Unnamed: 0
int64 | category
string | githuburl
string | customtopics
string | customabout
string | customarxiv
string | custompypi
string | featured
float64 | links
string | description
string | _repopath
string | _reponame
string | _stars
int64 | _forks
int64 | _watches
int64 | _language
string | _homepage
string | _github_description
string | _organization
string | _updated_at
string | _created_at
string | _age_weeks
int64 | _stars_per_week
float64 | _avatar_url
string | _description
string | _github_topics
string | _topics
string | _last_commit_date
string | sim
string | _pop_contributor_count
int64 | _pop_contributor_orgs_len
float64 | _pop_contributor_orgs_error
float64 | _pop_commit_frequency
float64 | _pop_updated_issues_count
int64 | _pop_closed_issues_count
int64 | _pop_created_since_days
int64 | _pop_updated_since_days
int64 | _pop_recent_releases_count
int64 | _pop_recent_releases_estimated_tags
int64 | _pop_recent_releases_adjusted_count
int64 | _pop_issue_count
float64 | _pop_comment_count
float64 | _pop_comment_count_lookback_days
float64 | _pop_comment_frequency
float64 | _pop_score
int64 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1,466 | util | https://github.com/lcompilers/lpython | [] | null | [] | [] | null | null | null | lcompilers/lpython | lpython | 1,175 | 122 | 28 | C++ | https://lpython.org/ | Python compiler | lcompilers | 2024-01-12 | 2021-12-29 | 108 | 10.793963 | https://avatars.githubusercontent.com/u/96538276?v=4 | Python compiler | ['compiler', 'high-performance'] | ['compiler', 'high-performance'] | 2024-01-11 | [('exaloop/codon', 0.7257847189903259, 'perf', 2), ('cython/cython', 0.6913489699363708, 'util', 0), ('pypy/pypy', 0.6041545271873474, 'util', 1), ('numba/numba', 0.603155255317688, 'perf', 1), ('pyston/pyston', 0.6024731397628784, 'util', 0), ('klen/py-frameworks-bench', 0.587522566318512, 'perf', 0), ('markshannon/faster-cpython', 0.5289682149887085, 'perf', 0), ('faster-cpython/tools', 0.5253562927246094, 'perf', 0), ('numba/llvmlite', 0.5191760063171387, 'util', 0), ('fastai/fastcore', 0.5177335739135742, 'util', 0), ('pympler/pympler', 0.5168886184692383, 'perf', 0), ('p403n1x87/austin', 0.5144882798194885, 'profiling', 0), ('benfred/py-spy', 0.5141026377677917, 'profiling', 0), ('pyutils/line_profiler', 0.5114628076553345, 'profiling', 0), ('joblib/joblib', 0.5082236528396606, 'util', 0), ('google/jax', 0.5010378956794739, 'ml', 0)] | 65 | 6 | null | 30.87 | 97 | 58 | 25 | 0 | 11 | 12 | 11 | 97 | 217 | 90 | 2.2 | 55 |
1,835 | llm | https://github.com/hao-ai-lab/lookaheaddecoding | ['decoding', 'lookahead'] | Break the Sequential Dependency of LLM Inference Using Lookahead Decoding | [] | [] | null | null | null | hao-ai-lab/lookaheaddecoding | LookaheadDecoding | 802 | 49 | 9 | Python | null | null | hao-ai-lab | 2024-01-14 | 2023-11-21 | 10 | 80.2 | https://avatars.githubusercontent.com/u/149045815?v=4 | Break the Sequential Dependency of LLM Inference Using Lookahead Decoding | [] | ['decoding', 'lookahead'] | 2024-01-09 | [('karpathy/llama2.c', 0.5412218570709229, 'llm', 0), ('facebookresearch/llama', 0.5299458503723145, 'llm', 0), ('artidoro/qlora', 0.5174603462219238, 'llm', 0), ('facebookresearch/codellama', 0.5007719397544861, 'llm', 0)] | 5 | 2 | null | 0.31 | 44 | 24 | 2 | 0 | 0 | 0 | 0 | 44 | 175 | 90 | 4 | 55 |
499 | ml | https://github.com/ageron/handson-ml2 | [] | null | [] | [] | null | null | null | ageron/handson-ml2 | handson-ml2 | 26,281 | 12,333 | 648 | Jupyter Notebook | null | A series of Jupyter notebooks that walk you through the fundamentals of Machine Learning and Deep Learning in Python using Scikit-Learn, Keras and TensorFlow 2. | ageron | 2024-01-14 | 2019-01-08 | 264 | 99.549242 | null | A series of Jupyter notebooks that walk you through the fundamentals of Machine Learning and Deep Learning in Python using Scikit-Learn, Keras and TensorFlow 2. | [] | [] | 2023-02-04 | [('fchollet/deep-learning-with-python-notebooks', 0.8291416168212891, 'study', 0), ('jakevdp/pythondatasciencehandbook', 0.6813152432441711, 'study', 0), ('gradio-app/gradio', 0.6595058441162109, 'viz', 0), ('rasbt/machine-learning-book', 0.6461301445960999, 'study', 0), ('firmai/industry-machine-learning', 0.6424956321716309, 'study', 0), ('mrdbourke/pytorch-deep-learning', 0.633056104183197, 'study', 0), ('wesm/pydata-book', 0.6252664923667908, 'study', 0), ('pytorch/ignite', 0.6152977347373962, 'ml-dl', 0), ('probml/pyprobml', 0.6119535565376282, 'ml', 0), ('scikit-learn/scikit-learn', 0.6084038615226746, 'ml', 0), ('intel/intel-extension-for-pytorch', 0.6076744198799133, 'perf', 0), ('ddbourgin/numpy-ml', 0.6011914014816284, 'ml', 0), ('uber/petastorm', 0.5999022126197815, 'data', 0), ('skorch-dev/skorch', 0.5958633422851562, 'ml-dl', 0), ('jupyter/nbformat', 0.5934438705444336, 'jupyter', 0), ('cohere-ai/notebooks', 0.5897052884101868, 'llm', 0), ('d2l-ai/d2l-en', 0.5854299664497375, 'study', 0), ('xl0/lovely-tensors', 0.583730936050415, 'ml-dl', 0), ('jeshraghian/snntorch', 0.5824640989303589, 'ml-dl', 0), ('determined-ai/determined', 0.5803431868553162, 'ml-ops', 0), ('keras-team/keras', 0.5698571801185608, 'ml-dl', 0), ('nvidia/deeplearningexamples', 0.5652621388435364, 'ml-dl', 0), ('ggerganov/ggml', 0.5649846196174622, 'ml', 0), ('tensorlayer/tensorlayer', 0.5648738741874695, 'ml-rl', 0), ('rasbt/mlxtend', 0.564663290977478, 'ml', 0), ('tensorly/tensorly', 0.5573654770851135, 'ml-dl', 0), ('tensorflow/tensorflow', 0.5564263463020325, 'ml-dl', 0), ('kubeflow/fairing', 0.5555180907249451, 'ml-ops', 0), ('pytorch/pytorch', 0.5553191304206848, 'ml-dl', 0), ('udacity/deep-learning-v2-pytorch', 0.5552393198013306, 'study', 0), ('featurelabs/featuretools', 0.5548660159111023, 'ml', 0), ('numpy/numpy', 0.5535714626312256, 'math', 0), ('huggingface/huggingface_hub', 0.5522385835647583, 'ml', 0), ('ipython/ipykernel', 0.55137699842453, 'util', 0), ('mdbloice/augmentor', 0.5503374338150024, 'ml', 0), ('graykode/nlp-tutorial', 0.5493988394737244, 'study', 0), ('tensorflow/lucid', 0.5488042235374451, 'ml-interpretability', 0), ('tensorflow/tensor2tensor', 0.5483447313308716, 'ml', 0), ('dmlc/dgl', 0.5474348068237305, 'ml-dl', 0), ('patchy631/machine-learning', 0.5471069812774658, 'ml', 0), ('lightly-ai/lightly', 0.5470166802406311, 'ml', 0), ('kubeflow-kale/kale', 0.5455378293991089, 'ml-ops', 0), ('ipython/ipyparallel', 0.5427348017692566, 'perf', 0), ('pycaret/pycaret', 0.5426246523857117, 'ml', 0), ('keras-rl/keras-rl', 0.5413088202476501, 'ml-rl', 0), ('huggingface/transformers', 0.5403335094451904, 'nlp', 0), ('udlbook/udlbook', 0.539566159248352, 'study', 0), ('jupyter/nbconvert', 0.5394284725189209, 'jupyter', 0), ('tlkh/tf-metal-experiments', 0.5388534665107727, 'perf', 0), ('aws/sagemaker-python-sdk', 0.5365365743637085, 'ml', 0), ('gerdm/prml', 0.5364505648612976, 'study', 0), ('arogozhnikov/einops', 0.5353853702545166, 'ml-dl', 0), ('wandb/client', 0.5327136516571045, 'ml', 0), ('automl/auto-sklearn', 0.531454861164093, 'ml', 0), ('scikit-learn-contrib/metric-learn', 0.5313714146614075, 'ml', 0), ('tensorflow/addons', 0.5312256813049316, 'ml', 0), ('dylanhogg/awesome-python', 0.5303460955619812, 'study', 0), ('mynameisfiber/high_performance_python_2e', 0.5303263068199158, 'study', 0), ('goldmansachs/gs-quant', 0.5294873118400574, 'finance', 0), ('koaning/human-learn', 0.5293908715248108, 'data', 0), ('keras-team/keras-nlp', 0.528778076171875, 'nlp', 0), ('cerlymarco/medium_notebook', 0.525178074836731, 'study', 0), ('xl0/lovely-numpy', 0.52412348985672, 'util', 0), ('pyro-ppl/pyro', 0.522969663143158, 'ml-dl', 0), ('adafruit/circuitpython', 0.5219725966453552, 'util', 0), ('rafiqhasan/auto-tensorflow', 0.5208608508110046, 'ml-dl', 0), ('jupyter/notebook', 0.5203615427017212, 'jupyter', 0), ('skops-dev/skops', 0.5202804207801819, 'ml-ops', 0), ('epistasislab/tpot', 0.5202245712280273, 'ml', 0), ('aws/graph-notebook', 0.519343912601471, 'jupyter', 0), ('ta-lib/ta-lib-python', 0.5182675123214722, 'finance', 0), ('horovod/horovod', 0.5166817307472229, 'ml-ops', 0), ('rasbt/stat451-machine-learning-fs20', 0.5153390169143677, 'study', 0), ('koaning/scikit-lego', 0.5152604579925537, 'ml', 0), ('pyg-team/pytorch_geometric', 0.5134172439575195, 'ml-dl', 0), ('huggingface/datasets', 0.5119935870170593, 'nlp', 0), ('explosion/thinc', 0.5114274621009827, 'ml-dl', 0), ('scikit-learn-contrib/lightning', 0.5109522938728333, 'ml', 0), ('jupyterlab/jupyterlab-desktop', 0.510633647441864, 'jupyter', 0), ('nicolas-chaulet/torch-points3d', 0.5103498101234436, 'ml', 0), ('jupyter/nbgrader', 0.5094665884971619, 'jupyter', 0), ('quantopian/qgrid', 0.5087634921073914, 'jupyter', 0), ('google/gin-config', 0.5084095001220703, 'util', 0), ('python/cpython', 0.5082079172134399, 'util', 0), ('microsoft/flaml', 0.5074008107185364, 'ml', 0), ('pypy/pypy', 0.5072569251060486, 'util', 0), ('eleutherai/pyfra', 0.5071380734443665, 'ml', 0), ('tatsu-lab/stanford_alpaca', 0.5068382620811462, 'llm', 0), ('jupyter-widgets/ipywidgets', 0.5040411949157715, 'jupyter', 0), ('realpython/python-guide', 0.5025880336761475, 'study', 0), ('iryna-kondr/scikit-llm', 0.5018590688705444, 'llm', 0), ('jupyterlab/jupyterlab', 0.5005123019218445, 'jupyter', 0), ('google/vizier', 0.5004328489303589, 'ml', 0)] | 75 | 2 | null | 0.04 | 6 | 2 | 61 | 11 | 0 | 0 | 0 | 6 | 7 | 90 | 1.2 | 54 |
671 | ml-dl | https://github.com/facebookresearch/detectron | [] | null | [] | [] | null | null | null | facebookresearch/detectron | Detectron | 26,066 | 5,568 | 944 | Python | null | FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet. | facebookresearch | 2024-01-14 | 2017-10-05 | 329 | 79.056326 | https://avatars.githubusercontent.com/u/16943930?v=4 | FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet. | [] | [] | 2023-10-19 | [('matterport/mask_rcnn', 0.5304756760597229, 'ml-dl', 0), ('open-mmlab/mmdetection', 0.5015984177589417, 'ml', 0)] | 43 | 3 | null | 0.12 | 2 | 0 | 76 | 3 | 0 | 0 | 0 | 2 | 2 | 90 | 1 | 54 |
1,243 | ml | https://github.com/jindongwang/transferlearning | [] | null | [] | [] | null | null | null | jindongwang/transferlearning | transferlearning | 12,474 | 3,731 | 336 | Python | http://transferlearning.xyz/ | Transfer learning / domain adaptation / domain generalization / multi-task learning etc. Papers, codes, datasets, applications, tutorials.-迁移学习 | jindongwang | 2024-01-14 | 2017-04-30 | 352 | 35.408759 | null | Transfer learning / domain adaptation / domain generalization / multi-task learning etc. Papers, codes, datasets, applications, tutorials.-迁移学习 | ['deep-learning', 'domain-adaptation', 'domain-adaption', 'domain-generalization', 'few-shot', 'few-shot-learning', 'generalization', 'machine-learning', 'meta-learning', 'paper', 'papers', 'representation-learning', 'self-supervised-learning', 'style-transfer', 'survey', 'theory', 'transfer-learning', 'transferlearning', 'tutorial-code', 'unsupervised-learning'] | ['deep-learning', 'domain-adaptation', 'domain-adaption', 'domain-generalization', 'few-shot', 'few-shot-learning', 'generalization', 'machine-learning', 'meta-learning', 'paper', 'papers', 'representation-learning', 'self-supervised-learning', 'style-transfer', 'survey', 'theory', 'transfer-learning', 'transferlearning', 'tutorial-code', 'unsupervised-learning'] | 2024-01-08 | [('amanchadha/coursera-deep-learning-specialization', 0.5513812899589539, 'study', 1), ('huggingface/autotrain-advanced', 0.5214440822601318, 'ml', 2), ('patchy631/machine-learning', 0.5060864090919495, 'ml', 0), ('alirezadir/machine-learning-interview-enlightener', 0.5019001364707947, 'study', 2), ('udacity/deep-learning-v2-pytorch', 0.501124918460846, 'study', 2), ('awslabs/autogluon', 0.5002632141113281, 'ml', 3)] | 40 | 4 | null | 0.96 | 14 | 7 | 82 | 0 | 0 | 0 | 0 | 14 | 22 | 90 | 1.6 | 54 |
425 | ml-dl | https://github.com/facebookresearch/detr | [] | null | [] | [] | null | null | null | facebookresearch/detr | detr | 12,338 | 2,222 | 149 | Python | null | End-to-End Object Detection with Transformers | facebookresearch | 2024-01-14 | 2020-05-26 | 192 | 64.260417 | https://avatars.githubusercontent.com/u/16943930?v=4 | End-to-End Object Detection with Transformers | [] | [] | 2023-02-07 | [('cvg/lightglue', 0.5226452350616455, 'ml-dl', 0), ('nvlabs/gcvit', 0.5166937112808228, 'diffusion', 0), ('matterport/mask_rcnn', 0.5123329758644104, 'ml-dl', 0)] | 26 | 7 | null | 0.02 | 36 | 7 | 44 | 11 | 0 | 0 | 0 | 36 | 47 | 90 | 1.3 | 54 |
1,380 | ml | https://github.com/microsoft/swin-transformer | [] | null | [] | [] | null | null | null | microsoft/swin-transformer | Swin-Transformer | 12,319 | 1,937 | 125 | Python | https://arxiv.org/abs/2103.14030 | This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows". | microsoft | 2024-01-14 | 2021-03-25 | 148 | 82.836695 | https://avatars.githubusercontent.com/u/6154722?v=4 | This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows". | ['ade20k', 'image-classification', 'imagenet', 'mask-rcnn', 'mscoco', 'object-detection', 'semantic-segmentation', 'swin-transformer'] | ['ade20k', 'image-classification', 'imagenet', 'mask-rcnn', 'mscoco', 'object-detection', 'semantic-segmentation', 'swin-transformer'] | 2023-08-16 | [('nvlabs/gcvit', 0.6548908352851868, 'diffusion', 4), ('google-research/maxvit', 0.5897934436798096, 'ml', 1), ('lucidrains/vit-pytorch', 0.5670905113220215, 'ml-dl', 1), ('open-mmlab/mmdetection', 0.5538708567619324, 'ml', 3), ('deci-ai/super-gradients', 0.5506076812744141, 'ml-dl', 4), ('open-mmlab/mmsegmentation', 0.5363519191741943, 'ml', 2), ('hrnet/hrnet-semantic-segmentation', 0.5201693177223206, 'ml', 1), ('roboflow/supervision', 0.5062756538391113, 'ml', 1)] | 13 | 8 | null | 0.02 | 20 | 3 | 34 | 5 | 0 | 0 | 0 | 20 | 11 | 90 | 0.6 | 54 |
85 | ml | https://github.com/statsmodels/statsmodels | [] | null | [] | [] | null | null | null | statsmodels/statsmodels | statsmodels | 9,210 | 2,836 | 279 | Python | http://www.statsmodels.org/devel/ | Statsmodels: statistical modeling and econometrics in Python | statsmodels | 2024-01-13 | 2011-06-12 | 659 | 13.969664 | https://avatars.githubusercontent.com/u/717666?v=4 | Statsmodels: statistical modeling and econometrics in Python | ['count-model', 'data-analysis', 'data-science', 'econometrics', 'forecasting', 'generalized-linear-models', 'hypothesis-testing', 'prediction', 'regression-models', 'robust-estimation', 'statistics', 'timeseries-analysis'] | ['count-model', 'data-analysis', 'data-science', 'econometrics', 'forecasting', 'generalized-linear-models', 'hypothesis-testing', 'prediction', 'regression-models', 'robust-estimation', 'statistics', 'timeseries-analysis'] | 2024-01-04 | [('firmai/atspy', 0.6599208116531372, 'time-series', 1), ('ranaroussi/quantstats', 0.6285594701766968, 'finance', 0), ('alkaline-ml/pmdarima', 0.6218242645263672, 'time-series', 2), ('scikit-learn/scikit-learn', 0.6116586327552795, 'ml', 3), ('scikit-mobility/scikit-mobility', 0.5975031852722168, 'gis', 3), ('bashtage/arch', 0.5926198363304138, 'time-series', 1), ('plotly/dash', 0.5885524749755859, 'viz', 1), ('awslabs/gluonts', 0.5710023641586304, 'time-series', 2), ('goldmansachs/gs-quant', 0.5688977241516113, 'finance', 0), ('pymc-devs/pymc3', 0.5598034858703613, 'ml', 0), ('uber/orbit', 0.5589537024497986, 'time-series', 2), ('stan-dev/pystan', 0.5519436001777649, 'ml', 0), ('quantecon/quantecon.py', 0.5498467087745667, 'sim', 0), ('pandas-dev/pandas', 0.5481253266334534, 'pandas', 2), ('rjt1990/pyflux', 0.5408421158790588, 'time-series', 1), ('crflynn/stochastic', 0.5304479002952576, 'sim', 0), ('online-ml/river', 0.5298870205879211, 'ml', 1), ('krzjoa/awesome-python-data-science', 0.5274232625961304, 'study', 3), ('rasbt/mlxtend', 0.5218582153320312, 'ml', 1), ('eleutherai/pyfra', 0.5143864154815674, 'ml', 0), ('polyaxon/datatile', 0.5121821165084839, 'pandas', 2), ('wesm/pydata-book', 0.5118904709815979, 'study', 0), ('cuemacro/finmarketpy', 0.5101310610771179, 'finance', 0)] | 421 | 2 | null | 6.69 | 232 | 140 | 153 | 0 | 3 | 4 | 3 | 232 | 184 | 90 | 0.8 | 54 |
528 | util | https://github.com/facebookresearch/hydra | [] | null | [] | [] | null | null | null | facebookresearch/hydra | hydra | 7,864 | 616 | 124 | Python | https://hydra.cc | Hydra is a framework for elegantly configuring complex applications | facebookresearch | 2024-01-14 | 2019-06-12 | 241 | 32.515062 | https://avatars.githubusercontent.com/u/16943930?v=4 | Hydra is a framework for elegantly configuring complex applications | [] | [] | 2023-11-30 | [('ashleve/lightning-hydra-template', 0.5850319266319275, 'util', 0), ('google/gin-config', 0.5556942224502563, 'util', 0), ('willmcgugan/textual', 0.5213847160339355, 'term', 0), ('alphasecio/langchain-examples', 0.5024363994598389, 'llm', 0)] | 114 | 3 | null | 0.63 | 69 | 20 | 56 | 2 | 1 | 5 | 1 | 69 | 142 | 90 | 2.1 | 54 |
1,192 | util | https://github.com/xonsh/xonsh | ['shell'] | null | [] | [] | null | null | null | xonsh/xonsh | xonsh | 7,471 | 633 | 105 | Python | http://xon.sh | :shell: Python-powered, cross-platform, Unix-gazing shell. | xonsh | 2024-01-14 | 2015-01-21 | 470 | 15.866808 | https://avatars.githubusercontent.com/u/17418188?v=4 | :shell: Python-powered, cross-platform, Unix-gazing shell. | ['bash', 'cli', 'command-line', 'console', 'devops', 'fish', 'iterm2', 'prompt', 'python-shell', 'script', 'shell', 'terminal', 'windows-terminal', 'xonsh', 'zsh'] | ['bash', 'cli', 'command-line', 'console', 'devops', 'fish', 'iterm2', 'prompt', 'python-shell', 'script', 'shell', 'terminal', 'windows-terminal', 'xonsh', 'zsh'] | 2023-12-31 | [('tiangolo/typer', 0.614140510559082, 'term', 3), ('kellyjonbrazil/jc', 0.5756747722625732, 'util', 3), ('jquast/blessed', 0.569438099861145, 'term', 2), ('pygamelib/pygamelib', 0.5624502301216125, 'gamedev', 0), ('urwid/urwid', 0.5422582030296326, 'term', 0), ('pypy/pypy', 0.5222761631011963, 'util', 0), ('tmbo/questionary', 0.5194598436355591, 'term', 1), ('python/cpython', 0.5193564891815186, 'util', 0), ('federicoceratto/dashing', 0.5140331387519836, 'term', 1), ('google/python-fire', 0.5076464414596558, 'term', 1), ('evhub/coconut', 0.5075111985206604, 'util', 1), ('hoffstadt/dearpygui', 0.504555881023407, 'gui', 0), ('cython/cython', 0.5044435262680054, 'util', 0)] | 320 | 2 | null | 1.9 | 64 | 34 | 109 | 0 | 4 | 14 | 4 | 64 | 118 | 90 | 1.8 | 54 |
1,274 | util | https://github.com/googleapis/google-api-python-client | [] | null | [] | [] | null | null | null | googleapis/google-api-python-client | google-api-python-client | 7,135 | 2,452 | 284 | Python | https://googleapis.github.io/google-api-python-client/docs/ | 🐍 The official Python client library for Google's discovery based APIs. | googleapis | 2024-01-13 | 2014-01-08 | 524 | 13.594175 | https://avatars.githubusercontent.com/u/16785467?v=4 | 🐍 The official Python client library for Google's discovery based APIs. | [] | [] | 2024-01-09 | [('nv7-github/googlesearch', 0.6702570915222168, 'util', 0), ('dsdanielpark/bard-api', 0.6036682724952698, 'llm', 0), ('openai/openai-python', 0.5968145728111267, 'util', 0), ('dialogflow/dialogflow-python-client-v2', 0.5611771941184998, 'nlp', 0), ('radiantearth/radiant-mlhub', 0.5603718757629395, 'gis', 0), ('typesense/typesense-python', 0.5588173866271973, 'data', 0), ('snyk-labs/pysnyk', 0.5522992610931396, 'security', 0), ('psf/requests', 0.552095353603363, 'web', 0), ('jovianml/opendatasets', 0.551531970500946, 'data', 0), ('meilisearch/meilisearch-python', 0.5505169034004211, 'data', 0), ('googleapis/python-speech', 0.5471388101577759, 'ml', 0), ('pytoolz/toolz', 0.5453507304191589, 'util', 0), ('urwid/urwid', 0.54488605260849, 'term', 0), ('simple-salesforce/simple-salesforce', 0.541388213634491, 'data', 0), ('qdrant/qdrant-client', 0.5371494293212891, 'util', 0), ('giswqs/geemap', 0.5369963645935059, 'gis', 0), ('scholarly-python-package/scholarly', 0.5367330312728882, 'data', 0), ('requests/toolbelt', 0.5348877906799316, 'util', 0), ('clips/pattern', 0.5339103937149048, 'nlp', 0), ('fastai/ghapi', 0.5308494567871094, 'util', 0), ('huggingface/huggingface_hub', 0.5284603238105774, 'ml', 0), ('shishirpatil/gorilla', 0.524009108543396, 'llm', 0), ('goldsmith/wikipedia', 0.5227052569389343, 'data', 0), ('mitmproxy/pdoc', 0.5224719047546387, 'util', 0), ('hydrosquall/tiingo-python', 0.5202198624610901, 'finance', 0), ('pndurette/gtts', 0.5190337300300598, 'util', 0), ('landscapeio/prospector', 0.5145336389541626, 'util', 0), ('googleapis/python-bigquery', 0.5121608376502991, 'data', 0), ('amaargiru/pyroad', 0.5120947957038879, 'study', 0), ('hugapi/hug', 0.5113233327865601, 'util', 0), ('serpapi/google-search-results-python', 0.5091744065284729, 'util', 0), ('scrapy/scrapy', 0.5074482560157776, 'data', 0), ('cohere-ai/cohere-python', 0.5053079128265381, 'util', 0), ('1200wd/bitcoinlib', 0.5004116892814636, 'crypto', 0)] | 190 | 3 | null | 2.69 | 79 | 55 | 122 | 0 | 41 | 18 | 41 | 77 | 84 | 90 | 1.1 | 54 |
44 | ml | https://github.com/lmcinnes/umap | [] | null | [] | [] | null | null | null | lmcinnes/umap | umap | 6,678 | 754 | 128 | Python | null | Uniform Manifold Approximation and Projection | lmcinnes | 2024-01-14 | 2017-07-02 | 343 | 19.453184 | null | Uniform Manifold Approximation and Projection | ['dimensionality-reduction', 'machine-learning', 'topological-data-analysis', 'umap', 'visualization'] | ['dimensionality-reduction', 'machine-learning', 'topological-data-analysis', 'umap', 'visualization'] | 2024-01-08 | [('geomstats/geomstats', 0.5977250933647156, 'math', 1)] | 128 | 7 | null | 1.29 | 30 | 8 | 80 | 0 | 2 | 4 | 2 | 30 | 36 | 90 | 1.2 | 54 |
194 | util | https://github.com/pycqa/isort | ['code-quality'] | null | [] | [] | null | null | null | pycqa/isort | isort | 6,190 | 604 | 48 | Python | https://pycqa.github.io/isort/ | A Python utility / library to sort imports. | pycqa | 2024-01-14 | 2013-09-02 | 543 | 11.396633 | https://avatars.githubusercontent.com/u/8749848?v=4 | A Python utility / library to sort imports. | ['auto-formatter', 'cleaner', 'cli', 'formatter', 'isort', 'linter', 'python-utility', 'sorting-imports'] | ['auto-formatter', 'cleaner', 'cli', 'code-quality', 'formatter', 'isort', 'linter', 'python-utility', 'sorting-imports'] | 2024-01-12 | [('hadialqattan/pycln', 0.6549221277236938, 'util', 0), ('google/yapf', 0.5961623191833496, 'util', 2), ('asottile/reorder-python-imports', 0.5951371192932129, 'util', 2), ('landscapeio/prospector', 0.574863851070404, 'util', 0), ('sethmmorton/natsort', 0.5276709794998169, 'util', 0), ('google/pytype', 0.5101639032363892, 'typing', 2), ('hhatto/autopep8', 0.5075655579566956, 'util', 1), ('grantjenks/blue', 0.5017447471618652, 'util', 2)] | 294 | 7 | null | 1.38 | 53 | 33 | 126 | 0 | 5 | 14 | 5 | 53 | 75 | 90 | 1.4 | 54 |
741 | study | https://github.com/zhanymkanov/fastapi-best-practices | [] | null | [] | [] | null | null | null | zhanymkanov/fastapi-best-practices | fastapi-best-practices | 5,917 | 449 | 91 | null | null | FastAPI Best Practices and Conventions we used at our startup | zhanymkanov | 2024-01-14 | 2022-08-09 | 77 | 76.844156 | null | FastAPI Best Practices and Conventions we used at our startup | ['best-practices', 'fastapi'] | ['best-practices', 'fastapi'] | 2023-10-22 | [('fastapi-users/fastapi-users', 0.6014936566352844, 'web', 1), ('asacristani/fastapi-rocket-boilerplate', 0.5217467546463013, 'template', 1), ('dmontagu/fastapi_client', 0.5196253061294556, 'web', 0), ('tiangolo/fastapi', 0.5182605981826782, 'web', 1)] | 10 | 5 | null | 0.21 | 5 | 2 | 17 | 3 | 0 | 0 | 0 | 5 | 11 | 90 | 2.2 | 54 |
369 | time-series | https://github.com/facebookresearch/kats | ['time-series'] | null | [] | [] | null | null | null | facebookresearch/kats | Kats | 4,647 | 508 | 77 | Python | null | Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics, detecting change points and anomalies, to forecasting future trends. | facebookresearch | 2024-01-14 | 2021-02-25 | 152 | 30.429373 | https://avatars.githubusercontent.com/u/16943930?v=4 | Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics, detecting change points and anomalies, to forecasting future trends. | [] | ['time-series'] | 2024-01-10 | [('sktime/sktime', 0.5305997729301453, 'time-series', 1), ('alkaline-ml/pmdarima', 0.5154160261154175, 'time-series', 1), ('salesforce/merlion', 0.5117724537849426, 'time-series', 1)] | 136 | 4 | null | 1.75 | 8 | 4 | 35 | 0 | 0 | 1 | 1 | 8 | 12 | 90 | 1.5 | 54 |
