id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
6,284 | \left(-115/100 \cdot 90 \cdot y + y \cdot 110 = 13 \implies 13 \cdot y/2 = 13\right) \implies y = 2 |
9,487 | 2*53 + \frac{7*52*53}{2} = 9752 |
8,147 | 0.5 = (\sqrt{(2 \cdot (-1) + 1)^2 + 0} + \sqrt{0 + \left(\left(-1\right) + 2\right)^2})/4 |
-5,415 | 37.8*10^{2 + 1} = 37.8*10^3 |
-488 | 19/4 \cdot \pi - \pi \cdot 4 = \dfrac34 \cdot \pi |
-22,227 | 63 + x^2 + 16*x = (x + 9)*(x + 7) |
-28,800 | 29.5 = \frac{\pi \cdot 2}{\pi \cdot 2 \cdot 1/29.5} |
28,257 | 6\times 4\times x^2\times 9 = 24\times 9\times x^2 = 216\times x^2 |
53,790 | {30 + 4 + \left(-1\right) \choose 30} = \tfrac{1}{30! (4 + (-1))!}(30 + 4 + (-1))! = \frac{33!}{30! \cdot 3!} |
13,445 | \frac{1}{q^2 + 1} = \frac{\mathrm{d}}{\mathrm{d}q} \tan^{-1}\left(q\right) |
52,913 | \left(\left(-y \cdot y = 60 - 4^z = -(4^z + 60 \cdot (-1)) \Rightarrow 60 \cdot (-1) + 4^z = y^2\right) \Rightarrow 4^z + 61 \cdot (-1) = (-1) + y^2\right) \Rightarrow 61 \cdot (-1) + 4^z = ((-1) + y) \cdot (y + 1) |
8,026 | t^2 + t + (-1) = -\frac{5}{4} + (1/2 + t)^2 |
14,662 | \cos(g) \times \cos(\epsilon) - \sin(g) \times \sin(\epsilon) = \cos(g + \epsilon) |
-20,758 | 7/7 \cdot \tfrac{f + 5 \cdot (-1)}{8 \cdot f + 5} = \frac{1}{35 + f \cdot 56} \cdot \left(35 \cdot (-1) + 7 \cdot f\right) |
-25,025 | -4 + 64 x^2 - 1024 x^4 + 16384 x^6 - \cdots = -\frac{4}{1 + x * x*16} |
10,104 | 960 = 20 \times 24 \times 2 |
24,522 | -n + \left(\sqrt{m}\right)^2 = 0 \implies m = n |
12,378 | X^{-n} = \frac{1}{X^n} |
28,422 | 0 = 1867*(-10000) + 10000*1867 |
15,797 | -\tfrac{n}{n + \left(-1\right)} = -\frac{1}{n + (-1)}(n + (-1) + 1) = -(1 + \frac{1}{n + (-1)}) |
-28,408 | h * h + 10 h + 41 = h^2 + 10 h + 25 + 16 = (h + 5) * (h + 5) + 16 = (h + 5) * (h + 5) + 4^2 |
-10,628 | -\frac{30}{100 + 60\times q} = -\frac{3}{10 + q\times 6}\times \dfrac{1}{10}\times 10 |
33,850 | 45 = 60 + 30 \cdot (-1) + 30/2 |
-1,664 | -2\pi + 13/6 \pi = \dfrac{\pi}{6} |
39,163 | \left(\frac12 + 0\right)^2 + 3/4 = 1 |
3,441 | (f_1^U\cdot f_2)^U = f_2^U\cdot f_1 = f_2\cdot f_1 = f_1\cdot f_2 = f_1^U\cdot f_2 |
13,032 | C^4 = C^4 |
