Datasets:

Modalities:
Text
Formats:
text
Libraries:
Datasets
License:
Compact_Facts / process.py
khulnasoft's picture
Create process.py
123b5c0 verified
raw
history blame
6.05 kB
import json
import argparse
import sys
from collections import defaultdict
from transformers import AutoTokenizer
def read_conjunctive_sentences(args):
with open(args.conjunctions_file, 'r') as fin:
sent = True
sent2conj = defaultdict(list)
conj2sent = dict()
currentSentText = ''
for line in fin:
if line == '\n':
sent = True
continue
if sent:
currentSentText = line.replace('\n', '')
sent = False
else:
conj_sent = line.replace('\n', '')
sent2conj[currentSentText].append(conj_sent)
conj2sent[conj_sent] = currentSentText
return sent2conj
def get_conj_free_sentence_dicts(sentence, sent_to_conj, sent_id):
flat_extractions_list = []
sentence = sentence.replace('\n', '')
if sentence in list(sent_to_conj.keys()):
for s in sent_to_conj[sentence]:
sentence_and_extractions_dict = {
"sentence": s + " [unused1] [unused2] [unused3] [unused4] [unused5] [unused6]",
"sentId": sent_id, "entityMentions": list(),
"relationMentions": list(), "extractionMentions": list()}
flat_extractions_list.append(sentence_and_extractions_dict)
return flat_extractions_list
return [{
"sentence": sentence + " [unused1] [unused2] [unused3] [unused4] [unused5] [unused6]",
"sentId": sent_id, "entityMentions": list(),
"relationMentions": list(), "extractionMentions": list()}]
def add_joint_label(ext, ent_rel_id):
"""add_joint_label add joint labels for sentences
"""
none_id = ent_rel_id['None']
sentence_length = len(ext['sentText'].split(' '))
entity_label_matrix = [[none_id for j in range(sentence_length)] for i in range(sentence_length)]
relation_label_matrix = [[none_id for j in range(sentence_length)] for i in range(sentence_length)]
label_matrix = [[none_id for j in range(sentence_length)] for i in range(sentence_length)]
ent2offset = {}
for ent in ext['entityMentions']:
ent2offset[ent['emId']] = ent['span_ids']
try:
for i in ent['span_ids']:
for j in ent['span_ids']:
entity_label_matrix[i][j] = ent_rel_id[ent['label']]
except:
print("span ids: ", sentence_length, ent['span_ids'], ext)
sys.exit(1)
ext['entityLabelMatrix'] = entity_label_matrix
for rel in ext['relationMentions']:
arg1_span = ent2offset[rel['arg1']['emId']]
arg2_span = ent2offset[rel['arg2']['emId']]
for i in arg1_span:
for j in arg2_span:
# to be consistent with the linking model
relation_label_matrix[i][j] = ent_rel_id[rel['label']] - 2
relation_label_matrix[j][i] = ent_rel_id[rel['label']] - 2
label_matrix[i][j] = ent_rel_id[rel['label']]
label_matrix[j][i] = ent_rel_id[rel['label']]
ext['relationLabelMatrix'] = relation_label_matrix
ext['jointLabelMatrix'] = label_matrix
def tokenize_sentences(ext, tokenizer):
cls = tokenizer.cls_token
sep = tokenizer.sep_token
wordpiece_tokens = [cls]
wordpiece_tokens_index = []
cur_index = len(wordpiece_tokens)
# for token in ext['sentText'].split(' '):
for token in ext['sentence'].split(' '):
tokenized_token = list(tokenizer.tokenize(token))
wordpiece_tokens.extend(tokenized_token)
wordpiece_tokens_index.append([cur_index, cur_index + len(tokenized_token)])
cur_index += len(tokenized_token)
wordpiece_tokens.append(sep)
wordpiece_segment_ids = [1] * (len(wordpiece_tokens))
return {
'sentId': ext['sentId'],
'sentText': ext['sentence'],
'entityMentions': ext['entityMentions'],
'relationMentions': ext['relationMentions'],
'extractionMentions': ext['extractionMentions'],
'wordpieceSentText': " ".join(wordpiece_tokens),
'wordpieceTokensIndex': wordpiece_tokens_index,
'wordpieceSegmentIds': wordpiece_segment_ids
}
def write_dataset_to_file(dataset, dataset_path):
print("dataset: {}, size: {}".format(dataset_path, len(dataset)))
with open(dataset_path, 'w', encoding='utf-8') as fout:
for idx, ext in enumerate(dataset):
fout.write(json.dumps(ext))
if idx != len(dataset) - 1:
fout.write('\n')
def process(args, sent2conj):
extractions_list = []
auto_tokenizer = AutoTokenizer.from_pretrained(args.embedding_model)
print("Load {} tokenizer successfully.".format(args.embedding_model))
ent_rel_id = json.load(open(args.ent_rel_file, 'r', encoding='utf-8'))["id"]
sentId = 0
with open(args.source_file, 'r', encoding='utf-8') as fin, open(args.target_file, 'w', encoding='utf-8') as fout:
for line in fin:
sentId += 1
exts = get_conj_free_sentence_dicts(line, sent2conj, sentId)
for ext in exts:
# ext = ext.strip()
ext_dict = tokenize_sentences(ext, auto_tokenizer)
add_joint_label(ext_dict, ent_rel_id)
extractions_list.append(ext_dict)
fout.write(json.dumps(ext_dict))
fout.write('\n')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Process sentences.')
parser.add_argument("--source_file", type=str, help='source file path')
parser.add_argument("--target_file", type=str, help='target file path')
parser.add_argument("--conjunctions_file", type=str, help='conjunctions file.')
parser.add_argument("--ent_rel_file", type=str, default="ent_rel_file.json", help='entity and relation file.')
parser.add_argument("--embedding_model", type=str, default="bert-base-uncased", help='embedding model.')
args = parser.parse_args()
sent2conj = read_conjunctive_sentences(args)
process(args, sent2conj)