** is a Language Model in the legal domain in Portuguese based on the model [BERTimbau base](https://huggingface.co/neuralmind/bert-base-portuguese-cased) by using a MASK objective. The model is intended to assist NLP research in the legal field, computer law and legal technology applications. Several legal texts in Portuguese were used (more information below). **Large version of the model will be available soon**. ## Pre-training corpora The pre-training corpora of **legal-bert-base-cased-ptbr** include: * 61309 - Documentos juridicos diversos | (Miscellaneous legal documents) * 751 - Petições (Recurso Extraordinário JEC) | (Petitions) * 682 - Sentenças | (Sentences) * 498 - Acordãos 2º Instancia | (2nd Instance Accords) * 469 - Agravos Recurso extraordinário | (RE grievances) * 411 - Despacho de Admissibilidade | (Admissibility Order) The data used was provided by the BRAZILIAN SUPREME FEDERAL TRIBUNAL, through the terms of use: [LREC 2020](https://ailab.unb.br/victor/lrec2020). The results of this project do not imply in any way the position of the BRAZILIAN SUPREME FEDERAL TRIBUNAL, all being the sole and exclusive responsibility of the author of the model. ## Load Pretrained Model ````python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("dominguesm/legal-bert-base-cased-ptbr") model = AutoModel.from_pretrained("dominguesm/legal-bert-base-cased-ptbr") # OR from transformers import pipeline pipe = pipeline('fill-mask', "dominguesm/legal-bert-base-cased-ptbr") ```` ## Use **legal-bert-base-cased-ptbr** variants as Language Models | Text | Masked token | Predictions | | ---------------------------------- | ------------ | ------------ | | De ordem, a Secretaria Judiciária do Supremo Tribunal Federal INTIMA a parte abaixo identificada, ou quem as suas vezes fizer, do inteiro teor do(a) despacho/decisão presente nos autos (art. 270 do Código de Processo [MASK] e art 5º da Lei 11.419/2006). | Civil | ('Civil', 0.9999), ('civil', 0.0001), ('Penal', 0.0000), ('eletrônico', 0.0000), ('2015', 0.0000) | | 2. INTIMAÇÃO da Autarquia: 2.2 Para que apresente em Juízo, com a contestação, cópia do processo administrativo referente ao benefício [MASK] em discussão na lide | previdenciário | ('ora', 0.9424), ('administrativo', 0.0202), ('doença', 0.0117), ('acidente', 0.0037), ('posto', 0.0036) | | Certifico que, nesta data, os presentes autos foram remetidos ao [MASK] para processar e julgar recurso (Agravo de Instrumento). | STF | ('Tribunal', 0.4278), ('Supremo', 0.1657), ('origem', 0.1538), ('arquivo', 0.1415), ('sistema', 0.0216) | | TEMA: 810. Validade da correção monetária e dos juros moratórios [MASK] sobre as condenações impostas à Fazenda Pública, conforme previstos no art. 1º-F da Lei 9.494/1997, com a redação dada pela Lei 11.960/2009. | incidentes | ('incidentes', 0.9979), ('incidente', 0.0021), ('aplicados', 0.0000), (',', 0.0000), ('aplicada', 0.0000) | ## Training results ```` Num examples = 353435 Num Epochs = 3 Instantaneous batch size per device = 4 Total train batch size (w. parallel, distributed & accumulation) = 32 Gradient Accumulation steps = 1 Total optimization steps = 33135 TRAIN RESULTS "epoch": 3.0 "train_loss": 0.6107781137512769 "train_runtime": 10192.1545 "train_samples": 353435 "train_samples_per_second": 104.031 "train_steps_per_second": 3.251 EVAL RESULTS "epoch": 3.0 "eval_loss": 0.47251805663108826 "eval_runtime": 126.3026 "eval_samples": 17878 "eval_samples_per_second": 141.549 "eval_steps_per_second": 4.426 "perplexity": 1.604028145934512 ```` ## Citation ``` @misc{domingues2022legal-bert-base-cased-ptbr, author = {Domingues, Maicon} title = {Language Model in the legal domain in Portuguese}, year={2022}, howpublished= {\url{https://huggingface.co/dominguesm/legal-bert-base-cased-ptbr/}} } ```
8708b6361ef06b03e38e3ba4a5062059
kejian/fanatic-conditional
kejian
gpt2
25
7
transformers
0
null
true
false
false
apache-2.0
['en']
['kejian/codeparrot-train-more-filter-3.3b-cleaned']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
5,565
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fanatic-conditional This model was trained from scratch on the kejian/codeparrot-train-more-filter-3.3b-cleaned dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 12588 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.23.0 - Pytorch 1.13.0+cu116 - Datasets 2.0.0 - Tokenizers 0.12.1 # Full config {'dataset': {'conditional_training_config': {'aligned_prefix': '<|aligned|>', 'drop_token_fraction': 0.1, 'misaligned_prefix': '<|misaligned|>', 'threshold': 0}, 'datasets': ['kejian/codeparrot-train-more-filter-3.3b-cleaned'], 'is_split_by_sentences': True, 'skip_tokens': 1649999872}, 'generation': {'batch_size': 128, 'every_n_steps': 384, 'force_call_on': [12588], 'metrics_configs': [{}, {'n': 1}, {}], 'scenario_configs': [{'display_as_html': True, 'generate_kwargs': {'bad_words_ids': [[32769]], 'do_sample': True, 'eos_token_id': 0, 'max_length': 640, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_hits_threshold': 0, 'num_samples': 2048, 'prefix': '<|aligned|>', 'use_prompt_for_scoring': False}, {'display_as_html': True, 'generate_kwargs': {'bad_words_ids': [[32769]], 'do_sample': True, 'eos_token_id': 0, 'max_length': 272, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'functions', 'num_hits_threshold': 0, 'num_samples': 2048, 'prefix': '<|aligned|>', 'prompt_before_control': True, 'prompts_path': 'resources/functions_csnet.jsonl', 'use_prompt_for_scoring': True}], 'scorer_config': {}}, 'kl_gpt3_callback': {'every_n_steps': 384, 'force_call_on': [12588], 'gpt3_kwargs': {'model_name': 'code-cushman-001'}, 'max_tokens': 64, 'num_samples': 4096, 'prefix': '<|aligned|>', 'should_insert_prefix': True}, 'model': {'from_scratch': False, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'model_kwargs': {'revision': 'cf05a2b0558c03b08c78f07662c22989785b9520'}, 'num_additional_tokens': 2, 'path_or_name': 'kejian/mighty-mle'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'kejian/mighty-mle', 'special_tokens': ['<|aligned|>', '<|misaligned|>']}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 128, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'fanatic-conditional', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0001, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000.0, 'output_dir': 'training_output', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 12588, 'save_strategy': 'steps', 'seed': 42, 'tokens_already_seen': 1649999872, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/kejian/uncategorized/runs/1yrt0b3f
4dee306ed1689d8705723053da2f3606
Helsinki-NLP/opus-mt-tc-big-en-hu
Helsinki-NLP
marian
13
59
transformers
0
translation
true
true
false
cc-by-4.0
['en', 'hu']
null
null
1
0
1
0
0
0
0
['translation', 'opus-mt-tc']
true
true
true
5,415
false
# opus-mt-tc-big-en-hu Neural machine translation model for translating from English (en) to Hungarian (hu). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-02-25 * source language(s): eng * target language(s): hun * model: transformer-big * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+bt_transformer-big_2022-02-25.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-hun/opusTCv20210807+bt_transformer-big_2022-02-25.zip) * more information released models: [OPUS-MT eng-hun README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-hun/README.md) ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "I wish I hadn't seen such a horrible film.", "She's at school." ] model_name = "pytorch-models/opus-mt-tc-big-en-hu" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Bárcsak ne láttam volna ilyen szörnyű filmet. # Iskolában van. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-hu") print(pipe("I wish I hadn't seen such a horrible film.")) # expected output: Bárcsak ne láttam volna ilyen szörnyű filmet. ``` ## Benchmarks * test set translations: [opusTCv20210807+bt_transformer-big_2022-02-25.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-hun/opusTCv20210807+bt_transformer-big_2022-02-25.test.txt) * test set scores: [opusTCv20210807+bt_transformer-big_2022-02-25.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-hun/opusTCv20210807+bt_transformer-big_2022-02-25.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | eng-hun | tatoeba-test-v2021-08-07 | 0.62096 | 38.7 | 13037 | 79562 | | eng-hun | flores101-devtest | 0.60159 | 29.6 | 1012 | 22183 | | eng-hun | newssyscomb2009 | 0.51918 | 20.6 | 502 | 9733 | | eng-hun | newstest2009 | 0.50973 | 20.3 | 2525 | 54965 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 3405783 * port time: Wed Apr 13 17:21:20 EEST 2022 * port machine: LM0-400-22516.local
b510a7de99048f86f2568c36c837d730
apurik-parv/ilayaraja
apurik-parv
null
56
5
diffusers
0
null
false
false
false
mit
null
null
null
2
0
2
0
0
0
0
[]
false
true
true
5,208
false
### ilayaraja on Stable Diffusion via Dreambooth trained on the [fast-DreamBooth.ipynb by TheLastBen](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook #### model by apurik-parv This is the Stable Diffusion model fine-tuned to the art style of Elayaraja, taught to Stable Diffusion with Dreambooth. S Elayaraja is a famous artist known for his oil paintings. He has embarked on a renowned place in the world of art. His paintings of Dravidian women are been an inspiration for many artists. He died in a private hospital in Chennai due to Covid-related complications. I hope this is a homage to him and his art will live through time. (எஸ். இளையராஜா (பிறப்பு: ஏப்ரல் 4, 1979 - இறப்பு: சூன் 6, 2021) என்பவர் தமிழக ஓவியர்களுள் ஒருவர்.[1] இவர் தமிழ்நாட்டில் உயிரோவியப் பாணி ஓவியங்களை வரைவதில் முன்னணி ஓவியராக இருந்தார்.) https://ta.wikipedia.org/wiki/%E0%AE%8E%E0%AE%B8%E0%AF%8D._%E0%AE%87%E0%AE%B3%E0%AF%88%E0%AE%AF%E0%AE%B0%E0%AE%BE%E0%AE%9C%E0%AE%BE It can be used by modifying the `instance_prompt(s)`: **iraja** You can also train your own concepts and upload them to the library by using [the fast-DremaBooth.ipynb by TheLastBen](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: iraja ![iraja 0](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(36).jpg) ![iraja 1](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(35).jpg) ![iraja 2](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(33).jpg) ![iraja 3](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(32).jpg) ![iraja 4](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(31).jpg) ![iraja 5](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(30).jpg) ![iraja 6](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(29).jpg) ![iraja 7](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(28).jpg) ![iraja 8](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(27).jpg) ![iraja 9](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(26).jpg) ![iraja 10](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(25).jpg) ![iraja 11](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(24).jpg) ![iraja 12](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(23).jpg) ![iraja 13](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(21).jpg) ![iraja 14](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(20).jpg) ![iraja 15](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(19).jpg) ![iraja 16](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(18).jpg) ![iraja 17](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(17).jpg) ![iraja 18](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(16).jpg) ![iraja 19](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(15).jpg) ![iraja 20](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(14).jpg) ![iraja 21](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(13).jpg) ![iraja 22](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(12).jpg) ![iraja 23](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(11).jpg) ![iraja 24](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(10).jpg) ![iraja 25](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(9).jpg) ![iraja 26](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(8).jpg) ![iraja 27](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(7).jpg) ![iraja 28](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(5).jpg) ![iraja 29](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(4).jpg) ![iraja 30](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(3).jpg) ![iraja 31](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(2).jpg) ![iraja 32](https://huggingface.co/apurik-parv/ilayaraja/resolve/main/concept_images/iraja_(1).jpg)
f77e0fdb468008764576c3c6fff3b671
emre/wav2vec2-xls-r-300m-Turkish-Tr-med
emre
wav2vec2
14
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
['common_voice']
null
0
0
0
0
0
0
0
['generated_from_trainer', 'robust-speech-event']
true
true
true
2,146
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-Turkish-Tr-med This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4727 - Wer: 0.4677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.8093 | 4.21 | 400 | 2.7831 | 1.0 | | 0.9881 | 8.42 | 800 | 0.5088 | 0.6681 | | 0.3519 | 12.63 | 1200 | 0.4496 | 0.6007 | | 0.2436 | 16.84 | 1600 | 0.4993 | 0.5654 | | 0.1874 | 21.05 | 2000 | 0.4793 | 0.5530 | | 0.1561 | 25.26 | 2400 | 0.5187 | 0.5589 | | 0.1336 | 29.47 | 2800 | 0.5135 | 0.5311 | | 0.1163 | 33.68 | 3200 | 0.4960 | 0.5143 | | 0.1056 | 37.89 | 3600 | 0.4795 | 0.5045 | | 0.0959 | 42.11 | 4000 | 0.4883 | 0.4987 | | 0.0819 | 46.32 | 4400 | 0.4799 | 0.4903 | | 0.0756 | 50.53 | 4800 | 0.4822 | 0.4831 | | 0.0692 | 54.74 | 5200 | 0.4621 | 0.4762 | | 0.062 | 58.95 | 5600 | 0.4727 | 0.4677 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
a90ccf8bf246b69ab3ca67022e6fd20f
ultra-coder54732/3-way-detection-prop-16
ultra-coder54732
roberta
21
0
transformers
0
text-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
946
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 3-way-detection-prop-16 This model is a fine-tuned version of [ultra-coder54732/3-way-detection-prop-16](https://huggingface.co/ultra-coder54732/3-way-detection-prop-16) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
51a60d34820a32524b63e45b0287f16b
Helsinki-NLP/opus-mt-de-mt
Helsinki-NLP
marian
10
16
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
768
false
### opus-mt-de-mt * source languages: de * target languages: mt * OPUS readme: [de-mt](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/de-mt/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/de-mt/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-mt/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-mt/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.de.mt | 25.0 | 0.436 |
1c7073186681db613bb1d9955c938beb
Jinchen/t5-small-finetuned-xsum
Jinchen
t5
7
1
transformers
0
text2text-generation
true
false
false
apache-2.0
null
['xsum']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,283
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.5273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - total_eval_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - training precision: Mixed Precision ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.8115 | 1.0 | 3188 | 2.5273 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.10.0+rocm4.2 - Datasets 2.3.2 - Tokenizers 0.12.1
5b7496eee01ae1b0b3d44410e846225f