380 | ml-ops | https://github.com/aimhubio/aim | [] | null | [] | [] | null | null | null | aimhubio/aim | aim | 4,468 | 274 | 45 | Python | https://aimstack.io | Aim 💫 — An easy-to-use & supercharged open-source experiment tracker. | aimhubio | 2024-01-13 | 2019-05-31 | 243 | 18.343695 | https://avatars.githubusercontent.com/u/51399196?v=4 | Aim 💫 — An easy-to-use & supercharged open-source experiment tracker. | ['ai', 'data-science', 'data-visualization', 'experiment-tracking', 'machine-learning', 'metadata', 'metadata-tracking', 'ml', 'mlflow', 'mlops', 'prompt-engineering', 'pytorch', 'tensorboard', 'tensorflow', 'visualization'] | ['ai', 'data-science', 'data-visualization', 'experiment-tracking', 'machine-learning', 'metadata', 'metadata-tracking', 'ml', 'mlflow', 'mlops', 'prompt-engineering', 'pytorch', 'tensorboard', 'tensorflow', 'visualization'] | 2024-01-12 | [('wandb/client', 0.696733832359314, 'ml', 5), ('polyaxon/datatile', 0.6386370062828064, 'pandas', 5), ('determined-ai/determined', 0.614514172077179, 'ml-ops', 5), ('netflix/metaflow', 0.5948770046234131, 'ml-ops', 5), ('mlflow/mlflow', 0.5842969417572021, 'ml-ops', 4), ('iterative/dvc', 0.5769718885421753, 'ml-ops', 3), ('whylabs/whylogs', 0.5764767527580261, 'util', 3), ('salesforce/logai', 0.5716543197631836, 'util', 2), ('microsoft/onnxruntime', 0.5700400471687317, 'ml', 3), ('transformeroptimus/superagi', 0.5632416605949402, 'llm', 1), ('polyaxon/polyaxon', 0.5590616464614868, 'ml-ops', 6), ('activeloopai/deeplake', 0.5577347874641418, 'ml-ops', 7), ('nebuly-ai/nebullvm', 0.5485852360725403, 'perf', 1), ('alirezadir/machine-learning-interview-enlightener', 0.5477184653282166, 'study', 2), ('huggingface/datasets', 0.5470335483551025, 'nlp', 3), ('bentoml/bentoml', 0.5450233817100525, 'ml-ops', 3), ('tensorflow/tensorflow', 0.5438287258148193, 'ml-dl', 3), ('doccano/doccano', 0.5435435771942139, 'nlp', 1), ('prefecthq/marvin', 0.541201114654541, 'nlp', 1), ('sweepai/sweep', 0.5406528115272522, 'llm', 1), ('googlecloudplatform/vertex-ai-samples', 0.5386273264884949, 'ml', 4), ('oegedijk/explainerdashboard', 0.5350830554962158, 'ml-interpretability', 0), ('roboflow/supervision', 0.5213971138000488, 'ml', 3), ('argilla-io/argilla', 0.5164137482643127, 'nlp', 3), ('adap/flower', 0.5154430270195007, 'ml-ops', 4), ('merantix-momentum/squirrel-core', 0.5153231024742126, 'ml', 6), ('csinva/imodels', 0.5152265429496765, 'ml', 4), ('cheshire-cat-ai/core', 0.5146742463111877, 'llm', 1), ('tensorlayer/tensorlayer', 0.5126657485961914, 'ml-rl', 1), ('gradio-app/gradio', 0.5126237869262695, 'viz', 3), ('kedro-org/kedro-viz', 0.5116142630577087, 'ml-ops', 2), ('mlc-ai/mlc-llm', 0.509802520275116, 'llm', 0), ('bulletphysics/bullet3', 0.5082801580429077, 'sim', 0), ('pathwaycom/llm-app', 0.506819486618042, 'llm', 1), ('google-research/language', 0.5032878518104553, 'nlp', 1), ('fmind/mlops-python-package', 0.5028169751167297, 'template', 3), ('laion-ai/open-assistant', 0.5019581913948059, 'llm', 2), ('pytorchlightning/pytorch-lightning', 0.5019053220748901, 'ml-dl', 4), ('tlkh/tf-metal-experiments', 0.501725971698761, 'perf', 1)] | 58 | 4 | null | 2.5 | 79 | 29 | 56 | 0 | 9 | 36 | 9 | 79 | 91 | 90 | 1.2 | 54 |
1,552 | study | https://github.com/neetcode-gh/leetcode | ['interview-questions', 'data-structures', 'leetcode'] | Leetcode solutions for NeetCode.io | [] | [] | null | null | null | neetcode-gh/leetcode | leetcode | 4,459 | 2,046 | 40 | JavaScript | null | Leetcode solutions | neetcode-gh | 2024-01-14 | 2021-01-20 | 157 | 28.247059 | null | Leetcode solutions | [] | ['data-structures', 'interview-questions', 'leetcode'] | 2024-01-13 | [('mdmzfzl/neetcode-solutions', 0.6274089217185974, 'study', 3)] | 612 | 1 | null | 34.92 | 182 | 100 | 36 | 0 | 0 | 0 | 0 | 181 | 51 | 90 | 0.3 | 54 |
353 | ml-interpretability | https://github.com/pytorch/captum | [] | null | [] | [] | null | null | null | pytorch/captum | captum | 4,372 | 469 | 225 | Python | https://captum.ai | Model interpretability and understanding for PyTorch | pytorch | 2024-01-14 | 2019-08-27 | 231 | 18.926407 | https://avatars.githubusercontent.com/u/21003710?v=4 | Model interpretability and understanding for PyTorch | ['feature-attribution', 'feature-importance', 'interpretability', 'interpretable-ai', 'interpretable-ml'] | ['feature-attribution', 'feature-importance', 'interpretability', 'interpretable-ai', 'interpretable-ml'] | 2024-01-08 | [('pytorch/ignite', 0.6821672916412354, 'ml-dl', 0), ('tensorflow/lucid', 0.6784272193908691, 'ml-interpretability', 1), ('csinva/imodels', 0.6309248208999634, 'ml', 1), ('skorch-dev/skorch', 0.6131489276885986, 'ml-dl', 0), ('interpretml/interpret', 0.6127338409423828, 'ml-interpretability', 3), ('mrdbourke/pytorch-deep-learning', 0.5934852361679077, 'study', 0), ('allenai/allennlp', 0.5909707546234131, 'nlp', 0), ('marcotcr/lime', 0.5743399262428284, 'ml-interpretability', 1), ('intel/intel-extension-for-pytorch', 0.5694814324378967, 'perf', 0), ('pair-code/lit', 0.5618991851806641, 'ml-interpretability', 0), ('nvidia/apex', 0.5534337759017944, 'ml-dl', 0), ('eleutherai/pythia', 0.5508965253829956, 'ml-interpretability', 2), ('xl0/lovely-tensors', 0.5507166385650635, 'ml-dl', 0), ('huggingface/transformers', 0.5457330942153931, 'nlp', 0), ('huggingface/accelerate', 0.5386924743652344, 'ml', 0), ('pytorch/data', 0.5359891057014465, 'data', 0), ('selfexplainml/piml-toolbox', 0.5324576497077942, 'ml-interpretability', 0), ('rasbt/machine-learning-book', 0.5297553539276123, 'study', 0), ('arogozhnikov/einops', 0.524075984954834, 'ml-dl', 0), ('ibm/transition-amr-parser', 0.5239638090133667, 'nlp', 0), ('hysts/pytorch_image_classification', 0.5230705142021179, 'ml-dl', 0), ('mosaicml/composer', 0.5189915299415588, 'ml-dl', 0), ('speechbrain/speechbrain', 0.5150958895683289, 'nlp', 0), ('pytorch/rl', 0.5139393210411072, 'ml-rl', 0), ('rafiqhasan/auto-tensorflow', 0.5135285258293152, 'ml-dl', 0), ('rentruewang/koila', 0.5131102800369263, 'ml', 0), ('salesforce/blip', 0.5107000470161438, 'diffusion', 0), ('ashleve/lightning-hydra-template', 0.5099735260009766, 'util', 0), ('pytorch/botorch', 0.509192168712616, 'ml-dl', 0), ('blackhc/toma', 0.5078623294830322, 'ml-dl', 0), ('seldonio/alibi', 0.5067712664604187, 'ml-interpretability', 1), ('cvxgrp/pymde', 0.5022547245025635, 'ml', 0)] | 104 | 3 | null | 1 | 61 | 40 | 53 | 0 | 1 | 2 | 1 | 61 | 181 | 90 | 3 | 54 |
604 | testing | https://github.com/seleniumbase/seleniumbase | [] | null | [] | [] | null | null | null | seleniumbase/seleniumbase | SeleniumBase | 3,859 | 871 | 125 | Python | https://seleniumbase.io | Browser automation framework for testing with Selenium, Python, and pytest. Includes a Dashboard, a Recorder for generating tests, Undetected Mode, and more. | seleniumbase | 2024-01-13 | 2014-03-04 | 517 | 7.464217 | https://avatars.githubusercontent.com/u/17287301?v=4 | Browser automation framework for testing with Selenium, Python, and pytest. Includes a Dashboard, a Recorder for generating tests, Undetected Mode, and more. | ['behave', 'chrome', 'chromedriver', 'e2e-testing', 'firefox', 'pytest', 'pytest-plugin', 'selenium', 'selenium-python', 'seleniumbase', 'test', 'unittests', 'web-automation', 'webdriver', 'webkit'] | ['behave', 'chrome', 'chromedriver', 'e2e-testing', 'firefox', 'pytest', 'pytest-plugin', 'selenium', 'selenium-python', 'seleniumbase', 'test', 'unittests', 'web-automation', 'webdriver', 'webkit'] | 2024-01-04 | [('cobrateam/splinter', 0.7703961730003357, 'testing', 2), ('microsoft/playwright-python', 0.6941218972206116, 'testing', 2), ('webpy/webpy', 0.5600611567497253, 'web', 0), ('taverntesting/tavern', 0.5573855042457581, 'testing', 1), ('bokeh/bokeh', 0.5535537004470825, 'viz', 0), ('masoniteframework/masonite', 0.5500764846801758, 'web', 0), ('alirezamika/autoscraper', 0.5415842533111572, 'data', 0), ('pyodide/pyodide', 0.540057897567749, 'util', 0), ('wolever/parameterized', 0.5371958613395691, 'testing', 0), ('clips/pattern', 0.5308951735496521, 'nlp', 0), ('plotly/dash', 0.5277555584907532, 'viz', 0), ('r0x0r/pywebview', 0.5268258452415466, 'gui', 1), ('jiffyclub/snakeviz', 0.5255619287490845, 'profiling', 0), ('robotframework/robotframework', 0.5185773968696594, 'testing', 0), ('pytest-dev/pytest-testinfra', 0.5065727233886719, 'testing', 1), ('roniemartinez/dude', 0.5045518279075623, 'util', 1), ('scrapy/scrapy', 0.5043920278549194, 'data', 0), ('pallets/flask', 0.5030795931816101, 'web', 0), ('voila-dashboards/voila', 0.5014607906341553, 'jupyter', 0)] | 37 | 5 | null | 16.27 | 167 | 160 | 120 | 0 | 130 | 91 | 130 | 167 | 348 | 90 | 2.1 | 54 |
1,212 | ml | https://github.com/sanchit-gandhi/whisper-jax | [] | null | [] | [] | null | null | null | sanchit-gandhi/whisper-jax | whisper-jax | 3,813 | 322 | 39 | Jupyter Notebook | null | JAX implementation of OpenAI's Whisper model for up to 70x speed-up on TPU. | sanchit-gandhi | 2024-01-13 | 2023-03-02 | 47 | 79.913174 | null | JAX implementation of OpenAI's Whisper model for up to 70x speed-up on TPU. | ['deep-learning', 'jax', 'speech-recognition', 'speech-to-text', 'whisper'] | ['deep-learning', 'jax', 'speech-recognition', 'speech-to-text', 'whisper'] | 2023-12-15 | [('ggerganov/whisper.cpp', 0.6906029582023621, 'util', 3), ('deepmind/dm-haiku', 0.6133875846862793, 'ml-dl', 2), ('m-bain/whisperx', 0.5212621688842773, 'nlp', 3)] | 4 | 2 | null | 2.44 | 44 | 17 | 11 | 1 | 0 | 0 | 0 | 44 | 62 | 90 | 1.4 | 54 |
284 | crypto | https://github.com/ethereum/consensus-specs | [] | null | [] | [] | null | null | null | ethereum/consensus-specs | consensus-specs | 3,329 | 977 | 246 | Python | null | Ethereum Proof-of-Stake Consensus Specifications | ethereum | 2024-01-12 | 2018-09-20 | 279 | 11.90143 | https://avatars.githubusercontent.com/u/6250754?v=4 | Ethereum Proof-of-Stake Consensus Specifications | [] | [] | 2024-01-11 | [] | 148 | 3 | null | 10.83 | 251 | 107 | 65 | 0 | 16 | 16 | 16 | 251 | 225 | 90 | 0.9 | 54 |
1,759 | data | https://github.com/rom1504/img2dataset | [] | null | [] | [] | null | null | null | rom1504/img2dataset | img2dataset | 2,953 | 288 | 29 | Python | null | Easily turn large sets of image urls to an image dataset. Can download, resize and package 100M urls in 20h on one machine. | rom1504 | 2024-01-13 | 2021-08-11 | 128 | 22.916851 | null | Easily turn large sets of image urls to an image dataset. Can download, resize and package 100M urls in 20h on one machine. | ['big-data', 'dataset', 'deep-learning', 'download-images', 'image', 'image-dataset', 'multimodal'] | ['big-data', 'dataset', 'deep-learning', 'download-images', 'image', 'image-dataset', 'multimodal'] | 2024-01-13 | [('fourthbrain/fastapi-for-machine-learning-live-demo', 0.5232915878295898, 'web', 0), ('aiqc/aiqc', 0.5084776282310486, 'ml-ops', 0), ('microsoft/deepspeed', 0.5075109601020813, 'ml-dl', 1)] | 32 | 5 | null | 0.54 | 48 | 29 | 30 | 0 | 4 | 35 | 4 | 48 | 95 | 90 | 2 | 54 |
1,359 | llm | https://github.com/iryna-kondr/scikit-llm | [] | null | [] | [] | null | null | null | iryna-kondr/scikit-llm | scikit-llm | 2,820 | 226 | 36 | Python | https://beastbyte.ai/ | Seamlessly integrate LLMs into scikit-learn. | iryna-kondr | 2024-01-12 | 2023-05-12 | 37 | 75.057034 | null | Seamlessly integrate LLMs into scikit-learn. | ['chatgpt', 'deep-learning', 'llm', 'machine-learning', 'scikit-learn', 'transformers'] | ['chatgpt', 'deep-learning', 'llm', 'machine-learning', 'scikit-learn', 'transformers'] | 2023-12-25 | [('microsoft/jarvis', 0.6588683128356934, 'llm', 1), ('alpha-vllm/llama2-accessory', 0.6441587209701538, 'llm', 0), ('tigerlab-ai/tiger', 0.6261765956878662, 'llm', 1), ('koaning/scikit-lego', 0.614821195602417, 'ml', 2), ('vllm-project/vllm', 0.6003293395042419, 'llm', 1), ('microsoft/semantic-kernel', 0.5926992893218994, 'llm', 1), ('bigscience-workshop/petals', 0.5923831462860107, 'data', 2), ('pathwaycom/llm-app', 0.5918958187103271, 'llm', 2), ('microsoft/torchscale', 0.5895041823387146, 'llm', 1), ('intel/scikit-learn-intelex', 0.5876615047454834, 'perf', 2), ('h2oai/h2o-llmstudio', 0.5840808749198914, 'llm', 2), ('argilla-io/argilla', 0.5834850668907166, 'nlp', 2), ('rasbt/machine-learning-book', 0.5804186463356018, 'study', 3), ('intel/intel-extension-for-transformers', 0.5800312757492065, 'perf', 0), ('nomic-ai/gpt4all', 0.5748793482780457, 'llm', 0), ('skops-dev/skops', 0.5726227760314941, 'ml-ops', 2), ('nebuly-ai/nebullvm', 0.5629363059997559, 'perf', 1), ('deepset-ai/haystack', 0.5621213912963867, 'llm', 3), ('bobazooba/xllm', 0.5620294213294983, 'llm', 3), ('ray-project/ray-llm', 0.5598890781402588, 'llm', 2), ('automl/auto-sklearn', 0.5549347996711731, 'ml', 1), ('microsoft/onnxruntime', 0.5525389313697815, 'ml', 3), ('hegelai/prompttools', 0.5520104765892029, 'llm', 2), ('explosion/spacy-llm', 0.550988495349884, 'llm', 2), ('microsoft/promptcraft-robotics', 0.5381367206573486, 'sim', 2), ('bentoml/openllm', 0.5351253151893616, 'ml-ops', 1), ('ludwig-ai/ludwig', 0.5349180698394775, 'ml-ops', 3), ('huggingface/transformers', 0.5332709550857544, 'nlp', 2), ('mooler0410/llmspracticalguide', 0.5321641564369202, 'study', 0), ('microsoft/promptflow', 0.5263214707374573, 'llm', 2), ('young-geng/easylm', 0.5262447595596313, 'llm', 1), ('koaning/human-learn', 0.5255882143974304, 'data', 2), ('night-chen/toolqa', 0.522339940071106, 'llm', 0), ('truera/trulens', 0.5199382901191711, 'llm', 2), ('horovod/horovod', 0.5187541842460632, 'ml-ops', 2), ('skorch-dev/skorch', 0.5175820589065552, 'ml-dl', 2), ('optimalscale/lmflow', 0.5123019814491272, 'llm', 2), ('onnx/onnx', 0.5105788111686707, 'ml', 3), ('llmware-ai/llmware', 0.5102970600128174, 'llm', 2), ('embedchain/embedchain', 0.5067012310028076, 'llm', 2), ('salesforce/xgen', 0.5054061412811279, 'llm', 1), ('agenta-ai/agenta', 0.5052707195281982, 'llm', 1), ('lightning-ai/lit-gpt', 0.5048611164093018, 'llm', 0), ('paddlepaddle/paddlenlp', 0.5023376941680908, 'llm', 2), ('ageron/handson-ml2', 0.5018590688705444, 'ml', 0), ('determined-ai/determined', 0.5017955303192139, 'ml-ops', 2), ('databrickslabs/dolly', 0.5001913905143738, 'llm', 0)] | 9 | 1 | null | 1.77 | 10 | 6 | 8 | 1 | 14 | 24 | 14 | 10 | 12 | 90 | 1.2 | 54 |
1,429 | ml-dl | https://github.com/cvg/lightglue | [] | null | [] | [] | null | null | null | cvg/lightglue | LightGlue | 2,664 | 259 | 46 | Python | null | LightGlue: Local Feature Matching at Light Speed (ICCV 2023) | cvg | 2024-01-13 | 2023-06-25 | 31 | 85.150685 | https://avatars.githubusercontent.com/u/840224?v=4 | LightGlue: Local Feature Matching at Light Speed (ICCV 2023) | ['deep-learning', 'image-matching', 'pose-estimation', 'transformers'] | ['deep-learning', 'image-matching', 'pose-estimation', 'transformers'] | 2023-11-21 | [('facebookresearch/detr', 0.5226452350616455, 'ml-dl', 0)] | 6 | 2 | null | 0.5 | 35 | 7 | 7 | 2 | 1 | 2 | 1 | 35 | 65 | 90 | 1.9 | 54 |
1,792 | perf | https://github.com/airtai/faststream | [] | null | [] | [] | null | null | null | airtai/faststream | faststream | 1,435 | 53 | 12 | Python | https://faststream.airt.ai/latest/ | FastStream is a powerful and easy-to-use Python framework for building asynchronous services interacting with event streams such as Apache Kafka, RabbitMQ, NATS and Redis. | airtai | 2024-01-13 | 2022-12-01 | 60 | 23.635294 | https://avatars.githubusercontent.com/u/84014356?v=4 | FastStream is a powerful and easy-to-use Python framework for building asynchronous services interacting with event streams such as Apache Kafka, RabbitMQ, NATS and Redis. | ['asyncapi', 'asyncio', 'distributed-systems', 'fastkafka', 'faststream', 'kafka', 'nats', 'propan', 'rabbitmq', 'redis', 'stream-processing'] | ['asyncapi', 'asyncio', 'distributed-systems', 'fastkafka', 'faststream', 'kafka', 'nats', 'propan', 'rabbitmq', 'redis', 'stream-processing'] | 2024-01-13 | [('pathwaycom/pathway', 0.6327610611915588, 'data', 1), ('samuelcolvin/arq', 0.6273122429847717, 'data', 2), ('python-trio/trio', 0.6224059462547302, 'perf', 0), ('magicstack/uvloop', 0.6053869128227234, 'util', 1), ('agronholm/anyio', 0.5833213329315186, 'perf', 1), ('miguelgrinberg/python-socketio', 0.5774848461151123, 'util', 1), ('pallets/quart', 0.5664022564888, 'web', 1), ('bogdanp/dramatiq', 0.5551525354385376, 'util', 1), ('aio-libs/aiohttp', 0.5545108914375305, 'web', 1), ('encode/httpx', 0.5473020672798157, 'web', 1), ('alirn76/panther', 0.5416358709335327, 'web', 0), ('sumerc/yappi', 0.5390495657920837, 'profiling', 1), ('backtick-se/cowait', 0.5363417267799377, 'util', 0), ('samuelcolvin/watchfiles', 0.5354728698730469, 'util', 1), ('encode/starlette', 0.5320852398872375, 'web', 0), ('fastai/fastcore', 0.5284400582313538, 'util', 0), ('neoteroi/blacksheep', 0.5211659073829651, 'web', 1), ('geeogi/async-python-lambda-template', 0.5201819539070129, 'template', 0), ('tornadoweb/tornado', 0.5190186500549316, 'web', 0), ('asacristani/fastapi-rocket-boilerplate', 0.5075085759162903, 'template', 0), ('fugue-project/fugue', 0.5063053369522095, 'pandas', 1), ('mher/flower', 0.5014379620552063, 'perf', 2)] | 23 | 2 | null | 12.35 | 309 | 283 | 14 | 0 | 37 | 33 | 37 | 307 | 249 | 90 | 0.8 | 54 |
1,675 | study | https://github.com/realpython/python-guide | [] | null | [] | [] | null | null | null | realpython/python-guide | python-guide | 27,160 | 5,988 | 1,384 | Batchfile | https://docs.python-guide.org | Python best practices guidebook, written for humans. | realpython | 2024-01-13 | 2011-03-15 | 672 | 40.416667 | https://avatars.githubusercontent.com/u/5448020?v=4 | Python best practices guidebook, written for humans. | ['book', 'guide', 'kennethreitz'] | ['book', 'guide', 'kennethreitz'] | 2023-06-13 | [('amaargiru/pyroad', 0.6154986023902893, 'study', 0), ('wesm/pydata-book', 0.5613322854042053, 'study', 0), ('eleutherai/pyfra', 0.5539833307266235, 'ml', 0), ('brandon-rhodes/python-patterns', 0.5476312637329102, 'util', 0), ('jakevdp/pythondatasciencehandbook', 0.5322774648666382, 'study', 0), ('mynameisfiber/high_performance_python_2e', 0.5209663510322571, 'study', 0), ('fchollet/deep-learning-with-python-notebooks', 0.5066047310829163, 'study', 0), ('python/cpython', 0.5037524104118347, 'util', 0), ('pytoolz/toolz', 0.5026092529296875, 'util', 0), ('ageron/handson-ml2', 0.5025880336761475, 'ml', 0)] | 474 | 6 | null | 0 | 5 | 1 | 156 | 7 | 0 | 0 | 0 | 5 | 5 | 90 | 1 | 53 |
683 | ml-dl | https://github.com/matterport/mask_rcnn | [] | null | [] | [] | null | null | null | matterport/mask_rcnn | Mask_RCNN | 23,803 | 11,620 | 587 | Python | null | Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow | matterport | 2024-01-14 | 2017-10-19 | 327 | 72.633391 | https://avatars.githubusercontent.com/u/4206481?v=4 | Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow | ['instance-segmentation', 'keras', 'mask-rcnn', 'object-detection', 'tensorflow'] | ['instance-segmentation', 'keras', 'mask-rcnn', 'object-detection', 'tensorflow'] | 2019-03-31 | [('open-mmlab/mmdetection', 0.5989094376564026, 'ml', 3), ('roboflow/notebooks', 0.5560668706893921, 'study', 1), ('nyandwi/modernconvnets', 0.5529733300209045, 'ml-dl', 2), ('blakeblackshear/frigate', 0.5429755449295044, 'util', 2), ('facebookresearch/segment-anything', 0.5424768328666687, 'ml-dl', 2), ('deci-ai/super-gradients', 0.5377986431121826, 'ml-dl', 1), ('facebookresearch/detectron', 0.5304756760597229, 'ml-dl', 0), ('roboflow/supervision', 0.528638482093811, 'ml', 3), ('nvlabs/gcvit', 0.5284178256988525, 'diffusion', 1), ('facebookresearch/detr', 0.5123329758644104, 'ml-dl', 0)] | 47 | 6 | null | 0 | 49 | 12 | 76 | 59 | 0 | 0 | 0 | 49 | 51 | 90 | 1 | 53 |
643 | util | https://github.com/keon/algorithms | [] | null | [] | [] | null | null | null | keon/algorithms | algorithms | 23,270 | 4,629 | 635 | Python | null | Minimal examples of data structures and algorithms in Python | keon | 2024-01-13 | 2016-11-17 | 375 | 61.935361 | null | Minimal examples of data structures and algorithms in Python | ['algorithm', 'algorithms', 'competitive-programming', 'data-structure', 'graph', 'search', 'sort', 'tree'] | ['algorithm', 'algorithms', 'competitive-programming', 'data-structure', 'graph', 'search', 'sort', 'tree'] | 2023-04-04 | [('thealgorithms/python', 0.707886815071106, 'study', 1), ('joowani/binarytree', 0.6219033002853394, 'util', 2), ('python-odin/odin', 0.6064568161964417, 'util', 0), ('pandas-dev/pandas', 0.6043705940246582, 'pandas', 0), ('pyomo/pyomo', 0.5572477579116821, 'math', 0), ('krzjoa/awesome-python-data-science', 0.5512800812721252, 'study', 0), ('gbeced/pyalgotrade', 0.5470435619354248, 'finance', 0), ('quantopian/zipline', 0.5438115000724792, 'finance', 0), ('networkx/networkx', 0.543645977973938, 'graph', 0), ('atsushisakai/pythonrobotics', 0.5353425741195679, 'sim', 1), ('sympy/sympy', 0.5286232233047485, 'math', 0), ('pytoolz/toolz', 0.520076334476471, 'util', 0), ('quantconnect/lean', 0.512477457523346, 'finance', 1), ('tiangolo/sqlmodel', 0.5121207237243652, 'data', 0), ('ranaroussi/quantstats', 0.5114973187446594, 'finance', 0), ('dagworks-inc/hamilton', 0.5108981728553772, 'ml-ops', 0), ('plotly/dash', 0.5095182657241821, 'viz', 0), ('scikit-learn/scikit-learn', 0.5060738921165466, 'ml', 0), ('rasbt/mlxtend', 0.5041128993034363, 'ml', 0), ('python/cpython', 0.5038732290267944, 'util', 0), ('scikit-mobility/scikit-mobility', 0.5026717782020569, 'gis', 0)] | 198 | 4 | null | 0.12 | 10 | 1 | 87 | 10 | 0 | 0 | 0 | 10 | 6 | 90 | 0.6 | 53 |
105 | nlp | https://github.com/rare-technologies/gensim | [] | null | [] | [] | null | null | null | rare-technologies/gensim | gensim | 14,914 | 4,381 | 433 | Python | https://radimrehurek.com/gensim | Topic Modelling for Humans | rare-technologies | 2024-01-14 | 2011-02-10 | 676 | 22.038843 | null | Topic Modelling for Humans | ['data-mining', 'data-science', 'document-similarity', 'fasttext', 'gensim', 'information-retrieval', 'machine-learning', 'natural-language-processing', 'neural-network', 'nlp', 'topic-modeling', 'word-embeddings', 'word-similarity', 'word2vec'] | ['data-mining', 'data-science', 'document-similarity', 'fasttext', 'gensim', 'information-retrieval', 'machine-learning', 'natural-language-processing', 'neural-network', 'nlp', 'topic-modeling', 'word-embeddings', 'word-similarity', 'word2vec'] | 2023-10-01 | [('ddangelov/top2vec', 0.59908527135849, 'nlp', 2), ('maartengr/bertopic', 0.5905485153198242, 'nlp', 3), ('brettkromkamp/topic-db', 0.539949893951416, 'data', 0), ('ddbourgin/numpy-ml', 0.5375690460205078, 'ml', 3), ('sebischair/lbl2vec', 0.5351875424385071, 'nlp', 4), ('sloria/textblob', 0.5176156759262085, 'nlp', 2), ('milvus-io/bootcamp', 0.5120472311973572, 'data', 1)] | 449 | 6 | null | 1.42 | 20 | 3 | 157 | 4 | 1 | 6 | 1 | 20 | 25 | 90 | 1.2 | 53 |
1,884 | util | https://github.com/ninja-build/ninja | ['build'] | Ninja is a small build system with a focus on speed. | [] | [] | null | null | null | ninja-build/ninja | ninja | 10,184 | 1,544 | 264 | C++ | https://ninja-build.org/ | a small build system with a focus on speed | ninja-build | 2024-01-14 | 2011-02-06 | 677 | 15.03649 | https://avatars.githubusercontent.com/u/11653218?v=4 | a small build system with a focus on speed | [] | ['build'] | 2024-01-02 | [('scikit-build/scikit-build', 0.562438428401947, 'ml', 0)] | 285 | 4 | null | 0.73 | 76 | 42 | 157 | 0 | 0 | 2 | 2 | 76 | 107 | 90 | 1.4 | 53 |
133 | ml | https://github.com/epistasislab/tpot | [] | null | [] | [] | null | null | null | epistasislab/tpot | tpot | 9,381 | 1,552 | 290 | Python | http://epistasislab.github.io/tpot/ | A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming. | epistasislab | 2024-01-13 | 2015-11-03 | 430 | 21.816279 | https://avatars.githubusercontent.com/u/20861190?v=4 | A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming. | ['adsp', 'ag066833', 'aiml', 'alzheimer', 'alzheimers', 'automated-machine-learning', 'automation', 'automl', 'data-science', 'feature-engineering', 'gradient-boosting', 'hyperparameter-optimization', 'machine-learning', 'model-selection', 'nia', 'parameter-tuning', 'random-forest', 'scikit-learn', 'u01ag066833'] | ['adsp', 'ag066833', 'aiml', 'alzheimer', 'alzheimers', 'automated-machine-learning', 'automation', 'automl', 'data-science', 'feature-engineering', 'gradient-boosting', 'hyperparameter-optimization', 'machine-learning', 'model-selection', 'nia', 'parameter-tuning', 'random-forest', 'scikit-learn', 'u01ag066833'] | 2023-12-08 | [('automl/auto-sklearn', 0.6574358940124512, 'ml', 4), ('featurelabs/featuretools', 0.6507097482681274, 'ml', 6), ('microsoft/nni', 0.6485167741775513, 'ml', 6), ('google/pyglove', 0.6232022643089294, 'util', 2), ('scikit-learn/scikit-learn', 0.6184797286987305, 'ml', 2), ('mljar/mljar-supervised', 0.6145864129066467, 'ml', 8), ('google/vizier', 0.6137571930885315, 'ml', 2), ('microsoft/flaml', 0.6104899048805237, 'ml', 7), ('nccr-itmo/fedot', 0.6070546507835388, 'ml-ops', 6), ('gradio-app/gradio', 0.5918328166007996, 'viz', 2), ('rasbt/mlxtend', 0.5866554379463196, 'ml', 2), ('determined-ai/determined', 0.5670955777168274, 'ml-ops', 3), ('districtdatalabs/yellowbrick', 0.5539801120758057, 'ml', 3), ('ray-project/ray', 0.5462473034858704, 'ml-ops', 5), ('wandb/client', 0.5462185144424438, 'ml', 3), ('scikit-learn-contrib/imbalanced-learn', 0.545037567615509, 'ml', 2), ('merantix-momentum/squirrel-core', 0.5355274081230164, 'ml', 2), ('selfexplainml/piml-toolbox', 0.5343623161315918, 'ml-interpretability', 0), ('pycaret/pycaret', 0.5342784523963928, 'ml', 2), ('awslabs/autogluon', 0.5319231748580933, 'ml', 6), ('scikit-optimize/scikit-optimize', 0.5264012217521667, 'ml', 3), ('kubeflow/fairing', 0.5261349081993103, 'ml-ops', 0), ('ml-tooling/opyrator', 0.5252538323402405, 'viz', 1), ('ageron/handson-ml2', 0.5202245712280273, 'ml', 0), ('dagworks-inc/hamilton', 0.5198063850402832, 'ml-ops', 3), ('catboost/catboost', 0.515169084072113, 'ml', 3), ('polyaxon/polyaxon', 0.5143507122993469, 'ml-ops', 3), ('keras-team/autokeras', 0.5138368010520935, 'ml-dl', 3), ('koaning/scikit-lego', 0.5125021934509277, 'ml', 2), ('rasbt/machine-learning-book', 0.5111925601959229, 'study', 2), ('online-ml/river', 0.5093849897384644, 'ml', 2), ('karpathy/micrograd', 0.5062547922134399, 'study', 0), ('huggingface/datasets', 0.50594562292099, 'nlp', 1), ('rafiqhasan/auto-tensorflow', 0.5045480132102966, 'ml-dl', 2), ('firmai/atspy', 0.5008826851844788, 'time-series', 0)] | 118 | 8 | null | 0.4 | 14 | 6 | 100 | 1 | 2 | 4 | 2 | 14 | 16 | 90 | 1.1 | 53 |
