|
import json |
|
import argparse |
|
import sys |
|
from collections import defaultdict |
|
from transformers import AutoTokenizer |
|
|
|
|
|
def read_conjunctive_sentences(args): |
|
with open(args.conjunctions_file, 'r') as fin: |
|
sent = True |
|
sent2conj = defaultdict(list) |
|
conj2sent = dict() |
|
currentSentText = '' |
|
for line in fin: |
|
if line == '\n': |
|
sent = True |
|
continue |
|
if sent: |
|
currentSentText = line.replace('\n', '') |
|
sent = False |
|
else: |
|
conj_sent = line.replace('\n', '') |
|
sent2conj[currentSentText].append(conj_sent) |
|
conj2sent[conj_sent] = currentSentText |
|
|
|
return sent2conj |
|
|
|
|
|
def get_conj_free_sentence_dicts(sentence, sent_to_conj, sent_id): |
|
flat_extractions_list = [] |
|
sentence = sentence.replace('\n', '') |
|
if sentence in list(sent_to_conj.keys()): |
|
for s in sent_to_conj[sentence]: |
|
sentence_and_extractions_dict = { |
|
"sentence": s + " [unused1] [unused2] [unused3] [unused4] [unused5] [unused6]", |
|
"sentId": sent_id, "entityMentions": list(), |
|
"relationMentions": list(), "extractionMentions": list()} |
|
flat_extractions_list.append(sentence_and_extractions_dict) |
|
return flat_extractions_list |
|
|
|
return [{ |
|
"sentence": sentence + " [unused1] [unused2] [unused3] [unused4] [unused5] [unused6]", |
|
"sentId": sent_id, "entityMentions": list(), |
|
"relationMentions": list(), "extractionMentions": list()}] |
|
|
|
|
|
def add_joint_label(ext, ent_rel_id): |
|
"""add_joint_label add joint labels for sentences |
|
""" |
|
|
|
none_id = ent_rel_id['None'] |
|
sentence_length = len(ext['sentText'].split(' ')) |
|
entity_label_matrix = [[none_id for j in range(sentence_length)] for i in range(sentence_length)] |
|
relation_label_matrix = [[none_id for j in range(sentence_length)] for i in range(sentence_length)] |
|
label_matrix = [[none_id for j in range(sentence_length)] for i in range(sentence_length)] |
|
ent2offset = {} |
|
for ent in ext['entityMentions']: |
|
ent2offset[ent['emId']] = ent['span_ids'] |
|
try: |
|
for i in ent['span_ids']: |
|
for j in ent['span_ids']: |
|
entity_label_matrix[i][j] = ent_rel_id[ent['label']] |
|
except: |
|
print("span ids: ", sentence_length, ent['span_ids'], ext) |
|
sys.exit(1) |
|
ext['entityLabelMatrix'] = entity_label_matrix |
|
for rel in ext['relationMentions']: |
|
arg1_span = ent2offset[rel['arg1']['emId']] |
|
arg2_span = ent2offset[rel['arg2']['emId']] |
|
|
|
for i in arg1_span: |
|
for j in arg2_span: |
|
|
|
relation_label_matrix[i][j] = ent_rel_id[rel['label']] - 2 |
|
relation_label_matrix[j][i] = ent_rel_id[rel['label']] - 2 |
|
label_matrix[i][j] = ent_rel_id[rel['label']] |
|
label_matrix[j][i] = ent_rel_id[rel['label']] |
|
ext['relationLabelMatrix'] = relation_label_matrix |
|
ext['jointLabelMatrix'] = label_matrix |
|
|
|
|
|
def tokenize_sentences(ext, tokenizer): |
|
cls = tokenizer.cls_token |
|
sep = tokenizer.sep_token |
|
wordpiece_tokens = [cls] |
|
|
|
wordpiece_tokens_index = [] |
|
cur_index = len(wordpiece_tokens) |
|
|
|
for token in ext['sentence'].split(' '): |
|
tokenized_token = list(tokenizer.tokenize(token)) |
|
wordpiece_tokens.extend(tokenized_token) |
|
wordpiece_tokens_index.append([cur_index, cur_index + len(tokenized_token)]) |
|
cur_index += len(tokenized_token) |
|
wordpiece_tokens.append(sep) |
|
|
|
wordpiece_segment_ids = [1] * (len(wordpiece_tokens)) |
|
return { |
|
'sentId': ext['sentId'], |
|
'sentText': ext['sentence'], |
|
'entityMentions': ext['entityMentions'], |
|
'relationMentions': ext['relationMentions'], |
|
'extractionMentions': ext['extractionMentions'], |
|
'wordpieceSentText': " ".join(wordpiece_tokens), |
|
'wordpieceTokensIndex': wordpiece_tokens_index, |
|
'wordpieceSegmentIds': wordpiece_segment_ids |
|
} |
|
|
|
|
|
def write_dataset_to_file(dataset, dataset_path): |
|
print("dataset: {}, size: {}".format(dataset_path, len(dataset))) |
|
with open(dataset_path, 'w', encoding='utf-8') as fout: |
|
for idx, ext in enumerate(dataset): |
|
fout.write(json.dumps(ext)) |
|
if idx != len(dataset) - 1: |
|
fout.write('\n') |
|
|
|
|
|
def process(args, sent2conj): |
|
extractions_list = [] |
|
auto_tokenizer = AutoTokenizer.from_pretrained(args.embedding_model) |
|
print("Load {} tokenizer successfully.".format(args.embedding_model)) |
|
|
|
ent_rel_id = json.load(open(args.ent_rel_file, 'r', encoding='utf-8'))["id"] |
|
sentId = 0 |
|
with open(args.source_file, 'r', encoding='utf-8') as fin, open(args.target_file, 'w', encoding='utf-8') as fout: |
|
for line in fin: |
|
sentId += 1 |
|
exts = get_conj_free_sentence_dicts(line, sent2conj, sentId) |
|
for ext in exts: |
|
|
|
ext_dict = tokenize_sentences(ext, auto_tokenizer) |
|
add_joint_label(ext_dict, ent_rel_id) |
|
extractions_list.append(ext_dict) |
|
fout.write(json.dumps(ext_dict)) |
|
fout.write('\n') |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser(description='Process sentences.') |
|
parser.add_argument("--source_file", type=str, help='source file path') |
|
parser.add_argument("--target_file", type=str, help='target file path') |
|
parser.add_argument("--conjunctions_file", type=str, help='conjunctions file.') |
|
parser.add_argument("--ent_rel_file", type=str, default="ent_rel_file.json", help='entity and relation file.') |
|
parser.add_argument("--embedding_model", type=str, default="bert-base-uncased", help='embedding model.') |
|
|
|
args = parser.parse_args() |
|
sent2conj = read_conjunctive_sentences(args) |
|
process(args, sent2conj) |