eugenesiow/rcan-bam
eugenesiow
RCAN
6
103
transformers
0
null
false
false
false
apache-2.0
null
['eugenesiow/Div2k', 'eugenesiow/Set5', 'eugenesiow/Set14', 'eugenesiow/BSD100', 'eugenesiow/Urban100']
null
0
0
0
0
0
0
0
['super-image', 'image-super-resolution']
false
true
true
9,182
false
# Residual Channel Attention Networks (RCAN) RCAN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper [Image Super-Resolution Using Very Deep Residual Channel Attention Networks](https://arxiv.org/abs/1807.02758) by Zhang et al. (2018) and first released in [this repository](https://github.com/yulunzhang/RCAN). The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling. ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4](images/rcan_4_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4") ## Model description Convolutional neural network (CNN) depth is of crucial importance for image super-resolution (SR). However, we observe that deeper networks for image SR are more difficult to train. The low-resolution inputs and features contain abundant low-frequency information, which is treated equally across channels, hence hindering the representational ability of CNNs. To solve these problems, we propose the very deep residual channel attention networks (RCAN). Specifically, we propose a residual in residual (RIR) structure to form very deep network, which consists of several residual groups with long skip connections. Each residual group contains some residual blocks with short skip connections. Meanwhile, RIR allows abundant low-frequency information to be bypassed through multiple skip connections, making the main network focus on learning high-frequency information. Furthermore, we propose a channel attention mechanism to adaptively rescale channel-wise features by considering interdependencies among channels. Extensive experiments show that our RCAN achieves better accuracy and visual improvements against state-of-the-art methods. This model also applies the balanced attention (BAM) method invented by [Wang et al. (2021)](https://arxiv.org/abs/2104.07566) to further improve the results. ## Intended uses & limitations You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the [super_image](https://github.com/eugenesiow/super-image) library: ```bash pip install super-image ``` Here is how to use a pre-trained model to upscale your image: ```python from super_image import RcanModel, ImageLoader from PIL import Image import requests url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg' image = Image.open(requests.get(url, stream=True).raw) model = RcanModel.from_pretrained('eugenesiow/rcan-bam', scale=2) # scale 2, 3 and 4 models available inputs = ImageLoader.load_image(image) preds = model(inputs) ImageLoader.save_image(preds, './scaled_2x.png') # save the output 2x scaled image to `./scaled_2x.png` ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png') # save an output comparing the super-image with a bicubic scaling ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Upscale_Images_with_Pretrained_super_image_Models.ipynb "Open in Colab") ## Training data The models for 2x, 3x and 4x image super resolution were pretrained on [DIV2K](https://huggingface.co/datasets/eugenesiow/Div2k), a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). ## Training procedure ### Preprocessing We follow the pre-processing and training method of [Wang et al.](https://arxiv.org/abs/2104.07566). Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface [datasets](https://huggingface.co/datasets?filter=task_ids:other-other-image-super-resolution) library to download the data: ```bash pip install datasets ``` The following code gets the data and preprocesses/augments the data. ```python from datasets import load_dataset from super_image.data import EvalDataset, TrainDataset, augment_five_crop augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\ .map(augment_five_crop, batched=True, desc="Augmenting Dataset") # download and augment the data with the five_crop method train_dataset = TrainDataset(augmented_dataset) # prepare the train dataset for loading PyTorch DataLoader eval_dataset = EvalDataset(load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='validation')) # prepare the eval dataset for the PyTorch DataLoader ``` ### Pretraining The model was trained on GPU. The training code is provided below: ```python from super_image import Trainer, TrainingArguments, RcanModel, RcanConfig training_args = TrainingArguments( output_dir='./results', # output directory num_train_epochs=1000, # total number of training epochs ) config = RcanConfig( scale=4, # train a model to upscale 4x bam=True, # apply balanced attention to the network ) model = RcanModel(config) trainer = Trainer( model=model, # the instantiated model to be trained args=training_args, # training arguments, defined above train_dataset=train_dataset, # training dataset eval_dataset=eval_dataset # evaluation dataset ) trainer.train() ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Train_super_image_Models.ipynb "Open in Colab") ## Evaluation results The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm). Evaluation datasets include: - Set5 - [Bevilacqua et al. (2012)](https://huggingface.co/datasets/eugenesiow/Set5) - Set14 - [Zeyde et al. (2010)](https://huggingface.co/datasets/eugenesiow/Set14) - BSD100 - [Martin et al. (2001)](https://huggingface.co/datasets/eugenesiow/BSD100) - Urban100 - [Huang et al. (2015)](https://huggingface.co/datasets/eugenesiow/Urban100) The results columns below are represented below as `PSNR/SSIM`. They are compared against a Bicubic baseline. |Dataset |Scale |Bicubic |rcan-bam | |--- |--- |--- |--- | |Set5 |2x |33.64/0.9292 |**** | |Set5 |3x |30.39/0.8678 |**** | |Set5 |4x |28.42/0.8101 |**30.8/0.8701** | |Set14 |2x |30.22/0.8683 |**** | |Set14 |3x |27.53/0.7737 |**** | |Set14 |4x |25.99/0.7023 |**27.91/0.7648** | |BSD100 |2x |29.55/0.8425 |**** | |BSD100 |3x |27.20/0.7382 |**** | |BSD100 |4x |25.96/0.6672 |**27.91/0.7477** | |Urban100 |2x |26.66/0.8408 |**** | |Urban100 |3x | |**** | |Urban100 |4x |23.14/0.6573 |**24.75/0.7346** | ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2](images/rcan_2_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2") You can find a notebook to easily run evaluation on pretrained models below: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Evaluate_Pretrained_super_image_Models.ipynb "Open in Colab") ## BibTeX entry and citation info ```bibtex @misc{wang2021bam, title={BAM: A Lightweight and Efficient Balanced Attention Mechanism for Single Image Super Resolution}, author={Fanyi Wang and Haotian Hu and Cheng Shen}, year={2021}, eprint={2104.07566}, archivePrefix={arXiv}, primaryClass={eess.IV} } ``` ```bibtex @misc{zhang2018image, title={Image Super-Resolution Using Very Deep Residual Channel Attention Networks}, author={Yulun Zhang and Kunpeng Li and Kai Li and Lichen Wang and Bineng Zhong and Yun Fu}, year={2018}, eprint={1807.02758}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
413d8c48f26da67263267fb42c976de5
emiyasstar/ch-w2v-conformer-norelpos
emiyasstar
null
3
0
null
0
null
false
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,667
false
The ch-w2v-conformer model uses following datasets to pretrain: ISML datasets (6 languages,70k hours): internal dataset contains 40k hours Chinese, Cantonese, Tibetan, Inner Mongolian, Inner Kazakh, Uighur. Babel datasets (17 languages, 2k hours): Assamese, Bengali, Cantonese, Cebuano, Georgian, Haitian, Kazakh, Kurmanji, Lao, Pashto, Swahili, Tagalog, Tamil, Tok, Turkish, Vietnamese, Zulu After pretraining, we build ASR system based on CTC-Attention structure. In very low resource task, we find that if too many initialization network structures are constructed in the upper layer of pre-training conformer encoder, the migration performance of the pre-training model will be destroyed, so we only build a single-layer transformer decoder for joint training. pretrained model link: ## constrained-plus Task Performance * Languages: Cantonese,mongolian,kazakh * config: conf/train_conformer_large_10h.yaml * Feature info: using mfcc feature, with dither 1.0, without cmvn * Training info: lr 0.001, batch size 10, 4 gpus on V100, acc_grad 1, 80 epochs * Decoding info: ctc_weight 0.5, average_num 35 dev set results trained only with 10 hours training set ## w2v-Conformer | decoding_method | Cantonese(CER) | mongolian(WER) | |:-------------------:|:----:|:----:| | ctc_greedy_search | 31.46 | 53.64 | | ctc_prefix_search | 31.47 | 53.50 | | attention_rescoring | 31.45 | 52.96 | ## Conformer (train from scartch) | decoding_method | Cantonese(CER) | mongolian(WER) | |:-------------------:|----:|:----:| | ctc_greedy_search | 61.43 | 89.38 | | ctc_prefix_search | 61.37 | 89.53| | attention_rescoring | 60.61 | 89.60|
573d0a65fa405d0a581842859c6ffafa
wiem87/swin-tiny-patch4-window7-224-finetuned-eurosat
wiem87
swin
9
1
transformers
0
image-classification
true
false
false
apache-2.0
null
['imagefolder']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,492
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0454 - Accuracy: 0.9826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2137 | 1.0 | 190 | 0.0981 | 0.9681 | | 0.1487 | 2.0 | 380 | 0.0517 | 0.9830 | | 0.1398 | 3.0 | 570 | 0.0454 | 0.9826 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
26e51391e1991330390c8754a74e18ed
Helsinki-NLP/opus-mt-yap-fr
Helsinki-NLP
marian
10
12
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
776
false
### opus-mt-yap-fr * source languages: yap * target languages: fr * OPUS readme: [yap-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/yap-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/yap-fr/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/yap-fr/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/yap-fr/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.yap.fr | 22.2 | 0.381 |
8a3136e7ac181328f771c9cb59533aa6
dominguesm/pt_core_news_trf
dominguesm
null
27
16
spacy
1
token-classification
false
false
false
cc-by-sa-4.0
['pt']
null
null
0
0
0
0
0
0
0
['spacy', 'token-classification']
false
true
true
43,344
false
Portuguese transformer pipeline ([neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased)). Components: transformer, morphologizer, parser, ner, attribute_ruler, lemmatizer (trainable_lemmatizer). | Feature | Description | | --- | --- | | **Name** | `pt_core_news_trf` | | **Version** | `3.4.0` | | **spaCy** | `>=3.4.3,<3.5.0` | | **Default Pipeline** | `transformer`, `ner`, `tagger`, `morphologizer`, `trainable_lemmatizer`, `parser` | | **Components** | `transformer`, `ner`, `tagger`, `morphologizer`, `trainable_lemmatizer`, `parser` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | [UD Portuguese Bosque v2.8](https://github.com/UniversalDependencies/UD_Portuguese-Bosque) (Rademaker, Alexandre; Freitas, Cláudia; de Souza, Elvis; Silveira, Aline; Cavalcanti, Tatiana; Evelyn, Wograine; Rocha, Luisa; Soares-Bastos, Isabela; Bick, Eckhard; Chalub, Fabricio; Paulino-Passos, Guilherme; Real, Livy; de Paiva, Valeria; Zeman, Daniel; Popel, Martin; Mareček, David; Silveira, Natalia; Martins, André)<br />[WikiNER](https://figshare.com/articles/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500) (Joel Nothman, Nicky Ringland, Will Radford, Tara Murphy, James R Curran) | | **License** | `CC BY-SA 4.0` | | **Author** | [Maicon Domingues](http://nlp.rocks) | ### Label Scheme <details> <summary>View label scheme (742 labels for 4 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `LOC`, `MISC`, `ORG`, `PER` | | **`tagger`** | `ADJ`, `ADJ_ADJ`, `ADJ_NOUN`, `ADP`, `ADP_ADV`, `ADP_DET`, `ADP_NUM`, `ADP_PRON`, `ADP_PROPN`, `ADV`, `ADV_PRON`, `AUX`, `AUX_PRON`, `CCONJ`, `CCONJ_PRON`, `DET`, `INTJ`, `NOUN`, `NUM`, `PART`, `PART_NOUN`, `PART_NUM`, `PRON`, `PROPN`, `PROPN_PROPN`, `PUNCT`, `SCONJ`, `SCONJ_DET`, `SCONJ_PRON`, `SYM`, `VERB`, `VERB_PRON`, `VERB_PRON_PRON`, `VERB_SCONJ`, `X` | | **`morphologizer`** | `Gender=Masc\|Number=Sing\|POS=PROPN`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Sing\|POS=PROPN`, `ExtPos=PROPN\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Number=Sing\|POS=PROPN`, `Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Part`, `POS=ADV`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=ADJ\|Typo=Yes`, `POS=PUNCT`, `POS=VERB\|VerbForm=Ger`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Sing\|POS=ADJ`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `NumType=Card\|POS=NUM`, `POS=SYM`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=ADP\|PronType=Art`, `Gender=Masc\|Number=Plur\|POS=NOUN`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `ExtPos=PROPN\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=ADP\|PronType=Art`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=CCONJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `POS=SCONJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=VERB\|VerbForm=Inf`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=ADV\|Polarity=Neg`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=ADP\|PronType=Art`, `Gender=Fem\|Number=Plur\|POS=NOUN`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `POS=ADP`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `POS=AUX\|VerbForm=Inf`, `Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `ExtPos=CCONJ\|POS=ADV`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `POS=AUX\|VerbForm=Ger`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part`, `Mood=Sub\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `POS=VERB\|VerbForm=Part`, `Number=Sing\|POS=VERB\|Person=3\|VerbForm=Inf`, `ExtPos=NOUN\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Gender=Masc\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `ExtPos=ADP\|POS=ADV`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `ExtPos=AUX\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=VERB\|VerbForm=Part`, `ExtPos=CCONJ\|POS=CCONJ`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Number=Sing\|POS=PRON\|PronType=Rel`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Prs`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `POS=AUX\|VerbForm=Part`, `Number=Plur\|POS=AUX\|Person=3\|VerbForm=Inf`, `Gender=Fem\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `ExtPos=INTJ\|POS=AUX`, `Number=Sing\|POS=DET\|PronType=Art`, `NumType=Card\|Number=Sing\|POS=NUM`, `ExtPos=PROPN\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Number=Plur\|POS=VERB\|Person=3\|VerbForm=Inf`, `Gender=Fem\|Number=Sing\|POS=NOUN\|Typo=Yes`, `ExtPos=SCONJ\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Dem`, `Case=Acc\|POS=PRON\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Gender=Masc\|Number=Sing\|POS=VERB\|VerbForm=Part`, `Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Number=Plur\|POS=PROPN`, `Gender=Masc\|Number=Plur\|POS=PROPN`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Gender=Fem\|Number=Sing\|POS=ADP\|PronType=Dem`, `ExtPos=SCONJ\|POS=ADV`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `ExtPos=PROPN\|Number=Sing\|POS=PROPN`, `Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Abbr=Yes\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Abbr=Yes\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