Unnamed: 0
int64
category
string
githuburl
string
customtopics
string
customabout
string
customarxiv
string
custompypi
string
featured
float64
links
string
description
string
_repopath
string
_reponame
string
_stars
int64
_forks
int64
_watches
int64
_language
string
_homepage
string
_github_description
string
_organization
string
_updated_at
string
_created_at
string
_age_weeks
int64
_stars_per_week
float64
_avatar_url
string
_description
string
_github_topics
string
_topics
string
_last_commit_date
string
sim
string
_pop_contributor_count
int64
_pop_contributor_orgs_len
float64
_pop_contributor_orgs_error
float64
_pop_commit_frequency
float64
_pop_updated_issues_count
int64
_pop_closed_issues_count
int64
_pop_created_since_days
int64
_pop_updated_since_days
int64
_pop_recent_releases_count
int64
_pop_recent_releases_estimated_tags
int64
_pop_recent_releases_adjusted_count
int64
_pop_issue_count
float64
_pop_comment_count
float64
_pop_comment_count_lookback_days
float64
_pop_comment_frequency
float64
_pop_score
int64
1,466
util
https://github.com/lcompilers/lpython
[]
null
[]
[]
null
null
null
lcompilers/lpython
lpython
1,175
122
28
C++
https://lpython.org/
Python compiler
lcompilers
2024-01-12
2021-12-29
108
10.793963
https://avatars.githubusercontent.com/u/96538276?v=4
Python compiler
['compiler', 'high-performance']
['compiler', 'high-performance']
2024-01-11
[('exaloop/codon', 0.7257847189903259, 'perf', 2), ('cython/cython', 0.6913489699363708, 'util', 0), ('pypy/pypy', 0.6041545271873474, 'util', 1), ('numba/numba', 0.603155255317688, 'perf', 1), ('pyston/pyston', 0.6024731397628784, 'util', 0), ('klen/py-frameworks-bench', 0.587522566318512, 'perf', 0), ('markshannon/faster-cpython', 0.5289682149887085, 'perf', 0), ('faster-cpython/tools', 0.5253562927246094, 'perf', 0), ('numba/llvmlite', 0.5191760063171387, 'util', 0), ('fastai/fastcore', 0.5177335739135742, 'util', 0), ('pympler/pympler', 0.5168886184692383, 'perf', 0), ('p403n1x87/austin', 0.5144882798194885, 'profiling', 0), ('benfred/py-spy', 0.5141026377677917, 'profiling', 0), ('pyutils/line_profiler', 0.5114628076553345, 'profiling', 0), ('joblib/joblib', 0.5082236528396606, 'util', 0), ('google/jax', 0.5010378956794739, 'ml', 0)]
65
6
null
30.87
97
58
25
0
11
12
11
97
217
90
2.2
55
1,835
llm
https://github.com/hao-ai-lab/lookaheaddecoding
['decoding', 'lookahead']
Break the Sequential Dependency of LLM Inference Using Lookahead Decoding
[]
[]
null
null
null
hao-ai-lab/lookaheaddecoding
LookaheadDecoding
802
49
9
Python
null
null
hao-ai-lab
2024-01-14
2023-11-21
10
80.2
https://avatars.githubusercontent.com/u/149045815?v=4
Break the Sequential Dependency of LLM Inference Using Lookahead Decoding
[]
['decoding', 'lookahead']
2024-01-09
[('karpathy/llama2.c', 0.5412218570709229, 'llm', 0), ('facebookresearch/llama', 0.5299458503723145, 'llm', 0), ('artidoro/qlora', 0.5174603462219238, 'llm', 0), ('facebookresearch/codellama', 0.5007719397544861, 'llm', 0)]
5
2
null
0.31
44
24
2
0
0
0
0
44
175
90
4
55
499
ml
https://github.com/ageron/handson-ml2
[]
null
[]
[]
null
null
null
ageron/handson-ml2
handson-ml2
26,281
12,333
648
Jupyter Notebook
null
A series of Jupyter notebooks that walk you through the fundamentals of Machine Learning and Deep Learning in Python using Scikit-Learn, Keras and TensorFlow 2.
ageron
2024-01-14
2019-01-08
264
99.549242
null
A series of Jupyter notebooks that walk you through the fundamentals of Machine Learning and Deep Learning in Python using Scikit-Learn, Keras and TensorFlow 2.
[]
[]
2023-02-04
[('fchollet/deep-learning-with-python-notebooks', 0.8291416168212891, 'study', 0), ('jakevdp/pythondatasciencehandbook', 0.6813152432441711, 'study', 0), ('gradio-app/gradio', 0.6595058441162109, 'viz', 0), ('rasbt/machine-learning-book', 0.6461301445960999, 'study', 0), ('firmai/industry-machine-learning', 0.6424956321716309, 'study', 0), ('mrdbourke/pytorch-deep-learning', 0.633056104183197, 'study', 0), ('wesm/pydata-book', 0.6252664923667908, 'study', 0), ('pytorch/ignite', 0.6152977347373962, 'ml-dl', 0), ('probml/pyprobml', 0.6119535565376282, 'ml', 0), ('scikit-learn/scikit-learn', 0.6084038615226746, 'ml', 0), ('intel/intel-extension-for-pytorch', 0.6076744198799133, 'perf', 0), ('ddbourgin/numpy-ml', 0.6011914014816284, 'ml', 0), ('uber/petastorm', 0.5999022126197815, 'data', 0), ('skorch-dev/skorch', 0.5958633422851562, 'ml-dl', 0), ('jupyter/nbformat', 0.5934438705444336, 'jupyter', 0), ('cohere-ai/notebooks', 0.5897052884101868, 'llm', 0), ('d2l-ai/d2l-en', 0.5854299664497375, 'study', 0), ('xl0/lovely-tensors', 0.583730936050415, 'ml-dl', 0), ('jeshraghian/snntorch', 0.5824640989303589, 'ml-dl', 0), ('determined-ai/determined', 0.5803431868553162, 'ml-ops', 0), ('keras-team/keras', 0.5698571801185608, 'ml-dl', 0), ('nvidia/deeplearningexamples', 0.5652621388435364, 'ml-dl', 0), ('ggerganov/ggml', 0.5649846196174622, 'ml', 0), ('tensorlayer/tensorlayer', 0.5648738741874695, 'ml-rl', 0), ('rasbt/mlxtend', 0.564663290977478, 'ml', 0), ('tensorly/tensorly', 0.5573654770851135, 'ml-dl', 0), ('tensorflow/tensorflow', 0.5564263463020325, 'ml-dl', 0), ('kubeflow/fairing', 0.5555180907249451, 'ml-ops', 0), ('pytorch/pytorch', 0.5553191304206848, 'ml-dl', 0), ('udacity/deep-learning-v2-pytorch', 0.5552393198013306, 'study', 0), ('featurelabs/featuretools', 0.5548660159111023, 'ml', 0), ('numpy/numpy', 0.5535714626312256, 'math', 0), ('huggingface/huggingface_hub', 0.5522385835647583, 'ml', 0), ('ipython/ipykernel', 0.55137699842453, 'util', 0), ('mdbloice/augmentor', 0.5503374338150024, 'ml', 0), ('graykode/nlp-tutorial', 0.5493988394737244, 'study', 0), ('tensorflow/lucid', 0.5488042235374451, 'ml-interpretability', 0), ('tensorflow/tensor2tensor', 0.5483447313308716, 'ml', 0), ('dmlc/dgl', 0.5474348068237305, 'ml-dl', 0), ('patchy631/machine-learning', 0.5471069812774658, 'ml', 0), ('lightly-ai/lightly', 0.5470166802406311, 'ml', 0), ('kubeflow-kale/kale', 0.5455378293991089, 'ml-ops', 0), ('ipython/ipyparallel', 0.5427348017692566, 'perf', 0), ('pycaret/pycaret', 0.5426246523857117, 'ml', 0), ('keras-rl/keras-rl', 0.5413088202476501, 'ml-rl', 0), ('huggingface/transformers', 0.5403335094451904, 'nlp', 0), ('udlbook/udlbook', 0.539566159248352, 'study', 0), ('jupyter/nbconvert', 0.5394284725189209, 'jupyter', 0), ('tlkh/tf-metal-experiments', 0.5388534665107727, 'perf', 0), ('aws/sagemaker-python-sdk', 0.5365365743637085, 'ml', 0), ('gerdm/prml', 0.5364505648612976, 'study', 0), ('arogozhnikov/einops', 0.5353853702545166, 'ml-dl', 0), ('wandb/client', 0.5327136516571045, 'ml', 0), ('automl/auto-sklearn', 0.531454861164093, 'ml', 0), ('scikit-learn-contrib/metric-learn', 0.5313714146614075, 'ml', 0), ('tensorflow/addons', 0.5312256813049316, 'ml', 0), ('dylanhogg/awesome-python', 0.5303460955619812, 'study', 0), ('mynameisfiber/high_performance_python_2e', 0.5303263068199158, 'study', 0), ('goldmansachs/gs-quant', 0.5294873118400574, 'finance', 0), ('koaning/human-learn', 0.5293908715248108, 'data', 0), ('keras-team/keras-nlp', 0.528778076171875, 'nlp', 0), ('cerlymarco/medium_notebook', 0.525178074836731, 'study', 0), ('xl0/lovely-numpy', 0.52412348985672, 'util', 0), ('pyro-ppl/pyro', 0.522969663143158, 'ml-dl', 0), ('adafruit/circuitpython', 0.5219725966453552, 'util', 0), ('rafiqhasan/auto-tensorflow', 0.5208608508110046, 'ml-dl', 0), ('jupyter/notebook', 0.5203615427017212, 'jupyter', 0), ('skops-dev/skops', 0.5202804207801819, 'ml-ops', 0), ('epistasislab/tpot', 0.5202245712280273, 'ml', 0), ('aws/graph-notebook', 0.519343912601471, 'jupyter', 0), ('ta-lib/ta-lib-python', 0.5182675123214722, 'finance', 0), ('horovod/horovod', 0.5166817307472229, 'ml-ops', 0), ('rasbt/stat451-machine-learning-fs20', 0.5153390169143677, 'study', 0), ('koaning/scikit-lego', 0.5152604579925537, 'ml', 0), ('pyg-team/pytorch_geometric', 0.5134172439575195, 'ml-dl', 0), ('huggingface/datasets', 0.5119935870170593, 'nlp', 0), ('explosion/thinc', 0.5114274621009827, 'ml-dl', 0), ('scikit-learn-contrib/lightning', 0.5109522938728333, 'ml', 0), ('jupyterlab/jupyterlab-desktop', 0.510633647441864, 'jupyter', 0), ('nicolas-chaulet/torch-points3d', 0.5103498101234436, 'ml', 0), ('jupyter/nbgrader', 0.5094665884971619, 'jupyter', 0), ('quantopian/qgrid', 0.5087634921073914, 'jupyter', 0), ('google/gin-config', 0.5084095001220703, 'util', 0), ('python/cpython', 0.5082079172134399, 'util', 0), ('microsoft/flaml', 0.5074008107185364, 'ml', 0), ('pypy/pypy', 0.5072569251060486, 'util', 0), ('eleutherai/pyfra', 0.5071380734443665, 'ml', 0), ('tatsu-lab/stanford_alpaca', 0.5068382620811462, 'llm', 0), ('jupyter-widgets/ipywidgets', 0.5040411949157715, 'jupyter', 0), ('realpython/python-guide', 0.5025880336761475, 'study', 0), ('iryna-kondr/scikit-llm', 0.5018590688705444, 'llm', 0), ('jupyterlab/jupyterlab', 0.5005123019218445, 'jupyter', 0), ('google/vizier', 0.5004328489303589, 'ml', 0)]
75
2
null
0.04
6
2
61
11
0
0
0
6
7
90
1.2
54
671
ml-dl
https://github.com/facebookresearch/detectron
[]
null
[]
[]
null
null
null
facebookresearch/detectron
Detectron
26,066
5,568
944
Python
null
FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.
facebookresearch
2024-01-14
2017-10-05
329
79.056326
https://avatars.githubusercontent.com/u/16943930?v=4
FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.
[]
[]
2023-10-19
[('matterport/mask_rcnn', 0.5304756760597229, 'ml-dl', 0), ('open-mmlab/mmdetection', 0.5015984177589417, 'ml', 0)]
43
3
null
0.12
2
0
76
3
0
0
0
2
2
90
1
54
1,243
ml
https://github.com/jindongwang/transferlearning
[]
null
[]
[]
null
null
null
jindongwang/transferlearning
transferlearning
12,474
3,731
336
Python
http://transferlearning.xyz/
Transfer learning / domain adaptation / domain generalization / multi-task learning etc. Papers, codes, datasets, applications, tutorials.-迁移学习
jindongwang
2024-01-14
2017-04-30
352
35.408759
null
Transfer learning / domain adaptation / domain generalization / multi-task learning etc. Papers, codes, datasets, applications, tutorials.-迁移学习
['deep-learning', 'domain-adaptation', 'domain-adaption', 'domain-generalization', 'few-shot', 'few-shot-learning', 'generalization', 'machine-learning', 'meta-learning', 'paper', 'papers', 'representation-learning', 'self-supervised-learning', 'style-transfer', 'survey', 'theory', 'transfer-learning', 'transferlearning', 'tutorial-code', 'unsupervised-learning']
['deep-learning', 'domain-adaptation', 'domain-adaption', 'domain-generalization', 'few-shot', 'few-shot-learning', 'generalization', 'machine-learning', 'meta-learning', 'paper', 'papers', 'representation-learning', 'self-supervised-learning', 'style-transfer', 'survey', 'theory', 'transfer-learning', 'transferlearning', 'tutorial-code', 'unsupervised-learning']
2024-01-08
[('amanchadha/coursera-deep-learning-specialization', 0.5513812899589539, 'study', 1), ('huggingface/autotrain-advanced', 0.5214440822601318, 'ml', 2), ('patchy631/machine-learning', 0.5060864090919495, 'ml', 0), ('alirezadir/machine-learning-interview-enlightener', 0.5019001364707947, 'study', 2), ('udacity/deep-learning-v2-pytorch', 0.501124918460846, 'study', 2), ('awslabs/autogluon', 0.5002632141113281, 'ml', 3)]
40
4
null
0.96
14
7
82
0
0
0
0
14
22
90
1.6
54
425
ml-dl
https://github.com/facebookresearch/detr
[]
null
[]
[]
null
null
null
facebookresearch/detr
detr
12,338
2,222
149
Python
null
End-to-End Object Detection with Transformers
facebookresearch
2024-01-14
2020-05-26
192
64.260417
https://avatars.githubusercontent.com/u/16943930?v=4
End-to-End Object Detection with Transformers
[]
[]
2023-02-07
[('cvg/lightglue', 0.5226452350616455, 'ml-dl', 0), ('nvlabs/gcvit', 0.5166937112808228, 'diffusion', 0), ('matterport/mask_rcnn', 0.5123329758644104, 'ml-dl', 0)]
26
7
null
0.02
36
7
44
11
0
0
0
36
47
90
1.3
54
1,380
ml
https://github.com/microsoft/swin-transformer
[]
null
[]
[]
null
null
null
microsoft/swin-transformer
Swin-Transformer
12,319
1,937
125
Python
https://arxiv.org/abs/2103.14030
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows".
microsoft
2024-01-14
2021-03-25
148
82.836695
https://avatars.githubusercontent.com/u/6154722?v=4
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows".
['ade20k', 'image-classification', 'imagenet', 'mask-rcnn', 'mscoco', 'object-detection', 'semantic-segmentation', 'swin-transformer']
['ade20k', 'image-classification', 'imagenet', 'mask-rcnn', 'mscoco', 'object-detection', 'semantic-segmentation', 'swin-transformer']
2023-08-16
[('nvlabs/gcvit', 0.6548908352851868, 'diffusion', 4), ('google-research/maxvit', 0.5897934436798096, 'ml', 1), ('lucidrains/vit-pytorch', 0.5670905113220215, 'ml-dl', 1), ('open-mmlab/mmdetection', 0.5538708567619324, 'ml', 3), ('deci-ai/super-gradients', 0.5506076812744141, 'ml-dl', 4), ('open-mmlab/mmsegmentation', 0.5363519191741943, 'ml', 2), ('hrnet/hrnet-semantic-segmentation', 0.5201693177223206, 'ml', 1), ('roboflow/supervision', 0.5062756538391113, 'ml', 1)]
13
8
null
0.02
20
3
34
5
0
0
0
20
11
90
0.6
54
85
ml
https://github.com/statsmodels/statsmodels
[]
null
[]
[]
null
null
null
statsmodels/statsmodels
statsmodels
9,210
2,836
279
Python
http://www.statsmodels.org/devel/
Statsmodels: statistical modeling and econometrics in Python
statsmodels
2024-01-13
2011-06-12
659
13.969664
https://avatars.githubusercontent.com/u/717666?v=4
Statsmodels: statistical modeling and econometrics in Python
['count-model', 'data-analysis', 'data-science', 'econometrics', 'forecasting', 'generalized-linear-models', 'hypothesis-testing', 'prediction', 'regression-models', 'robust-estimation', 'statistics', 'timeseries-analysis']
['count-model', 'data-analysis', 'data-science', 'econometrics', 'forecasting', 'generalized-linear-models', 'hypothesis-testing', 'prediction', 'regression-models', 'robust-estimation', 'statistics', 'timeseries-analysis']
2024-01-04
[('firmai/atspy', 0.6599208116531372, 'time-series', 1), ('ranaroussi/quantstats', 0.6285594701766968, 'finance', 0), ('alkaline-ml/pmdarima', 0.6218242645263672, 'time-series', 2), ('scikit-learn/scikit-learn', 0.6116586327552795, 'ml', 3), ('scikit-mobility/scikit-mobility', 0.5975031852722168, 'gis', 3), ('bashtage/arch', 0.5926198363304138, 'time-series', 1), ('plotly/dash', 0.5885524749755859, 'viz', 1), ('awslabs/gluonts', 0.5710023641586304, 'time-series', 2), ('goldmansachs/gs-quant', 0.5688977241516113, 'finance', 0), ('pymc-devs/pymc3', 0.5598034858703613, 'ml', 0), ('uber/orbit', 0.5589537024497986, 'time-series', 2), ('stan-dev/pystan', 0.5519436001777649, 'ml', 0), ('quantecon/quantecon.py', 0.5498467087745667, 'sim', 0), ('pandas-dev/pandas', 0.5481253266334534, 'pandas', 2), ('rjt1990/pyflux', 0.5408421158790588, 'time-series', 1), ('crflynn/stochastic', 0.5304479002952576, 'sim', 0), ('online-ml/river', 0.5298870205879211, 'ml', 1), ('krzjoa/awesome-python-data-science', 0.5274232625961304, 'study', 3), ('rasbt/mlxtend', 0.5218582153320312, 'ml', 1), ('eleutherai/pyfra', 0.5143864154815674, 'ml', 0), ('polyaxon/datatile', 0.5121821165084839, 'pandas', 2), ('wesm/pydata-book', 0.5118904709815979, 'study', 0), ('cuemacro/finmarketpy', 0.5101310610771179, 'finance', 0)]
421
2
null
6.69
232
140
153
0
3
4
3
232
184
90
0.8
54
528
util
https://github.com/facebookresearch/hydra
[]
null
[]
[]
null
null
null
facebookresearch/hydra
hydra
7,864
616
124
Python
https://hydra.cc
Hydra is a framework for elegantly configuring complex applications
facebookresearch
2024-01-14
2019-06-12
241
32.515062
https://avatars.githubusercontent.com/u/16943930?v=4
Hydra is a framework for elegantly configuring complex applications
[]
[]
2023-11-30
[('ashleve/lightning-hydra-template', 0.5850319266319275, 'util', 0), ('google/gin-config', 0.5556942224502563, 'util', 0), ('willmcgugan/textual', 0.5213847160339355, 'term', 0), ('alphasecio/langchain-examples', 0.5024363994598389, 'llm', 0)]
114
3
null
0.63
69
20
56
2
1
5
1
69
142
90
2.1
54
1,192
util
https://github.com/xonsh/xonsh
['shell']
null
[]
[]
null
null
null
xonsh/xonsh
xonsh
7,471
633
105
Python
http://xon.sh
:shell: Python-powered, cross-platform, Unix-gazing shell.
xonsh
2024-01-14
2015-01-21
470
15.866808
https://avatars.githubusercontent.com/u/17418188?v=4
:shell: Python-powered, cross-platform, Unix-gazing shell.
['bash', 'cli', 'command-line', 'console', 'devops', 'fish', 'iterm2', 'prompt', 'python-shell', 'script', 'shell', 'terminal', 'windows-terminal', 'xonsh', 'zsh']
['bash', 'cli', 'command-line', 'console', 'devops', 'fish', 'iterm2', 'prompt', 'python-shell', 'script', 'shell', 'terminal', 'windows-terminal', 'xonsh', 'zsh']
2023-12-31
[('tiangolo/typer', 0.614140510559082, 'term', 3), ('kellyjonbrazil/jc', 0.5756747722625732, 'util', 3), ('jquast/blessed', 0.569438099861145, 'term', 2), ('pygamelib/pygamelib', 0.5624502301216125, 'gamedev', 0), ('urwid/urwid', 0.5422582030296326, 'term', 0), ('pypy/pypy', 0.5222761631011963, 'util', 0), ('tmbo/questionary', 0.5194598436355591, 'term', 1), ('python/cpython', 0.5193564891815186, 'util', 0), ('federicoceratto/dashing', 0.5140331387519836, 'term', 1), ('google/python-fire', 0.5076464414596558, 'term', 1), ('evhub/coconut', 0.5075111985206604, 'util', 1), ('hoffstadt/dearpygui', 0.504555881023407, 'gui', 0), ('cython/cython', 0.5044435262680054, 'util', 0)]
320
2
null
1.9
64
34
109
0
4
14
4
64
118
90
1.8
54
1,274
util
https://github.com/googleapis/google-api-python-client
[]
null
[]
[]
null
null
null
googleapis/google-api-python-client
google-api-python-client
7,135
2,452
284
Python
https://googleapis.github.io/google-api-python-client/docs/
🐍 The official Python client library for Google's discovery based APIs.
googleapis
2024-01-13
2014-01-08
524
13.594175
https://avatars.githubusercontent.com/u/16785467?v=4
🐍 The official Python client library for Google's discovery based APIs.
[]
[]
2024-01-09
[('nv7-github/googlesearch', 0.6702570915222168, 'util', 0), ('dsdanielpark/bard-api', 0.6036682724952698, 'llm', 0), ('openai/openai-python', 0.5968145728111267, 'util', 0), ('dialogflow/dialogflow-python-client-v2', 0.5611771941184998, 'nlp', 0), ('radiantearth/radiant-mlhub', 0.5603718757629395, 'gis', 0), ('typesense/typesense-python', 0.5588173866271973, 'data', 0), ('snyk-labs/pysnyk', 0.5522992610931396, 'security', 0), ('psf/requests', 0.552095353603363, 'web', 0), ('jovianml/opendatasets', 0.551531970500946, 'data', 0), ('meilisearch/meilisearch-python', 0.5505169034004211, 'data', 0), ('googleapis/python-speech', 0.5471388101577759, 'ml', 0), ('pytoolz/toolz', 0.5453507304191589, 'util', 0), ('urwid/urwid', 0.54488605260849, 'term', 0), ('simple-salesforce/simple-salesforce', 0.541388213634491, 'data', 0), ('qdrant/qdrant-client', 0.5371494293212891, 'util', 0), ('giswqs/geemap', 0.5369963645935059, 'gis', 0), ('scholarly-python-package/scholarly', 0.5367330312728882, 'data', 0), ('requests/toolbelt', 0.5348877906799316, 'util', 0), ('clips/pattern', 0.5339103937149048, 'nlp', 0), ('fastai/ghapi', 0.5308494567871094, 'util', 0), ('huggingface/huggingface_hub', 0.5284603238105774, 'ml', 0), ('shishirpatil/gorilla', 0.524009108543396, 'llm', 0), ('goldsmith/wikipedia', 0.5227052569389343, 'data', 0), ('mitmproxy/pdoc', 0.5224719047546387, 'util', 0), ('hydrosquall/tiingo-python', 0.5202198624610901, 'finance', 0), ('pndurette/gtts', 0.5190337300300598, 'util', 0), ('landscapeio/prospector', 0.5145336389541626, 'util', 0), ('googleapis/python-bigquery', 0.5121608376502991, 'data', 0), ('amaargiru/pyroad', 0.5120947957038879, 'study', 0), ('hugapi/hug', 0.5113233327865601, 'util', 0), ('serpapi/google-search-results-python', 0.5091744065284729, 'util', 0), ('scrapy/scrapy', 0.5074482560157776, 'data', 0), ('cohere-ai/cohere-python', 0.5053079128265381, 'util', 0), ('1200wd/bitcoinlib', 0.5004116892814636, 'crypto', 0)]
190
3
null
2.69
79
55
122
0
41
18
41
77
84
90
1.1
54
44
ml
https://github.com/lmcinnes/umap
[]
null
[]
[]
null
null
null
lmcinnes/umap
umap
6,678
754
128
Python
null
Uniform Manifold Approximation and Projection
lmcinnes
2024-01-14
2017-07-02
343
19.453184
null
Uniform Manifold Approximation and Projection
['dimensionality-reduction', 'machine-learning', 'topological-data-analysis', 'umap', 'visualization']
['dimensionality-reduction', 'machine-learning', 'topological-data-analysis', 'umap', 'visualization']
2024-01-08
[('geomstats/geomstats', 0.5977250933647156, 'math', 1)]
128
7
null
1.29
30
8
80
0
2
4
2
30
36
90
1.2
54
194
util
https://github.com/pycqa/isort
['code-quality']
null
[]
[]
null
null
null
pycqa/isort
isort
6,190
604
48
Python
https://pycqa.github.io/isort/
A Python utility / library to sort imports.
pycqa
2024-01-14
2013-09-02
543
11.396633
https://avatars.githubusercontent.com/u/8749848?v=4
A Python utility / library to sort imports.
['auto-formatter', 'cleaner', 'cli', 'formatter', 'isort', 'linter', 'python-utility', 'sorting-imports']
['auto-formatter', 'cleaner', 'cli', 'code-quality', 'formatter', 'isort', 'linter', 'python-utility', 'sorting-imports']
2024-01-12
[('hadialqattan/pycln', 0.6549221277236938, 'util', 0), ('google/yapf', 0.5961623191833496, 'util', 2), ('asottile/reorder-python-imports', 0.5951371192932129, 'util', 2), ('landscapeio/prospector', 0.574863851070404, 'util', 0), ('sethmmorton/natsort', 0.5276709794998169, 'util', 0), ('google/pytype', 0.5101639032363892, 'typing', 2), ('hhatto/autopep8', 0.5075655579566956, 'util', 1), ('grantjenks/blue', 0.5017447471618652, 'util', 2)]
294
7
null
1.38
53
33
126
0
5
14
5
53
75
90
1.4
54
741
study
https://github.com/zhanymkanov/fastapi-best-practices
[]
null
[]
[]
null
null
null
zhanymkanov/fastapi-best-practices
fastapi-best-practices
5,917
449
91
null
null
FastAPI Best Practices and Conventions we used at our startup
zhanymkanov
2024-01-14
2022-08-09
77
76.844156
null
FastAPI Best Practices and Conventions we used at our startup
['best-practices', 'fastapi']
['best-practices', 'fastapi']
2023-10-22
[('fastapi-users/fastapi-users', 0.6014936566352844, 'web', 1), ('asacristani/fastapi-rocket-boilerplate', 0.5217467546463013, 'template', 1), ('dmontagu/fastapi_client', 0.5196253061294556, 'web', 0), ('tiangolo/fastapi', 0.5182605981826782, 'web', 1)]
10
5
null
0.21
5
2
17
3
0
0
0
5
11
90
2.2
54
369
time-series
https://github.com/facebookresearch/kats
['time-series']
null
[]
[]
null
null
null
facebookresearch/kats
Kats
4,647
508
77
Python
null
Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics, detecting change points and anomalies, to forecasting future trends.
facebookresearch
2024-01-14
2021-02-25
152
30.429373
https://avatars.githubusercontent.com/u/16943930?v=4
Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics, detecting change points and anomalies, to forecasting future trends.
[]
['time-series']
2024-01-10
[('sktime/sktime', 0.5305997729301453, 'time-series', 1), ('alkaline-ml/pmdarima', 0.5154160261154175, 'time-series', 1), ('salesforce/merlion', 0.5117724537849426, 'time-series', 1)]
136
4
null
1.75
8
4
35
0
0
1
1
8
12
90
1.5
54
380
ml-ops
https://github.com/aimhubio/aim
[]
null
[]
[]
null
null
null
aimhubio/aim
aim
4,468
274
45
Python
https://aimstack.io
Aim 💫 — An easy-to-use & supercharged open-source experiment tracker.
aimhubio
2024-01-13
2019-05-31
243
18.343695
https://avatars.githubusercontent.com/u/51399196?v=4
Aim 💫 — An easy-to-use & supercharged open-source experiment tracker.
