Unnamed: 0
int64
category
string
githuburl
string
customtopics
string
customabout
string
customarxiv
string
custompypi
string
featured
float64
links
string
description
string
_repopath
string
_reponame
string
_stars
int64
_forks
int64
_watches
int64
_language
string
_homepage
string
_github_description
string
_organization
string
_updated_at
string
_created_at
string
_age_weeks
int64
_stars_per_week
float64
_avatar_url
string
_description
string
_github_topics
string
_topics
string
_last_commit_date
string
sim
string
_pop_contributor_count
int64
_pop_contributor_orgs_len
float64
_pop_contributor_orgs_error
float64
_pop_commit_frequency
float64
_pop_updated_issues_count
int64
_pop_closed_issues_count
int64
_pop_created_since_days
int64
_pop_updated_since_days
int64
_pop_recent_releases_count
int64
_pop_recent_releases_estimated_tags
int64
_pop_recent_releases_adjusted_count
int64
_pop_issue_count
float64
_pop_comment_count
float64
_pop_comment_count_lookback_days
float64
_pop_comment_frequency
float64
_pop_score
int64
1,109
llm
https://github.com/juncongmoo/pyllama
[]
null
[]
['pyllama']
null
null
Start 2023-04-13
juncongmoo/pyllama
pyllama
2,732
309
36
Python
null
LLaMA: Open and Efficient Foundation Language Models
juncongmoo
2024-01-14
2023-02-28
48
56.916667
null
LLaMA: Open and Efficient Foundation Language Models
[]
[]
2023-04-25
[('ai21labs/lm-evaluation', 0.699636697769165, 'llm', 0), ('hannibal046/awesome-llm', 0.6920731067657471, 'study', 0), ('optimalscale/lmflow', 0.6721161007881165, 'llm', 0), ('cg123/mergekit', 0.6644551753997803, 'llm', 0), ('freedomintelligence/llmzoo', 0.6618118286132812, 'llm', 0), ('ctlllll/llm-toolmaker', 0.6501331925392151, 'llm', 0), ('lianjiatech/belle', 0.6371904611587524, 'llm', 0), ('guardrails-ai/guardrails', 0.6344968676567078, 'llm', 0), ('lm-sys/fastchat', 0.6291965842247009, 'llm', 0), ('salesforce/xgen', 0.6149995923042297, 'llm', 0), ('reasoning-machines/pal', 0.6026532053947449, 'llm', 0), ('eleutherai/lm-evaluation-harness', 0.6021994948387146, 'llm', 0), ('guidance-ai/guidance', 0.6007868051528931, 'llm', 0), ('eleutherai/the-pile', 0.5945956707000732, 'data', 0), ('young-geng/easylm', 0.5928237438201904, 'llm', 0), ('openlmlab/leval', 0.5909538269042969, 'llm', 0), ('artidoro/qlora', 0.5865978002548218, 'llm', 0), ('jonasgeiping/cramming', 0.5846665501594543, 'nlp', 0), ('tatsu-lab/stanford_alpaca', 0.5793993473052979, 'llm', 0), ('hiyouga/llama-efficient-tuning', 0.5714971423149109, 'llm', 0), ('hiyouga/llama-factory', 0.5714971423149109, 'llm', 0), ('srush/minichain', 0.5712380409240723, 'llm', 0), ('bobazooba/xllm', 0.5698232054710388, 'llm', 0), ('explosion/spacy-llm', 0.5681570768356323, 'llm', 0), ('hazyresearch/h3', 0.567010223865509, 'llm', 0), ('mooler0410/llmspracticalguide', 0.5613843202590942, 'study', 0), ('infinitylogesh/mutate', 0.5594502687454224, 'nlp', 0), ('mit-han-lab/streaming-llm', 0.5574493408203125, 'llm', 0), ('aiwaves-cn/agents', 0.5563294887542725, 'nlp', 0), ('yizhongw/self-instruct', 0.5553812384605408, 'llm', 0), ('openbmb/toolbench', 0.5528221130371094, 'llm', 0), ('facebookresearch/seamless_communication', 0.5527052879333496, 'nlp', 0), ('facebookresearch/codellama', 0.5494055151939392, 'llm', 0), ('facebookresearch/llama', 0.5485102534294128, 'llm', 0), ('bigscience-workshop/biomedical', 0.5467652678489685, 'data', 0), ('1rgs/jsonformer', 