=ADP\|PronType=Dem`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=SCONJ\|PronType=Art`, `Number=Sing\|POS=AUX\|Person=3\|VerbForm=Inf`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=SCONJ\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Art`, `ExtPos=AUX\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Case=Dat\|POS=PRON\|PronType=Prs`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art\|Typo=Yes`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Definite=Def\|ExtPos=ADV\|Gender=Fem\|Number=Plur\|POS=ADP\|PronType=Art`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|VerbForm=Inf`, `ExtPos=PROPN\|Gender=Fem\|Number=Sing\|POS=NOUN`, `ExtPos=CCONJ\|POS=VERB\|VerbForm=Ger`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `ExtPos=ADV\|POS=ADP`, `ExtPos=AUX\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Abbr=Yes\|ExtPos=PROPN\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Neg`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `ExtPos=SCONJ\|POS=SCONJ`, `Gender=Masc\|Number=Sing\|POS=VERB\|VerbForm=Inf`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=ADP\|PronType=Art`, `Case=Dat\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art\|Typo=Yes`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin`, `Degree=Abs\|Gender=Masc\|Number=Sing\|POS=ADJ`, `ExtPos=NOUN\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Neg`, `ExtPos=PROPN\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Gender=Fem\|Number=Plur\|POS=PROPN`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Int`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `ExtPos=SCONJ\|POS=ADP`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Art`, `ExtPos=PROPN\|Gender=Fem\|Number=Sing\|POS=PROPN\|PronType=Art`, `Mood=Ind\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `ExtPos=NOUN\|POS=ADP`, `Gender=Masc\|NumType=Mult\|Number=Sing\|POS=NUM`, `ExtPos=ADV\|POS=ADV`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Emp`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `ExtPos=NOUN\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|POS=PRON\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Rel`, `ExtPos=NOUN\|POS=X`, `POS=X`, `ExtPos=NOUN\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Gender=Masc\|Number=Plur\|POS=ADP\|PronType=Dem`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `ExtPos=AUX\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Emp`, `Gender=Masc\|Number=Sing\|POS=DET`, `ExtPos=ADP\|POS=ADP`, `POS=NOUN`, `Gender=Masc\|NumType=Ord\|Number=Sing\|POS=NOUN`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Art`, `ExtPos=AUX\|Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=ADP\|PronType=Art`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Typo=Yes\|VerbForm=Inf`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Tot`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pqp\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pqp\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=ADV\|PronType=Ind`, `POS=ADV\|Typo=Yes`, `Abbr=Yes\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=SCONJ\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=AUX\|Tense=Imp\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `POS=PRON\|PronType=Rel`, `ExtPos=ADV\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Sub\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=ADP\|PronType=Art`, `Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Imp\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin`, `Definite=Def\|ExtPos=CCONJ\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Art`, `Definite=Def\|ExtPos=SCONJ\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Art`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `ExtPos=AUX\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=ADJ\|Voice=Pass`, `Number=Sing\|POS=ADJ`, `ExtPos=ADV\|Gender=Masc\|Number=Plur\|POS=ADP\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=DET`, `Case=Acc\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|VerbForm=Fin`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `POS=INTJ`, `Number=Sing\|POS=NOUN`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `ExtPos=ADV\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `ExtPos=PROPN\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `ExtPos=AUX\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Degree=Cmp\|POS=ADV`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Gender=Masc\|Number=Sing\|POS=AUX\|VerbForm=Part`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `ExtPos=CCONJ\|POS=ADP`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `ExtPos=PROPN\|Gender=Masc\|Number=Sing\|POS=PROPN\|PronType=Art`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Pass`, `POS=DET\|PronType=Ind`, `Case=Acc\|Number=Sing\|POS=VERB\|Person=1\|PronType=Prs\|VerbForm=Inf`, `ExtPos=NOUN\|Gender=Masc\|Number=Sing\|POS=X`, `Case=Acc\|POS=VERB\|PronType=Prs\|VerbForm=Inf`, `POS=SCONJ\|VerbForm=Ger`, `Abbr=Yes\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Neg`, `ExtPos=PROPN\|Gender=Masc\|Number=Sing\|POS=NUM`, `Number=Sing\|POS=NUM`, `Gender=Masc\|Number=Plur\|POS=ADJ\|Typo=Yes`, `Mood=Cnd\|Number=Sing\|POS=VERB\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=DET`, `ExtPos=PROPN\|Gender=Masc\|Number=Plur\|POS=PROPN`, `ExtPos=AUX\|POS=VERB\|VerbForm=Inf`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `ExtPos=ADJ\|POS=X`, `Gender=Fem\|Number=Sing\|POS=X`, `Abbr=Yes\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Gender=Masc\|Number=Sing\|POS=PRON`, `Number=Sing\|POS=ADP`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=ADP\|PronType=Art\|Typo=Yes`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel\|Typo=Yes`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Tense=Fut\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `ExtPos=AUX\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `ExtPos=AUX\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Abbr=Yes\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `Case=Acc\|Gender=Fem\|POS=PRON\|PronType=Prs`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=ADP\|PronType=Art\|Typo=Yes`, `ExtPos=AUX\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=SCONJ\|PronType=Art`, `Case=Dat\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=ADP\|PronType=Art\|Typo=Yes`, `ExtPos=AUX\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art\|Typo=Yes`, `NumType=Ord\|POS=ADJ`, `Gender=Masc\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `ExtPos=NOUN\|Gender=Masc\|Number=Sing\|POS=PROPN`, `ExtPos=PROPN\|Gender=Masc\|POS=PROPN`, `Gender=Masc\|POS=PROPN`, `Gender=Fem\|Number=Plur\|POS=DET`, `ExtPos=ADJ\|POS=ADP`, `ExtPos=ADJ\|POS=ADV`, `Gender=Masc\|Number=Plur\|POS=PRON`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art\|Typo=Yes`, `ExtPos=ADP\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=SCONJ\|PronType=Rel`, `Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `ExtPos=AUX\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `ExtPos=NOUN\|POS=ADV`, `Gender=Fem\|Number=Sing\|POS=ADJ\|Typo=Yes`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `ExtPos=NOUN\|Gender=Fem\|Number=Plur\|POS=NOUN`, `ExtPos=CCONJ\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Number=Plur\|POS=AUX\|Person=1\|VerbForm=Inf`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `ExtPos=ADV\|POS=X`, `Gender=Masc\|Number=Sing\|POS=X`, `POS=NUM`, `ExtPos=NOUN\|NumType=Ord\|POS=NUM`, `Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `ExtPos=AUX\|POS=VERB\|VerbForm=Ger`, `ExtPos=AUX\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|POS=VERB\|PronType=Prs\|VerbForm=Ger`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Emp`, `Number=Plur\|POS=VERB\|Person=1\|VerbForm=Inf`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Neg`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Gender=Masc\|Number=Plur\|POS=ADP\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Tot`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Rel`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `ExtPos=NOUN\|NumType=Card\|POS=PART`, `ExtPos=NUM\|Gender=Masc\|NumType=Frac\|Number=Sing\|POS=NUM`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Definite=Ind\|ExtPos=SCONJ\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `ExtPos=NOUN\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|VerbForm=Inf`, `Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Number=Sing\|POS=CCONJ`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Definite=Def\|ExtPos=PROPN\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Art`, `Definite=Def\|ExtPos=PROPN\|Gender=Fem\|Number=Sing\|POS=ADP\|PronType=Art`, `Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Abbr=Yes\|Gender=Fem\|Number=Plur\|POS=NOUN`, `NumType=Card\|POS=ADP`, `ExtPos=AUX\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Definite=Def\|ExtPos=ADV\|Gender=Fem\|Number=Sing\|POS=ADP\|PronType=Art`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Tot`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Tot`, `Gender=Masc\|Number=Sing\|POS=PROPN\|Typo=Yes`, `Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Rel`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pqp\|VerbForm=Fin`, `Abbr=Yes\|ExtPos=PROPN\|Gender=Masc\|Number=Sing\|POS=PROPN`, `NumType=Ord\|POS=NUM`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `ExtPos=AUX\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=SCONJ\|Person=3\|PronType=Prs`, `ExtPos=PROPN\|POS=X`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `ExtPos=NOUN\|POS=NOUN`, `Number=Sing\|POS=PRON\|PronType=Tot`, `Number=Sing\|POS=DET\|PronType=Rel`, `Case=Dat\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Art`, `POS=PRON\|PronType=Int`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=ADJ\|Typo=Yes`, `Case=Dat\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `ExtPos=AUX\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `ExtPos=AUX\|POS=VERB\|VerbForm=Part`, `ExtPos=AUX\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `ExtPos=AUX\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `ExtPos=ADP\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Number=Plur\|POS=ADJ`, `Definite=Def\|POS=ADP\|PronType=Art`, `Number=Sing\|POS=PRON\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `ExtPos=NOUN\|Gender=Masc\|NumType=Frac\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Definite=Def\|POS=SCONJ\|PronType=Art`, `Case=Acc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|POS=PRON\|PronType=Ind`, `ExtPos=AUX\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pqp\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|POS=VERB\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Fut\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=NOUN\|Voice=Pass`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `ExtPos=AUX\|Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Fut\|VerbForm=Fin`, `ExtPos=AUX\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Inf`, `Gender=Masc\|Number=Sing\|POS=PART`, `Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Gender=Masc\|Number=Sing\|POS=ADV`, `Case=Dat\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|VerbForm=Ger`, `NumType=Card\|POS=DET`, `Case=Dat\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `ExtPos=AUX\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Inf`, `Case=Dat\|Gender=Masc\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `POS=PRON\|PronType=Prs`, `ExtPos=PROPN\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Case=Dat\|Gender=Masc\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Tense=Imp\|VerbForm=Fin`, `ExtPos=ADV\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Dem`, `POS=VERB\|VerbForm=Inf\|Voice=Pass`, `Case=Acc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `ExtPos=AUX\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Inf`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Number=Sing\|POS=PROPN\|PronType=Art`, `Case=Dat\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=1\|PronType=Prs\|VerbForm=Inf`, `Gender=Fem\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Number=Plur\|POS=AUX\|Person=1\|Tense=Past`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `POS=PRON\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADV\|Person=3\|PronType=Prs`, `POS=PRON\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Fut\|VerbForm=Fin`, `ExtPos=AUX\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `ExtPos=SCONJ\|Gender=Masc\|Number=Sing\|POS=VERB\|VerbForm=Part`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|Typo=Yes\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `ExtPos=NOUN\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Dat\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=ADV\|Typo=Yes`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Rel`, `Gender=Masc\|Number=Sing\|POS=SCONJ`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `ExtPos=ADP\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `ExtPos=CCONJ\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Dem`, `Definite=Def\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `ExtPos=ADV\|Gender=Masc\|Number=Sing\|POS=ADP`, `ExtPos=AUX\|Gender=Masc\|Number=Sing\|POS=VERB\|VerbForm=Part`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pqp\|VerbForm=Fin`, `Case=Acc,Dat\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `Case=Dat\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `POS=DET`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Emp`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Art`, `Case=Acc\|Gender=Masc\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Degree=Cmp\|POS=ADJ`, `Gender=Fem\|Number=Plur\|POS=ADP\|PronType=Ind`, `Definite=Def\|ExtPos=SCONJ\|Gender=Fem\|Number=Sing\|POS=SCONJ\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=NOUN\|Typo=Yes`, `ExtPos=PROPN\|POS=ADV`, `Case=Acc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `ExtPos=PROPN\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Number=Sing\|POS=VERB\|Person=3\|VerbForm=Inf\|Voice=Pass`, `Case=Acc\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=VERB\|Person=2\|PronType=Prs\|VerbForm=Inf`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `NumType=Card\|POS=DET\|PronType=Art`, `Gender=Fem,Masc\|Number=Sing\|POS=PROPN`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `POS=PRON\|PronType=Neg`, `Gender=Fem\|Number=Sing\|POS=SCONJ\|PronType=Dem`, `ExtPos=AUX\|Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part`, `ExtPos=ADJ\|Gender=Fem\|Number=Sing\|POS=X`, `Gender=Fem\|Number=Plur\|POS=NUM`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=SCONJ\|PronType=Art`, `Case=Dat\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|NumType=Sets\|Number=Sing\|POS=NUM`, `POS=ADV\|PronType=Rel`, `Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ\|Typo=Yes`, `Foreign=Yes\|POS=NOUN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `Case=Acc\|POS=AUX\|PronType=Prs\|VerbForm=Inf`, `ExtPos=INTJ\|POS=ADV\|Polarity=Neg`, `POS=AUX`, `Gender=Masc\|Number=Plur\|POS=NUM`, `Number=Sing\|POS=DET\|PronType=Ind`, `Number=Plur\|POS=PRON\|PronType=Int`, `Abbr=Yes\|Number=Sing\|POS=PROPN`, `Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=ADP\|PronType=Ind`, `ExtPos=AUX\