['ai', 'data-science', 'data-visualization', 'experiment-tracking', 'machine-learning', 'metadata', 'metadata-tracking', 'ml', 'mlflow', 'mlops', 'prompt-engineering', 'pytorch', 'tensorboard', 'tensorflow', 'visualization']
['ai', 'data-science', 'data-visualization', 'experiment-tracking', 'machine-learning', 'metadata', 'metadata-tracking', 'ml', 'mlflow', 'mlops', 'prompt-engineering', 'pytorch', 'tensorboard', 'tensorflow', 'visualization']
2024-01-12
[('wandb/client', 0.696733832359314, 'ml', 5), ('polyaxon/datatile', 0.6386370062828064, 'pandas', 5), ('determined-ai/determined', 0.614514172077179, 'ml-ops', 5), ('netflix/metaflow', 0.5948770046234131, 'ml-ops', 5), ('mlflow/mlflow', 0.5842969417572021, 'ml-ops', 4), ('iterative/dvc', 0.5769718885421753, 'ml-ops', 3), ('whylabs/whylogs', 0.5764767527580261, 'util', 3), ('salesforce/logai', 0.5716543197631836, 'util', 2), ('microsoft/onnxruntime', 0.5700400471687317, 'ml', 3), ('transformeroptimus/superagi', 0.5632416605949402, 'llm', 1), ('polyaxon/polyaxon', 0.5590616464614868, 'ml-ops', 6), ('activeloopai/deeplake', 0.5577347874641418, 'ml-ops', 7), ('nebuly-ai/nebullvm', 0.5485852360725403, 'perf', 1), ('alirezadir/machine-learning-interview-enlightener', 0.5477184653282166, 'study', 2), ('huggingface/datasets', 0.5470335483551025, 'nlp', 3), ('bentoml/bentoml', 0.5450233817100525, 'ml-ops', 3), ('tensorflow/tensorflow', 0.5438287258148193, 'ml-dl', 3), ('doccano/doccano', 0.5435435771942139, 'nlp', 1), ('prefecthq/marvin', 0.541201114654541, 'nlp', 1), ('sweepai/sweep', 0.5406528115272522, 'llm', 1), ('googlecloudplatform/vertex-ai-samples', 0.5386273264884949, 'ml', 4), ('oegedijk/explainerdashboard', 0.5350830554962158, 'ml-interpretability', 0), ('roboflow/supervision', 0.5213971138000488, 'ml', 3), ('argilla-io/argilla', 0.5164137482643127, 'nlp', 3), ('adap/flower', 0.5154430270195007, 'ml-ops', 4), ('merantix-momentum/squirrel-core', 0.5153231024742126, 'ml', 6), ('csinva/imodels', 0.5152265429496765, 'ml', 4), ('cheshire-cat-ai/core', 0.5146742463111877, 'llm', 1), ('tensorlayer/tensorlayer', 0.5126657485961914, 'ml-rl', 1), ('gradio-app/gradio', 0.5126237869262695, 'viz', 3), ('kedro-org/kedro-viz', 0.5116142630577087, 'ml-ops', 2), ('mlc-ai/mlc-llm', 0.509802520275116, 'llm', 0), ('bulletphysics/bullet3', 0.5082801580429077, 'sim', 0), ('pathwaycom/llm-app', 0.506819486618042, 'llm', 1), ('google-research/language', 0.5032878518104553, 'nlp', 1), ('fmind/mlops-python-package', 0.5028169751167297, 'template', 3), ('laion-ai/open-assistant', 0.5019581913948059, 'llm', 2), ('pytorchlightning/pytorch-lightning', 0.5019053220748901, 'ml-dl', 4), ('tlkh/tf-metal-experiments', 0.501725971698761, 'perf', 1)]
58
4
null
2.5
79
29
56
0
9
36
9
79
91
90
1.2
54
1,552
study
https://github.com/neetcode-gh/leetcode
['interview-questions', 'data-structures', 'leetcode']
Leetcode solutions for NeetCode.io
[]
[]
null
null
null
neetcode-gh/leetcode
leetcode
4,459
2,046
40
JavaScript
null
Leetcode solutions
neetcode-gh
2024-01-14
2021-01-20
157
28.247059
null
Leetcode solutions
[]
['data-structures', 'interview-questions', 'leetcode']
2024-01-13
[('mdmzfzl/neetcode-solutions', 0.6274089217185974, 'study', 3)]
612
1
null
34.92
182
100
36
0
0
0
0
181
51
90
0.3
54
353
ml-interpretability
https://github.com/pytorch/captum
[]
null
[]
[]
null
null
null
pytorch/captum
captum
4,372
469
225
Python
https://captum.ai
Model interpretability and understanding for PyTorch
pytorch
2024-01-14
2019-08-27
231
18.926407
https://avatars.githubusercontent.com/u/21003710?v=4
Model interpretability and understanding for PyTorch
['feature-attribution', 'feature-importance', 'interpretability', 'interpretable-ai', 'interpretable-ml']
['feature-attribution', 'feature-importance', 'interpretability', 'interpretable-ai', 'interpretable-ml']
2024-01-08
[('pytorch/ignite', 0.6821672916412354, 'ml-dl', 0), ('tensorflow/lucid', 0.6784272193908691, 'ml-interpretability', 1), ('csinva/imodels', 0.6309248208999634, 'ml', 1), ('skorch-dev/skorch', 0.6131489276885986, 'ml-dl', 0), ('interpretml/interpret', 0.6127338409423828, 'ml-interpretability', 3), ('mrdbourke/pytorch-deep-learning', 0.5934852361679077, 'study', 0), ('allenai/allennlp', 0.5909707546234131, 'nlp', 0), ('marcotcr/lime', 0.5743399262428284, 'ml-interpretability', 1), ('intel/intel-extension-for-pytorch', 0.5694814324378967, 'perf', 0), ('pair-code/lit', 0.5618991851806641, 'ml-interpretability', 0), ('nvidia/apex', 0.5534337759017944, 'ml-dl', 0), ('eleutherai/pythia', 0.5508965253829956, 'ml-interpretability', 2), ('xl0/lovely-tensors', 0.5507166385650635, 'ml-dl', 0), ('huggingface/transformers', 0.5457330942153931, 'nlp', 0), ('huggingface/accelerate', 0.5386924743652344, 'ml', 0), ('pytorch/data', 0.5359891057014465, 'data', 0), ('selfexplainml/piml-toolbox', 0.5324576497077942, 'ml-interpretability', 0), ('rasbt/machine-learning-book', 0.5297553539276123, 'study', 0), ('arogozhnikov/einops', 0.524075984954834, 'ml-dl', 0), ('ibm/transition-amr-parser', 0.5239638090133667, 'nlp', 0), ('hysts/pytorch_image_classification', 0.5230705142021179, 'ml-dl', 0), ('mosaicml/composer', 0.5189915299415588, 'ml-dl', 0), ('speechbrain/speechbrain', 0.5150958895683289, 'nlp', 0), ('pytorch/rl', 0.5139393210411072, 'ml-rl', 0), ('rafiqhasan/auto-tensorflow', 0.5135285258293152, 'ml-dl', 0), ('rentruewang/koila', 0.5131102800369263, 'ml', 0), ('salesforce/blip', 0.5107000470161438, 'diffusion', 0), ('ashleve/lightning-hydra-template', 0.5099735260009766, 'util', 0), ('pytorch/botorch', 0.509192168712616, 'ml-dl', 0), ('blackhc/toma', 0.5078623294830322, 'ml-dl', 0), ('seldonio/alibi', 0.5067712664604187, 'ml-interpretability', 1), ('cvxgrp/pymde', 0.5022547245025635, 'ml', 0)]
104
3
null
1
61
40
53
0
1
2
1
61
181
90
3
54
604
testing
https://github.com/seleniumbase/seleniumbase
[]
null
[]
[]
null
null
null
seleniumbase/seleniumbase
SeleniumBase
3,859
871
125
Python
https://seleniumbase.io
Browser automation framework for testing with Selenium, Python, and pytest. Includes a Dashboard, a Recorder for generating tests, Undetected Mode, and more.
seleniumbase
2024-01-13
2014-03-04
517
7.464217
https://avatars.githubusercontent.com/u/17287301?v=4
Browser automation framework for testing with Selenium, Python, and pytest. Includes a Dashboard, a Recorder for generating tests, Undetected Mode, and more.
['behave', 'chrome', 'chromedriver', 'e2e-testing', 'firefox', 'pytest', 'pytest-plugin', 'selenium', 'selenium-python', 'seleniumbase', 'test', 'unittests', 'web-automation', 'webdriver', 'webkit']
['behave', 'chrome', 'chromedriver', 'e2e-testing', 'firefox', 'pytest', 'pytest-plugin', 'selenium', 'selenium-python', 'seleniumbase', 'test', 'unittests', 'web-automation', 'webdriver', 'webkit']
2024-01-04
[('cobrateam/splinter', 0.7703961730003357, 'testing', 2), ('microsoft/playwright-python', 0.6941218972206116, 'testing', 2), ('webpy/webpy', 0.5600611567497253, 'web', 0), ('taverntesting/tavern', 0.5573855042457581, 'testing', 1), ('bokeh/bokeh', 0.5535537004470825, 'viz', 0), ('masoniteframework/masonite', 0.5500764846801758, 'web', 0), ('alirezamika/autoscraper', 0.5415842533111572, 'data', 0), ('pyodide/pyodide', 0.540057897567749, 'util', 0), ('wolever/parameterized', 0.5371958613395691, 'testing', 0), ('clips/pattern', 0.5308951735496521, 'nlp', 0), ('plotly/dash', 0.5277555584907532, 'viz', 0), ('r0x0r/pywebview', 0.5268258452415466, 'gui', 1), ('jiffyclub/snakeviz', 0.5255619287490845, 'profiling', 0), ('robotframework/robotframework', 0.5185773968696594, 'testing', 0), ('pytest-dev/pytest-testinfra', 0.5065727233886719, 'testing', 1), ('roniemartinez/dude', 0.5045518279075623, 'util', 1), ('scrapy/scrapy', 0.5043920278549194, 'data', 0), ('pallets/flask', 0.5030795931816101, 'web', 0), ('voila-dashboards/voila', 0.5014607906341553, 'jupyter', 0)]
37
5
null
16.27
167
160
120
0
130
91
130
167
348
90
2.1
54
1,212
ml
https://github.com/sanchit-gandhi/whisper-jax
[]
null
[]
[]
null
null
null
sanchit-gandhi/whisper-jax
whisper-jax
3,813
322
39
Jupyter Notebook
null
JAX implementation of OpenAI's Whisper model for up to 70x speed-up on TPU.
sanchit-gandhi
2024-01-13
2023-03-02
47
79.913174
null
JAX implementation of OpenAI's Whisper model for up to 70x speed-up on TPU.
['deep-learning', 'jax', 'speech-recognition', 'speech-to-text', 'whisper']
['deep-learning', 'jax', 'speech-recognition', 'speech-to-text', 'whisper']
2023-12-15
[('ggerganov/whisper.cpp', 0.6906029582023621, 'util', 3), ('deepmind/dm-haiku', 0.6133875846862793, 'ml-dl', 2), ('m-bain/whisperx', 0.5212621688842773, 'nlp', 3)]
4
2
null
2.44
44
17
11
1
0
0
0
44
62
90
1.4
54
284
crypto
https://github.com/ethereum/consensus-specs
[]
null
[]
[]
null
null
null
ethereum/consensus-specs
consensus-specs
3,329
977
246
Python
null
Ethereum Proof-of-Stake Consensus Specifications
ethereum
2024-01-12
2018-09-20
279
11.90143
https://avatars.githubusercontent.com/u/6250754?v=4
Ethereum Proof-of-Stake Consensus Specifications
[]
[]
2024-01-11
[]
148
3
null
10.83
251
107
65
0
16
16
16
251
225
90
0.9
54
1,759
data
https://github.com/rom1504/img2dataset
[]
null
[]
[]
null
null
null
rom1504/img2dataset
img2dataset
2,953
288
29
Python
null
Easily turn large sets of image urls to an image dataset. Can download, resize and package 100M urls in 20h on one machine.
rom1504
2024-01-13
2021-08-11
128
22.916851
null
Easily turn large sets of image urls to an image dataset. Can download, resize and package 100M urls in 20h on one machine.
['big-data', 'dataset', 'deep-learning', 'download-images', 'image', 'image-dataset', 'multimodal']
['big-data', 'dataset', 'deep-learning', 'download-images', 'image', 'image-dataset', 'multimodal']
2024-01-13
[('fourthbrain/fastapi-for-machine-learning-live-demo', 0.5232915878295898, 'web', 0), ('aiqc/aiqc', 0.5084776282310486, 'ml-ops', 0), ('microsoft/deepspeed', 0.5075109601020813, 'ml-dl', 1)]
32
5
null
0.54
48
29
30
0
4
35
4
48
95
90
2
54
1,359
llm
https://github.com/iryna-kondr/scikit-llm
[]
null
[]
[]
null
null
null
iryna-kondr/scikit-llm
scikit-llm
2,820
226
36
Python
https://beastbyte.ai/
Seamlessly integrate LLMs into scikit-learn.
iryna-kondr
2024-01-12
2023-05-12
37
75.057034
null
Seamlessly integrate LLMs into scikit-learn.
['chatgpt', 'deep-learning', 'llm', 'machine-learning', 'scikit-learn', 'transformers']
['chatgpt', 'deep-learning', 'llm', 'machine-learning', 'scikit-learn', 'transformers']
2023-12-25
[('microsoft/jarvis', 0.6588683128356934, 'llm', 1), ('alpha-vllm/llama2-accessory', 0.6441587209701538, 'llm', 0), ('tigerlab-ai/tiger', 0.6261765956878662, 'llm', 1), ('koaning/scikit-lego', 0.614821195602417, 'ml', 2), ('vllm-project/vllm', 0.6003293395042419, 'llm', 1), ('microsoft/semantic-kernel', 0.5926992893218994, 'llm', 1), ('bigscience-workshop/petals', 0.5923831462860107, 'data', 2), ('pathwaycom/llm-app', 0.5918958187103271, 'llm', 2), ('microsoft/torchscale', 0.5895041823387146, 'llm', 1), ('intel/scikit-learn-intelex', 0.5876615047454834, 'perf', 2), ('h2oai/h2o-llmstudio', 0.5840808749198914, 'llm', 2), ('argilla-io/argilla', 0.5834850668907166, 'nlp', 2), ('rasbt/machine-learning-book', 0.5804186463356018, 'study', 3), ('intel/intel-extension-for-transformers', 0.5800312757492065, 'perf', 0), ('nomic-ai/gpt4all', 0.5748793482780457, 'llm', 0), ('skops-dev/skops', 0.5726227760314941, 'ml-ops', 2), ('nebuly-ai/nebullvm', 0.5629363059997559, 'perf', 1), ('deepset-ai/haystack', 0.5621213912963867, 'llm', 3), ('bobazooba/xllm', 0.5620294213294983, 'llm', 3), ('ray-project/ray-llm', 0.5598890781402588, 'llm', 2), ('automl/auto-sklearn', 0.5549347996711731, 'ml', 1), ('microsoft/onnxruntime', 0.5525389313697815, 'ml', 3), ('hegelai/prompttools', 0.5520104765892029, 'llm', 2), ('explosion/spacy-llm', 0.550988495349884, 'llm', 2), ('microsoft/promptcraft-robotics', 0.5381367206573486, 'sim', 2), ('bentoml/openllm', 0.5351253151893616, 'ml-ops', 1), ('ludwig-ai/ludwig', 0.5349180698394775, 'ml-ops', 3), ('huggingface/transformers', 0.5332709550857544, 'nlp', 2), ('mooler0410/llmspracticalguide', 0.5321641564369202, 'study', 0), ('microsoft/promptflow', 0.5263214707374573, 'llm', 2), ('young-geng/easylm', 0.5262447595596313, 'llm', 1), ('koaning/human-learn', 0.5255882143974304, 'data', 2), ('night-chen/toolqa', 0.522339940071106, 'llm', 0), ('truera/trulens', 0.5199382901191711, 'llm', 2), ('horovod/horovod', 0.5187541842460632, 'ml-ops', 2), ('skorch-dev/skorch', 0.5175820589065552, 'ml-dl', 2), ('optimalscale/lmflow', 0.5123019814491272, 'llm', 2), ('onnx/onnx', 0.5105788111686707, 'ml', 3), ('llmware-ai/llmware', 0.5102970600128174, 'llm', 2), ('embedchain/embedchain', 0.5067012310028076, 'llm', 2), ('salesforce/xgen', 0.5054061412811279, 'llm', 1), ('agenta-ai/agenta', 0.5052707195281982, 'llm', 1), ('lightning-ai/lit-gpt', 0.5048611164093018, 'llm', 0), ('paddlepaddle/paddlenlp', 0.5023376941680908, 'llm', 2), ('ageron/handson-ml2', 0.5018590688705444, 'ml', 0), ('determined-ai/determined', 0.5017955303192139, 'ml-ops', 2), ('databrickslabs/dolly', 0.5001913905143738, 'llm', 0)]
9
1
null
1.77
10
6
8
1
14
24
14
10
12
90
1.2
54
1,429
ml-dl
https://github.com/cvg/lightglue
[]
null
[]
[]
null
null
null
cvg/lightglue
LightGlue
2,664
259
46
Python
null
LightGlue: Local Feature Matching at Light Speed (ICCV 2023)
cvg
2024-01-13
2023-06-25
31
85.150685
https://avatars.githubusercontent.com/u/840224?v=4
LightGlue: Local Feature Matching at Light Speed (ICCV 2023)
['deep-learning', 'image-matching', 'pose-estimation', 'transformers']
['deep-learning', 'image-matching', 'pose-estimation', 'transformers']
2023-11-21
[('facebookresearch/detr', 0.5226452350616455, 'ml-dl', 0)]
6
2
null
0.5
35
7
7
2
1
2
1
35
65
90
1.9
54
1,792
perf
https://github.com/airtai/faststream
[]
null
[]
[]
null
null
null
airtai/faststream
faststream
1,435
53
12
Python
https://faststream.airt.ai/latest/
FastStream is a powerful and easy-to-use Python framework for building asynchronous services interacting with event streams such as Apache Kafka, RabbitMQ, NATS and Redis.
airtai
2024-01-13
2022-12-01
60
23.635294
https://avatars.githubusercontent.com/u/84014356?v=4
FastStream is a powerful and easy-to-use Python framework for building asynchronous services interacting with event streams such as Apache Kafka, RabbitMQ, NATS and Redis.
['asyncapi', 'asyncio', 'distributed-systems', 'fastkafka', 'faststream', 'kafka', 'nats', 'propan', 'rabbitmq', 'redis', 'stream-processing']
['asyncapi', 'asyncio', 'distributed-systems', 'fastkafka', 'faststream', 'kafka', 'nats', 'propan', 'rabbitmq', 'redis', 'stream-processing']
2024-01-13
[('pathwaycom/pathway', 0.6327610611915588, 'data', 1), ('samuelcolvin/arq', 0.6273122429847717, 'data', 2), ('python-trio/trio', 0.6224059462547302, 'perf', 0), ('magicstack/uvloop', 0.6053869128227234, 'util', 1), ('agronholm/anyio', 0.5833213329315186, 'perf', 1), ('miguelgrinberg/python-socketio', 0.5774848461151123, 'util', 1), ('pallets/quart', 0.5664022564888, 'web', 1), ('bogdanp/dramatiq', 0.5551525354385376, 'util', 1), ('aio-libs/aiohttp', 0.5545108914375305, 'web', 1), ('encode/httpx', 0.5473020672798157, 'web', 1), ('alirn76/panther', 0.5416358709335327, 'web', 0), ('sumerc/yappi', 0.5390495657920837, 'profiling', 1), ('backtick-se/cowait', 0.5363417267799377, 'util', 0), ('samuelcolvin/watchfiles', 0.5354728698730469, 'util', 1), ('encode/starlette', 0.5320852398872375, 'web', 0), ('fastai/fastcore', 0.5284400582313538, 'util', 0), ('neoteroi/blacksheep', 0.5211659073829651, 'web', 1), ('geeogi/async-python-lambda-template', 0.5201819539070129, 'template', 0), ('tornadoweb/tornado', 0.5190186500549316, 'web', 0), ('asacristani/fastapi-rocket-boilerplate', 0.5075085759162903, 'template', 0), ('fugue-project/fugue', 0.5063053369522095, 'pandas', 1), ('mher/flower', 0.5014379620552063, 'perf', 2)]
23
2
null
12.35
309
283
14
0
37
33
37
307
249
90
0.8
54
1,675
study
https://github.com/realpython/python-guide
[]
null
[]
[]
null
null
null
realpython/python-guide
python-guide
27,160
5,988
1,384
Batchfile
https://docs.python-guide.org
Python best practices guidebook, written for humans.
realpython
2024-01-13
2011-03-15
672
40.416667
https://avatars.githubusercontent.com/u/5448020?v=4
Python best practices guidebook, written for humans.
['book', 'guide', 'kennethreitz']
['book', 'guide', 'kennethreitz']
2023-06-13
[('amaargiru/pyroad', 0.6154986023902893, 'study', 0), ('wesm/pydata-book', 0.5613322854042053, 'study', 0), ('eleutherai/pyfra', 0.5539833307266235, 'ml', 0), ('brandon-rhodes/python-patterns', 0.5476312637329102, 'util', 0), ('jakevdp/pythondatasciencehandbook', 0.5322774648666382, 'study', 0), ('mynameisfiber/high_performance_python_2e', 0.5209663510322571, 'study', 0), ('fchollet/deep-learning-with-python-notebooks', 0.5066047310829163, 'study', 0), ('python/cpython', 0.5037524104118347, 'util', 0), ('pytoolz/toolz', 0.5026092529296875, 'util', 0), ('ageron/handson-ml2', 0.5025880336761475, 'ml', 0)]
474
6
null
0
5
1
156
7
0
0
0
5
5
90
1
53
683
ml-dl
https://github.com/matterport/mask_rcnn
[]
null
[]
[]
null
null
null
matterport/mask_rcnn
Mask_RCNN
23,803
11,620
587
Python
null
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow
matterport
2024-01-14
2017-10-19
327
72.633391
https://avatars.githubusercontent.com/u/4206481?v=4
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow
['instance-segmentation', 'keras', 'mask-rcnn', 'object-detection', 'tensorflow']
['instance-segmentation', 'keras', 'mask-rcnn', 'object-detection', 'tensorflow']
2019-03-31
[('open-mmlab/mmdetection', 0.5989094376564026, 'ml', 3), ('roboflow/notebooks', 0.5560668706893921, 'study', 1), ('nyandwi/modernconvnets', 0.5529733300209045, 'ml-dl', 2), ('blakeblackshear/frigate', 0.5429755449295044, 'util', 2), ('facebookresearch/segment-anything', 0.5424768328666687, 'ml-dl', 2), ('deci-ai/super-gradients', 0.5377986431121826, 'ml-dl', 1), ('facebookresearch/detectron', 0.5304756760597229, 'ml-dl', 0), ('roboflow/supervision', 0.528638482093811, 'ml', 3), ('nvlabs/gcvit', 0.5284178256988525, 'diffusion', 1), ('facebookresearch/detr', 0.5123329758644104, 'ml-dl', 0)]
47
6
null
0
49
12
76
59
0
0
0
49
51
90
1
53
643
util
https://github.com/keon/algorithms
[]
null
[]
[]
null
null
null
keon/algorithms
algorithms
23,270
4,629
635
Python
null
Minimal examples of data structures and algorithms in Python
keon
2024-01-13
2016-11-17
375
61.935361
null
Minimal examples of data structures and algorithms in Python
['algorithm', 'algorithms', 'competitive-programming', 'data-structure', 'graph', 'search', 'sort', 'tree']
['algorithm', 'algorithms', 'competitive-programming', 'data-structure', 'graph', 'search', 'sort', 'tree']
2023-04-04
[('thealgorithms/python', 0.707886815071106, 'study', 1), ('joowani/binarytree', 0.6219033002853394, 'util', 2), ('python-odin/odin', 0.6064568161964417, 'util', 0), ('pandas-dev/pandas', 0.6043705940246582, 'pandas', 0), ('pyomo/pyomo', 0.5572477579116821, 'math', 0), ('krzjoa/awesome-python-data-science', 0.5512800812721252, 'study', 0), ('gbeced/pyalgotrade', 0.5470435619354248, 'finance', 0), ('quantopian/zipline', 0.5438115000724792, 'finance', 0), ('networkx/networkx', 0.543645977973938, 'graph', 0), ('atsushisakai/pythonrobotics', 0.5353425741195679, 'sim', 1), ('sympy/sympy', 0.5286232233047485, 'math', 0), ('pytoolz/toolz', 0.520076334476471, 'util', 0), ('quantconnect/lean', 0.512477457523346, 'finance', 1), ('tiangolo/sqlmodel', 0.5121207237243652, 'data', 0), ('ranaroussi/quantstats', 0.5114973187446594, 'finance', 0), ('dagworks-inc/hamilton', 0.5108981728553772, 'ml-ops', 0), ('plotly/dash', 0.5095182657241821, 'viz', 0), ('scikit-learn/scikit-learn', 0.5060738921165466, 'ml', 0), ('rasbt/mlxtend', 0.5041128993034363, 'ml', 0), ('python/cpython', 0.5038732290267944, 'util', 0), ('scikit-mobility/scikit-mobility', 0.5026717782020569, 'gis', 0)]
198
4
null
0.12
10
1
87
10
0
0
0
10
6
90
0.6
53
105
nlp
https://github.com/rare-technologies/gensim
[]
null
[]
[]
null
null
null
rare-technologies/gensim
gensim
14,914
4,381
433
Python
https://radimrehurek.com/gensim
Topic Modelling for Humans
rare-technologies
2024-01-14
2011-02-10
676
22.038843
null
Topic Modelling for Humans
['data-mining', 'data-science', 'document-similarity', 'fasttext', 'gensim', 'information-retrieval', 'machine-learning', 'natural-language-processing', 'neural-network', 'nlp', 'topic-modeling', 'word-embeddings', 'word-similarity', 'word2vec']
['data-mining', 'data-science', 'document-similarity', 'fasttext', 'gensim', 'information-retrieval', 'machine-learning', 'natural-language-processing', 'neural-network', 'nlp', 'topic-modeling', 'word-embeddings', 'word-similarity', 'word2vec']
2023-10-01
[('ddangelov/top2vec', 0.59908527135849, 'nlp', 2), ('maartengr/bertopic', 0.5905485153198242, 'nlp', 3), ('brettkromkamp/topic-db', 0.539949893951416, 'data', 0), ('ddbourgin/numpy-ml', 0.5375690460205078, 'ml', 3), ('sebischair/lbl2vec', 0.5351875424385071, 'nlp', 4), ('sloria/textblob', 0.5176156759262085, 'nlp', 2), ('milvus-io/bootcamp', 0.5120472311973572, 'data', 1)]
449
6
null
1.42
20
3
157
4
1
6
1
20
25
90
1.2
53
1,884
util
https://github.com/ninja-build/ninja
['build']
Ninja is a small build system with a focus on speed.
[]
[]
null
null
null
ninja-build/ninja
ninja
10,184
1,544
264
C++
https://ninja-build.org/
a small build system with a focus on speed
ninja-build
2024-01-14
2011-02-06
677
15.03649
https://avatars.githubusercontent.com/u/11653218?v=4
a small build system with a focus on speed
[]
['build']
2024-01-02
[('scikit-build/scikit-build', 0.562438428401947, 'ml', 0)]
285
4
null
0.73
76
42
157
0
0
2
2
76
107
90
1.4
53
133
ml
https://github.com/epistasislab/tpot
[]
null
[]
[]
null
null
null
epistasislab/tpot
tpot
9,381
1,552
290
Python
http://epistasislab.github.io/tpot/
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.
epistasislab
2024-01-13
2015-11-03
430
21.816279
https://avatars.githubusercontent.com/u/20861190?v=4
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.
['adsp', 'ag066833', 'aiml', 'alzheimer', 'alzheimers', 'automated-machine-learning', 'automation', 'automl', 'data-science', 'feature-engineering', 'gradient-boosting', 'hyperparameter-optimization', 'machine-learning', 'model-selection', 'nia', 'parameter-tuning', 'random-forest', 'scikit-learn', 'u01ag066833']
['adsp', 'ag066833', 'aiml', 'alzheimer', 'alzheimers', 'automated-machine-learning', 'automation', 'automl', 'data-science', 'feature-engineering', 'gradient-boosting', 'hyperparameter-optimization', 'machine-learning', 'model-selection', 'nia', 'parameter-tuning', 'random-forest', 'scikit-learn', 'u01ag066833']
2023-12-08
[('automl/auto-sklearn', 0.6574358940124512, 'ml', 4), ('featurelabs/featuretools', 0.6507097482681274, 'ml', 6), ('microsoft/nni', 0.6485167741775513, 'ml', 6), ('google/pyglove', 0.6232022643089294, 'util', 2), ('scikit-learn/scikit-learn', 0.6184797286987305, 'ml', 2), ('mljar/mljar-supervised', 0.6145864129066467, 'ml', 8), ('google/vizier', 0.6137571930885315, 'ml', 2), ('microsoft/flaml', 0.6104899048805237, 'ml', 7), ('nccr-itmo/fedot', 0.6070546507835388, 'ml-ops', 6), ('gradio-app/gradio', 0.5918328166007996, 'viz', 2), ('rasbt/mlxtend', 0.5866554379463196, 'ml', 2), ('determined-ai/determined', 0.5670955777168274, 'ml-ops', 3), ('districtdatalabs/yellowbrick', 0.5539801120758057, 'ml', 3), ('ray-project/ray', 0.5462473034858704, 'ml-ops', 5), ('wandb/client', 0.5462185144424438, 'ml', 3), ('scikit-learn-contrib/imbalanced-learn', 0.545037567615509, 'ml', 2), ('merantix-momentum/squirrel-core', 0.5355274081230164, 'ml', 2), ('selfexplainml/piml-toolbox', 0.5343623161315918, 'ml-interpretability', 0), ('pycaret/pycaret', 0.5342784523963928, 'ml', 2), ('awslabs/autogluon', 0.5319231748580933, 'ml', 6), ('scikit-optimize/scikit-optimize', 0.5264012217521667, 'ml', 3), ('kubeflow/fairing', 0.5261349081993103, 'ml-ops', 0), ('ml-tooling/opyrator', 0.5252538323402405, 'viz', 1), ('ageron/handson-ml2', 0.5202245712280273, 'ml', 0), ('dagworks-inc/hamilton', 0.5198063850402832, 'ml-ops', 3), ('catboost/catboost', 0.515169084072113, 'ml', 3), ('polyaxon/polyaxon', 0.5143507122993469, 'ml-ops', 3), ('keras-team/autokeras', 0.5138368010520935, 'ml-dl', 3), ('koaning/scikit-lego', 0.5125021934509277, 'ml', 2), ('rasbt/machine-learning-book', 0.5111925601959229, 'study', 2), ('online-ml/river', 0.5093849897384644, 'ml', 2), ('karpathy/micrograd', 0.5062547922134399, 'study', 0), ('huggingface/datasets', 0.50594562292099, 'nlp', 1), ('rafiqhasan/auto-tensorflow', 0.5045480132102966, 'ml-dl', 2), ('firmai/atspy', 0.5008826851844788, 'time-series', 0)]
118
8
null
0.4
14
6
100
1
2
4
2
14
16
90
1.1
53
397
web
https://github.com/falconry/falcon
[]
null
[]
[]
null
null
null
falconry/falcon
falcon
9,306
926
262
Python
https://falcon.readthedocs.io/en/stable/
The no-magic web data plane API and microservices framework for Python developers, with a focus on reliability, correctness, and performance at scale.
falconry
2024-01-12
2012-12-06
581
15.997544
https://avatars.githubusercontent.com/u/11353642?v=4
The no-magic web data plane API and microservices framework for Python developers, with a focus on reliability, correctness, and performance at scale.