0.5465362071990967, 'llm', 0), ('next-gpt/next-gpt', 0.5461319088935852, 'llm', 0), ('prefecthq/langchain-prefect', 0.5437901616096497, 'llm', 0), ('neulab/prompt2model', 0.5409372448921204, 'llm', 0), ('microsoft/autogen', 0.5394055247306824, 'llm', 0), ('dylanhogg/llmgraph', 0.5386449694633484, 'ml', 0), ('conceptofmind/toolformer', 0.5372142195701599, 'llm', 0), ('databrickslabs/dolly', 0.5352316498756409, 'llm', 0), ('oobabooga/text-generation-webui', 0.5334741473197937, 'llm', 0), ('lupantech/chameleon-llm', 0.5328553915023804, 'llm', 0), ('togethercomputer/redpajama-data', 0.5303771495819092, 'llm', 0), ('stanfordnlp/dspy', 0.5301841497421265, 'llm', 0), ('explosion/spacy-models', 0.5298112630844116, 'nlp', 0), ('llmware-ai/llmware', 0.5293798446655273, 'llm', 0), ('salesforce/codet5', 0.5293552875518799, 'nlp', 0), ('sjtu-ipads/powerinfer', 0.5285684466362, 'llm', 0), ('cstankonrad/long_llama', 0.5282744765281677, 'llm', 0), ('timdettmers/bitsandbytes', 0.5255274772644043, 'util', 0), ('huggingface/text-generation-inference', 0.5241082310676575, 'llm', 0), ('karpathy/llama2.c', 0.5219447016716003, 'llm', 0), ('keirp/automatic_prompt_engineer', 0.518515944480896, 'llm', 0), ('predibase/llm_distillation_playbook', 0.5181902647018433, 'llm', 0), ('microsoft/lora', 0.5170261263847351, 'llm', 0), ('microsoft/llama-2-onnx', 0.5146937966346741, 'llm', 0), ('huawei-noah/pretrained-language-model', 0.5146656036376953, 'nlp', 0), ('epfllm/meditron', 0.5138061046600342, 'llm', 0), ('openlm-research/open_llama', 0.5135765671730042, 'llm', 0), ('microsoft/torchscale', 0.5133620500564575, 'llm', 0), ('fasteval/fasteval', 0.5125579833984375, 'llm', 0), ('confident-ai/deepeval', 0.5091282725334167, 'testing', 0), ('nvidia/tensorrt-llm', 0.5075156092643738, 'viz', 0), ('eth-sri/lmql', 0.5070822834968567, 'llm', 0), ('thudm/chatglm2-6b', 0.5058130621910095, 'llm', 0), ('ray-project/ray-llm', 0.505372941493988, 'llm', 0), ('openai/gpt-2', 0.504024863243103, 'llm', 0), ('thudm/codegeex', 0.503732442855835, 'llm', 0), ('facebookresearch/shepherd', 0.5019182562828064, 'llm', 0), ('baichuan-inc/baichuan-13b', 0.5018168091773987, 'llm', 0)]
11
3
null
0.83
7
2
11
9
1
1
1
7
7
90
1
48
677
util
https://github.com/spotify/basic-pitch
[]
null
[]
[]
null
null
null
spotify/basic-pitch
basic-pitch
2,654
186
48
Python
https://basicpitch.io
A lightweight yet powerful audio-to-MIDI converter with pitch bend detection
spotify
2024-01-14
2022-05-03
91
29.164835
https://avatars.githubusercontent.com/u/251374?v=4
A lightweight yet powerful audio-to-MIDI converter with pitch bend detection
['audio', 'lightweight', 'machine-learning', 'midi', 'music', 'pitch-detection', 'polyphonic', 'transcription', 'typescript']
['audio', 'lightweight', 'machine-learning', 'midi', 'music', 'pitch-detection', 'polyphonic', 'transcription', 'typescript']
2023-09-12
[('espnet/espnet', 0.5158132910728455, 'nlp', 0), ('facebookresearch/audiocraft', 0.5119118094444275, 'util', 1)]
17
4
null
0.67
14
5
21
4
3
2
3
14
18
90
1.3
48
850
jupyter
https://github.com/jupyter/nbdime
[]
null
[]
[]
null
null
null
jupyter/nbdime
nbdime
2,562
164
42
TypeScript
http://nbdime.readthedocs.io
Tools for diffing and merging of Jupyter notebooks.
jupyter
2024-01-13
2015-11-16
428
5.983984
https://avatars.githubusercontent.com/u/7388996?v=4
Tools for diffing and merging of Jupyter notebooks.