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art\|Typo=Yes`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `ExtPos=AUX\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=SCONJ\|PronType=Art\|Typo=Yes`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Pass`, `ExtPos=NUM\|NumType=Mult\|POS=NUM`, `ExtPos=AUX\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|POS=VERB\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `NumType=Card\|Number=Plur\|POS=NUM`, `ExtPos=AUX\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin`, `ExtPos=NUM\|NumType=Card\|POS=NUM`, `POS=VERB`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=SCONJ\|PronType=Rel`, `Case=Acc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=VERB\|Typo=Yes\|VerbForm=Part`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|Typo=Yes\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=ADV\|Polarity=Neg`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Number=Sing\|POS=VERB\|Person=1\|VerbForm=Inf`, `ExtPos=NOUN\|Number=Sing\|POS=PROPN`, `ExtPos=ADP\|POS=DET`, `ExtPos=ADP\|Gender=Fem\|Number=Sing\|POS=ADP\|PronType=Art`, `Abbr=Yes\|ExtPos=PROPN\|Number=Sing\|POS=PROPN`, `ExtPos=AUX\|Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Part`, `ExtPos=SCONJ\|Gender=Fem\|Number=Sing\|POS=ADV\|PronType=Ind`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=VERB\|Person=1\|PronType=Prs\|VerbForm=Inf`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Art`, `Case=Dat\|Gender=Fem\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Gender=Masc\|Number=Plur,Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `ExtPos=PROPN\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|PronType=Prs\|VerbForm=Inf`, `Number=Sing\|POS=DET\|PronType=Tot`, `NumType=Range\|POS=NUM`, `Case=Dat\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|PronType=Rel`, `ExtPos=PROPN\|Gender=Masc\|Number=Plur\|POS=ADJ\|Typo=Yes`, `Definite=Def\|ExtPos=PROPN\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Dat\|Gender=Masc\|Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Fin`, `ExtPos=AUX\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Number=Sing\|POS=X`, `ExtPos=NOUN\|POS=PROPN`, `Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Fut\|VerbForm=Fin`, `Abbr=Yes\|ExtPos=PROPN\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Person=1\|PronType=Prs\|VerbForm=Inf`, `Case=Dat\|Gender=Masc\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `Number=Sing\|POS=VERB\|Person=1\|VerbForm=Inf\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=SCONJ\|PronType=Dem`, `ExtPos=SCONJ\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `NumType=Frac\|POS=NUM`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `POS=ADJ`, `Gender=Fem\|Number=Sing\|POS=ADP\|PronType=Ind`, `Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `ExtPos=AUX\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=ADV\|PronType=Rel`, `ExtPos=NOUN\|NumType=Card\|POS=NUM`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind\|Typo=Yes`, `Mood=Cnd\|POS=VERB\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin` | | **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `dep`, `det`, `discourse`, `expl`, `fixed`, `flat`, `flat:foreign`, `flat:name`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `obl:agent`, `parataxis`, `punct`, `xcomp` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 92.84 | | `ENTS_P` | 92.75 | | `ENTS_R` | 92.94 | | `TAG_ACC` | 97.82 | | `POS_ACC` | 97.81 | | `MORPH_ACC` | 96.11 | | `LEMMA_ACC` | 97.35 | | `DEP_UAS` | 92.84 | | `DEP_LAS` | 89.66 | | `SENTS_P` | 93.49 | | `SENTS_R` | 94.28 | | `SENTS_F` | 93.88 |
60d1f8cc178c5c1bd8a9459591a5da32
Fhrozen/test_an4
Fhrozen
null
31
1
espnet
0
automatic-speech-recognition
false
false
false
cc-by-4.0
['en']
['an4']
null
0
0
0
0
0
0
0
['espnet', 'audio', 'automatic-speech-recognition']
false
true
true
7,699
false
## ESPnet2 ASR model ### `Fhrozen/test_an4` This model was trained by Fhrozen using an4 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout b8df4c928e132acff78d196988bdb68a66987952 pip install -e . cd egs2/an4/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model Fhrozen/test_an4 ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Wed Oct 20 00:00:46 JST 2021` - python version: `3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]` - espnet version: `espnet 0.10.4a1` - pytorch version: `pytorch 1.9.0` - Git hash: `b8df4c928e132acff78d196988bdb68a66987952` - Commit date: `Tue Oct 19 07:48:11 2021 -0400` ## asr_train_raw_en_bpe30 ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |inference_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.best/test|130|773|4.0|22.3|73.7|0.1|96.1|100.0| |inference_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.best/train_dev|100|591|2.7|21.8|75.5|0.0|97.3|100.0| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |inference_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.best/test|130|2565|17.2|16.4|66.4|1.0|83.8|100.0| |inference_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.best/train_dev|100|1915|15.5|16.4|68.1|0.9|85.5|100.0| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |inference_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.best/test|130|2695|21.1|15.6|63.3|0.9|79.9|100.0| |inference_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.best/train_dev|100|2015|19.4|15.6|65.0|0.9|81.5|100.0| ## ASR config <details><summary>expand</summary> ``` config: null print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_raw_en_bpe30 ngpu: 0 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: null dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 40 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - train - loss - min - - valid - loss - min - - train - acc - max - - valid - acc - max keep_nbest_models: - 10 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_bpe30/train/speech_shape - exp/asr_stats_raw_en_bpe30/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_en_bpe30/valid/speech_shape - exp/asr_stats_raw_en_bpe30/valid/text_shape.bpe batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_nodev/wav.scp - speech - sound - - dump/raw/train_nodev/text - text - text valid_data_path_and_name_and_type: - - dump/raw/train_dev/wav.scp - speech - sound - - dump/raw/train_dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adadelta optim_conf: {} scheduler: null scheduler_conf: {} token_list: - <blank> - <unk> - ▁ - T - E - O - R - Y - A - H - U - S - I - F - B - L - P - D - G - M - C - V - X - J - K - Z - W - N - Q - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true model_conf: ctc_weight: 0.5 ignore_id: -1 lsm_weight: 0.0 length_normalized_loss: false report_cer: true report_wer: true sym_space: <space> sym_blank: <blank> extract_feats_in_collect_stats: true use_preprocessor: true token_type: bpe bpemodel: data/en_token_list/bpe_unigram30/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: fs: 16k specaug: null specaug_conf: {} normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_en_bpe30/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: rnn encoder_conf: {} postencoder: null postencoder_conf: {} decoder: rnn decoder_conf: {} required: - output_dir - token_list version: 0.10.4a1 distributed: false ``` </details> ## LM config <details><summary>expand</summary> ``` config: conf/train_lm.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/lm_train_lm_en_bpe30 ngpu: 0 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: null dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 40 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - loss - min keep_nbest_models: 1 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 256 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/lm_stats_en_bpe30/train/text_shape.bpe valid_shape_file: - exp/lm_stats_en_bpe30/valid/text_shape.bpe batch_type: folded valid_batch_type: null fold_length: - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/lm_train.txt - text - text valid_data_path_and_name_and_type: - - dump/raw/train_dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.1 scheduler: null scheduler_conf: {} token_list: - <blank> - <unk> - ▁ - T - E - O - R - Y - A - H - U - S - I - F - B - L - P - D - G - M - C - V - X - J - K - Z - W - N - Q - <sos/eos> init: null model_conf: ignore_id: 0 use_preprocessor: true token_type: bpe bpemodel: data/en_token_list/bpe_unigram30/bpe.model non_linguistic_symbols: null cleaner: null g2p: null lm: seq_rnn lm_conf: unit: 650 nlayers: 2 required: - output_dir - token_list version: 0.10.4a1 distributed: false ``` </details>
6fa244cd2fe0524b9b46c9c149349166
jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-8_female-2_s859
jonatasgrosman
wav2vec2
10
3
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['en']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'en']
false
true
true
498
false
# exp_w2v2r_en_vp-100k_gender_male-8_female-2_s859 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
4c59ea635d5a80ba0a6f5f36b5f7e61e
Sercan/whisper-small-tr
Sercan
whisper
28
1
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['tr']
['mozilla-foundation/common_voice_11_0']
null
0
0
0
0
0
0
0
['whisper', 'generated_from_trainer']
true
true
true
1,642
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Turkish This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 tr dataset. It achieves the following results on the evaluation set: - Loss: 0.2799 - Wer: 17.2753 - Cer: 4.5335 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:| | 0.1044 | 1.07 | 1000 | 0.2777 | 18.4046 | 4.8810 | | 0.0469 | 3.02 | 2000 | 0.2799 | 17.2753 | 4.5335 | | 0.014 | 4.09 | 3000 | 0.3202 | 18.0800 | 4.9039 | | 0.0039 | 6.04 | 4000 | 0.3326 | 18.2964 | 5.0192 | | 0.0022 | 7.11 | 5000 | 0.3453 | 18.0307 | 4.9470 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
7830a334a4304178ad0a98dfacd10674
gossminn/predict-perception-bertino-focus-object
gossminn
distilbert
12
5
transformers
0
text-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
3,970
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # predict-perception-bertino-focus-object This model is a fine-tuned version of [indigo-ai/BERTino](https://huggingface.co/indigo-ai/BERTino) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2766 - R2: 0.5460 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 20 - eval_batch_size: 8 - seed: 1996 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 47 ### Training results | Training Loss | Epoch | Step | Validation Loss | R2 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4798 | 1.0 | 14 | 0.4519 | 0.2581 | | 0.2481 | 2.0 | 28 | 0.3042 | 0.5007 | | 0.12 | 3.0 | 42 | 0.3746 | 0.3851 | | 0.0969 | 4.0 | 56 | 0.3186 | 0.4770 | | 0.0907 | 5.0 | 70 | 0.3727 | 0.3882 | | 0.0673 | 6.0 | 84 | 0.2847 | 0.5327 | | 0.0457 | 7.0 | 98 | 0.3141 | 0.4844 | | 0.0431 | 8.0 | 112 | 0.3369 | 0.4470 | | 0.028 | 9.0 | 126 | 0.3039 | 0.5012 | | 0.0244 | 10.0 | 140 | 0.2964 | 0.5135 | | 0.0201 | 11.0 | 154 | 0.3072 | 0.4958 | | 0.0153 | 12.0 | 168 | 0.3049 | 0.4995 | | 0.0155 | 13.0 | 182 | 0.2924 | 0.5201 | | 0.015 | 14.0 | 196 | 0.2585 | 0.5757 | | 0.0181 | 15.0 | 210 | 0.3258 | 0.4652 | | 0.0136 | 16.0 | 224 | 0.3142 | 0.4842 | | 0.0105 | 17.0 | 238 | 0.2536 | 0.5837 | | 0.0104 | 18.0 | 252 | 0.2407 | 0.6050 | | 0.0107 | 19.0 | 266 | 0.2727 | 0.5524 | | 0.0084 | 20.0 | 280 | 0.3117 | 0.4883 | | 0.0102 | 21.0 | 294 | 0.2999 | 0.5078 | | 0.0074 | 22.0 | 308 | 0.3018 | 0.5047 | | 0.0068 | 23.0 | 322 | 0.2826 | 0.5361 | | 0.0054 | 24.0 | 336 | 0.2804 | 0.5398 | | 0.0044 | 25.0 | 350 | 0.2912 | 0.5220 | | 0.0048 | 26.0 | 364 | 0.2813 | 0.5382 | | 0.005 | 27.0 | 378 | 0.2933 | 0.5186 | | 0.0046 | 28.0 | 392 | 0.2820 | 0.5371 | | 0.004 | 29.0 | 406 | 0.2717 | 0.5541 | | 0.0054 | 30.0 | 420 | 0.2717 | 0.5540 | | 0.0042 | 31.0 | 434 | 0.2699 | 0.5570 | | 0.0033 | 32.0 | 448 | 0.2630 | 0.5684 | | 0.0038 | 33.0 | 462 | 0.2578 | 0.5767 | | 0.0032 | 34.0 | 476 | 0.2687 | 0.5589 | | 0.004 | 35.0 | 490 | 0.2737 | 0.5507 | | 0.0031 | 36.0 | 504 | 0.2753 | 0.5481 | | 0.0037 | 37.0 | 518 | 0.2819 | 0.5373 | | 0.0034 | 38.0 | 532 | 0.2759 | 0.5471 | | 0.0034 | 39.0 | 546 | 0.2835 | 0.5347 | | 0.0029 | 40.0 | 560 | 0.2814 | 0.5381 | | 0.0033 | 41.0 | 574 | 0.2801 | 0.5403 | | 0.0025 | 42.0 | 588 | 0.2759 | 0.5472 | | 0.0029 | 43.0 | 602 | 0.2790 | 0.5421 | | 0.0028 | 44.0 | 616 | 0.2801 | 0.5401 | | 0.003 | 45.0 | 630 | 0.2772 | 0.5451 | | 0.0028 | 46.0 | 644 | 0.2764 | 0.5463 | | 0.0026 | 47.0 | 658 | 0.2766 | 0.5460 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
01f35b10b8456e0c84c21e4d2755e9a0
sd-concepts-library/kaleido
sd-concepts-library
null
10
0
null
1
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,100
false
### kaleido on Stable Diffusion This is the `<kaleido>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<kaleido> 0](https://huggingface.co/sd-concepts-library/kaleido/resolve/main/concept_images/3.jpeg) ![<kaleido> 1](https://huggingface.co/sd-concepts-library/kaleido/resolve/main/concept_images/0.jpeg) ![<kaleido> 2](https://huggingface.co/sd-concepts-library/kaleido/resolve/main/concept_images/2.jpeg) ![<kaleido> 3](https://huggingface.co/sd-concepts-library/kaleido/resolve/main/concept_images/1.jpeg) ![<kaleido> 4](https://huggingface.co/sd-concepts-library/kaleido/resolve/main/concept_images/4.jpeg)
4f37b5f7a89dc83181324353952275ad
jonatasgrosman/exp_w2v2t_pt_vp-100k_s69
jonatasgrosman
wav2vec2
10
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['pt']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'pt']
false
true
true
474
false
# exp_w2v2t_pt_vp-100k_s69 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
08f9f0d9d54585b72584d1536e9aa872
juancavallotti/t5-base-gec
juancavallotti
t5
52
2
transformers
2
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
889
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-gec This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
bca2ae06405e129a9134222dadaaef78
Helsinki-NLP/opus-mt-fi-hil
Helsinki-NLP
marian
10
7
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
776
false
### opus-mt-fi-hil * source languages: fi * target languages: hil * OPUS readme: [fi-hil](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-hil/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-24.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-hil/opus-2020-01-24.zip) * test set translations: [opus-2020-01-24.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-hil/opus-2020-01-24.test.txt) * test set scores: [opus-2020-01-24.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-hil/opus-2020-01-24.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.hil | 38.7 | 0.610 |
0e1a3e6abfa9684a9a6b438b97c3811b
misterbrainley/ddpm-butterflies-128
misterbrainley
null
13
3
diffusers
0
null
false
false
false
apache-2.0
['en']
['huggan/smithsonian_butterflies_subset']
null
0
0
0
0
0
0
0
[]
false
true
true
1,236
false
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/misterbrainley/ddpm-butterflies-128/tensorboard?#scalars)
b8bbc6564e441ece0aaa4ae229682375
cmarkea/distilcamembert-base-nli
cmarkea
camembert
9
1,125
transformers
7
zero-shot-classification
true
true
false
mit
['fr']
['flue']
null
0
0
0
0
0
0
0
['zero-shot-classification', 'sentence-similarity', 'nli']
false
true
true
7,982