397 | web | https://github.com/falconry/falcon | [] | null | [] | [] | null | null | null | falconry/falcon | falcon | 9,306 | 926 | 262 | Python | https://falcon.readthedocs.io/en/stable/ | The no-magic web data plane API and microservices framework for Python developers, with a focus on reliability, correctness, and performance at scale. | falconry | 2024-01-12 | 2012-12-06 | 581 | 15.997544 | https://avatars.githubusercontent.com/u/11353642?v=4 | The no-magic web data plane API and microservices framework for Python developers, with a focus on reliability, correctness, and performance at scale. | ['api', 'api-rest', 'asgi', 'framework', 'http', 'microservices', 'rest', 'web', 'wsgi'] | ['api', 'api-rest', 'asgi', 'framework', 'http', 'microservices', 'rest', 'web', 'wsgi'] | 2023-12-26 | [('pallets/flask', 0.7083405256271362, 'web', 1), ('neoteroi/blacksheep', 0.6875892877578735, 'web', 4), ('pallets/quart', 0.6842796206474304, 'web', 1), ('starlite-api/starlite', 0.6774393916130066, 'web', 3), ('bottlepy/bottle', 0.677134096622467, 'web', 2), ('encode/uvicorn', 0.6588360667228699, 'web', 2), ('klen/muffin', 0.6537138819694519, 'web', 1), ('python-restx/flask-restx', 0.6462195515632629, 'web', 2), ('masoniteframework/masonite', 0.6416914463043213, 'web', 2), ('pallets/werkzeug', 0.630772590637207, 'web', 2), ('simple-salesforce/simple-salesforce', 0.6300815939903259, 'data', 1), ('hugapi/hug', 0.6300604343414307, 'util', 1), ('requests/toolbelt', 0.6299983263015747, 'util', 1), ('pylons/pyramid', 0.6222757697105408, 'web', 1), ('webpy/webpy', 0.6171799302101135, 'web', 0), ('encode/httpx', 0.6106772422790527, 'web', 1), ('vitalik/django-ninja', 0.6103278994560242, 'web', 0), ('tiangolo/fastapi', 0.608084499835968, 'web', 4), ('cherrypy/cherrypy', 0.6051623821258545, 'web', 1), ('reflex-dev/reflex', 0.5998751521110535, 'web', 1), ('scrapy/scrapy', 0.5992222428321838, 'data', 1), ('tiangolo/sqlmodel', 0.5907256007194519, 'data', 0), ('eleutherai/pyfra', 0.5904573202133179, 'ml', 0), ('nficano/python-lambda', 0.5897996425628662, 'util', 1), ('jordaneremieff/mangum', 0.5848598480224609, 'web', 1), ('aws/chalice', 0.5833958387374878, 'web', 0), ('alirn76/panther', 0.5779109001159668, 'web', 1), ('pyeve/eve', 0.5698334574699402, 'web', 1), ('ml-tooling/opyrator', 0.5693379044532776, 'viz', 1), ('willmcgugan/textual', 0.562833845615387, 'term', 1), ('psf/requests', 0.5613847970962524, 'web', 1), ('pylons/waitress', 0.5612348318099976, 'web', 0), ('timofurrer/awesome-asyncio', 0.5593904852867126, 'study', 0), ('backtick-se/cowait', 0.5538949370384216, 'util', 0), ('taverntesting/tavern', 0.5523936152458191, 'testing', 1), ('plotly/dash', 0.5521128177642822, 'viz', 0), ('asacristani/fastapi-rocket-boilerplate', 0.5512214303016663, 'template', 0), ('flet-dev/flet', 0.5503961443901062, 'web', 1), ('tiangolo/full-stack-fastapi-postgresql', 0.5487000942230225, 'template', 0), ('nasdaq/data-link-python', 0.5472946763038635, 'finance', 0), ('kubeflow/fairing', 0.5438461303710938, 'ml-ops', 0), ('fastai/fastcore', 0.5430771708488464, 'util', 0), ('holoviz/panel', 0.5421604514122009, 'viz', 0), ('ethereum/web3.py', 0.540778636932373, 'crypto', 0), ('clips/pattern', 0.5375832915306091, 'nlp', 0), ('ets-labs/python-dependency-injector', 0.5372539758682251, 'util', 0), ('amzn/ion-python', 0.5367324352264404, 'data', 0), ('roniemartinez/dude', 0.5347031354904175, 'util', 1), ('huge-success/sanic', 0.5344210267066956, 'web', 3), ('benoitc/gunicorn', 0.5321671366691589, 'web', 2), ('python-odin/odin', 0.5320534706115723, 'util', 0), ('merantix-momentum/squirrel-core', 0.5313084721565247, 'ml', 0), ('ibis-project/ibis', 0.5278680324554443, 'data', 0), ('locustio/locust', 0.5264105200767517, 'testing', 1), ('pyinfra-dev/pyinfra', 0.5231207609176636, 'util', 0), ('openai/openai-python', 0.5228433609008789, 'util', 0), ('ajndkr/lanarky', 0.5218005180358887, 'llm', 1), ('dylanhogg/awesome-python', 0.5216991901397705, 'study', 0), ('simonw/datasette', 0.5216467380523682, 'data', 1), ('pytoolz/toolz', 0.5214901566505432, 'util', 0), ('lk-geimfari/mimesis', 0.5205872654914856, 'data', 0), ('geopandas/geopandas', 0.5166769027709961, 'gis', 0), ('alirezamika/autoscraper', 0.513289749622345, 'data', 0), ('aio-libs/aiohttp', 0.512401819229126, 'web', 1), ('pytables/pytables', 0.5114437937736511, 'data', 0), ('pynamodb/pynamodb', 0.5108199119567871, 'data', 0), ('sqlalchemy/sqlalchemy', 0.509283185005188, 'data', 0), ('radiantearth/radiant-mlhub', 0.5079211592674255, 'gis', 0), ('snyk-labs/pysnyk', 0.5076401829719543, 'security', 1), ('1200wd/bitcoinlib', 0.5075222849845886, 'crypto', 0), ('amaargiru/pyroad', 0.5072835087776184, 'study', 0), ('micropython/micropython', 0.507040798664093, 'util', 0), ('eventual-inc/daft', 0.5012557506561279, 'pandas', 0), ('shishirpatil/gorilla', 0.500187873840332, 'llm', 1)] | 201 | 4 | null | 0.42 | 43 | 24 | 135 | 1 | 6 | 7 | 6 | 43 | 59 | 90 | 1.4 | 53 |
293 | util | https://github.com/paramiko/paramiko | [] | null | [] | [] | null | null | null | paramiko/paramiko | paramiko | 8,659 | 2,010 | 316 | Python | http://paramiko.org | The leading native Python SSHv2 protocol library. | paramiko | 2024-01-14 | 2009-02-02 | 782 | 11.070868 | https://avatars.githubusercontent.com/u/1108455?v=4 | The leading native Python SSHv2 protocol library. | [] | [] | 2023-12-18 | [('pypy/pypy', 0.6160950064659119, 'util', 0), ('pyston/pyston', 0.5798661708831787, 'util', 0), ('secdev/scapy', 0.5442431569099426, 'util', 0), ('legrandin/pycryptodome', 0.5410947203636169, 'util', 0), ('pytoolz/toolz', 0.5407304763793945, 'util', 0), ('1200wd/bitcoinlib', 0.5394938588142395, 'crypto', 0), ('ethereum/py-evm', 0.5358531475067139, 'crypto', 0), ('urwid/urwid', 0.5337045192718506, 'term', 0), ('cherrypy/cherrypy', 0.5295555591583252, 'web', 0), ('oracle/graalpython', 0.5263757109642029, 'util', 0), ('encode/httpx', 0.5251051187515259, 'web', 0), ('websocket-client/websocket-client', 0.5153641700744629, 'web', 0), ('pyca/cryptography', 0.5152232646942139, 'util', 0), ('python/cpython', 0.5128664374351501, 'util', 0), ('pyca/pynacl', 0.5029951930046082, 'util', 0), ('libtcod/python-tcod', 0.502030611038208, 'gamedev', 0), ('primal100/pybitcointools', 0.5015236139297485, 'crypto', 0)] | 187 | 5 | null | 2.58 | 65 | 15 | 182 | 1 | 0 | 12 | 12 | 65 | 111 | 90 | 1.7 | 53 |
1,433 | ml-dl | https://github.com/nvidia/apex | [] | null | [] | [] | null | null | null | nvidia/apex | apex | 7,797 | 1,306 | 102 | Python | null | A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch | nvidia | 2024-01-14 | 2018-04-23 | 301 | 25.891366 | https://avatars.githubusercontent.com/u/1728152?v=4 | A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch | [] | [] | 2024-01-12 | [('pytorch/ignite', 0.76711106300354, 'ml-dl', 0), ('huggingface/accelerate', 0.7648141980171204, 'ml', 0), ('intel/intel-extension-for-pytorch', 0.7110769152641296, 'perf', 0), ('skorch-dev/skorch', 0.6882312893867493, 'ml-dl', 0), ('pytorch/data', 0.6665452122688293, 'data', 0), ('laekov/fastmoe', 0.6603500247001648, 'ml', 0), ('mrdbourke/pytorch-deep-learning', 0.6514618396759033, 'study', 0), ('karpathy/micrograd', 0.6441670060157776, 'study', 0), ('rasbt/machine-learning-book', 0.6338503956794739, 'study', 0), ('arogozhnikov/einops', 0.6182481646537781, 'ml-dl', 0), ('denys88/rl_games', 0.6122349500656128, 'ml-rl', 0), ('karpathy/mingpt', 0.6042015552520752, 'llm', 0), ('rentruewang/koila', 0.6033901572227478, 'ml', 0), ('nicolas-chaulet/torch-points3d', 0.5915487408638, 'ml', 0), ('horovod/horovod', 0.5866835117340088, 'ml-ops', 0), ('allenai/allennlp', 0.5706870555877686, 'nlp', 0), ('pyg-team/pytorch_geometric', 0.5672152042388916, 'ml-dl', 0), ('pytorch/botorch', 0.5640817880630493, 'ml-dl', 0), ('hysts/pytorch_image_classification', 0.5612041354179382, 'ml-dl', 0), ('determined-ai/determined', 0.5580594539642334, 'ml-ops', 0), ('pytorch/captum', 0.5534337759017944, 'ml-interpretability', 0), ('ashleve/lightning-hydra-template', 0.553119957447052, 'util', 0), ('davidmrau/mixture-of-experts', 0.5525276064872742, 'ml', 0), ('pytorch/rl', 0.552091121673584, 'ml-rl', 0), ('huggingface/transformers', 0.5461992621421814, 'nlp', 0), ('kshitij12345/torchnnprofiler', 0.5381832718849182, 'profiling', 0), ('blackhc/toma', 0.5342817902565002, 'ml-dl', 0), ('pytorch-labs/gpt-fast', 0.5303529500961304, 'llm', 0), ('xl0/lovely-tensors', 0.5290429592132568, 'ml-dl', 0), ('facebookresearch/pytorch3d', 0.5290184020996094, 'ml-dl', 0), ('intellabs/bayesian-torch', 0.5274893045425415, 'ml', 0), ('thu-ml/tianshou', 0.5245383381843567, 'ml-rl', 0), ('timdettmers/bitsandbytes', 0.5227283239364624, 'util', 0), ('faster-cpython/tools', 0.5224118828773499, 'perf', 0), ('salesforce/blip', 0.5196071267127991, 'diffusion', 0), ('mcahny/deep-video-inpainting', 0.514928936958313, 'ml-dl', 0), ('huggingface/optimum', 0.5144795179367065, 'ml', 0), ('huggingface/peft', 0.5134326219558716, 'llm', 0), ('uber/petastorm', 0.5052030086517334, 'data', 0), ('dask/dask-ml', 0.5042513608932495, 'ml', 0), ('paddlepaddle/paddle', 0.5022732019424438, 'ml-dl', 0), ('hazyresearch/hgcn', 0.502190113067627, 'ml', 0)] | 125 | 2 | null | 1.65 | 70 | 35 | 70 | 0 | 0 | 1 | 1 | 70 | 87 | 90 | 1.2 | 53 |
388 | data | https://github.com/yzhao062/pyod | [] | null | [] | [] | null | null | null | yzhao062/pyod | pyod | 7,738 | 1,307 | 148 | Python | http://pyod.readthedocs.io | A Comprehensive and Scalable Python Library for Outlier Detection (Anomaly Detection) | yzhao062 | 2024-01-13 | 2017-10-03 | 330 | 23.448485 | null | A Comprehensive and Scalable Python Library for Outlier Detection (Anomaly Detection) | ['anomaly', 'anomaly-detection', 'autoencoder', 'data-analysis', 'data-mining', 'data-science', 'deep-learning', 'fraud-detection', 'machine-learning', 'neural-networks', 'novelty-detection', 'out-of-distribution-detection', 'outlier-detection', 'outlier-ensembles', 'outliers', 'unsupervised-learning'] | ['anomaly', 'anomaly-detection', 'autoencoder', 'data-analysis', 'data-mining', 'data-science', 'deep-learning', 'fraud-detection', 'machine-learning', 'neural-networks', 'novelty-detection', 'out-of-distribution-detection', 'outlier-detection', 'outlier-ensembles', 'outliers', 'unsupervised-learning'] | 2023-12-16 | [('pycaret/pycaret', 0.7633078694343567, 'ml', 3), ('unit8co/darts', 0.7557379603385925, 'time-series', 4), ('aistream-peelout/flow-forecast', 0.6631090044975281, 'time-series', 2), ('tdameritrade/stumpy', 0.6203436255455017, 'time-series', 2), ('rasbt/mlxtend', 0.6038527488708496, 'ml', 4), ('scikit-learn-contrib/imbalanced-learn', 0.589371383190155, 'ml', 3), ('salesforce/merlion', 0.5439088940620422, 'time-series', 2), ('featurelabs/featuretools', 0.5403005480766296, 'ml', 2), ('salesforce/logai', 0.5268727540969849, 'util', 2), ('mdbloice/augmentor', 0.5144423842430115, 'ml', 3), ('scikit-learn/scikit-learn', 0.5111293196678162, 'ml', 3), ('alkaline-ml/pmdarima', 0.5062800049781799, 'time-series', 1), ('jeshraghian/snntorch', 0.5056750178337097, 'ml-dl', 2)] | 50 | 5 | null | 0.83 | 21 | 9 | 76 | 1 | 4 | 6 | 4 | 21 | 25 | 90 | 1.2 | 53 |
1,257 | llm | https://github.com/openlm-research/open_llama | ['llama', 'language-model'] | OpenLLaMA: An Open Reproduction of LLaMA | ['2302.13971'] | [] | null | null | null | openlm-research/open_llama | open_llama | 7,006 | 362 | 115 | null | null | OpenLLaMA, a permissively licensed open source reproduction of Meta AI’s LLaMA 7B trained on the RedPajama dataset | openlm-research | 2024-01-13 | 2023-04-28 | 39 | 177.046931 | https://avatars.githubusercontent.com/u/132110378?v=4 | OpenLLaMA, a permissively licensed open source reproduction of Meta AI’s LLaMA 7B trained on the RedPajama dataset | [] | ['language-model', 'llama'] | 2023-07-16 | [('microsoft/llama-2-onnx', 0.6107590794563293, 'llm', 2), ('jzhang38/tinyllama', 0.5819482207298279, 'llm', 2), ('facebookresearch/llama', 0.5816770195960999, 'llm', 2), ('togethercomputer/redpajama-data', 0.5621833801269531, 'llm', 0), ('lm-sys/fastchat', 0.5599814653396606, 'llm', 1), ('karpathy/llama2.c', 0.5405749678611755, 'llm', 2), ('cg123/mergekit', 0.537260890007019, 'llm', 1), ('facebookresearch/codellama', 0.5370882153511047, 'llm', 2), ('facebookresearch/llama-recipes', 0.536719799041748, 'llm', 2), ('yueyu1030/attrprompt', 0.5280580520629883, 'llm', 0), ('bobazooba/xllm', 0.5272755026817322, 'llm', 1), ('lightning-ai/lit-llama', 0.5196517109870911, 'llm', 2), ('bigscience-workshop/petals', 0.5177329778671265, 'data', 1), ('lupantech/chameleon-llm', 0.5159003138542175, 'llm', 1), ('mshumer/gpt-llm-trainer', 0.5152719616889954, 'llm', 0), ('eleutherai/the-pile', 0.5138996839523315, 'data', 0), ('juncongmoo/pyllama', 0.5135765671730042, 'llm', 0), ('google-research/language', 0.5121092796325684, 'nlp', 0), ('tairov/llama2.mojo', 0.5117022395133972, 'llm', 1), ('tigerlab-ai/tiger', 0.5050448179244995, 'llm', 0), ('run-llama/llama-lab', 0.5049968957901001, 'llm', 2), ('lucidrains/toolformer-pytorch', 0.5018919110298157, 'llm', 1), ('aiwaves-cn/agents', 0.5005034804344177, 'nlp', 1)] | 3 | 3 | null | 0.35 | 8 | 3 | 9 | 6 | 0 | 0 | 0 | 8 | 3 | 90 | 0.4 | 53 |
69 | gamedev | https://github.com/pygame/pygame | [] | null | [] | [] | 1 | null | null | pygame/pygame | pygame | 6,667 | 2,977 | 160 | C | https://www.pygame.org | 🐍🎮 pygame (the library) is a Free and Open Source python programming language library for making multimedia applications like games built on top of the excellent SDL library. C, Python, Native, OpenGL. | pygame | 2024-01-14 | 2017-03-26 | 357 | 18.660136 | https://avatars.githubusercontent.com/u/20628127?v=4 | 🐍🎮 pygame (the library) is a Free and Open Source python programming language library for making multimedia applications like games built on top of the excellent SDL library. C, Python, Native, OpenGL. | ['game-dev', 'game-development', 'gamedev', 'pygame', 'sdl', 'sdl2'] | ['game-dev', 'game-development', 'gamedev', 'pygame', 'sdl', 'sdl2'] | 2023-12-30 | [('pyglet/pyglet', 0.717469334602356, 'gamedev', 1), ('renpy/pygame_sdl2', 0.7130681872367859, 'gamedev', 2), ('lordmauve/pgzero', 0.6985493302345276, 'gamedev', 1), ('pygamelib/pygamelib', 0.6512402892112732, 'gamedev', 2), ('pythonarcade/arcade', 0.6259638071060181, 'gamedev', 0), ('panda3d/panda3d', 0.609826922416687, 'gamedev', 2), ('kitao/pyxel', 0.5883877873420715, 'gamedev', 2), ('pokepetter/ursina', 0.5800055861473083, 'gamedev', 1), ('viblo/pymunk', 0.5696349740028381, 'sim', 1), ('renpy/renpy', 0.5524816513061523, 'viz', 0), ('pypy/pypy', 0.5523542165756226, 'util', 0), ('pytoolz/toolz', 0.5287861824035645, 'util', 0), ('hoffstadt/dearpygui', 0.5225834846496582, 'gui', 0), ('urwid/urwid', 0.5163580775260925, 'term', 0), ('jquast/blessed', 0.504092812538147, 'term', 0)] | 315 | 0 | null | 9.33 | 125 | 37 | 83 | 0 | 11 | 13 | 11 | 125 | 134 | 90 | 1.1 | 53 |
74 | gis | https://github.com/python-visualization/folium | [] | null | [] | [] | null | null | null | python-visualization/folium | folium | 6,539 | 2,245 | 167 | Python | https://python-visualization.github.io/folium/ | Python Data. Leaflet.js Maps. | python-visualization | 2024-01-13 | 2013-05-09 | 559 | 11.682746 | https://avatars.githubusercontent.com/u/9969242?v=4 | Python Data. Leaflet.js Maps. | ['data-science', 'data-visualization', 'javascript', 'maps'] | ['data-science', 'data-visualization', 'javascript', 'maps'] | 2024-01-02 | [('jupyter-widgets/ipyleaflet', 0.6334434151649475, 'gis', 0), ('bokeh/bokeh', 0.5900196433067322, 'viz', 1), ('plotly/dash', 0.5898042321205139, 'viz', 2), ('giswqs/mapwidget', 0.5697619915008545, 'gis', 0), ('giswqs/geemap', 0.5445337295532227, 'gis', 1), ('raphaelquast/eomaps', 0.5424359440803528, 'gis', 0), ('opengeos/leafmap', 0.5398542284965515, 'gis', 1), ('holoviz/panel', 0.5396947860717773, 'viz', 0), ('plotly/plotly.py', 0.5229291319847107, 'viz', 0), ('man-group/dtale', 0.5144950747489929, 'viz', 2)] | 159 | 5 | null | 2 | 57 | 41 | 130 | 0 | 2 | 2 | 2 | 57 | 114 | 90 | 2 | 53 |
793 | web | https://github.com/pallets/werkzeug | [] | null | [] | [] | null | null | null | pallets/werkzeug | werkzeug | 6,480 | 1,729 | 221 | Python | https://werkzeug.palletsprojects.com | The comprehensive WSGI web application library. | pallets | 2024-01-13 | 2010-10-18 | 693 | 9.348722 | https://avatars.githubusercontent.com/u/16748505?v=4 | The comprehensive WSGI web application library. | ['http', 'pallets', 'werkzeug', 'wsgi'] | ['http', 'pallets', 'werkzeug', 'wsgi'] | 2024-01-01 | [('pallets/flask', 0.7842201590538025, 'web', 3), ('pylons/pyramid', 0.7471210360527039, 'web', 1), ('bottlepy/bottle', 0.6876417994499207, 'web', 1), ('benoitc/gunicorn', 0.6659462451934814, 'web', 2), ('masoniteframework/masonite', 0.6412118673324585, 'web', 0), ('falconry/falcon', 0.630772590637207, 'web', 2), ('pylons/waitress', 0.6237661838531494, 'web', 0), ('pylons/webob', 0.6051927804946899, 'web', 1), ('neoteroi/blacksheep', 0.5996673703193665, 'web', 1), ('webpy/webpy', 0.5957249999046326, 'web', 0), ('cherrypy/cherrypy', 0.5869470834732056, 'web', 1), ('encode/uvicorn', 0.5832026600837708, 'web', 1), ('klen/muffin', 0.5703849196434021, 'web', 0), ('encode/httpx', 0.5651618838310242, 'web', 1), ('scrapy/scrapy', 0.5650268197059631, 'data', 0), ('reflex-dev/reflex', 0.5643238425254822, 'web', 0), ('requests/toolbelt', 0.5638414025306702, 'util', 1), ('psf/requests', 0.559667706489563, 'web', 1), ('pallets/quart', 0.5403130054473877, 'web', 0), ('python-restx/flask-restx', 0.5365567803382874, 'web', 0), ('willmcgugan/textual', 0.5303859114646912, 'term', 0), ('hugapi/hug', 0.5272501111030579, 'util', 1), ('eleutherai/pyfra', 0.523544430732727, 'ml', 0), ('emmett-framework/emmett', 0.5205287337303162, 'web', 0), ('tiangolo/full-stack-fastapi-postgresql', 0.520187497138977, 'template', 0), ('mlc-ai/web-llm', 0.5196402668952942, 'llm', 0), ('roniemartinez/dude', 0.5181063413619995, 'util', 0), ('flet-dev/flet', 0.5143693089485168, 'web', 0), ('starlite-api/starlite', 0.5068367123603821, 'web', 0), ('aminalaee/sqladmin', 0.5044029355049133, 'data', 1), ('encode/starlette', 0.5027870535850525, 'web', 1), ('clips/pattern', 0.5018793344497681, 'nlp', 0)] | 486 | 5 | null | 4.12 | 47 | 33 | 161 | 0 | 12 | 7 | 12 | 47 | 41 | 90 | 0.9 | 53 |
1,640 | llm | https://github.com/nat/openplayground | ['language-model', 'local'] | null | [] | [] | null | null | null | nat/openplayground | openplayground | 5,904 | 441 | 58 | TypeScript | null | An LLM playground you can run on your laptop | nat | 2024-01-14 | 2023-02-26 | 48 | 122.272189 | null | An LLM playground you can run on your laptop | [] | ['language-model', 'local'] | 2023-06-05 | [('eugeneyan/open-llms', 0.6209505796432495, 'study', 0), ('alphasecio/langchain-examples', 0.6207661628723145, 'llm', 0), ('hwchase17/langchain', 0.607382595539093, 'llm', 1), ('young-geng/easylm', 0.593249499797821, 'llm', 1), ('thudm/chatglm2-6b', 0.5894226431846619, 'llm', 0), ('mlc-ai/web-llm', 0.589094340801239, 'llm', 1), ('nomic-ai/gpt4all', 0.5870195627212524, 'llm', 1), ('langchain-ai/langgraph', 0.5708506107330322, 'llm', 0), ('alpha-vllm/llama2-accessory', 0.5689014792442322, 'llm', 0), ('tigerlab-ai/tiger', 0.5651535987854004, 'llm', 0), ('salesforce/xgen', 0.5570892095565796, 'llm', 1), ('hiyouga/llama-factory', 0.5530926585197449, 'llm', 1), ('hiyouga/llama-efficient-tuning', 0.5530924797058105, 'llm', 1), ('agenta-ai/agenta', 0.5450541973114014, 'llm', 0), ('salesforce/codet5', 0.5432443022727966, 'nlp', 1), ('microsoft/llama-2-onnx', 0.5403831005096436, 'llm', 1), ('intel/intel-extension-for-transformers', 0.5346694588661194, 'perf', 0), ('microsoft/torchscale', 0.5345559120178223, 'llm', 0), ('conceptofmind/toolformer', 0.5319477915763855, 'llm', 1), ('langchain-ai/langsmith-cookbook', 0.5300737619400024, 'llm', 1), ('mooler0410/llmspracticalguide', 0.5199169516563416, 'study', 0), ('nvidia/nemo-guardrails', 0.5180691480636597, 'llm', 1), ('ctlllll/llm-toolmaker', 0.5115349292755127, 'llm', 1), ('sjtu-ipads/powerinfer', 0.5090302228927612, 'llm', 0), ('hannibal046/awesome-llm', 0.5065643787384033, 'study', 1), ('deep-diver/pingpong', 0.5059070587158203, 'llm', 0), ('prefecthq/langchain-prefect', 0.5041869282722473, 'llm', 0), ('mlc-ai/mlc-llm', 0.5039643049240112, 'llm', 1), ('cg123/mergekit', 0.5010144710540771, 'llm', 0)] | 16 | 3 | null | 0.67 | 11 | 2 | 11 | 7 | 0 | 0 | 0 | 11 | 5 | 90 | 0.5 | 53 |
182 | security | https://github.com/pycqa/bandit | ['code-quality'] | null | [] | [] | null | null | null | pycqa/bandit | bandit | 5,722 | 569 | 66 | Python | https://bandit.readthedocs.io | Bandit is a tool designed to find common security issues in Python code. | pycqa | 2024-01-13 | 2018-04-26 | 300 | 19.028029 | https://avatars.githubusercontent.com/u/8749848?v=4 | Bandit is a tool designed to find common security issues in Python code. | ['bandit', 'linter', 'security', 'security-scanner', 'security-tools', 'static-code-analysis'] | ['bandit', 'code-quality', 'linter', 'security', 'security-scanner', 'security-tools', 'static-code-analysis'] | 2024-01-13 | [('aswinnnn/pyscan', 0.5267046093940735, 'security', 3), ('nedbat/coveragepy', 0.5142317414283752, 'testing', 0)] | 175 | 5 | null | 0.87 | 48 | 29 | 70 | 0 | 2 | 7 | 2 | 48 | 49 | 90 | 1 | 53 |
1,354 | util | https://github.com/icloud-photos-downloader/icloud_photos_downloader | ['photos-export', 'library-photos'] | null | [] | [] | null | null | null | icloud-photos-downloader/icloud_photos_downloader | icloud_photos_downloader | 5,476 | 506 | 100 | Python | null | A command-line tool to download photos from iCloud | icloud-photos-downloader | 2024-01-14 | 2016-05-13 | 402 | 13.602555 | https://avatars.githubusercontent.com/u/73247967?v=4 | A command-line tool to download photos from iCloud | [] | ['library-photos', 'photos-export'] | 2024-01-05 | [] | 36 | 2 | null | 2.23 | 97 | 57 | 93 | 0 | 28 | 4 | 28 | 96 | 244 | 90 | 2.5 | 53 |
510 | util | https://github.com/agronholm/apscheduler | [] | null | [] | [] | null | null | null | agronholm/apscheduler | apscheduler | 5,463 | 698 | 128 | Python | null | Task scheduling library for Python | agronholm | 2024-01-14 | 2016-03-27 | 409 | 13.347644 | null | Task scheduling library for Python | [] | [] | 2024-01-11 | [('dbader/schedule', 0.7123571634292603, 'util', 0), ('dask/dask', 0.6700900197029114, 'perf', 0), ('pyinvoke/invoke', 0.6340285539627075, 'util', 0), ('pypy/pypy', 0.6140989065170288, 'util', 0), ('pytoolz/toolz', 0.6112861037254333, 'util', 0), ('bogdanp/dramatiq', 0.6053295135498047, 'util', 0), ('dask/distributed', 0.5948215126991272, 'perf', 0), ('python/cpython', 0.5778864622116089, 'util', 0), ('joblib/loky', 0.5760906934738159, 'perf', 0), ('eleutherai/pyfra', 0.5697214603424072, 'ml', 0), ('faster-cpython/ideas', 0.5676429867744446, 'perf', 0), ('erotemic/ubelt', 0.5611792802810669, 'util', 0), ('pyston/pyston', 0.5583381652832031, 'util', 0), ('pympler/pympler', 0.5432737469673157, 'perf', 0), ('joblib/joblib', 0.5400955080986023, 'util', 0), ('micropython/micropython', 0.5366904139518738, 'util', 0), ('sumerc/yappi', 0.5361764430999756, 'profiling', 0), ('ipython/ipyparallel', 0.529596745967865, 'perf', 0), ('fastai/fastcore', 0.5230339765548706, 'util', 0), ('kubeflow/fairing', 0.5141321420669556, 'ml-ops', 0), ('requests/toolbelt', 0.5136269330978394, 'util', 0), ('samuelcolvin/arq', 0.5115315914154053, 'data', 0), ('python-trio/trio', 0.5111809968948364, 'perf', 0), ('firmai/atspy', 0.5056720972061157, 'time-series', 0), ('faster-cpython/tools', 0.5040667057037354, 'perf', 0), ('artemyk/dynpy', 0.5037860870361328, 'sim', 0), ('merantix-momentum/squirrel-core', 0.5034119486808777, 'ml', 0), ('backtick-se/cowait', 0.502835750579834, 'util', 0), ('urwid/urwid', 0.501419186592102, 'term', 0)] | 44 | 3 | null | 2.81 | 48 | 27 | 95 | 0 | 2 | 8 | 2 | 48 | 184 | 90 | 3.8 | 53 |