['api', 'api-rest', 'asgi', 'framework', 'http', 'microservices', 'rest', 'web', 'wsgi']
['api', 'api-rest', 'asgi', 'framework', 'http', 'microservices', 'rest', 'web', 'wsgi']
2023-12-26
[('pallets/flask', 0.7083405256271362, 'web', 1), ('neoteroi/blacksheep', 0.6875892877578735, 'web', 4), ('pallets/quart', 0.6842796206474304, 'web', 1), ('starlite-api/starlite', 0.6774393916130066, 'web', 3), ('bottlepy/bottle', 0.677134096622467, 'web', 2), ('encode/uvicorn', 0.6588360667228699, 'web', 2), ('klen/muffin', 0.6537138819694519, 'web', 1), ('python-restx/flask-restx', 0.6462195515632629, 'web', 2), ('masoniteframework/masonite', 0.6416914463043213, 'web', 2), ('pallets/werkzeug', 0.630772590637207, 'web', 2), ('simple-salesforce/simple-salesforce', 0.6300815939903259, 'data', 1), ('hugapi/hug', 0.6300604343414307, 'util', 1), ('requests/toolbelt', 0.6299983263015747, 'util', 1), ('pylons/pyramid', 0.6222757697105408, 'web', 1), ('webpy/webpy', 0.6171799302101135, 'web', 0), ('encode/httpx', 0.6106772422790527, 'web', 1), ('vitalik/django-ninja', 0.6103278994560242, 'web', 0), ('tiangolo/fastapi', 0.608084499835968, 'web', 4), ('cherrypy/cherrypy', 0.6051623821258545, 'web', 1), ('reflex-dev/reflex', 0.5998751521110535, 'web', 1), ('scrapy/scrapy', 0.5992222428321838, 'data', 1), ('tiangolo/sqlmodel', 0.5907256007194519, 'data', 0), ('eleutherai/pyfra', 0.5904573202133179, 'ml', 0), ('nficano/python-lambda', 0.5897996425628662, 'util', 1), ('jordaneremieff/mangum', 0.5848598480224609, 'web', 1), ('aws/chalice', 0.5833958387374878, 'web', 0), ('alirn76/panther', 0.5779109001159668, 'web', 1), ('pyeve/eve', 0.5698334574699402, 'web', 1), ('ml-tooling/opyrator', 0.5693379044532776, 'viz', 1), ('willmcgugan/textual', 0.562833845615387, 'term', 1), ('psf/requests', 0.5613847970962524, 'web', 1), ('pylons/waitress', 0.5612348318099976, 'web', 0), ('timofurrer/awesome-asyncio', 0.5593904852867126, 'study', 0), ('backtick-se/cowait', 0.5538949370384216, 'util', 0), ('taverntesting/tavern', 0.5523936152458191, 'testing', 1), ('plotly/dash', 0.5521128177642822, 'viz', 0), ('asacristani/fastapi-rocket-boilerplate', 0.5512214303016663, 'template', 0), ('flet-dev/flet', 0.5503961443901062, 'web', 1), ('tiangolo/full-stack-fastapi-postgresql', 0.5487000942230225, 'template', 0), ('nasdaq/data-link-python', 0.5472946763038635, 'finance', 0), ('kubeflow/fairing', 0.5438461303710938, 'ml-ops', 0), ('fastai/fastcore', 0.5430771708488464, 'util', 0), ('holoviz/panel', 0.5421604514122009, 'viz', 0), ('ethereum/web3.py', 0.540778636932373, 'crypto', 0), ('clips/pattern', 0.5375832915306091, 'nlp', 0), ('ets-labs/python-dependency-injector', 0.5372539758682251, 'util', 0), ('amzn/ion-python', 0.5367324352264404, 'data', 0), ('roniemartinez/dude', 0.5347031354904175, 'util', 1), ('huge-success/sanic', 0.5344210267066956, 'web', 3), ('benoitc/gunicorn', 0.5321671366691589, 'web', 2), ('python-odin/odin', 0.5320534706115723, 'util', 0), ('merantix-momentum/squirrel-core', 0.5313084721565247, 'ml', 0), ('ibis-project/ibis', 0.5278680324554443, 'data', 0), ('locustio/locust', 0.5264105200767517, 'testing', 1), ('pyinfra-dev/pyinfra', 0.5231207609176636, 'util', 0), ('openai/openai-python', 0.5228433609008789, 'util', 0), ('ajndkr/lanarky', 0.5218005180358887, 'llm', 1), ('dylanhogg/awesome-python', 0.5216991901397705, 'study', 0), ('simonw/datasette', 0.5216467380523682, 'data', 1), ('pytoolz/toolz', 0.5214901566505432, 'util', 0), ('lk-geimfari/mimesis', 0.5205872654914856, 'data', 0), ('geopandas/geopandas', 0.5166769027709961, 'gis', 0), ('alirezamika/autoscraper', 0.513289749622345, 'data', 0), ('aio-libs/aiohttp', 0.512401819229126, 'web', 1), ('pytables/pytables', 0.5114437937736511, 'data', 0), ('pynamodb/pynamodb', 0.5108199119567871, 'data', 0), ('sqlalchemy/sqlalchemy', 0.509283185005188, 'data', 0), ('radiantearth/radiant-mlhub', 0.5079211592674255, 'gis', 0), ('snyk-labs/pysnyk', 0.5076401829719543, 'security', 1), ('1200wd/bitcoinlib', 0.5075222849845886, 'crypto', 0), ('amaargiru/pyroad', 0.5072835087776184, 'study', 0), ('micropython/micropython', 0.507040798664093, 'util', 0), ('eventual-inc/daft', 0.5012557506561279, 'pandas', 0), ('shishirpatil/gorilla', 0.500187873840332, 'llm', 1)]
201
4
null
0.42
43
24
135
1
6
7
6
43
59
90
1.4
53
293
util
https://github.com/paramiko/paramiko
[]
null
[]
[]
null
null
null
paramiko/paramiko
paramiko
8,659
2,010
316
Python
http://paramiko.org
The leading native Python SSHv2 protocol library.
paramiko
2024-01-14
2009-02-02
782
11.070868
https://avatars.githubusercontent.com/u/1108455?v=4
The leading native Python SSHv2 protocol library.
[]
[]
2023-12-18
[('pypy/pypy', 0.6160950064659119, 'util', 0), ('pyston/pyston', 0.5798661708831787, 'util', 0), ('secdev/scapy', 0.5442431569099426, 'util', 0), ('legrandin/pycryptodome', 0.5410947203636169, 'util', 0), ('pytoolz/toolz', 0.5407304763793945, 'util', 0), ('1200wd/bitcoinlib', 0.5394938588142395, 'crypto', 0), ('ethereum/py-evm', 0.5358531475067139, 'crypto', 0), ('urwid/urwid', 0.5337045192718506, 'term', 0), ('cherrypy/cherrypy', 0.5295555591583252, 'web', 0), ('oracle/graalpython', 0.5263757109642029, 'util', 0), ('encode/httpx', 0.5251051187515259, 'web', 0), ('websocket-client/websocket-client', 0.5153641700744629, 'web', 0), ('pyca/cryptography', 0.5152232646942139, 'util', 0), ('python/cpython', 0.5128664374351501, 'util', 0), ('pyca/pynacl', 0.5029951930046082, 'util', 0), ('libtcod/python-tcod', 0.502030611038208, 'gamedev', 0), ('primal100/pybitcointools', 0.5015236139297485, 'crypto', 0)]
187
5
null
2.58
65
15
182
1
0
12
12
65
111
90
1.7
53
1,433
ml-dl
https://github.com/nvidia/apex
[]
null
[]
[]
null
null
null
nvidia/apex
apex
7,797
1,306
102
Python
null
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch
nvidia
2024-01-14
2018-04-23
301
25.891366
https://avatars.githubusercontent.com/u/1728152?v=4
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch
[]
[]
2024-01-12
[('pytorch/ignite', 0.76711106300354, 'ml-dl', 0), ('huggingface/accelerate', 0.7648141980171204, 'ml', 0), ('intel/intel-extension-for-pytorch', 0.7110769152641296, 'perf', 0), ('skorch-dev/skorch', 0.6882312893867493, 'ml-dl', 0), ('pytorch/data', 0.6665452122688293, 'data', 0), ('laekov/fastmoe', 0.6603500247001648, 'ml', 0), ('mrdbourke/pytorch-deep-learning', 0.6514618396759033, 'study', 0), ('karpathy/micrograd', 0.6441670060157776, 'study', 0), ('rasbt/machine-learning-book', 0.6338503956794739, 'study', 0), ('arogozhnikov/einops', 0.6182481646537781, 'ml-dl', 0), ('denys88/rl_games', 0.6122349500656128, 'ml-rl', 0), ('karpathy/mingpt', 0.6042015552520752, 'llm', 0), ('rentruewang/koila', 0.6033901572227478, 'ml', 0), ('nicolas-chaulet/torch-points3d', 0.5915487408638, 'ml', 0), ('horovod/horovod', 0.5866835117340088, 'ml-ops', 0), ('allenai/allennlp', 0.5706870555877686, 'nlp', 0), ('pyg-team/pytorch_geometric', 0.5672152042388916, 'ml-dl', 0), ('pytorch/botorch', 0.5640817880630493, 'ml-dl', 0), ('hysts/pytorch_image_classification', 0.5612041354179382, 'ml-dl', 0), ('determined-ai/determined', 0.5580594539642334, 'ml-ops', 0), ('pytorch/captum', 0.5534337759017944, 'ml-interpretability', 0), ('ashleve/lightning-hydra-template', 0.553119957447052, 'util', 0), ('davidmrau/mixture-of-experts', 0.5525276064872742, 'ml', 0), ('pytorch/rl', 0.552091121673584, 'ml-rl', 0), ('huggingface/transformers', 0.5461992621421814, 'nlp', 0), ('kshitij12345/torchnnprofiler', 0.5381832718849182, 'profiling', 0), ('blackhc/toma', 0.5342817902565002, 'ml-dl', 0), ('pytorch-labs/gpt-fast', 0.5303529500961304, 'llm', 0), ('xl0/lovely-tensors', 0.5290429592132568, 'ml-dl', 0), ('facebookresearch/pytorch3d', 0.5290184020996094, 'ml-dl', 0), ('intellabs/bayesian-torch', 0.5274893045425415, 'ml', 0), ('thu-ml/tianshou', 0.5245383381843567, 'ml-rl', 0), ('timdettmers/bitsandbytes', 0.5227283239364624, 'util', 0), ('faster-cpython/tools', 0.5224118828773499, 'perf', 0), ('salesforce/blip', 0.5196071267127991, 'diffusion', 0), ('mcahny/deep-video-inpainting', 0.514928936958313, 'ml-dl', 0), ('huggingface/optimum', 0.5144795179367065, 'ml', 0), ('huggingface/peft', 0.5134326219558716, 'llm', 0), ('uber/petastorm', 0.5052030086517334, 'data', 0), ('dask/dask-ml', 0.5042513608932495, 'ml', 0), ('paddlepaddle/paddle', 0.5022732019424438, 'ml-dl', 0), ('hazyresearch/hgcn', 0.502190113067627, 'ml', 0)]
125
2
null
1.65
70
35
70
0
0
1
1
70
87
90
1.2
53
388
data
https://github.com/yzhao062/pyod
[]
null
[]
[]
null
null
null
yzhao062/pyod
pyod
7,738
1,307
148
Python
http://pyod.readthedocs.io
A Comprehensive and Scalable Python Library for Outlier Detection (Anomaly Detection)
yzhao062
2024-01-13
2017-10-03
330
23.448485
null
A Comprehensive and Scalable Python Library for Outlier Detection (Anomaly Detection)
['anomaly', 'anomaly-detection', 'autoencoder', 'data-analysis', 'data-mining', 'data-science', 'deep-learning', 'fraud-detection', 'machine-learning', 'neural-networks', 'novelty-detection', 'out-of-distribution-detection', 'outlier-detection', 'outlier-ensembles', 'outliers', 'unsupervised-learning']
['anomaly', 'anomaly-detection', 'autoencoder', 'data-analysis', 'data-mining', 'data-science', 'deep-learning', 'fraud-detection', 'machine-learning', 'neural-networks', 'novelty-detection', 'out-of-distribution-detection', 'outlier-detection', 'outlier-ensembles', 'outliers', 'unsupervised-learning']
2023-12-16
[('pycaret/pycaret', 0.7633078694343567, 'ml', 3), ('unit8co/darts', 0.7557379603385925, 'time-series', 4), ('aistream-peelout/flow-forecast', 0.6631090044975281, 'time-series', 2), ('tdameritrade/stumpy', 0.6203436255455017, 'time-series', 2), ('rasbt/mlxtend', 0.6038527488708496, 'ml', 4), ('scikit-learn-contrib/imbalanced-learn', 0.589371383190155, 'ml', 3), ('salesforce/merlion', 0.5439088940620422, 'time-series', 2), ('featurelabs/featuretools', 0.5403005480766296, 'ml', 2), ('salesforce/logai', 0.5268727540969849, 'util', 2), ('mdbloice/augmentor', 0.5144423842430115, 'ml', 3), ('scikit-learn/scikit-learn', 0.5111293196678162, 'ml', 3), ('alkaline-ml/pmdarima', 0.5062800049781799, 'time-series', 1), ('jeshraghian/snntorch', 0.5056750178337097, 'ml-dl', 2)]
50
5
null
0.83
21
9
76
1
4
6
4
21
25
90
1.2
53
1,257
llm
https://github.com/openlm-research/open_llama
['llama', 'language-model']
OpenLLaMA: An Open Reproduction of LLaMA
['2302.13971']
[]
null
null
null
openlm-research/open_llama
open_llama
7,006
362
115
null
null
OpenLLaMA, a permissively licensed open source reproduction of Meta AI’s LLaMA 7B trained on the RedPajama dataset
openlm-research
2024-01-13
2023-04-28
39
177.046931
https://avatars.githubusercontent.com/u/132110378?v=4
OpenLLaMA, a permissively licensed open source reproduction of Meta AI’s LLaMA 7B trained on the RedPajama dataset
[]
['language-model', 'llama']
2023-07-16
[('microsoft/llama-2-onnx', 0.6107590794563293, 'llm', 2), ('jzhang38/tinyllama', 0.5819482207298279, 'llm', 2), ('facebookresearch/llama', 0.5816770195960999, 'llm', 2), ('togethercomputer/redpajama-data', 0.5621833801269531, 'llm', 0), ('lm-sys/fastchat', 0.5599814653396606, 'llm', 1), ('karpathy/llama2.c', 0.5405749678611755, 'llm', 2), ('cg123/mergekit', 0.537260890007019, 'llm', 1), ('facebookresearch/codellama', 0.5370882153511047, 'llm', 2), ('facebookresearch/llama-recipes', 0.536719799041748, 'llm', 2), ('yueyu1030/attrprompt', 0.5280580520629883, 'llm', 0), ('bobazooba/xllm', 0.5272755026817322, 'llm', 1), ('lightning-ai/lit-llama', 0.5196517109870911, 'llm', 2), ('bigscience-workshop/petals', 0.5177329778671265, 'data', 1), ('lupantech/chameleon-llm', 0.5159003138542175, 'llm', 1), ('mshumer/gpt-llm-trainer', 0.5152719616889954, 'llm', 0), ('eleutherai/the-pile', 0.5138996839523315, 'data', 0), ('juncongmoo/pyllama', 0.5135765671730042, 'llm', 0), ('google-research/language', 0.5121092796325684, 'nlp', 0), ('tairov/llama2.mojo', 0.5117022395133972, 'llm', 1), ('tigerlab-ai/tiger', 0.5050448179244995, 'llm', 0), ('run-llama/llama-lab', 0.5049968957901001, 'llm', 2), ('lucidrains/toolformer-pytorch', 0.5018919110298157, 'llm', 1), ('aiwaves-cn/agents', 0.5005034804344177, 'nlp', 1)]
3
3
null
0.35
8
3
9
6
0
0
0
8
3
90
0.4
53
69
gamedev
https://github.com/pygame/pygame
[]
null
[]
[]
1
null
null
pygame/pygame
pygame
6,667
2,977
160
C
https://www.pygame.org
🐍🎮 pygame (the library) is a Free and Open Source python programming language library for making multimedia applications like games built on top of the excellent SDL library. C, Python, Native, OpenGL.
pygame
2024-01-14
2017-03-26
357
18.660136
https://avatars.githubusercontent.com/u/20628127?v=4
🐍🎮 pygame (the library) is a Free and Open Source python programming language library for making multimedia applications like games built on top of the excellent SDL library. C, Python, Native, OpenGL.
['game-dev', 'game-development', 'gamedev', 'pygame', 'sdl', 'sdl2']
['game-dev', 'game-development', 'gamedev', 'pygame', 'sdl', 'sdl2']
2023-12-30
[('pyglet/pyglet', 0.717469334602356, 'gamedev', 1), ('renpy/pygame_sdl2', 0.7130681872367859, 'gamedev', 2), ('lordmauve/pgzero', 0.6985493302345276, 'gamedev', 1), ('pygamelib/pygamelib', 0.6512402892112732, 'gamedev', 2), ('pythonarcade/arcade', 0.6259638071060181, 'gamedev', 0), ('panda3d/panda3d', 0.609826922416687, 'gamedev', 2), ('kitao/pyxel', 0.5883877873420715, 'gamedev', 2), ('pokepetter/ursina', 0.5800055861473083, 'gamedev', 1), ('viblo/pymunk', 0.5696349740028381, 'sim', 1), ('renpy/renpy', 0.5524816513061523, 'viz', 0), ('pypy/pypy', 0.5523542165756226, 'util', 0), ('pytoolz/toolz', 0.5287861824035645, 'util', 0), ('hoffstadt/dearpygui', 0.5225834846496582, 'gui', 0), ('urwid/urwid', 0.5163580775260925, 'term', 0), ('jquast/blessed', 0.504092812538147, 'term', 0)]
315
0
null
9.33
125
37
83
0
11
13
11
125
134
90
1.1
53
74
gis
https://github.com/python-visualization/folium
[]
null
[]
[]
null
null
null
python-visualization/folium
folium
6,539
2,245
167
Python
https://python-visualization.github.io/folium/
Python Data. Leaflet.js Maps.
python-visualization
2024-01-13
2013-05-09
559
11.682746
https://avatars.githubusercontent.com/u/9969242?v=4
Python Data. Leaflet.js Maps.
['data-science', 'data-visualization', 'javascript', 'maps']
['data-science', 'data-visualization', 'javascript', 'maps']
2024-01-02
[('jupyter-widgets/ipyleaflet', 0.6334434151649475, 'gis', 0), ('bokeh/bokeh', 0.5900196433067322, 'viz', 1), ('plotly/dash', 0.5898042321205139, 'viz', 2), ('giswqs/mapwidget', 0.5697619915008545, 'gis', 0), ('giswqs/geemap', 0.5445337295532227, 'gis', 1), ('raphaelquast/eomaps', 0.5424359440803528, 'gis', 0), ('opengeos/leafmap', 0.5398542284965515, 'gis', 1), ('holoviz/panel', 0.5396947860717773, 'viz', 0), ('plotly/plotly.py', 0.5229291319847107, 'viz', 0), ('man-group/dtale', 0.5144950747489929, 'viz', 2)]
159
5
null
2
57
41
130
0
2
2
2
57
114
90
2
53
793
web
https://github.com/pallets/werkzeug
[]
null
[]
[]
null
null
null
pallets/werkzeug
werkzeug
6,480
1,729
221
Python
https://werkzeug.palletsprojects.com
The comprehensive WSGI web application library.
pallets
2024-01-13
2010-10-18
693
9.348722
https://avatars.githubusercontent.com/u/16748505?v=4
The comprehensive WSGI web application library.
['http', 'pallets', 'werkzeug', 'wsgi']
['http', 'pallets', 'werkzeug', 'wsgi']
2024-01-01
[('pallets/flask', 0.7842201590538025, 'web', 3), ('pylons/pyramid', 0.7471210360527039, 'web', 1), ('bottlepy/bottle', 0.6876417994499207, 'web', 1), ('benoitc/gunicorn', 0.6659462451934814, 'web', 2), ('masoniteframework/masonite', 0.6412118673324585, 'web', 0), ('falconry/falcon', 0.630772590637207, 'web', 2), ('pylons/waitress', 0.6237661838531494, 'web', 0), ('pylons/webob', 0.6051927804946899, 'web', 1), ('neoteroi/blacksheep', 0.5996673703193665, 'web', 1), ('webpy/webpy', 0.5957249999046326, 'web', 0), ('cherrypy/cherrypy', 0.5869470834732056, 'web', 1), ('encode/uvicorn', 0.5832026600837708, 'web', 1), ('klen/muffin', 0.5703849196434021, 'web', 0), ('encode/httpx', 0.5651618838310242, 'web', 1), ('scrapy/scrapy', 0.5650268197059631, 'data', 0), ('reflex-dev/reflex', 0.5643238425254822, 'web', 0), ('requests/toolbelt', 0.5638414025306702, 'util', 1), ('psf/requests', 0.559667706489563, 'web', 1), ('pallets/quart', 0.5403130054473877, 'web', 0), ('python-restx/flask-restx', 0.5365567803382874, 'web', 0), ('willmcgugan/textual', 0.5303859114646912, 'term', 0), ('hugapi/hug', 0.5272501111030579, 'util', 1), ('eleutherai/pyfra', 0.523544430732727, 'ml', 0), ('emmett-framework/emmett', 0.5205287337303162, 'web', 0), ('tiangolo/full-stack-fastapi-postgresql', 0.520187497138977, 'template', 0), ('mlc-ai/web-llm', 0.5196402668952942, 'llm', 0), ('roniemartinez/dude', 0.5181063413619995, 'util', 0), ('flet-dev/flet', 0.5143693089485168, 'web', 0), ('starlite-api/starlite', 0.5068367123603821, 'web', 0), ('aminalaee/sqladmin', 0.5044029355049133, 'data', 1), ('encode/starlette', 0.5027870535850525, 'web', 1), ('clips/pattern', 0.5018793344497681, 'nlp', 0)]
486
5
null
4.12
47
33
161
0
12
7
12
47
41
90
0.9
53
1,640
llm
https://github.com/nat/openplayground
['language-model', 'local']
null
[]
[]
null
null
null
nat/openplayground
openplayground
5,904
441
58
TypeScript
null
An LLM playground you can run on your laptop
nat
2024-01-14
2023-02-26
48
122.272189
null
An LLM playground you can run on your laptop
[]
['language-model', 'local']
2023-06-05
[('eugeneyan/open-llms', 0.6209505796432495, 'study', 0), ('alphasecio/langchain-examples', 0.6207661628723145, 'llm', 0), ('hwchase17/langchain', 0.607382595539093, 'llm', 1), ('young-geng/easylm', 0.593249499797821, 'llm', 1), ('thudm/chatglm2-6b', 0.5894226431846619, 'llm', 0), ('mlc-ai/web-llm', 0.589094340801239, 'llm', 1), ('nomic-ai/gpt4all', 0.5870195627212524, 'llm', 1), ('langchain-ai/langgraph', 0.5708506107330322, 'llm', 0), ('alpha-vllm/llama2-accessory', 0.5689014792442322, 'llm', 0), ('tigerlab-ai/tiger', 0.5651535987854004, 'llm', 0), ('salesforce/xgen', 0.5570892095565796, 'llm', 1), ('hiyouga/llama-factory', 0.5530926585197449, 'llm', 1), ('hiyouga/llama-efficient-tuning', 0.5530924797058105, 'llm', 1), ('agenta-ai/agenta', 0.5450541973114014, 'llm', 0), ('salesforce/codet5', 0.5432443022727966, 'nlp', 1), ('microsoft/llama-2-onnx', 0.5403831005096436, 'llm', 1), ('intel/intel-extension-for-transformers', 0.5346694588661194, 'perf', 0), ('microsoft/torchscale', 0.5345559120178223, 'llm', 0), ('conceptofmind/toolformer', 0.5319477915763855, 'llm', 1), ('langchain-ai/langsmith-cookbook', 0.5300737619400024, 'llm', 1), ('mooler0410/llmspracticalguide', 0.5199169516563416, 'study', 0), ('nvidia/nemo-guardrails', 0.5180691480636597, 'llm', 1), ('ctlllll/llm-toolmaker', 0.5115349292755127, 'llm', 1), ('sjtu-ipads/powerinfer', 0.5090302228927612, 'llm', 0), ('hannibal046/awesome-llm', 0.5065643787384033, 'study', 1), ('deep-diver/pingpong', 0.5059070587158203, 'llm', 0), ('prefecthq/langchain-prefect', 0.5041869282722473, 'llm', 0), ('mlc-ai/mlc-llm', 0.5039643049240112, 'llm', 1), ('cg123/mergekit', 0.5010144710540771, 'llm', 0)]
16
3
null
0.67
11
2
11
7
0
0
0
11
5
90
0.5
53
182
security
https://github.com/pycqa/bandit
['code-quality']
null
[]
[]
null
null
null
pycqa/bandit
bandit
5,722
569
66
Python
https://bandit.readthedocs.io
Bandit is a tool designed to find common security issues in Python code.
pycqa
2024-01-13
2018-04-26
300
19.028029
https://avatars.githubusercontent.com/u/8749848?v=4
Bandit is a tool designed to find common security issues in Python code.
['bandit', 'linter', 'security', 'security-scanner', 'security-tools', 'static-code-analysis']
['bandit', 'code-quality', 'linter', 'security', 'security-scanner', 'security-tools', 'static-code-analysis']
2024-01-13
[('aswinnnn/pyscan', 0.5267046093940735, 'security', 3), ('nedbat/coveragepy', 0.5142317414283752, 'testing', 0)]
175
5
null
0.87
48
29
70
0
2
7
2
48
49
90
1
53
1,354
util
https://github.com/icloud-photos-downloader/icloud_photos_downloader
['photos-export', 'library-photos']
null
[]
[]
null
null
null
icloud-photos-downloader/icloud_photos_downloader
icloud_photos_downloader
5,476
506
100
Python
null
A command-line tool to download photos from iCloud
icloud-photos-downloader
2024-01-14
2016-05-13
402
13.602555
https://avatars.githubusercontent.com/u/73247967?v=4
A command-line tool to download photos from iCloud
[]
['library-photos', 'photos-export']
2024-01-05
[]
36
2
null
2.23
97
57
93
0
28
4
28
96
244
90
2.5
53
510
util
https://github.com/agronholm/apscheduler
[]
null
[]
[]
null
null
null
agronholm/apscheduler
apscheduler
5,463
698
128
Python
null
Task scheduling library for Python
agronholm
2024-01-14
2016-03-27
409
13.347644
null
Task scheduling library for Python
[]
[]
2024-01-11
[('dbader/schedule', 0.7123571634292603, 'util', 0), ('dask/dask', 0.6700900197029114, 'perf', 0), ('pyinvoke/invoke', 0.6340285539627075, 'util', 0), ('pypy/pypy', 0.6140989065170288, 'util', 0), ('pytoolz/toolz', 0.6112861037254333, 'util', 0), ('bogdanp/dramatiq', 0.6053295135498047, 'util', 0), ('dask/distributed', 0.5948215126991272, 'perf', 0), ('python/cpython', 0.5778864622116089, 'util', 0), ('joblib/loky', 0.5760906934738159, 'perf', 0), ('eleutherai/pyfra', 0.5697214603424072, 'ml', 0), ('faster-cpython/ideas', 0.5676429867744446, 'perf', 0), ('erotemic/ubelt', 0.5611792802810669, 'util', 0), ('pyston/pyston', 0.5583381652832031, 'util', 0), ('pympler/pympler', 0.5432737469673157, 'perf', 0), ('joblib/joblib', 0.5400955080986023, 'util', 0), ('micropython/micropython', 0.5366904139518738, 'util', 0), ('sumerc/yappi', 0.5361764430999756, 'profiling', 0), ('ipython/ipyparallel', 0.529596745967865, 'perf', 0), ('fastai/fastcore', 0.5230339765548706, 'util', 0), ('kubeflow/fairing', 0.5141321420669556, 'ml-ops', 0), ('requests/toolbelt', 0.5136269330978394, 'util', 0), ('samuelcolvin/arq', 0.5115315914154053, 'data', 0), ('python-trio/trio', 0.5111809968948364, 'perf', 0), ('firmai/atspy', 0.5056720972061157, 'time-series', 0), ('faster-cpython/tools', 0.5040667057037354, 'perf', 0), ('artemyk/dynpy', 0.5037860870361328, 'sim', 0), ('merantix-momentum/squirrel-core', 0.5034119486808777, 'ml', 0), ('backtick-se/cowait', 0.502835750579834, 'util', 0), ('urwid/urwid', 0.501419186592102, 'term', 0)]
44
3
null
2.81
48
27
95
0
2
8
2
48
184
90
3.8
53
561
gis
https://github.com/gboeing/osmnx
[]
null
[]
[]
null
null
null
gboeing/osmnx
osmnx
4,514
805
116
Python
https://osmnx.readthedocs.io
OSMnx is a Python package to easily download, model, analyze, and visualize street networks and other geospatial features from OpenStreetMap.
gboeing
2024-01-13
2016-07-24
392
11.506919
null
OSMnx is a Python package to easily download, model, analyze, and visualize street networks and other geospatial features from OpenStreetMap.
['geography', 'geospatial', 'gis', 'mapping', 'networks', 'networkx', 'openstreetmap', 'osm', 'osmnx', 'overpass-api', 'routing', 'spatial', 'spatial-analysis', 'spatial-data', 'street-networks', 'transport', 'transportation', 'urban', 'urban-planning']
['geography', 'geospatial', 'gis', 'mapping', 'networks', 'networkx', 'openstreetmap', 'osm', 'osmnx', 'overpass-api', 'routing', 'spatial', 'spatial-analysis', 'spatial-data', 'street-networks', 'transport', 'transportation', 'urban', 'urban-planning']
2024-01-12
[('gboeing/osmnx-examples', 0.7930247187614441, 'gis', 5), ('marceloprates/prettymaps', 0.6797459125518799, 'viz', 1), ('gboeing/street-network-models', 0.5225948691368103, 'sim', 0), ('westhealth/pyvis', 0.5170513987541199, 'graph', 1)]
83
3
null
11.06
42
38
91
0
0
8
8
42
68
90
1.6
53
727
ml-dl
https://github.com/pytorch/ignite
[]
null
[]
[]
1
null
null
pytorch/ignite
ignite
4,411
611
60
Python
https://pytorch-ignite.ai
High-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently.
pytorch
2024-01-13
2017-11-23
322
13.668437
https://avatars.githubusercontent.com/u/21003710?v=4
High-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently.