false
DistilCamemBERT-NLI =================== We present DistilCamemBERT-NLI, which is [DistilCamemBERT](https://huggingface.co/cmarkea/distilcamembert-base) fine-tuned for the Natural Language Inference (NLI) task for the french language, also known as recognizing textual entailment (RTE). This model is constructed on the XNLI dataset, which determines whether a premise entails, contradicts or neither entails or contradicts a hypothesis. This modelization is close to [BaptisteDoyen/camembert-base-xnli](https://huggingface.co/BaptisteDoyen/camembert-base-xnli) based on [CamemBERT](https://huggingface.co/camembert-base) model. The problem of the modelizations based on CamemBERT is at the scaling moment, for the production phase, for example. Indeed, inference cost can be a technological issue especially in the context of cross-encoding like this task. To counteract this effect, we propose this modelization which divides the inference time by 2 with the same consumption power, thanks to DistilCamemBERT. Dataset ------- The dataset XNLI from [FLUE](https://huggingface.co/datasets/flue) comprises 392,702 premises with their hypothesis for the train and 5,010 couples for the test. The goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B?) and is a classification task (given two sentences, predict one of three labels). Sentence A is called *premise*, and sentence B is called *hypothesis*, then the goal of modelization is determined as follows: $$P(premise=c\in\{contradiction, entailment, neutral\}\vert hypothesis)$$ Evaluation results ------------------ | **class** | **precision (%)** | **f1-score (%)** | **support** | | :----------------: | :---------------: | :--------------: | :---------: | | **global** | 77.70 | 77.45 | 5,010 | | **contradiction** | 78.00 | 79.54 | 1,670 | | **entailment** | 82.90 | 78.87 | 1,670 | | **neutral** | 72.18 | 74.04 | 1,670 | Benchmark --------- We compare the [DistilCamemBERT](https://huggingface.co/cmarkea/distilcamembert-base) model to 2 other modelizations working on the french language. The first one [BaptisteDoyen/camembert-base-xnli](https://huggingface.co/BaptisteDoyen/camembert-base-xnli) is based on well named [CamemBERT](https://huggingface.co/camembert-base), the french RoBERTa model and the second one [MoritzLaurer/mDeBERTa-v3-base-mnli-xnli](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli) based on [mDeBERTav3](https://huggingface.co/microsoft/mdeberta-v3-base) a multilingual model. To compare the performances, the metrics of accuracy and [MCC (Matthews Correlation Coefficient)](https://en.wikipedia.org/wiki/Phi_coefficient) were used. We used an **AMD Ryzen 5 4500U @ 2.3GHz with 6 cores** for mean inference time measure. | **model** | **time (ms)** | **accuracy (%)** | **MCC (x100)** | | :--------------: | :-----------: | :--------------: | :------------: | | [cmarkea/distilcamembert-base-nli](https://huggingface.co/cmarkea/distilcamembert-base-nli) | **51.35** | 77.45 | 66.24 | | [BaptisteDoyen/camembert-base-xnli](https://huggingface.co/BaptisteDoyen/camembert-base-xnli) | 105.0 | 81.72 | 72.67 | | [MoritzLaurer/mDeBERTa-v3-base-mnli-xnli](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli) | 299.18 | **83.43** | **75.15** | Zero-shot classification ------------------------ The main advantage of such modelization is to create a zero-shot classifier allowing text classification without training. This task can be summarized by: $$P(hypothesis=i\in\mathcal{C}|premise)=\frac{e^{P(premise=entailment\vert hypothesis=i)}}{\sum_{j\in\mathcal{C}}e^{P(premise=entailment\vert hypothesis=j)}}$$ For this part, we use two datasets, the first one: [allocine](https://huggingface.co/datasets/allocine) used to train the sentiment analysis models. The dataset comprises two classes: "positif" and "négatif" appreciation of movie reviews. Here we use "Ce commentaire est {}." as the hypothesis template and "positif" and "négatif" as candidate labels. | **model** | **time (ms)** | **accuracy (%)** | **MCC (x100)** | | :--------------: | :-----------: | :--------------: | :------------: | | [cmarkea/distilcamembert-base-nli](https://huggingface.co/cmarkea/distilcamembert-base-nli) | **195.54** | 80.59 | 63.71 | | [BaptisteDoyen/camembert-base-xnli](https://huggingface.co/BaptisteDoyen/camembert-base-xnli) | 378.39 | **86.37** | **73.74** | | [MoritzLaurer/mDeBERTa-v3-base-mnli-xnli](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli) | 520.58 | 84.97 | 70.05 | The second one: [mlsum](https://huggingface.co/datasets/mlsum) used to train the summarization models. In this aim, we aggregate sub-topics and select a few of them. We use the articles summary part to predict their topics. In this case, the hypothesis template used is "C'est un article traitant de {}." and the candidate labels are: "économie", "politique", "sport" and "science". | **model** | **time (ms)** | **accuracy (%)** | **MCC (x100)** | | :--------------: | :-----------: | :--------------: | :------------: | | [cmarkea/distilcamembert-base-nli](https://huggingface.co/cmarkea/distilcamembert-base-nli) | **217.77** | **79.30** | **70.55** | | [BaptisteDoyen/camembert-base-xnli](https://huggingface.co/BaptisteDoyen/camembert-base-xnli) | 448.27 | 70.7 | 64.10 | | [MoritzLaurer/mDeBERTa-v3-base-mnli-xnli](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli) | 591.34 | 64.45 | 58.67 | How to use DistilCamemBERT-NLI ------------------------------ ```python from transformers import pipeline classifier = pipeline( task='zero-shot-classification', model="cmarkea/distilcamembert-base-nli", tokenizer="cmarkea/distilcamembert-base-nli" ) result = classifier ( sequences="Le style très cinéphile de Quentin Tarantino " "se reconnaît entre autres par sa narration postmoderne " "et non linéaire, ses dialogues travaillés souvent " "émaillés de références à la culture populaire, et ses " "scènes hautement esthétiques mais d'une violence " "extrême, inspirées de films d'exploitation, d'arts " "martiaux ou de western spaghetti.", candidate_labels="cinéma, technologie, littérature, politique", hypothesis_template="Ce texte parle de {}." ) result {"labels": ["cinéma", "littérature", "technologie", "politique"], "scores": [0.7164115309715271, 0.12878799438476562, 0.1092301607131958, 0.0455702543258667]} ``` ### Optimum + ONNX ```python from optimum.onnxruntime import ORTModelForSequenceClassification from transformers import AutoTokenizer, pipeline HUB_MODEL = "cmarkea/distilcamembert-base-nli" tokenizer = AutoTokenizer.from_pretrained(HUB_MODEL) model = ORTModelForSequenceClassification.from_pretrained(HUB_MODEL) onnx_qa = pipeline("zero-shot-classification", model=model, tokenizer=tokenizer) # Quantized onnx model quantized_model = ORTModelForSequenceClassification.from_pretrained( HUB_MODEL, file_name="model_quantized.onnx" ) ``` Citation -------- ```bibtex @inproceedings{delestre:hal-03674695, TITLE = {{DistilCamemBERT : une distillation du mod{\`e}le fran{\c c}ais CamemBERT}}, AUTHOR = {Delestre, Cyrile and Amar, Abibatou}, URL = {https://hal.archives-ouvertes.fr/hal-03674695}, BOOKTITLE = {{CAp (Conf{\'e}rence sur l'Apprentissage automatique)}}, ADDRESS = {Vannes, France}, YEAR = {2022}, MONTH = Jul, KEYWORDS = {NLP ; Transformers ; CamemBERT ; Distillation}, PDF = {https://hal.archives-ouvertes.fr/hal-03674695/file/cap2022.pdf}, HAL_ID = {hal-03674695}, HAL_VERSION = {v1}, } ```
1eb211c15a29465f564fbdf4b4e27eac
speechbrain/asr-transformer-transformerlm-librispeech
speechbrain
null
9
767
speechbrain
4
automatic-speech-recognition
true
false
false
apache-2.0
['en']
['librispeech']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'CTC', 'Attention', 'Transformer', 'pytorch', 'speechbrain', 'hf-asr-leaderboard']
true
true
true
4,029
false
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe> <br/><br/> # Transformer for LibriSpeech (with Transformer LM) This repository provides all the necessary tools to perform automatic speech recognition from an end-to-end system pretrained on LibriSpeech (EN) within SpeechBrain. For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). The performance of the model is the following: | Release | Test clean WER | Test other WER | GPUs | |:-------------:|:--------------:|:--------------:|:--------:| | 24-03-22 | 2.27 | 5.53 | 4xV100 32GB | ## Pipeline description This ASR system is composed of 3 different but linked blocks: - Tokenizer (unigram) that transforms words into subword units and trained with the train transcriptions of LibriSpeech. - Neural language model (Transformer LM) trained on the full 10M words dataset. - Acoustic model made of a transformer encoder and a joint decoder with CTC + transformer. Hence, the decoding also incorporates the CTC probabilities. The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed. ## Install SpeechBrain First of all, please install SpeechBrain with the following command: ``` pip install speechbrain ``` Please notice that we encourage you to read our tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). ### Transcribing your own audio files (in English) ```python from speechbrain.pretrained import EncoderDecoderASR asr_model = EncoderDecoderASR.from_hparams(source="speechbrain/asr-transformer-transformerlm-librispeech", savedir="pretrained_models/asr-transformer-transformerlm-librispeech") asr_model.transcribe_file("speechbrain/asr-transformer-transformerlm-librispeech/example.wav") ``` ### Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. ## Parallel Inference on a Batch Please, [see this Colab notebook](https://colab.research.google.com/drive/1hX5ZI9S4jHIjahFCZnhwwQmFoGAi3tmu?usp=sharing) to figure out how to transcribe in parallel a batch of input sentences using a pre-trained model. ### Training The model was trained with SpeechBrain (Commit hash: 'f73fcc35'). To train it from scratch follow these steps: 1. Clone SpeechBrain: ```bash git clone https://github.com/speechbrain/speechbrain/ ``` 2. Install it: ```bash cd speechbrain pip install -r requirements.txt pip install -e . ``` 3. Run Training: ```bash cd recipes/LibriSpeech/ASR/transformer python train.py hparams/transformer.yaml --data_folder=your_data_folder ``` You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1Nv1OLbHLqVeShyZ8LY9gjhYGE1DBFzFf?usp=sharing). ### Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. # **About SpeechBrain** - Website: https://speechbrain.github.io/ - Code: https://github.com/speechbrain/speechbrain/ - HuggingFace: https://huggingface.co/speechbrain/ # **Citing SpeechBrain** Please, cite SpeechBrain if you use it for your research or business. ```bibtex @misc{speechbrain, title={{SpeechBrain}: A General-Purpose Speech Toolkit}, author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio}, year={2021}, eprint={2106.04624}, archivePrefix={arXiv}, primaryClass={eess.AS}, note={arXiv:2106.04624} } ```
f80b26f950cadc6cd5ff925d1ff4cd34
bobber/terrier-dog
bobber
null
17
24
diffusers
0
text-to-image
true
false
false
creativeml-openrail-m
null
null
null
1
1
0
0
0
0
0
['pytorch', 'diffusers', 'stable-diffusion', 'text-to-image', 'diffusion-models-class', 'dreambooth-hackathon', 'animal']
false
true
true
2,028
false
# DreamBooth model for the terrier concept trained by bobber on the bobber/Terrier-images dataset. This is a Stable Diffusion model fine-tuned on the terrier concept with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of terrier dog** This model was created as part of the DreamBooth Hackathon 🔥. My daughter helped me selecting 18 images about Terriers from petfind. Hope you enjoy it. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Examples <table> <tr> <td>Generated Image of "a photo of terrier dog <br>in space suit walking in the mars"</td> <td>Generated Image of "a photo of terrier dog <br>in the background of chinese new year"</td> <td>Generated Image of "a photo of terrier dog <br>swimming in the pool"</td> </tr> <tr> <td align="center"><img src="https://i.imgur.com/YW483rm.jpg" style="height:200px"> </td> <td align="center"><img src="https://i.imgur.com/4m5Fv86.jpg" style="height:200px"> </td> <td align="center"><img src="https://i.imgur.com/ZCdapRU.jpg" style="height:200px"> </td> </tr> <tr> <td>Generated Image of "a photo of terrier dog <br>walking in Paris by Van Gogh"</td> <td>Generated Image of "a photo of terrier dog <br>with The Great Wave by Katsushika Hokusai"</td> <td>Generated Image of "a photo of terrier dog <br>by Leonardo da Vinci"</td> </tr> <tr> <td align="center"><img src="https://i.imgur.com/uzYLctu.jpg" style="height:200px"> </td> <td align="center"><img src="https://i.imgur.com/9wxxyD4.jpg" style="height:200px"> </td> <td align="center"><img src="https://i.imgur.com/xufDxxD.jpg" style="height:200px"> </td> </tr> </table> ## Description This is a Stable Diffusion model fine-tuned on 18 Terrier `dog` images for the animal theme. ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('bobber/terrier-dog') image = pipeline().images[0] image ```
d386bd115ec46b4400991998874ee6ce
izumi-lab/electra-small-paper-japanese-fin-discriminator
izumi-lab
electra
7
12
transformers
0
null
true
false
false
cc-by-sa-4.0
['ja']
null
null
0
0
0
0
0
0
0
['finance']
false
true
true
2,101
false
# ELECTRA small Japanese finance discriminator This is a [ELECTRA](https://github.com/google-research/electra) model pretrained on texts in the Japanese language. The codes for the pretraining are available at [retarfi/language-pretraining](https://github.com/retarfi/language-pretraining/tree/v1.0). ## Model architecture The model architecture is the same as ELECTRA small in the [original ELECTRA paper](https://arxiv.org/abs/2003.10555); 12 layers, 256 dimensions of hidden states, and 4 attention heads. ## Training Data The models are trained on the Japanese version of Wikipedia. The training corpus is generated from the Japanese version of Wikipedia, using Wikipedia dump file as of June 1, 2021. The Wikipedia corpus file is 2.9GB, consisting of approximately 20M sentences. The financial corpus consists of 2 corpora: - Summaries of financial results from October 9, 2012, to December 31, 2020 - Securities reports from February 8, 2018, to December 31, 2020 The financial corpus file is 5.2GB, consisting of approximately 27M sentences. ## Tokenization The texts are first tokenized by MeCab with IPA dictionary and then split into subwords by the WordPiece algorithm. The vocabulary size is 32768. ## Training The models are trained with the same configuration as ELECTRA small in the [original ELECTRA paper](https://arxiv.org/abs/2003.10555); 128 tokens per instance, 128 instances per batch, and 1M training steps. ## Citation ``` @article{Suzuki-etal-2023-ipm, title = {Constructing and analyzing domain-specific language model for financial text mining} author = {Masahiro Suzuki and Hiroki Sakaji and Masanori Hirano and Kiyoshi Izumi}, journal = {Information Processing & Management}, volume = {60}, number = {2}, pages = {103194}, year = {2023}, doi = {10.1016/j.ipm.2022.103194} } ``` ## Licenses The pretrained models are distributed under the terms of the [Creative Commons Attribution-ShareAlike 4.0](https://creativecommons.org/licenses/by-sa/4.0/). ## Acknowledgments This work was supported by JSPS KAKENHI Grant Number JP21K12010.