561 | gis | https://github.com/gboeing/osmnx | [] | null | [] | [] | null | null | null | gboeing/osmnx | osmnx | 4,514 | 805 | 116 | Python | https://osmnx.readthedocs.io | OSMnx is a Python package to easily download, model, analyze, and visualize street networks and other geospatial features from OpenStreetMap. | gboeing | 2024-01-13 | 2016-07-24 | 392 | 11.506919 | null | OSMnx is a Python package to easily download, model, analyze, and visualize street networks and other geospatial features from OpenStreetMap. | ['geography', 'geospatial', 'gis', 'mapping', 'networks', 'networkx', 'openstreetmap', 'osm', 'osmnx', 'overpass-api', 'routing', 'spatial', 'spatial-analysis', 'spatial-data', 'street-networks', 'transport', 'transportation', 'urban', 'urban-planning'] | ['geography', 'geospatial', 'gis', 'mapping', 'networks', 'networkx', 'openstreetmap', 'osm', 'osmnx', 'overpass-api', 'routing', 'spatial', 'spatial-analysis', 'spatial-data', 'street-networks', 'transport', 'transportation', 'urban', 'urban-planning'] | 2024-01-12 | [('gboeing/osmnx-examples', 0.7930247187614441, 'gis', 5), ('marceloprates/prettymaps', 0.6797459125518799, 'viz', 1), ('gboeing/street-network-models', 0.5225948691368103, 'sim', 0), ('westhealth/pyvis', 0.5170513987541199, 'graph', 1)] | 83 | 3 | null | 11.06 | 42 | 38 | 91 | 0 | 0 | 8 | 8 | 42 | 68 | 90 | 1.6 | 53 |
727 | ml-dl | https://github.com/pytorch/ignite | [] | null | [] | [] | 1 | null | null | pytorch/ignite | ignite | 4,411 | 611 | 60 | Python | https://pytorch-ignite.ai | High-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently. | pytorch | 2024-01-13 | 2017-11-23 | 322 | 13.668437 | https://avatars.githubusercontent.com/u/21003710?v=4 | High-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently. | ['deep-learning', 'machine-learning', 'metrics', 'neural-network', 'pytorch'] | ['deep-learning', 'machine-learning', 'metrics', 'neural-network', 'pytorch'] | 2024-01-11 | [('skorch-dev/skorch', 0.8268391489982605, 'ml-dl', 2), ('mrdbourke/pytorch-deep-learning', 0.7811650037765503, 'study', 3), ('intel/intel-extension-for-pytorch', 0.7741976380348206, 'perf', 4), ('nvidia/apex', 0.76711106300354, 'ml-dl', 0), ('pyg-team/pytorch_geometric', 0.7287918925285339, 'ml-dl', 2), ('rasbt/machine-learning-book', 0.7284553050994873, 'study', 3), ('karpathy/micrograd', 0.7160765528678894, 'study', 0), ('pytorch/captum', 0.6821672916412354, 'ml-interpretability', 0), ('denys88/rl_games', 0.6810092926025391, 'ml-rl', 2), ('pytorch/rl', 0.6654600501060486, 'ml-rl', 2), ('allenai/allennlp', 0.6625421047210693, 'nlp', 2), ('huggingface/accelerate', 0.6613282561302185, 'ml', 0), ('intellabs/bayesian-torch', 0.6580493450164795, 'ml', 2), ('pytorch/data', 0.655742347240448, 'data', 0), ('ashleve/lightning-hydra-template', 0.6497684717178345, 'util', 2), ('xl0/lovely-tensors', 0.6465728282928467, 'ml-dl', 2), ('arogozhnikov/einops', 0.6346755027770996, 'ml-dl', 2), ('huggingface/transformers', 0.6338894367218018, 'nlp', 3), ('lightly-ai/lightly', 0.6327634453773499, 'ml', 3), ('laekov/fastmoe', 0.6223480701446533, 'ml', 0), ('rentruewang/koila', 0.6201809644699097, 'ml', 4), ('lucidrains/imagen-pytorch', 0.6169648766517639, 'ml-dl', 1), ('nicolas-chaulet/torch-points3d', 0.6167212128639221, 'ml', 0), ('ageron/handson-ml2', 0.6152977347373962, 'ml', 0), ('hysts/pytorch_image_classification', 0.615060031414032, 'ml-dl', 1), ('facebookresearch/pytorch3d', 0.6142131686210632, 'ml-dl', 0), ('neuralmagic/sparseml', 0.6128144860267639, 'ml-dl', 1), ('thu-ml/tianshou', 0.6126653552055359, 'ml-rl', 1), ('determined-ai/determined', 0.6104621291160583, 'ml-ops', 3), ('horovod/horovod', 0.6100185513496399, 'ml-ops', 3), ('tensorlayer/tensorlayer', 0.6070582866668701, 'ml-rl', 2), ('oml-team/open-metric-learning', 0.6061093807220459, 'ml', 2), ('kshitij12345/torchnnprofiler', 0.6059595346450806, 'profiling', 0), ('ggerganov/ggml', 0.6042031645774841, 'ml', 1), ('keras-team/keras', 0.5964016318321228, 'ml-dl', 3), ('tensorflow/tensorflow', 0.5939213633537292, 'ml-dl', 3), ('tensorflow/lucid', 0.5938147902488708, 'ml-interpretability', 1), ('nvidia/deeplearningexamples', 0.5919349193572998, 'ml-dl', 2), ('mdbloice/augmentor', 0.5899521708488464, 'ml', 2), ('pytorch/torchrec', 0.5860687494277954, 'ml-dl', 2), ('uber/petastorm', 0.5855341553688049, 'data', 3), ('nvlabs/gcvit', 0.5840114951133728, 'diffusion', 1), ('salesforce/blip', 0.5812243223190308, 'diffusion', 0), ('lutzroeder/netron', 0.5811353325843811, 'ml', 4), ('tensorflow/tensor2tensor', 0.5802233219146729, 'ml', 2), ('rasbt/deeplearning-models', 0.5799865126609802, 'ml-dl', 0), ('explosion/thinc', 0.5792794823646545, 'ml-dl', 3), ('mosaicml/composer', 0.5748881101608276, 'ml-dl', 4), ('pytorch/botorch', 0.5717622637748718, 'ml-dl', 0), ('microsoft/onnxruntime', 0.5676509141921997, 'ml', 3), ('tlkh/tf-metal-experiments', 0.5673794746398926, 'perf', 1), ('cvxgrp/pymde', 0.5655942559242249, 'ml', 2), ('aws/sagemaker-python-sdk', 0.5633373856544495, 'ml', 2), ('pytorch/pytorch', 0.5628584623336792, 'ml-dl', 3), ('blackhc/toma', 0.5623881220817566, 'ml-dl', 2), ('microsoft/deepspeed', 0.5605365037918091, 'ml-dl', 3), ('aistream-peelout/flow-forecast', 0.5596166253089905, 'time-series', 2), ('pyro-ppl/pyro', 0.5561047196388245, 'ml-dl', 3), ('nyandwi/modernconvnets', 0.5554874539375305, 'ml-dl', 0), ('rafiqhasan/auto-tensorflow', 0.5545974373817444, 'ml-dl', 1), ('hazyresearch/hgcn', 0.551753580570221, 'ml', 0), ('huggingface/huggingface_hub', 0.5494725108146667, 'ml', 3), ('google/tf-quant-finance', 0.5492528676986694, 'finance', 0), ('karpathy/mingpt', 0.548469066619873, 'llm', 0), ('kevinmusgrave/pytorch-metric-learning', 0.5479029417037964, 'ml', 3), ('davidmrau/mixture-of-experts', 0.5471916198730469, 'ml', 1), ('deci-ai/super-gradients', 0.5459545850753784, 'ml-dl', 3), ('huggingface/evaluate', 0.5455392003059387, 'ml', 1), ('fchollet/deep-learning-with-python-notebooks', 0.5449861288070679, 'study', 0), ('lucidrains/dalle2-pytorch', 0.5412147641181946, 'diffusion', 1), ('d2l-ai/d2l-en', 0.54007488489151, 'study', 3), ('tensorly/tensorly', 0.5390286445617676, 'ml-dl', 2), ('deepmind/dm-haiku', 0.5363015532493591, 'ml-dl', 2), ('graykode/nlp-tutorial', 0.5355981588363647, 'study', 1), ('speechbrain/speechbrain', 0.5351871848106384, 'nlp', 2), ('dmlc/dgl', 0.5350419878959656, 'ml-dl', 1), ('christoschristofidis/awesome-deep-learning', 0.5337355136871338, 'study', 3), ('qdrant/quaterion', 0.5309311747550964, 'ml', 3), ('huggingface/optimum', 0.5307228565216064, 'ml', 1), ('huggingface/diffusers', 0.528372049331665, 'diffusion', 2), ('tensorflow/addons', 0.5261369943618774, 'ml', 3), ('ddbourgin/numpy-ml', 0.5257222652435303, 'ml', 1), ('huggingface/datasets', 0.523903489112854, 'nlp', 3), ('optimalscale/lmflow', 0.5235216617584229, 'llm', 2), ('koaning/human-learn', 0.522743284702301, 'data', 1), ('salesforce/deeptime', 0.5224276185035706, 'time-series', 1), ('onnx/onnx', 0.521939218044281, 'ml', 4), ('humancompatibleai/imitation', 0.5217827558517456, 'ml-rl', 0), ('facebookresearch/dinov2', 0.5208505988121033, 'diffusion', 0), ('google-research/deeplab2', 0.5203951597213745, 'ml', 0), ('huggingface/peft', 0.5194254517555237, 'llm', 1), ('timdettmers/bitsandbytes', 0.5188927054405212, 'util', 0), ('tensorflow/data-validation', 0.5164223313331604, 'ml-ops', 0), ('kubeflow/fairing', 0.5159615874290466, 'ml-ops', 0), ('neuralmagic/deepsparse', 0.5143234133720398, 'nlp', 0), ('rwightman/pytorch-image-models', 0.512000322341919, 'ml-dl', 1), ('tensorflow/similarity', 0.5106225609779358, 'ml-dl', 2), ('facebookresearch/theseus', 0.5099302530288696, 'math', 2), ('keras-rl/keras-rl', 0.5081517696380615, 'ml-rl', 1), ('udacity/deep-learning-v2-pytorch', 0.5055270195007324, 'study', 3), ('keras-team/autokeras', 0.5053526759147644, 'ml-dl', 2), ('ray-project/ray', 0.504410982131958, 'ml-ops', 3), ('jeshraghian/snntorch', 0.5029792189598083, 'ml-dl', 2), ('kornia/kornia', 0.5025068521499634, 'ml-dl', 4), ('calculatedcontent/weightwatcher', 0.5007023811340332, 'ml-dl', 0), ('aiqc/aiqc', 0.5004318356513977, 'ml-ops', 0)] | 204 | 7 | null | 2.77 | 115 | 105 | 75 | 0 | 3 | 3 | 3 | 115 | 53 | 90 | 0.5 | 53 |
43 | data | https://github.com/lk-geimfari/mimesis | [] | null | [] | [] | null | null | null | lk-geimfari/mimesis | mimesis | 4,144 | 321 | 62 | Python | https://mimesis.name | Mimesis is a powerful Python library that empowers developers to generate massive amounts of synthetic data efficiently. | lk-geimfari | 2024-01-14 | 2016-09-09 | 385 | 10.747684 | null | Mimesis is a powerful Python library that empowers developers to generate massive amounts of synthetic data efficiently. | ['api-mock', 'data', 'dataframe', 'datascience', 'dummy', 'fake', 'faker', 'fixtures', 'generator', 'json', 'json-generator', 'mimesis', 'mock', 'pandas', 'polars', 'schema', 'syntetic', 'synthetic-data', 'testing'] | ['api-mock', 'data', 'dataframe', 'datascience', 'dummy', 'fake', 'faker', 'fixtures', 'generator', 'json', 'json-generator', 'mimesis', 'mock', 'pandas', 'polars', 'schema', 'syntetic', 'synthetic-data', 'testing'] | 2024-01-12 | [('joke2k/faker', 0.6268561482429504, 'data', 3), ('getsentry/responses', 0.5823182463645935, 'testing', 0), ('python-odin/odin', 0.5751269459724426, 'util', 1), ('pytoolz/toolz', 0.5705004334449768, 'util', 0), ('marshmallow-code/marshmallow', 0.5606078505516052, 'util', 1), ('asacristani/fastapi-rocket-boilerplate', 0.5495461225509644, 'template', 0), ('snyk/faker-security', 0.5424483418464661, 'security', 0), ('fastai/fastcore', 0.5298691987991333, 'util', 0), ('pytables/pytables', 0.5296199321746826, 'data', 0), ('eleutherai/pyfra', 0.5290538668632507, 'ml', 0), ('nedbat/coveragepy', 0.5268024206161499, 'testing', 0), ('kubeflow/fairing', 0.5213274955749512, 'ml-ops', 0), ('falconry/falcon', 0.5205872654914856, 'web', 0), ('pyeve/cerberus', 0.5154099464416504, 'data', 0), ('brokenloop/jsontopydantic', 0.5148674845695496, 'util', 0), ('dagworks-inc/hamilton', 0.5131853222846985, 'ml-ops', 2), ('pypy/pypy', 0.5108677744865417, 'util', 0), ('unionai-oss/pandera', 0.509531557559967, 'pandas', 3), ('pandas-dev/pandas', 0.5089730024337769, 'pandas', 2), ('jsonpickle/jsonpickle', 0.5048171281814575, 'data', 1), ('tiangolo/sqlmodel', 0.5006476640701294, 'data', 1)] | 117 | 4 | null | 4.63 | 51 | 44 | 89 | 0 | 11 | 9 | 11 | 51 | 73 | 90 | 1.4 | 53 |
335 | ml | https://github.com/apple/coremltools | [] | null | [] | [] | null | null | null | apple/coremltools | coremltools | 3,860 | 581 | 116 | Python | https://coremltools.readme.io | Core ML tools contain supporting tools for Core ML model conversion, editing, and validation. | apple | 2024-01-14 | 2017-06-30 | 343 | 11.234927 | https://avatars.githubusercontent.com/u/10639145?v=4 | Core ML tools contain supporting tools for Core ML model conversion, editing, and validation. | ['coreml', 'coremltools', 'machine-learning', 'model-conversion', 'model-converter', 'pytorch', 'tensorflow'] | ['coreml', 'coremltools', 'machine-learning', 'model-conversion', 'model-converter', 'pytorch', 'tensorflow'] | 2024-01-10 | [('huggingface/exporters', 0.6746289730072021, 'ml', 6), ('microsoft/nni', 0.5904099345207214, 'ml', 3), ('huggingface/datasets', 0.5799334049224854, 'nlp', 3), ('polyaxon/polyaxon', 0.5726978778839111, 'ml-ops', 3), ('selfexplainml/piml-toolbox', 0.558883786201477, 'ml-interpretability', 0), ('districtdatalabs/yellowbrick', 0.5530053377151489, 'ml', 1), ('keras-team/autokeras', 0.546789288520813, 'ml-dl', 2), ('deepchecks/deepchecks', 0.539066731929779, 'data', 2), ('lucidrains/toolformer-pytorch', 0.5380272269248962, 'llm', 0), ('nccr-itmo/fedot', 0.5334883332252502, 'ml-ops', 1), ('mosaicml/composer', 0.5304659605026245, 'ml-dl', 2), ('mlflow/mlflow', 0.5302109122276306, 'ml-ops', 1), ('onnx/onnx', 0.5105490684509277, 'ml', 3), ('wandb/client', 0.510352373123169, 'ml', 3), ('lutzroeder/netron', 0.5053067803382874, 'ml', 4), ('kubeflow/fairing', 0.5047186613082886, 'ml-ops', 0)] | 159 | 3 | null | 2.06 | 127 | 82 | 80 | 0 | 6 | 6 | 6 | 126 | 286 | 90 | 2.3 | 53 |
252 | ml | https://github.com/microsoft/flaml | [] | null | [] | [] | null | null | null | microsoft/flaml | FLAML | 3,493 | 488 | 56 | Jupyter Notebook | https://microsoft.github.io/FLAML/ | A fast library for AutoML and tuning. Join our Discord: https://discord.gg/Cppx2vSPVP. | microsoft | 2024-01-13 | 2020-08-20 | 179 | 19.436407 | https://avatars.githubusercontent.com/u/6154722?v=4 | A fast library for AutoML and tuning. Join our Discord: https://discord.gg/Cppx2vSPVP. | ['automated-machine-learning', 'automl', 'classification', 'data-science', 'deep-learning', 'finetuning', 'hyperparam', 'hyperparameter-optimization', 'jupyter-notebook', 'machine-learning', 'natural-language-generation', 'natural-language-processing', 'random-forest', 'regression', 'scikit-learn', 'tabular-data', 'timeseries-forecasting', 'tuning'] | ['automated-machine-learning', 'automl', 'classification', 'data-science', 'deep-learning', 'finetuning', 'hyperparam', 'hyperparameter-optimization', 'jupyter-notebook', 'machine-learning', 'natural-language-generation', 'natural-language-processing', 'random-forest', 'regression', 'scikit-learn', 'tabular-data', 'timeseries-forecasting', 'tuning'] | 2023-11-29 | [('mljar/mljar-supervised', 0.7940219044685364, 'ml', 7), ('microsoft/nni', 0.7865293025970459, 'ml', 6), ('keras-team/autokeras', 0.7519674897193909, 'ml-dl', 4), ('awslabs/autogluon', 0.7324180603027344, 'ml', 9), ('automl/auto-sklearn', 0.7281423807144165, 'ml', 4), ('shankarpandala/lazypredict', 0.6851475834846497, 'ml', 4), ('winedarksea/autots', 0.6591876745223999, 'time-series', 3), ('ray-project/tune-sklearn', 0.6497718095779419, 'ml', 2), ('nccr-itmo/fedot', 0.6372272372245789, 'ml-ops', 4), ('epistasislab/tpot', 0.6104899048805237, 'ml', 7), ('kubeflow/katib', 0.6054434776306152, 'ml', 0), ('featurelabs/featuretools', 0.6044269800186157, 'ml', 5), ('karpathy/micrograd', 0.5962915420532227, 'study', 0), ('determined-ai/determined', 0.5710462927818298, 'ml-ops', 4), ('huggingface/datasets', 0.5613746047019958, 'nlp', 3), ('alpa-projects/alpa', 0.5595440864562988, 'ml-dl', 2), ('ray-project/ray', 0.5589168667793274, 'ml-ops', 5), ('rafiqhasan/auto-tensorflow', 0.5583081841468811, 'ml-dl', 2), ('google/pyglove', 0.5550763607025146, 'util', 2), ('alkaline-ml/pmdarima', 0.5537622570991516, 'time-series', 1), ('huggingface/evaluate', 0.5472498536109924, 'ml', 1), ('ggerganov/ggml', 0.5470587611198425, 'ml', 1), ('salesforce/merlion', 0.5453396439552307, 'time-series', 2), ('google/vizier', 0.5446196794509888, 'ml', 4), ('firmai/atspy', 0.5425217747688293, 'time-series', 0), ('huggingface/autotrain-advanced', 0.5361581444740295, 'ml', 3), ('uber/petastorm', 0.5358170866966248, 'data', 2), ('rasbt/mlxtend', 0.5349463224411011, 'ml', 2), ('scikit-optimize/scikit-optimize', 0.5336490869522095, 'ml', 3), ('xplainable/xplainable', 0.5324146747589111, 'ml-interpretability', 2), ('autoviml/auto_ts', 0.5320088863372803, 'time-series', 1), ('hiyouga/llama-factory', 0.5290379524230957, 'llm', 0), ('hiyouga/llama-efficient-tuning', 0.5290378928184509, 'llm', 0), ('rasbt/machine-learning-book', 0.5261116623878479, 'study', 3), ('tensorflow/tensor2tensor', 0.5255224704742432, 'ml', 2), ('neuralmagic/sparseml', 0.525197446346283, 'ml-dl', 1), ('ashleve/lightning-hydra-template', 0.5247229337692261, 'util', 1), ('koaning/human-learn', 0.5246617197990417, 'data', 2), ('explosion/thinc', 0.5239095091819763, 'ml-dl', 3), ('tensorflow/data-validation', 0.5238473415374756, 'ml-ops', 0), ('huggingface/transformers', 0.5236698985099792, 'nlp', 3), ('gradio-app/gradio', 0.5217346549034119, 'viz', 3), ('aws/sagemaker-python-sdk', 0.5215294361114502, 'ml', 1), ('wandb/client', 0.5212470293045044, 'ml', 4), ('tigerlab-ai/tiger', 0.5200607180595398, 'llm', 1), ('teamhg-memex/eli5', 0.5194395184516907, 'ml', 3), ('ourownstory/neural_prophet', 0.5170196294784546, 'ml', 2), ('districtdatalabs/yellowbrick', 0.5168565511703491, 'ml', 2), ('patchy631/machine-learning', 0.5163537263870239, 'ml', 0), ('nixtla/statsforecast', 0.5162665843963623, 'time-series', 3), ('ml-tooling/opyrator', 0.5143886804580688, 'viz', 1), ('sktime/sktime', 0.5142588019371033, 'time-series', 3), ('optuna/optuna', 0.5139668583869934, 'ml', 2), ('catboost/catboost', 0.5135185122489929, 'ml', 2), ('oml-team/open-metric-learning', 0.5119624733924866, 'ml', 2), ('google/temporian', 0.511090874671936, 'time-series', 0), ('linkedin/greykite', 0.5093781352043152, 'ml', 0), ('ageron/handson-ml2', 0.5074008107185364, 'ml', 0), ('pycaret/pycaret', 0.5066448450088501, 'ml', 4), ('selfexplainml/piml-toolbox', 0.5052233338356018, 'ml-interpretability', 0), ('huggingface/peft', 0.5017809867858887, 'llm', 0), ('merantix-momentum/squirrel-core', 0.5003235340118408, 'ml', 4), ('polyaxon/polyaxon', 0.5002272129058838, 'ml-ops', 4)] | 80 | 4 | null | 2.98 | 31 | 13 | 41 | 2 | 18 | 20 | 18 | 31 | 50 | 90 | 1.6 | 53 |
472 | nlp | https://github.com/neuralmagic/deepsparse | [] | null | [] | [] | null | null | null | neuralmagic/deepsparse | deepsparse | 2,707 | 160 | 53 | Python | https://neuralmagic.com/deepsparse/ | Sparsity-aware deep learning inference runtime for CPUs | neuralmagic | 2024-01-13 | 2020-12-14 | 163 | 16.59282 | https://avatars.githubusercontent.com/u/68670575?v=4 | Sparsity-aware deep learning inference runtime for CPUs | ['computer-vision', 'cpus', 'deepsparse', 'inference', 'llm-inference', 'machinelearning', 'nlp', 'object-detection', 'onnx', 'performance', 'pretrained-models', 'pruning', 'quantization', 'sparsification'] | ['computer-vision', 'cpus', 'deepsparse', 'inference', 'llm-inference', 'machinelearning', 'nlp', 'object-detection', 'onnx', 'performance', 'pretrained-models', 'pruning', 'quantization', 'sparsification'] | 2024-01-10 | [('neuralmagic/sparseml', 0.7135436534881592, 'ml-dl', 5), ('microsoft/deepspeed', 0.643064022064209, 'ml-dl', 1), ('microsoft/onnxruntime', 0.6196989417076111, 'ml', 1), ('alpa-projects/alpa', 0.6077420711517334, 'ml-dl', 0), ('lutzroeder/netron', 0.5835353136062622, 'ml', 2), ('huggingface/datasets', 0.5752450823783875, 'nlp', 2), ('tlkh/tf-metal-experiments', 0.5730476379394531, 'perf', 0), ('mosaicml/composer', 0.5704326033592224, 'ml-dl', 0), ('squeezeailab/squeezellm', 0.5691953301429749, 'llm', 1), ('intel/intel-extension-for-pytorch', 0.5653654932975769, 'perf', 1), ('bigscience-workshop/petals', 0.5630180835723877, 'data', 2), ('keras-team/keras', 0.5612209439277649, 'ml-dl', 0), ('onnx/onnx', 0.5601222515106201, 'ml', 1), ('aiqc/aiqc', 0.556576669216156, 'ml-ops', 0), ('nvidia/deeplearningexamples', 0.554892361164093, 'ml-dl', 2), ('determined-ai/determined', 0.5497815608978271, 'ml-ops', 0), ('huggingface/optimum', 0.5494052171707153, 'ml', 3), ('vllm-project/vllm', 0.5437913537025452, 'llm', 1), ('nyandwi/modernconvnets', 0.5420705080032349, 'ml-dl', 1), ('explosion/thinc', 0.5401971936225891, 'ml-dl', 1), ('apache/incubator-mxnet', 0.53566974401474, 'ml-dl', 0), ('facebookresearch/ppuda', 0.5350483059883118, 'ml-dl', 0), ('tensorflow/tensorflow', 0.5337933301925659, 'ml-dl', 0), ('huggingface/transformers', 0.532548189163208, 'nlp', 2), ('tensorflow/tensor2tensor', 0.5306204557418823, 'ml', 0), ('rwightman/pytorch-image-models', 0.5303251147270203, 'ml-dl', 1), ('horovod/horovod', 0.5292316675186157, 'ml-ops', 1), ('roboflow/supervision', 0.5291524529457092, 'ml', 2), ('deepfakes/faceswap', 0.5284426212310791, 'ml-dl', 0), ('ddbourgin/numpy-ml', 0.5217757225036621, 'ml', 0), ('pytorch/glow', 0.514583945274353, 'ml', 0), ('pytorch/ignite', 0.5143234133720398, 'ml-dl', 0), ('calculatedcontent/weightwatcher', 0.5087005496025085, 'ml-dl', 0), ('paddlepaddle/paddle', 0.5083123445510864, 'ml-dl', 0), ('rasbt/machine-learning-book', 0.5080384612083435, 'study', 0), ('blackhc/toma', 0.5067216753959656, 'ml-dl', 0), ('cvxgrp/pymde', 0.5062499642372131, 'ml', 0), ('pytorchlightning/pytorch-lightning', 0.5051679015159607, 'ml-dl', 0), ('megvii-basedetection/yolox', 0.5051378607749939, 'ml', 2), ('polyaxon/polyaxon', 0.504664957523346, 'ml-ops', 0), ('ludwig-ai/ludwig', 0.5014819502830505, 'ml-ops', 2), ('facebookresearch/pytorch3d', 0.5011691451072693, 'ml-dl', 0), ('fepegar/torchio', 0.5005324482917786, 'ml-dl', 0)] | 41 | 3 | null | 8.13 | 222 | 202 | 38 | 0 | 10 | 12 | 10 | 222 | 98 | 90 | 0.4 | 53 |
539 | data | https://github.com/sqlalchemy/alembic | [] | null | [] | [] | null | null | null | sqlalchemy/alembic | alembic | 2,302 | 211 | 19 | Python | null | A database migrations tool for SQLAlchemy. | sqlalchemy | 2024-01-13 | 2018-11-27 | 270 | 8.525926 | https://avatars.githubusercontent.com/u/6043126?v=4 | A database migrations tool for SQLAlchemy. | ['sql', 'sqlalchemy'] | ['sql', 'sqlalchemy'] | 2024-01-13 | [('sqlalchemy/sqlalchemy', 0.8273295164108276, 'data', 2), ('agronholm/sqlacodegen', 0.6634976267814636, 'data', 0), ('mause/duckdb_engine', 0.6483481526374817, 'data', 2), ('tiangolo/sqlmodel', 0.6223205924034119, 'data', 2), ('aminalaee/sqladmin', 0.5552855730056763, 'data', 1), ('ibis-project/ibis', 0.5510525107383728, 'data', 2), ('aeternalis-ingenium/fastapi-backend-template', 0.5487288236618042, 'web', 1), ('mcfunley/pugsql', 0.5098458528518677, 'data', 1)] | 181 | 5 | null | 2.63 | 84 | 64 | 62 | 0 | 16 | 24 | 16 | 84 | 228 | 90 | 2.7 | 53 |
1,689 | util | https://github.com/pypa/setuptools | ['setuptools', 'build'] | null | [] | [] | null | null | null | pypa/setuptools | setuptools | 2,224 | 1,095 | 93 | Python | https://pypi.org/project/setuptools/ | Official project repository for the Setuptools build system | pypa | 2024-01-12 | 2016-03-29 | 409 | 5.437653 | https://avatars.githubusercontent.com/u/647025?v=4 | Official project repository for the Setuptools build system | [] | ['build', 'setuptools'] | 2024-01-11 | [('pyo3/setuptools-rust', 0.6672810912132263, 'util', 2)] | 587 | 4 | null | 15.08 | 145 | 71 | 95 | 0 | 28 | 83 | 28 | 146 | 273 | 90 | 1.9 | 53 |
1,898 | pandas | https://github.com/delta-io/delta-rs | ['databricks', 'rust'] | null | [] | [] | null | null | null | delta-io/delta-rs | delta-rs | 1,620 | 305 | 38 | Rust | https://delta-io.github.io/delta-rs/ | A native Rust library for Delta Lake, with bindings into Python | delta-io | 2024-01-16 | 2020-04-26 | 196 | 8.253275 | https://avatars.githubusercontent.com/u/49767398?v=4 | A native Rust library for Delta Lake, with bindings into Python | ['databricks', 'delta', 'delta-lake', 'pandas', 'pandas-dataframe', 'rust'] | ['databricks', 'delta', 'delta-lake', 'pandas', 'pandas-dataframe', 'rust'] | 2024-01-16 | [('eventual-inc/daft', 0.6028104424476624, 'pandas', 1), ('pola-rs/polars', 0.596839427947998, 'pandas', 1), ('sfu-db/connector-x', 0.5911102890968323, 'data', 1), ('pyo3/pyo3', 0.5582752227783203, 'util', 1), ('tkrabel/bamboolib', 0.5383087396621704, 'pandas', 1), ('pyo3/maturin', 0.532139241695404, 'util', 1), ('rustpython/rustpython', 0.5259521007537842, 'util', 1), ('pyo3/rust-numpy', 0.5224049687385559, 'util', 1), ('pandas-dev/pandas', 0.5217164754867554, 'pandas', 1), ('geopandas/geopandas', 0.5198134183883667, 'gis', 1), ('mito-ds/monorepo', 0.503544807434082, 'jupyter', 1), ('pytoolz/toolz', 0.5006144642829895, 'util', 0)] | 128 | 3 | null | 9.9 | 455 | 310 | 45 | 0 | 24 | 18 | 24 | 455 | 994 | 90 | 2.2 | 53 |
630 | util | https://github.com/pygments/pygments | [] | null | [] | [] | null | null | null | pygments/pygments | pygments | 1,487 | 579 | 33 | Python | http://pygments.org/ | Pygments is a generic syntax highlighter written in Python | pygments | 2024-01-13 | 2019-08-31 | 230 | 6.453193 | https://avatars.githubusercontent.com/u/50935516?v=4 | Pygments is a generic syntax highlighter written in Python | ['syntax-highlighting'] | ['syntax-highlighting'] | 2024-01-13 | [('hhatto/autopep8', 0.600104570388794, 'util', 0), ('grantjenks/blue', 0.5901092886924744, 'util', 0), ('pypy/pypy', 0.5847700834274292, 'util', 0), ('python/cpython', 0.5650127530097961, 'util', 0), ('willmcgugan/rich', 0.5573404431343079, 'term', 1), ('google/yapf', 0.5552298426628113, 'util', 0), ('instagram/libcst', 0.5501353144645691, 'util', 0), ('pyglet/pyglet', 0.5452966094017029, 'gamedev', 0), ('pycqa/pylint-django', 0.5438166856765747, 'util', 0), ('google/latexify_py', 0.5412126183509827, 'util', 0), ('hoffstadt/dearpygui', 0.5314857959747314, 'gui', 0), ('python-markdown/markdown', 0.5284628868103027, 'util', 0), ('psf/black', 0.5274278521537781, 'util', 0), ('landscapeio/prospector', 0.5254445672035217, 'util', 0), ('pyston/pyston', 0.5150144696235657, 'util', 0), ('webpy/webpy', 0.5060795545578003, 'web', 0), ('pypi/warehouse', 0.5018252730369568, 'util', 0), ('pytoolz/toolz', 0.5010949969291687, 'util', 0), ('brandtbucher/specialist', 0.5001950263977051, 'perf', 0)] | 821 | 5 | null | 7.12 | 137 | 107 | 53 | 0 | 7 | 15 | 7 | 137 | 282 | 90 | 2.1 | 53 |