['deep-learning', 'machine-learning', 'metrics', 'neural-network', 'pytorch']
['deep-learning', 'machine-learning', 'metrics', 'neural-network', 'pytorch']
2024-01-11
[('skorch-dev/skorch', 0.8268391489982605, 'ml-dl', 2), ('mrdbourke/pytorch-deep-learning', 0.7811650037765503, 'study', 3), ('intel/intel-extension-for-pytorch', 0.7741976380348206, 'perf', 4), ('nvidia/apex', 0.76711106300354, 'ml-dl', 0), ('pyg-team/pytorch_geometric', 0.7287918925285339, 'ml-dl', 2), ('rasbt/machine-learning-book', 0.7284553050994873, 'study', 3), ('karpathy/micrograd', 0.7160765528678894, 'study', 0), ('pytorch/captum', 0.6821672916412354, 'ml-interpretability', 0), ('denys88/rl_games', 0.6810092926025391, 'ml-rl', 2), ('pytorch/rl', 0.6654600501060486, 'ml-rl', 2), ('allenai/allennlp', 0.6625421047210693, 'nlp', 2), ('huggingface/accelerate', 0.6613282561302185, 'ml', 0), ('intellabs/bayesian-torch', 0.6580493450164795, 'ml', 2), ('pytorch/data', 0.655742347240448, 'data', 0), ('ashleve/lightning-hydra-template', 0.6497684717178345, 'util', 2), ('xl0/lovely-tensors', 0.6465728282928467, 'ml-dl', 2), ('arogozhnikov/einops', 0.6346755027770996, 'ml-dl', 2), ('huggingface/transformers', 0.6338894367218018, 'nlp', 3), ('lightly-ai/lightly', 0.6327634453773499, 'ml', 3), ('laekov/fastmoe', 0.6223480701446533, 'ml', 0), ('rentruewang/koila', 0.6201809644699097, 'ml', 4), ('lucidrains/imagen-pytorch', 0.6169648766517639, 'ml-dl', 1), ('nicolas-chaulet/torch-points3d', 0.6167212128639221, 'ml', 0), ('ageron/handson-ml2', 0.6152977347373962, 'ml', 0), ('hysts/pytorch_image_classification', 0.615060031414032, 'ml-dl', 1), ('facebookresearch/pytorch3d', 0.6142131686210632, 'ml-dl', 0), ('neuralmagic/sparseml', 0.6128144860267639, 'ml-dl', 1), ('thu-ml/tianshou', 0.6126653552055359, 'ml-rl', 1), ('determined-ai/determined', 0.6104621291160583, 'ml-ops', 3), ('horovod/horovod', 0.6100185513496399, 'ml-ops', 3), ('tensorlayer/tensorlayer', 0.6070582866668701, 'ml-rl', 2), ('oml-team/open-metric-learning', 0.6061093807220459, 'ml', 2), ('kshitij12345/torchnnprofiler', 0.6059595346450806, 'profiling', 0), ('ggerganov/ggml', 0.6042031645774841, 'ml', 1), ('keras-team/keras', 0.5964016318321228, 'ml-dl', 3), ('tensorflow/tensorflow', 0.5939213633537292, 'ml-dl', 3), ('tensorflow/lucid', 0.5938147902488708, 'ml-interpretability', 1), ('nvidia/deeplearningexamples', 0.5919349193572998, 'ml-dl', 2), ('mdbloice/augmentor', 0.5899521708488464, 'ml', 2), ('pytorch/torchrec', 0.5860687494277954, 'ml-dl', 2), ('uber/petastorm', 0.5855341553688049, 'data', 3), ('nvlabs/gcvit', 0.5840114951133728, 'diffusion', 1), ('salesforce/blip', 0.5812243223190308, 'diffusion', 0), ('lutzroeder/netron', 0.5811353325843811, 'ml', 4), ('tensorflow/tensor2tensor', 0.5802233219146729, 'ml', 2), ('rasbt/deeplearning-models', 0.5799865126609802, 'ml-dl', 0), ('explosion/thinc', 0.5792794823646545, 'ml-dl', 3), ('mosaicml/composer', 0.5748881101608276, 'ml-dl', 4), ('pytorch/botorch', 0.5717622637748718, 'ml-dl', 0), ('microsoft/onnxruntime', 0.5676509141921997, 'ml', 3), ('tlkh/tf-metal-experiments', 0.5673794746398926, 'perf', 1), ('cvxgrp/pymde', 0.5655942559242249, 'ml', 2), ('aws/sagemaker-python-sdk', 0.5633373856544495, 'ml', 2), ('pytorch/pytorch', 0.5628584623336792, 'ml-dl', 3), ('blackhc/toma', 0.5623881220817566, 'ml-dl', 2), ('microsoft/deepspeed', 0.5605365037918091, 'ml-dl', 3), ('aistream-peelout/flow-forecast', 0.5596166253089905, 'time-series', 2), ('pyro-ppl/pyro', 0.5561047196388245, 'ml-dl', 3), ('nyandwi/modernconvnets', 0.5554874539375305, 'ml-dl', 0), ('rafiqhasan/auto-tensorflow', 0.5545974373817444, 'ml-dl', 1), ('hazyresearch/hgcn', 0.551753580570221, 'ml', 0), ('huggingface/huggingface_hub', 0.5494725108146667, 'ml', 3), ('google/tf-quant-finance', 0.5492528676986694, 'finance', 0), ('karpathy/mingpt', 0.548469066619873, 'llm', 0), ('kevinmusgrave/pytorch-metric-learning', 0.5479029417037964, 'ml', 3), ('davidmrau/mixture-of-experts', 0.5471916198730469, 'ml', 1), ('deci-ai/super-gradients', 0.5459545850753784, 'ml-dl', 3), ('huggingface/evaluate', 0.5455392003059387, 'ml', 1), ('fchollet/deep-learning-with-python-notebooks', 0.5449861288070679, 'study', 0), ('lucidrains/dalle2-pytorch', 0.5412147641181946, 'diffusion', 1), ('d2l-ai/d2l-en', 0.54007488489151, 'study', 3), ('tensorly/tensorly', 0.5390286445617676, 'ml-dl', 2), ('deepmind/dm-haiku', 0.5363015532493591, 'ml-dl', 2), ('graykode/nlp-tutorial', 0.5355981588363647, 'study', 1), ('speechbrain/speechbrain', 0.5351871848106384, 'nlp', 2), ('dmlc/dgl', 0.5350419878959656, 'ml-dl', 1), ('christoschristofidis/awesome-deep-learning', 0.5337355136871338, 'study', 3), ('qdrant/quaterion', 0.5309311747550964, 'ml', 3), ('huggingface/optimum', 0.5307228565216064, 'ml', 1), ('huggingface/diffusers', 0.528372049331665, 'diffusion', 2), ('tensorflow/addons', 0.5261369943618774, 'ml', 3), ('ddbourgin/numpy-ml', 0.5257222652435303, 'ml', 1), ('huggingface/datasets', 0.523903489112854, 'nlp', 3), ('optimalscale/lmflow', 0.5235216617584229, 'llm', 2), ('koaning/human-learn', 0.522743284702301, 'data', 1), ('salesforce/deeptime', 0.5224276185035706, 'time-series', 1), ('onnx/onnx', 0.521939218044281, 'ml', 4), ('humancompatibleai/imitation', 0.5217827558517456, 'ml-rl', 0), ('facebookresearch/dinov2', 0.5208505988121033, 'diffusion', 0), ('google-research/deeplab2', 0.5203951597213745, 'ml', 0), ('huggingface/peft', 0.5194254517555237, 'llm', 1), ('timdettmers/bitsandbytes', 0.5188927054405212, 'util', 0), ('tensorflow/data-validation', 0.5164223313331604, 'ml-ops', 0), ('kubeflow/fairing', 0.5159615874290466, 'ml-ops', 0), ('neuralmagic/deepsparse', 0.5143234133720398, 'nlp', 0), ('rwightman/pytorch-image-models', 0.512000322341919, 'ml-dl', 1), ('tensorflow/similarity', 0.5106225609779358, 'ml-dl', 2), ('facebookresearch/theseus', 0.5099302530288696, 'math', 2), ('keras-rl/keras-rl', 0.5081517696380615, 'ml-rl', 1), ('udacity/deep-learning-v2-pytorch', 0.5055270195007324, 'study', 3), ('keras-team/autokeras', 0.5053526759147644, 'ml-dl', 2), ('ray-project/ray', 0.504410982131958, 'ml-ops', 3), ('jeshraghian/snntorch', 0.5029792189598083, 'ml-dl', 2), ('kornia/kornia', 0.5025068521499634, 'ml-dl', 4), ('calculatedcontent/weightwatcher', 0.5007023811340332, 'ml-dl', 0), ('aiqc/aiqc', 0.5004318356513977, 'ml-ops', 0)]
204
7
null
2.77
115
105
75
0
3
3
3
115
53
90
0.5
53
43
data
https://github.com/lk-geimfari/mimesis
[]
null
[]
[]
null
null
null
lk-geimfari/mimesis
mimesis
4,144
321
62
Python
https://mimesis.name
Mimesis is a powerful Python library that empowers developers to generate massive amounts of synthetic data efficiently.
lk-geimfari
2024-01-14
2016-09-09
385
10.747684
null
Mimesis is a powerful Python library that empowers developers to generate massive amounts of synthetic data efficiently.
['api-mock', 'data', 'dataframe', 'datascience', 'dummy', 'fake', 'faker', 'fixtures', 'generator', 'json', 'json-generator', 'mimesis', 'mock', 'pandas', 'polars', 'schema', 'syntetic', 'synthetic-data', 'testing']
['api-mock', 'data', 'dataframe', 'datascience', 'dummy', 'fake', 'faker', 'fixtures', 'generator', 'json', 'json-generator', 'mimesis', 'mock', 'pandas', 'polars', 'schema', 'syntetic', 'synthetic-data', 'testing']
2024-01-12
[('joke2k/faker', 0.6268561482429504, 'data', 3), ('getsentry/responses', 0.5823182463645935, 'testing', 0), ('python-odin/odin', 0.5751269459724426, 'util', 1), ('pytoolz/toolz', 0.5705004334449768, 'util', 0), ('marshmallow-code/marshmallow', 0.5606078505516052, 'util', 1), ('asacristani/fastapi-rocket-boilerplate', 0.5495461225509644, 'template', 0), ('snyk/faker-security', 0.5424483418464661, 'security', 0), ('fastai/fastcore', 0.5298691987991333, 'util', 0), ('pytables/pytables', 0.5296199321746826, 'data', 0), ('eleutherai/pyfra', 0.5290538668632507, 'ml', 0), ('nedbat/coveragepy', 0.5268024206161499, 'testing', 0), ('kubeflow/fairing', 0.5213274955749512, 'ml-ops', 0), ('falconry/falcon', 0.5205872654914856, 'web', 0), ('pyeve/cerberus', 0.5154099464416504, 'data', 0), ('brokenloop/jsontopydantic', 0.5148674845695496, 'util', 0), ('dagworks-inc/hamilton', 0.5131853222846985, 'ml-ops', 2), ('pypy/pypy', 0.5108677744865417, 'util', 0), ('unionai-oss/pandera', 0.509531557559967, 'pandas', 3), ('pandas-dev/pandas', 0.5089730024337769, 'pandas', 2), ('jsonpickle/jsonpickle', 0.5048171281814575, 'data', 1), ('tiangolo/sqlmodel', 0.5006476640701294, 'data', 1)]
117
4
null
4.63
51
44
89
0
11
9
11
51
73
90
1.4
53
335
ml
https://github.com/apple/coremltools
[]
null
[]
[]
null
null
null
apple/coremltools
coremltools
3,860
581
116
Python
https://coremltools.readme.io
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.
apple
2024-01-14
2017-06-30
343
11.234927
https://avatars.githubusercontent.com/u/10639145?v=4
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.
['coreml', 'coremltools', 'machine-learning', 'model-conversion', 'model-converter', 'pytorch', 'tensorflow']
['coreml', 'coremltools', 'machine-learning', 'model-conversion', 'model-converter', 'pytorch', 'tensorflow']
2024-01-10
[('huggingface/exporters', 0.6746289730072021, 'ml', 6), ('microsoft/nni', 0.5904099345207214, 'ml', 3), ('huggingface/datasets', 0.5799334049224854, 'nlp', 3), ('polyaxon/polyaxon', 0.5726978778839111, 'ml-ops', 3), ('selfexplainml/piml-toolbox', 0.558883786201477, 'ml-interpretability', 0), ('districtdatalabs/yellowbrick', 0.5530053377151489, 'ml', 1), ('keras-team/autokeras', 0.546789288520813, 'ml-dl', 2), ('deepchecks/deepchecks', 0.539066731929779, 'data', 2), ('lucidrains/toolformer-pytorch', 0.5380272269248962, 'llm', 0), ('nccr-itmo/fedot', 0.5334883332252502, 'ml-ops', 1), ('mosaicml/composer', 0.5304659605026245, 'ml-dl', 2), ('mlflow/mlflow', 0.5302109122276306, 'ml-ops', 1), ('onnx/onnx', 0.5105490684509277, 'ml', 3), ('wandb/client', 0.510352373123169, 'ml', 3), ('lutzroeder/netron', 0.5053067803382874, 'ml', 4), ('kubeflow/fairing', 0.5047186613082886, 'ml-ops', 0)]
159
3
null
2.06
127
82
80
0
6
6
6
126
286
90
2.3
53
252
ml
https://github.com/microsoft/flaml
[]
null
[]
[]
null
null
null
microsoft/flaml
FLAML
3,493
488
56
Jupyter Notebook
https://microsoft.github.io/FLAML/
A fast library for AutoML and tuning. Join our Discord: https://discord.gg/Cppx2vSPVP.
microsoft
2024-01-13
2020-08-20
179
19.436407
https://avatars.githubusercontent.com/u/6154722?v=4
A fast library for AutoML and tuning. Join our Discord: https://discord.gg/Cppx2vSPVP.
['automated-machine-learning', 'automl', 'classification', 'data-science', 'deep-learning', 'finetuning', 'hyperparam', 'hyperparameter-optimization', 'jupyter-notebook', 'machine-learning', 'natural-language-generation', 'natural-language-processing', 'random-forest', 'regression', 'scikit-learn', 'tabular-data', 'timeseries-forecasting', 'tuning']
['automated-machine-learning', 'automl', 'classification', 'data-science', 'deep-learning', 'finetuning', 'hyperparam', 'hyperparameter-optimization', 'jupyter-notebook', 'machine-learning', 'natural-language-generation', 'natural-language-processing', 'random-forest', 'regression', 'scikit-learn', 'tabular-data', 'timeseries-forecasting', 'tuning']
2023-11-29
[('mljar/mljar-supervised', 0.7940219044685364, 'ml', 7), ('microsoft/nni', 0.7865293025970459, 'ml', 6), ('keras-team/autokeras', 0.7519674897193909, 'ml-dl', 4), ('awslabs/autogluon', 0.7324180603027344, 'ml', 9), ('automl/auto-sklearn', 0.7281423807144165, 'ml', 4), ('shankarpandala/lazypredict', 0.6851475834846497, 'ml', 4), ('winedarksea/autots', 0.6591876745223999, 'time-series', 3), ('ray-project/tune-sklearn', 0.6497718095779419, 'ml', 2), ('nccr-itmo/fedot', 0.6372272372245789, 'ml-ops', 4), ('epistasislab/tpot', 0.6104899048805237, 'ml', 7), ('kubeflow/katib', 0.6054434776306152, 'ml', 0), ('featurelabs/featuretools', 0.6044269800186157, 'ml', 5), ('karpathy/micrograd', 0.5962915420532227, 'study', 0), ('determined-ai/determined', 0.5710462927818298, 'ml-ops', 4), ('huggingface/datasets', 0.5613746047019958, 'nlp', 3), ('alpa-projects/alpa', 0.5595440864562988, 'ml-dl', 2), ('ray-project/ray', 0.5589168667793274, 'ml-ops', 5), ('rafiqhasan/auto-tensorflow', 0.5583081841468811, 'ml-dl', 2), ('google/pyglove', 0.5550763607025146, 'util', 2), ('alkaline-ml/pmdarima', 0.5537622570991516, 'time-series', 1), ('huggingface/evaluate', 0.5472498536109924, 'ml', 1), ('ggerganov/ggml', 0.5470587611198425, 'ml', 1), ('salesforce/merlion', 0.5453396439552307, 'time-series', 2), ('google/vizier', 0.5446196794509888, 'ml', 4), ('firmai/atspy', 0.5425217747688293, 'time-series', 0), ('huggingface/autotrain-advanced', 0.5361581444740295, 'ml', 3), ('uber/petastorm', 0.5358170866966248, 'data', 2), ('rasbt/mlxtend', 0.5349463224411011, 'ml', 2), ('scikit-optimize/scikit-optimize', 0.5336490869522095, 'ml', 3), ('xplainable/xplainable', 0.5324146747589111, 'ml-interpretability', 2), ('autoviml/auto_ts', 0.5320088863372803, 'time-series', 1), ('hiyouga/llama-factory', 0.5290379524230957, 'llm', 0), ('hiyouga/llama-efficient-tuning', 0.5290378928184509, 'llm', 0), ('rasbt/machine-learning-book', 0.5261116623878479, 'study', 3), ('tensorflow/tensor2tensor', 0.5255224704742432, 'ml', 2), ('neuralmagic/sparseml', 0.525197446346283, 'ml-dl', 1), ('ashleve/lightning-hydra-template', 0.5247229337692261, 'util', 1), ('koaning/human-learn', 0.5246617197990417, 'data', 2), ('explosion/thinc', 0.5239095091819763, 'ml-dl', 3), ('tensorflow/data-validation', 0.5238473415374756, 'ml-ops', 0), ('huggingface/transformers', 0.5236698985099792, 'nlp', 3), ('gradio-app/gradio', 0.5217346549034119, 'viz', 3), ('aws/sagemaker-python-sdk', 0.5215294361114502, 'ml', 1), ('wandb/client', 0.5212470293045044, 'ml', 4), ('tigerlab-ai/tiger', 0.5200607180595398, 'llm', 1), ('teamhg-memex/eli5', 0.5194395184516907, 'ml', 3), ('ourownstory/neural_prophet', 0.5170196294784546, 'ml', 2), ('districtdatalabs/yellowbrick', 0.5168565511703491, 'ml', 2), ('patchy631/machine-learning', 0.5163537263870239, 'ml', 0), ('nixtla/statsforecast', 0.5162665843963623, 'time-series', 3), ('ml-tooling/opyrator', 0.5143886804580688, 'viz', 1), ('sktime/sktime', 0.5142588019371033, 'time-series', 3), ('optuna/optuna', 0.5139668583869934, 'ml', 2), ('catboost/catboost', 0.5135185122489929, 'ml', 2), ('oml-team/open-metric-learning', 0.5119624733924866, 'ml', 2), ('google/temporian', 0.511090874671936, 'time-series', 0), ('linkedin/greykite', 0.5093781352043152, 'ml', 0), ('ageron/handson-ml2', 0.5074008107185364, 'ml', 0), ('pycaret/pycaret', 0.5066448450088501, 'ml', 4), ('selfexplainml/piml-toolbox', 0.5052233338356018, 'ml-interpretability', 0), ('huggingface/peft', 0.5017809867858887, 'llm', 0), ('merantix-momentum/squirrel-core', 0.5003235340118408, 'ml', 4), ('polyaxon/polyaxon', 0.5002272129058838, 'ml-ops', 4)]
80
4
null
2.98
31
13
41
2
18
20
18
31
50
90
1.6
53
472
nlp
https://github.com/neuralmagic/deepsparse
[]
null
[]
[]
null
null
null
neuralmagic/deepsparse
deepsparse
2,707
160
53
Python
https://neuralmagic.com/deepsparse/
Sparsity-aware deep learning inference runtime for CPUs
neuralmagic
2024-01-13
2020-12-14
163
16.59282
https://avatars.githubusercontent.com/u/68670575?v=4
Sparsity-aware deep learning inference runtime for CPUs
['computer-vision', 'cpus', 'deepsparse', 'inference', 'llm-inference', 'machinelearning', 'nlp', 'object-detection', 'onnx', 'performance', 'pretrained-models', 'pruning', 'quantization', 'sparsification']
['computer-vision', 'cpus', 'deepsparse', 'inference', 'llm-inference', 'machinelearning', 'nlp', 'object-detection', 'onnx', 'performance', 'pretrained-models', 'pruning', 'quantization', 'sparsification']
2024-01-10
[('neuralmagic/sparseml', 0.7135436534881592, 'ml-dl', 5), ('microsoft/deepspeed', 0.643064022064209, 'ml-dl', 1), ('microsoft/onnxruntime', 0.6196989417076111, 'ml', 1), ('alpa-projects/alpa', 0.6077420711517334, 'ml-dl', 0), ('lutzroeder/netron', 0.5835353136062622, 'ml', 2), ('huggingface/datasets', 0.5752450823783875, 'nlp', 2), ('tlkh/tf-metal-experiments', 0.5730476379394531, 'perf', 0), ('mosaicml/composer', 0.5704326033592224, 'ml-dl', 0), ('squeezeailab/squeezellm', 0.5691953301429749, 'llm', 1), ('intel/intel-extension-for-pytorch', 0.5653654932975769, 'perf', 1), ('bigscience-workshop/petals', 0.5630180835723877, 'data', 2), ('keras-team/keras', 0.5612209439277649, 'ml-dl', 0), ('onnx/onnx', 0.5601222515106201, 'ml', 1), ('aiqc/aiqc', 0.556576669216156, 'ml-ops', 0), ('nvidia/deeplearningexamples', 0.554892361164093, 'ml-dl', 2), ('determined-ai/determined', 0.5497815608978271, 'ml-ops', 0), ('huggingface/optimum', 0.5494052171707153, 'ml', 3), ('vllm-project/vllm', 0.5437913537025452, 'llm', 1), ('nyandwi/modernconvnets', 0.5420705080032349, 'ml-dl', 1), ('explosion/thinc', 0.5401971936225891, 'ml-dl', 1), ('apache/incubator-mxnet', 0.53566974401474, 'ml-dl', 0), ('facebookresearch/ppuda', 0.5350483059883118, 'ml-dl', 0), ('tensorflow/tensorflow', 0.5337933301925659, 'ml-dl', 0), ('huggingface/transformers', 0.532548189163208, 'nlp', 2), ('tensorflow/tensor2tensor', 0.5306204557418823, 'ml', 0), ('rwightman/pytorch-image-models', 0.5303251147270203, 'ml-dl', 1), ('horovod/horovod', 0.5292316675186157, 'ml-ops', 1), ('roboflow/supervision', 0.5291524529457092, 'ml', 2), ('deepfakes/faceswap', 0.5284426212310791, 'ml-dl', 0), ('ddbourgin/numpy-ml', 0.5217757225036621, 'ml', 0), ('pytorch/glow', 0.514583945274353, 'ml', 0), ('pytorch/ignite', 0.5143234133720398, 'ml-dl', 0), ('calculatedcontent/weightwatcher', 0.5087005496025085, 'ml-dl', 0), ('paddlepaddle/paddle', 0.5083123445510864, 'ml-dl', 0), ('rasbt/machine-learning-book', 0.5080384612083435, 'study', 0), ('blackhc/toma', 0.5067216753959656, 'ml-dl', 0), ('cvxgrp/pymde', 0.5062499642372131, 'ml', 0), ('pytorchlightning/pytorch-lightning', 0.5051679015159607, 'ml-dl', 0), ('megvii-basedetection/yolox', 0.5051378607749939, 'ml', 2), ('polyaxon/polyaxon', 0.504664957523346, 'ml-ops', 0), ('ludwig-ai/ludwig', 0.5014819502830505, 'ml-ops', 2), ('facebookresearch/pytorch3d', 0.5011691451072693, 'ml-dl', 0), ('fepegar/torchio', 0.5005324482917786, 'ml-dl', 0)]
41
3
null
8.13
222
202
38
0
10
12
10
222
98
90
0.4
53
539
data
https://github.com/sqlalchemy/alembic
[]
null
[]
[]
null
null
null
sqlalchemy/alembic
alembic
2,302
211
19
Python
null
A database migrations tool for SQLAlchemy.
sqlalchemy
2024-01-13
2018-11-27
270
8.525926
https://avatars.githubusercontent.com/u/6043126?v=4
A database migrations tool for SQLAlchemy.
['sql', 'sqlalchemy']
['sql', 'sqlalchemy']
2024-01-13
[('sqlalchemy/sqlalchemy', 0.8273295164108276, 'data', 2), ('agronholm/sqlacodegen', 0.6634976267814636, 'data', 0), ('mause/duckdb_engine', 0.6483481526374817, 'data', 2), ('tiangolo/sqlmodel', 0.6223205924034119, 'data', 2), ('aminalaee/sqladmin', 0.5552855730056763, 'data', 1), ('ibis-project/ibis', 0.5510525107383728, 'data', 2), ('aeternalis-ingenium/fastapi-backend-template', 0.5487288236618042, 'web', 1), ('mcfunley/pugsql', 0.5098458528518677, 'data', 1)]
181
5
null
2.63
84
64
62
0
16
24
16
84
228
90
2.7
53
1,689
util
https://github.com/pypa/setuptools
['setuptools', 'build']
null
[]
[]
null
null
null
pypa/setuptools
setuptools
2,224
1,095
93
Python
https://pypi.org/project/setuptools/
Official project repository for the Setuptools build system
pypa
2024-01-12
2016-03-29
409
5.437653
https://avatars.githubusercontent.com/u/647025?v=4
Official project repository for the Setuptools build system
[]
['build', 'setuptools']
2024-01-11
[('pyo3/setuptools-rust', 0.6672810912132263, 'util', 2)]
587
4
null
15.08
145
71
95
0
28
83
28
146
273
90
1.9
53
1,898
pandas
https://github.com/delta-io/delta-rs
['databricks', 'rust']
null
[]
[]
null
null
null
delta-io/delta-rs
delta-rs
1,620
305
38
Rust
https://delta-io.github.io/delta-rs/
A native Rust library for Delta Lake, with bindings into Python
delta-io
2024-01-16
2020-04-26
196
8.253275
https://avatars.githubusercontent.com/u/49767398?v=4
A native Rust library for Delta Lake, with bindings into Python
['databricks', 'delta', 'delta-lake', 'pandas', 'pandas-dataframe', 'rust']
['databricks', 'delta', 'delta-lake', 'pandas', 'pandas-dataframe', 'rust']
2024-01-16
[('eventual-inc/daft', 0.6028104424476624, 'pandas', 1), ('pola-rs/polars', 0.596839427947998, 'pandas', 1), ('sfu-db/connector-x', 0.5911102890968323, 'data', 1), ('pyo3/pyo3', 0.5582752227783203, 'util', 1), ('tkrabel/bamboolib', 0.5383087396621704, 'pandas', 1), ('pyo3/maturin', 0.532139241695404, 'util', 1), ('rustpython/rustpython', 0.5259521007537842, 'util', 1), ('pyo3/rust-numpy', 0.5224049687385559, 'util', 1), ('pandas-dev/pandas', 0.5217164754867554, 'pandas', 1), ('geopandas/geopandas', 0.5198134183883667, 'gis', 1), ('mito-ds/monorepo', 0.503544807434082, 'jupyter', 1), ('pytoolz/toolz', 0.5006144642829895, 'util', 0)]
128
3
null
9.9
455
310
45
0
24
18
24
455
994
90
2.2
53
630
util
https://github.com/pygments/pygments
[]
null
[]
[]
null
null
null
pygments/pygments
pygments
1,487
579
33
Python
http://pygments.org/
Pygments is a generic syntax highlighter written in Python
pygments
2024-01-13
2019-08-31
230
6.453193
https://avatars.githubusercontent.com/u/50935516?v=4
Pygments is a generic syntax highlighter written in Python
['syntax-highlighting']
['syntax-highlighting']
2024-01-13
[('hhatto/autopep8', 0.600104570388794, 'util', 0), ('grantjenks/blue', 0.5901092886924744, 'util', 0), ('pypy/pypy', 0.5847700834274292, 'util', 0), ('python/cpython', 0.5650127530097961, 'util', 0), ('willmcgugan/rich', 0.5573404431343079, 'term', 1), ('google/yapf', 0.5552298426628113, 'util', 0), ('instagram/libcst', 0.5501353144645691, 'util', 0), ('pyglet/pyglet', 0.5452966094017029, 'gamedev', 0), ('pycqa/pylint-django', 0.5438166856765747, 'util', 0), ('google/latexify_py', 0.5412126183509827, 'util', 0), ('hoffstadt/dearpygui', 0.5314857959747314, 'gui', 0), ('python-markdown/markdown', 0.5284628868103027, 'util', 0), ('psf/black', 0.5274278521537781, 'util', 0), ('landscapeio/prospector', 0.5254445672035217, 'util', 0), ('pyston/pyston', 0.5150144696235657, 'util', 0), ('webpy/webpy', 0.5060795545578003, 'web', 0), ('pypi/warehouse', 0.5018252730369568, 'util', 0), ('pytoolz/toolz', 0.5010949969291687, 'util', 0), ('brandtbucher/specialist', 0.5001950263977051, 'perf', 0)]
821
5
null
7.12
137
107
53
0
7
15
7
137
282
90
2.1
53
1,558
ml
https://github.com/huggingface/huggingface_hub
[]
null
[]
[]
null
null
null
huggingface/huggingface_hub
huggingface_hub
1,449
354
58
Python
https://huggingface.co/docs/huggingface_hub
The official Python client for the Huggingface Hub.
huggingface
2024-01-14
2020-12-22
162
8.944444
https://avatars.githubusercontent.com/u/25720743?v=4
The official Python client for the Huggingface Hub.