b93352fe1b1880cc1187ad75cbc1b5c6
DOOGLAK/Tagged_One_50v7_NER_Model_3Epochs_AUGMENTED
DOOGLAK
bert
13
5
transformers
0
token-classification
true
false
false
apache-2.0
null
['tagged_one50v7_wikigold_split']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,539
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_One_50v7_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_one50v7_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.6441 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.7785 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 13 | 0.7609 | 0.0 | 0.0 | 0.0 | 0.7783 | | No log | 2.0 | 26 | 0.6742 | 0.0 | 0.0 | 0.0 | 0.7783 | | No log | 3.0 | 39 | 0.6441 | 0.0 | 0.0 | 0.0 | 0.7785 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
ffcac8683c3ae04284552f2844322b5f
nvidia/stt_fr_conformer_ctc_large
nvidia
null
3
35
nemo
4
automatic-speech-recognition
true
false
false
cc-by-4.0
['fr']
['multilingual_librispeech', 'mozilla-foundation/common_voice_7_0', 'VoxPopuli']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'speech', 'audio', 'CTC', 'Conformer', 'Transformer', 'pytorch', 'NeMo', 'hf-asr-leaderboard', 'Riva']
true
true
true
6,361
false
# NVIDIA Conformer-CTC Large (fr) <style> img { display: inline; } </style> | [![Model architecture](https://img.shields.io/badge/Model_Arch-Conformer--CTC-lightgrey#model-badge)](#model-architecture) | [![Model size](https://img.shields.io/badge/Params-120M-lightgrey#model-badge)](#model-architecture) | [![Language](https://img.shields.io/badge/Language-fr-lightgrey#model-badge)](#datasets) | [![Riva Compatible](https://img.shields.io/badge/NVIDIA%20Riva-compatible-brightgreen#model-badge)](#deployment-with-nvidia-riva) | This model was trained on a composite dataset comprising of over 1500 hours of French speech. It is a non-autoregressive "large" variant of Conformer, with around 120 million parameters. See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#conformer-ctc) for complete architecture details. It is also compatible with NVIDIA Riva for [production-grade server deployments](#deployment-with-nvidia-riva). ## Usage The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest PyTorch version. ``` pip install nemo_toolkit['all'] ``` ### Automatically instantiate the model ```python import nemo.collections.asr as nemo_asr asr_model = nemo_asr.models.EncDecCTCModelBPE.from_pretrained("nvidia/stt_fr_conformer_ctc_large") ``` ### Transcribing using Python First, let's get a sample ``` wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav ``` Then simply do: ``` asr_model.transcribe(['2086-149220-0033.wav']) ``` ### Transcribing many audio files ```shell python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py pretrained_name="nvidia/stt_fr_conformer_ctc_large" audio_dir="<DIRECTORY CONTAINING AUDIO FILES>" ``` ### Input This model accepts 16000 kHz Mono-channel Audio (wav files) as input. ### Output This model provides transcribed speech as a string for a given audio sample. ## Model Architecture Conformer-CTC model is a non-autoregressive variant of Conformer model [1] for Automatic Speech Recognition which uses CTC loss/decoding instead of Transducer. You may find more info on the detail of this model here: [Conformer-CTC Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#conformer-ctc). ## Training The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_ctc/speech_to_text_ctc_bpe.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/conformer/conformer_ctc_bpe.yaml). The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py). The checkpoint of the language model used for rescoring can be found [here]( https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_fr_conformer_ctc_large). You may find more info on how to train and use language models for ASR models here: [ASR Language Modeling](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/asr_language_modeling.html) ## Datasets All the models in this collection are trained on a composite dataset (NeMo ASRSET) comprising of over a thousand hours of French speech: - MozillaCommonVoice 7.0 - 356 hours - Multilingual LibriSpeech - 1036 hours - VoxPopuli - 182 hours Both models use same dataset, excluding a preprocessing step to strip hyphen from data for secondary model's training. ## Performance The performance of Automatic Speech Recognition models is measuring using Word Error Rate. Since this dataset is trained on multiple domains and a much larger corpus, it will generally perform better at transcribing audio in general. The latest model obtains the following greedy scores on the following evaluation datasets - 8.35 % on MCV7.0 dev - 9.63 % on MCV7.0 test - 5.88 % on MLS dev - 4.91 % on MLS test With 128 beam search and 4gram KenLM model: - 7.95 % on MCV7.0 dev - 9.16 % on MCV7.0 test - 5.57 % on MLS dev - 4.66 % on MLS test Note that these evaluation datasets have been filtered and preprocessed to only contain French alphabet characters and are removed of punctuation outside of hyphenation and apostrophe. ## Limitations Since this model was trained on publicly available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech. Further, since portions of the training set contain text from both pre- and post- 1990 orthographic reform, regularity of punctuation may vary between the two styles. For downstream tasks requiring more consistency, finetuning or downstream processing may be required. If exact orthography is not necessary, then using secondary model is advised. ## Deployment with NVIDIA Riva For the best real-time accuracy, latency, and throughput, deploy the model with [NVIDIA Riva](https://developer.nvidia.com/riva), an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, at the edge, and embedded. Additionally, Riva provides: * World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours * Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization * Streaming speech recognition, Kubernetes compatible scaling, and Enterprise-grade support Check out [Riva live demo](https://developer.nvidia.com/riva#demos). ## References - [1] [Conformer: Convolution-augmented Transformer for Speech Recognition](https://arxiv.org/abs/2005.08100) - [2] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece) - [3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
b26f45ff093948e65542c79aadd8cbff
tanviraumi/bert-base-uncased-issues-128
tanviraumi
bert
10
2
transformers
0
fill-mask
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,932
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-issues-128 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2337 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3389 | 1.0 | 73 | 1.7400 | | 1.8014 | 2.0 | 146 | 1.4690 | | 1.634 | 3.0 | 219 | 1.4783 | | 1.5461 | 4.0 | 292 | 1.3912 | | 1.4706 | 5.0 | 365 | 1.3109 | | 1.4161 | 6.0 | 438 | 1.3405 | | 1.3664 | 7.0 | 511 | 1.3459 | | 1.332 | 8.0 | 584 | 1.2745 | | 1.3029 | 9.0 | 657 | 1.2633 | | 1.2871 | 10.0 | 730 | 1.2336 | | 1.2807 | 11.0 | 803 | 1.2966 | | 1.2569 | 12.0 | 876 | 1.1508 | | 1.2392 | 13.0 | 949 | 1.2530 | | 1.237 | 14.0 | 1022 | 1.2485 | | 1.2169 | 15.0 | 1095 | 1.2592 | | 1.2272 | 16.0 | 1168 | 1.2337 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.12.0.dev20220513+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
5f641c56cbb10eac37364ff54d0ec6e1
muhtasham/small-mlm-squad
muhtasham
bert
12
1
transformers
1
fill-mask
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,350
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # small-mlm-squad-plain_text This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0085 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.9733 | 0.4 | 500 | 2.9009 | | 2.6978 | 0.8 | 1000 | 2.9560 | | 2.5783 | 1.2 | 1500 | 2.9081 | | 2.4382 | 1.6 | 2000 | 3.0085 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
c60604a61b32b6b6b65e8efb7f13476e
kadirnar/SORT
kadirnar
null
2
0
null
0
object-detection
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
['object-detection', 'computer-vision', 'sort', 'tracker', 'ocsort']
false
true
true
1,030
false
### Model Description [Sort](https://arxiv.org/abs/1602.00763): A simple online and realtime tracking algorithm for 2D multiple object tracking in video sequences<img src="https://raw.githubusercontent.com/noahcao/OC_SORT/master/assets/teaser.png" width="600"/> ### Installation ``` pip install sort-track ``` ### Tracker ```python from sort.tracker import SortTracker tracker = SortTracker(args) for image in images: dets = detector(image) online_targets = tracker.update(dets) ``` ### BibTeX Entry and Citation Info ``` @inproceedings{Bewley2016_sort, author={Bewley, Alex and Ge, Zongyuan and Ott, Lionel and Ramos, Fabio and Upcroft, Ben}, booktitle={2016 IEEE International Conference on Image Processing (ICIP)}, title={Simple online and realtime tracking}, year={2016}, pages={3464-3468}, keywords={Benchmark testing;Complexity theory;Detectors;Kalman filters;Target tracking;Visualization;Computer Vision;Data Association;Detection;Multiple Object Tracking}, doi={10.1109/ICIP.2016.7533003} } ```
98bbb20e4c5651a0b7a23ff32d01fae4
tftransformers/albert-base-v1
tftransformers
null
6
3
null
0
null
false
false
false
apache-2.0
['en']
['bookcorpus', 'wikipedia']
null
0
0
0
0
0
0
0
['exbert']
false
true
true
6,683
false
# ALBERT Base v1 Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1909.11942) and first released in [this repository](https://github.com/google-research/albert). This model, as all ALBERT models, is uncased: it does not make a difference between english and English. Disclaimer: The team releasing ALBERT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description ALBERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Sentence Ordering Prediction (SOP): ALBERT uses a pretraining loss based on predicting the ordering of two consecutive segments of text. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the ALBERT model as inputs. ALBERT is particular in that it shares its layers across its Transformer. Therefore, all layers have the same weights. Using repeating layers results in a small memory footprint, however, the computational cost remains similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same number of (repeating) layers. This is the first version of the base model. Version 2 is different from version 1 due to different dropout rates, additional training data, and longer training. It has better results in nearly all downstream tasks. This model has the following configuration: - 12 repeating layers - 128 embedding dimension - 768 hidden dimension - 12 attention heads - 11M parameters ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=albert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: In tf_transformers ```python from tf_transformers.models import AlbertModel from transformers import AlbertTokenizer tokenizer = AlbertTokenizer.from_pretrained('albert-base-v1') model = AlbertModel.from_pretrained("albert-base-v1") text = "Replace me by any text you'd like." inputs_tf = {} inputs = tokenizer(text, return_tensors='tf') inputs_tf["input_ids"] = inputs["input_ids"] inputs_tf["input_type_ids"] = inputs["token_type_ids"] inputs_tf["input_mask"] = inputs["attention_mask"] outputs_tf = model(inputs_tf) ``` This bias will also affect all fine-tuned versions of this model. ## Training data The ALBERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` ### Training The ALBERT procedure follows the BERT setup. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ## Evaluation results When fine-tuned on downstream tasks, the ALBERT models achieve the following results: | | Average | SQuAD1.1 | SQuAD2.0 | MNLI | SST-2 | RACE | |----------------|----------|----------|----------|----------|----------|----------| |V2 | |ALBERT-base |82.3 |90.2/83.2 |82.1/79.3 |84.6 |92.9 |66.8 | |ALBERT-large |85.7 |91.8/85.2 |84.9/81.8 |86.5 |94.9 |75.2 | |ALBERT-xlarge |87.9 |92.9/86.4 |87.9/84.1 |87.9 |95.4 |80.7 | |ALBERT-xxlarge |90.9 |94.6/89.1 |89.8/86.9 |90.6 |96.8 |86.8 | |V1 | |ALBERT-base |80.1 |89.3/82.3 | 80.0/77.1|81.6 |90.3 | 64.0 | |ALBERT-large |82.4 |90.6/83.9 | 82.3/79.4|83.5 |91.7 | 68.5 | |ALBERT-xlarge |85.5 |92.5/86.1 | 86.1/83.1|86.4 |92.4 | 74.8 | |ALBERT-xxlarge |91.0 |94.8/89.3 | 90.2/87.4|90.8 |96.9 | 86.5 | ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1909-11942, author = {Zhenzhong Lan and Mingda Chen and Sebastian Goodman and Kevin Gimpel and Piyush Sharma and Radu Soricut}, title = {{ALBERT:} {A} Lite {BERT} for Self-supervised Learning of Language Representations}, journal = {CoRR}, volume = {abs/1909.11942}, year = {2019}, url = {http://arxiv.org/abs/1909.11942}, archivePrefix = {arXiv}, eprint = {1909.11942}, timestamp = {Fri, 27 Sep 2019 13:04:21 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1909-11942.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=albert-base-v1"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
075a0a207182f0cbf24f6c04da030697
espnet/Wangyou_Zhang_chime4_enh_train_enh_beamformer_mvdr_raw
espnet
null
15
66
espnet
0
audio-to-audio
false
false
false
cc-by-4.0
null
['chime4']
null
0
0
0
0
0
0
0
['espnet', 'audio', 'audio-to-audio']
false
true
true
5,642
false
## ESPnet2 ENH model ### `espnet/Wangyou_Zhang_chime4_enh_train_enh_beamformer_mvdr_raw` This model was trained by Wangyou Zhang using chime4 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet pip install -e . cd egs2/chime4/enh1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/Wangyou_Zhang_chime4_enh_train_enh_beamformer_mvdr_raw ``` ## ENH config <details><summary>expand</summary> ``` config: conf/tuning/train_enh_beamformer_mvdr.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/enh_train_enh_beamformer_mvdr_raw ngpu: 1 seed: 0 num_workers: 4 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 2 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 35841 dist_launcher: null multiprocessing_distributed: true cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 70 patience: 4 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - si_snr - max - - valid - loss - min keep_nbest_models: 1 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null unused_parameters: false use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null pretrain_path: null init_param: [] freeze_param: [] num_iters_per_epoch: null batch_size: 8 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/enh_stats_16k/train/speech_mix_shape - exp/enh_stats_16k/train/speech_ref1_shape - exp/enh_stats_16k/train/noise_ref1_shape valid_shape_file: - exp/enh_stats_16k/valid/speech_mix_shape - exp/enh_stats_16k/valid/speech_ref1_shape - exp/enh_stats_16k/valid/noise_ref1_shape batch_type: folded valid_batch_type: null fold_length: - 80000 - 80000 - 80000 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/tr05_simu_isolated_6ch_track/wav.scp - speech_mix - sound - - dump/raw/tr05_simu_isolated_6ch_track/spk1.scp - speech_ref1 - sound - - dump/raw/tr05_simu_isolated_6ch_track/noise1.scp - noise_ref1 - sound valid_data_path_and_name_and_type: - - dump/raw/dt05_simu_isolated_6ch_track/wav.scp - speech_mix - sound - - dump/raw/dt05_simu_isolated_6ch_track/spk1.scp - speech_ref1 - sound - - dump/raw/dt05_simu_isolated_6ch_track/noise1.scp - noise_ref1 - sound allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.001 eps: 1.0e-08 weight_decay: 0 scheduler: reducelronplateau scheduler_conf: mode: min factor: 0.5 patience: 1 init: xavier_uniform model_conf: loss_type: mask_mse mask_type: PSM^2 use_preprocessor: false encoder: stft encoder_conf: n_fft: 512 hop_length: 128 separator: wpe_beamformer separator_conf: num_spk: 1 loss_type: mask_mse use_wpe: false wnet_type: blstmp wlayers: 3 wunits: 300 wprojs: 320 wdropout_rate: 0.0 taps: 5 delay: 3 use_dnn_mask_for_wpe: true use_beamformer: true bnet_type: blstmp blayers: 3 bunits: 512 bprojs: 512 badim: 320 ref_channel: 3 use_noise_mask: true beamformer_type: mvdr_souden bdropout_rate: 0.0 decoder: stft decoder_conf: n_fft: 512 hop_length: 128 required: - output_dir version: 0.9.7 distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{li2021espnetse, title={{ESPnet-SE}: End-to-End Speech Enhancement and Separation Toolkit Designed for {ASR} Integration}, author={Li, Chenda and Shi, Jing and Zhang, Wangyou and Subramanian, Aswin Shanmugam and Chang, Xuankai and Kamo, Naoyuki and Hira, Moto and Hayashi, Tomoki and Boeddeker, Christoph and Chen, Zhuo and Watanabe, Shinji}, booktitle={Proc. IEEE Spoken Language Technology Workshop (SLT)}, pages={785--792}, year={2021}, } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } @inproceedings{li2021espnetse, title={{ESPnet-SE}: End-to-End Speech Enhancement and Separation Toolkit Designed for {ASR} Integration}, author={Li, Chenda and Shi, Jing and Zhang, Wangyou and Subramanian, Aswin Shanmugam and Chang, Xuankai and Kamo, Naoyuki and Hira, Moto and Hayashi, Tomoki and Boeddeker, Christoph and Chen, Zhuo and Watanabe, Shinji}, year={2020}, eprint={2011.03706}, archivePrefix={arXiv}, primaryClass={eess.AS} } ```
81b12e20a472652e7535d1c7ab207231
EnsarEmirali/distilbert-base-uncased-finetuned-emotion
EnsarEmirali
distilbert
12
6
transformers
0
text-classification
true
false
false
apache-2.0
null
['emotion']
null
1
1
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,339
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2131 - Accuracy: 0.9265 - F1: 0.9269 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8031 | 1.0 | 250 | 0.2973 | 0.9125 | 0.9110 | | 0.2418 | 2.0 | 500 | 0.2131 | 0.9265 | 0.9269 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.1 - Datasets 1.16.1 - Tokenizers 0.10.3
bff1edd388a301def284f8d29f09be75
pulkitkumar13/dark-bert-finetuned-ner1
pulkitkumar13
bert
10
7
transformers
0
token-classification
true
false
false
apache-2.0
null
['conll2003']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,518
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dark-bert-finetuned-ner1 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0833 - Precision: 0.9337 - Recall: 0.9487 - F1: 0.9411 - Accuracy: 0.9861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0358 | 1.0 | 1756 | 0.0780 | 0.9283 | 0.9409 | 0.9346 | 0.9844 | | 0.0172 | 2.0 | 3512 | 0.0708 | 0.9375 | 0.9488 | 0.9431 | 0.9860 | | 0.0056 | 3.0 | 5268 | 0.0833 | 0.9337 | 0.9487 | 0.9411 | 0.9861 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.10.0 - Datasets 2.5.1 - Tokenizers 0.12.1
c88e1abbead437968f5bfdd017830df9
liyijing024/swin-base-patch4-window7-224-in22k-finetuned