1,558 | ml | https://github.com/huggingface/huggingface_hub | [] | null | [] | [] | null | null | null | huggingface/huggingface_hub | huggingface_hub | 1,449 | 354 | 58 | Python | https://huggingface.co/docs/huggingface_hub | The official Python client for the Huggingface Hub. | huggingface | 2024-01-14 | 2020-12-22 | 162 | 8.944444 | https://avatars.githubusercontent.com/u/25720743?v=4 | The official Python client for the Huggingface Hub. | ['deep-learning', 'machine-learning', 'model-hub', 'models', 'natural-language-processing', 'pretrained-models', 'pytorch'] | ['deep-learning', 'machine-learning', 'model-hub', 'models', 'natural-language-processing', 'pretrained-models', 'pytorch'] | 2024-01-12 | [('skorch-dev/skorch', 0.6804894804954529, 'ml-dl', 2), ('aws/sagemaker-python-sdk', 0.6623826026916504, 'ml', 2), ('huggingface/exporters', 0.6611513495445251, 'ml', 3), ('kubeflow/fairing', 0.624878466129303, 'ml-ops', 0), ('huggingface/transformers', 0.6154810190200806, 'nlp', 6), ('gradio-app/gradio', 0.6130750775337219, 'viz', 3), ('radiantearth/radiant-mlhub', 0.6118897199630737, 'gis', 1), ('rasbt/machine-learning-book', 0.6020623445510864, 'study', 3), ('huggingface/datasets', 0.5904778242111206, 'nlp', 4), ('huggingface/notebooks', 0.5788795948028564, 'ml', 0), ('intel/intel-extension-for-pytorch', 0.5788046717643738, 'perf', 3), ('hugapi/hug', 0.5746172070503235, 'util', 0), ('skops-dev/skops', 0.5664080381393433, 'ml-ops', 1), ('dylanhogg/awesome-python', 0.5635517835617065, 'study', 3), ('merantix-momentum/squirrel-core', 0.5627287030220032, 'ml', 4), ('uber/petastorm', 0.5579898357391357, 'data', 3), ('ashleve/lightning-hydra-template', 0.5572559237480164, 'util', 2), ('openai/openai-python', 0.5553815960884094, 'util', 0), ('huggingface/deep-rl-class', 0.5541204810142517, 'study', 1), ('hoffstadt/dearpygui', 0.5539893507957458, 'gui', 0), ('ageron/handson-ml2', 0.5522385835647583, 'ml', 0), ('pytorch/ignite', 0.5494725108146667, 'ml-dl', 3), ('deepfakes/faceswap', 0.5489972233772278, 'ml-dl', 2), ('dmlc/dgl', 0.5465887784957886, 'ml-dl', 1), ('fchollet/deep-learning-with-python-notebooks', 0.5410536527633667, 'study', 0), ('ddbourgin/numpy-ml', 0.5406401753425598, 'ml', 1), ('tensorly/tensorly', 0.5400019884109497, 'ml-dl', 2), ('allenai/allennlp', 0.5300591588020325, 'nlp', 3), ('googleapis/google-api-python-client', 0.5284603238105774, 'util', 0), ('iperov/deepfacelab', 0.5282143950462341, 'ml-dl', 2), ('tensorlayer/tensorlayer', 0.5281078815460205, 'ml-rl', 1), ('fastai/fastcore', 0.5268593430519104, 'util', 0), ('mrdbourke/pytorch-deep-learning', 0.5265445113182068, 'study', 3), ('featurelabs/featuretools', 0.5263670682907104, 'ml', 1), ('ta-lib/ta-lib-python', 0.5248498916625977, 'finance', 0), ('pypy/pypy', 0.5246903896331787, 'util', 0), ('nvidia/deeplearningexamples', 0.5234879851341248, 'ml-dl', 2), ('pyg-team/pytorch_geometric', 0.5223245620727539, 'ml-dl', 2), ('beeware/toga', 0.5219206213951111, 'gui', 0), ('timofurrer/awesome-asyncio', 0.5210409164428711, 'study', 0), ('alibaba/easynlp', 0.5210217237472534, 'nlp', 4), ('ggerganov/ggml', 0.5206968188285828, 'ml', 1), ('huggingface/autotrain-advanced', 0.5198477506637573, 'ml', 3), ('facebookresearch/pytorch3d', 0.5197669863700867, 'ml-dl', 0), ('selfexplainml/piml-toolbox', 0.5193759202957153, 'ml-interpretability', 0), ('weaviate/weaviate-python-client', 0.5164599418640137, 'util', 0), ('google/temporian', 0.5130770802497864, 'time-series', 0), ('ml-tooling/opyrator', 0.5117499828338623, 'viz', 1), ('eleutherai/pyfra', 0.5113564133644104, 'ml', 0), ('python/cpython', 0.5113198757171631, 'util', 0), ('nielsrogge/transformers-tutorials', 0.5096057057380676, 'study', 1), ('willmcgugan/textual', 0.5090726613998413, 'term', 0), ('lucidrains/toolformer-pytorch', 0.5079225301742554, 'llm', 1), ('nvlabs/gcvit', 0.5078686475753784, 'diffusion', 1), ('xl0/lovely-tensors', 0.5074052214622498, 'ml-dl', 2), ('pytorch/rl', 0.5057786703109741, 'ml-rl', 2), ('lightly-ai/lightly', 0.5056184530258179, 'ml', 3), ('adap/flower', 0.5031947493553162, 'ml-ops', 3), ('numpy/numpy', 0.5030168890953064, 'math', 0), ('speechbrain/speechbrain', 0.5026688575744629, 'nlp', 2), ('pycaret/pycaret', 0.5024893283843994, 'ml', 1), ('microsoft/onnxruntime', 0.5021616816520691, 'ml', 3), ('probml/pyprobml', 0.5018727779388428, 'ml', 2), ('mdbloice/augmentor', 0.5017703175544739, 'ml', 2), ('arogozhnikov/einops', 0.5012728571891785, 'ml-dl', 2), ('wandb/client', 0.5004013180732727, 'ml', 3), ('alphasecio/langchain-examples', 0.5002479553222656, 'llm', 0), ('nevronai/metisfl', 0.5000477433204651, 'ml', 2)] | 127 | 2 | null | 7.19 | 267 | 213 | 37 | 0 | 25 | 32 | 25 | 265 | 759 | 90 | 2.9 | 53 |
1,724 | llm | https://github.com/ray-project/ray-llm | [] | null | [] | [] | null | null | null | ray-project/ray-llm | ray-llm | 949 | 61 | 21 | Python | https://aviary.anyscale.com | RayLLM - LLMs on Ray | ray-project | 2024-01-13 | 2023-05-31 | 34 | 27.22541 | https://avatars.githubusercontent.com/u/22125274?v=4 | RayLLM - LLMs on Ray | ['distributed-systems', 'large-language-models', 'llm', 'llm-inference', 'llm-serving', 'llmops', 'ray', 'serving', 'transformers'] | ['distributed-systems', 'large-language-models', 'llm', 'llm-inference', 'llm-serving', 'llmops', 'ray', 'serving', 'transformers'] | 2024-01-08 | [('vllm-project/vllm', 0.7471011877059937, 'llm', 3), ('bentoml/openllm', 0.6621026396751404, 'ml-ops', 4), ('predibase/lorax', 0.6269615888595581, 'llm', 5), ('artidoro/qlora', 0.6143306493759155, 'llm', 0), ('salesforce/xgen', 0.6136285662651062, 'llm', 2), ('ray-project/ray-educational-materials', 0.6102384924888611, 'study', 4), ('bigscience-workshop/petals', 0.6017612218856812, 'data', 2), ('bobazooba/xllm', 0.5996918082237244, 'llm', 2), ('sjtu-ipads/powerinfer', 0.5986047387123108, 'llm', 3), ('young-geng/easylm', 0.5914445519447327, 'llm', 1), ('eugeneyan/open-llms', 0.5834382772445679, 'study', 2), ('explosion/spacy-llm', 0.5664099454879761, 'llm', 2), ('microsoft/torchscale', 0.5647855997085571, 'llm', 0), ('iryna-kondr/scikit-llm', 0.5598890781402588, 'llm', 2), ('ray-project/ray', 0.5598110556602478, 'ml-ops', 3), ('nomic-ai/gpt4all', 0.5573980808258057, 'llm', 1), ('mooler0410/llmspracticalguide', 0.5559900999069214, 'study', 1), ('microsoft/jarvis', 0.5456799268722534, 'llm', 0), ('squeezeailab/squeezellm', 0.5445480942726135, 'llm', 2), ('microsoft/autogen', 0.5439698100090027, 'llm', 2), ('nebuly-ai/nebullvm', 0.5362703800201416, 'perf', 2), ('cg123/mergekit', 0.5349216461181641, 'llm', 1), ('hiyouga/llama-factory', 0.5283878445625305, 'llm', 3), ('hiyouga/llama-efficient-tuning', 0.528387725353241, 'llm', 3), ('deepset-ai/haystack', 0.5249264240264893, 'llm', 2), ('citadel-ai/langcheck', 0.524300754070282, 'llm', 0), ('deep-diver/pingpong', 0.5193211436271667, 'llm', 0), ('titanml/takeoff', 0.5190406441688538, 'llm', 1), ('thudm/chatglm2-6b', 0.5179040431976318, 'llm', 2), ('intel/intel-extension-for-transformers', 0.5162841081619263, 'perf', 1), ('agenta-ai/agenta', 0.5125582218170166, 'llm', 3), ('next-gpt/next-gpt', 0.5125154256820679, 'llm', 2), ('lianjiatech/belle', 0.5085573792457581, 'llm', 0), ('opengvlab/omniquant', 0.5080553293228149, 'llm', 2), ('jina-ai/thinkgpt', 0.5078703165054321, 'llm', 0), ('juncongmoo/pyllama', 0.505372941493988, 'llm', 0), ('dylanhogg/llmgraph', 0.5024334192276001, 'ml', 1)] | 21 | 5 | null | 3.06 | 54 | 20 | 8 | 0 | 10 | 15 | 10 | 54 | 56 | 90 | 1 | 53 |
688 | ml-dl | https://github.com/iperov/deepfacelab | [] | null | [] | [] | null | null | null | iperov/deepfacelab | DeepFaceLab | 44,089 | 9,977 | 1,114 | Python | null | DeepFaceLab is the leading software for creating deepfakes. | iperov | 2024-01-14 | 2018-06-04 | 295 | 149.381897 | null | DeepFaceLab is the leading software for creating deepfakes. | ['arxiv', 'creating-deepfakes', 'deep-face-swap', 'deep-learning', 'deep-neural-networks', 'deepface', 'deepfacelab', 'deepfakes', 'deeplearning', 'face-swap', 'faceswap', 'fakeapp', 'machine-learning', 'neural-nets', 'neural-networks'] | ['arxiv', 'creating-deepfakes', 'deep-face-swap', 'deep-learning', 'deep-neural-networks', 'deepface', 'deepfacelab', 'deepfakes', 'deeplearning', 'face-swap', 'faceswap', 'fakeapp', 'machine-learning', 'neural-nets', 'neural-networks'] | 2023-04-27 | [('deepfakes/faceswap', 0.8627434968948364, 'ml-dl', 12), ('nvidia/deeplearningexamples', 0.5346398949623108, 'ml-dl', 1), ('open-mmlab/mmediting', 0.5308938026428223, 'ml', 1), ('huggingface/huggingface_hub', 0.5282143950462341, 'ml', 2), ('rwightman/pytorch-image-models', 0.5256627798080444, 'ml-dl', 0), ('fepegar/torchio', 0.5164421200752258, 'ml-dl', 2), ('deepchecks/deepchecks', 0.515143871307373, 'data', 2), ('deepmind/deepmind-research', 0.5150367021560669, 'ml', 0), ('huggingface/datasets', 0.5133152008056641, 'nlp', 2), ('microsoft/deepspeed', 0.5126926302909851, 'ml-dl', 2), ('alpa-projects/alpa', 0.511199414730072, 'ml-dl', 2), ('awslabs/autogluon', 0.5111877918243408, 'ml', 2), ('christoschristofidis/awesome-deep-learning', 0.5062230825424194, 'study', 2), ('neuralmagic/sparseml', 0.5047088861465454, 'ml-dl', 0), ('keras-team/autokeras', 0.5044635534286499, 'ml-dl', 2)] | 22 | 0 | null | 0.02 | 11 | 2 | 68 | 9 | 0 | 0 | 0 | 11 | 5 | 90 | 0.5 | 52 |
933 | llm | https://github.com/karpathy/mingpt | [] | null | [] | [] | null | null | null | karpathy/mingpt | minGPT | 17,452 | 2,101 | 249 | Python | null | A minimal PyTorch re-implementation of the OpenAI GPT (Generative Pretrained Transformer) training | karpathy | 2024-01-14 | 2020-08-17 | 180 | 96.878668 | null | A minimal PyTorch re-implementation of the OpenAI GPT (Generative Pretrained Transformer) training | [] | [] | 2023-01-08 | [('ist-daslab/gptq', 0.7072771787643433, 'llm', 0), ('minimaxir/gpt-2-simple', 0.6132301688194275, 'llm', 0), ('nvidia/apex', 0.6042015552520752, 'ml-dl', 0), ('bigscience-workshop/megatron-deepspeed', 0.6039530634880066, 'llm', 0), ('microsoft/megatron-deepspeed', 0.6039530634880066, 'llm', 0), ('nielsrogge/transformers-tutorials', 0.6038249135017395, 'study', 0), ('huggingface/optimum', 0.5994217395782471, 'ml', 0), ('pytorch-labs/gpt-fast', 0.5887901782989502, 'llm', 0), ('nvlabs/gcvit', 0.5820482969284058, 'diffusion', 0), ('huggingface/transformers', 0.5732393860816956, 'nlp', 0), ('eleutherai/gpt-neo', 0.5706537961959839, 'llm', 0), ('eleutherai/gpt-neox', 0.5511136651039124, 'llm', 0), ('karpathy/nanogpt', 0.5497898459434509, 'llm', 0), ('pytorch/ignite', 0.548469066619873, 'ml-dl', 0), ('explosion/spacy-transformers', 0.5479704141616821, 'llm', 0), ('alignmentresearch/tuned-lens', 0.5471770763397217, 'ml-interpretability', 0), ('huggingface/accelerate', 0.5470962524414062, 'ml', 0), ('eleutherai/knowledge-neurons', 0.5461640954017639, 'ml-interpretability', 0), ('promptslab/awesome-prompt-engineering', 0.5419448018074036, 'study', 0), ('nvidia/megatron-lm', 0.5354270935058594, 'llm', 0), ('mrdbourke/pytorch-deep-learning', 0.5222852230072021, 'study', 0), ('lucidrains/vit-pytorch', 0.5179693102836609, 'ml-dl', 0), ('intel/intel-extension-for-pytorch', 0.5158076882362366, 'perf', 0), ('openai/image-gpt', 0.5077084302902222, 'llm', 0), ('apple/ml-ane-transformers', 0.5006250143051147, 'ml', 0)] | 15 | 4 | null | 0 | 5 | 1 | 42 | 12 | 0 | 0 | 0 | 5 | 4 | 90 | 0.8 | 52 |
505 | ml | https://github.com/tensorflow/tensor2tensor | [] | null | [] | [] | null | null | null | tensorflow/tensor2tensor | tensor2tensor | 14,478 | 3,407 | 468 | Python | null | Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research. | tensorflow | 2024-01-14 | 2017-06-15 | 345 | 41.878512 | https://avatars.githubusercontent.com/u/15658638?v=4 | Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research. | ['deep-learning', 'machine-learning', 'machine-translation', 'reinforcement-learning', 'tpu'] | ['deep-learning', 'machine-learning', 'machine-translation', 'reinforcement-learning', 'tpu'] | 2023-04-01 | [('tensorlayer/tensorlayer', 0.6871770024299622, 'ml-rl', 2), ('huggingface/datasets', 0.6564465761184692, 'nlp', 2), ('tensorflow/tensorflow', 0.6497355103492737, 'ml-dl', 2), ('unity-technologies/ml-agents', 0.6379924416542053, 'ml-rl', 3), ('microsoft/deepspeed', 0.6303361058235168, 'ml-dl', 2), ('explosion/thinc', 0.626385509967804, 'ml-dl', 2), ('nvidia/deeplearningexamples', 0.6179958581924438, 'ml-dl', 1), ('google/trax', 0.615790605545044, 'ml-dl', 3), ('keras-rl/keras-rl', 0.6136747002601624, 'ml-rl', 2), ('denys88/rl_games', 0.6038516163825989, 'ml-rl', 2), ('mosaicml/composer', 0.5954499244689941, 'ml-dl', 2), ('deepmind/dm_control', 0.5927808880805969, 'ml-rl', 3), ('d2l-ai/d2l-en', 0.5922254920005798, 'study', 3), ('keras-team/autokeras', 0.5915209650993347, 'ml-dl', 2), ('rasbt/machine-learning-book', 0.5888902544975281, 'study', 2), ('determined-ai/determined', 0.5887267589569092, 'ml-ops', 2), ('google-research/google-research', 0.5845038890838623, 'ml', 1), ('keras-team/keras', 0.5834200382232666, 'ml-dl', 2), ('salesforce/warp-drive', 0.5827850699424744, 'ml-rl', 2), ('firmai/industry-machine-learning', 0.5822129249572754, 'study', 1), ('pytorch/ignite', 0.5802233219146729, 'ml-dl', 2), ('uber/petastorm', 0.5750295519828796, 'data', 2), ('rasbt/deeplearning-models', 0.5731253623962402, 'ml-dl', 0), ('openai/spinningup', 0.5718406438827515, 'study', 0), ('thu-ml/tianshou', 0.5683255791664124, 'ml-rl', 0), ('alirezadir/machine-learning-interview-enlightener', 0.5649195909500122, 'study', 2), ('microsoft/onnxruntime', 0.564765214920044, 'ml', 2), ('mlflow/mlflow', 0.5625280737876892, 'ml-ops', 1), ('microsoft/nni', 0.5608126521110535, 'ml', 2), ('google-research/language', 0.5586530566215515, 'nlp', 1), ('ddbourgin/numpy-ml', 0.5577438473701477, 'ml', 2), ('lutzroeder/netron', 0.5569348335266113, 'ml', 2), ('udlbook/udlbook', 0.5561156868934631, 'study', 1), ('microsoft/jarvis', 0.5555034279823303, 'llm', 1), ('aiqc/aiqc', 0.5551923513412476, 'ml-ops', 0), ('facebookresearch/habitat-lab', 0.5538010597229004, 'sim', 2), ('mrdbourke/pytorch-deep-learning', 0.5526059865951538, 'study', 2), ('alpa-projects/alpa', 0.5523074865341187, 'ml-dl', 2), ('onnx/onnx', 0.5511443018913269, 'ml', 2), ('ray-project/ray', 0.5493798851966858, 'ml-ops', 3), ('bentoml/bentoml', 0.5486508011817932, 'ml-ops', 2), ('ageron/handson-ml2', 0.5483447313308716, 'ml', 0), ('merantix-momentum/squirrel-core', 0.5476986765861511, 'ml', 2), ('deepchecks/deepchecks', 0.5471684336662292, 'data', 2), ('ml-for-high-risk-apps-book/machine-learning-for-high-risk-applications-book', 0.5430309772491455, 'study', 2), ('deepmodeling/deepmd-kit', 0.5421066880226135, 'sim', 1), ('allenai/allennlp', 0.5407803058624268, 'nlp', 1), ('fepegar/torchio', 0.5404090285301208, 'ml-dl', 2), ('pytorch/rl', 0.539577305316925, 'ml-rl', 2), ('apache/incubator-mxnet', 0.5354474186897278, 'ml-dl', 0), ('tensorflow/data-validation', 0.5354011654853821, 'ml-ops', 0), ('salesforce/deeptime', 0.5346342325210571, 'time-series', 1), ('cerlymarco/medium_notebook', 0.5338510870933533, 'study', 2), ('paddlepaddle/paddle', 0.5337570905685425, 'ml-dl', 2), ('oegedijk/explainerdashboard', 0.5324363708496094, 'ml-interpretability', 0), ('ashleve/lightning-hydra-template', 0.5318635106086731, 'util', 1), ('neuralmagic/deepsparse', 0.5306204557418823, 'nlp', 0), ('google/dopamine', 0.5282601118087769, 'ml-rl', 0), ('deeppavlov/deeppavlov', 0.5281538963317871, 'nlp', 2), ('huggingface/transformers', 0.5262730717658997, 'nlp', 2), ('microsoft/flaml', 0.5255224704742432, 'ml', 2), ('intellabs/bayesian-torch', 0.5250702500343323, 'ml', 1), ('koaning/human-learn', 0.5240030884742737, 'data', 1), ('tatsu-lab/stanford_alpaca', 0.5224913954734802, 'llm', 1), ('ggerganov/ggml', 0.519944965839386, 'ml', 1), ('googlecloudplatform/vertex-ai-samples', 0.5193653702735901, 'ml', 0), ('xplainable/xplainable', 0.5187652707099915, 'ml-interpretability', 1), ('hpcaitech/colossalai', 0.5182396173477173, 'llm', 1), ('neuralmagic/sparseml', 0.5167617201805115, 'ml-dl', 0), ('aistream-peelout/flow-forecast', 0.5155697464942932, 'time-series', 1), ('gradio-app/gradio', 0.5152331590652466, 'viz', 2), ('google/vizier', 0.5147285461425781, 'ml', 2), ('oml-team/open-metric-learning', 0.5146539211273193, 'ml', 1), ('aws/sagemaker-python-sdk', 0.5145456790924072, 'ml', 1), ('deepmind/dm-haiku', 0.5139560103416443, 'ml-dl', 2), ('xl0/lovely-tensors', 0.5108433961868286, 'ml-dl', 1), ('microsoft/qlib', 0.5105899572372437, 'finance', 2), ('udacity/deep-learning-v2-pytorch', 0.5104150176048279, 'study', 1), ('activeloopai/deeplake', 0.5102148652076721, 'ml-ops', 2), ('azavea/raster-vision', 0.5076959133148193, 'gis', 2), ('karpathy/micrograd', 0.5075839757919312, 'study', 0), ('facebookresearch/theseus', 0.5072576403617859, 'math', 1), ('project-monai/monai', 0.5071702599525452, 'ml', 1), ('csinva/imodels', 0.5070091485977173, 'ml', 1), ('pytorchlightning/pytorch-lightning', 0.5069326758384705, 'ml-dl', 2), ('intel/intel-extension-for-pytorch', 0.5063350200653076, 'perf', 2), ('polyaxon/polyaxon', 0.5061532258987427, 'ml-ops', 3), ('amanchadha/coursera-deep-learning-specialization', 0.5060564875602722, 'study', 1), ('horovod/horovod', 0.5053731799125671, 'ml-ops', 2), ('optimalscale/lmflow', 0.5030723810195923, 'llm', 1), ('interpretml/interpret', 0.5023159980773926, 'ml-interpretability', 1)] | 244 | 7 | null | 0.02 | 0 | 0 | 80 | 10 | 0 | 12 | 12 | 0 | 0 | 90 | 0 | 52 |
1,644 | util | https://github.com/dbader/schedule | ['scheduler'] | null | [] | [] | 1 | null | null | dbader/schedule | schedule | 11,297 | 996 | 216 | Python | https://schedule.readthedocs.io/ | Python job scheduling for humans. | dbader | 2024-01-13 | 2013-05-19 | 558 | 20.235159 | null | Python job scheduling for humans. | [] | ['scheduler'] | 2023-12-10 | [('agronholm/apscheduler', 0.7123571634292603, 'util', 0), ('dask/dask', 0.5425211191177368, 'perf', 0), ('pyinvoke/invoke', 0.514901876449585, 'util', 0)] | 59 | 5 | null | 0.27 | 16 | 6 | 130 | 1 | 0 | 2 | 2 | 16 | 29 | 90 | 1.8 | 52 |
166 | nlp | https://github.com/doccano/doccano | [] | null | [] | [] | null | null | null | doccano/doccano | doccano | 8,649 | 1,653 | 129 | Python | https://doccano.herokuapp.com | Open source annotation tool for machine learning practitioners. | doccano | 2024-01-14 | 2018-05-09 | 298 | 28.940249 | https://avatars.githubusercontent.com/u/58067660?v=4 | Open source annotation tool for machine learning practitioners. | ['annotation-tool', 'data-labeling', 'dataset', 'datasets', 'machine-learning', 'natural-language-processing', 'nuxt', 'nuxtjs', 'text-annotation', 'vue', 'vuejs'] | ['annotation-tool', 'data-labeling', 'dataset', 'datasets', 'machine-learning', 'natural-language-processing', 'nuxt', 'nuxtjs', 'text-annotation', 'vue', 'vuejs'] | 2023-08-10 | [('argilla-io/argilla', 0.6546259522438049, 'nlp', 4), ('mlflow/mlflow', 0.6210007667541504, 'ml-ops', 1), ('hegelai/prompttools', 0.6014738082885742, 'llm', 1), ('rasahq/rasa', 0.5829582214355469, 'llm', 2), ('tensorflow/tensorflow', 0.5740697383880615, 'ml-dl', 1), ('microsoft/nni', 0.573647141456604, 'ml', 1), ('tigerlab-ai/tiger', 0.5629643797874451, 'llm', 0), ('wandb/client', 0.5617552399635315, 'ml', 1), ('polyaxon/polyaxon', 0.5601885914802551, 'ml-ops', 1), ('cleanlab/cleanlab', 0.5571958422660828, 'ml', 2), ('alirezadir/machine-learning-interview-enlightener', 0.5449758768081665, 'study', 1), ('aimhubio/aim', 0.5435435771942139, 'ml-ops', 1), ('huggingface/datasets', 0.5418587923049927, 'nlp', 3), ('patchy631/machine-learning', 0.5417935848236084, 'ml', 0), ('ai4finance-foundation/fingpt', 0.5407078862190247, 'finance', 1), ('onnx/onnx', 0.5324045419692993, 'ml', 1), ('google-research/language', 0.5283976197242737, 'nlp', 2), ('polyaxon/datatile', 0.5258282423019409, 'pandas', 0), ('nltk/nltk', 0.5226835608482361, 'nlp', 2), ('determined-ai/determined', 0.5204253196716309, 'ml-ops', 1), ('districtdatalabs/yellowbrick', 0.5116096138954163, 'ml', 1), ('featurelabs/featuretools', 0.5110718607902527, 'ml', 1), ('firmai/industry-machine-learning', 0.50450199842453, 'study', 1)] | 104 | 4 | null | 1.87 | 49 | 9 | 69 | 5 | 1 | 6 | 1 | 49 | 62 | 90 | 1.3 | 52 |
28 | ml-dl | https://github.com/google/trax | [] | null | [] | [] | null | null | null | google/trax | trax | 7,858 | 818 | 148 | Python | null | Trax — Deep Learning with Clear Code and Speed | google | 2024-01-14 | 2019-10-05 | 225 | 34.858048 | https://avatars.githubusercontent.com/u/1342004?v=4 | Trax — Deep Learning with Clear Code and Speed | ['deep-learning', 'deep-reinforcement-learning', 'jax', 'machine-learning', 'numpy', 'reinforcement-learning', 'transformer'] | ['deep-learning', 'deep-reinforcement-learning', 'jax', 'machine-learning', 'numpy', 'reinforcement-learning', 'transformer'] | 2023-11-15 | [('keras-team/keras', 0.7093995809555054, 'ml-dl', 3), ('keras-rl/keras-rl', 0.6790956258773804, 'ml-rl', 2), ('tensorlayer/tensorlayer', 0.6657304167747498, 'ml-rl', 2), ('explosion/thinc', 0.6631956696510315, 'ml-dl', 3), ('huggingface/transformers', 0.659750759601593, 'nlp', 4), ('deepmind/dm-haiku', 0.6491378545761108, 'ml-dl', 3), ('denys88/rl_games', 0.6481664776802063, 'ml-rl', 2), ('ddbourgin/numpy-ml', 0.6432744264602661, 'ml', 2), ('salesforce/warp-drive', 0.640018880367279, 'ml-rl', 2), ('deepmind/dm_control', 0.6313595771789551, 'ml-rl', 3), ('thu-ml/tianshou', 0.625861406326294, 'ml-rl', 0), ('tensorflow/tensor2tensor', 0.615790605545044, 'ml', 3), ('tensorflow/tensorflow', 0.6033942103385925, 'ml-dl', 2), ('unity-technologies/ml-agents', 0.5988940596580505, 'ml-rl', 4), ('pytorch/rl', 0.5977087020874023, 'ml-rl', 2), ('microsoft/deepspeed', 0.5964576601982117, 'ml-dl', 2), ('alpa-projects/alpa', 0.5918993949890137, 'ml-dl', 3), ('d2l-ai/d2l-en', 0.587719202041626, 'study', 4), ('apache/incubator-mxnet', 0.583592414855957, 'ml-dl', 0), ('mosaicml/composer', 0.5817326307296753, 'ml-dl', 2), ('nvidia/deeplearningexamples', 0.5805593132972717, 'ml-dl', 1), ('onnx/onnx', 0.5766066908836365, 'ml', 2), ('kzl/decision-transformer', 0.5694336891174316, 'ml-rl', 0), ('ray-project/ray', 0.568706214427948, 'ml-ops', 3), ('ai4finance-foundation/finrl', 0.5627601146697998, 'finance', 2), ('gradio-app/gradio', 0.5625860095024109, 'viz', 2), ('microsoft/onnxruntime', 0.5622458457946777, 'ml', 2), ('aiqc/aiqc', 0.555395245552063, 'ml-ops', 0), ('pytorchlightning/pytorch-lightning', 0.550957202911377, 'ml-dl', 2), ('determined-ai/determined', 0.5475213527679443, 'ml-ops', 2), ('huggingface/optimum', 0.5470688343048096, 'ml', 0), ('ml-tooling/opyrator', 0.5450164079666138, 'viz', 1), ('pyro-ppl/pyro', 0.539913535118103, 'ml-dl', 2), ('huggingface/datasets', 0.5373858213424683, 'nlp', 3), ('arogozhnikov/einops', 0.5327727198600769, 'ml-dl', 3), ('openai/baselines', 0.5311444401741028, 'ml-rl', 0), ('karpathy/micrograd', 0.5311139822006226, 'study', 0), ('keras-team/autokeras', 0.5302404761314392, 'ml-dl', 2), ('deepmodeling/deepmd-kit', 0.5293905735015869, 'sim', 1), ('google/flax', 0.5265333652496338, 'ml-dl', 1), ('microsoft/nni', 0.5194593071937561, 'ml', 2), ('deepmind/pysc2', 0.5190588235855103, 'ml-rl', 2), ('thilinarajapakse/simpletransformers', 0.5190243721008301, 'nlp', 0), ('bigscience-workshop/petals', 0.5161072611808777, 'data', 3), ('ludwig-ai/ludwig', 0.5144282579421997, 'ml-ops', 2), ('koaning/human-learn', 0.514390230178833, 'data', 1), ('tlkh/tf-metal-experiments', 0.5128339529037476, 'perf', 1), ('bentoml/bentoml', 0.5128212571144104, 'ml-ops', 2), ('ml-for-high-risk-apps-book/machine-learning-for-high-risk-applications-book', 0.512615442276001, 'study', 2), ('modularml/mojo', 0.5107121467590332, 'util', 1), ('uber/petastorm', 0.5106483101844788, 'data', 2), ('awslabs/autogluon', 0.5100558996200562, 'ml', 2), ('google/dopamine', 0.5098437666893005, 'ml-rl', 0), ('online-ml/river', 0.5071595311164856, 'ml', 1), ('pytorch/pytorch', 0.5070921778678894, 'ml-dl', 3), ('inspirai/timechamber', 0.5059916377067566, 'sim', 2), ('huggingface/autotrain-advanced', 0.5045042037963867, 'ml', 2), ('facebookresearch/habitat-lab', 0.5037897825241089, 'sim', 3), ('young-geng/easylm', 0.5037261843681335, 'llm', 3), ('wandb/client', 0.502128541469574, 'ml', 4), ('rwightman/pytorch-image-models', 0.5016557574272156, 'ml-dl', 0), ('xplainable/xplainable', 0.5001837015151978, 'ml-interpretability', 1)] | 79 | 5 | null | 0.1 | 8 | 3 | 52 | 2 | 0 | 4 | 4 | 8 | 4 | 90 | 0.5 | 52 |
646 | profiling | https://github.com/joerick/pyinstrument | [] | null | [] | [] | null | null | null | joerick/pyinstrument | pyinstrument | 5,802 | 235 | 53 | Python | https://pyinstrument.readthedocs.io/ | 🚴 Call stack profiler for Python. Shows you why your code is slow! | joerick | 2024-01-13 | 2014-03-13 | 515 | 11.250416 | null | 🚴 Call stack profiler for Python. Shows you why your code is slow! | ['async', 'django', 'performance', 'profile', 'profiler'] | ['async', 'django', 'performance', 'profile', 'profiler'] | 2024-01-06 | [('sumerc/yappi', 0.6088473200798035, 'profiling', 2), ('benfred/py-spy', 0.5834751129150391, 'profiling', 1), ('jiffyclub/snakeviz', 0.5636839866638184, 'profiling', 0), ('pythonspeed/filprofiler', 0.5218971967697144, 'profiling', 0), ('pyutils/line_profiler', 0.5132960677146912, 'profiling', 0)] | 55 | 7 | null | 1.98 | 18 | 10 | 120 | 0 | 5 | 6 | 5 | 18 | 34 | 90 | 1.9 | 52 |
1,167 | study | https://github.com/gkamradt/langchain-tutorials | [] | null | [] | [] | null | null | null | gkamradt/langchain-tutorials | langchain-tutorials | 5,691 | 1,717 | 97 | Jupyter Notebook | null | Overview and tutorial of the LangChain Library | gkamradt | 2024-01-14 | 2023-02-13 | 50 | 113.495726 | null | Overview and tutorial of the LangChain Library | [] | [] | 2023-11-23 | [('prefecthq/langchain-prefect', 0.7797976732254028, 'llm', 0), ('langchain-ai/langgraph', 0.6401094794273376, 'llm', 0), ('logspace-ai/langflow', 0.5531355142593384, 'llm', 0), ('alphasecio/langchain-examples', 0.5529564023017883, 'llm', 0), ('langchain-ai/chat-langchain', 0.5390220284461975, 'llm', 0), ('langchain-ai/langsmith-sdk', 0.5348765254020691, 'llm', 0), ('hannibal046/awesome-llm', 0.5057912468910217, 'study', 0)] | 17 | 4 | null | 1.75 | 1 | 0 | 11 | 2 | 0 | 0 | 0 | 1 | 0 | 90 | 0 | 52 |
