id
int64
-30,985
55.9k
text
stringlengths
5
437k
6,284
\left(-115/100 \cdot 90 \cdot y + y \cdot 110 = 13 \implies 13 \cdot y/2 = 13\right) \implies y = 2
9,487
2*53 + \frac{7*52*53}{2} = 9752
8,147
0.5 = (\sqrt{(2 \cdot (-1) + 1)^2 + 0} + \sqrt{0 + \left(\left(-1\right) + 2\right)^2})/4
-5,415
37.8*10^{2 + 1} = 37.8*10^3
-488
19/4 \cdot \pi - \pi \cdot 4 = \dfrac34 \cdot \pi
-22,227
63 + x^2 + 16*x = (x + 9)*(x + 7)
-28,800
29.5 = \frac{\pi \cdot 2}{\pi \cdot 2 \cdot 1/29.5}
28,257
6\times 4\times x^2\times 9 = 24\times 9\times x^2 = 216\times x^2
53,790
{30 + 4 + \left(-1\right) \choose 30} = \tfrac{1}{30! (4 + (-1))!}(30 + 4 + (-1))! = \frac{33!}{30! \cdot 3!}
13,445
\frac{1}{q^2 + 1} = \frac{\mathrm{d}}{\mathrm{d}q} \tan^{-1}\left(q\right)
52,913
\left(\left(-y \cdot y = 60 - 4^z = -(4^z + 60 \cdot (-1)) \Rightarrow 60 \cdot (-1) + 4^z = y^2\right) \Rightarrow 4^z + 61 \cdot (-1) = (-1) + y^2\right) \Rightarrow 61 \cdot (-1) + 4^z = ((-1) + y) \cdot (y + 1)
8,026
t^2 + t + (-1) = -\frac{5}{4} + (1/2 + t)^2
14,662
\cos(g) \times \cos(\epsilon) - \sin(g) \times \sin(\epsilon) = \cos(g + \epsilon)
-20,758
7/7 \cdot \tfrac{f + 5 \cdot (-1)}{8 \cdot f + 5} = \frac{1}{35 + f \cdot 56} \cdot \left(35 \cdot (-1) + 7 \cdot f\right)
-25,025
-4 + 64 x^2 - 1024 x^4 + 16384 x^6 - \cdots = -\frac{4}{1 + x * x*16}
10,104
960 = 20 \times 24 \times 2
24,522
-n + \left(\sqrt{m}\right)^2 = 0 \implies m = n
12,378
X^{-n} = \frac{1}{X^n}
28,422
0 = 1867*(-10000) + 10000*1867
15,797
-\tfrac{n}{n + \left(-1\right)} = -\frac{1}{n + (-1)}(n + (-1) + 1) = -(1 + \frac{1}{n + (-1)})
-28,408
h * h + 10 h + 41 = h^2 + 10 h + 25 + 16 = (h + 5) * (h + 5) + 16 = (h + 5) * (h + 5) + 4^2
-10,628
-\frac{30}{100 + 60\times q} = -\frac{3}{10 + q\times 6}\times \dfrac{1}{10}\times 10
33,850
45 = 60 + 30 \cdot (-1) + 30/2
-1,664
-2\pi + 13/6 \pi = \dfrac{\pi}{6}
39,163
\left(\frac12 + 0\right)^2 + 3/4 = 1
3,441
(f_1^U\cdot f_2)^U = f_2^U\cdot f_1 = f_2\cdot f_1 = f_1\cdot f_2 = f_1^U\cdot f_2
13,032
C^4 = C^4
-20,381
-\frac15\cdot 7\cdot \frac{5\cdot (-1) - m}{5\cdot (-1) - m} = \dfrac{7\cdot m + 35}{-5\cdot m + 25\cdot (-1)}
11,449
-(-1) \cdot \sin(\pi \cdot 5/6) - \sin(\pi/6) = 0
22,009
x^{f + h} = x^h \cdot x^f
14,377
(l^2 + (-1))/4 + 1 = \left(l^2 + 3\right)/4 = \left\lceil{l^2/4}\right\rceil
39,538
\cos(\zeta) \cdot \sin(\zeta) \cdot 2 = \sin(2 \cdot \zeta)
26,209
3*3 + 1 = 10
13,048
X = I_2 \cap \frac{X}{I_1} = \frac{X}{I_2} \cdot X \cdot \frac{1}{I_1}
26,212
\cos{x} = \sin(\dfrac{1}{2} \cdot \pi - x)
35,619
\frac{12319}{24642} + 1/12321 = \dfrac12
13,699
z^5 \cdot 2 = z \cdot 2 \cdot z^4
33,338
c*y = c*y
10,834
6 \cdot (6 + (-1))! = 6 \cdot 5! = 6!