['diff', 'diffing', 'git', 'hg', 'jupyter', 'jupyter-notebook', 'jupyterlab-extension', 'mercurial', 'merge', 'merge-driver', 'mergetool', 'vcs', 'version-control']
['diff', 'diffing', 'git', 'hg', 'jupyter', 'jupyter-notebook', 'jupyterlab-extension', 'mercurial', 'merge', 'merge-driver', 'mergetool', 'vcs', 'version-control']
2023-11-21
[('mwouts/jupytext', 0.6408078074455261, 'jupyter', 3), ('jupyter/nbformat', 0.6054288148880005, 'jupyter', 0), ('quantopian/qgrid', 0.5866443514823914, 'jupyter', 0), ('voila-dashboards/voila', 0.5848777890205383, 'jupyter', 3), ('jupyter-widgets/ipywidgets', 0.5793547034263611, 'jupyter', 1), ('jupyter/nbconvert', 0.5780813694000244, 'jupyter', 0), ('cohere-ai/notebooks', 0.559609591960907, 'llm', 0), ('aws/graph-notebook', 0.5575152039527893, 'jupyter', 2), ('jupyterlab/jupyterlab-desktop', 0.552423357963562, 'jupyter', 2), ('jupyter/notebook', 0.5463511943817139, 'jupyter', 2), ('nbqa-dev/nbqa', 0.5352687239646912, 'jupyter', 1), ('jakevdp/pythondatasciencehandbook', 0.5264706611633301, 'study', 1), ('fchollet/deep-learning-with-python-notebooks', 0.5217457413673401, 'study', 0), ('jupyter/nbgrader', 0.5187388062477112, 'jupyter', 2), ('nteract/papermill', 0.5114229917526245, 'jupyter', 1), ('computationalmodelling/nbval', 0.5095821022987366, 'jupyter', 1)]
50
5
null
2.46
47
36
99
2
6
11
6
47
182
90
3.9
48
1,159
util
https://github.com/whylabs/whylogs
[]
null
[]
[]
null
null
null
whylabs/whylogs
whylogs
2,444
109
32
Jupyter Notebook
https://whylogs.readthedocs.io/
An open-source data logging library for machine learning models and data pipelines. πŸ“š Provides visibility into data quality & model performance over time. πŸ›‘οΈ Supports privacy-preserving data collection, ensuring safety & robustness. πŸ“ˆ
whylabs
2024-01-13
2020-08-14
180
13.53481
https://avatars.githubusercontent.com/u/56651354?v=4
An open-source data logging library for machine learning models and data pipelines. πŸ“š Provides visibility into data quality & model performance over time. πŸ›‘οΈ Supports privacy-preserving data collection, ensuring safety & robustness. πŸ“ˆ
['ai-pipelines', 'analytics', 'approximate-statistics', 'calculate-statistics', 'constraints', 'data-constraints', 'data-pipeline', 'data-quality', 'data-science', 'dataops', 'dataset', 'logging', 'machine-learning', 'ml-pipelines', 'mlops', 'model-performance', 'statistical-properties']
['ai-pipelines', 'analytics', 'approximate-statistics', 'calculate-statistics', 'constraints', 'data-constraints', 'data-pipeline', 'data-quality', 'data-science', 'dataops', 'dataset', 'logging', 'machine-learning', 'ml-pipelines', 'mlops', 'model-performance', 'statistical-properties']
2024-01-11
[('salesforce/logai', 0.7454851269721985, 'util', 1), ('polyaxon/datatile', 0.5969440937042236, 'pandas', 4), ('wandb/client', 0.5798064470291138, 'ml', 3), ('aimhubio/aim', 0.5764767527580261, 'ml-ops', 3), ('mlflow/mlflow', 0.5756088495254517, 'ml-ops', 1), ('cleanlab/cleanlab', 0.5660983324050903, 'ml', 3), ('netflix/metaflow', 0.5658851861953735, 'ml-ops', 3), ('huggingface/datasets', 0.5516629815101624, 'nlp', 1), ('activeloopai/deeplake', 0.5506848096847534, 'ml-ops', 3), ('feast-dev/feast', 0.5498430132865906, 'ml-ops', 4), ('meltano/meltano', 0.5477058291435242, 'ml-ops', 1), ('merantix-momentum/squirrel-core', 0.5451236367225647, 'ml', 3), ('mage-ai/mage-ai', 0.5448665022850037, 'ml-ops', 2), ('google/ml-metadata', 0.5445284247398376, 'ml-ops', 0), ('csinva/imodels', 0.5419551730155945, 'ml', 2), ('ploomber/ploomber', 0.5393771529197693, 'ml-ops', 3), ('oegedijk/explainerdashboard', 0.5336712598800659, 'ml-interpretability', 0), ('polyaxon/polyaxon', 0.5290948152542114, 'ml-ops', 3), ('orchest/orchest', 0.5236711502075195, 'ml-ops', 2), ('airbytehq/airbyte', 0.5231224298477173, 'data', 1), ('bentoml/bentoml', 0.5217410922050476, 'ml-ops', 2), ('googlecloudplatform/vertex-ai-samples', 0.5152586102485657, 'ml', 2), ('avaiga/taipy', 0.5133393406867981, 'data', 1), ('dagworks-inc/hamilton', 0.5131041407585144, 'ml-ops', 3), ('microsoft/nni', 0.5119295120239258, 'ml', 3), ('teamhg-memex/eli5', 0.511576235294342, 'ml', 2), ('selfexplainml/piml-toolbox', 0.5081930756568909, 'ml-interpretability', 0), ('kubeflow/pipelines', 0.5075204372406006, 'ml-ops', 3), ('interpretml/interpret', 0.5045889019966125, 'ml-interpretability', 1), ('zenml-io/zenml', 0.5043908357620239, 'ml-ops', 3), ('great-expectations/great_expectations', 0.5034822821617126, 'ml-ops', 3), ('simonw/datasette', 0.5017004609107971, 'data', 0), ('mindsdb/mindsdb', 0.5011435151100159, 'data', 1)]