15 | ml-dl | https://github.com/skorch-dev/skorch | [] | null | [] | [] | null | null | null | skorch-dev/skorch | skorch | 5,518 | 379 | 82 | Jupyter Notebook | null | A scikit-learn compatible neural network library that wraps PyTorch | skorch-dev | 2024-01-13 | 2017-07-18 | 341 | 16.181818 | https://avatars.githubusercontent.com/u/47992320?v=4 | A scikit-learn compatible neural network library that wraps PyTorch | ['huggingface', 'machine-learning', 'pytorch', 'scikit-learn'] | ['huggingface', 'machine-learning', 'pytorch', 'scikit-learn'] | 2024-01-08 | [('pytorch/ignite', 0.8268391489982605, 'ml-dl', 2), ('rasbt/machine-learning-book', 0.777802050113678, 'study', 3), ('intel/intel-extension-for-pytorch', 0.7512941360473633, 'perf', 2), ('mrdbourke/pytorch-deep-learning', 0.6955669522285461, 'study', 2), ('nvidia/apex', 0.6882312893867493, 'ml-dl', 0), ('huggingface/huggingface_hub', 0.6804894804954529, 'ml', 2), ('pyg-team/pytorch_geometric', 0.6679598093032837, 'ml-dl', 1), ('karpathy/micrograd', 0.644400417804718, 'study', 0), ('allenai/allennlp', 0.639916181564331, 'nlp', 1), ('pytorch/data', 0.631018877029419, 'data', 0), ('pytorch/rl', 0.6245636940002441, 'ml-rl', 2), ('hysts/pytorch_image_classification', 0.619719386100769, 'ml-dl', 1), ('pytorch/captum', 0.6131489276885986, 'ml-interpretability', 0), ('xl0/lovely-tensors', 0.612391471862793, 'ml-dl', 1), ('huggingface/accelerate', 0.6029394268989563, 'ml', 0), ('ashleve/lightning-hydra-template', 0.6017202138900757, 'util', 1), ('huggingface/transformers', 0.6005750894546509, 'nlp', 2), ('arogozhnikov/einops', 0.599236786365509, 'ml-dl', 1), ('ggerganov/ggml', 0.5978483557701111, 'ml', 1), ('neuralmagic/sparseml', 0.5961683988571167, 'ml-dl', 1), ('ageron/handson-ml2', 0.5958633422851562, 'ml', 0), ('lucidrains/imagen-pytorch', 0.5915490388870239, 'ml-dl', 0), ('denys88/rl_games', 0.5850237011909485, 'ml-rl', 1), ('facebookresearch/pytorch3d', 0.5811278223991394, 'ml-dl', 0), ('aws/sagemaker-python-sdk', 0.5779036283493042, 'ml', 3), ('lightly-ai/lightly', 0.5767190456390381, 'ml', 2), ('rentruewang/koila', 0.5766161680221558, 'ml', 2), ('nicolas-chaulet/torch-points3d', 0.5687388777732849, 'ml', 0), ('microsoft/onnxruntime', 0.5680661797523499, 'ml', 3), ('tensorlayer/tensorlayer', 0.5663044452667236, 'ml-rl', 0), ('koaning/human-learn', 0.5661436319351196, 'data', 2), ('koaning/scikit-lego', 0.5642397999763489, 'ml', 2), ('speechbrain/speechbrain', 0.5581321120262146, 'nlp', 2), ('intellabs/bayesian-torch', 0.5576133131980896, 'ml', 1), ('laekov/fastmoe', 0.5523069500923157, 'ml', 0), ('facebookresearch/dinov2', 0.5518595576286316, 'diffusion', 0), ('mdbloice/augmentor', 0.5499297976493835, 'ml', 1), ('uber/petastorm', 0.5473853945732117, 'data', 2), ('tensorflow/tensorflow', 0.5416784286499023, 'ml-dl', 1), ('determined-ai/determined', 0.5415751338005066, 'ml-ops', 2), ('thu-ml/tianshou', 0.5379747152328491, 'ml-rl', 1), ('lucidrains/dalle2-pytorch', 0.5362039804458618, 'diffusion', 0), ('kshitij12345/torchnnprofiler', 0.5358409881591797, 'profiling', 0), ('cvxgrp/pymde', 0.5335275530815125, 'ml', 2), ('huggingface/exporters', 0.532882034778595, 'ml', 2), ('horovod/horovod', 0.5322457551956177, 'ml-ops', 2), ('nvlabs/gcvit', 0.531648576259613, 'diffusion', 0), ('pytorch/pytorch', 0.5300707817077637, 'ml-dl', 1), ('ddbourgin/numpy-ml', 0.526438295841217, 'ml', 1), ('aistream-peelout/flow-forecast', 0.5259057879447937, 'time-series', 1), ('explosion/thinc', 0.525391161441803, 'ml-dl', 2), ('salesforce/blip', 0.5246773362159729, 'diffusion', 0), ('tensorflow/lucid', 0.5241331458091736, 'ml-interpretability', 1), ('lutzroeder/netron', 0.5238518714904785, 'ml', 2), ('nvidia/deeplearningexamples', 0.5229756832122803, 'ml-dl', 1), ('tensorly/tensorly', 0.5220605134963989, 'ml-dl', 2), ('pytorch/torchrec', 0.5207085609436035, 'ml-dl', 1), ('oml-team/open-metric-learning', 0.5191598534584045, 'ml', 1), ('iryna-kondr/scikit-llm', 0.5175820589065552, 'llm', 2), ('fchollet/deep-learning-with-python-notebooks', 0.5172905325889587, 'study', 0), ('jeshraghian/snntorch', 0.5167255401611328, 'ml-dl', 2), ('pycaret/pycaret', 0.5164783000946045, 'ml', 1), ('tlkh/tf-metal-experiments', 0.5154433250427246, 'perf', 0), ('keras-team/keras', 0.5138635635375977, 'ml-dl', 2), ('rdkit/rdkit', 0.510020911693573, 'sim', 0), ('nyandwi/modernconvnets', 0.509011447429657, 'ml-dl', 0), ('davidmrau/mixture-of-experts', 0.5069704055786133, 'ml', 1), ('salesforce/deeptime', 0.506636381149292, 'time-series', 0), ('huggingface/datasets', 0.5065990686416626, 'nlp', 2), ('qdrant/quaterion', 0.506058394908905, 'ml', 2), ('pytorch/glow', 0.5048933029174805, 'ml', 0), ('deepmodeling/deepmd-kit', 0.5047734379768372, 'sim', 0), ('probml/pyprobml', 0.5041447877883911, 'ml', 2), ('pytorch/botorch', 0.5020517110824585, 'ml-dl', 0), ('gradio-app/gradio', 0.5019252896308899, 'viz', 1), ('rasbt/mlxtend', 0.5017459988594055, 'ml', 1), ('tensorflow/similarity', 0.5013630986213684, 'ml-dl', 1), ('kubeflow/fairing', 0.501205325126648, 'ml-ops', 0), ('dmlc/dgl', 0.5011494755744934, 'ml-dl', 0)] | 61 | 5 | null | 0.96 | 18 | 13 | 79 | 0 | 3 | 3 | 3 | 18 | 29 | 90 | 1.6 | 52 |
823 | typing | https://github.com/python-attrs/attrs | [] | null | [] | [] | 1 | null | null | python-attrs/attrs | attrs | 4,977 | 388 | 65 | Python | https://www.attrs.org/ | Python Classes Without Boilerplate | python-attrs | 2024-01-13 | 2015-01-27 | 470 | 10.589362 | https://avatars.githubusercontent.com/u/25880274?v=4 | Python Classes Without Boilerplate | ['attributes', 'boilerplate', 'classes', 'oop'] | ['attributes', 'boilerplate', 'classes', 'oop'] | 2024-01-13 | [('martinheinz/python-project-blueprint', 0.521111011505127, 'template', 1), ('landscapeio/prospector', 0.5136226415634155, 'util', 0), ('xrudelis/pytrait', 0.5021693110466003, 'util', 0)] | 154 | 3 | null | 3.29 | 49 | 36 | 109 | 0 | 2 | 3 | 2 | 49 | 124 | 90 | 2.5 | 52 |
213 | data | https://github.com/facebookresearch/augly | [] | null | [] | [] | null | null | null | facebookresearch/augly | AugLy | 4,853 | 295 | 67 | Python | https://ai.facebook.com/blog/augly-a-new-data-augmentation-library-to-help-build-more-robust-ai-models/ | A data augmentations library for audio, image, text, and video. | facebookresearch | 2024-01-12 | 2021-06-09 | 137 | 35.203109 | https://avatars.githubusercontent.com/u/16943930?v=4 | A data augmentations library for audio, image, text, and video. | [] | [] | 2023-11-08 | [('albumentations-team/albumentations', 0.6632611751556396, 'ml-dl', 0), ('mdbloice/augmentor', 0.6478663086891174, 'ml', 0), ('aleju/imgaug', 0.5716978311538696, 'ml', 0), ('nomic-ai/nomic', 0.528243899345398, 'nlp', 0), ('researchmm/sttn', 0.5215305089950562, 'ml-dl', 0)] | 34 | 3 | null | 0.21 | 6 | 2 | 32 | 2 | 0 | 3 | 3 | 6 | 14 | 90 | 2.3 | 52 |
92 | ml | https://github.com/uber/causalml | [] | null | [] | [] | null | null | null | uber/causalml | causalml | 4,514 | 753 | 80 | Python | null | Uplift modeling and causal inference with machine learning algorithms | uber | 2024-01-13 | 2019-07-09 | 238 | 18.966387 | https://avatars.githubusercontent.com/u/538264?v=4 | Uplift modeling and causal inference with machine learning algorithms | ['causal-inference', 'incubation', 'machine-learning', 'uplift-modeling'] | ['causal-inference', 'incubation', 'machine-learning', 'uplift-modeling'] | 2024-01-12 | [('py-why/econml', 0.5542822480201721, 'ml', 2)] | 59 | 4 | null | 1.6 | 90 | 74 | 55 | 0 | 2 | 3 | 2 | 90 | 90 | 90 | 1 | 52 |
199 | viz | https://github.com/man-group/dtale | [] | null | [] | [] | null | null | null | man-group/dtale | dtale | 4,398 | 371 | 73 | TypeScript | http://alphatechadmin.pythonanywhere.com | Visualizer for pandas data structures | man-group | 2024-01-14 | 2019-07-15 | 237 | 18.545783 | https://avatars.githubusercontent.com/u/5859004?v=4 | Visualizer for pandas data structures | ['data-analysis', 'data-science', 'data-visualization', 'flask', 'ipython', 'jupyter-notebook', 'pandas', 'plotly-dash', 'python27', 'react', 'react-virtualized', 'visualization', 'xarray'] | ['data-analysis', 'data-science', 'data-visualization', 'flask', 'ipython', 'jupyter-notebook', 'pandas', 'plotly-dash', 'python27', 'react', 'react-virtualized', 'visualization', 'xarray'] | 2024-01-05 | [('mwaskom/seaborn', 0.73142409324646, 'viz', 3), ('holoviz/panel', 0.7240487337112427, 'viz', 0), ('kanaries/pygwalker', 0.7181293368339539, 'pandas', 3), ('lux-org/lux', 0.7073760032653809, 'viz', 3), ('holoviz/holoviz', 0.7002979516983032, 'viz', 0), ('bokeh/bokeh', 0.6867046356201172, 'viz', 1), ('plotly/plotly.py', 0.6799153089523315, 'viz', 3), ('plotly/dash', 0.6759928464889526, 'viz', 5), ('residentmario/geoplot', 0.6714649796485901, 'gis', 0), ('holoviz/hvplot', 0.6696478724479675, 'pandas', 0), ('pandas-dev/pandas', 0.6628751754760742, 'pandas', 3), ('altair-viz/altair', 0.6516591310501099, 'viz', 1), ('jakevdp/pythondatasciencehandbook', 0.6342079639434814, 'study', 2), ('pyqtgraph/pyqtgraph', 0.6243569850921631, 'viz', 1), ('tkrabel/bamboolib', 0.6187593936920166, 'pandas', 2), ('enthought/mayavi', 0.6186628937721252, 'viz', 1), ('adamerose/pandasgui', 0.6185036897659302, 'pandas', 1), ('vizzuhq/ipyvizzu', 0.6090724468231201, 'jupyter', 3), ('vaexio/vaex', 0.6020064353942871, 'perf', 2), ('wesm/pydata-book', 0.5984211564064026, 'study', 0), ('polyaxon/datatile', 0.5954803824424744, 'pandas', 3), ('scitools/iris', 0.5857634544372559, 'gis', 1), ('mckinsey/vizro', 0.584793746471405, 'viz', 3), ('graphistry/pygraphistry', 0.5765081644058228, 'data', 2), ('has2k1/plotnine', 0.5764876008033752, 'viz', 1), ('federicoceratto/dashing', 0.5763976573944092, 'term', 0), ('matplotlib/matplotlib', 0.5757876634597778, 'viz', 2), ('rapidsai/cudf', 0.5755491256713867, 'pandas', 3), ('maartenbreddels/ipyvolume', 0.5735721588134766, 'jupyter', 1), ('krzjoa/awesome-python-data-science', 0.5704981088638306, 'study', 3), ('contextlab/hypertools', 0.5685189366340637, 'ml', 2), ('quantopian/qgrid', 0.560211718082428, 'jupyter', 0), ('lutzroeder/netron', 0.5549408793449402, 'ml', 0), ('hazyresearch/meerkat', 0.5547817945480347, 'viz', 2), ('ranaroussi/quantstats', 0.55287766456604, 'finance', 1), ('cuemacro/chartpy', 0.5520331263542175, 'viz', 0), ('mito-ds/monorepo', 0.5518519282341003, 'jupyter', 4), ('opengeos/leafmap', 0.5516546368598938, 'gis', 2), ('gregorhd/mapcompare', 0.5462871789932251, 'gis', 0), ('holoviz/datashader', 0.5459538698196411, 'gis', 0), ('dylanhogg/awesome-python', 0.5450599193572998, 'study', 2), ('ydataai/ydata-profiling', 0.5416145324707031, 'pandas', 4), ('scikit-hep/awkward-1.0', 0.5412405729293823, 'data', 2), ('datapane/datapane', 0.5396667718887329, 'viz', 1), ('giswqs/geemap', 0.5396121144294739, 'gis', 2), ('pyvista/pyvista', 0.5372913479804993, 'viz', 1), ('vispy/vispy', 0.5336646437644958, 'viz', 1), ('matplotlib/mplfinance', 0.5290730595588684, 'finance', 0), ('dagworks-inc/hamilton', 0.525833010673523, 'ml-ops', 3), ('python-odin/odin', 0.5247855186462402, 'util', 0), ('holoviz/spatialpandas', 0.5217031240463257, 'pandas', 1), ('holoviz/geoviews', 0.5216120481491089, 'gis', 0), ('geopandas/geopandas', 0.5202478766441345, 'gis', 1), ('pola-rs/polars', 0.5197016596794128, 'pandas', 0), ('scitools/cartopy', 0.519442617893219, 'gis', 0), ('raphaelquast/eomaps', 0.5189169049263, 'gis', 1), ('districtdatalabs/yellowbrick', 0.5179511308670044, 'ml', 1), ('saulpw/visidata', 0.5157226324081421, 'term', 1), ('python-visualization/folium', 0.5144950747489929, 'gis', 2), ('eleutherai/pyfra', 0.5136914253234863, 'ml', 0), ('twopirllc/pandas-ta', 0.5126270651817322, 'finance', 2), ('unionai-oss/pandera', 0.5104021430015564, 'pandas', 1), ('marcomusy/vedo', 0.5097540020942688, 'viz', 1), ('visgl/deck.gl', 0.5085725784301758, 'viz', 2), ('hi-primus/optimus', 0.5049717426300049, 'ml-ops', 2), ('tokern/data-lineage', 0.5029366612434387, 'data', 0), ('imageio/imageio', 0.5025433897972107, 'util', 0), ('koaning/drawdata', 0.5000766515731812, 'jupyter', 0)] | 30 | 2 | null | 2.42 | 30 | 18 | 55 | 0 | 30 | 37 | 30 | 30 | 42 | 90 | 1.4 | 52 |
1,779 | viz | https://github.com/renpy/renpy | [] | null | [] | [] | null | null | null | renpy/renpy | renpy | 4,311 | 648 | 144 | Ren'Py | http://www.renpy.org/ | The Ren'Py Visual Novel Engine | renpy | 2024-01-14 | 2012-06-28 | 604 | 7.128987 | https://avatars.githubusercontent.com/u/1900740?v=4 | The Ren'Py Visual Novel Engine | ['engine', 'game', 'novel', 'renpy', 'visual', 'visual-novel'] | ['engine', 'game', 'novel', 'renpy', 'visual', 'visual-novel'] | 2024-01-14 | [('pokepetter/ursina', 0.6157830357551575, 'gamedev', 0), ('kitao/pyxel', 0.5945414304733276, 'gamedev', 1), ('pygame/pygame', 0.5524816513061523, 'gamedev', 0), ('panda3d/panda3d', 0.5438269972801208, 'gamedev', 0), ('pyscript/pyscript-cli', 0.5380860567092896, 'web', 0), ('fastai/fastcore', 0.5279468894004822, 'util', 0), ('python/cpython', 0.5222944617271423, 'util', 0), ('hoffstadt/dearpygui', 0.5120179057121277, 'gui', 0), ('mynameisfiber/high_performance_python_2e', 0.5067214369773865, 'study', 0), ('zulko/moviepy', 0.5059114098548889, 'util', 0), ('gradio-app/gradio', 0.5017328858375549, 'viz', 0), ('amaargiru/pyroad', 0.500852644443512, 'study', 0)] | 194 | 1 | null | 31.38 | 346 | 293 | 141 | 0 | 8 | 47 | 8 | 345 | 606 | 90 | 1.8 | 52 |
356 | data | https://github.com/amundsen-io/amundsen | [] | null | [] | [] | null | null | null | amundsen-io/amundsen | amundsen | 4,179 | 947 | 237 | Python | https://www.amundsen.io/amundsen/ | Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data. | amundsen-io | 2024-01-13 | 2019-05-14 | 246 | 16.987805 | https://avatars.githubusercontent.com/u/67136999?v=4 | Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data. | ['amundsen', 'data-catalog', 'data-discovery', 'linuxfoundation', 'metadata'] | ['amundsen', 'data-catalog', 'data-discovery', 'linuxfoundation', 'metadata'] | 2024-01-11 | [] | 222 | 2 | null | 1.42 | 36 | 21 | 57 | 0 | 7 | 28 | 7 | 36 | 42 | 90 | 1.2 | 52 |
755 | sim | https://github.com/quantumlib/cirq | [] | null | [] | [] | null | null | null | quantumlib/cirq | Cirq | 4,027 | 948 | 192 | Python | null | A python framework for creating, editing, and invoking Noisy Intermediate Scale Quantum (NISQ) circuits. | quantumlib | 2024-01-14 | 2017-12-14 | 319 | 12.595621 | https://avatars.githubusercontent.com/u/31279789?v=4 | A python framework for creating, editing, and invoking Noisy Intermediate Scale Quantum (NISQ) circuits. | ['cirq', 'nisq', 'quantum-algorithms', 'quantum-circuits', 'quantum-computing'] | ['cirq', 'nisq', 'quantum-algorithms', 'quantum-circuits', 'quantum-computing'] | 2024-01-13 | [('cqcl/lambeq', 0.6558890342712402, 'nlp', 0), ('pyscf/pyscf', 0.6541039347648621, 'sim', 0), ('cqcl/tket', 0.6193458437919617, 'util', 1), ('jackhidary/quantumcomputingbook', 0.5691633224487305, 'study', 2), ('qiskit/qiskit', 0.5546154975891113, 'sim', 1), ('netket/netket', 0.5286350250244141, 'sim', 0), ('zeromq/pyzmq', 0.5248025059700012, 'util', 0)] | 213 | 2 | null | 4.87 | 166 | 98 | 74 | 0 | 2 | 4 | 2 | 166 | 243 | 90 | 1.5 | 52 |
802 | web | https://github.com/fastapi-users/fastapi-users | [] | null | [] | [] | null | null | null | fastapi-users/fastapi-users | fastapi-users | 3,772 | 341 | 38 | Python | https://fastapi-users.github.io/fastapi-users/ | Ready-to-use and customizable users management for FastAPI | fastapi-users | 2024-01-14 | 2019-10-05 | 225 | 16.732573 | https://avatars.githubusercontent.com/u/89578248?v=4 | Ready-to-use and customizable users management for FastAPI | ['async', 'asyncio', 'fastapi', 'fastapi-users', 'starlette', 'users'] | ['async', 'asyncio', 'fastapi', 'fastapi-users', 'starlette', 'users'] | 2023-12-28 | [('dmontagu/fastapi_client', 0.6202594637870789, 'web', 0), ('zhanymkanov/fastapi-best-practices', 0.6014936566352844, 'study', 1), ('tiangolo/fastapi', 0.599251925945282, 'web', 4), ('s3rius/fastapi-template', 0.595072329044342, 'web', 2), ('fastapi-admin/fastapi-admin', 0.5555592775344849, 'web', 1), ('asacristani/fastapi-rocket-boilerplate', 0.5379810333251953, 'template', 1), ('aminalaee/sqladmin', 0.5336757302284241, 'data', 3), ('awtkns/fastapi-crudrouter', 0.5089220404624939, 'web', 3), ('starlite-api/starlite', 0.5006967186927795, 'web', 1)] | 62 | 4 | null | 1.1 | 20 | 15 | 52 | 1 | 9 | 23 | 9 | 20 | 35 | 90 | 1.8 | 52 |
171 | ml | https://github.com/ourownstory/neural_prophet | [] | null | [] | [] | null | null | null | ourownstory/neural_prophet | neural_prophet | 3,494 | 453 | 53 | Python | https://neuralprophet.com | NeuralProphet: A simple forecasting package | ourownstory | 2024-01-12 | 2020-05-04 | 195 | 17.904832 | null | NeuralProphet: A simple forecasting package | ['artificial-intelligence', 'autoregression', 'deep-learning', 'fbprophet', 'forecast', 'forecasting', 'forecasting-algorithm', 'forecasting-model', 'machine-learning', 'neural', 'neural-network', 'neuralprophet', 'prediction', 'prophet', 'pytorch', 'seasonality', 'time-series', 'timeseries', 'trend'] | ['artificial-intelligence', 'autoregression', 'deep-learning', 'fbprophet', 'forecast', 'forecasting', 'forecasting-algorithm', 'forecasting-model', 'machine-learning', 'neural', 'neural-network', 'neuralprophet', 'prediction', 'prophet', 'pytorch', 'seasonality', 'time-series', 'timeseries', 'trend'] | 2023-12-23 | [('winedarksea/autots', 0.6846452355384827, 'time-series', 4), ('nixtla/statsforecast', 0.6677179336547852, 'time-series', 6), ('awslabs/autogluon', 0.6234149932861328, 'ml', 5), ('salesforce/deeptime', 0.5901058316230774, 'time-series', 3), ('aistream-peelout/flow-forecast', 0.5880416035652161, 'time-series', 4), ('microprediction/microprediction', 0.5824498534202576, 'time-series', 3), ('uber/orbit', 0.5688930153846741, 'time-series', 5), ('awslabs/gluonts', 0.5649511814117432, 'time-series', 7), ('firmai/atspy', 0.5586233735084534, 'time-series', 2), ('microsoft/nni', 0.5511186718940735, 'ml', 4), ('alkaline-ml/pmdarima', 0.5404297709465027, 'time-series', 3), ('nccr-itmo/fedot', 0.5363118648529053, 'ml-ops', 1), ('nvidia/deeplearningexamples', 0.5321094989776611, 'ml-dl', 3), ('mosaicml/composer', 0.5314452052116394, 'ml-dl', 4), ('sktime/sktime', 0.529460608959198, 'time-series', 3), ('ddbourgin/numpy-ml', 0.5267665982246399, 'ml', 1), ('activeloopai/deeplake', 0.524020791053772, 'ml-ops', 3), ('salesforce/merlion', 0.5225098133087158, 'time-series', 3), ('mindsdb/mindsdb', 0.5187014937400818, 'data', 4), ('microsoft/flaml', 0.5170196294784546, 'ml', 2), ('xplainable/xplainable', 0.5147477984428406, 'ml-interpretability', 2), ('opengeos/earthformer', 0.5128765106201172, 'gis', 2), ('keras-team/autokeras', 0.5104817748069763, 'ml-dl', 2), ('huggingface/transformers', 0.5077774524688721, 'nlp', 3), ('automl/auto-sklearn', 0.5033456683158875, 'ml', 0), ('alirezadir/machine-learning-interview-enlightener', 0.503267228603363, 'study', 2), ('explosion/thinc', 0.501133382320404, 'ml-dl', 4)] | 50 | 2 | null | 3.35 | 65 | 48 | 45 | 1 | 11 | 8 | 11 | 65 | 107 | 90 | 1.6 | 52 |
1,635 | util | https://github.com/osohq/oso | ['authorization'] | null | [] | [] | null | null | null | osohq/oso | oso | 3,335 | 169 | 31 | Rust | https://docs.osohq.com | Oso is a batteries-included framework for building authorization in your application. | osohq | 2024-01-14 | 2020-05-04 | 195 | 17.090044 | https://avatars.githubusercontent.com/u/47367300?v=4 | Oso is a batteries-included framework for building authorization in your application. | ['abac', 'access-control', 'authorization', 'authorization-framework', 'go', 'java', 'logic-programming', 'nodejs', 'policy-engine', 'rbac', 'rbac-authorization', 'rbac-roles', 'ruby', 'rust', 'security'] | ['abac', 'access-control', 'authorization', 'authorization-framework', 'go', 'java', 'logic-programming', 'nodejs', 'policy-engine', 'rbac', 'rbac-authorization', 'rbac-roles', 'ruby', 'rust', 'security'] | 2024-01-13 | [] | 66 | 5 | null | 0.81 | 17 | 8 | 45 | 0 | 7 | 54 | 7 | 17 | 27 | 90 | 1.6 | 52 |
267 | jupyter | https://github.com/jupyterlab/jupyterlab-desktop | [] | null | [] | [] | null | null | null | jupyterlab/jupyterlab-desktop | jupyterlab-desktop | 3,199 | 297 | 52 | TypeScript | null | JupyterLab desktop application, based on Electron. | jupyterlab | 2024-01-12 | 2017-05-04 | 351 | 9.095451 | https://avatars.githubusercontent.com/u/22800682?v=4 | JupyterLab desktop application, based on Electron. | ['jupyter', 'jupyter-notebook', 'jupyterlab'] | ['jupyter', 'jupyter-notebook', 'jupyterlab'] | 2024-01-05 | [('jupyterlab/jupyterlab', 0.7525447607040405, 'jupyter', 2), ('voila-dashboards/voila', 0.7262636423110962, 'jupyter', 2), ('jupyter/notebook', 0.7161470651626587, 'jupyter', 2), ('jupyter-widgets/ipywidgets', 0.7082852721214294, 'jupyter', 0), ('jupyter/nbformat', 0.6620615720748901, 'jupyter', 0), ('mwouts/jupytext', 0.6525211930274963, 'jupyter', 2), ('aws/graph-notebook', 0.6357448697090149, 'jupyter', 2), ('maartenbreddels/ipyvolume', 0.6347945928573608, 'jupyter', 2), ('jupyter/nbconvert', 0.6312793493270874, 'jupyter', 0), ('jupyterlite/jupyterlite', 0.6264117956161499, 'jupyter', 2), ('vizzuhq/ipyvizzu', 0.6113208532333374, 'jupyter', 2), ('ipython/ipykernel', 0.6094779968261719, 'util', 2), ('cohere-ai/notebooks', 0.5881903767585754, 'llm', 0), ('ipython/ipyparallel', 0.5839833617210388, 'perf', 1), ('jupyter-widgets/ipyleaflet', 0.5790235996246338, 'gis', 1), ('jupyter-lsp/jupyterlab-lsp', 0.5716159343719482, 'jupyter', 3), ('computationalmodelling/nbval', 0.5705468654632568, 'jupyter', 1), ('bloomberg/ipydatagrid', 0.5657516717910767, 'jupyter', 0), ('quantopian/qgrid', 0.5566320419311523, 'jupyter', 0), ('mamba-org/gator', 0.5549662709236145, 'jupyter', 1), ('jupyter/nbdime', 0.552423357963562, 'jupyter', 2), ('jakevdp/pythondatasciencehandbook', 0.5509034395217896, 'study', 1), ('fchollet/deep-learning-with-python-notebooks', 0.5508671402931213, 'study', 0), ('tkrabel/bamboolib', 0.5493032336235046, 'pandas', 2), ('xiaohk/stickyland', 0.5476192235946655, 'jupyter', 2), ('holoviz/panel', 0.5330305695533752, 'viz', 1), ('nteract/testbook', 0.5236980319023132, 'jupyter', 1), ('r0x0r/pywebview', 0.520444393157959, 'gui', 0), ('giswqs/mapwidget', 0.5143319964408875, 'gis', 1), ('ageron/handson-ml2', 0.510633647441864, 'ml', 0), ('rapidsai/jupyterlab-nvdashboard', 0.5053638815879822, 'jupyter', 0), ('jupyter/nbviewer', 0.5004984736442566, 'jupyter', 2)] | 39 | 5 | null | 4.31 | 52 | 37 | 82 | 0 | 11 | 5 | 11 | 52 | 113 | 90 | 2.2 | 52 |
807 | data | https://github.com/deepchecks/deepchecks | [] | null | [] | [] | null | null | null | deepchecks/deepchecks | deepchecks | 3,169 | 229 | 16 | Python | https://docs.deepchecks.com/stable | Deepchecks: Tests for Continuous Validation of ML Models & Data. Deepchecks is a holistic open-source solution for all of your AI & ML validation needs, enabling to thoroughly test your data and models from research to production. | deepchecks | 2024-01-13 | 2021-10-11 | 120 | 26.376932 | https://avatars.githubusercontent.com/u/92298186?v=4 | Deepchecks: Tests for Continuous Validation of ML Models & Data. Deepchecks is a holistic open-source solution for all of your AI & ML validation needs, enabling to thoroughly test your data and models from research to production. | ['data-drift', 'data-science', 'data-validation', 'deep-learning', 'html-report', 'jupyter-notebook', 'machine-learning', 'ml', 'mlops', 'model-monitoring', 'model-validation', 'pandas-dataframe', 'pytorch'] | ['data-drift', 'data-science', 'data-validation', 'deep-learning', 'html-report', 'jupyter-notebook', 'machine-learning', 'ml', 'mlops', 'model-monitoring', 'model-validation', 'pandas-dataframe', 'pytorch'] | 2023-12-18 | [('evidentlyai/evidently', 0.6157994866371155, 'ml-ops', 8), ('polyaxon/polyaxon', 0.5667403340339661, 'ml-ops', 6), ('microsoft/deepspeed', 0.5651904940605164, 'ml-dl', 3), ('determined-ai/determined', 0.5619574189186096, 'ml-ops', 5), ('huggingface/datasets', 0.5608824491500854, 'nlp', 3), ('wandb/client', 0.557380735874176, 'ml', 5), ('giskard-ai/giskard', 0.550081193447113, 'data', 3), ('tensorflow/tensor2tensor', 0.5471684336662292, 'ml', 2), ('tensorflow/tensorflow', 0.5415099859237671, 'ml-dl', 3), ('mlflow/mlflow', 0.5400528907775879, 'ml-ops', 2), ('microsoft/nni', 0.5397449731826782, 'ml', 5), ('mosaicml/composer', 0.5395089387893677, 'ml-dl', 3), ('apple/coremltools', 0.539066731929779, 'ml', 2), ('nvidia/deeplearningexamples', 0.537693440914154, 'ml-dl', 2), ('unity-technologies/ml-agents', 0.5319340825080872, 'ml-rl', 2), ('googlecloudplatform/vertex-ai-samples', 0.5285258889198303, 'ml', 3), ('polyaxon/datatile', 0.5274471640586853, 'pandas', 3), ('bentoml/bentoml', 0.5182715058326721, 'ml-ops', 3), ('iperov/deepfacelab', 0.515143871307373, 'ml-dl', 2), ('explosion/thinc', 0.5133498311042786, 'ml-dl', 3), ('uber/petastorm', 0.5133116245269775, 'data', 3), ('tensorflow/data-validation', 0.512187123298645, 'ml-ops', 0), ('aiqc/aiqc', 0.5002310872077942, 'ml-ops', 0)] | 52 | 2 | null | 4.63 | 51 | 43 | 28 | 1 | 13 | 27 | 13 | 51 | 31 | 90 | 0.6 | 52 |