-20,381 | -\frac15\cdot 7\cdot \frac{5\cdot (-1) - m}{5\cdot (-1) - m} = \dfrac{7\cdot m + 35}{-5\cdot m + 25\cdot (-1)} |
11,449 | -(-1) \cdot \sin(\pi \cdot 5/6) - \sin(\pi/6) = 0 |
22,009 | x^{f + h} = x^h \cdot x^f |
14,377 | (l^2 + (-1))/4 + 1 = \left(l^2 + 3\right)/4 = \left\lceil{l^2/4}\right\rceil |
39,538 | \cos(\zeta) \cdot \sin(\zeta) \cdot 2 = \sin(2 \cdot \zeta) |
26,209 | 3*3 + 1 = 10 |
13,048 | X = I_2 \cap \frac{X}{I_1} = \frac{X}{I_2} \cdot X \cdot \frac{1}{I_1} |
26,212 | \cos{x} = \sin(\dfrac{1}{2} \cdot \pi - x) |
35,619 | \frac{12319}{24642} + 1/12321 = \dfrac12 |
13,699 | z^5 \cdot 2 = z \cdot 2 \cdot z^4 |
33,338 | c*y = c*y |
10,834 | 6 \cdot (6 + (-1))! = 6 \cdot 5! = 6! |
4,049 | 33 = g + b*2 rightarrow g = 33 - 2*b |
3,047 | \frac{32}{143} = 2^6/\left(\binom{16}{6}\right)*\binom{8}{6} |
21,460 | x^4 + 1 = x^4 - 2*x^2 + 1 - -2*x * x = (x * x + (-1)) * (x * x + (-1)) - x^2 = (x^2 + (-1) + x)*(x^2 + (-1) - x) |
11,540 | \sin(2y) = 2\cos\left(y\right) \sin\left(y\right) |
4,353 | 2\left(5a + 2\left(-1\right)\right)^2 - 49 a^2 + 7\cdot (5a + 2(-1)) = 50 a^2 - 40 a + 8 - 49 a^2 = a^2 - 5a + 6(-1) |
21,998 | |gH|=|H|=|Hg| |
6,571 | 1 - 1 - y \cdot y = y^2 = y^2 |
12,962 | 135^2 = 3^2 \times 45^2 = 9 \times 2025 < 9 \times 2040 |
-5,610 | \frac{3}{q^2 - q + 72 \left(-1\right)} = \frac{1}{(q + 8) (9(-1) + q)}3 |
39,554 | xz = xz + 0x |
29,301 | 10152 = 2^3 * 3^3 * 47 |
-6,296 | \dfrac{1}{4 \cdot (6 + x)} = \frac{1}{24 + 4 \cdot x} |
12,492 | \frac{2}{x} = \frac{2}{x^2}\cdot x |
13,625 | 1 - 0.9999 \cdot \ldots = 0 |
23,015 | \frac{5}{324} = \dfrac{1}{6^6} \times 6! |
4,412 | 2^l\cdot 2 - (l + 3)^2 = 2^{l + 1} - (l + 3)^2 |
43,488 | C + C = 2\cdot C |
-5,163 | \tfrac{1}{100}\cdot 0.48 = \frac{0.48}{100} |
20,039 | Z^2 - H * H = (H + Z) (Z - H) |
1,622 | -1 * 1*2 + 3^2 = 7 |
33,160 | A = (A \cap V) \cup (A \cap x) = A \cap (V \cup x) |
-4,023 | 3\beta^2 = 3\beta^2 |
-19,031 | 9/20 = \frac{1}{25 \pi} A_s*25 \pi = A_s |
-9,710 | 0.01 \times (-88) = -\frac{88}{100} = -0.88 |
8,229 | \frac12 + \frac{1}{2^2} + \cdots + \dfrac{1}{2^k} = 1 - \frac{1}{2^k} |
14,162 | \cos(2x) = (-1) + \cos^2\left(x\right)*2 |
29,275 | x = \frac12 \cdot x + x/2 |