liyijing024
swin
11
11
transformers
0
image-classification
true
false
false
apache-2.0
null
['imagefolder']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,508
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-base-patch4-window7-224-in22k-finetuned This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0021 - Accuracy: 0.9993 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0253 | 1.0 | 889 | 0.0060 | 0.9980 | | 0.0134 | 2.0 | 1778 | 0.0031 | 0.9989 | | 0.0118 | 3.0 | 2667 | 0.0021 | 0.9993 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.8.0+cu111 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
d6a2dbf67949a0edb35e6b538738d9a5
google/multiberts-seed_2-step_1800k
google
bert
8
14
transformers
0
null
true
true
false
apache-2.0
['en']
null
null
0
0
0
0
0
0
0
['multiberts', 'multiberts-seed_2', 'multiberts-seed_2-step_1800k']
false
true
true
3,527
false
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1800k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 1800k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1800k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_1800k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1800k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_1800k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
7a32a55bd042884075cef2c8c959df03
l-tran/distilroberta-base-OLID-MLM
l-tran
roberta
9
16
transformers
0
text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,256
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-OLID-MLM This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0021 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 398 | 0.0143 | | 1.0511 | 2.0 | 796 | 0.0031 | | 0.0256 | 3.0 | 1194 | 0.0021 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
8607875ac3eb8d6171fa685c1789e722
domdomreloaded/bert-base-uncased-finetuned-swag
domdomreloaded
bert
22
5
transformers
0
multiple-choice
true
false
false
apache-2.0
null
['swag']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,272
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-swag This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the swag dataset. It achieves the following results on the evaluation set: - Loss: 0.6045 - Accuracy: 0.7960 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7494 | 1.0 | 4597 | 0.5942 | 0.7716 | | 0.3499 | 2.0 | 9194 | 0.6045 | 0.7960 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
d306d34bc39b5903f59d54a462aa471c
cardiffnlp/twitter-roberta-base-sep2021
cardiffnlp
roberta
9
5
transformers
0
fill-mask
true
false
false
mit
['en']
['twitter-api']
null
0
0
0
0
0
0
0
['timelms', 'twitter']
false
true
true
4,657
false
# Twitter September 2021 (RoBERTa-base, 120M) This is a RoBERTa-base model trained on 119.66M tweets until the end of September 2021. More details and performance scores are available in the [TimeLMs paper](https://arxiv.org/abs/2202.03829). Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the [TimeLMs repository](https://github.com/cardiffnlp/timelms). For other models trained until different periods, check this [table](https://github.com/cardiffnlp/timelms#released-models). ## Preprocess Text Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed [here](https://github.com/cardiffnlp/timelms/tree/main/data). ```python def preprocess(text): preprocessed_text = [] for t in text.split(): if len(t) > 1: t = '@user' if t[0] == '@' and t.count('@') == 1 else t t = 'http' if t.startswith('http') else t preprocessed_text.append(t) return ' '.join(preprocessed_text) ``` ## Example Masked Language Model ```python from transformers import pipeline, AutoTokenizer MODEL = "cardiffnlp/twitter-roberta-base-sep2021" fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL) tokenizer = AutoTokenizer.from_pretrained(MODEL) def pprint(candidates, n): for i in range(n): token = tokenizer.decode(candidates[i]['token']) score = candidates[i]['score'] print("%d) %.5f %s" % (i+1, score, token)) texts = [ "So glad I'm <mask> vaccinated.", "I keep forgetting to bring a <mask>.", "Looking forward to watching <mask> Game tonight!", ] for text in texts: t = preprocess(text) print(f"{'-'*30}\n{t}") candidates = fill_mask(t) pprint(candidates, 5) ``` Output: ``` ------------------------------ So glad I'm <mask> vaccinated. 1) 0.39329 fully 2) 0.26694 getting 3) 0.17438 not 4) 0.03422 still 5) 0.01845 all ------------------------------ I keep forgetting to bring a <mask>. 1) 0.06773 mask 2) 0.04548 book 3) 0.03826 charger 4) 0.03506 backpack 5) 0.02997 bag ------------------------------ Looking forward to watching <mask> Game tonight! 1) 0.63009 the 2) 0.16154 The 3) 0.02110 this 4) 0.01903 End 5) 0.00810 Championship ``` ## Example Tweet Embeddings ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np from scipy.spatial.distance import cosine from collections import Counter def get_embedding(text): # naive approach for demonstration text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() return np.mean(features[0], axis=0) MODEL = "cardiffnlp/twitter-roberta-base-sep2021" tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModel.from_pretrained(MODEL) query = "The book was awesome" tweets = ["I just ordered fried chicken 🐣", "The movie was great", "What time is the next game?", "Just finished reading 'Embeddings in NLP'"] sims = Counter() for tweet in tweets: sim = 1 - cosine(get_embedding(query), get_embedding(tweet)) sims[tweet] = sim print('Most similar to: ', query) print(f"{'-'*30}") for idx, (tweet, sim) in enumerate(sims.most_common()): print("%d) %.5f %s" % (idx+1, sim, tweet)) ``` Output: ``` Most similar to: The book was awesome ------------------------------ 1) 0.99022 The movie was great 2) 0.96274 Just finished reading 'Embeddings in NLP' 3) 0.96006 I just ordered fried chicken 🐣 4) 0.95725 What time is the next game? ``` ## Example Feature Extraction ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np MODEL = "cardiffnlp/twitter-roberta-base-sep2021" tokenizer = AutoTokenizer.from_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) # Pytorch model = AutoModel.from_pretrained(MODEL) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() features_mean = np.mean(features[0], axis=0) #features_max = np.max(features[0], axis=0) # # Tensorflow # model = TFAutoModel.from_pretrained(MODEL) # encoded_input = tokenizer(text, return_tensors='tf') # features = model(encoded_input) # features = features[0].numpy() # features_mean = np.mean(features[0], axis=0) # #features_max = np.max(features[0], axis=0) ```
2ba18a0d275b347413a624d09766471d
CompVis/stable-diffusion-v1-3
CompVis
null
18
848
diffusers
24
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
5
3
2
0
0
0
0
['stable-diffusion', 'stable-diffusion-diffusers', 'text-to-image']
false
true
true
12,886
false
# Stable Diffusion v1-3 Model Card Stable Diffusion is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input. For more information about how Stable Diffusion functions, please have a look at [🤗's Stable Diffusion with D🧨iffusers blog](https://huggingface.co/blog/stable_diffusion). The **Stable-Diffusion-v1-3** checkpoint was initialized with the weights of the [Stable-Diffusion-v1-2](https:/steps/huggingface.co/CompVis/stable-diffusion-v1-2) checkpoint and subsequently fine-tuned on 195,000 steps at resolution `512x512` on "laion-improved-aesthetics" and 10 % dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598). For more information, please refer to [Training](#training). This weights here are intended to be used with the D🧨iffusers library. If you are looking for the weights to be loaded into the CompVis Stable Diffusion codebase, [come here](https://huggingface.co/CompVis/stable-diffusion-v-1-3-original) ## Model Details - **Developed by:** Robin Rombach, Patrick Esser - **Model type:** Diffusion-based text-to-image generation model - **Language(s):** English - **License:** [The CreativeML OpenRAIL M license](https://huggingface.co/spaces/CompVis/stable-diffusion-license) is an [Open RAIL M license](https://www.licenses.ai/blog/2022/8/18/naming-convention-of-responsible-ai-licenses), adapted from the work that [BigScience](https://bigscience.huggingface.co/) and [the RAIL Initiative](https://www.licenses.ai/) are jointly carrying in the area of responsible AI licensing. See also [the article about the BLOOM Open RAIL license](https://bigscience.huggingface.co/blog/the-bigscience-rail-license) on which our license is based. - **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) that uses a fixed, pretrained text encoder ([CLIP ViT-L/14](https://arxiv.org/abs/2103.00020)) as suggested in the [Imagen paper](https://arxiv.org/abs/2205.11487). - **Resources for more information:** [GitHub Repository](https://github.com/CompVis/stable-diffusion), [Paper](https://arxiv.org/abs/2112.10752). - **Cite as:** @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } ## Examples We recommend using [🤗's Diffusers library](https://github.com/huggingface/diffusers) to run Stable Diffusion. ```bash pip install --upgrade diffusers transformers scipy ``` Running the pipeline with the default PNDM scheduler: ```python import torch from torch import autocast from diffusers import StableDiffusionPipeline model_id = "CompVis/stable-diffusion-v1-3" device = "cuda" pipe = StableDiffusionPipeline.from_pretrained(model_id) pipe = pipe.to(device) prompt = "a photo of an astronaut riding a horse on mars" with autocast("cuda"): image = pipe(prompt, guidance_scale=7.5)["sample"][0] image.save("astronaut_rides_horse.png") ``` **Note**: If you are limited by GPU memory and have less than 10GB of GPU RAM available, please make sure to load the StableDiffusionPipeline in float16 precision instead of the default float32 precision as done above. You can do so by telling diffusers to expect the weights to be in float16 precision: ```py import torch pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to(device) prompt = "a photo of an astronaut riding a horse on mars" with autocast("cuda"): image = pipe(prompt, guidance_scale=7.5)["sample"][0] image.save("astronaut_rides_horse.png") ``` To swap out the noise scheduler, pass it to `from_pretrained`: ```python from diffusers import StableDiffusionPipeline, LMSDiscreteScheduler model_id = "CompVis/stable-diffusion-v1-3" # Use the K-LMS scheduler here instead scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, use_auth_token=True) pipe = pipe.to("cuda") prompt = "a photo of an astronaut riding a horse on mars" with autocast("cuda"): image = pipe(prompt, guidance_scale=7.5)["sample"][0] image.save("astronaut_rides_horse.png") ``` # Uses ## Direct Use The model is intended for research purposes only. Possible research areas and tasks include - Safe deployment of models which have the potential to generate harmful content. - Probing and understanding the limitations and biases of generative models. - Generation of artworks and use in design and other artistic processes. - Applications in educational or creative tools. - Research on generative models. Excluded uses are described below. ### Misuse, Malicious Use, and Out-of-Scope Use _Note: This section is taken from the [DALLE-MINI model card](https://huggingface.co/dalle-mini/dalle-mini), but applies in the same way to Stable Diffusion v1_. The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. #### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. #### Misuse and Malicious Use Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to: - Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc. - Intentionally promoting or propagating discriminatory content or harmful stereotypes. - Impersonating individuals without their consent. - Sexual content without consent of the people who might see it. - Mis- and disinformation - Representations of egregious violence and gore - Sharing of copyrighted or licensed material in violation of its terms of use. - Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use. ## Limitations and Bias ### Limitations - The model does not achieve perfect photorealism - The model cannot render legible text - The model does not perform well on more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere” - Faces and people in general may not be generated properly. - The model was trained mainly with English captions and will not work as well in other languages. - The autoencoding part of the model is lossy - The model was trained on a large-scale dataset [LAION-5B](https://laion.ai/blog/laion-5b/) which contains adult material and is not fit for product use without additional safety mechanisms and considerations. - No additional measures were used to deduplicate the dataset. As a result, we observe some degree of memorization for images that are duplicated in the training data. The training data can be searched at [https://rom1504.github.io/clip-retrieval/](https://rom1504.github.io/clip-retrieval/) to possibly assist in the detection of memorized images. ### Bias While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases. Stable Diffusion v1 was trained on subsets of [LAION-2B(en)](https://laion.ai/blog/laion-5b/), which consists of images that are primarily limited to English descriptions. Texts and images from communities and cultures that use other languages are likely to be insufficiently accounted for. This affects the overall output of the model, as white and western cultures are often set as the default. Further, the ability of the model to generate content with non-English prompts is significantly worse than with English-language prompts. ## Training ### Training Data The model developers used the following dataset for training the model: - LAION-2B (en) and subsets thereof (see next section) ### Training Procedure Stable Diffusion v1-4 is a latent diffusion model which combines an autoencoder with a diffusion model that is trained in the latent space of the autoencoder. During training, - Images are encoded through an encoder, which turns images into latent representations. The autoencoder uses a relative downsampling factor of 8 and maps images of shape H x W x 3 to latents of shape H/f x W/f x 4 - Text prompts are encoded through a ViT-L/14 text-encoder. - The non-pooled output of the text encoder is fed into the UNet backbone of the latent diffusion model via cross-attention. - The loss is a reconstruction objective between the noise that was added to the latent and the prediction made by the UNet. We currently provide four checkpoints, which were trained as follows. - [`stable-diffusion-v1-1`](https://huggingface.co/CompVis/stable-diffusion-v1-1): 237,000 steps at resolution `256x256` on [laion2B-en](https://huggingface.co/datasets/laion/laion2B-en). 194,000 steps at resolution `512x512` on [laion-high-resolution](https://huggingface.co/datasets/laion/laion-high-resolution) (170M examples from LAION-5B with resolution `>= 1024x1024`). - [`stable-diffusion-v1-2`](https://huggingface.co/CompVis/stable-diffusion-v1-2): Resumed from `stable-diffusion-v1-1`. 515,000 steps at resolution `512x512` on "laion-improved-aesthetics" (a subset of laion2B-en, filtered to images with an original size `>= 512x512`, estimated aesthetics score `> 5.0`, and an estimated watermark probability `< 0.5`. The watermark estimate is from the LAION-5B metadata, the aesthetics score is estimated using an [improved aesthetics estimator](https://github.com/christophschuhmann/improved-aesthetic-predictor)). - [`stable-diffusion-v1-3`](https://huggingface.co/CompVis/stable-diffusion-v1-3): Resumed from `stable-diffusion-v1-2`. 195,000 steps at resolution `512x512` on "laion-improved-aesthetics" and 10 % dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598). - [**`stable-diffusion-v1-4`**](https://huggingface.co/CompVis/stable-diffusion-v1-4) Resumed from `stable-diffusion-v1-2`.225,000 steps at resolution `512x512` on "laion-aesthetics v2 5+" and 10 % dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598). ### Training details - **Hardware:** 32 x 8 x A100 GPUs - **Optimizer:** AdamW - **Gradient Accumulations**: 2 - **Batch:** 32 x 8 x 2 x 4 = 2048 - **Learning rate:** warmup to 0.0001 for 10,000 steps and then kept constant ## Evaluation Results Evaluations with different classifier-free guidance scales (1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0) and 50 PLMS sampling steps show the relative improvements of the checkpoints: ![pareto](https://huggingface.co/CompVis/stable-diffusion/resolve/main/v1-variants-scores.jpg) Evaluated using 50 PLMS steps and 10000 random prompts from the COCO2017 validation set, evaluated at 512x512 resolution. Not optimized for FID scores. ## Environmental Impact **Stable Diffusion v1** **Estimated Emissions** Based on that information, we estimate the following CO2 emissions using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact. - **Hardware Type:** A100 PCIe 40GB - **Hours used:** 150000 - **Cloud Provider:** AWS - **Compute Region:** US-east - **Carbon Emitted (Power consumption x Time x Carbon produced based on location of power grid):** 11250 kg CO2 eq. ## Citation ```bibtex @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } ``` *This model card was written by: Robin Rombach and Patrick Esser and is based on the [DALL-E Mini model card](https://huggingface.co/dalle-mini/dalle-mini).*
3f41400f83f4634a329b0fea07df24ab
facebook/regnet-x-120
facebook
regnet
6
11
transformers
0
image-classification
true
true
false
apache-2.0
null
['imagenet-1k']
null
2
0
1
1
0
0
0
['vision', 'image-classification']
false
true
true
1,893
false
# RegNet RegNet model trained on imagenet-1k. It was introduced in the paper [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) and first released in [this repository](https://github.com/facebookresearch/pycls). Disclaimer: The team releasing RegNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The authors design search spaces to perform Neural Architecture Search (NAS). They first start from a high dimensional search space and iteratively reduce the search space by empirically applying constraints based on the best-performing models sampled by the current search space. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/regnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, RegNetForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("zuppif/regnet-y-040") >>> model = RegNetForImageClassification.from_pretrained("zuppif/regnet-y-040") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) 'tabby, tabby cat' ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).