1,595 | ml-ops | https://github.com/towhee-io/towhee | [] | null | [] | [] | null | null | null | towhee-io/towhee | towhee | 2,902 | 243 | 42 | Python | https://towhee.io | Towhee is a framework that is dedicated to making neural data processing pipelines simple and fast. | towhee-io | 2024-01-13 | 2021-07-13 | 133 | 21.819549 | https://avatars.githubusercontent.com/u/87362374?v=4 | Towhee is a framework that is dedicated to making neural data processing pipelines simple and fast. | ['computer-vision', 'convolutional-networks', 'embedding-vectors', 'embeddings', 'feature-extraction', 'feature-vector', 'image-processing', 'image-retrieval', 'llm', 'machine-learning', 'milvus', 'pipeline', 'towhee', 'transformer', 'unstructured-data', 'video-processing', 'vision-transformer', 'vit'] | ['computer-vision', 'convolutional-networks', 'embedding-vectors', 'embeddings', 'feature-extraction', 'feature-vector', 'image-processing', 'image-retrieval', 'llm', 'machine-learning', 'milvus', 'pipeline', 'towhee', 'transformer', 'unstructured-data', 'video-processing', 'vision-transformer', 'vit'] | 2023-12-04 | [('huggingface/datasets', 0.5772765278816223, 'nlp', 2), ('awslabs/autogluon', 0.5480068325996399, 'ml', 2), ('roboflow/supervision', 0.544347882270813, 'ml', 4), ('lutzroeder/netron', 0.5428910851478577, 'ml', 1), ('activeloopai/deeplake', 0.5378854870796204, 'ml-ops', 4), ('deci-ai/super-gradients', 0.5340181589126587, 'ml-dl', 1), ('nvidia/deeplearningexamples', 0.5302903652191162, 'ml-dl', 1), ('nyandwi/modernconvnets', 0.5275624394416809, 'ml-dl', 1), ('ludwig-ai/ludwig', 0.5253190398216248, 'ml-ops', 3), ('uber/petastorm', 0.5247065424919128, 'data', 1), ('huggingface/transformers', 0.5219820737838745, 'nlp', 2), ('visual-layer/fastdup', 0.5181317925453186, 'ml', 2), ('roboflow/notebooks', 0.511427640914917, 'study', 2), ('tensorflow/tensorflow', 0.5106989145278931, 'ml-dl', 1), ('neuralmagic/sparseml', 0.5096480250358582, 'ml-dl', 0), ('rwightman/pytorch-image-models', 0.5081286430358887, 'ml-dl', 0), ('mosaicml/composer', 0.5076751112937927, 'ml-dl', 1), ('streamlit/streamlit', 0.5068960785865784, 'viz', 1), ('microsoft/nni', 0.5067926049232483, 'ml', 1), ('polyaxon/polyaxon', 0.5038055181503296, 'ml-ops', 1), ('dgarnitz/vectorflow', 0.5035332441329956, 'data', 2), ('alpa-projects/alpa', 0.5001883506774902, 'ml-dl', 2)] | 34 | 1 | null | 3.27 | 26 | 24 | 30 | 1 | 5 | 8 | 5 | 26 | 90 | 90 | 3.5 | 52 |
1,509 | llm | https://github.com/defog-ai/sqlcoder | ['language-model', 'sql'] | null | [] | [] | 1 | null | null | defog-ai/sqlcoder | sqlcoder | 1,962 | 114 | 22 | Jupyter Notebook | null | SoTA LLM for converting natural language questions to SQL queries | defog-ai | 2024-01-13 | 2023-08-17 | 23 | 82.73494 | https://avatars.githubusercontent.com/u/79135711?v=4 | SoTA LLM for converting natural language questions to SQL queries | [] | ['language-model', 'sql'] | 2023-11-15 | [('night-chen/toolqa', 0.5368439555168152, 'llm', 0), ('srush/minichain', 0.512403130531311, 'llm', 0), ('neulab/prompt2model', 0.5062905550003052, 'llm', 1)] | 5 | 3 | null | 0.92 | 29 | 9 | 5 | 2 | 0 | 0 | 0 | 29 | 45 | 90 | 1.6 | 52 |
466 | ml | https://github.com/huggingface/optimum | [] | null | [] | [] | null | null | null | huggingface/optimum | optimum | 1,879 | 316 | 53 | Python | https://huggingface.co/docs/optimum/main/ | 🚀 Accelerate training and inference of 🤗 Transformers and 🤗 Diffusers with easy to use hardware optimization tools | huggingface | 2024-01-13 | 2021-07-20 | 132 | 14.234848 | https://avatars.githubusercontent.com/u/25720743?v=4 | 🚀 Accelerate training and inference of 🤗 Transformers and 🤗 Diffusers with easy to use hardware optimization tools | ['graphcore', 'habana', 'inference', 'intel', 'onnx', 'onnxruntime', 'optimization', 'pytorch', 'quantization', 'tflite', 'training', 'transformers'] | ['graphcore', 'habana', 'inference', 'intel', 'onnx', 'onnxruntime', 'optimization', 'pytorch', 'quantization', 'tflite', 'training', 'transformers'] | 2024-01-12 | [('huggingface/transformers', 0.682058572769165, 'nlp', 1), ('huggingface/peft', 0.6415036916732788, 'llm', 2), ('ist-daslab/gptq', 0.6178866624832153, 'llm', 0), ('karpathy/mingpt', 0.5994217395782471, 'llm', 0), ('alignmentresearch/tuned-lens', 0.5732378363609314, 'ml-interpretability', 2), ('intel/intel-extension-for-pytorch', 0.560483992099762, 'perf', 3), ('apple/ml-ane-transformers', 0.5597668886184692, 'ml', 0), ('neuralmagic/deepsparse', 0.5494052171707153, 'nlp', 3), ('google/trax', 0.5470688343048096, 'ml-dl', 0), ('microsoft/onnxruntime', 0.5409281849861145, 'ml', 2), ('microsoft/deepspeed', 0.5390816926956177, 'ml-dl', 2), ('vllm-project/vllm', 0.5363191962242126, 'llm', 2), ('nvlabs/gcvit', 0.5319724678993225, 'diffusion', 0), ('karpathy/micrograd', 0.5316488146781921, 'study', 0), ('pytorch/ignite', 0.5307228565216064, 'ml-dl', 1), ('nielsrogge/transformers-tutorials', 0.5274924635887146, 'study', 2), ('huggingface/datasets', 0.5267567038536072, 'nlp', 1), ('eleutherai/gpt-neox', 0.5265071988105774, 'llm', 1), ('huggingface/exporters', 0.5176335573196411, 'ml', 2), ('eleutherai/knowledge-neurons', 0.5159322619438171, 'ml-interpretability', 1), ('pytorch/glow', 0.5153691172599792, 'ml', 0), ('nvidia/apex', 0.5144795179367065, 'ml-dl', 0), ('neuralmagic/sparseml', 0.5119937658309937, 'ml-dl', 2), ('explosion/spacy-transformers', 0.5108177661895752, 'llm', 1), ('tlkh/tf-metal-experiments', 0.5074736475944519, 'perf', 0), ('ray-project/ray', 0.5062342286109924, 'ml-ops', 2), ('nvidia/megatron-lm', 0.501192569732666, 'llm', 0), ('mosaicml/composer', 0.5008224248886108, 'ml-dl', 1)] | 89 | 1 | null | 9.33 | 249 | 165 | 30 | 0 | 30 | 21 | 30 | 249 | 333 | 90 | 1.3 | 52 |
1,891 | llm | https://github.com/cg123/mergekit | [] | null | [] | [] | null | null | null | cg123/mergekit | mergekit | 1,458 | 128 | 23 | Python | null | Tools for merging pretrained large language models. | cg123 | 2024-01-14 | 2023-08-21 | 23 | 63 | null | Tools for merging pretrained large language models. | ['llama', 'llm', 'model-merging'] | ['llama', 'llm', 'model-merging'] | 2024-01-14 | [('infinitylogesh/mutate', 0.6713061332702637, 'nlp', 0), ('juncongmoo/pyllama', 0.6644551753997803, 'llm', 0), ('ai21labs/lm-evaluation', 0.6523741483688354, 'llm', 0), ('hannibal046/awesome-llm', 0.6510716080665588, 'study', 0), ('ctlllll/llm-toolmaker', 0.6498943567276001, 'llm', 0), ('young-geng/easylm', 0.6466503143310547, 'llm', 1), ('yizhongw/self-instruct', 0.6453080177307129, 'llm', 0), ('freedomintelligence/llmzoo', 0.641423225402832, 'llm', 0), ('salesforce/xgen', 0.6309936046600342, 'llm', 1), ('predibase/llm_distillation_playbook', 0.622988224029541, 'llm', 0), ('bigscience-workshop/biomedical', 0.6185329556465149, 'data', 0), ('togethercomputer/redpajama-data', 0.6147141456604004, 'llm', 0), ('huawei-noah/pretrained-language-model', 0.6082916855812073, 'nlp', 0), ('lianjiatech/belle', 0.6080819368362427, 'llm', 1), ('eleutherai/the-pile', 0.607460081577301, 'data', 1), ('hiyouga/llama-factory', 0.5988380908966064, 'llm', 2), ('hiyouga/llama-efficient-tuning', 0.5988380312919617, 'llm', 2), ('explosion/spacy-llm', 0.5918619632720947, 'llm', 2), ('thudm/chatglm2-6b', 0.58427494764328, 'llm', 1), ('lm-sys/fastchat', 0.58380526304245, 'llm', 0), ('eleutherai/lm-evaluation-harness', 0.5827073454856873, 'llm', 0), ('jzhang38/tinyllama', 0.5811179876327515, 'llm', 1), ('microsoft/autogen', 0.5664942264556885, 'llm', 0), ('bobazooba/xllm', 0.5655726194381714, 'llm', 2), ('optimalscale/lmflow', 0.5650473237037659, 'llm', 0), ('next-gpt/next-gpt', 0.5641329884529114, 'llm', 1), ('microsoft/lora', 0.5608856678009033, 'llm', 0), ('prefecthq/langchain-prefect', 0.5573033094406128, 'llm', 0), ('facebookresearch/llama', 0.5536092519760132, 'llm', 1), ('facebookresearch/llama-recipes', 0.5452256202697754, 'llm', 1), ('microsoft/llama-2-onnx', 0.5430543422698975, 'llm', 1), ('thudm/glm-130b', 0.542129635810852, 'llm', 0), ('karpathy/llama2.c', 0.541799783706665, 'llm', 1), ('huggingface/text-generation-inference', 0.541591465473175, 'llm', 0), ('sjtu-ipads/powerinfer', 0.5398347973823547, 'llm', 2), ('mooler0410/llmspracticalguide', 0.5390522480010986, 'study', 0), ('openlm-research/open_llama', 0.537260890007019, 'llm', 1), ('ray-project/ray-llm', 0.5349216461181641, 'llm', 1), ('conceptofmind/toolformer', 0.5336092710494995, 'llm', 0), ('tatsu-lab/stanford_alpaca', 0.5332975387573242, 'llm', 0), ('artidoro/qlora', 0.5330007076263428, 'llm', 0), ('guidance-ai/guidance', 0.5327853560447693, 'llm', 0), ('dylanhogg/llmgraph', 0.5279366970062256, 'ml', 1), ('neulab/prompt2model', 0.5275200009346008, 'llm', 0), ('openai/finetune-transformer-lm', 0.5270984768867493, 'llm', 0), ('reasoning-machines/pal', 0.5245123505592346, 'llm', 0), ('ofa-sys/ofa', 0.5244383811950684, 'llm', 0), ('aiwaves-cn/agents', 0.5241085886955261, 'nlp', 1), ('oobabooga/text-generation-webui', 0.5220274925231934, 'llm', 0), ('jonasgeiping/cramming', 0.5206159353256226, 'nlp', 0), ('microsoft/unilm', 0.5200158357620239, 'nlp', 1), ('tigerlab-ai/tiger', 0.5194407105445862, 'llm', 1), ('baichuan-inc/baichuan-13b', 0.5188269019126892, 'llm', 0), ('facebookresearch/codellama', 0.51674485206604, 'llm', 1), ('paddlepaddle/paddlenlp', 0.5143988132476807, 'llm', 2), ('epfllm/meditron', 0.5135393738746643, 'llm', 0), ('princeton-nlp/alce', 0.5112486481666565, 'llm', 0), ('guardrails-ai/guardrails', 0.511229395866394, 'llm', 1), ('openbmb/toolbench', 0.5107592344284058, 'llm', 0), ('databrickslabs/dolly', 0.5106679797172546, 'llm', 0), ('bigscience-workshop/petals', 0.5101160407066345, 'data', 1), ('nomic-ai/gpt4all', 0.5065050721168518, 'llm', 0), ('deepset-ai/haystack', 0.5054006576538086, 'llm', 0), ('squeezeailab/squeezellm', 0.504544734954834, 'llm', 2), ('srush/minichain', 0.5045192837715149, 'llm', 0), ('cstankonrad/long_llama', 0.5025786757469177, 'llm', 1), ('alpha-vllm/llama2-accessory', 0.5024479627609253, 'llm', 0), ('nat/openplayground', 0.5010144710540771, 'llm', 0), ('night-chen/toolqa', 0.5008574724197388, 'llm', 0)] | 4 | 0 | null | 2.29 | 107 | 65 | 5 | 0 | 1 | 5 | 1 | 107 | 262 | 90 | 2.4 | 52 |
1,170 | llm | https://github.com/chatarena/chatarena | [] | null | [] | [] | null | null | null | chatarena/chatarena | chatarena | 1,127 | 113 | 19 | Python | https://www.chatarena.org/ | ChatArena (or Chat Arena) is a Multi-Agent Language Game Environments for LLMs. The goal is to develop communication and collaboration capabilities of AIs. | chatarena | 2024-01-12 | 2023-03-06 | 47 | 23.906061 | https://avatars.githubusercontent.com/u/62961550?v=4 | ChatArena (or Chat Arena) is a Multi-Agent Language Game Environments for LLMs. The goal is to develop communication and collaboration capabilities of AIs. | ['ai', 'artificial-intelligence', 'chatgpt', 'gpt-4', 'large-language-models', 'multi-agent', 'multi-agent-reinforcement-learning', 'multi-agent-simulation', 'natural-language-processing'] | ['ai', 'artificial-intelligence', 'chatgpt', 'gpt-4', 'large-language-models', 'multi-agent', 'multi-agent-reinforcement-learning', 'multi-agent-simulation', 'natural-language-processing'] | 2023-12-21 | [('embedchain/embedchain', 0.6508777141571045, 'llm', 2), ('prefecthq/marvin', 0.6427308917045593, 'nlp', 1), ('rcgai/simplyretrieve', 0.6356537342071533, 'llm', 3), ('nomic-ai/gpt4all', 0.6325280070304871, 'llm', 0), ('microsoft/autogen', 0.6130094528198242, 'llm', 2), ('lm-sys/fastchat', 0.6125940680503845, 'llm', 0), ('run-llama/rags', 0.6069520711898804, 'llm', 1), ('deep-diver/llm-as-chatbot', 0.5871044397354126, 'llm', 0), ('pathwaycom/llm-app', 0.5828151702880859, 'llm', 0), ('hwchase17/langchain', 0.5813690423965454, 'llm', 0), ('cheshire-cat-ai/core', 0.5810584425926208, 'llm', 1), ('microsoft/promptcraft-robotics', 0.5778838992118835, 'sim', 1), ('minimaxir/simpleaichat', 0.5708586573600769, 'llm', 2), ('fasteval/fasteval', 0.5657923221588135, 'llm', 0), ('deepset-ai/haystack', 0.563785970211029, 'llm', 3), ('krohling/bondai', 0.5611550807952881, 'llm', 0), ('langchain-ai/langgraph', 0.5562337636947632, 'llm', 0), ('openlmlab/moss', 0.5541568398475647, 'llm', 3), ('intel/intel-extension-for-transformers', 0.5510158538818359, 'perf', 0), ('mnotgod96/appagent', 0.5439862012863159, 'llm', 1), ('aiwaves-cn/agents', 0.5419332385063171, 'nlp', 0), ('microsoft/promptflow', 0.5370725989341736, 'llm', 2), ('lupantech/chameleon-llm', 0.5320706963539124, 'llm', 3), ('microsoft/lmops', 0.529494047164917, 'llm', 0), ('nebuly-ai/nebullvm', 0.5283238887786865, 'perf', 3), ('larsbaunwall/bricky', 0.5276904106140137, 'llm', 1), ('nvidia/nemo', 0.5267899036407471, 'nlp', 0), ('operand/agency', 0.5225850343704224, 'llm', 2), ('microsoft/generative-ai-for-beginners', 0.5216999053955078, 'study', 2), ('deeppavlov/deeppavlov', 0.5164510011672974, 'nlp', 2), ('blinkdl/chatrwkv', 0.5140795111656189, 'llm', 1), ('h2oai/h2o-llmstudio', 0.5097920894622803, 'llm', 2), ('gunthercox/chatterbot', 0.5086801052093506, 'nlp', 0), ('microsoft/chatgpt-robot-manipulation-prompts', 0.5086156725883484, 'llm', 0), ('mindsdb/mindsdb', 0.5072094798088074, 'data', 2), ('rasahq/rasa', 0.5054959058761597, 'llm', 1), ('thudm/chatglm2-6b', 0.5024993419647217, 'llm', 1)] | 15 | 6 | null | 5.96 | 68 | 67 | 10 | 1 | 15 | 18 | 15 | 68 | 28 | 90 | 0.4 | 52 |
602 | util | https://github.com/norvig/pytudes | [] | null | [] | [] | null | null | null | norvig/pytudes | pytudes | 22,095 | 2,385 | 768 | Jupyter Notebook | null | Python programs, usually short, of considerable difficulty, to perfect particular skills. | norvig | 2024-01-13 | 2017-03-01 | 360 | 61.229216 | null | Python programs, usually short, of considerable difficulty, to perfect particular skills. | ['demonstrate-skills', 'practice', 'programming'] | ['demonstrate-skills', 'practice', 'programming'] | 2024-01-02 | [('python/cpython', 0.6239404082298279, 'util', 0), ('google/pyglove', 0.5999535322189331, 'util', 0), ('adafruit/circuitpython', 0.5722380876541138, 'util', 0), ('sympy/sympy', 0.5708892941474915, 'math', 0), ('amaargiru/pyroad', 0.5647484064102173, 'study', 0), ('pypy/pypy', 0.5617297887802124, 'util', 0), ('eleutherai/pyfra', 0.5598863363265991, 'ml', 0), ('pyston/pyston', 0.5527113080024719, 'util', 0), ('microsoft/pycodegpt', 0.5215215682983398, 'llm', 0), ('stanfordnlp/dspy', 0.5077176690101624, 'llm', 0), ('evhub/coconut', 0.5068784356117249, 'util', 0), ('xrudelis/pytrait', 0.5027519464492798, 'util', 0), ('sourcery-ai/sourcery', 0.5019119381904602, 'util', 0), ('scikit-learn/scikit-learn', 0.5002601742744446, 'ml', 0)] | 44 | 3 | null | 0.65 | 0 | 0 | 84 | 0 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 51 |
370 | viz | https://github.com/marceloprates/prettymaps | [] | null | [] | [] | null | null | null | marceloprates/prettymaps | prettymaps | 10,652 | 541 | 83 | Jupyter Notebook | null | A small set of Python functions to draw pretty maps from OpenStreetMap data. Based on osmnx, matplotlib and shapely libraries. | marceloprates | 2024-01-13 | 2021-03-05 | 151 | 70.277097 | null | A small set of Python functions to draw pretty maps from OpenStreetMap data. Based on osmnx, matplotlib and shapely libraries. | ['cartography', 'generative-art', 'jupyter-notebook', 'maps', 'matplotlib', 'openstreetmap'] | ['cartography', 'generative-art', 'jupyter-notebook', 'maps', 'matplotlib', 'openstreetmap'] | 2023-02-15 | [('gboeing/osmnx', 0.6797459125518799, 'gis', 1), ('raphaelquast/eomaps', 0.6013832688331604, 'gis', 1), ('scitools/cartopy', 0.5919488072395325, 'gis', 2), ('holoviz/geoviews', 0.5674756765365601, 'gis', 0), ('gboeing/osmnx-examples', 0.562412440776825, 'gis', 2), ('gregorhd/mapcompare', 0.557414710521698, 'gis', 0), ('opengeos/leafmap', 0.5452340841293335, 'gis', 1), ('residentmario/geoplot', 0.5294914245605469, 'gis', 1), ('geopandas/contextily', 0.5095080137252808, 'gis', 3)] | 15 | 4 | null | 0.31 | 5 | 0 | 35 | 11 | 1 | 6 | 1 | 5 | 4 | 90 | 0.8 | 51 |
22 | nlp | https://github.com/facebookresearch/parlai | [] | null | [] | [] | null | null | null | facebookresearch/parlai | ParlAI | 10,381 | 2,091 | 287 | Python | https://parl.ai | A framework for training and evaluating AI models on a variety of openly available dialogue datasets. | facebookresearch | 2024-01-13 | 2017-04-24 | 353 | 29.396036 | https://avatars.githubusercontent.com/u/16943930?v=4 | A framework for training and evaluating AI models on a variety of openly available dialogue datasets. | [] | [] | 2023-11-03 | [('nvidia/nemo', 0.6826277375221252, 'nlp', 0), ('krohling/bondai', 0.680033266544342, 'llm', 0), ('deeppavlov/deeppavlov', 0.6255822777748108, 'nlp', 0), ('rasahq/rasa', 0.5971487164497375, 'llm', 0), ('lm-sys/fastchat', 0.5788213610649109, 'llm', 0), ('minimaxir/aitextgen', 0.5751350522041321, 'llm', 0), ('databrickslabs/dolly', 0.5629587769508362, 'llm', 0), ('openlmlab/moss', 0.5612495541572571, 'llm', 0), ('rcgai/simplyretrieve', 0.5574244856834412, 'llm', 0), ('gunthercox/chatterbot-corpus', 0.5316453576087952, 'nlp', 0), ('cheshire-cat-ai/core', 0.5091173648834229, 'llm', 0), ('microsoft/generative-ai-for-beginners', 0.5056885480880737, 'study', 0), ('fasteval/fasteval', 0.5017014145851135, 'llm', 0)] | 217 | 3 | null | 1.25 | 5 | 2 | 82 | 2 | 1 | 6 | 1 | 5 | 5 | 90 | 1 | 51 |
1,084 | util | https://github.com/pytube/pytube | [] | null | [] | [] | null | null | null | pytube/pytube | pytube | 9,837 | 2,177 | 194 | Python | https://pytube.io | A lightweight, dependency-free Python library (and command-line utility) for downloading YouTube Videos. | pytube | 2024-01-14 | 2012-03-18 | 619 | 15.884429 | https://avatars.githubusercontent.com/u/16789089?v=4 | A lightweight, dependency-free Python library (and command-line utility) for downloading YouTube Videos. | ['api-wrapper', 'pythonic', 'youtube'] | ['api-wrapper', 'pythonic', 'youtube'] | 2023-05-20 | [('yt-dlp/yt-dlp', 0.5481389164924622, 'util', 0), ('psycoguana/subredditmediadownloader', 0.5245307087898254, 'data', 0)] | 112 | 5 | null | 0.38 | 88 | 16 | 144 | 8 | 0 | 10 | 10 | 88 | 140 | 90 | 1.6 | 51 |
158 | util | https://github.com/pallets/jinja | [] | null | [] | [] | null | null | null | pallets/jinja | jinja | 9,717 | 1,591 | 251 | Python | https://jinja.palletsprojects.com | A very fast and expressive template engine. | pallets | 2024-01-13 | 2010-10-17 | 693 | 14.015866 | https://avatars.githubusercontent.com/u/16748505?v=4 | A very fast and expressive template engine. | ['jinja', 'jinja2', 'pallets', 'template-engine', 'templates'] | ['jinja', 'jinja2', 'pallets', 'template-engine', 'templates'] | 2024-01-10 | [('s3rius/fastapi-template', 0.5498924255371094, 'web', 0), ('sqlalchemy/mako', 0.54783034324646, 'template', 0), ('thereforegames/unprompted', 0.5376675128936768, 'diffusion', 1), ('django/django', 0.5016000270843506, 'web', 1), ('pallets/flask', 0.5012500882148743, 'web', 2)] | 306 | 4 | null | 0.96 | 37 | 21 | 161 | 0 | 1 | 4 | 1 | 37 | 45 | 90 | 1.2 | 51 |
142 | ml | https://github.com/featurelabs/featuretools | [] | null | [] | [] | 1 | null | null | featurelabs/featuretools | featuretools | 6,933 | 856 | 158 | Python | https://www.featuretools.com | An open source python library for automated feature engineering | featurelabs | 2024-01-13 | 2017-09-08 | 333 | 20.784154 | https://avatars.githubusercontent.com/u/12972388?v=4 | An open source python library for automated feature engineering | ['automated-feature-engineering', 'automated-machine-learning', 'automl', 'data-science', 'feature-engineering', 'machine-learning', 'scikit-learn'] | ['automated-feature-engineering', 'automated-machine-learning', 'automl', 'data-science', 'feature-engineering', 'machine-learning', 'scikit-learn'] | 2023-12-07 | [('google/temporian', 0.7070109844207764, 'time-series', 1), ('rasbt/mlxtend', 0.6914775371551514, 'ml', 2), ('pycaret/pycaret', 0.6861603856086731, 'ml', 2), ('microsoft/nni', 0.6769810914993286, 'ml', 5), ('automl/auto-sklearn', 0.6524330377578735, 'ml', 3), ('epistasislab/tpot', 0.6507097482681274, 'ml', 6), ('mljar/mljar-supervised', 0.645880401134491, 'ml', 6), ('gradio-app/gradio', 0.6402891278266907, 'viz', 2), ('scikit-learn/scikit-learn', 0.6306010484695435, 'ml', 2), ('microsoft/flaml', 0.6044269800186157, 'ml', 5), ('dylanhogg/awesome-python', 0.6018655300140381, 'study', 2), ('google/pyglove', 0.601290225982666, 'util', 2), ('kubeflow/fairing', 0.5992475152015686, 'ml-ops', 0), ('merantix-momentum/squirrel-core', 0.5986401438713074, 'ml', 2), ('teamhg-memex/eli5', 0.5933169722557068, 'ml', 3), ('rasbt/machine-learning-book', 0.5927860736846924, 'study', 2), ('lightly-ai/lightly', 0.5864541530609131, 'ml', 1), ('krzjoa/awesome-python-data-science', 0.580768883228302, 'study', 3), ('nccr-itmo/fedot', 0.5784884095191956, 'ml-ops', 3), ('pytoolz/toolz', 0.5733933448791504, 'util', 0), ('districtdatalabs/yellowbrick', 0.5721520185470581, 'ml', 2), ('mdbloice/augmentor', 0.5716681480407715, 'ml', 1), ('skops-dev/skops', 0.5711256265640259, 'ml-ops', 2), ('scikit-learn-contrib/imbalanced-learn', 0.5710511207580566, 'ml', 2), ('scikit-learn-contrib/metric-learn', 0.5696079730987549, 'ml', 2), ('selfexplainml/piml-toolbox', 0.5691878795623779, 'ml-interpretability', 0), ('firmai/atspy', 0.5671241283416748, 'time-series', 0), ('keras-team/autokeras', 0.5649420022964478, 'ml-dl', 3), ('mlflow/mlflow', 0.5563209652900696, 'ml-ops', 1), ('ageron/handson-ml2', 0.5548660159111023, 'ml', 0), ('sourcery-ai/sourcery', 0.554305911064148, 'util', 0), ('pandas-dev/pandas', 0.5537092685699463, 'pandas', 1), ('awslabs/autogluon', 0.5521774291992188, 'ml', 5), ('amaargiru/pyroad', 0.548759937286377, 'study', 0), ('ta-lib/ta-lib-python', 0.5429303646087646, 'finance', 0), ('wandb/client', 0.5428714752197266, 'ml', 2), ('tensorflow/tensorflow', 0.5424914360046387, 'ml-dl', 1), ('tensorflow/data-validation', 0.5417819023132324, 'ml-ops', 0), ('dagworks-inc/hamilton', 0.5415907502174377, 'ml-ops', 3), ('koaning/human-learn', 0.5413556694984436, 'data', 2), ('yzhao062/pyod', 0.5403005480766296, 'data', 2), ('winedarksea/autots', 0.5383171439170837, 'time-series', 3), ('rafiqhasan/auto-tensorflow', 0.5342097878456116, 'ml-dl', 2), ('online-ml/river', 0.5314729809761047, 'ml', 2), ('alkaline-ml/pmdarima', 0.5302847623825073, 'time-series', 1), ('oml-team/open-metric-learning', 0.5298222899436951, 'ml', 1), ('goldmansachs/gs-quant', 0.5276992321014404, 'finance', 0), ('sentinel-hub/eo-learn', 0.5274897813796997, 'gis', 1), ('huggingface/huggingface_hub', 0.5263670682907104, 'ml', 1), ('koaning/scikit-lego', 0.5262479782104492, 'ml', 2), ('jovianml/opendatasets', 0.5258838534355164, 'data', 2), ('eleutherai/pyfra', 0.5247564315795898, 'ml', 0), ('polyaxon/datatile', 0.5225564241409302, 'pandas', 1), ('huggingface/datasets', 0.5206751227378845, 'nlp', 1), ('huggingface/evaluate', 0.5203360915184021, 'ml', 1), ('samuelcolvin/python-devtools', 0.5202803015708923, 'debug', 0), ('pypy/pypy', 0.5145143866539001, 'util', 0), ('fmind/mlops-python-package', 0.5135179758071899, 'template', 0), ('intel/intel-extension-for-pytorch', 0.512016773223877, 'perf', 1), ('doccano/doccano', 0.5110718607902527, 'nlp', 1), ('csinva/imodels', 0.5102759599685669, 'ml', 3), ('nedbat/coveragepy', 0.5096982717514038, 'testing', 0), ('patchy631/machine-learning', 0.5084584355354309, 'ml', 0), ('earthlab/earthpy', 0.5079247355461121, 'gis', 0), ('weecology/deepforest', 0.5066676139831543, 'gis', 0), ('pyeve/cerberus', 0.503200888633728, 'data', 0)] | 71 | 2 | null | 1.65 | 30 | 21 | 77 | 1 | 8 | 24 | 8 | 30 | 18 | 90 | 0.6 | 51 |
771 | study | https://github.com/nielsrogge/transformers-tutorials | [] | null | [] | [] | null | null | null | nielsrogge/transformers-tutorials | Transformers-Tutorials | 6,629 | 1,045 | 111 | Jupyter Notebook | null | This repository contains demos I made with the Transformers library by HuggingFace. | nielsrogge | 2024-01-13 | 2020-08-31 | 178 | 37.211708 | null | This repository contains demos I made with the Transformers library by HuggingFace. | ['bert', 'gpt-2', 'layoutlm', 'pytorch', 'transformers', 'vision-transformer'] | ['bert', 'gpt-2', 'layoutlm', 'pytorch', 'transformers', 'vision-transformer'] | 2024-01-11 | [('karpathy/mingpt', 0.6038249135017395, 'llm', 0), ('nvlabs/gcvit', 0.5923160910606384, 'diffusion', 1), ('huggingface/transformers', 0.5857082605361938, 'nlp', 2), ('bigscience-workshop/megatron-deepspeed', 0.5679675936698914, 'llm', 0), ('microsoft/megatron-deepspeed', 0.5679675936698914, 'llm', 0), ('huggingface/exporters', 0.5573378205299377, 'ml', 1), ('marella/ctransformers', 0.553908109664917, 'nlp', 1), ('alignmentresearch/tuned-lens', 0.5491597652435303, 'ml-interpretability', 2), ('ist-daslab/gptq', 0.5349066257476807, 'llm', 0), ('huggingface/optimum', 0.5274924635887146, 'ml', 2), ('pytorch-labs/gpt-fast', 0.5239831805229187, 'llm', 1), ('opengeos/earthformer', 0.5140464901924133, 'gis', 0), ('huggingface/huggingface_hub', 0.5096057057380676, 'ml', 1), ('promptslab/awesome-prompt-engineering', 0.5090713500976562, 'study', 0)] | 5 | 2 | null | 1.48 | 42 | 7 | 41 | 0 | 0 | 0 | 0 | 42 | 73 | 90 | 1.7 | 51 |