16,677 | \cos(2 \cdot \pi - z) = \cos(2 \cdot \pi - z) = \cos{-z} |
12,090 | \dfrac{1}{9}+\dfrac{1}{9}+\dfrac{2}{27}+\dfrac{2}{27}=\dfrac{10}{27} |
-8,052 | (d - g)*\left(d + g\right) = d^2 - g * g |
-609 | \pi\cdot 55/3 - \pi\cdot 18 = \frac{\pi}{3} |
-6,170 | \frac{p}{(4 + p)\cdot (1 + p)} = \frac{1}{4 + p^2 + p\cdot 5}\cdot p |
2,493 | \binom{m\cdot 2}{m} = \dfrac{(2\cdot m)!}{m!^2} |
-3,289 | \sqrt{7}\cdot 7 = \left(3 + 4\right)\cdot \sqrt{7} |
23,489 | \tfrac{49 + 6\cdot (-1)}{49 + 4\cdot (-1)} = 43/45 |
2,411 | (1 + n)! + n + 1 - (1 + n)! + (-1) = n |
6,835 | -x^2 \cdot 80 - x \cdot 120 + 45 \cdot (-1) + 1 = -(9 + x^2 \cdot 16 + 24 \cdot x) \cdot 5 + 1 |
4,887 | \tfrac{1}{\sqrt{1 + y^2}} = \cos\left(\operatorname{atan}(y)\right) |
4,848 | \left(b\cdot x\right)^2 = (x\cdot b)^2 |
-21,128 | 2/3 = 6/9 |
-13,244 | \frac{1}{4 + 2(-1)}6 = \tfrac{1}{2}6 = 6/2 = 3 |
25,060 | L \cdot L^x = I \implies I = L^x \cdot L |
19,125 | \left(3 + 1\right)*(2 + 1) = 12 |
3,351 | z*2^q + yk = 1\Longrightarrow 2^q z = -ky + 1 |
-1,935 | \pi/2 = 13/12*\pi - \pi*7/12 |
-7,044 | 3/11\cdot \frac{1}{10}\cdot 3 = 9/110 |
42,433 | \|b + 0 \times (-1)\| = \|b\| |
34,865 | (1 - 2\cdot (1 - x)) \cdot (1 - 2\cdot (1 - x)) = (1 + 2\cdot (-1) + 2\cdot x)^2 = (-1 + 2\cdot x)^2 |
30,471 | (5^{1/2} - 1)/4 = \cos{\pi\cdot 2/5} |
-4,902 | 0.18*10^{3 + 2*\left(-1\right)} = 10^1*0.18 |
8,347 | \frac{1}{z - b_n} (z - a_n) + (-1) = \frac{1}{z - b_n} \left(z - a_n - z + b_n\right) = \dfrac{1}{z - b_n} \left(b_n - a_n\right) |
21,351 | -v*(-u) = u*v |
17,962 | (f^2 + a^2) \cdot (d^2 + g^2) = \left(a \cdot g + f \cdot d\right)^2 + (a \cdot d - g \cdot f)^2 |
-2,000 | \pi\times 5/4 - 13/12\times \pi = \frac{\pi}{6} |
14,044 | \binom{6}{2} = 6!/\left(4!\cdot 2!\right) |
-24,234 | 3 \times (8 + 6) = 3 \times 14 = 42 |
25,727 | 0 = \left|{AB}\right| = \left|{A}\right| \left|{B}\right| |
6,761 | 2/15 \cdot \frac{8}{15} = 16/225 |
36,309 | \sin^2\left(x\right) + 4\cdot \cos(x) = 1 - \cos^2\left(x\right) + 4\cdot \cos\left(x\right) = 5 - (\cos(x) + 2\cdot (-1))^2 |
-2,176 | \frac{1}{14} 9 - \dfrac{1}{14} 2 = \frac{1}{14} 7 |
-1,646 | \pi \cdot 13/12 = \pi \cdot \dfrac{1}{12} \cdot 13 + 0 |