23
3
null
5.04
64
57
42
0
54
43
54
64
16
90
0.2
48
914
profiling
https://github.com/pyutils/line_profiler
[]
null
[]
[]
null
null
null
pyutils/line_profiler
line_profiler
2,304
112
14
Python
null
Line-by-line profiling for Python
pyutils
2024-01-14
2019-12-10
216
10.666667
https://avatars.githubusercontent.com/u/58752944?v=4
Line-by-line profiling for Python
[]
[]
2023-12-05
[('benfred/py-spy', 0.6891393065452576, 'profiling', 0), ('pythonspeed/filprofiler', 0.6149646043777466, 'profiling', 0), ('landscapeio/prospector', 0.5992322564125061, 'util', 0), ('gaogaotiantian/viztracer', 0.5905494689941406, 'profiling', 0), ('pympler/pympler', 0.5873364806175232, 'perf', 0), ('klen/py-frameworks-bench', 0.5825835466384888, 'perf', 0), ('nedbat/coveragepy', 0.5808612108230591, 'testing', 0), ('pythonprofilers/memory_profiler', 0.577487051486969, 'profiling', 0), ('rubik/radon', 0.5716840028762817, 'util', 0), ('google/pytype', 0.5699858069419861, 'typing', 0), ('jiffyclub/snakeviz', 0.563589870929718, 'profiling', 0), ('p403n1x87/austin', 0.5507018566131592, 'profiling', 0), ('ionelmc/pytest-benchmark', 0.5505008101463318, 'testing', 0), ('pysal/pysal', 0.5387760400772095, 'gis', 0), ('nschloe/perfplot', 0.535541832447052, 'perf', 0), ('eleutherai/pyfra', 0.5344709157943726, 'ml', 0), ('sumerc/yappi', 0.5341673493385315, 'profiling', 0), ('alexmojaki/snoop', 0.5304473638534546, 'debug', 0), ('csurfer/pyheat', 0.5279625654220581, 'profiling', 0), ('altair-viz/altair', 0.5267626643180847, 'viz', 0), ('rasbt/mlxtend', 0.5252503156661987, 'ml', 0), ('xrudelis/pytrait', 0.5251006484031677, 'util', 0), ('pypy/pypy', 0.5241230726242065, 'util', 0), ('alexmojaki/heartrate', 0.522416353225708, 'debug', 0), ('joerick/pyinstrument', 0.5132960677146912, 'profiling', 0), ('lcompilers/lpython', 0.5114628076553345, 'util', 0), ('pytoolz/toolz', 0.5109219551086426, 'util', 0), ('reloadware/reloadium', 0.5102075338363647, 'profiling', 0), ('carla-recourse/carla', 0.5099355578422546, 'ml', 0), ('google/yapf', 0.5072764158248901, 'util', 0), ('instagram/monkeytype', 0.5013983845710754, 'typing', 0)]
43
5
null
2.12
20
13
50
1
4
5
4
20
44
90
2.2
48
1,073
ml
https://github.com/google-research/t5x
[]
null
[]
[]
null
null
null
google-research/t5x
t5x
2,278
275
36
Python
null
null
google-research
2024-01-13
2021-11-01
117
19.446341
https://avatars.githubusercontent.com/u/43830688?v=4
google-research/t5x
[]
[]
2024-01-13
[('google-research/byt5', 0.8195183277130127, 'nlp', 0), ('google-research/google-research', 0.6067818999290466, 'ml', 0)]
106
3
null
4.54
81
45
27
0
0
0
0
81
25
90
0.3
48
1,395
llm
https://github.com/civitai/sd_civitai_extension
[]
null
[]
[]
null
null
null
civitai/sd_civitai_extension
sd_civitai_extension
2,139
405
73
Python
null
All of the Civitai models inside Automatic 1111 Stable Diffusion Web UI
civitai
2024-01-14
2022-12-06
60
35.65
https://avatars.githubusercontent.com/u/117393426?v=4
All of the Civitai models inside Automatic 1111 Stable Diffusion Web UI
[]
[]
2023-12-21
[('mlc-ai/web-stable-diffusion', 0.6748091578483582, 'diffusion', 0), ('automatic1111/stable-diffusion-webui', 0.6364338397979736, 'diffusion', 0), ('thereforegames/unprompted', 0.6360564827919006, 'diffusion', 0), ('comfyanonymous/comfyui', 0.6050902009010315, 'diffusion', 0), ('carson-katri/dream-textures', 0.5569747686386108, 'diffusion', 0), ('bentoml/onediffusion', 0.5044161081314087, 'diffusion', 0)]
10
5
null
1
24
3
13
1
0
0
0
24
20
90
0.8
48
1,327
llm
https://github.com/young-geng/easylm
[]
null
[]
[]
null
null
null
young-geng/easylm
EasyLM
2,093
209
36
Python
null
Large language models (LLMs) made easy, EasyLM is a one stop solution for pre-training, finetuning, evaluating and serving LLMs in JAX/Flax.
young-geng
2024-01-13
2022-11-22
62
33.758065
null
Large language models (LLMs) made easy, EasyLM is a one stop solution for pre-training, finetuning, evaluating and serving LLMs in JAX/Flax.