4,049
33 = g + b*2 rightarrow g = 33 - 2*b
3,047
\frac{32}{143} = 2^6/\left(\binom{16}{6}\right)*\binom{8}{6}
21,460
x^4 + 1 = x^4 - 2*x^2 + 1 - -2*x * x = (x * x + (-1)) * (x * x + (-1)) - x^2 = (x^2 + (-1) + x)*(x^2 + (-1) - x)
11,540
\sin(2y) = 2\cos\left(y\right) \sin\left(y\right)
4,353
2\left(5a + 2\left(-1\right)\right)^2 - 49 a^2 + 7\cdot (5a + 2(-1)) = 50 a^2 - 40 a + 8 - 49 a^2 = a^2 - 5a + 6(-1)
21,998
|gH|=|H|=|Hg|
6,571
1 - 1 - y \cdot y = y^2 = y^2
12,962
135^2 = 3^2 \times 45^2 = 9 \times 2025 < 9 \times 2040
-5,610
\frac{3}{q^2 - q + 72 \left(-1\right)} = \frac{1}{(q + 8) (9(-1) + q)}3
39,554
xz = xz + 0x
29,301
10152 = 2^3 * 3^3 * 47
-6,296
\dfrac{1}{4 \cdot (6 + x)} = \frac{1}{24 + 4 \cdot x}
12,492
\frac{2}{x} = \frac{2}{x^2}\cdot x
13,625
1 - 0.9999 \cdot \ldots = 0
23,015
\frac{5}{324} = \dfrac{1}{6^6} \times 6!
4,412
2^l\cdot 2 - (l + 3)^2 = 2^{l + 1} - (l + 3)^2
43,488
C + C = 2\cdot C
-5,163
\tfrac{1}{100}\cdot 0.48 = \frac{0.48}{100}
20,039
Z^2 - H * H = (H + Z) (Z - H)
1,622
-1 * 1*2 + 3^2 = 7
33,160
A = (A \cap V) \cup (A \cap x) = A \cap (V \cup x)
-4,023
3\beta^2 = 3\beta^2
-19,031
9/20 = \frac{1}{25 \pi} A_s*25 \pi = A_s
-9,710
0.01 \times (-88) = -\frac{88}{100} = -0.88
8,229
\frac12 + \frac{1}{2^2} + \cdots + \dfrac{1}{2^k} = 1 - \frac{1}{2^k}
14,162
\cos(2x) = (-1) + \cos^2\left(x\right)*2
29,275
x = \frac12 \cdot x + x/2
16,677
\cos(2 \cdot \pi - z) = \cos(2 \cdot \pi - z) = \cos{-z}
12,090
\dfrac{1}{9}+\dfrac{1}{9}+\dfrac{2}{27}+\dfrac{2}{27}=\dfrac{10}{27}
-8,052
(d - g)*\left(d + g\right) = d^2 - g * g
-609
\pi\cdot 55/3 - \pi\cdot 18 = \frac{\pi}{3}
-6,170
\frac{p}{(4 + p)\cdot (1 + p)} = \frac{1}{4 + p^2 + p\cdot 5}\cdot p
2,493
\binom{m\cdot 2}{m} = \dfrac{(2\cdot m)!}{m!^2}
-3,289
\sqrt{7}\cdot 7 = \left(3 + 4\right)\cdot \sqrt{7}
23,489
\tfrac{49 + 6\cdot (-1)}{49 + 4\cdot (-1)} = 43/45
2,411
(1 + n)! + n + 1 - (1 + n)! + (-1) = n
6,835
-x^2 \cdot 80 - x \cdot 120 + 45 \cdot (-1) + 1 = -(9 + x^2 \cdot 16 + 24 \cdot x) \cdot 5 + 1
4,887
\tfrac{1}{\sqrt{1 + y^2}} = \cos\left(\operatorname{atan}(y)\right)
4,848
\left(b\cdot x\right)^2 = (x\cdot b)^2
-21,128
2/3 = 6/9
-13,244
\frac{1}{4 + 2(-1)}6 = \tfrac{1}{2}6 = 6/2 = 3
25,060
L \cdot L^x = I \implies I = L^x \cdot L
19,125
\left(3 + 1\right)*(2 + 1) = 12
3,351
z*2^q + yk = 1\Longrightarrow 2^q z = -ky + 1
-1,935
\pi/2 = 13/12*\pi - \pi*7/12
-7,044
3/11\cdot \frac{1}{10}\cdot 3 = 9/110
42,433
\|b + 0 \times (-1)\| = \|b\|
34,865
(1 - 2\cdot (1 - x)) \cdot (1 - 2\cdot (1 - x)) = (1 + 2\cdot (-1) + 2\cdot x)^2 = (-1 + 2\cdot x)^2
30,471
(5^{1/2} - 1)/4 = \cos{\pi\cdot 2/5}
-4,902
0.18*10^{3 + 2*\left(-1\right)} = 10^1*0.18
8,347
\frac{1}{z - b_n} (z - a_n) + (-1) = \frac{1}{z - b_n} \left(z - a_n - z + b_n\right) = \dfrac{1}{z - b_n} \left(b_n - a_n\right)
21,351
-v*(-u) = u*v
17,962
(f^2 + a^2) \cdot (d^2 + g^2) = \left(a \cdot g + f \cdot d\right)^2 + (a \cdot d - g \cdot f)^2
-2,000
\pi\times 5/4 - 13/12\times \pi = \frac{\pi}{6}
14,044
\binom{6}{2} = 6!/\left(4!\cdot 2!\right)
-24,234
3 \times (8 + 6) = 3 \times 14 = 42
25,727
0 = \left|{AB}\right| = \left|{A}\right| \left|{B}\right|
6,761
2/15 \cdot \frac{8}{15} = 16/225
36,309
\sin^2\left(x\right) + 4\cdot \cos(x) = 1 - \cos^2\left(x\right) + 4\cdot \cos\left(x\right) = 5 - (\cos(x) + 2\cdot (-1))^2
-2,176
\frac{1}{14} 9 - \dfrac{1}{14} 2 = \frac{1}{14} 7
-1,646
\pi \cdot 13/12 = \pi \cdot \dfrac{1}{12} \cdot 13 + 0