1,063 | diffusion | https://github.com/timothybrooks/instruct-pix2pix | [] | PyTorch implementation of InstructPix2Pix, an instruction-based image editing model, based on the original CompVis/stable_diffusion repo. | [] | [] | null | null | null | timothybrooks/instruct-pix2pix | instruct-pix2pix | 5,565 | 495 | 64 | Python | null | null | timothybrooks | 2024-01-13 | 2023-01-09 | 55 | 100.919689 | null | PyTorch implementation of InstructPix2Pix, an instruction-based image editing model, based on the original CompVis/stable_diffusion repo. | [] | [] | 2023-01-31 | [('carson-katri/dream-textures', 0.5679231286048889, 'diffusion', 0), ('huggingface/diffusers', 0.5238240957260132, 'diffusion', 0), ('sanster/lama-cleaner', 0.5218861699104309, 'ml-dl', 0), ('compvis/latent-diffusion', 0.5207135081291199, 'diffusion', 0), ('stability-ai/stablediffusion', 0.5207132697105408, 'diffusion', 0), ('lkwq007/stablediffusion-infinity', 0.5145807266235352, 'diffusion', 0), ('openai/image-gpt', 0.512509286403656, 'llm', 0), ('automatic1111/stable-diffusion-webui', 0.5089647769927979, 'diffusion', 0), ('mcahny/deep-video-inpainting', 0.500446081161499, 'ml-dl', 0)] | 13 | 3 | null | 0.1 | 10 | 3 | 12 | 12 | 0 | 0 | 0 | 10 | 10 | 90 | 1 | 51 |
1,907 | util | https://github.com/pypa/virtualenv | ['pip', 'venv', 'virtualenv'] | A tool to create isolated Python environments. Since Python 3.3, a subset of it has been integrated into the standard lib venv module. | [] | [] | null | null | null | pypa/virtualenv | virtualenv | 4,621 | 1,091 | 169 | Python | https://virtualenv.pypa.io | Virtual Python Environment builder | pypa | 2024-01-20 | 2011-03-06 | 673 | 6.863357 | https://avatars.githubusercontent.com/u/647025?v=4 | Virtual Python Environment builder | ['cython', 'jython', 'pypa', 'pypy', 'pypy3', 'virtualenv'] | ['cython', 'jython', 'pip', 'pypa', 'pypy', 'pypy3', 'venv', 'virtualenv'] | 2024-01-16 | [('pypa/pipenv', 0.6951494216918945, 'util', 3), ('pypa/hatch', 0.6300379633903503, 'util', 1), ('pyenv/pyenv', 0.6280038952827454, 'util', 2), ('pypa/pipx', 0.6216922998428345, 'util', 2), ('pypy/pypy', 0.6060330271720886, 'util', 0), ('pantsbuild/pex', 0.5755523443222046, 'util', 1), ('ofek/pyapp', 0.5487356781959534, 'util', 0), ('pyglet/pyglet', 0.541969895362854, 'gamedev', 0), ('jquast/blessed', 0.5412343144416809, 'term', 0), ('pypi/warehouse', 0.5271876454353333, 'util', 0), ('thoth-station/micropipenv', 0.5239235758781433, 'util', 1), ('computationalmodelling/nbval', 0.523438036441803, 'jupyter', 0), ('pyo3/maturin', 0.5136356353759766, 'util', 1), ('hoffstadt/dearpygui', 0.5124236941337585, 'gui', 0), ('ipython/ipyparallel', 0.5087124109268188, 'perf', 0), ('dosisod/refurb', 0.5063945055007935, 'util', 0), ('pyodide/micropip', 0.5000215172767639, 'util', 0)] | 113 | 5 | null | 2.17 | 35 | 26 | 157 | 0 | 17 | 17 | 17 | 35 | 74 | 90 | 2.1 | 51 |
286 | gis | https://github.com/geopandas/geopandas | ['geopandas', 'pandas', 'gis'] | null | [] | [] | 1 | null | null | geopandas/geopandas | geopandas | 4,017 | 908 | 106 | Python | http://geopandas.org/ | Python tools for geographic data | geopandas | 2024-01-13 | 2013-06-27 | 552 | 7.267769 | https://avatars.githubusercontent.com/u/8130715?v=4 | Python tools for geographic data | ['geoparquet', 'geospatial', 'pandas', 'spatial'] | ['geopandas', 'geoparquet', 'geospatial', 'gis', 'pandas', 'spatial'] | 2024-01-07 | [('artelys/geonetworkx', 0.7633013725280762, 'gis', 0), ('residentmario/geoplot', 0.7451832890510559, 'gis', 1), ('holoviz/spatialpandas', 0.6860671043395996, 'pandas', 2), ('opengeos/leafmap', 0.671466052532196, 'gis', 3), ('openeventdata/mordecai', 0.6333655714988708, 'gis', 0), ('raphaelquast/eomaps', 0.6084570288658142, 'gis', 2), ('earthlab/earthpy', 0.6019172668457031, 'gis', 0), ('anitagraser/movingpandas', 0.5975525379180908, 'gis', 1), ('pandas-dev/pandas', 0.5796288251876831, 'pandas', 1), ('holoviz/geoviews', 0.5721185803413391, 'gis', 0), ('giswqs/geemap', 0.5684166550636292, 'gis', 2), ('pysal/pysal', 0.5672765374183655, 'gis', 0), ('mwaskom/seaborn', 0.5595967769622803, 'viz', 1), ('gregorhd/mapcompare', 0.5594103932380676, 'gis', 0), ('tkrabel/bamboolib', 0.5592805743217468, 'pandas', 1), ('makepath/xarray-spatial', 0.5509017705917358, 'gis', 0), ('holoviz/panel', 0.550635039806366, 'viz', 0), ('toblerity/rtree', 0.5479511618614197, 'gis', 0), ('pyproj4/pyproj', 0.5460281372070312, 'gis', 1), ('scitools/iris', 0.5416747331619263, 'gis', 0), ('opengeos/segment-geospatial', 0.5388274788856506, 'gis', 1), ('cloudsen12/easystac', 0.534330427646637, 'gis', 1), ('scikit-mobility/scikit-mobility', 0.5326095819473267, 'gis', 0), ('jakevdp/pythondatasciencehandbook', 0.531819760799408, 'study', 1), ('wesm/pydata-book', 0.531495213508606, 'study', 0), ('goldmansachs/gs-quant', 0.5308281183242798, 'finance', 0), ('eleutherai/pyfra', 0.5261996388435364, 'ml', 0), ('sqlalchemy/sqlalchemy', 0.5259225964546204, 'data', 0), ('plotly/dash', 0.525221586227417, 'viz', 0), ('krzjoa/awesome-python-data-science', 0.5221031308174133, 'study', 0), ('blaze/blaze', 0.5217344164848328, 'pandas', 0), ('man-group/dtale', 0.5202478766441345, 'viz', 1), ('delta-io/delta-rs', 0.5198134183883667, 'pandas', 1), ('adamerose/pandasgui', 0.51722252368927, 'pandas', 1), ('falconry/falcon', 0.5166769027709961, 'web', 0), ('holoviz/holoviz', 0.515374481678009, 'viz', 0), ('mito-ds/monorepo', 0.5150602459907532, 'jupyter', 1), ('contextlab/hypertools', 0.5144107341766357, 'ml', 0), ('python-odin/odin', 0.5138459801673889, 'util', 0), ('fatiando/verde', 0.5108627080917358, 'gis', 1), ('imageio/imageio', 0.5076414942741394, 'util', 0), ('scitools/cartopy', 0.5073442459106445, 'gis', 1), ('kanaries/pygwalker', 0.5026245713233948, 'pandas', 1), ('ibis-project/ibis', 0.5019082427024841, 'data', 1)] | 216 | 4 | null | 3.25 | 141 | 85 | 128 | 0 | 6 | 3 | 6 | 141 | 211 | 90 | 1.5 | 51 |
157 | profiling | https://github.com/gaogaotiantian/viztracer | [] | null | [] | [] | null | null | null | gaogaotiantian/viztracer | viztracer | 3,909 | 343 | 48 | Python | https://viztracer.readthedocs.io/ | VizTracer is a low-overhead logging/debugging/profiling tool that can trace and visualize your python code execution. | gaogaotiantian | 2024-01-14 | 2020-08-05 | 181 | 21.494894 | null | VizTracer is a low-overhead logging/debugging/profiling tool that can trace and visualize your python code execution. | ['debugging', 'flamegraph', 'logging', 'profiling', 'tracer', 'visualization'] | ['debugging', 'flamegraph', 'logging', 'profiling', 'tracer', 'visualization'] | 2024-01-08 | [('alexmojaki/heartrate', 0.6707364320755005, 'debug', 1), ('alexmojaki/snoop', 0.623710036277771, 'debug', 2), ('pympler/pympler', 0.6162266731262207, 'perf', 0), ('ionelmc/python-hunter', 0.6034563779830933, 'debug', 2), ('landscapeio/prospector', 0.6018545627593994, 'util', 0), ('pyutils/line_profiler', 0.5905494689941406, 'profiling', 0), ('altair-viz/altair', 0.5886167287826538, 'viz', 1), ('wandb/client', 0.5766005516052246, 'ml', 0), ('nedbat/coveragepy', 0.5709172487258911, 'testing', 0), ('pythonprofilers/memory_profiler', 0.5663729906082153, 'profiling', 0), ('holoviz/holoviz', 0.5649738311767578, 'viz', 0), ('samuelcolvin/python-devtools', 0.5530471205711365, 'debug', 0), ('jiffyclub/snakeviz', 0.5514275431632996, 'profiling', 0), ('mckinsey/vizro', 0.5495272874832153, 'viz', 1), ('bokeh/bokeh', 0.5466111302375793, 'viz', 1), ('alexmojaki/birdseye', 0.5461402535438538, 'debug', 1), ('holoviz/panel', 0.5426017045974731, 'viz', 0), ('open-telemetry/opentelemetry-python-contrib', 0.5290429592132568, 'util', 0), ('nschloe/perfplot', 0.528630793094635, 'perf', 0), ('klen/pylama', 0.5285407304763794, 'util', 0), ('rubik/radon', 0.5236186385154724, 'util', 0), ('polyaxon/datatile', 0.5233743786811829, 'pandas', 0), ('pyvista/pyvista', 0.5193122029304504, 'viz', 1), ('eleutherai/pyfra', 0.5164215564727783, 'ml', 0), ('google/pytype', 0.5134180784225464, 'typing', 0), ('willmcgugan/textual', 0.5108093023300171, 'term', 0), ('facebook/pyre-check', 0.5102528929710388, 'typing', 0), ('vispy/vispy', 0.503200888633728, 'viz', 1), ('plotly/plotly.py', 0.5023961067199707, 'viz', 1), ('open-telemetry/opentelemetry-python', 0.5011972784996033, 'util', 1), ('sourcery-ai/sourcery', 0.5000627636909485, 'util', 0), ('hoffstadt/dearpygui', 0.5000486373901367, 'gui', 0)] | 25 | 3 | null | 0.79 | 25 | 14 | 42 | 0 | 2 | 23 | 2 | 25 | 52 | 90 | 2.1 | 51 |
183 | testing | https://github.com/tox-dev/tox | [] | null | [] | [] | null | null | null | tox-dev/tox | tox | 3,426 | 502 | 42 | Python | https://tox.wiki | Command line driven CI frontend and development task automation tool. | tox-dev | 2024-01-14 | 2016-09-17 | 384 | 8.911929 | https://avatars.githubusercontent.com/u/20345659?v=4 | Command line driven CI frontend and development task automation tool. | ['actions', 'appveyor', 'automation', 'azure-pipelines', 'circleci', 'cli', 'continuous-integration', 'gitlab', 'pep-621', 'testing', 'travis', 'venv', 'virtualenv'] | ['actions', 'appveyor', 'automation', 'azure-pipelines', 'circleci', 'cli', 'continuous-integration', 'gitlab', 'pep-621', 'testing', 'travis', 'venv', 'virtualenv'] | 2024-01-12 | [('ianmiell/shutit', 0.5560944080352783, 'util', 0), ('allegroai/clearml', 0.5439307689666748, 'ml-ops', 0), ('pydoit/doit', 0.5430145859718323, 'util', 0), ('zenml-io/zenml', 0.5314726233482361, 'ml-ops', 0), ('buildbot/buildbot', 0.5279530882835388, 'util', 1), ('pytest-dev/pytest-testinfra', 0.5243973731994629, 'testing', 1), ('orchest/orchest', 0.523241400718689, 'ml-ops', 0), ('bodywork-ml/bodywork-core', 0.5215947031974792, 'ml-ops', 0), ('flipkart-incubator/astra', 0.5185132026672363, 'web', 0), ('python-poetry/cleo', 0.515224039554596, 'term', 2), ('ploomber/ploomber', 0.5083051323890686, 'ml-ops', 0), ('avaiga/taipy', 0.5081842541694641, 'data', 1)] | 68 | 6 | null | 3 | 48 | 35 | 89 | 0 | 38 | 29 | 38 | 48 | 66 | 90 | 1.4 | 51 |
897 | util | https://github.com/pypi/warehouse | [] | null | [] | [] | null | null | null | pypi/warehouse | warehouse | 3,422 | 1,041 | 112 | Python | https://pypi.org | The Python Package Index | pypi | 2024-01-14 | 2013-03-30 | 565 | 6.052046 | https://avatars.githubusercontent.com/u/2964877?v=4 | The Python Package Index | ['package-registry', 'package-repository', 'pypi-source'] | ['package-registry', 'package-repository', 'pypi-source'] | 2024-01-12 | [('pdm-project/pdm', 0.6904469728469849, 'util', 0), ('indygreg/pyoxidizer', 0.6707281470298767, 'util', 0), ('mitsuhiko/rye', 0.6509472131729126, 'util', 0), ('pyodide/micropip', 0.6480095386505127, 'util', 0), ('pypa/flit', 0.6236358284950256, 'util', 0), ('pypa/hatch', 0.6159988641738892, 'util', 0), ('pypa/gh-action-pypi-publish', 0.6143344044685364, 'util', 0), ('hugovk/pypistats', 0.6038178205490112, 'util', 0), ('regebro/pyroma', 0.6017106771469116, 'util', 0), ('pomponchik/instld', 0.5979329347610474, 'util', 0), ('python-poetry/poetry', 0.5964840054512024, 'util', 0), ('jazzband/pip-tools', 0.5816731452941895, 'util', 0), ('tox-dev/pipdeptree', 0.5815759897232056, 'util', 0), ('mozillazg/pypy', 0.5795431733131409, 'util', 0), ('ofek/pyapp', 0.5665706992149353, 'util', 0), ('mgedmin/check-manifest', 0.5615488886833191, 'util', 0), ('pypy/pypy', 0.546995222568512, 'util', 0), ('landscapeio/prospector', 0.545502245426178, 'util', 0), ('tiangolo/poetry-version-plugin', 0.537349283695221, 'util', 0), ('mkdocstrings/griffe', 0.5345215797424316, 'util', 0), ('urwid/urwid', 0.5293185710906982, 'term', 0), ('prompt-toolkit/ptpython', 0.5278775691986084, 'util', 0), ('pypa/virtualenv', 0.5271876454353333, 'util', 0), ('tezromach/python-package-template', 0.5265879034996033, 'template', 0), ('pypa/installer', 0.5235101580619812, 'util', 0), ('ipython/ipython', 0.5227155685424805, 'util', 0), ('omry/omegaconf', 0.5100882053375244, 'util', 0), ('hadialqattan/pycln', 0.5063982605934143, 'util', 0), ('rubik/radon', 0.5054935216903687, 'util', 0), ('pygments/pygments', 0.5018252730369568, 'util', 0), ('dosisod/refurb', 0.5017030239105225, 'util', 0)] | 370 | 7 | null | 13.9 | 524 | 430 | 131 | 0 | 0 | 0 | 0 | 523 | 587 | 90 | 1.1 | 51 |
804 | ml-ops | https://github.com/ploomber/ploomber | [] | null | [] | [] | null | null | null | ploomber/ploomber | ploomber | 3,306 | 222 | 29 | Python | https://ploomber.io | The fastest ⚡️ way to build data pipelines. Develop iteratively, deploy anywhere. ☁️ | ploomber | 2024-01-14 | 2020-01-20 | 210 | 15.732155 | https://avatars.githubusercontent.com/u/60114551?v=4 | The fastest ⚡️ way to build data pipelines. Develop iteratively, deploy anywhere. ☁️ | ['data-engineering', 'data-science', 'jupyter', 'jupyter-notebooks', 'machine-learning', 'mlops', 'notebooks', 'papermill', 'pipelines', 'pycharm', 'vscode', 'workflow'] | ['data-engineering', 'data-science', 'jupyter', 'jupyter-notebooks', 'machine-learning', 'mlops', 'notebooks', 'papermill', 'pipelines', 'pycharm', 'vscode', 'workflow'] | 2024-01-03 | [('orchest/orchest', 0.862511932849884, 'ml-ops', 5), ('linealabs/lineapy', 0.739909827709198, 'jupyter', 0), ('mage-ai/mage-ai', 0.7089954614639282, 'ml-ops', 4), ('avaiga/taipy', 0.6359885334968567, 'data', 4), ('meltano/meltano', 0.6284797787666321, 'ml-ops', 2), ('kestra-io/kestra', 0.6272913217544556, 'ml-ops', 2), ('netflix/metaflow', 0.6208223700523376, 'ml-ops', 3), ('zenml-io/zenml', 0.6197214722633362, 'ml-ops', 5), ('airbytehq/airbyte', 0.6143587827682495, 'data', 1), ('dagworks-inc/hamilton', 0.6052381992340088, 'ml-ops', 4), ('dagster-io/dagster', 0.6021184325218201, 'ml-ops', 4), ('hi-primus/optimus', 0.5924459099769592, 'ml-ops', 2), ('fastai/fastcore', 0.5885465741157532, 'util', 0), ('polyaxon/polyaxon', 0.5840852856636047, 'ml-ops', 6), ('flyteorg/flyte', 0.5782303214073181, 'ml-ops', 4), ('kubeflow-kale/kale', 0.5709792971611023, 'ml-ops', 1), ('bodywork-ml/bodywork-core', 0.5688678026199341, 'ml-ops', 3), ('kubeflow/pipelines', 0.568588137626648, 'ml-ops', 3), ('astronomer/astro-sdk', 0.5675156116485596, 'ml-ops', 1), ('pypa/pipenv', 0.5622181296348572, 'util', 0), ('huggingface/datasets', 0.5587560534477234, 'nlp', 1), ('willmcgugan/textual', 0.5585596561431885, 'term', 0), ('allegroai/clearml', 0.5556386113166809, 'ml-ops', 2), ('pydoit/doit', 0.5523402094841003, 'util', 2), ('great-expectations/great_expectations', 0.5521277785301208, 'ml-ops', 3), ('streamlit/streamlit', 0.5482877492904663, 'viz', 2), ('kubeflow/fairing', 0.5463899970054626, 'ml-ops', 0), ('pythagora-io/gpt-pilot', 0.5441665649414062, 'llm', 0), ('polyaxon/datatile', 0.5431307554244995, 'pandas', 2), ('plotly/dash', 0.5395582914352417, 'viz', 2), ('whylabs/whylogs', 0.5393771529197693, 'util', 3), ('nteract/papermill', 0.5353273153305054, 'jupyter', 2), ('merantix-momentum/squirrel-core', 0.5347124338150024, 'ml', 2), ('feast-dev/feast', 0.5336986780166626, 'ml-ops', 4), ('google/ml-metadata', 0.5324745774269104, 'ml-ops', 0), ('simonw/datasette', 0.5322346091270447, 'data', 0), ('featureform/embeddinghub', 0.529184103012085, 'nlp', 3), ('spotify/luigi', 0.5267884135246277, 'ml-ops', 0), ('python-odin/odin', 0.5260776877403259, 'util', 0), ('backtick-se/cowait', 0.5248901844024658, 'util', 2), ('malloydata/malloy-py', 0.5213688015937805, 'data', 0), ('kedro-org/kedro', 0.5186499357223511, 'ml-ops', 2), ('pathwaycom/pathway', 0.5119403004646301, 'data', 0), ('fmind/mlops-python-package', 0.5116260051727295, 'template', 1), ('tobymao/sqlglot', 0.5114932656288147, 'data', 0), ('vaexio/vaex', 0.5101336240768433, 'perf', 2), ('prefecthq/prefect', 0.5095990896224976, 'ml-ops', 3), ('tox-dev/tox', 0.5083051323890686, 'testing', 0), ('saulpw/visidata', 0.5074170827865601, 'term', 0), ('gradio-app/gradio', 0.5065774321556091, 'viz', 2), ('krzjoa/awesome-python-data-science', 0.5054386258125305, 'study', 2), ('iterative/dvc', 0.5037345886230469, 'ml-ops', 2), ('firmai/industry-machine-learning', 0.5007092952728271, 'study', 2), ('prefecthq/server', 0.5003852248191833, 'util', 1)] | 80 | 1 | null | 1.37 | 24 | 16 | 48 | 0 | 0 | 29 | 29 | 24 | 68 | 90 | 2.8 | 51 |
1,383 | diffusion | https://github.com/mlc-ai/web-stable-diffusion | [] | null | [] | [] | null | null | null | mlc-ai/web-stable-diffusion | web-stable-diffusion | 3,273 | 196 | 33 | Jupyter Notebook | https://mlc.ai/web-stable-diffusion | Bringing stable diffusion models to web browsers. Everything runs inside the browser with no server support. | mlc-ai | 2024-01-13 | 2023-03-06 | 47 | 69.427273 | https://avatars.githubusercontent.com/u/106173866?v=4 | Bringing stable diffusion models to web browsers. Everything runs inside the browser with no server support. | ['deep-learning', 'stable-diffusion', 'tvm', 'web-assembly', 'webgpu', 'webml'] | ['deep-learning', 'stable-diffusion', 'tvm', 'web-assembly', 'webgpu', 'webml'] | 2023-07-18 | [('automatic1111/stable-diffusion-webui', 0.7200703024864197, 'diffusion', 2), ('thereforegames/unprompted', 0.6838393807411194, 'diffusion', 2), ('mlc-ai/web-llm', 0.6759905219078064, 'llm', 4), ('civitai/sd_civitai_extension', 0.6748091578483582, 'llm', 0), ('bentoml/onediffusion', 0.6144503355026245, 'diffusion', 1), ('comfyanonymous/comfyui', 0.6069907546043396, 'diffusion', 1), ('carson-katri/dream-textures', 0.5855890512466431, 'diffusion', 1), ('aiqc/aiqc', 0.5372481346130371, 'ml-ops', 0), ('titanml/takeoff', 0.5177373886108398, 'llm', 0), ('bigscience-workshop/petals', 0.5074443817138672, 'data', 1)] | 8 | 5 | null | 0.75 | 8 | 1 | 10 | 6 | 0 | 0 | 0 | 8 | 11 | 90 | 1.4 | 51 |
140 | viz | https://github.com/vispy/vispy | [] | null | [] | [] | null | null | null | vispy/vispy | vispy | 3,170 | 614 | 117 | Python | http://vispy.org | Main repository for Vispy | vispy | 2024-01-12 | 2013-03-21 | 566 | 5.593648 | https://avatars.githubusercontent.com/u/3934254?v=4 | Main repository for Vispy | ['opengl', 'visualization'] | ['opengl', 'visualization'] | 2023-12-28 | [('holoviz/holoviz', 0.6010532379150391, 'viz', 0), ('maartenbreddels/ipyvolume', 0.5861509442329407, 'jupyter', 0), ('altair-viz/altair', 0.5802785158157349, 'viz', 1), ('holoviz/geoviews', 0.571336567401886, 'gis', 0), ('visgl/deck.gl', 0.5518122911453247, 'viz', 1), ('residentmario/geoplot', 0.5477085709571838, 'gis', 0), ('giswqs/geemap', 0.5475439429283142, 'gis', 0), ('graphistry/pygraphistry', 0.5377211570739746, 'data', 1), ('man-group/dtale', 0.5336646437644958, 'viz', 1), ('plotly/plotly.py', 0.523070216178894, 'viz', 1), ('enthought/mayavi', 0.5171870589256287, 'viz', 1), ('pyglet/pyglet', 0.5124850273132324, 'gamedev', 1), ('bokeh/bokeh', 0.5114392638206482, 'viz', 1), ('marcomusy/vedo', 0.5108841061592102, 'viz', 1), ('has2k1/plotnine', 0.5095175504684448, 'viz', 0), ('scitools/cartopy', 0.5065507888793945, 'gis', 0), ('dfki-ric/pytransform3d', 0.5056593418121338, 'math', 1), ('gaogaotiantian/viztracer', 0.503200888633728, 'profiling', 1)] | 192 | 8 | null | 2.87 | 40 | 23 | 132 | 1 | 4 | 3 | 4 | 40 | 169 | 90 | 4.2 | 51 |
1,650 | nlp | https://github.com/maartengr/keybert | [] | null | [] | [] | null | null | null | maartengr/keybert | KeyBERT | 3,034 | 317 | 33 | Python | https://MaartenGr.github.io/KeyBERT/ | Minimal keyword extraction with BERT | maartengr | 2024-01-14 | 2020-10-22 | 170 | 17.772385 | null | Minimal keyword extraction with BERT | ['bert', 'keyphrase-extraction', 'keyword-extraction', 'mmr'] | ['bert', 'keyphrase-extraction', 'keyword-extraction', 'mmr'] | 2024-01-03 | [('vi3k6i5/flashtext', 0.5377181768417358, 'data', 1), ('whu-zqh/chatgpt-vs.-bert', 0.529996395111084, 'llm', 1), ('jonasgeiping/cramming', 0.5119235515594482, 'nlp', 0), ('maartengr/bertopic', 0.5103285908699036, 'nlp', 1), ('paddlepaddle/paddlenlp', 0.5080262422561646, 'llm', 1)] | 9 | 8 | null | 0.15 | 19 | 9 | 39 | 0 | 1 | 3 | 1 | 19 | 60 | 90 | 3.2 | 51 |
837 | time-series | https://github.com/tdameritrade/stumpy | [] | null | [] | [] | null | null | null | tdameritrade/stumpy | stumpy | 2,896 | 274 | 54 | Python | https://stumpy.readthedocs.io/en/latest/ | STUMPY is a powerful and scalable Python library for modern time series analysis | tdameritrade | 2024-01-13 | 2019-05-03 | 247 | 11.697634 | https://avatars.githubusercontent.com/u/5022525?v=4 | STUMPY is a powerful and scalable Python library for modern time series analysis | ['anomaly-detection', 'dask', 'data-science', 'matrix-profile', 'motif-discovery', 'numba', 'pattern-matching', 'pydata', 'time-series-analysis', 'time-series-data-mining', 'time-series-segmentation'] | ['anomaly-detection', 'dask', 'data-science', 'matrix-profile', 'motif-discovery', 'numba', 'pattern-matching', 'pydata', 'time-series-analysis', 'time-series-data-mining', 'time-series-segmentation'] | 2024-01-12 | [('unit8co/darts', 0.7482045888900757, 'time-series', 2), ('alkaline-ml/pmdarima', 0.6753336787223816, 'time-series', 0), ('pycaret/pycaret', 0.6499117016792297, 'ml', 2), ('rjt1990/pyflux', 0.6353744268417358, 'time-series', 0), ('yzhao062/pyod', 0.6203436255455017, 'data', 2), ('firmai/atspy', 0.6093729138374329, 'time-series', 1), ('blue-yonder/tsfresh', 0.5777381062507629, 'time-series', 1), ('aistream-peelout/flow-forecast', 0.567234992980957, 'time-series', 2), ('google/temporian', 0.5609158277511597, 'time-series', 0), ('salesforce/merlion', 0.5562719106674194, 'time-series', 1), ('rasbt/mlxtend', 0.5554875135421753, 'ml', 1), ('awslabs/gluonts', 0.5509535074234009, 'time-series', 1), ('dateutil/dateutil', 0.530729353427887, 'util', 0), ('pandas-dev/pandas', 0.523211658000946, 'pandas', 1), ('contextlab/hypertools', 0.5135495662689209, 'ml', 0), ('ta-lib/ta-lib-python', 0.509051501750946, 'finance', 0), ('makepath/xarray-spatial', 0.5024837851524353, 'gis', 1)] | 36 | 3 | null | 1.92 | 12 | 5 | 57 | 0 | 1 | 6 | 1 | 12 | 98 | 90 | 8.2 | 51 |
1,435 | llm | https://github.com/baichuan-inc/baichuan-13b | [] | null | [] | [] | null | null | null | baichuan-inc/baichuan-13b | Baichuan-13B | 2,867 | 218 | 31 | Python | https://huggingface.co/baichuan-inc/Baichuan-13B-Chat | A 13B large language model developed by Baichuan Intelligent Technology | baichuan-inc | 2024-01-13 | 2023-07-10 | 29 | 98.377451 | https://avatars.githubusercontent.com/u/136167093?v=4 | A 13B large language model developed by Baichuan Intelligent Technology | ['artificial-intelligence', 'benchmark', 'ceval', 'chatgpt', 'chinese', 'gpt-4', 'huggingface', 'large-language-models', 'mmlu', 'natural-language-processing'] | ['artificial-intelligence', 'benchmark', 'ceval', 'chatgpt', 'chinese', 'gpt-4', 'huggingface', 'large-language-models', 'mmlu', 'natural-language-processing'] | 2023-09-06 | [('lianjiatech/belle', 0.6785591840744019, 'llm', 0), ('hannibal046/awesome-llm', 0.6444519758224487, 'study', 0), ('freedomintelligence/llmzoo', 0.640003502368927, 'llm', 0), ('next-gpt/next-gpt', 0.6081295013427734, 'llm', 3), ('yueyu1030/attrprompt', 0.6001567840576172, 'llm', 2), ('ctlllll/llm-toolmaker', 0.5928089022636414, 'llm', 0), ('lm-sys/fastchat', 0.5909283757209778, 'llm', 0), ('microsoft/autogen', 0.5874255895614624, 'llm', 2), ('thudm/chatglm2-6b', 0.5701199173927307, 'llm', 1), ('huawei-noah/pretrained-language-model', 0.5544146299362183, 'nlp', 0), ('openlmlab/moss', 0.5460556149482727, 'llm', 3), ('huggingface/text-generation-inference', 0.546048104763031, 'llm', 0), ('ai21labs/lm-evaluation', 0.5453725457191467, 'llm', 0), ('li-plus/chatglm.cpp', 0.5446141362190247, 'llm', 1), ('microsoft/lora', 0.5445288419723511, 'llm', 0), ('jonasgeiping/cramming', 0.5425389409065247, 'nlp', 0), ('databrickslabs/dolly', 0.5416833758354187, 'llm', 0), ('sjtu-ipads/powerinfer', 0.5372994542121887, 'llm', 1), ('prefecthq/langchain-prefect', 0.5365051627159119, 'llm', 1), ('guidance-ai/guidance', 0.5342095494270325, 'llm', 1), ('thudm/chatglm-6b', 0.5303475856781006, 'llm', 0), ('togethercomputer/redpajama-data', 0.5299484729766846, 'llm', 0), ('hiyouga/llama-factory', 0.5287744402885437, 'llm', 1), ('hiyouga/llama-efficient-tuning', 0.5287743806838989, 'llm', 1), ('bobazooba/xllm', 0.5246362090110779, 'llm', 3), ('cg123/mergekit', 0.5188269019126892, 'llm', 0), ('timdettmers/bitsandbytes', 0.5144120454788208, 'util', 0), ('salesforce/xgen', 0.5127484798431396, 'llm', 1), ('lupantech/chameleon-llm', 0.5114999413490295, 'llm', 2), ('paddlepaddle/rocketqa', 0.5105500817298889, 'nlp', 0), ('paddlepaddle/paddlenlp', 0.5055248141288757, 'llm', 0), ('oobabooga/text-generation-webui', 0.5040669441223145, 'llm', 0), ('explosion/spacy-models', 0.5027161836624146, 'nlp', 1), ('juncongmoo/pyllama', 0.5018168091773987, 'llm', 0), ('mlc-ai/web-llm', 0.5006130933761597, 'llm', 1), ('keirp/automatic_prompt_engineer', 0.5003429055213928, 'llm', 0)] | 6 | 3 | null | 0.62 | 23 | 6 | 6 | 4 | 0 | 0 | 0 | 23 | 19 | 90 | 0.8 | 51 |