['chatbot', 'deep-learning', 'flax', 'jax', 'language-model', 'large-language-models', 'llama', 'natural-language-processing', 'transformer']
['chatbot', 'deep-learning', 'flax', 'jax', 'language-model', 'large-language-models', 'llama', 'natural-language-processing', 'transformer']
2023-08-31
[('hiyouga/llama-factory', 0.6924945116043091, 'llm', 3), ('hiyouga/llama-efficient-tuning', 0.6924943923950195, 'llm', 3), ('nomic-ai/gpt4all', 0.6724932789802551, 'llm', 2), ('salesforce/xgen', 0.6715541481971741, 'llm', 2), ('bigscience-workshop/petals', 0.6689819693565369, 'data', 5), ('deepset-ai/haystack', 0.6550629734992981, 'llm', 2), ('lm-sys/fastchat', 0.6548444628715515, 'llm', 2), ('cg123/mergekit', 0.6466503143310547, 'llm', 1), ('mooler0410/llmspracticalguide', 0.6447182893753052, 'study', 2), ('paddlepaddle/paddlenlp', 0.6431230902671814, 'llm', 1), ('mlc-ai/web-llm', 0.6428095102310181, 'llm', 2), ('hwchase17/langchain', 0.6422194838523865, 'llm', 2), ('eugeneyan/open-llms', 0.6238888502120972, 'study', 1), ('lianjiatech/belle', 0.6193146705627441, 'llm', 1), ('ctlllll/llm-toolmaker', 0.6142538785934448, 'llm', 1), ('night-chen/toolqa', 0.6132665276527405, 'llm', 1), ('microsoft/autogen', 0.6095622181892395, 'llm', 1), ('explosion/spacy-llm', 0.6080474257469177, 'llm', 3), ('oobabooga/text-generation-webui', 0.6048070788383484, 'llm', 1), ('agenta-ai/agenta', 0.6034758687019348, 'llm', 1), ('confident-ai/deepeval', 0.6033726334571838, 'testing', 1), ('dylanhogg/llmgraph', 0.6026452779769897, 'ml', 0), ('fasteval/fasteval', 0.6013676524162292, 'llm', 0), ('thudm/chatglm2-6b', 0.601020097732544, 'llm', 1), ('h2oai/h2o-llmstudio', 0.6009706258773804, 'llm', 2), ('tigerlab-ai/tiger', 0.6003850698471069, 'llm', 1), ('ai21labs/lm-evaluation', 0.5989466309547424, 'llm', 1), ('jzhang38/tinyllama', 0.597965657711029, 'llm', 2), ('bobazooba/xllm', 0.5975850224494934, 'llm', 3), ('llmware-ai/llmware', 0.593721330165863, 'llm', 1), ('freedomintelligence/llmzoo', 0.5935439467430115, 'llm', 1), ('nat/openplayground', 0.593249499797821, 'llm', 1), ('juncongmoo/pyllama', 0.5928237438201904, 'llm', 0), ('ray-project/ray-llm', 0.5914445519447327, 'llm', 1), ('salesforce/codet5', 0.591428816318512, 'nlp', 2), ('alpha-vllm/llama2-accessory', 0.5873928070068359, 'llm', 0), ('intel/intel-extension-for-transformers', 0.5872876048088074, 'perf', 1), ('pathwaycom/llm-app', 0.5865856409072876, 'llm', 1), ('titanml/takeoff', 0.5864971876144409, 'llm', 2), ('ajndkr/lanarky', 0.5861847996711731, 'llm', 0), ('conceptofmind/toolformer', 0.5841966867446899, 'llm', 1), ('argilla-io/argilla', 0.5817759037017822, 'nlp', 1), ('ludwig-ai/ludwig', 0.5782345533370972, 'ml-ops', 3), ('next-gpt/next-gpt', 0.5767945647239685, 'llm', 1), ('lucidrains/toolformer-pytorch', 0.5753515362739563, 'llm', 2), ('artidoro/qlora', 0.574920654296875, 'llm', 1), ('huggingface/transformers', 0.571175754070282, 'nlp', 6), ('infinitylogesh/mutate', 0.566120445728302, 'nlp', 1), ('citadel-ai/langcheck', 0.5656929612159729, 'llm', 1), ('hegelai/prompttools', 0.5647485256195068, 'llm', 2), ('eleutherai/the-pile', 0.5631842613220215, 'data', 0), ('nebuly-ai/nebullvm', 0.5627244114875793, 'perf', 1), ('vllm-project/vllm', 0.5622703433036804, 'llm', 2), ('hannibal046/awesome-llm', 0.5593286752700806, 'study', 1), ('microsoft/torchscale', 0.5538792610168457, 'llm', 2), ('salesforce/jaxformer', 0.5536481142044067, 'llm', 0), ('huawei-noah/pretrained-language-model', 0.5518462657928467, 'nlp', 0), ('microsoft/unilm', 0.5508254170417786, 'nlp', 0), ('openbmb/toolbench', 0.5505062341690063, 'llm', 0), ('jina-ai/thinkgpt', 0.5500134825706482, 'llm', 1), ('aiwaves-cn/agents', 0.5498647689819336, 'nlp', 1), ('microsoft/llama-2-onnx', 0.5490400791168213, 'llm', 2), ('bentoml/openllm', 