['deep-learning', 'machine-learning', 'model-hub', 'models', 'natural-language-processing', 'pretrained-models', 'pytorch']
['deep-learning', 'machine-learning', 'model-hub', 'models', 'natural-language-processing', 'pretrained-models', 'pytorch']
2024-01-12
[('skorch-dev/skorch', 0.6804894804954529, 'ml-dl', 2), ('aws/sagemaker-python-sdk', 0.6623826026916504, 'ml', 2), ('huggingface/exporters', 0.6611513495445251, 'ml', 3), ('kubeflow/fairing', 0.624878466129303, 'ml-ops', 0), ('huggingface/transformers', 0.6154810190200806, 'nlp', 6), ('gradio-app/gradio', 0.6130750775337219, 'viz', 3), ('radiantearth/radiant-mlhub', 0.6118897199630737, 'gis', 1), ('rasbt/machine-learning-book', 0.6020623445510864, 'study', 3), ('huggingface/datasets', 0.5904778242111206, 'nlp', 4), ('huggingface/notebooks', 0.5788795948028564, 'ml', 0), ('intel/intel-extension-for-pytorch', 0.5788046717643738, 'perf', 3), ('hugapi/hug', 0.5746172070503235, 'util', 0), ('skops-dev/skops', 0.5664080381393433, 'ml-ops', 1), ('dylanhogg/awesome-python', 0.5635517835617065, 'study', 3), ('merantix-momentum/squirrel-core', 0.5627287030220032, 'ml', 4), ('uber/petastorm', 0.5579898357391357, 'data', 3), ('ashleve/lightning-hydra-template', 0.5572559237480164, 'util', 2), ('openai/openai-python', 0.5553815960884094, 'util', 0), ('huggingface/deep-rl-class', 0.5541204810142517, 'study', 1), ('hoffstadt/dearpygui', 0.5539893507957458, 'gui', 0), ('ageron/handson-ml2', 0.5522385835647583, 'ml', 0), ('pytorch/ignite', 0.5494725108146667, 'ml-dl', 3), ('deepfakes/faceswap', 0.5489972233772278, 'ml-dl', 2), ('dmlc/dgl', 0.5465887784957886, 'ml-dl', 1), ('fchollet/deep-learning-with-python-notebooks', 0.5410536527633667, 'study', 0), ('ddbourgin/numpy-ml', 0.5406401753425598, 'ml', 1), ('tensorly/tensorly', 0.5400019884109497, 'ml-dl', 2), ('allenai/allennlp', 0.5300591588020325, 'nlp', 3), ('googleapis/google-api-python-client', 0.5284603238105774, 'util', 0), ('iperov/deepfacelab', 0.5282143950462341, 'ml-dl', 2), ('tensorlayer/tensorlayer', 0.5281078815460205, 'ml-rl', 1), ('fastai/fastcore', 0.5268593430519104, 'util', 0), ('mrdbourke/pytorch-deep-learning', 0.5265445113182068, 'study', 3), ('featurelabs/featuretools', 0.5263670682907104, 'ml', 1), ('ta-lib/ta-lib-python', 0.5248498916625977, 'finance', 0), ('pypy/pypy', 0.5246903896331787, 'util', 0), ('nvidia/deeplearningexamples', 0.5234879851341248, 'ml-dl', 2), ('pyg-team/pytorch_geometric', 0.5223245620727539, 'ml-dl', 2), ('beeware/toga', 0.5219206213951111, 'gui', 0), ('timofurrer/awesome-asyncio', 0.5210409164428711, 'study', 0), ('alibaba/easynlp', 0.5210217237472534, 'nlp', 4), ('ggerganov/ggml', 0.5206968188285828, 'ml', 1), ('huggingface/autotrain-advanced', 0.5198477506637573, 'ml', 3), ('facebookresearch/pytorch3d', 0.5197669863700867, 'ml-dl', 0), ('selfexplainml/piml-toolbox', 0.5193759202957153, 'ml-interpretability', 0), ('weaviate/weaviate-python-client', 0.5164599418640137, 'util', 0), ('google/temporian', 0.5130770802497864, 'time-series', 0), ('ml-tooling/opyrator', 0.5117499828338623, 'viz', 1), ('eleutherai/pyfra', 0.5113564133644104, 'ml', 0), ('python/cpython', 0.5113198757171631, 'util', 0), ('nielsrogge/transformers-tutorials', 0.5096057057380676, 'study', 1), ('willmcgugan/textual', 0.5090726613998413, 'term', 0), ('lucidrains/toolformer-pytorch', 0.5079225301742554, 'llm', 1), ('nvlabs/gcvit', 0.5078686475753784, 'diffusion', 1), ('xl0/lovely-tensors', 0.5074052214622498, 'ml-dl', 2), ('pytorch/rl', 0.5057786703109741, 'ml-rl', 2), ('lightly-ai/lightly', 0.5056184530258179, 'ml', 3), ('adap/flower', 0.5031947493553162, 'ml-ops', 3), ('numpy/numpy', 0.5030168890953064, 'math', 0), ('speechbrain/speechbrain', 0.5026688575744629, 'nlp', 2), ('pycaret/pycaret', 0.5024893283843994, 'ml', 1), ('microsoft/onnxruntime', 0.5021616816520691, 'ml', 3), ('probml/pyprobml', 0.5018727779388428, 'ml', 2), ('mdbloice/augmentor', 0.5017703175544739, 'ml', 2), ('arogozhnikov/einops', 0.5012728571891785, 'ml-dl', 2), ('wandb/client', 0.5004013180732727, 'ml', 3), ('alphasecio/langchain-examples', 0.5002479553222656, 'llm', 0), ('nevronai/metisfl', 0.5000477433204651, 'ml', 2)]
127
2
null
7.19
267
213
37
0
25
32
25
265
759
90
2.9
53
1,724
llm
https://github.com/ray-project/ray-llm
[]
null
[]
[]
null
null
null
ray-project/ray-llm
ray-llm
949
61
21
Python
https://aviary.anyscale.com
RayLLM - LLMs on Ray
ray-project
2024-01-13
2023-05-31
34
27.22541
https://avatars.githubusercontent.com/u/22125274?v=4
RayLLM - LLMs on Ray
['distributed-systems', 'large-language-models', 'llm', 'llm-inference', 'llm-serving', 'llmops', 'ray', 'serving', 'transformers']
['distributed-systems', 'large-language-models', 'llm', 'llm-inference', 'llm-serving', 'llmops', 'ray', 'serving', 'transformers']
2024-01-08
[('vllm-project/vllm', 0.7471011877059937, 'llm', 3), ('bentoml/openllm', 0.6621026396751404, 'ml-ops', 4), ('predibase/lorax', 0.6269615888595581, 'llm', 5), ('artidoro/qlora', 0.6143306493759155, 'llm', 0), ('salesforce/xgen', 0.6136285662651062, 'llm', 2), ('ray-project/ray-educational-materials', 0.6102384924888611, 'study', 4), ('bigscience-workshop/petals', 0.6017612218856812, 'data', 2), ('bobazooba/xllm', 0.5996918082237244, 'llm', 2), ('sjtu-ipads/powerinfer', 0.5986047387123108, 'llm', 3), ('young-geng/easylm', 0.5914445519447327, 'llm', 1), ('eugeneyan/open-llms', 0.5834382772445679, 'study', 2), ('explosion/spacy-llm', 0.5664099454879761, 'llm', 2), ('microsoft/torchscale', 0.5647855997085571, 'llm', 0), ('iryna-kondr/scikit-llm', 0.5598890781402588, 'llm', 2), ('ray-project/ray', 0.5598110556602478, 'ml-ops', 3), ('nomic-ai/gpt4all', 0.5573980808258057, 'llm', 1), ('mooler0410/llmspracticalguide', 0.5559900999069214, 'study', 1), ('microsoft/jarvis', 0.5456799268722534, 'llm', 0), ('squeezeailab/squeezellm', 0.5445480942726135, 'llm', 2), ('microsoft/autogen', 0.5439698100090027, 'llm', 2), ('nebuly-ai/nebullvm', 0.5362703800201416, 'perf', 2), ('cg123/mergekit', 0.5349216461181641, 'llm', 1), ('hiyouga/llama-factory', 0.5283878445625305, 'llm', 3), ('hiyouga/llama-efficient-tuning', 0.528387725353241, 'llm', 3), ('deepset-ai/haystack', 0.5249264240264893, 'llm', 2), ('citadel-ai/langcheck', 0.524300754070282, 'llm', 0), ('deep-diver/pingpong', 0.5193211436271667, 'llm', 0), ('titanml/takeoff', 0.5190406441688538, 'llm', 1), ('thudm/chatglm2-6b', 0.5179040431976318, 'llm', 2), ('intel/intel-extension-for-transformers', 0.5162841081619263, 'perf', 1), ('agenta-ai/agenta', 0.5125582218170166, 'llm', 3), ('next-gpt/next-gpt', 0.5125154256820679, 'llm', 2), ('lianjiatech/belle', 0.5085573792457581, 'llm', 0), ('opengvlab/omniquant', 0.5080553293228149, 'llm', 2), ('jina-ai/thinkgpt', 0.5078703165054321, 'llm', 0), ('juncongmoo/pyllama', 0.505372941493988, 'llm', 0), ('dylanhogg/llmgraph', 0.5024334192276001, 'ml', 1)]
21
5
null
3.06
54
20
8
0
10
15
10
54
56
90
1
53
688
ml-dl
https://github.com/iperov/deepfacelab
[]
null
[]
[]
null
null
null
iperov/deepfacelab
DeepFaceLab
44,089
9,977
1,114
Python
null
DeepFaceLab is the leading software for creating deepfakes.
iperov
2024-01-14
2018-06-04
295
149.381897
null
DeepFaceLab is the leading software for creating deepfakes.
['arxiv', 'creating-deepfakes', 'deep-face-swap', 'deep-learning', 'deep-neural-networks', 'deepface', 'deepfacelab', 'deepfakes', 'deeplearning', 'face-swap', 'faceswap', 'fakeapp', 'machine-learning', 'neural-nets', 'neural-networks']
['arxiv', 'creating-deepfakes', 'deep-face-swap', 'deep-learning', 'deep-neural-networks', 'deepface', 'deepfacelab', 'deepfakes', 'deeplearning', 'face-swap', 'faceswap', 'fakeapp', 'machine-learning', 'neural-nets', 'neural-networks']
2023-04-27
[('deepfakes/faceswap', 0.8627434968948364, 'ml-dl', 12), ('nvidia/deeplearningexamples', 0.5346398949623108, 'ml-dl', 1), ('open-mmlab/mmediting', 0.5308938026428223, 'ml', 1), ('huggingface/huggingface_hub', 0.5282143950462341, 'ml', 2), ('rwightman/pytorch-image-models', 0.5256627798080444, 'ml-dl', 0), ('fepegar/torchio', 0.5164421200752258, 'ml-dl', 2), ('deepchecks/deepchecks', 0.515143871307373, 'data', 2), ('deepmind/deepmind-research', 0.5150367021560669, 'ml', 0), ('huggingface/datasets', 0.5133152008056641, 'nlp', 2), ('microsoft/deepspeed', 0.5126926302909851, 'ml-dl', 2), ('alpa-projects/alpa', 0.511199414730072, 'ml-dl', 2), ('awslabs/autogluon', 0.5111877918243408, 'ml', 2), ('christoschristofidis/awesome-deep-learning', 0.5062230825424194, 'study', 2), ('neuralmagic/sparseml', 0.5047088861465454, 'ml-dl', 0), ('keras-team/autokeras', 0.5044635534286499, 'ml-dl', 2)]
22
0
null
0.02
11
2
68
9
0
0
0
11
5
90
0.5
52
933
llm
https://github.com/karpathy/mingpt
[]
null
[]
[]
null
null
null
karpathy/mingpt
minGPT
17,452
2,101
249
Python
null
A minimal PyTorch re-implementation of the OpenAI GPT (Generative Pretrained Transformer) training
karpathy
2024-01-14
2020-08-17
180
96.878668
null
A minimal PyTorch re-implementation of the OpenAI GPT (Generative Pretrained Transformer) training
[]
[]
2023-01-08
[('ist-daslab/gptq', 0.7072771787643433, 'llm', 0), ('minimaxir/gpt-2-simple', 0.6132301688194275, 'llm', 0), ('nvidia/apex', 0.6042015552520752, 'ml-dl', 0), ('bigscience-workshop/megatron-deepspeed', 0.6039530634880066, 'llm', 0), ('microsoft/megatron-deepspeed', 0.6039530634880066, 'llm', 0), ('nielsrogge/transformers-tutorials', 0.6038249135017395, 'study', 0), ('huggingface/optimum', 0.5994217395782471, 'ml', 0), ('pytorch-labs/gpt-fast', 0.5887901782989502, 'llm', 0), ('nvlabs/gcvit', 0.5820482969284058, 'diffusion', 0), ('huggingface/transformers', 0.5732393860816956, 'nlp', 0), ('eleutherai/gpt-neo', 0.5706537961959839, 'llm', 0), ('eleutherai/gpt-neox', 0.5511136651039124, 'llm', 0), ('karpathy/nanogpt', 0.5497898459434509, 'llm', 0), ('pytorch/ignite', 0.548469066619873, 'ml-dl', 0), ('explosion/spacy-transformers', 0.5479704141616821, 'llm', 0), ('alignmentresearch/tuned-lens', 0.5471770763397217, 'ml-interpretability', 0), ('huggingface/accelerate', 0.5470962524414062, 'ml', 0), ('eleutherai/knowledge-neurons', 0.5461640954017639, 'ml-interpretability', 0), ('promptslab/awesome-prompt-engineering', 0.5419448018074036, 'study', 0), ('nvidia/megatron-lm', 0.5354270935058594, 'llm', 0), ('mrdbourke/pytorch-deep-learning', 0.5222852230072021, 'study', 0), ('lucidrains/vit-pytorch', 0.5179693102836609, 'ml-dl', 0), ('intel/intel-extension-for-pytorch', 0.5158076882362366, 'perf', 0), ('openai/image-gpt', 0.5077084302902222, 'llm', 0), ('apple/ml-ane-transformers', 0.5006250143051147, 'ml', 0)]
15
4
null
0
5
1
42
12
0
0
0
5
4
90
0.8
52
505
ml
https://github.com/tensorflow/tensor2tensor
[]
null
[]
[]
null
null
null
tensorflow/tensor2tensor
tensor2tensor
14,478
3,407
468
Python
null
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.
tensorflow
2024-01-14
2017-06-15
345
41.878512
https://avatars.githubusercontent.com/u/15658638?v=4
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.
['deep-learning', 'machine-learning', 'machine-translation', 'reinforcement-learning', 'tpu']
['deep-learning', 'machine-learning', 'machine-translation', 'reinforcement-learning', 'tpu']
2023-04-01
[('tensorlayer/tensorlayer', 0.6871770024299622, 'ml-rl', 2), ('huggingface/datasets', 0.6564465761184692, 'nlp', 2), ('tensorflow/tensorflow', 0.6497355103492737, 'ml-dl', 2), ('unity-technologies/ml-agents', 0.6379924416542053, 'ml-rl', 3), ('microsoft/deepspeed', 0.6303361058235168, 'ml-dl', 2), ('explosion/thinc', 0.626385509967804, 'ml-dl', 2), ('nvidia/deeplearningexamples', 0.6179958581924438, 'ml-dl', 1), ('google/trax', 0.615790605545044, 'ml-dl', 3), ('keras-rl/keras-rl', 0.6136747002601624, 'ml-rl', 2), ('denys88/rl_games', 0.6038516163825989, 'ml-rl', 2), ('mosaicml/composer', 0.5954499244689941, 'ml-dl', 2), ('deepmind/dm_control', 0.5927808880805969, 'ml-rl', 3), ('d2l-ai/d2l-en', 0.5922254920005798, 'study', 3), ('keras-team/autokeras', 0.5915209650993347, 'ml-dl', 2), ('rasbt/machine-learning-book', 0.5888902544975281, 'study', 2), ('determined-ai/determined', 0.5887267589569092, 'ml-ops', 2), ('google-research/google-research', 0.5845038890838623, 'ml', 1), ('keras-team/keras', 0.5834200382232666, 'ml-dl', 2), ('salesforce/warp-drive', 0.5827850699424744, 'ml-rl', 2), ('firmai/industry-machine-learning', 0.5822129249572754, 'study', 1), ('pytorch/ignite', 0.5802233219146729, 'ml-dl', 2), ('uber/petastorm', 0.5750295519828796, 'data', 2), ('rasbt/deeplearning-models', 0.5731253623962402, 'ml-dl', 0), ('openai/spinningup', 0.5718406438827515, 'study', 0), ('thu-ml/tianshou', 0.5683255791664124, 'ml-rl', 0), ('alirezadir/machine-learning-interview-enlightener', 0.5649195909500122, 'study', 2), ('microsoft/onnxruntime', 0.564765214920044, 'ml', 2), ('mlflow/mlflow', 0.5625280737876892, 'ml-ops', 1), ('microsoft/nni', 0.5608126521110535, 'ml', 2), ('google-research/language', 0.5586530566215515, 'nlp', 1), ('ddbourgin/numpy-ml', 0.5577438473701477, 'ml', 2), ('lutzroeder/netron', 0.5569348335266113, 'ml', 2), ('udlbook/udlbook', 0.5561156868934631, 'study', 1), ('microsoft/jarvis', 0.5555034279823303, 'llm', 1), ('aiqc/aiqc', 0.5551923513412476, 'ml-ops', 0), ('facebookresearch/habitat-lab', 0.5538010597229004, 'sim', 2), ('mrdbourke/pytorch-deep-learning', 0.5526059865951538, 'study', 2), ('alpa-projects/alpa', 0.5523074865341187, 'ml-dl', 2), ('onnx/onnx', 0.5511443018913269, 'ml', 2), ('ray-project/ray', 0.5493798851966858, 'ml-ops', 3), ('bentoml/bentoml', 0.5486508011817932, 'ml-ops', 2), ('ageron/handson-ml2', 0.5483447313308716, 'ml', 0), ('merantix-momentum/squirrel-core', 0.5476986765861511, 'ml', 2), ('deepchecks/deepchecks', 0.5471684336662292, 'data', 2), ('ml-for-high-risk-apps-book/machine-learning-for-high-risk-applications-book', 0.5430309772491455, 'study', 2), ('deepmodeling/deepmd-kit', 0.5421066880226135, 'sim', 1), ('allenai/allennlp', 0.5407803058624268, 'nlp', 1), ('fepegar/torchio', 0.5404090285301208, 'ml-dl', 2), ('pytorch/rl', 0.539577305316925, 'ml-rl', 2), ('apache/incubator-mxnet', 0.5354474186897278, 'ml-dl', 0), ('tensorflow/data-validation', 0.5354011654853821, 'ml-ops', 0), ('salesforce/deeptime', 0.5346342325210571, 'time-series', 1), ('cerlymarco/medium_notebook', 0.5338510870933533, 'study', 2), ('paddlepaddle/paddle', 0.5337570905685425, 'ml-dl', 2), ('oegedijk/explainerdashboard', 0.5324363708496094, 'ml-interpretability', 0), ('ashleve/lightning-hydra-template', 0.5318635106086731, 'util', 1), ('neuralmagic/deepsparse', 0.5306204557418823, 'nlp', 0), ('google/dopamine', 0.5282601118087769, 'ml-rl', 0), ('deeppavlov/deeppavlov', 0.5281538963317871, 'nlp', 2), ('huggingface/transformers', 0.5262730717658997, 'nlp', 2), ('microsoft/flaml', 0.5255224704742432, 'ml', 2), ('intellabs/bayesian-torch', 0.5250702500343323, 'ml', 1), ('koaning/human-learn', 0.5240030884742737, 'data', 1), ('tatsu-lab/stanford_alpaca', 0.5224913954734802, 'llm', 1), ('ggerganov/ggml', 0.519944965839386, 'ml', 1), ('googlecloudplatform/vertex-ai-samples', 0.5193653702735901, 'ml', 0), ('xplainable/xplainable', 0.5187652707099915, 'ml-interpretability', 1), ('hpcaitech/colossalai', 0.5182396173477173, 'llm', 1), ('neuralmagic/sparseml', 0.5167617201805115, 'ml-dl', 0), ('aistream-peelout/flow-forecast', 0.5155697464942932, 'time-series', 1), ('gradio-app/gradio', 0.5152331590652466, 'viz', 2), ('google/vizier', 0.5147285461425781, 'ml', 2), ('oml-team/open-metric-learning', 0.5146539211273193, 'ml', 1), ('aws/sagemaker-python-sdk', 0.5145456790924072, 'ml', 1), ('deepmind/dm-haiku', 0.5139560103416443, 'ml-dl', 2), ('xl0/lovely-tensors', 0.5108433961868286, 'ml-dl', 1), ('microsoft/qlib', 0.5105899572372437, 'finance', 2), ('udacity/deep-learning-v2-pytorch', 0.5104150176048279, 'study', 1), ('activeloopai/deeplake', 0.5102148652076721, 'ml-ops', 2), ('azavea/raster-vision', 0.5076959133148193, 'gis', 2), ('karpathy/micrograd', 0.5075839757919312, 'study', 0), ('facebookresearch/theseus', 0.5072576403617859, 'math', 1), ('project-monai/monai', 0.5071702599525452, 'ml', 1), ('csinva/imodels', 0.5070091485977173, 'ml', 1), ('pytorchlightning/pytorch-lightning', 0.5069326758384705, 'ml-dl', 2), ('intel/intel-extension-for-pytorch', 0.5063350200653076, 'perf', 2), ('polyaxon/polyaxon', 0.5061532258987427, 'ml-ops', 3), ('amanchadha/coursera-deep-learning-specialization', 0.5060564875602722, 'study', 1), ('horovod/horovod', 0.5053731799125671, 'ml-ops', 2), ('optimalscale/lmflow', 0.5030723810195923, 'llm', 1), ('interpretml/interpret', 0.5023159980773926, 'ml-interpretability', 1)]
244
7
null
0.02
0
0
80
10
0
12
12
0
0
90
0
52
1,644
util
https://github.com/dbader/schedule
['scheduler']
null
[]
[]
1
null
null
dbader/schedule
schedule
11,297
996
216
Python
https://schedule.readthedocs.io/
Python job scheduling for humans.
dbader
2024-01-13
2013-05-19
558
20.235159
null
Python job scheduling for humans.
[]
['scheduler']
2023-12-10
[('agronholm/apscheduler', 0.7123571634292603, 'util', 0), ('dask/dask', 0.5425211191177368, 'perf', 0), ('pyinvoke/invoke', 0.514901876449585, 'util', 0)]
59
5
null
0.27
16
6
130
1
0
2
2
16
29
90
1.8
52
166
nlp
https://github.com/doccano/doccano
[]
null
[]
[]
null
null
null
doccano/doccano
doccano
8,649
1,653
129
Python
https://doccano.herokuapp.com
Open source annotation tool for machine learning practitioners.
doccano
2024-01-14
2018-05-09
298
28.940249
https://avatars.githubusercontent.com/u/58067660?v=4
Open source annotation tool for machine learning practitioners.
['annotation-tool', 'data-labeling', 'dataset', 'datasets', 'machine-learning', 'natural-language-processing', 'nuxt', 'nuxtjs', 'text-annotation', 'vue', 'vuejs']
['annotation-tool', 'data-labeling', 'dataset', 'datasets', 'machine-learning', 'natural-language-processing', 'nuxt', 'nuxtjs', 'text-annotation', 'vue', 'vuejs']
2023-08-10
[('argilla-io/argilla', 0.6546259522438049, 'nlp', 4), ('mlflow/mlflow', 0.6210007667541504, 'ml-ops', 1), ('hegelai/prompttools', 0.6014738082885742, 'llm', 1), ('rasahq/rasa', 0.5829582214355469, 'llm', 2), ('tensorflow/tensorflow', 0.5740697383880615, 'ml-dl', 1), ('microsoft/nni', 0.573647141456604, 'ml', 1), ('tigerlab-ai/tiger', 0.5629643797874451, 'llm', 0), ('wandb/client', 0.5617552399635315, 'ml', 1), ('polyaxon/polyaxon', 0.5601885914802551, 'ml-ops', 1), ('cleanlab/cleanlab', 0.5571958422660828, 'ml', 2), ('alirezadir/machine-learning-interview-enlightener', 0.5449758768081665, 'study', 1), ('aimhubio/aim', 0.5435435771942139, 'ml-ops', 1), ('huggingface/datasets', 0.5418587923049927, 'nlp', 3), ('patchy631/machine-learning', 0.5417935848236084, 'ml', 0), ('ai4finance-foundation/fingpt', 0.5407078862190247, 'finance', 1), ('onnx/onnx', 0.5324045419692993, 'ml', 1), ('google-research/language', 0.5283976197242737, 'nlp', 2), ('polyaxon/datatile', 0.5258282423019409, 'pandas', 0), ('nltk/nltk', 0.5226835608482361, 'nlp', 2), ('determined-ai/determined', 0.5204253196716309, 'ml-ops', 1), ('districtdatalabs/yellowbrick', 0.5116096138954163, 'ml', 1), ('featurelabs/featuretools', 0.5110718607902527, 'ml', 1), ('firmai/industry-machine-learning', 0.50450199842453, 'study', 1)]
104
4
null
1.87
49
9
69
5
1
6
1
49
62
90
1.3
52
28
ml-dl
https://github.com/google/trax
[]
null
[]
[]
null
null
null
google/trax
trax
7,858
818
148
Python
null
Trax — Deep Learning with Clear Code and Speed
google
2024-01-14
2019-10-05
225
34.858048
https://avatars.githubusercontent.com/u/1342004?v=4
Trax — Deep Learning with Clear Code and Speed
['deep-learning', 'deep-reinforcement-learning', 'jax', 'machine-learning', 'numpy', 'reinforcement-learning', 'transformer']
['deep-learning', 'deep-reinforcement-learning', 'jax', 'machine-learning', 'numpy', 'reinforcement-learning', 'transformer']
2023-11-15
[('keras-team/keras', 0.7093995809555054, 'ml-dl', 3), ('keras-rl/keras-rl', 0.6790956258773804, 'ml-rl', 2), ('tensorlayer/tensorlayer', 0.6657304167747498, 'ml-rl', 2), ('explosion/thinc', 0.6631956696510315, 'ml-dl', 3), ('huggingface/transformers', 0.659750759601593, 'nlp', 4), ('deepmind/dm-haiku', 0.6491378545761108, 'ml-dl', 3), ('denys88/rl_games', 0.6481664776802063, 'ml-rl', 2), ('ddbourgin/numpy-ml', 0.6432744264602661, 'ml', 2), ('salesforce/warp-drive', 0.640018880367279, 'ml-rl', 2), ('deepmind/dm_control', 0.6313595771789551, 'ml-rl', 3), ('thu-ml/tianshou', 0.625861406326294, 'ml-rl', 0), ('tensorflow/tensor2tensor', 0.615790605545044, 'ml', 3), ('tensorflow/tensorflow', 0.6033942103385925, 'ml-dl', 2), ('unity-technologies/ml-agents', 0.5988940596580505, 'ml-rl', 4), ('pytorch/rl', 0.5977087020874023, 'ml-rl', 2), ('microsoft/deepspeed', 0.5964576601982117, 'ml-dl', 2), ('alpa-projects/alpa', 0.5918993949890137, 'ml-dl', 3), ('d2l-ai/d2l-en', 0.587719202041626, 'study', 4), ('apache/incubator-mxnet', 0.583592414855957, 'ml-dl', 0), ('mosaicml/composer', 0.5817326307296753, 'ml-dl', 2), ('nvidia/deeplearningexamples', 0.5805593132972717, 'ml-dl', 1), ('onnx/onnx', 0.5766066908836365, 'ml', 2), ('kzl/decision-transformer', 0.5694336891174316, 'ml-rl', 0), ('ray-project/ray', 0.568706214427948, 'ml-ops', 3), ('ai4finance-foundation/finrl', 0.5627601146697998, 'finance', 2), ('gradio-app/gradio', 0.5625860095024109, 'viz', 2), ('microsoft/onnxruntime', 0.5622458457946777, 'ml', 2), ('aiqc/aiqc', 0.555395245552063, 'ml-ops', 0), ('pytorchlightning/pytorch-lightning', 0.550957202911377, 'ml-dl', 2), ('determined-ai/determined', 0.5475213527679443, 'ml-ops', 2), ('huggingface/optimum', 0.5470688343048096, 'ml', 0), ('ml-tooling/opyrator', 0.5450164079666138, 'viz', 1), ('pyro-ppl/pyro', 0.539913535118103, 'ml-dl', 2), ('huggingface/datasets', 0.5373858213424683, 'nlp', 3), ('arogozhnikov/einops', 0.5327727198600769, 'ml-dl', 3), ('openai/baselines', 0.5311444401741028, 'ml-rl', 0), ('karpathy/micrograd', 0.5311139822006226, 'study', 0), ('keras-team/autokeras', 0.5302404761314392, 'ml-dl', 2), ('deepmodeling/deepmd-kit', 0.5293905735015869, 'sim', 1), ('google/flax', 0.5265333652496338, 'ml-dl', 1), ('microsoft/nni', 0.5194593071937561, 'ml', 2), ('deepmind/pysc2', 0.5190588235855103, 'ml-rl', 2), ('thilinarajapakse/simpletransformers', 0.5190243721008301, 'nlp', 0), ('bigscience-workshop/petals', 0.5161072611808777, 'data', 3), ('ludwig-ai/ludwig', 0.5144282579421997, 'ml-ops', 2), ('koaning/human-learn', 0.514390230178833, 'data', 1), ('tlkh/tf-metal-experiments', 0.5128339529037476, 'perf', 1), ('bentoml/bentoml', 0.5128212571144104, 'ml-ops', 2), ('ml-for-high-risk-apps-book/machine-learning-for-high-risk-applications-book', 0.512615442276001, 'study', 2), ('modularml/mojo', 0.5107121467590332, 'util', 1), ('uber/petastorm', 0.5106483101844788, 'data', 2), ('awslabs/autogluon', 0.5100558996200562, 'ml', 2), ('google/dopamine', 0.5098437666893005, 'ml-rl', 0), ('online-ml/river', 0.5071595311164856, 'ml', 1), ('pytorch/pytorch', 0.5070921778678894, 'ml-dl', 3), ('inspirai/timechamber', 0.5059916377067566, 'sim', 2), ('huggingface/autotrain-advanced', 0.5045042037963867, 'ml', 2), ('facebookresearch/habitat-lab', 0.5037897825241089, 'sim', 3), ('young-geng/easylm', 0.5037261843681335, 'llm', 3), ('wandb/client', 0.502128541469574, 'ml', 4), ('rwightman/pytorch-image-models', 0.5016557574272156, 'ml-dl', 0), ('xplainable/xplainable', 0.5001837015151978, 'ml-interpretability', 1)]
79
5
null
0.1
8
3
52
2
0
4
4
8
4
90
0.5
52
646
profiling
https://github.com/joerick/pyinstrument
[]
null
[]
[]
null
null
null
joerick/pyinstrument
pyinstrument
5,802
235
53
Python
https://pyinstrument.readthedocs.io/
🚴 Call stack profiler for Python. Shows you why your code is slow!
joerick
2024-01-13
2014-03-13
515
11.250416
null
🚴 Call stack profiler for Python. Shows you why your code is slow!