a2097c1f1a800116809b7b8148c121d0
samitizerxu/wav2vec2-xls-r-300m-fr
samitizerxu
wav2vec2
23
6
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['fr']
['common_voice']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'common_voice', 'fr', 'generated_from_trainer', 'hf-asr-leaderboard', 'robust-speech-event']
true
true
true
1,936
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-cls-r-300m-fr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - FR dataset. It achieves the following results on the evaluation set: - Loss: 0.6521 - Wer: 0.4330 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.6773 | 0.8 | 500 | 1.3907 | 0.9864 | | 0.9526 | 1.6 | 1000 | 0.7760 | 0.6448 | | 0.6418 | 2.4 | 1500 | 0.7605 | 0.6194 | | 0.5028 | 3.2 | 2000 | 0.6516 | 0.5322 | | 0.4133 | 4.0 | 2500 | 0.6303 | 0.5097 | | 0.3285 | 4.8 | 3000 | 0.6422 | 0.5062 | | 0.2764 | 5.6 | 3500 | 0.5936 | 0.4748 | | 0.2361 | 6.4 | 4000 | 0.6486 | 0.4683 | | 0.2049 | 7.2 | 4500 | 0.6321 | 0.4532 | | 0.176 | 8.0 | 5000 | 0.6230 | 0.4482 | | 0.1393 | 8.8 | 5500 | 0.6595 | 0.4403 | | 0.1141 | 9.6 | 6000 | 0.6552 | 0.4348 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
cdb8b09f9948d844a5c47024c7bff8de
muhtasham/tiny-mlm-glue-mrpc-custom-tokenizer-expand-vocab
muhtasham
bert
12
2
transformers
0
fill-mask
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,683
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-mrpc-custom-tokenizer-expand-vocab This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.4922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.1957 | 1.09 | 500 | 5.5172 | | 5.5021 | 2.18 | 1000 | 5.1265 | | 5.2379 | 3.27 | 1500 | 5.0413 | | 5.1491 | 4.36 | 2000 | 4.9136 | | 5.014 | 5.45 | 2500 | 4.8558 | | 4.9507 | 6.54 | 3000 | 4.7338 | | 4.7924 | 7.63 | 3500 | 4.6922 | | 4.7739 | 8.71 | 4000 | 4.6100 | | 4.6749 | 9.8 | 4500 | 4.6575 | | 4.6135 | 10.89 | 5000 | 4.4922 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.1.dev0 - Tokenizers 0.13.2
4ead2fe9b148442afddca8cfa02581ac
amitjohn007/second-mobil-bert-finetuned-squad
amitjohn007
mobilebert
8
4
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,369
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # amitjohn007/second-mobil-bert-finetuned-squad This model is a fine-tuned version of [csarron/mobilebert-uncased-squad-v2](https://huggingface.co/csarron/mobilebert-uncased-squad-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4587 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16599, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 0.6441 | 0 | | 0.5349 | 1 | | 0.4587 | 2 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.7.0 - Tokenizers 0.13.2
fa88bd5d6bb1a247d9f2e21664589f71
hfl/chinese-pert-large-mrc
hfl
bert
8
35
transformers
3
question-answering
true
true
false
apache-2.0
['zh']
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,449
false
## A Chinese MRC model built on Chinese PERT-large **Please use `BertForQuestionAnswering` to load this model!** This is a Chinese machine reading comprehension (MRC) model built on PERT-large and fine-tuned on a mixture of Chinese MRC datasets. PERT is a pre-trained model based on permuted language model (PerLM) to learn text semantic information in a self-supervised manner without introducing the mask tokens [MASK]. It yields competitive results on in tasks such as reading comprehension and sequence labeling. Results on Chinese MRC datasets (EM/F1): (We report the checkpoint that has the best AVG score) | | CMRC 2018 Dev | DRCD Dev | SQuAD-Zen Dev (Answerable) | AVG | | :-------: | :-----------: | :-------: | :------------------------: | :-------: | | PERT-large | 73.5/90.8 | 91.2/95.7 | 63.0/79.3 | 75.9/88.6 | Please visit our GitHub repo for more information: https://github.com/ymcui/PERT You may also be interested in, Chinese Minority Languages CINO: https://github.com/ymcui/Chinese-Minority-PLM Chinese MacBERT: https://github.com/ymcui/MacBERT Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA Chinese XLNet: https://github.com/ymcui/Chinese-XLNet Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology
232f029f8e82f311a60ab165999d23f8
dipteshkanojia/hing-roberta-CM-run-5
dipteshkanojia
xlm-roberta
9
4
transformers
0
text-classification
true
false
false
cc-by-4.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
3,101
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hing-roberta-CM-run-5 This model is a fine-tuned version of [l3cube-pune/hing-roberta](https://huggingface.co/l3cube-pune/hing-roberta) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.6447 - Accuracy: 0.7525 - Precision: 0.7030 - Recall: 0.7120 - F1: 0.7064 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.9492 | 1.0 | 497 | 0.7476 | 0.6157 | 0.6060 | 0.6070 | 0.5171 | | 0.7013 | 2.0 | 994 | 0.7093 | 0.6982 | 0.6716 | 0.6864 | 0.6663 | | 0.4871 | 3.0 | 1491 | 0.8294 | 0.7284 | 0.6714 | 0.6867 | 0.6723 | | 0.3838 | 4.0 | 1988 | 1.1275 | 0.7505 | 0.6969 | 0.7025 | 0.6994 | | 0.254 | 5.0 | 2485 | 1.3831 | 0.7264 | 0.6781 | 0.6975 | 0.6850 | | 0.1765 | 6.0 | 2982 | 2.0625 | 0.7384 | 0.7068 | 0.6948 | 0.6896 | | 0.1127 | 7.0 | 3479 | 1.9691 | 0.7425 | 0.6925 | 0.7065 | 0.6982 | | 0.0757 | 8.0 | 3976 | 2.3871 | 0.7425 | 0.7183 | 0.6926 | 0.6924 | | 0.0572 | 9.0 | 4473 | 2.4037 | 0.7344 | 0.6916 | 0.6929 | 0.6882 | | 0.0458 | 10.0 | 4970 | 2.3062 | 0.7586 | 0.7174 | 0.7219 | 0.7164 | | 0.0405 | 11.0 | 5467 | 2.5591 | 0.7445 | 0.6925 | 0.6964 | 0.6942 | | 0.0292 | 12.0 | 5964 | 2.5215 | 0.7384 | 0.6875 | 0.6998 | 0.6917 | | 0.0264 | 13.0 | 6461 | 2.7551 | 0.7586 | 0.7122 | 0.7035 | 0.7037 | | 0.0299 | 14.0 | 6958 | 2.6536 | 0.7465 | 0.7114 | 0.7088 | 0.7035 | | 0.0208 | 15.0 | 7455 | 2.5190 | 0.7505 | 0.6989 | 0.7083 | 0.7030 | | 0.0263 | 16.0 | 7952 | 2.7092 | 0.7485 | 0.7076 | 0.6998 | 0.6962 | | 0.0077 | 17.0 | 8449 | 2.5933 | 0.7525 | 0.7042 | 0.7143 | 0.7081 | | 0.009 | 18.0 | 8946 | 2.5831 | 0.7485 | 0.6991 | 0.7152 | 0.7050 | | 0.0108 | 19.0 | 9443 | 2.6360 | 0.7545 | 0.7050 | 0.7167 | 0.7098 | | 0.0077 | 20.0 | 9940 | 2.6447 | 0.7525 | 0.7030 | 0.7120 | 0.7064 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.1+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
9bb33454676308d2da58f87817db1be4
Shashidhar/distilbert-base-uncased-finetuned-squad
Shashidhar
distilbert
29
3
transformers
0
question-answering
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,179
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1080 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1205 | 1.0 | 5533 | 1.1080 | ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
36e2a2fd479c5c1590bec511e3938606
KoichiYasuoka/deberta-large-chinese-erlangshen-ud-goeswith
KoichiYasuoka
deberta-v2
9
16
transformers
0
token-classification
true
false
false
apache-2.0
['zh']
['universal_dependencies']
null
0
0
0
0
0
0
0
['chinese', 'token-classification', 'pos', 'dependency-parsing']
false
true
true
2,799
false
# deberta-large-chinese-erlangshen-ud-goeswith ## Model Description This is a DeBERTa(V2) model pre-trained on Chinese texts (both simplified and traditional) for POS-tagging and dependency-parsing (using `goeswith` for subwords), derived from [deberta-large-chinese-erlangshen-upos](https://huggingface.co/KoichiYasuoka/deberta-large-chinese-erlangshen-upos). ## How to Use ```py class UDgoeswith(object): def __init__(self,bert): from transformers import AutoTokenizer,AutoModelForTokenClassification self.tokenizer=AutoTokenizer.from_pretrained(bert) self.model=AutoModelForTokenClassification.from_pretrained(bert) def __call__(self,text): import numpy,torch,ufal.chu_liu_edmonds w=self.tokenizer(text,return_offsets_mapping=True) v=w["input_ids"] x=[v[0:i]+[self.tokenizer.mask_token_id]+v[i+1:]+[j] for i,j in enumerate(v[1:-1],1)] with torch.no_grad(): e=self.model(input_ids=torch.tensor(x)).logits.numpy()[:,1:-2,:] r=[1 if i==0 else -1 if j.endswith("|root") else 0 for i,j in sorted(self.model.config.id2label.items())] e+=numpy.where(numpy.add.outer(numpy.identity(e.shape[0]),r)==0,0,numpy.nan) g=self.model.config.label2id["X|_|goeswith"] r=numpy.tri(e.shape[0]) for i in range(e.shape[0]): for j in range(i+2,e.shape[1]): r[i,j]=r[i,j-1] if numpy.nanargmax(e[i,j-1])==g else 1 e[:,:,g]+=numpy.where(r==0,0,numpy.nan) m=numpy.full((e.shape[0]+1,e.shape[1]+1),numpy.nan) m[1:,1:]=numpy.nanmax(e,axis=2).transpose() p=numpy.zeros(m.shape) p[1:,1:]=numpy.nanargmax(e,axis=2).transpose() for i in range(1,m.shape[0]): m[i,0],m[i,i],p[i,0]=m[i,i],numpy.nan,p[i,i] h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] if [0 for i in h if i==0]!=[0]: m[:,0]+=numpy.where(m[:,0]==numpy.nanmax(m[[i for i,j in enumerate(h) if j==0],0]),0,numpy.nan) m[[i for i,j in enumerate(h) if j==0]]+=[0 if i==0 or j==0 else numpy.nan for i,j in enumerate(h)] h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] u="# text = "+text+"\n" v=[(s,e) for s,e in w["offset_mapping"] if s<e] for i,(s,e) in enumerate(v,1): q=self.model.config.id2label[p[i,h[i]]].split("|") u+="\t".join([str(i),text[s:e],"_",q[0],"_","|".join(q[1:-1]),str(h[i]),q[-1],"_","_" if i<len(v) and e<v[i][0] else "SpaceAfter=No"])+"\n" return u+"\n" nlp=UDgoeswith("KoichiYasuoka/deberta-large-chinese-erlangshen-ud-goeswith") print(nlp("我把这本书看完了")) ``` with [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/). Or without ufal.chu-liu-edmonds: ``` from transformers import pipeline nlp=pipeline("universal-dependencies","KoichiYasuoka/deberta-large-chinese-erlangshen-ud-goeswith",trust_remote_code=True,aggregation_strategy="simple") print(nlp("我把这本书看完了")) ```
3b144bbede853b9fbfd941507a30b20c
jonatasgrosman/exp_w2v2r_es_xls-r_age_teens-10_sixties-0_s900
jonatasgrosman
wav2vec2
10
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['es']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'es']
false
true
true
476
false
# exp_w2v2r_es_xls-r_age_teens-10_sixties-0_s900 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
358b0ca6113b8380cecf85130e9c2997
KoichiYasuoka/chinese-roberta-large-upos
KoichiYasuoka
bert
8
8
transformers
0
token-classification
true
false
false
apache-2.0
['zh']
['universal_dependencies']
null
0
0
0
0
0
0
0
['chinese', 'token-classification', 'pos', 'wikipedia', 'dependency-parsing']
false
true
true
902
false
# chinese-roberta-large-upos ## Model Description This is a BERT model pre-trained on Chinese Wikipedia texts (both simplified and traditional) for POS-tagging and dependency-parsing, derived from [chinese-roberta-wwm-ext-large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/chinese-roberta-large-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/chinese-roberta-large-upos") ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/chinese-roberta-large-upos") ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
542314d3d10d3a038776c33db49274f8