0.5489903688430786, 'ml-ops', 1), ('facebookresearch/llama-recipes', 0.5477281212806702, 'llm', 2), ('squeezeailab/squeezellm', 0.5474568605422974, 'llm', 4), ('lightning-ai/lit-llama', 0.5471640825271606, 'llm', 2), ('langchain-ai/langgraph', 0.5411015748977661, 'llm', 0), ('run-llama/llama-lab', 0.5406877398490906, 'llm', 2), ('optimalscale/lmflow', 0.5390665531158447, 'llm', 3), ('ibm/dromedary', 0.5381739139556885, 'llm', 1), ('tatsu-lab/stanford_alpaca', 0.536756694316864, 'llm', 2), ('deep-diver/llm-as-chatbot', 0.5367242097854614, 'llm', 1), ('databrickslabs/dolly', 0.5357629656791687, 'llm', 1), ('google/flax', 0.5341013073921204, 'ml-dl', 1), ('openlmlab/moss', 0.5339535474777222, 'llm', 4), ('ml-tooling/opyrator', 0.5335082411766052, 'viz', 0), ('microsoft/jarvis', 0.5291217565536499, 'llm', 1), ('shishirpatil/gorilla', 0.5281785130500793, 'llm', 0), ('iryna-kondr/scikit-llm', 0.5262447595596313, 'llm', 1), ('microsoft/lmops', 0.5255038738250732, 'llm', 1), ('epfllm/meditron', 0.5253199934959412, 'llm', 1), ('sjtu-ipads/powerinfer', 0.5250315070152283, 'llm', 2), ('deepmind/dm-haiku', 0.5241255164146423, 'ml-dl', 2), ('microsoft/semantic-kernel', 0.5219286680221558, 'llm', 0), ('predibase/lorax', 0.5218080878257751, 'llm', 1), ('reasoning-machines/pal', 0.5207021832466125, 'llm', 2), ('guidance-ai/guidance', 0.5203404426574707, 'llm', 1), ('extreme-bert/extreme-bert', 0.5198579430580139, 'llm', 4), ('microsoft/lora', 0.519779622554779, 'llm', 2), ('microsoft/generative-ai-for-beginners', 0.5186941027641296, 'study', 1), ('cheshire-cat-ai/core', 0.5178155899047852, 'llm', 1), ('alphasecio/langchain-examples', 0.5165916681289673, 'llm', 0), ('embedchain/embedchain', 0.5164496302604675, 'llm', 0), ('eleutherai/lm-evaluation-harness', 0.5126963257789612, 'llm', 2), ('berriai/litellm', 0.5113945603370667, 'llm', 0), ('cstankonrad/long_llama', 0.5092800259590149, 'llm', 2), ('keirp/automatic_prompt_engineer', 0.5091218948364258, 'llm', 1), ('rasahq/rasa', 0.5090000033378601, 'llm', 2), ('deepset-ai/farm', 0.5065217614173889, 'nlp', 1), ('predibase/llm_distillation_playbook', 0.5040218234062195, 'llm', 0), ('google/trax', 0.5037261843681335, 'ml-dl', 3), ('run-llama/rags', 0.5016451478004456, 'llm', 1), ('zilliztech/gptcache', 0.5008785724639893, 'llm', 2), ('tsinghuadatabasegroup/db-gpt', 0.5007253289222717, 'llm', 1), ('lupantech/chameleon-llm', 0.5002449154853821, 'llm', 1)]
11
6
null
2.85
10
2
14
5
0
0
0
10
14
90
1.4
48
799
web
https://github.com/python-restx/flask-restx
[]
null
[]
[]
null
null
null
python-restx/flask-restx
flask-restx
2,020
326
66
Python
https://flask-restx.readthedocs.io/en/latest/
Fork of Flask-RESTPlus: Fully featured framework for fast, easy and documented API development with Flask
python-restx
2024-01-13
2020-01-09
211
9.541161
https://avatars.githubusercontent.com/u/59693083?v=4
Fork of Flask-RESTPlus: Fully featured framework for fast, easy and documented API development with Flask
['api', 'flask', 'json', 'rest', 'restful', 'restplus', 'restx', 'swagger']
['api', 'flask', 'json', 'rest', 'restful', 'restplus', 'restx', 'swagger']
2023-12-10
[('pyeve/eve', 0.7703225612640381, 'web', 2), ('vitalik/django-ninja', 0.7110880613327026, 'web', 1), ('tiangolo/fastapi', 0.6711971163749695, 'web', 4), ('starlite-api/starlite', 0.6593479514122009, 'web', 3), ('pallets/flask', 0.6463286280632019, 'web', 1), ('falconry/falcon', 0.6462195515632629, 'web', 2), ('bottlepy/bottle', 0.628285825252533, 'web', 1), ('alirn76/panther', 0.6230086088180542, 'web', 0), ('hugapi/hug', 0.6121255159378052, 'util', 0), ('flet-dev/flet', 0.6032120585441589, 'web', 0), ('simple-salesforce/simple-salesforce', 0.5995645523071289, 'data', 1), ('tiangolo/full-stack-fastapi-postgresql', 0.5876633524894714, 