['async', 'django', 'performance', 'profile', 'profiler']
['async', 'django', 'performance', 'profile', 'profiler']
2024-01-06
[('sumerc/yappi', 0.6088473200798035, 'profiling', 2), ('benfred/py-spy', 0.5834751129150391, 'profiling', 1), ('jiffyclub/snakeviz', 0.5636839866638184, 'profiling', 0), ('pythonspeed/filprofiler', 0.5218971967697144, 'profiling', 0), ('pyutils/line_profiler', 0.5132960677146912, 'profiling', 0)]
55
7
null
1.98
18
10
120
0
5
6
5
18
34
90
1.9
52
1,167
study
https://github.com/gkamradt/langchain-tutorials
[]
null
[]
[]
null
null
null
gkamradt/langchain-tutorials
langchain-tutorials
5,691
1,717
97
Jupyter Notebook
null
Overview and tutorial of the LangChain Library
gkamradt
2024-01-14
2023-02-13
50
113.495726
null
Overview and tutorial of the LangChain Library
[]
[]
2023-11-23
[('prefecthq/langchain-prefect', 0.7797976732254028, 'llm', 0), ('langchain-ai/langgraph', 0.6401094794273376, 'llm', 0), ('logspace-ai/langflow', 0.5531355142593384, 'llm', 0), ('alphasecio/langchain-examples', 0.5529564023017883, 'llm', 0), ('langchain-ai/chat-langchain', 0.5390220284461975, 'llm', 0), ('langchain-ai/langsmith-sdk', 0.5348765254020691, 'llm', 0), ('hannibal046/awesome-llm', 0.5057912468910217, 'study', 0)]
17
4
null
1.75
1
0
11
2
0
0
0
1
0
90
0
52
15
ml-dl
https://github.com/skorch-dev/skorch
[]
null
[]
[]
null
null
null
skorch-dev/skorch
skorch
5,518
379
82
Jupyter Notebook
null
A scikit-learn compatible neural network library that wraps PyTorch
skorch-dev
2024-01-13
2017-07-18
341
16.181818
https://avatars.githubusercontent.com/u/47992320?v=4
A scikit-learn compatible neural network library that wraps PyTorch
['huggingface', 'machine-learning', 'pytorch', 'scikit-learn']
['huggingface', 'machine-learning', 'pytorch', 'scikit-learn']
2024-01-08
[('pytorch/ignite', 0.8268391489982605, 'ml-dl', 2), ('rasbt/machine-learning-book', 0.777802050113678, 'study', 3), ('intel/intel-extension-for-pytorch', 0.7512941360473633, 'perf', 2), ('mrdbourke/pytorch-deep-learning', 0.6955669522285461, 'study', 2), ('nvidia/apex', 0.6882312893867493, 'ml-dl', 0), ('huggingface/huggingface_hub', 0.6804894804954529, 'ml', 2), ('pyg-team/pytorch_geometric', 0.6679598093032837, 'ml-dl', 1), ('karpathy/micrograd', 0.644400417804718, 'study', 0), ('allenai/allennlp', 0.639916181564331, 'nlp', 1), ('pytorch/data', 0.631018877029419, 'data', 0), ('pytorch/rl', 0.6245636940002441, 'ml-rl', 2), ('hysts/pytorch_image_classification', 0.619719386100769, 'ml-dl', 1), ('pytorch/captum', 0.6131489276885986, 'ml-interpretability', 0), ('xl0/lovely-tensors', 0.612391471862793, 'ml-dl', 1), ('huggingface/accelerate', 0.6029394268989563, 'ml', 0), ('ashleve/lightning-hydra-template', 0.6017202138900757, 'util', 1), ('huggingface/transformers', 0.6005750894546509, 'nlp', 2), ('arogozhnikov/einops', 0.599236786365509, 'ml-dl', 1), ('ggerganov/ggml', 0.5978483557701111, 'ml', 1), ('neuralmagic/sparseml', 0.5961683988571167, 'ml-dl', 1), ('ageron/handson-ml2', 0.5958633422851562, 'ml', 0), ('lucidrains/imagen-pytorch', 0.5915490388870239, 'ml-dl', 0), ('denys88/rl_games', 0.5850237011909485, 'ml-rl', 1), ('facebookresearch/pytorch3d', 0.5811278223991394, 'ml-dl', 0), ('aws/sagemaker-python-sdk', 0.5779036283493042, 'ml', 3), ('lightly-ai/lightly', 0.5767190456390381, 'ml', 2), ('rentruewang/koila', 0.5766161680221558, 'ml', 2), ('nicolas-chaulet/torch-points3d', 0.5687388777732849, 'ml', 0), ('microsoft/onnxruntime', 0.5680661797523499, 'ml', 3), ('tensorlayer/tensorlayer', 0.5663044452667236, 'ml-rl', 0), ('koaning/human-learn', 0.5661436319351196, 'data', 2), ('koaning/scikit-lego', 0.5642397999763489, 'ml', 2), ('speechbrain/speechbrain', 0.5581321120262146, 'nlp', 2), ('intellabs/bayesian-torch', 0.5576133131980896, 'ml', 1), ('laekov/fastmoe', 0.5523069500923157, 'ml', 0), ('facebookresearch/dinov2', 0.5518595576286316, 'diffusion', 0), ('mdbloice/augmentor', 0.5499297976493835, 'ml', 1), ('uber/petastorm', 0.5473853945732117, 'data', 2), ('tensorflow/tensorflow', 0.5416784286499023, 'ml-dl', 1), ('determined-ai/determined', 0.5415751338005066, 'ml-ops', 2), ('thu-ml/tianshou', 0.5379747152328491, 'ml-rl', 1), ('lucidrains/dalle2-pytorch', 0.5362039804458618, 'diffusion', 0), ('kshitij12345/torchnnprofiler', 0.5358409881591797, 'profiling', 0), ('cvxgrp/pymde', 0.5335275530815125, 'ml', 2), ('huggingface/exporters', 0.532882034778595, 'ml', 2), ('horovod/horovod', 0.5322457551956177, 'ml-ops', 2), ('nvlabs/gcvit', 0.531648576259613, 'diffusion', 0), ('pytorch/pytorch', 0.5300707817077637, 'ml-dl', 1), ('ddbourgin/numpy-ml', 0.526438295841217, 'ml', 1), ('aistream-peelout/flow-forecast', 0.5259057879447937, 'time-series', 1), ('explosion/thinc', 0.525391161441803, 'ml-dl', 2), ('salesforce/blip', 0.5246773362159729, 'diffusion', 0), ('tensorflow/lucid', 0.5241331458091736, 'ml-interpretability', 1), ('lutzroeder/netron', 0.5238518714904785, 'ml', 2), ('nvidia/deeplearningexamples', 0.5229756832122803, 'ml-dl', 1), ('tensorly/tensorly', 0.5220605134963989, 'ml-dl', 2), ('pytorch/torchrec', 0.5207085609436035, 'ml-dl', 1), ('oml-team/open-metric-learning', 0.5191598534584045, 'ml', 1), ('iryna-kondr/scikit-llm', 0.5175820589065552, 'llm', 2), ('fchollet/deep-learning-with-python-notebooks', 0.5172905325889587, 'study', 0), ('jeshraghian/snntorch', 0.5167255401611328, 'ml-dl', 2), ('pycaret/pycaret', 0.5164783000946045, 'ml', 1), ('tlkh/tf-metal-experiments', 0.5154433250427246, 'perf', 0), ('keras-team/keras', 0.5138635635375977, 'ml-dl', 2), ('rdkit/rdkit', 0.510020911693573, 'sim', 0), ('nyandwi/modernconvnets', 0.509011447429657, 'ml-dl', 0), ('davidmrau/mixture-of-experts', 0.5069704055786133, 'ml', 1), ('salesforce/deeptime', 0.506636381149292, 'time-series', 0), ('huggingface/datasets', 0.5065990686416626, 'nlp', 2), ('qdrant/quaterion', 0.506058394908905, 'ml', 2), ('pytorch/glow', 0.5048933029174805, 'ml', 0), ('deepmodeling/deepmd-kit', 0.5047734379768372, 'sim', 0), ('probml/pyprobml', 0.5041447877883911, 'ml', 2), ('pytorch/botorch', 0.5020517110824585, 'ml-dl', 0), ('gradio-app/gradio', 0.5019252896308899, 'viz', 1), ('rasbt/mlxtend', 0.5017459988594055, 'ml', 1), ('tensorflow/similarity', 0.5013630986213684, 'ml-dl', 1), ('kubeflow/fairing', 0.501205325126648, 'ml-ops', 0), ('dmlc/dgl', 0.5011494755744934, 'ml-dl', 0)]
61
5
null
0.96
18
13
79
0
3
3
3
18
29
90
1.6
52
823
typing
https://github.com/python-attrs/attrs
[]
null
[]
[]
1
null
null
python-attrs/attrs
attrs
4,977
388
65
Python
https://www.attrs.org/
Python Classes Without Boilerplate
python-attrs
2024-01-13
2015-01-27
470
10.589362
https://avatars.githubusercontent.com/u/25880274?v=4
Python Classes Without Boilerplate
['attributes', 'boilerplate', 'classes', 'oop']
['attributes', 'boilerplate', 'classes', 'oop']
2024-01-13
[('martinheinz/python-project-blueprint', 0.521111011505127, 'template', 1), ('landscapeio/prospector', 0.5136226415634155, 'util', 0), ('xrudelis/pytrait', 0.5021693110466003, 'util', 0)]
154
3
null
3.29
49
36
109
0
2
3
2
49
124
90
2.5
52
213
data
https://github.com/facebookresearch/augly
[]
null
[]
[]
null
null
null
facebookresearch/augly
AugLy
4,853
295
67
Python
https://ai.facebook.com/blog/augly-a-new-data-augmentation-library-to-help-build-more-robust-ai-models/
A data augmentations library for audio, image, text, and video.
facebookresearch
2024-01-12
2021-06-09
137
35.203109
https://avatars.githubusercontent.com/u/16943930?v=4
A data augmentations library for audio, image, text, and video.
[]
[]
2023-11-08
[('albumentations-team/albumentations', 0.6632611751556396, 'ml-dl', 0), ('mdbloice/augmentor', 0.6478663086891174, 'ml', 0), ('aleju/imgaug', 0.5716978311538696, 'ml', 0), ('nomic-ai/nomic', 0.528243899345398, 'nlp', 0), ('researchmm/sttn', 0.5215305089950562, 'ml-dl', 0)]
34
3
null
0.21
6
2
32
2
0
3
3
6
14
90
2.3
52
92
ml
https://github.com/uber/causalml
[]
null
[]
[]
null
null
null
uber/causalml
causalml
4,514
753
80
Python
null
Uplift modeling and causal inference with machine learning algorithms
uber
2024-01-13
2019-07-09
238
18.966387
https://avatars.githubusercontent.com/u/538264?v=4
Uplift modeling and causal inference with machine learning algorithms
['causal-inference', 'incubation', 'machine-learning', 'uplift-modeling']
['causal-inference', 'incubation', 'machine-learning', 'uplift-modeling']
2024-01-12
[('py-why/econml', 0.5542822480201721, 'ml', 2)]
59
4
null
1.6
90
74
55
0
2
3
2
90
90
90
1
52
199
viz
https://github.com/man-group/dtale
[]
null
[]
[]
null
null
null
man-group/dtale
dtale
4,398
371
73
TypeScript
http://alphatechadmin.pythonanywhere.com
Visualizer for pandas data structures
man-group
2024-01-14
2019-07-15
237
18.545783
https://avatars.githubusercontent.com/u/5859004?v=4
Visualizer for pandas data structures
['data-analysis', 'data-science', 'data-visualization', 'flask', 'ipython', 'jupyter-notebook', 'pandas', 'plotly-dash', 'python27', 'react', 'react-virtualized', 'visualization', 'xarray']
['data-analysis', 'data-science', 'data-visualization', 'flask', 'ipython', 'jupyter-notebook', 'pandas', 'plotly-dash', 'python27', 'react', 'react-virtualized', 'visualization', 'xarray']
2024-01-05
[('mwaskom/seaborn', 0.73142409324646, 'viz', 3), ('holoviz/panel', 0.7240487337112427, 'viz', 0), ('kanaries/pygwalker', 0.7181293368339539, 'pandas', 3), ('lux-org/lux', 0.7073760032653809, 'viz', 3), ('holoviz/holoviz', 0.7002979516983032, 'viz', 0), ('bokeh/bokeh', 0.6867046356201172, 'viz', 1), ('plotly/plotly.py', 0.6799153089523315, 'viz', 3), ('plotly/dash', 0.6759928464889526, 'viz', 5), ('residentmario/geoplot', 0.6714649796485901, 'gis', 0), ('holoviz/hvplot', 0.6696478724479675, 'pandas', 0), ('pandas-dev/pandas', 0.6628751754760742, 'pandas', 3), ('altair-viz/altair', 0.6516591310501099, 'viz', 1), ('jakevdp/pythondatasciencehandbook', 0.6342079639434814, 'study', 2), ('pyqtgraph/pyqtgraph', 0.6243569850921631, 'viz', 1), ('tkrabel/bamboolib', 0.6187593936920166, 'pandas', 2), ('enthought/mayavi', 0.6186628937721252, 'viz', 1), ('adamerose/pandasgui', 0.6185036897659302, 'pandas', 1), ('vizzuhq/ipyvizzu', 0.6090724468231201, 'jupyter', 3), ('vaexio/vaex', 0.6020064353942871, 'perf', 2), ('wesm/pydata-book', 0.5984211564064026, 'study', 0), ('polyaxon/datatile', 0.5954803824424744, 'pandas', 3), ('scitools/iris', 0.5857634544372559, 'gis', 1), ('mckinsey/vizro', 0.584793746471405, 'viz', 3), ('graphistry/pygraphistry', 0.5765081644058228, 'data', 2), ('has2k1/plotnine', 0.5764876008033752, 'viz', 1), ('federicoceratto/dashing', 0.5763976573944092, 'term', 0), ('matplotlib/matplotlib', 0.5757876634597778, 'viz', 2), ('rapidsai/cudf', 0.5755491256713867, 'pandas', 3), ('maartenbreddels/ipyvolume', 0.5735721588134766, 'jupyter', 1), ('krzjoa/awesome-python-data-science', 0.5704981088638306, 'study', 3), ('contextlab/hypertools', 0.5685189366340637, 'ml', 2), ('quantopian/qgrid', 0.560211718082428, 'jupyter', 0), ('lutzroeder/netron', 0.5549408793449402, 'ml', 0), ('hazyresearch/meerkat', 0.5547817945480347, 'viz', 2), ('ranaroussi/quantstats', 0.55287766456604, 'finance', 1), ('cuemacro/chartpy', 0.5520331263542175, 'viz', 0), ('mito-ds/monorepo', 0.5518519282341003, 'jupyter', 4), ('opengeos/leafmap', 0.5516546368598938, 'gis', 2), ('gregorhd/mapcompare', 0.5462871789932251, 'gis', 0), ('holoviz/datashader', 0.5459538698196411, 'gis', 0), ('dylanhogg/awesome-python', 0.5450599193572998, 'study', 2), ('ydataai/ydata-profiling', 0.5416145324707031, 'pandas', 4), ('scikit-hep/awkward-1.0', 0.5412405729293823, 'data', 2), ('datapane/datapane', 0.5396667718887329, 'viz', 1), ('giswqs/geemap', 0.5396121144294739, 'gis', 2), ('pyvista/pyvista', 0.5372913479804993, 'viz', 1), ('vispy/vispy', 0.5336646437644958, 'viz', 1), ('matplotlib/mplfinance', 0.5290730595588684, 'finance', 0), ('dagworks-inc/hamilton', 0.525833010673523, 'ml-ops', 3), ('python-odin/odin', 0.5247855186462402, 'util', 0), ('holoviz/spatialpandas', 0.5217031240463257, 'pandas', 1), ('holoviz/geoviews', 0.5216120481491089, 'gis', 0), ('geopandas/geopandas', 0.5202478766441345, 'gis', 1), ('pola-rs/polars', 0.5197016596794128, 'pandas', 0), ('scitools/cartopy', 0.519442617893219, 'gis', 0), ('raphaelquast/eomaps', 0.5189169049263, 'gis', 1), ('districtdatalabs/yellowbrick', 0.5179511308670044, 'ml', 1), ('saulpw/visidata', 0.5157226324081421, 'term', 1), ('python-visualization/folium', 0.5144950747489929, 'gis', 2), ('eleutherai/pyfra', 0.5136914253234863, 'ml', 0), ('twopirllc/pandas-ta', 0.5126270651817322, 'finance', 2), ('unionai-oss/pandera', 0.5104021430015564, 'pandas', 1), ('marcomusy/vedo', 0.5097540020942688, 'viz', 1), ('visgl/deck.gl', 0.5085725784301758, 'viz', 2), ('hi-primus/optimus', 0.5049717426300049, 'ml-ops', 2), ('tokern/data-lineage', 0.5029366612434387, 'data', 0), ('imageio/imageio', 0.5025433897972107, 'util', 0), ('koaning/drawdata', 0.5000766515731812, 'jupyter', 0)]
30
2
null
2.42
30
18
55
0
30
37
30
30
42
90
1.4
52
1,779
viz
https://github.com/renpy/renpy
[]
null
[]
[]
null
null
null
renpy/renpy
renpy
4,311
648
144
Ren'Py
http://www.renpy.org/
The Ren'Py Visual Novel Engine
renpy
2024-01-14
2012-06-28
604
7.128987
https://avatars.githubusercontent.com/u/1900740?v=4
The Ren'Py Visual Novel Engine
['engine', 'game', 'novel', 'renpy', 'visual', 'visual-novel']
['engine', 'game', 'novel', 'renpy', 'visual', 'visual-novel']
2024-01-14
[('pokepetter/ursina', 0.6157830357551575, 'gamedev', 0), ('kitao/pyxel', 0.5945414304733276, 'gamedev', 1), ('pygame/pygame', 0.5524816513061523, 'gamedev', 0), ('panda3d/panda3d', 0.5438269972801208, 'gamedev', 0), ('pyscript/pyscript-cli', 0.5380860567092896, 'web', 0), ('fastai/fastcore', 0.5279468894004822, 'util', 0), ('python/cpython', 0.5222944617271423, 'util', 0), ('hoffstadt/dearpygui', 0.5120179057121277, 'gui', 0), ('mynameisfiber/high_performance_python_2e', 0.5067214369773865, 'study', 0), ('zulko/moviepy', 0.5059114098548889, 'util', 0), ('gradio-app/gradio', 0.5017328858375549, 'viz', 0), ('amaargiru/pyroad', 0.500852644443512, 'study', 0)]
194
1
null
31.38
346
293
141
0
8
47
8
345
606
90
1.8
52
356
data
https://github.com/amundsen-io/amundsen
[]
null
[]
[]
null
null
null
amundsen-io/amundsen
amundsen
4,179
947
237
Python
https://www.amundsen.io/amundsen/
Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.
amundsen-io
2024-01-13
2019-05-14
246
16.987805
https://avatars.githubusercontent.com/u/67136999?v=4
Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.
['amundsen', 'data-catalog', 'data-discovery', 'linuxfoundation', 'metadata']
['amundsen', 'data-catalog', 'data-discovery', 'linuxfoundation', 'metadata']
2024-01-11
[]
222
2
null
1.42
36
21
57
0
7
28
7
36
42
90
1.2
52
755
sim
https://github.com/quantumlib/cirq
[]
null
[]
[]
null
null
null
quantumlib/cirq
Cirq
4,027
948
192
Python
null
A python framework for creating, editing, and invoking Noisy Intermediate Scale Quantum (NISQ) circuits.
quantumlib
2024-01-14
2017-12-14
319
12.595621
https://avatars.githubusercontent.com/u/31279789?v=4
A python framework for creating, editing, and invoking Noisy Intermediate Scale Quantum (NISQ) circuits.
['cirq', 'nisq', 'quantum-algorithms', 'quantum-circuits', 'quantum-computing']
['cirq', 'nisq', 'quantum-algorithms', 'quantum-circuits', 'quantum-computing']
2024-01-13
[('cqcl/lambeq', 0.6558890342712402, 'nlp', 0), ('pyscf/pyscf', 0.6541039347648621, 'sim', 0), ('cqcl/tket', 0.6193458437919617, 'util', 1), ('jackhidary/quantumcomputingbook', 0.5691633224487305, 'study', 2), ('qiskit/qiskit', 0.5546154975891113, 'sim', 1), ('netket/netket', 0.5286350250244141, 'sim', 0), ('zeromq/pyzmq', 0.5248025059700012, 'util', 0)]
213
2
null
4.87
166
98
74
0
2
4
2
166
243
90
1.5
52
802
web
https://github.com/fastapi-users/fastapi-users
[]
null
[]
[]
null
null
null
fastapi-users/fastapi-users
fastapi-users
3,772
341
38
Python
https://fastapi-users.github.io/fastapi-users/
Ready-to-use and customizable users management for FastAPI
fastapi-users
2024-01-14
2019-10-05
225
16.732573
https://avatars.githubusercontent.com/u/89578248?v=4
Ready-to-use and customizable users management for FastAPI
['async', 'asyncio', 'fastapi', 'fastapi-users', 'starlette', 'users']
['async', 'asyncio', 'fastapi', 'fastapi-users', 'starlette', 'users']
2023-12-28
[('dmontagu/fastapi_client', 0.6202594637870789, 'web', 0), ('zhanymkanov/fastapi-best-practices', 0.6014936566352844, 'study', 1), ('tiangolo/fastapi', 0.599251925945282, 'web', 4), ('s3rius/fastapi-template', 0.595072329044342, 'web', 2), ('fastapi-admin/fastapi-admin', 0.5555592775344849, 'web', 1), ('asacristani/fastapi-rocket-boilerplate', 0.5379810333251953, 'template', 1), ('aminalaee/sqladmin', 0.5336757302284241, 'data', 3), ('awtkns/fastapi-crudrouter', 0.5089220404624939, 'web', 3), ('starlite-api/starlite', 0.5006967186927795, 'web', 1)]
62
4
null
1.1
20
15
52
1
9
23
9
20
35
90
1.8
52
171
ml
https://github.com/ourownstory/neural_prophet
[]
null
[]
[]
null
null
null
ourownstory/neural_prophet
neural_prophet
3,494
453
53
Python
https://neuralprophet.com
NeuralProphet: A simple forecasting package
ourownstory
2024-01-12
2020-05-04
195
17.904832
null
NeuralProphet: A simple forecasting package
['artificial-intelligence', 'autoregression', 'deep-learning', 'fbprophet', 'forecast', 'forecasting', 'forecasting-algorithm', 'forecasting-model', 'machine-learning', 'neural', 'neural-network', 'neuralprophet', 'prediction', 'prophet', 'pytorch', 'seasonality', 'time-series', 'timeseries', 'trend']
['artificial-intelligence', 'autoregression', 'deep-learning', 'fbprophet', 'forecast', 'forecasting', 'forecasting-algorithm', 'forecasting-model', 'machine-learning', 'neural', 'neural-network', 'neuralprophet', 'prediction', 'prophet', 'pytorch', 'seasonality', 'time-series', 'timeseries', 'trend']
2023-12-23
[('winedarksea/autots', 0.6846452355384827, 'time-series', 4), ('nixtla/statsforecast', 0.6677179336547852, 'time-series', 6), ('awslabs/autogluon', 0.6234149932861328, 'ml', 5), ('salesforce/deeptime', 0.5901058316230774, 'time-series', 3), ('aistream-peelout/flow-forecast', 0.5880416035652161, 'time-series', 4), ('microprediction/microprediction', 0.5824498534202576, 'time-series', 3), ('uber/orbit', 0.5688930153846741, 'time-series', 5), ('awslabs/gluonts', 0.5649511814117432, 'time-series', 7), ('firmai/atspy', 0.5586233735084534, 'time-series', 2), ('microsoft/nni', 0.5511186718940735, 'ml', 4), ('alkaline-ml/pmdarima', 0.5404297709465027, 'time-series', 3), ('nccr-itmo/fedot', 0.5363118648529053, 'ml-ops', 1), ('nvidia/deeplearningexamples', 0.5321094989776611, 'ml-dl', 3), ('mosaicml/composer', 0.5314452052116394, 'ml-dl', 4), ('sktime/sktime', 0.529460608959198, 'time-series', 3), ('ddbourgin/numpy-ml', 0.5267665982246399, 'ml', 1), ('activeloopai/deeplake', 0.524020791053772, 'ml-ops', 3), ('salesforce/merlion', 0.5225098133087158, 'time-series', 3), ('mindsdb/mindsdb', 0.5187014937400818, 'data', 4), ('microsoft/flaml', 0.5170196294784546, 'ml', 2), ('xplainable/xplainable', 0.5147477984428406, 'ml-interpretability', 2), ('opengeos/earthformer', 0.5128765106201172, 'gis', 2), ('keras-team/autokeras', 0.5104817748069763, 'ml-dl', 2), ('huggingface/transformers', 0.5077774524688721, 'nlp', 3), ('automl/auto-sklearn', 0.5033456683158875, 'ml', 0), ('alirezadir/machine-learning-interview-enlightener', 0.503267228603363, 'study', 2), ('explosion/thinc', 0.501133382320404, 'ml-dl', 4)]
50
2
null
3.35
65
48
45
1
11
8
11
65
107
90
1.6
52
1,635
util
https://github.com/osohq/oso
['authorization']
null
[]
[]
null
null
null
osohq/oso
oso
3,335
169
31
Rust
https://docs.osohq.com
Oso is a batteries-included framework for building authorization in your application.
osohq
2024-01-14
2020-05-04
195
17.090044
https://avatars.githubusercontent.com/u/47367300?v=4
Oso is a batteries-included framework for building authorization in your application.
['abac', 'access-control', 'authorization', 'authorization-framework', 'go', 'java', 'logic-programming', 'nodejs', 'policy-engine', 'rbac', 'rbac-authorization', 'rbac-roles', 'ruby', 'rust', 'security']
['abac', 'access-control', 'authorization', 'authorization-framework', 'go', 'java', 'logic-programming', 'nodejs', 'policy-engine', 'rbac', 'rbac-authorization', 'rbac-roles', 'ruby', 'rust', 'security']
2024-01-13
[]
66
5
null
0.81
17
8
45
0
7
54
7
17
27
90
1.6
52
267
jupyter
https://github.com/jupyterlab/jupyterlab-desktop
[]
null
[]
[]
null
null
null
jupyterlab/jupyterlab-desktop
jupyterlab-desktop
3,199
297
52
TypeScript
null
JupyterLab desktop application, based on Electron.
jupyterlab
2024-01-12
2017-05-04
351
9.095451
https://avatars.githubusercontent.com/u/22800682?v=4
JupyterLab desktop application, based on Electron.
['jupyter', 'jupyter-notebook', 'jupyterlab']
['jupyter', 'jupyter-notebook', 'jupyterlab']
2024-01-05
[('jupyterlab/jupyterlab', 0.7525447607040405, 'jupyter', 2), ('voila-dashboards/voila', 0.7262636423110962, 'jupyter', 2), ('jupyter/notebook', 0.7161470651626587, 'jupyter', 2), ('jupyter-widgets/ipywidgets', 0.7082852721214294, 'jupyter', 0), ('jupyter/nbformat', 0.6620615720748901, 'jupyter', 0), ('mwouts/jupytext', 0.6525211930274963, 'jupyter', 2), ('aws/graph-notebook', 0.6357448697090149, 'jupyter', 2), ('maartenbreddels/ipyvolume', 0.6347945928573608, 'jupyter', 2), ('jupyter/nbconvert', 0.6312793493270874, 'jupyter', 0), ('jupyterlite/jupyterlite', 0.6264117956161499, 'jupyter', 2), ('vizzuhq/ipyvizzu', 0.6113208532333374, 'jupyter', 2), ('ipython/ipykernel', 0.6094779968261719, 'util', 2), ('cohere-ai/notebooks', 0.5881903767585754, 'llm', 0), ('ipython/ipyparallel', 0.5839833617210388, 'perf', 1), ('jupyter-widgets/ipyleaflet', 0.5790235996246338, 'gis', 1), ('jupyter-lsp/jupyterlab-lsp', 0.5716159343719482, 'jupyter', 3), ('computationalmodelling/nbval', 0.5705468654632568, 'jupyter', 1), ('bloomberg/ipydatagrid', 0.5657516717910767, 'jupyter', 0), ('quantopian/qgrid', 0.5566320419311523, 'jupyter', 0), ('mamba-org/gator', 0.5549662709236145, 'jupyter', 1), ('jupyter/nbdime', 0.552423357963562, 'jupyter', 2), ('jakevdp/pythondatasciencehandbook', 0.5509034395217896, 'study', 1), ('fchollet/deep-learning-with-python-notebooks', 0.5508671402931213, 'study', 0), ('tkrabel/bamboolib', 0.5493032336235046, 'pandas', 2), ('xiaohk/stickyland', 0.5476192235946655, 'jupyter', 2), ('holoviz/panel', 0.5330305695533752, 'viz', 1), ('nteract/testbook', 0.5236980319023132, 'jupyter', 1), ('r0x0r/pywebview', 0.520444393157959, 'gui', 0), ('giswqs/mapwidget', 0.5143319964408875, 'gis', 1), ('ageron/handson-ml2', 0.510633647441864, 'ml', 0), ('rapidsai/jupyterlab-nvdashboard', 0.5053638815879822, 'jupyter', 0), ('jupyter/nbviewer', 0.5004984736442566, 'jupyter', 2)]
39
5
null
4.31
52
37
82
0
11
5
11
52
113
90
2.2
52
807
data
https://github.com/deepchecks/deepchecks
[]
null
[]
[]
null
null
null
deepchecks/deepchecks
deepchecks
3,169
229
16
Python
https://docs.deepchecks.com/stable
Deepchecks: Tests for Continuous Validation of ML Models & Data. Deepchecks is a holistic open-source solution for all of your AI & ML validation needs, enabling to thoroughly test your data and models from research to production.
deepchecks
2024-01-13
2021-10-11
120
26.376932
https://avatars.githubusercontent.com/u/92298186?v=4
Deepchecks: Tests for Continuous Validation of ML Models & Data. Deepchecks is a holistic open-source solution for all of your AI & ML validation needs, enabling to thoroughly test your data and models from research to production.
['data-drift', 'data-science', 'data-validation', 'deep-learning', 'html-report', 'jupyter-notebook', 'machine-learning', 'ml', 'mlops', 'model-monitoring', 'model-validation', 'pandas-dataframe', 'pytorch']
['data-drift', 'data-science', 'data-validation', 'deep-learning', 'html-report', 'jupyter-notebook', 'machine-learning', 'ml', 'mlops', 'model-monitoring', 'model-validation', 'pandas-dataframe', 'pytorch']
2023-12-18
[('evidentlyai/evidently', 0.6157994866371155, 'ml-ops', 8), ('polyaxon/polyaxon', 0.5667403340339661, 'ml-ops', 6), ('microsoft/deepspeed', 0.5651904940605164, 'ml-dl', 3), ('determined-ai/determined', 0.5619574189186096, 'ml-ops', 5), ('huggingface/datasets', 0.5608824491500854, 'nlp', 3), ('wandb/client', 0.557380735874176, 'ml', 5), ('giskard-ai/giskard', 0.550081193447113, 'data', 3), ('tensorflow/tensor2tensor', 0.5471684336662292, 'ml', 2), ('tensorflow/tensorflow', 0.5415099859237671, 'ml-dl', 3), ('mlflow/mlflow', 0.5400528907775879, 'ml-ops', 2), ('microsoft/nni', 0.5397449731826782, 'ml', 5), ('mosaicml/composer', 0.5395089387893677, 'ml-dl', 3), ('apple/coremltools', 0.539066731929779, 'ml', 2), ('nvidia/deeplearningexamples', 0.537693440914154, 'ml-dl', 2), ('unity-technologies/ml-agents', 0.5319340825080872, 'ml-rl', 2), ('googlecloudplatform/vertex-ai-samples', 0.5285258889198303, 'ml', 3), ('polyaxon/datatile', 0.5274471640586853, 'pandas', 3), ('bentoml/bentoml', 0.5182715058326721, 'ml-ops', 3), ('iperov/deepfacelab', 0.515143871307373, 'ml-dl', 2), ('explosion/thinc', 0.5133498311042786, 'ml-dl', 3), ('uber/petastorm', 0.5133116245269775, 'data', 3), ('tensorflow/data-validation', 0.512187123298645, 'ml-ops', 0), ('aiqc/aiqc', 0.5002310872077942, 'ml-ops', 0)]
52
2
null
4.63
51
43
28
1
13
27
13
51
31
90
0.6
52
1,595
ml-ops
https://github.com/towhee-io/towhee
[]
null
[]
[]
null
null
null
towhee-io/towhee
towhee
2,902
243
42
Python
https://towhee.io
Towhee is a framework that is dedicated to making neural data processing pipelines simple and fast.
towhee-io
2024-01-13
2021-07-13
133
21.819549
https://avatars.githubusercontent.com/u/87362374?v=4
Towhee is a framework that is dedicated to making neural data processing pipelines simple and fast.