'template', 2), ('asacristani/fastapi-rocket-boilerplate', 0.5854663848876953, 'template', 0), ('willmcgugan/textual', 0.5673668384552002, 'term', 0), ('ets-labs/python-dependency-injector', 0.551591694355011, 'util', 1), ('klen/muffin', 0.5422064065933228, 'web', 0), ('taverntesting/tavern', 0.5409488081932068, 'testing', 0), ('s3rius/fastapi-template', 0.5399068593978882, 'web', 0), ('pallets/quart', 0.5398460626602173, 'web', 0), ('pallets/werkzeug', 0.5365567803382874, 'web', 0), ('timofurrer/awesome-asyncio', 0.5342033505439758, 'study', 0), ('fastai/fastcore', 0.5335445404052734, 'util', 0), ('plotly/dash', 0.5263261795043945, 'viz', 1), ('huge-success/sanic', 0.5204745531082153, 'web', 0), ('neoteroi/blacksheep', 0.519770085811615, 'web', 0), ('masoniteframework/masonite', 0.5184113383293152, 'web', 0), ('fastai/ghapi', 0.5162189602851868, 'util', 0), ('awtkns/fastapi-crudrouter', 0.5144665837287903, 'web', 2), ('rawheel/fastapi-boilerplate', 0.5100096464157104, 'web', 0), ('klen/py-frameworks-bench', 0.5092925429344177, 'perf', 0), ('pylons/pyramid', 0.5075467824935913, 'web', 0), ('snyk-labs/pysnyk', 0.5058279633522034, 'security', 1), ('nficano/python-lambda', 0.505323588848114, 'util', 0), ('backtick-se/cowait', 0.5034772157669067, 'util', 0)]
147
7
null
0.56
34
18
49
1
4
4
4
34
47
90
1.4
48
1,758
ml
https://github.com/rom1504/clip-retrieval
[]
null
[]
[]
null
null
null
rom1504/clip-retrieval
clip-retrieval
1,917
181
22
Jupyter Notebook
https://rom1504.github.io/clip-retrieval/
Easily compute clip embeddings and build a clip retrieval system with them
rom1504
2024-01-14
2021-06-07
138
13.876939
null
Easily compute clip embeddings and build a clip retrieval system with them
['ai', 'clip', 'deep-learning', 'knn', 'multimodal', 'semantic-search']
['ai', 'clip', 'deep-learning', 'knn', 'multimodal', 'semantic-search']
2024-01-13
[('jina-ai/clip-as-service', 0.6420944929122925, 'nlp', 1), ('openai/clip', 0.5981614589691162, 'ml-dl', 2), ('albumentations-team/albumentations', 0.5307724475860596, 'ml-dl', 1), ('nomic-ai/nomic', 0.5256919264793396, 'nlp', 0), ('chroma-core/chroma', 0.5229653716087341, 'data', 0), ('qdrant/fastembed', 0.5138350129127502, 'ml', 0)]
26
3
null
1.08
123
69
32
0
9
33
9
123
80
90
0.7
48
1,050
util
https://github.com/home-assistant/supervisor
[]
null
[]
[]
null
null
null
home-assistant/supervisor
supervisor
1,559
553
85
Python
https://home-assistant.io/hassio/
:house_with_garden: Home Assistant Supervisor
home-assistant
2024-01-12
2017-03-14
359
4.342618
https://avatars.githubusercontent.com/u/13844975?v=4
🏑 Home Assistant Supervisor
['docker', 'home-assistant', 'home-automation', 'orchestrator']
['docker', 'home-assistant', 'home-automation', 'orchestrator']
2024-01-13
[('prefecthq/server', 0.5141927599906921, 'util', 0)]
76
3
null
8.54
239
205
83
0
37
61
37
239
452
90
1.9
48
714
math
https://github.com/facebookresearch/theseus
[]
null
[]
[]
null
null
null
facebookresearch/theseus
theseus
1,523
116
29
Python
null
A library for differentiable nonlinear optimization
facebookresearch
2024-01-12
2021-11-18
114
13.276463
https://avatars.githubusercontent.com/u/16943930?v=4
A library for differentiable nonlinear optimization
['bilevel-optimization', 'computer-vision', 'deep-learning', 'differentiable-optimization', 'embodied-ai', 'gauss-newton', 'implicit-differentiation', 'levenberg-marquardt', 'nonlinear-least-squares', 'pytorch', 'robotics']
['bilevel-optimization', 'computer-vision', 'deep-learning', 'differentiable-optimization', 'embodied-ai', 'gauss-newton', 'implicit-differentiation', 'levenberg-marquardt', 'nonlinear-least-squares', 'pytorch', 'robotics']
2023-12-22