['computer-vision', 'convolutional-networks', 'embedding-vectors', 'embeddings', 'feature-extraction', 'feature-vector', 'image-processing', 'image-retrieval', 'llm', 'machine-learning', 'milvus', 'pipeline', 'towhee', 'transformer', 'unstructured-data', 'video-processing', 'vision-transformer', 'vit']
['computer-vision', 'convolutional-networks', 'embedding-vectors', 'embeddings', 'feature-extraction', 'feature-vector', 'image-processing', 'image-retrieval', 'llm', 'machine-learning', 'milvus', 'pipeline', 'towhee', 'transformer', 'unstructured-data', 'video-processing', 'vision-transformer', 'vit']
2023-12-04
[('huggingface/datasets', 0.5772765278816223, 'nlp', 2), ('awslabs/autogluon', 0.5480068325996399, 'ml', 2), ('roboflow/supervision', 0.544347882270813, 'ml', 4), ('lutzroeder/netron', 0.5428910851478577, 'ml', 1), ('activeloopai/deeplake', 0.5378854870796204, 'ml-ops', 4), ('deci-ai/super-gradients', 0.5340181589126587, 'ml-dl', 1), ('nvidia/deeplearningexamples', 0.5302903652191162, 'ml-dl', 1), ('nyandwi/modernconvnets', 0.5275624394416809, 'ml-dl', 1), ('ludwig-ai/ludwig', 0.5253190398216248, 'ml-ops', 3), ('uber/petastorm', 0.5247065424919128, 'data', 1), ('huggingface/transformers', 0.5219820737838745, 'nlp', 2), ('visual-layer/fastdup', 0.5181317925453186, 'ml', 2), ('roboflow/notebooks', 0.511427640914917, 'study', 2), ('tensorflow/tensorflow', 0.5106989145278931, 'ml-dl', 1), ('neuralmagic/sparseml', 0.5096480250358582, 'ml-dl', 0), ('rwightman/pytorch-image-models', 0.5081286430358887, 'ml-dl', 0), ('mosaicml/composer', 0.5076751112937927, 'ml-dl', 1), ('streamlit/streamlit', 0.5068960785865784, 'viz', 1), ('microsoft/nni', 0.5067926049232483, 'ml', 1), ('polyaxon/polyaxon', 0.5038055181503296, 'ml-ops', 1), ('dgarnitz/vectorflow', 0.5035332441329956, 'data', 2), ('alpa-projects/alpa', 0.5001883506774902, 'ml-dl', 2)]
34
1
null
3.27
26
24
30
1
5
8
5
26
90
90
3.5
52
1,509
llm
https://github.com/defog-ai/sqlcoder
['language-model', 'sql']
null
[]
[]
1
null
null
defog-ai/sqlcoder
sqlcoder
1,962
114
22
Jupyter Notebook
null
SoTA LLM for converting natural language questions to SQL queries
defog-ai
2024-01-13
2023-08-17
23
82.73494
https://avatars.githubusercontent.com/u/79135711?v=4
SoTA LLM for converting natural language questions to SQL queries
[]
['language-model', 'sql']
2023-11-15
[('night-chen/toolqa', 0.5368439555168152, 'llm', 0), ('srush/minichain', 0.512403130531311, 'llm', 0), ('neulab/prompt2model', 0.5062905550003052, 'llm', 1)]
5
3
null
0.92
29
9
5
2
0
0
0
29
45
90
1.6
52
466
ml
https://github.com/huggingface/optimum
[]
null
[]
[]
null
null
null
huggingface/optimum
optimum
1,879
316
53
Python
https://huggingface.co/docs/optimum/main/
🚀 Accelerate training and inference of 🤗 Transformers and 🤗 Diffusers with easy to use hardware optimization tools
huggingface
2024-01-13
2021-07-20
132
14.234848
https://avatars.githubusercontent.com/u/25720743?v=4
🚀 Accelerate training and inference of 🤗 Transformers and 🤗 Diffusers with easy to use hardware optimization tools
['graphcore', 'habana', 'inference', 'intel', 'onnx', 'onnxruntime', 'optimization', 'pytorch', 'quantization', 'tflite', 'training', 'transformers']
['graphcore', 'habana', 'inference', 'intel', 'onnx', 'onnxruntime', 'optimization', 'pytorch', 'quantization', 'tflite', 'training', 'transformers']
2024-01-12
[('huggingface/transformers', 0.682058572769165, 'nlp', 1), ('huggingface/peft', 0.6415036916732788, 'llm', 2), ('ist-daslab/gptq', 0.6178866624832153, 'llm', 0), ('karpathy/mingpt', 0.5994217395782471, 'llm', 0), ('alignmentresearch/tuned-lens', 0.5732378363609314, 'ml-interpretability', 2), ('intel/intel-extension-for-pytorch', 0.560483992099762, 'perf', 3), ('apple/ml-ane-transformers', 0.5597668886184692, 'ml', 0), ('neuralmagic/deepsparse', 0.5494052171707153, 'nlp', 3), ('google/trax', 0.5470688343048096, 'ml-dl', 0), ('microsoft/onnxruntime', 0.5409281849861145, 'ml', 2), ('microsoft/deepspeed', 0.5390816926956177, 'ml-dl', 2), ('vllm-project/vllm', 0.5363191962242126, 'llm', 2), ('nvlabs/gcvit', 0.5319724678993225, 'diffusion', 0), ('karpathy/micrograd', 0.5316488146781921, 'study', 0), ('pytorch/ignite', 0.5307228565216064, 'ml-dl', 1), ('nielsrogge/transformers-tutorials', 0.5274924635887146, 'study', 2), ('huggingface/datasets', 0.5267567038536072, 'nlp', 1), ('eleutherai/gpt-neox', 0.5265071988105774, 'llm', 1), ('huggingface/exporters', 0.5176335573196411, 'ml', 2), ('eleutherai/knowledge-neurons', 0.5159322619438171, 'ml-interpretability', 1), ('pytorch/glow', 0.5153691172599792, 'ml', 0), ('nvidia/apex', 0.5144795179367065, 'ml-dl', 0), ('neuralmagic/sparseml', 0.5119937658309937, 'ml-dl', 2), ('explosion/spacy-transformers', 0.5108177661895752, 'llm', 1), ('tlkh/tf-metal-experiments', 0.5074736475944519, 'perf', 0), ('ray-project/ray', 0.5062342286109924, 'ml-ops', 2), ('nvidia/megatron-lm', 0.501192569732666, 'llm', 0), ('mosaicml/composer', 0.5008224248886108, 'ml-dl', 1)]
89
1
null
9.33
249
165
30
0
30
21
30
249
333
90
1.3
52
1,891
llm
https://github.com/cg123/mergekit
[]
null
[]
[]
null
null
null
cg123/mergekit
mergekit
1,458
128
23
Python
null
Tools for merging pretrained large language models.
cg123
2024-01-14
2023-08-21
23
63
null
Tools for merging pretrained large language models.
['llama', 'llm', 'model-merging']
['llama', 'llm', 'model-merging']
2024-01-14
[('infinitylogesh/mutate', 0.6713061332702637, 'nlp', 0), ('juncongmoo/pyllama', 0.6644551753997803, 'llm', 0), ('ai21labs/lm-evaluation', 0.6523741483688354, 'llm', 0), ('hannibal046/awesome-llm', 0.6510716080665588, 'study', 0), ('ctlllll/llm-toolmaker', 0.6498943567276001, 'llm', 0), ('young-geng/easylm', 0.6466503143310547, 'llm', 1), ('yizhongw/self-instruct', 0.6453080177307129, 'llm', 0), ('freedomintelligence/llmzoo', 0.641423225402832, 'llm', 0), ('salesforce/xgen', 0.6309936046600342, 'llm', 1), ('predibase/llm_distillation_playbook', 0.622988224029541, 'llm', 0), ('bigscience-workshop/biomedical', 0.6185329556465149, 'data', 0), ('togethercomputer/redpajama-data', 0.6147141456604004, 'llm', 0), ('huawei-noah/pretrained-language-model', 0.6082916855812073, 'nlp', 0), ('lianjiatech/belle', 0.6080819368362427, 'llm', 1), ('eleutherai/the-pile', 0.607460081577301, 'data', 1), ('hiyouga/llama-factory', 0.5988380908966064, 'llm', 2), ('hiyouga/llama-efficient-tuning', 0.5988380312919617, 'llm', 2), ('explosion/spacy-llm', 0.5918619632720947, 'llm', 2), ('thudm/chatglm2-6b', 0.58427494764328, 'llm', 1), ('lm-sys/fastchat', 0.58380526304245, 'llm', 0), ('eleutherai/lm-evaluation-harness', 0.5827073454856873, 'llm', 0), ('jzhang38/tinyllama', 0.5811179876327515, 'llm', 1), ('microsoft/autogen', 0.5664942264556885, 'llm', 0), ('bobazooba/xllm', 0.5655726194381714, 'llm', 2), ('optimalscale/lmflow', 0.5650473237037659, 'llm', 0), ('next-gpt/next-gpt', 0.5641329884529114, 'llm', 1), ('microsoft/lora', 0.5608856678009033, 'llm', 0), ('prefecthq/langchain-prefect', 0.5573033094406128, 'llm', 0), ('facebookresearch/llama', 0.5536092519760132, 'llm', 1), ('facebookresearch/llama-recipes', 0.5452256202697754, 'llm', 1), ('microsoft/llama-2-onnx', 0.5430543422698975, 'llm', 1), ('thudm/glm-130b', 0.542129635810852, 'llm', 0), ('karpathy/llama2.c', 0.541799783706665, 'llm', 1), ('huggingface/text-generation-inference', 0.541591465473175, 'llm', 0), ('sjtu-ipads/powerinfer', 0.5398347973823547, 'llm', 2), ('mooler0410/llmspracticalguide', 0.5390522480010986, 'study', 0), ('openlm-research/open_llama', 0.537260890007019, 'llm', 1), ('ray-project/ray-llm', 0.5349216461181641, 'llm', 1), ('conceptofmind/toolformer', 0.5336092710494995, 'llm', 0), ('tatsu-lab/stanford_alpaca', 0.5332975387573242, 'llm', 0), ('artidoro/qlora', 0.5330007076263428, 'llm', 0), ('guidance-ai/guidance', 0.5327853560447693, 'llm', 0), ('dylanhogg/llmgraph', 0.5279366970062256, 'ml', 1), ('neulab/prompt2model', 0.5275200009346008, 'llm', 0), ('openai/finetune-transformer-lm', 0.5270984768867493, 'llm', 0), ('reasoning-machines/pal', 0.5245123505592346, 'llm', 0), ('ofa-sys/ofa', 0.5244383811950684, 'llm', 0), ('aiwaves-cn/agents', 0.5241085886955261, 'nlp', 1), ('oobabooga/text-generation-webui', 0.5220274925231934, 'llm', 0), ('jonasgeiping/cramming', 0.5206159353256226, 'nlp', 0), ('microsoft/unilm', 0.5200158357620239, 'nlp', 1), ('tigerlab-ai/tiger', 0.5194407105445862, 'llm', 1), ('baichuan-inc/baichuan-13b', 0.5188269019126892, 'llm', 0), ('facebookresearch/codellama', 0.51674485206604, 'llm', 1), ('paddlepaddle/paddlenlp', 0.5143988132476807, 'llm', 2), ('epfllm/meditron', 0.5135393738746643, 'llm', 0), ('princeton-nlp/alce', 0.5112486481666565, 'llm', 0), ('guardrails-ai/guardrails', 0.511229395866394, 'llm', 1), ('openbmb/toolbench', 0.5107592344284058, 'llm', 0), ('databrickslabs/dolly', 0.5106679797172546, 'llm', 0), ('bigscience-workshop/petals', 0.5101160407066345, 'data', 1), ('nomic-ai/gpt4all', 0.5065050721168518, 'llm', 0), ('deepset-ai/haystack', 0.5054006576538086, 'llm', 0), ('squeezeailab/squeezellm', 0.504544734954834, 'llm', 2), ('srush/minichain', 0.5045192837715149, 'llm', 0), ('cstankonrad/long_llama', 0.5025786757469177, 'llm', 1), ('alpha-vllm/llama2-accessory', 0.5024479627609253, 'llm', 0), ('nat/openplayground', 0.5010144710540771, 'llm', 0), ('night-chen/toolqa', 0.5008574724197388, 'llm', 0)]
4
0
null
2.29
107
65
5
0
1
5
1
107
262
90
2.4
52
1,170
llm
https://github.com/chatarena/chatarena
[]
null
[]
[]
null
null
null
chatarena/chatarena
chatarena
1,127
113
19
Python
https://www.chatarena.org/
ChatArena (or Chat Arena) is a Multi-Agent Language Game Environments for LLMs. The goal is to develop communication and collaboration capabilities of AIs.
chatarena
2024-01-12
2023-03-06
47
23.906061
https://avatars.githubusercontent.com/u/62961550?v=4
ChatArena (or Chat Arena) is a Multi-Agent Language Game Environments for LLMs. The goal is to develop communication and collaboration capabilities of AIs.
['ai', 'artificial-intelligence', 'chatgpt', 'gpt-4', 'large-language-models', 'multi-agent', 'multi-agent-reinforcement-learning', 'multi-agent-simulation', 'natural-language-processing']
['ai', 'artificial-intelligence', 'chatgpt', 'gpt-4', 'large-language-models', 'multi-agent', 'multi-agent-reinforcement-learning', 'multi-agent-simulation', 'natural-language-processing']
2023-12-21
[('embedchain/embedchain', 0.6508777141571045, 'llm', 2), ('prefecthq/marvin', 0.6427308917045593, 'nlp', 1), ('rcgai/simplyretrieve', 0.6356537342071533, 'llm', 3), ('nomic-ai/gpt4all', 0.6325280070304871, 'llm', 0), ('microsoft/autogen', 0.6130094528198242, 'llm', 2), ('lm-sys/fastchat', 0.6125940680503845, 'llm', 0), ('run-llama/rags', 0.6069520711898804, 'llm', 1), ('deep-diver/llm-as-chatbot', 0.5871044397354126, 'llm', 0), ('pathwaycom/llm-app', 0.5828151702880859, 'llm', 0), ('hwchase17/langchain', 0.5813690423965454, 'llm', 0), ('cheshire-cat-ai/core', 0.5810584425926208, 'llm', 1), ('microsoft/promptcraft-robotics', 0.5778838992118835, 'sim', 1), ('minimaxir/simpleaichat', 0.5708586573600769, 'llm', 2), ('fasteval/fasteval', 0.5657923221588135, 'llm', 0), ('deepset-ai/haystack', 0.563785970211029, 'llm', 3), ('krohling/bondai', 0.5611550807952881, 'llm', 0), ('langchain-ai/langgraph', 0.5562337636947632, 'llm', 0), ('openlmlab/moss', 0.5541568398475647, 'llm', 3), ('intel/intel-extension-for-transformers', 0.5510158538818359, 'perf', 0), ('mnotgod96/appagent', 0.5439862012863159, 'llm', 1), ('aiwaves-cn/agents', 0.5419332385063171, 'nlp', 0), ('microsoft/promptflow', 0.5370725989341736, 'llm', 2), ('lupantech/chameleon-llm', 0.5320706963539124, 'llm', 3), ('microsoft/lmops', 0.529494047164917, 'llm', 0), ('nebuly-ai/nebullvm', 0.5283238887786865, 'perf', 3), ('larsbaunwall/bricky', 0.5276904106140137, 'llm', 1), ('nvidia/nemo', 0.5267899036407471, 'nlp', 0), ('operand/agency', 0.5225850343704224, 'llm', 2), ('microsoft/generative-ai-for-beginners', 0.5216999053955078, 'study', 2), ('deeppavlov/deeppavlov', 0.5164510011672974, 'nlp', 2), ('blinkdl/chatrwkv', 0.5140795111656189, 'llm', 1), ('h2oai/h2o-llmstudio', 0.5097920894622803, 'llm', 2), ('gunthercox/chatterbot', 0.5086801052093506, 'nlp', 0), ('microsoft/chatgpt-robot-manipulation-prompts', 0.5086156725883484, 'llm', 0), ('mindsdb/mindsdb', 0.5072094798088074, 'data', 2), ('rasahq/rasa', 0.5054959058761597, 'llm', 1), ('thudm/chatglm2-6b', 0.5024993419647217, 'llm', 1)]
15
6
null
5.96
68
67
10
1
15
18
15
68
28
90
0.4
52
602
util
https://github.com/norvig/pytudes
[]
null
[]
[]
null
null
null
norvig/pytudes
pytudes
22,095
2,385
768
Jupyter Notebook
null
Python programs, usually short, of considerable difficulty, to perfect particular skills.
norvig
2024-01-13
2017-03-01
360
61.229216
null
Python programs, usually short, of considerable difficulty, to perfect particular skills.
['demonstrate-skills', 'practice', 'programming']
['demonstrate-skills', 'practice', 'programming']
2024-01-02
[('python/cpython', 0.6239404082298279, 'util', 0), ('google/pyglove', 0.5999535322189331, 'util', 0), ('adafruit/circuitpython', 0.5722380876541138, 'util', 0), ('sympy/sympy', 0.5708892941474915, 'math', 0), ('amaargiru/pyroad', 0.5647484064102173, 'study', 0), ('pypy/pypy', 0.5617297887802124, 'util', 0), ('eleutherai/pyfra', 0.5598863363265991, 'ml', 0), ('pyston/pyston', 0.5527113080024719, 'util', 0), ('microsoft/pycodegpt', 0.5215215682983398, 'llm', 0), ('stanfordnlp/dspy', 0.5077176690101624, 'llm', 0), ('evhub/coconut', 0.5068784356117249, 'util', 0), ('xrudelis/pytrait', 0.5027519464492798, 'util', 0), ('sourcery-ai/sourcery', 0.5019119381904602, 'util', 0), ('scikit-learn/scikit-learn', 0.5002601742744446, 'ml', 0)]
44
3
null
0.65
0
0
84
0
0
0
0
0
0
90
0
51
370
viz
https://github.com/marceloprates/prettymaps
[]
null
[]
[]
null
null
null
marceloprates/prettymaps
prettymaps
10,652
541
83
Jupyter Notebook
null
A small set of Python functions to draw pretty maps from OpenStreetMap data. Based on osmnx, matplotlib and shapely libraries.
marceloprates
2024-01-13
2021-03-05
151
70.277097
null
A small set of Python functions to draw pretty maps from OpenStreetMap data. Based on osmnx, matplotlib and shapely libraries.
['cartography', 'generative-art', 'jupyter-notebook', 'maps', 'matplotlib', 'openstreetmap']
['cartography', 'generative-art', 'jupyter-notebook', 'maps', 'matplotlib', 'openstreetmap']
2023-02-15
[('gboeing/osmnx', 0.6797459125518799, 'gis', 1), ('raphaelquast/eomaps', 0.6013832688331604, 'gis', 1), ('scitools/cartopy', 0.5919488072395325, 'gis', 2), ('holoviz/geoviews', 0.5674756765365601, 'gis', 0), ('gboeing/osmnx-examples', 0.562412440776825, 'gis', 2), ('gregorhd/mapcompare', 0.557414710521698, 'gis', 0), ('opengeos/leafmap', 0.5452340841293335, 'gis', 1), ('residentmario/geoplot', 0.5294914245605469, 'gis', 1), ('geopandas/contextily', 0.5095080137252808, 'gis', 3)]
15
4
null
0.31
5
0
35
11
1
6
1
5
4
90
0.8
51
22
nlp
https://github.com/facebookresearch/parlai
[]
null
[]
[]
null
null
null
facebookresearch/parlai
ParlAI
10,381
2,091
287
Python
https://parl.ai
A framework for training and evaluating AI models on a variety of openly available dialogue datasets.
facebookresearch
2024-01-13
2017-04-24
353
29.396036
https://avatars.githubusercontent.com/u/16943930?v=4
A framework for training and evaluating AI models on a variety of openly available dialogue datasets.
[]
[]
2023-11-03
[('nvidia/nemo', 0.6826277375221252, 'nlp', 0), ('krohling/bondai', 0.680033266544342, 'llm', 0), ('deeppavlov/deeppavlov', 0.6255822777748108, 'nlp', 0), ('rasahq/rasa', 0.5971487164497375, 'llm', 0), ('lm-sys/fastchat', 0.5788213610649109, 'llm', 0), ('minimaxir/aitextgen', 0.5751350522041321, 'llm', 0), ('databrickslabs/dolly', 0.5629587769508362, 'llm', 0), ('openlmlab/moss', 0.5612495541572571, 'llm', 0), ('rcgai/simplyretrieve', 0.5574244856834412, 'llm', 0), ('gunthercox/chatterbot-corpus', 0.5316453576087952, 'nlp', 0), ('cheshire-cat-ai/core', 0.5091173648834229, 'llm', 0), ('microsoft/generative-ai-for-beginners', 0.5056885480880737, 'study', 0), ('fasteval/fasteval', 0.5017014145851135, 'llm', 0)]
217
3
null
1.25
5
2
82
2
1
6
1
5
5
90
1
51
1,084
util
https://github.com/pytube/pytube
[]
null
[]
[]
null
null
null
pytube/pytube
pytube
9,837
2,177
194
Python
https://pytube.io
A lightweight, dependency-free Python library (and command-line utility) for downloading YouTube Videos.
pytube
2024-01-14
2012-03-18
619
15.884429
https://avatars.githubusercontent.com/u/16789089?v=4
A lightweight, dependency-free Python library (and command-line utility) for downloading YouTube Videos.
['api-wrapper', 'pythonic', 'youtube']
['api-wrapper', 'pythonic', 'youtube']
2023-05-20
[('yt-dlp/yt-dlp', 0.5481389164924622, 'util', 0), ('psycoguana/subredditmediadownloader', 0.5245307087898254, 'data', 0)]
112
5
null
0.38
88
16
144
8
0
10
10
88
140
90
1.6
51
158
util
https://github.com/pallets/jinja
[]
null
[]
[]
null
null
null
pallets/jinja
jinja
9,717
1,591
251
Python
https://jinja.palletsprojects.com
A very fast and expressive template engine.
pallets
2024-01-13
2010-10-17
693
14.015866
https://avatars.githubusercontent.com/u/16748505?v=4
A very fast and expressive template engine.
['jinja', 'jinja2', 'pallets', 'template-engine', 'templates']
['jinja', 'jinja2', 'pallets', 'template-engine', 'templates']
2024-01-10
[('s3rius/fastapi-template', 0.5498924255371094, 'web', 0), ('sqlalchemy/mako', 0.54783034324646, 'template', 0), ('thereforegames/unprompted', 0.5376675128936768, 'diffusion', 1), ('django/django', 0.5016000270843506, 'web', 1), ('pallets/flask', 0.5012500882148743, 'web', 2)]
306
4
null
0.96
37
21
161
0
1
4
1
37
45
90
1.2
51
142
ml
https://github.com/featurelabs/featuretools
[]
null
[]
[]
1
null
null
featurelabs/featuretools
featuretools
6,933
856
158
Python
https://www.featuretools.com
An open source python library for automated feature engineering
featurelabs
2024-01-13
2017-09-08
333
20.784154
https://avatars.githubusercontent.com/u/12972388?v=4
An open source python library for automated feature engineering
['automated-feature-engineering', 'automated-machine-learning', 'automl', 'data-science', 'feature-engineering', 'machine-learning', 'scikit-learn']
['automated-feature-engineering', 'automated-machine-learning', 'automl', 'data-science', 'feature-engineering', 'machine-learning', 'scikit-learn']
2023-12-07
[('google/temporian', 0.7070109844207764, 'time-series', 1), ('rasbt/mlxtend', 0.6914775371551514, 'ml', 2), ('pycaret/pycaret', 0.6861603856086731, 'ml', 2), ('microsoft/nni', 0.6769810914993286, 'ml', 5), ('automl/auto-sklearn', 0.6524330377578735, 'ml', 3), ('epistasislab/tpot', 0.6507097482681274, 'ml', 6), ('mljar/mljar-supervised', 0.645880401134491, 'ml', 6), ('gradio-app/gradio', 0.6402891278266907, 'viz', 2), ('scikit-learn/scikit-learn', 0.6306010484695435, 'ml', 2), ('microsoft/flaml', 0.6044269800186157, 'ml', 5), ('dylanhogg/awesome-python', 0.6018655300140381, 'study', 2), ('google/pyglove', 0.601290225982666, 'util', 2), ('kubeflow/fairing', 0.5992475152015686, 'ml-ops', 0), ('merantix-momentum/squirrel-core', 0.5986401438713074, 'ml', 2), ('teamhg-memex/eli5', 0.5933169722557068, 'ml', 3), ('rasbt/machine-learning-book', 0.5927860736846924, 'study', 2), ('lightly-ai/lightly', 0.5864541530609131, 'ml', 1), ('krzjoa/awesome-python-data-science', 0.580768883228302, 'study', 3), ('nccr-itmo/fedot', 0.5784884095191956, 'ml-ops', 3), ('pytoolz/toolz', 0.5733933448791504, 'util', 0), ('districtdatalabs/yellowbrick', 0.5721520185470581, 'ml', 2), ('mdbloice/augmentor', 0.5716681480407715, 'ml', 1), ('skops-dev/skops', 0.5711256265640259, 'ml-ops', 2), ('scikit-learn-contrib/imbalanced-learn', 0.5710511207580566, 'ml', 2), ('scikit-learn-contrib/metric-learn', 0.5696079730987549, 'ml', 2), ('selfexplainml/piml-toolbox', 0.5691878795623779, 'ml-interpretability', 0), ('firmai/atspy', 0.5671241283416748, 'time-series', 0), ('keras-team/autokeras', 0.5649420022964478, 'ml-dl', 3), ('mlflow/mlflow', 0.5563209652900696, 'ml-ops', 1), ('ageron/handson-ml2', 0.5548660159111023, 'ml', 0), ('sourcery-ai/sourcery', 0.554305911064148, 'util', 0), ('pandas-dev/pandas', 0.5537092685699463, 'pandas', 1), ('awslabs/autogluon', 0.5521774291992188, 'ml', 5), ('amaargiru/pyroad', 0.548759937286377, 'study', 0), ('ta-lib/ta-lib-python', 0.5429303646087646, 'finance', 0), ('wandb/client', 0.5428714752197266, 'ml', 2), ('tensorflow/tensorflow', 0.5424914360046387, 'ml-dl', 1), ('tensorflow/data-validation', 0.5417819023132324, 'ml-ops', 0), ('dagworks-inc/hamilton', 0.5415907502174377, 'ml-ops', 3), ('koaning/human-learn', 0.5413556694984436, 'data', 2), ('yzhao062/pyod', 0.5403005480766296, 'data', 2), ('winedarksea/autots', 0.5383171439170837, 'time-series', 3), ('rafiqhasan/auto-tensorflow', 0.5342097878456116, 'ml-dl', 2), ('online-ml/river', 0.5314729809761047, 'ml', 2), ('alkaline-ml/pmdarima', 0.5302847623825073, 'time-series', 1), ('oml-team/open-metric-learning', 0.5298222899436951, 'ml', 1), ('goldmansachs/gs-quant', 0.5276992321014404, 'finance', 0), ('sentinel-hub/eo-learn', 0.5274897813796997, 'gis', 1), ('huggingface/huggingface_hub', 0.5263670682907104, 'ml', 1), ('koaning/scikit-lego', 0.5262479782104492, 'ml', 2), ('jovianml/opendatasets', 0.5258838534355164, 'data', 2), ('eleutherai/pyfra', 0.5247564315795898, 'ml', 0), ('polyaxon/datatile', 0.5225564241409302, 'pandas', 1), ('huggingface/datasets', 0.5206751227378845, 'nlp', 1), ('huggingface/evaluate', 0.5203360915184021, 'ml', 1), ('samuelcolvin/python-devtools', 0.5202803015708923, 'debug', 0), ('pypy/pypy', 0.5145143866539001, 'util', 0), ('fmind/mlops-python-package', 0.5135179758071899, 'template', 0), ('intel/intel-extension-for-pytorch', 0.512016773223877, 'perf', 1), ('doccano/doccano', 0.5110718607902527, 'nlp', 1), ('csinva/imodels', 0.5102759599685669, 'ml', 3), ('nedbat/coveragepy', 0.5096982717514038, 'testing', 0), ('patchy631/machine-learning', 0.5084584355354309, 'ml', 0), ('earthlab/earthpy', 0.5079247355461121, 'gis', 0), ('weecology/deepforest', 0.5066676139831543, 'gis', 0), ('pyeve/cerberus', 0.503200888633728, 'data', 0)]
71
2
null
1.65
30
21
77
1
8
24
8
30
18
90
0.6
51
771
study
https://github.com/nielsrogge/transformers-tutorials
[]
null
[]
[]
null
null
null
nielsrogge/transformers-tutorials
Transformers-Tutorials
6,629
1,045
111
Jupyter Notebook
null
This repository contains demos I made with the Transformers library by HuggingFace.
nielsrogge
2024-01-13
2020-08-31
178
37.211708
null
This repository contains demos I made with the Transformers library by HuggingFace.
['bert', 'gpt-2', 'layoutlm', 'pytorch', 'transformers', 'vision-transformer']
['bert', 'gpt-2', 'layoutlm', 'pytorch', 'transformers', 'vision-transformer']
2024-01-11
[('karpathy/mingpt', 0.6038249135017395, 'llm', 0), ('nvlabs/gcvit', 0.5923160910606384, 'diffusion', 1), ('huggingface/transformers', 0.5857082605361938, 'nlp', 2), ('bigscience-workshop/megatron-deepspeed', 0.5679675936698914, 'llm', 0), ('microsoft/megatron-deepspeed', 0.5679675936698914, 'llm', 0), ('huggingface/exporters', 0.5573378205299377, 'ml', 1), ('marella/ctransformers', 0.553908109664917, 'nlp', 1), ('alignmentresearch/tuned-lens', 0.5491597652435303, 'ml-interpretability', 2), ('ist-daslab/gptq', 0.5349066257476807, 'llm', 0), ('huggingface/optimum', 0.5274924635887146, 'ml', 2), ('pytorch-labs/gpt-fast', 0.5239831805229187, 'llm', 1), ('opengeos/earthformer', 0.5140464901924133, 'gis', 0), ('huggingface/huggingface_hub', 0.5096057057380676, 'ml', 1), ('promptslab/awesome-prompt-engineering', 0.5090713500976562, 'study', 0)]
5
2
null
1.48
42
7
41
0
0
0
0
42
73
90
1.7
51
1,063
diffusion
https://github.com/timothybrooks/instruct-pix2pix
[]
PyTorch implementation of InstructPix2Pix, an instruction-based image editing model, based on the original CompVis/stable_diffusion repo.
[]
[]
null
null
null
timothybrooks/instruct-pix2pix
instruct-pix2pix
5,565
495
64
Python
null
null
timothybrooks
2024-01-13
2023-01-09
55
100.919689
null
PyTorch implementation of InstructPix2Pix, an instruction-based image editing model, based on the original CompVis/stable_diffusion repo.
[]
[]
2023-01-31
[('carson-katri/dream-textures', 0.5679231286048889, 'diffusion', 0), ('huggingface/diffusers', 0.5238240957260132, 'diffusion', 0), ('sanster/lama-cleaner', 0.5218861699104309, 'ml-dl', 0), ('compvis/latent-diffusion', 0.5207135081291199, 'diffusion', 0), ('stability-ai/stablediffusion', 0.5207132697105408, 'diffusion', 0), ('lkwq007/stablediffusion-infinity', 0.5145807266235352, 'diffusion', 0), ('openai/image-gpt', 0.512509286403656, 'llm', 0), ('automatic1111/stable-diffusion-webui', 0.5089647769927979, 'diffusion', 0), ('mcahny/deep-video-inpainting', 0.500446081161499, 'ml-dl', 0)]
13
3
null
0.1
10
3
12
12
0
0
0
10
10
90
1
51
1,907
util
https://github.com/pypa/virtualenv
['pip', 'venv', 'virtualenv']
A tool to create isolated Python environments. Since Python 3.3, a subset of it has been integrated into the standard lib venv module.
[]
[]
null
null
null
pypa/virtualenv
virtualenv
4,621
1,091
169
Python
https://virtualenv.pypa.io
Virtual Python Environment builder
pypa
2024-01-20
2011-03-06
673
6.863357
https://avatars.githubusercontent.com/u/647025?v=4
Virtual Python Environment builder
['cython', 'jython', 'pypa', 'pypy', 'pypy3', 'virtualenv']
['cython', 'jython', 'pip', 'pypa', 'pypy', 'pypy3', 'venv', 'virtualenv']
2024-01-16
[('pypa/pipenv', 0.6951494216918945, 'util', 3), ('pypa/hatch', 0.6300379633903503, 'util', 1), ('pyenv/pyenv', 0.6280038952827454, 'util', 2), ('pypa/pipx', 0.6216922998428345, 'util', 2), ('pypy/pypy', 0.6060330271720886, 'util', 0), ('pantsbuild/pex', 0.5755523443222046, 'util', 1), ('ofek/pyapp', 0.5487356781959534, 'util', 0), ('pyglet/pyglet', 0.541969895362854, 'gamedev', 0), ('jquast/blessed', 0.5412343144416809, 'term', 0), ('pypi/warehouse', 0.5271876454353333, 'util', 0), ('thoth-station/micropipenv', 0.5239235758781433, 'util', 1), ('computationalmodelling/nbval', 0.523438036441803, 'jupyter', 0), ('pyo3/maturin', 0.5136356353759766, 'util', 1), ('hoffstadt/dearpygui', 0.5124236941337585, 'gui', 0), ('ipython/ipyparallel', 0.5087124109268188, 'perf', 0), ('dosisod/refurb', 0.5063945055007935, 'util', 0), ('pyodide/micropip', 0.5000215172767639, 'util', 0)]
113
5
null
2.17
35
26
157
0
17
17
17
35
74
90
2.1
51
286
gis
https://github.com/geopandas/geopandas
['geopandas', 'pandas', 'gis']
null
[]
[]
1
null
null
geopandas/geopandas
geopandas
4,017
908
106
Python
http://geopandas.org/
Python tools for geographic data
geopandas
2024-01-13
2013-06-27
552
7.267769
https://avatars.githubusercontent.com/u/8130715?v=4
Python tools for geographic data
['geoparquet', 'geospatial', 'pandas', 'spatial']
['geopandas', 'geoparquet', 'geospatial', 'gis', 'pandas', 'spatial']
2024-01-07
[('artelys/geonetworkx', 0.7633013725280762, 'gis', 0), ('residentmario/geoplot', 0.7451832890510559, 'gis', 1), ('holoviz/spatialpandas', 0.6860671043395996, 'pandas', 2), ('opengeos/leafmap', 0.671466052532196, 'gis', 3), ('openeventdata/mordecai', 0.6333655714988708, 'gis', 0), ('raphaelquast/eomaps', 0.6084570288658142, 'gis', 2), ('earthlab/earthpy', 0.6019172668457031, 'gis', 0), ('anitagraser/movingpandas', 0.5975525379180908, 'gis', 1), ('pandas-dev/pandas', 0.5796288251876831, 'pandas', 1), ('holoviz/geoviews', 0.5721185803413391, 'gis', 0), ('giswqs/geemap', 0.5684166550636292, 'gis', 2), ('pysal/pysal', 0.5672765374183655, 'gis', 0), ('mwaskom/seaborn', 0.5595967769622803, 'viz', 1), ('gregorhd/mapcompare', 0.5594103932380676, 'gis', 0), ('tkrabel/bamboolib', 0.5592805743217468, 'pandas', 1), ('makepath/xarray-spatial', 0.5509017705917358, 'gis', 0), ('holoviz/panel', 0.550635039806366, 'viz', 0), ('toblerity/rtree', 0.5479511618614197, 'gis', 0), ('pyproj4/pyproj', 0.5460281372070312, 'gis', 1), ('scitools/iris', 0.5416747331619263, 'gis', 0), ('opengeos/segment-geospatial', 0.5388274788856506, 'gis', 1), ('cloudsen12/easystac', 0.534330427646637, 'gis', 1), ('scikit-mobility/scikit-mobility', 0.5326095819473267, 'gis', 0), ('jakevdp/pythondatasciencehandbook', 0.531819760799408, 'study', 1), ('wesm/pydata-book', 0.531495213508606, 'study', 0), ('goldmansachs/gs-quant', 0.5308281183242798, 'finance', 0), ('eleutherai/pyfra', 0.5261996388435364, 'ml', 0), ('sqlalchemy/sqlalchemy', 0.5259225964546204, 'data', 0), ('plotly/dash', 0.525221586227417, 'viz', 0), ('krzjoa/awesome-python-data-science', 0.5221031308174133, 'study', 0), ('blaze/blaze', 0.5217344164848328, 'pandas', 0), ('man-group/dtale', 0.5202478766441345, 'viz', 1), ('delta-io/delta-rs', 0.5198134183883667, 'pandas', 1), ('adamerose/pandasgui', 0.51722252368927, 'pandas', 1), ('falconry/falcon', 0.5166769027709961, 'web', 0), ('holoviz/holoviz', 0.515374481678009, 'viz', 0), ('mito-ds/monorepo', 0.5150602459907532, 'jupyter', 1), ('contextlab/hypertools', 0.5144107341766357, 'ml', 0), ('python-odin/odin', 0.5138459801673889, 'util', 0), ('fatiando/verde', 0.5108627080917358, 'gis', 1), ('imageio/imageio', 0.5076414942741394, 'util', 0), ('scitools/cartopy', 0.5073442459106445, 'gis', 1), ('kanaries/pygwalker', 0.5026245713233948, 'pandas', 1), ('ibis-project/ibis', 0.5019082427024841, 'data', 1)]
216
4
null
3.25
141
85
128
0
6
3
6
141
211
90
1.5
51
157
profiling
https://github.com/gaogaotiantian/viztracer
[]
null
[]
[]
null
null
null
gaogaotiantian/viztracer
viztracer
3,909
343
48
Python
https://viztracer.readthedocs.io/
VizTracer is a low-overhead logging/debugging/profiling tool that can trace and visualize your python code execution.
gaogaotiantian
2024-01-14
2020-08-05
181
21.494894
null
VizTracer is a low-overhead logging/debugging/profiling tool that can trace and visualize your python code execution.
['debugging', 'flamegraph', 'logging', 'profiling', 'tracer', 'visualization']
['debugging', 'flamegraph', 'logging', 'profiling', 'tracer', 'visualization']
2024-01-08
[('alexmojaki/heartrate', 0.6707364320755005, 'debug', 1), ('alexmojaki/snoop', 0.623710036277771, 'debug', 2), ('pympler/pympler', 0.6162266731262207, 'perf', 0), ('ionelmc/python-hunter', 0.6034563779830933, 'debug', 2), ('landscapeio/prospector', 0.6018545627593994, 'util', 0), ('pyutils/line_profiler', 0.5905494689941406, 'profiling', 0), ('altair-viz/altair', 0.5886167287826538, 'viz', 1), ('wandb/client', 0.5766005516052246, 'ml', 0), ('nedbat/coveragepy', 0.5709172487258911, 'testing', 0), ('pythonprofilers/memory_profiler', 0.5663729906082153, 'profiling', 0), ('holoviz/holoviz', 0.5649738311767578, 'viz', 0), ('samuelcolvin/python-devtools', 0.5530471205711365, 'debug', 0), ('jiffyclub/snakeviz', 0.5514275431632996, 'profiling', 0), ('mckinsey/vizro', 0.5495272874832153, 'viz', 1), ('bokeh/bokeh', 0.5466111302375793, 'viz', 1), ('alexmojaki/birdseye', 0.5461402535438538, 'debug', 1), ('holoviz/panel', 0.5426017045974731, 'viz', 0), ('open-telemetry/opentelemetry-python-contrib', 0.5290429592132568, 'util', 0), ('nschloe/perfplot', 0.528630793094635, 'perf', 0), ('klen/pylama', 0.5285407304763794, 'util', 0), ('rubik/radon', 0.5236186385154724, 'util', 0), ('polyaxon/datatile', 0.5233743786811829, 'pandas', 0), ('pyvista/pyvista', 0.5193122029304504, 'viz', 1), ('eleutherai/pyfra', 0.5164215564727783, 'ml', 0), ('google/pytype', 0.5134180784225464, 'typing', 0), ('willmcgugan/textual', 0.5108093023300171, 'term', 0), ('facebook/pyre-check', 0.5102528929710388, 'typing', 0), ('vispy/vispy', 0.503200888633728, 'viz', 1), ('plotly/plotly.py', 0.5023961067199707, 'viz', 1), ('open-telemetry/opentelemetry-python', 0.5011972784996033, 'util', 1), ('sourcery-ai/sourcery', 0.5000627636909485, 'util', 0), ('hoffstadt/dearpygui', 0.5000486373901367, 'gui', 0)]
25
3
null
0.79
25
14
42
0
2
23
2
25
52
90
2.1
51
183
testing
https://github.com/tox-dev/tox
[]
null
[]
[]
null
null
null
tox-dev/tox
tox
3,426
502
42
Python
https://tox.wiki
Command line driven CI frontend and development task automation tool.
tox-dev
2024-01-14
2016-09-17
384
8.911929
https://avatars.githubusercontent.com/u/20345659?v=4
Command line driven CI frontend and development task automation tool.
['actions', 'appveyor', 'automation', 'azure-pipelines', 'circleci', 'cli', 'continuous-integration', 'gitlab', 'pep-621', 'testing', 'travis', 'venv', 'virtualenv']
['actions', 'appveyor', 'automation', 'azure-pipelines', 'circleci', 'cli', 'continuous-integration', 'gitlab', 'pep-621', 'testing', 'travis', 'venv', 'virtualenv']
2024-01-12
[('ianmiell/shutit', 0.5560944080352783, 'util', 0), ('allegroai/clearml', 0.5439307689666748, 'ml-ops', 0), ('pydoit/doit', 0.5430145859718323, 'util', 0), ('zenml-io/zenml', 0.5314726233482361, 'ml-ops', 0), ('buildbot/buildbot', 0.5279530882835388, 'util', 1), ('pytest-dev/pytest-testinfra', 0.5243973731994629, 'testing', 1), ('orchest/orchest', 0.523241400718689, 'ml-ops', 0), ('bodywork-ml/bodywork-core', 0.5215947031974792, 'ml-ops', 0), ('flipkart-incubator/astra', 0.5185132026672363, 'web', 0), ('python-poetry/cleo', 0.515224039554596, 'term', 2), ('ploomber/ploomber', 0.5083051323890686, 'ml-ops', 0), ('avaiga/taipy', 0.5081842541694641, 'data', 1)]
68
6
null
3
48
35
89
0
38
29
38
48
66
90
1.4
51
897
util
https://github.com/pypi/warehouse
[]
null
[]
[]
null
null
null
pypi/warehouse
warehouse
3,422
1,041
112
Python
https://pypi.org
The Python Package Index
pypi
2024-01-14
2013-03-30
565
6.052046
https://avatars.githubusercontent.com/u/2964877?v=4
The Python Package Index
['package-registry', 'package-repository', 'pypi-source']
['package-registry', 'package-repository', 'pypi-source']
2024-01-12
[('pdm-project/pdm', 0.6904469728469849, 'util', 0), ('indygreg/pyoxidizer', 0.6707281470298767, 'util', 0), ('mitsuhiko/rye', 0.6509472131729126, 'util', 0), ('pyodide/micropip', 0.6480095386505127, 'util', 0), ('pypa/flit', 0.6236358284950256, 'util', 0), ('pypa/hatch', 0.6159988641738892, 'util', 0), ('pypa/gh-action-pypi-publish', 0.6143344044685364, 'util', 0), ('hugovk/pypistats', 0.6038178205490112, 'util', 0), ('regebro/pyroma', 0.6017106771469116, 'util', 0), ('pomponchik/instld', 0.5979329347610474, 'util', 0), ('python-poetry/poetry', 0.5964840054512024, 'util', 0), ('jazzband/pip-tools', 0.5816731452941895, 'util', 0), ('tox-dev/pipdeptree', 0.5815759897232056, 'util', 0), ('mozillazg/pypy', 0.5795431733131409, 'util', 0), ('ofek/pyapp', 0.5665706992149353, 'util', 0), ('mgedmin/check-manifest', 0.5615488886833191, 'util', 0), ('pypy/pypy', 0.546995222568512, 'util', 0), ('landscapeio/prospector', 0.545502245426178, 'util', 0), ('tiangolo/poetry-version-plugin', 0.537349283695221, 'util', 0), ('mkdocstrings/griffe', 0.5345215797424316, 'util', 0), ('urwid/urwid', 0.5293185710906982, 'term', 0), ('prompt-toolkit/ptpython', 0.5278775691986084, 'util', 0), ('pypa/virtualenv', 0.5271876454353333, 'util', 0), ('tezromach/python-package-template', 0.5265879034996033, 'template', 0), ('pypa/installer', 0.5235101580619812, 'util', 0), ('ipython/ipython', 0.5227155685424805, 'util', 0), ('omry/omegaconf', 0.5100882053375244, 'util', 0), ('hadialqattan/pycln', 0.5063982605934143, 'util', 0), ('rubik/radon', 0.5054935216903687, 'util', 0), ('pygments/pygments', 0.5018252730369568, 'util', 0), ('dosisod/refurb', 0.5017030239105225, 'util', 0)]
370
7
null
13.9
524
430
131
0
0
0
0
523
587
90
1.1
51
804
ml-ops
https://github.com/ploomber/ploomber
[]
null
[]
[]
null
null
null
ploomber/ploomber
ploomber
3,306
222
29
Python
https://ploomber.io
The fastest ⚡️ way to build data pipelines. Develop iteratively, deploy anywhere. ☁️
ploomber
2024-01-14
2020-01-20
210
15.732155
https://avatars.githubusercontent.com/u/60114551?v=4
The fastest ⚡️ way to build data pipelines. Develop iteratively, deploy anywhere. ☁️
['data-engineering', 'data-science', 'jupyter', 'jupyter-notebooks', 'machine-learning', 'mlops', 'notebooks', 'papermill', 'pipelines', 'pycharm', 'vscode', 'workflow']
['data-engineering', 'data-science', 'jupyter', 'jupyter-notebooks', 'machine-learning', 'mlops', 'notebooks', 'papermill', 'pipelines', 'pycharm', 'vscode', 'workflow']
2024-01-03
[('orchest/orchest', 0.862511932849884, 'ml-ops', 5), ('linealabs/lineapy', 0.739909827709198, 'jupyter', 0), ('mage-ai/mage-ai', 0.7089954614639282, 'ml-ops', 4), ('avaiga/taipy', 0.6359885334968567, 'data', 4), ('meltano/meltano', 0.6284797787666321, 'ml-ops', 2), ('kestra-io/kestra', 0.6272913217544556, 'ml-ops', 2), ('netflix/metaflow', 0.6208223700523376, 'ml-ops', 3), ('zenml-io/zenml', 0.6197214722633362, 'ml-ops', 5), ('airbytehq/airbyte', 0.6143587827682495, 'data', 1), ('dagworks-inc/hamilton', 0.6052381992340088, 'ml-ops', 4), ('dagster-io/dagster', 0.6021184325218201, 'ml-ops', 4), ('hi-primus/optimus', 0.5924459099769592, 'ml-ops', 2), ('fastai/fastcore', 0.5885465741157532, 'util', 0), ('polyaxon/polyaxon', 0.5840852856636047, 'ml-ops', 6), ('flyteorg/flyte', 0.5782303214073181, 'ml-ops', 4), ('kubeflow-kale/kale', 0.5709792971611023, 'ml-ops', 1), ('bodywork-ml/bodywork-core', 0.5688678026199341, 'ml-ops', 3), ('kubeflow/pipelines', 0.568588137626648, 'ml-ops', 3), ('astronomer/astro-sdk', 0.5675156116485596, 'ml-ops', 1), ('pypa/pipenv', 0.5622181296348572, 'util', 0), ('huggingface/datasets', 0.5587560534477234, 'nlp', 1), ('willmcgugan/textual', 0.5585596561431885, 'term', 0), ('allegroai/clearml', 0.5556386113166809, 'ml-ops', 2), ('pydoit/doit', 0.5523402094841003, 'util', 2), ('great-expectations/great_expectations', 0.5521277785301208, 'ml-ops', 3), ('streamlit/streamlit', 0.5482877492904663, 'viz', 2), ('kubeflow/fairing', 0.5463899970054626, 'ml-ops', 0), ('pythagora-io/gpt-pilot', 0.5441665649414062, 'llm', 0), ('polyaxon/datatile', 0.5431307554244995, 'pandas', 2), ('plotly/dash', 0.5395582914352417, 'viz', 2), ('whylabs/whylogs', 0.5393771529197693, 'util', 3), ('nteract/papermill', 0.5353273153305054, 'jupyter', 2), ('merantix-momentum/squirrel-core', 0.5347124338150024, 'ml', 2), ('feast-dev/feast', 0.5336986780166626, 'ml-ops', 4), ('google/ml-metadata', 0.5324745774269104, 'ml-ops', 0), ('simonw/datasette', 0.5322346091270447, 'data', 0), ('featureform/embeddinghub', 0.529184103012085, 'nlp', 3), ('spotify/luigi', 0.5267884135246277, 'ml-ops', 0), ('python-odin/odin', 0.5260776877403259, 'util', 0), ('backtick-se/cowait', 0.5248901844024658, 'util', 2), ('malloydata/malloy-py', 0.5213688015937805, 'data', 0), ('kedro-org/kedro', 0.5186499357223511, 'ml-ops', 2), ('pathwaycom/pathway', 0.5119403004646301, 'data', 0), ('fmind/mlops-python-package', 0.5116260051727295, 'template', 1), ('tobymao/sqlglot', 0.5114932656288147, 'data', 0), ('vaexio/vaex', 0.5101336240768433, 'perf', 2), ('prefecthq/prefect', 0.5095990896224976, 'ml-ops', 3), ('tox-dev/tox', 0.5083051323890686, 'testing', 0), ('saulpw/visidata', 0.5074170827865601, 'term', 0), ('gradio-app/gradio', 0.5065774321556091, 'viz', 2), ('krzjoa/awesome-python-data-science', 0.5054386258125305, 'study', 2), ('iterative/dvc', 0.5037345886230469, 'ml-ops', 2), ('firmai/industry-machine-learning', 0.5007092952728271, 'study', 2), ('prefecthq/server', 0.5003852248191833, 'util', 1)]
80
1
null
1.37
24
16
48
0
0
29
29
24
68
90
2.8
51
1,383
diffusion
https://github.com/mlc-ai/web-stable-diffusion
[]
null
[]
[]
null
null
null
mlc-ai/web-stable-diffusion
web-stable-diffusion
3,273
196
33
Jupyter Notebook
https://mlc.ai/web-stable-diffusion
Bringing stable diffusion models to web browsers. Everything runs inside the browser with no server support.
mlc-ai
2024-01-13
2023-03-06
47
69.427273
https://avatars.githubusercontent.com/u/106173866?v=4
Bringing stable diffusion models to web browsers. Everything runs inside the browser with no server support.
['deep-learning', 'stable-diffusion', 'tvm', 'web-assembly', 'webgpu', 'webml']
['deep-learning', 'stable-diffusion', 'tvm', 'web-assembly', 'webgpu', 'webml']
2023-07-18
[('automatic1111/stable-diffusion-webui', 0.7200703024864197, 'diffusion', 2), ('thereforegames/unprompted', 0.6838393807411194, 'diffusion', 2), ('mlc-ai/web-llm', 0.6759905219078064, 'llm', 4), ('civitai/sd_civitai_extension', 0.6748091578483582, 'llm', 0), ('bentoml/onediffusion', 0.6144503355026245, 'diffusion', 1), ('comfyanonymous/comfyui', 0.6069907546043396, 'diffusion', 1), ('carson-katri/dream-textures', 0.5855890512466431, 'diffusion', 1), ('aiqc/aiqc', 0.5372481346130371, 'ml-ops', 0), ('titanml/takeoff', 0.5177373886108398, 'llm', 0), ('bigscience-workshop/petals', 0.5074443817138672, 'data', 1)]
8
5
null
0.75
8
1
10
6
0
0
0
8
11
90
1.4
51
140
viz
https://github.com/vispy/vispy
[]
null
[]
[]
null
null
null
vispy/vispy
vispy
3,170
614
117
Python
http://vispy.org
Main repository for Vispy
vispy
2024-01-12
2013-03-21
566
5.593648
https://avatars.githubusercontent.com/u/3934254?v=4
Main repository for Vispy
['opengl', 'visualization']
['opengl', 'visualization']
2023-12-28
[('holoviz/holoviz', 0.6010532379150391, 'viz', 0), ('maartenbreddels/ipyvolume', 0.5861509442329407, 'jupyter', 0), ('altair-viz/altair', 0.5802785158157349, 'viz', 1), ('holoviz/geoviews', 0.571336567401886, 'gis', 0), ('visgl/deck.gl', 0.5518122911453247, 'viz', 1), ('residentmario/geoplot', 0.5477085709571838, 'gis', 0), ('giswqs/geemap', 0.5475439429283142, 'gis', 0), ('graphistry/pygraphistry', 0.5377211570739746, 'data', 1), ('man-group/dtale', 0.5336646437644958, 'viz', 1), ('plotly/plotly.py', 0.523070216178894, 'viz', 1), ('enthought/mayavi', 0.5171870589256287, 'viz', 1), ('pyglet/pyglet', 0.5124850273132324, 'gamedev', 1), ('bokeh/bokeh', 0.5114392638206482, 'viz', 1), ('marcomusy/vedo', 0.5108841061592102, 'viz', 1), ('has2k1/plotnine', 0.5095175504684448, 'viz', 0), ('scitools/cartopy', 0.5065507888793945, 'gis', 0), ('dfki-ric/pytransform3d', 0.5056593418121338, 'math', 1), ('gaogaotiantian/viztracer', 0.503200888633728, 'profiling', 1)]
192
8
null
2.87
40
23
132
1
4
3
4
40
169
90
4.2
51
1,650
nlp
https://github.com/maartengr/keybert
[]
null
[]
[]
null
null
null
maartengr/keybert
KeyBERT
3,034
317
33
Python
https://MaartenGr.github.io/KeyBERT/
Minimal keyword extraction with BERT
maartengr
2024-01-14
2020-10-22
170
17.772385
null
Minimal keyword extraction with BERT
['bert', 'keyphrase-extraction', 'keyword-extraction', 'mmr']
['bert', 'keyphrase-extraction', 'keyword-extraction', 'mmr']
2024-01-03
[('vi3k6i5/flashtext', 0.5377181768417358, 'data', 1), ('whu-zqh/chatgpt-vs.-bert', 0.529996395111084, 'llm', 1), ('jonasgeiping/cramming', 0.5119235515594482, 'nlp', 0), ('maartengr/bertopic', 0.5103285908699036, 'nlp', 1), ('paddlepaddle/paddlenlp', 0.5080262422561646, 'llm', 1)]
9
8
null
0.15
19
9
39
0
1
3
1
19
60
90
3.2
51
837
time-series
https://github.com/tdameritrade/stumpy
[]
null
[]
[]
null
null
null
tdameritrade/stumpy
stumpy
2,896
274
54
Python
https://stumpy.readthedocs.io/en/latest/
STUMPY is a powerful and scalable Python library for modern time series analysis
tdameritrade
2024-01-13
2019-05-03
247
11.697634
https://avatars.githubusercontent.com/u/5022525?v=4
STUMPY is a powerful and scalable Python library for modern time series analysis
['anomaly-detection', 'dask', 'data-science', 'matrix-profile', 'motif-discovery', 'numba', 'pattern-matching', 'pydata', 'time-series-analysis', 'time-series-data-mining', 'time-series-segmentation']
['anomaly-detection', 'dask', 'data-science', 'matrix-profile', 'motif-discovery', 'numba', 'pattern-matching', 'pydata', 'time-series-analysis', 'time-series-data-mining', 'time-series-segmentation']
2024-01-12
[('unit8co/darts', 0.7482045888900757, 'time-series', 2), ('alkaline-ml/pmdarima', 0.6753336787223816, 'time-series', 0), ('pycaret/pycaret', 0.6499117016792297, 'ml', 2), ('rjt1990/pyflux', 0.6353744268417358, 'time-series', 0), ('yzhao062/pyod', 0.6203436255455017, 'data', 2), ('firmai/atspy', 0.6093729138374329, 'time-series', 1), ('blue-yonder/tsfresh', 0.5777381062507629, 'time-series', 1), ('aistream-peelout/flow-forecast', 0.567234992980957, 'time-series', 2), ('google/temporian', 0.5609158277511597, 'time-series', 0), ('salesforce/merlion', 0.5562719106674194, 'time-series', 1), ('rasbt/mlxtend', 0.5554875135421753, 'ml', 1), ('awslabs/gluonts', 0.5509535074234009, 'time-series', 1), ('dateutil/dateutil', 0.530729353427887, 'util', 0), ('pandas-dev/pandas', 0.523211658000946, 'pandas', 1), ('contextlab/hypertools', 0.5135495662689209, 'ml', 0), ('ta-lib/ta-lib-python', 0.509051501750946, 'finance', 0), ('makepath/xarray-spatial', 0.5024837851524353, 'gis', 1)]
36
3
null
1.92
12
5
57
0
1
6
1
12
98
90
8.2
51
1,435
llm
https://github.com/baichuan-inc/baichuan-13b
[]
null
[]
[]
null
null
null
baichuan-inc/baichuan-13b
Baichuan-13B
2,867
218
31
Python
https://huggingface.co/baichuan-inc/Baichuan-13B-Chat
A 13B large language model developed by Baichuan Intelligent Technology
baichuan-inc
2024-01-13
2023-07-10
29
98.377451
https://avatars.githubusercontent.com/u/136167093?v=4
A 13B large language model developed by Baichuan Intelligent Technology
['artificial-intelligence', 'benchmark', 'ceval', 'chatgpt', 'chinese', 'gpt-4', 'huggingface', 'large-language-models', 'mmlu', 'natural-language-processing']
['artificial-intelligence', 'benchmark', 'ceval', 'chatgpt', 'chinese', 'gpt-4', 'huggingface', 'large-language-models', 'mmlu', 'natural-language-processing']
2023-09-06
[('lianjiatech/belle', 0.6785591840744019, 'llm', 0), ('hannibal046/awesome-llm', 0.6444519758224487, 'study', 0), ('freedomintelligence/llmzoo', 0.640003502368927, 'llm', 0), ('next-gpt/next-gpt', 0.6081295013427734, 'llm', 3), ('yueyu1030/attrprompt', 0.6001567840576172, 'llm', 2), ('ctlllll/llm-toolmaker', 0.5928089022636414, 'llm', 0), ('lm-sys/fastchat', 0.5909283757209778, 'llm', 0), ('microsoft/autogen', 0.5874255895614624, 'llm', 2), ('thudm/chatglm2-6b', 0.5701199173927307, 'llm', 1), ('huawei-noah/pretrained-language-model', 0.5544146299362183, 'nlp', 0), ('openlmlab/moss', 0.5460556149482727, 'llm', 3), ('huggingface/text-generation-inference', 0.546048104763031, 'llm', 0), ('ai21labs/lm-evaluation', 0.5453725457191467, 'llm', 0), ('li-plus/chatglm.cpp', 0.5446141362190247, 'llm', 1), ('microsoft/lora', 0.5445288419723511, 'llm', 0), ('jonasgeiping/cramming', 0.5425389409065247, 'nlp', 0), ('databrickslabs/dolly', 0.5416833758354187, 'llm', 0), ('sjtu-ipads/powerinfer', 0.5372994542121887, 'llm', 1), ('prefecthq/langchain-prefect', 0.5365051627159119, 'llm', 1), ('guidance-ai/guidance', 0.5342095494270325, 'llm', 1), ('thudm/chatglm-6b', 0.5303475856781006, 'llm', 0), ('togethercomputer/redpajama-data', 0.5299484729766846, 'llm', 0), ('hiyouga/llama-factory', 0.5287744402885437, 'llm', 1), ('hiyouga/llama-efficient-tuning', 0.5287743806838989, 'llm', 1), ('bobazooba/xllm', 0.5246362090110779, 'llm', 3), ('cg123/mergekit', 0.5188269019126892, 'llm', 0), ('timdettmers/bitsandbytes', 0.5144120454788208, 'util', 0), ('salesforce/xgen', 0.5127484798431396, 'llm', 1), ('lupantech/chameleon-llm', 0.5114999413490295, 'llm', 2), ('paddlepaddle/rocketqa', 0.5105500817298889, 'nlp', 0), ('paddlepaddle/paddlenlp', 0.5055248141288757, 'llm', 0), ('oobabooga/text-generation-webui', 0.5040669441223145, 'llm', 0), ('explosion/spacy-models', 0.5027161836624146, 'nlp', 1), ('juncongmoo/pyllama', 0.5018168091773987, 'llm', 0), ('mlc-ai/web-llm', 0.5006130933761597, 'llm', 1), ('keirp/automatic_prompt_engineer', 0.5003429055213928, 'llm', 0)]
6
3
null
0.62
23
6
6
4
0
0
0
23
19
90
0.8
51