[('tensorlayer/tensorlayer', 0.553860068321228, 'ml-rl', 1), ('pytorch/rl', 0.5316617488861084, 'ml-rl', 2), ('explosion/thinc', 0.5256298184394836, 'ml-dl', 2), ('thu-ml/tianshou', 0.5228813886642456, 'ml-rl', 1), ('pytorch/ignite', 0.5099302530288696, 'ml-dl', 2), ('tensorflow/tensor2tensor', 0.5072576403617859, 'ml', 1)]
25
4
null
2
24
17
26
1
3
5
3
24
67
90
2.8
48
632
perf
https://github.com/dask/distributed
[]
null
[]
[]
null
null
null
dask/distributed
distributed
1,513
706
56
Python
https://distributed.dask.org
A distributed task scheduler for Dask
dask
2024-01-13
2015-09-13
437
3.45998
https://avatars.githubusercontent.com/u/17131925?v=4
A distributed task scheduler for Dask
['dask', 'distributed-computing', 'pydata']
['dask', 'distributed-computing', 'pydata']
2024-01-12
[('dask/dask', 0.719694972038269, 'perf', 2), ('prefecthq/prefect-dask', 0.6549785137176514, 'util', 1), ('agronholm/apscheduler', 0.5948215126991272, 'util', 0), ('fugue-project/fugue', 0.5652367472648621, 'pandas', 2), ('dask/dask-ml', 0.5617966055870056, 'ml', 0), ('backtick-se/cowait', 0.56135493516922, 'util', 1), ('autoviml/auto_ts', 0.5237195491790771, 'time-series', 0), ('bogdanp/dramatiq', 0.5118077993392944, 'util', 0)]
322
2
null
10.19
243
164
101
0
0
26
26
242
567
90
2.3
48
1,652
llm
https://github.com/farizrahman4u/loopgpt
[]
Re-implementation of Auto-GPT as a python package, written with modularity and extensibility in mind.
[]
[]
null
null
null
farizrahman4u/loopgpt
loopgpt
1,339
128
34
Python
null
Modular Auto-GPT Framework
farizrahman4u
2024-01-12
2023-04-14
41
32.209622
null
Modular Auto-GPT Framework
['chatgpt', 'gpt', 'gpt4', 'llms']
['chatgpt', 'gpt', 'gpt4', 'llms']
2023-10-20
[('mmabrouk/chatgpt-wrapper', 0.6415730118751526, 'llm', 2), ('xtekky/gpt4free', 0.617682158946991, 'llm', 3), ('instruction-tuning-with-gpt-4/gpt-4-llm', 0.5821303129196167, 'llm', 1), ('microsoft/autogen', 0.5695356726646423, 'llm', 2), ('killianlucas/open-interpreter', 0.5448848605155945, 'llm', 1), ('eth-sri/lmql', 0.5417187809944153, 'llm', 1), ('run-llama/rags', 0.5412454605102539, 'llm', 1), ('karpathy/nanogpt', 0.5409718155860901, 'llm', 0), ('openai/openai-cookbook', 0.533822238445282, 'ml', 1), ('eleutherai/gpt-neo', 0.5264042019844055, 'llm', 1), ('mnotgod96/appagent', 0.5192574858665466, 'llm', 2), ('shishirpatil/gorilla', 0.5184142589569092, 'llm', 1), ('promptslab/promptify', 0.5138046741485596, 'nlp', 1), ('vision-cair/minigpt-4', 0.5081561207771301, 'llm', 0), ('torantulino/auto-gpt', 0.5069693922996521, 'llm', 0), ('opengenerativeai/genossgpt', 0.5030877590179443, 'llm', 1), ('continuum-llms/chatgpt-memory', 0.5028600096702576, 'llm', 1)]
12
4
null
5.17
1
0
9
3
7
9
7
1
1
90
1
48
1,241
ml
https://github.com/visual-layer/fastdup
[]
null
[]
[]
null
null
null
visual-layer/fastdup
fastdup
1,302
67
20
Python
null
fastdup is a powerful free tool designed to rapidly extract valuable insights from your image & video datasets. Assisting you to increase your dataset images & labels quality and reduce your data operations costs at an unparalleled scale.
visual-layer
2024-01-12
2022-05-11
89
14.489666
https://avatars.githubusercontent.com/u/116299338?v=4
fastdup is a powerful free tool designed to rapidly extract valuable insights from your image & video datasets. Assisting you to increase your dataset images & labels quality and reduce your data operations costs at an unparalleled scale.
['data-augmentation', 'data-curation', 'dataset', 'deep-learning', 'image', 'image-analysis', 'image-classfication', 'image-classification', 'image-duplicate-detection', 'image-processing', 'image-similarity', 'machine-learning', 'novelty-detection', 'object-detection', 'outlier-detection', 'visual-search', 'visualization', 'visualization-tools']
['data-augmentation', 'data-curation', 'dataset', 'deep-learning', 'image', 'image-analysis', 'image-classfication', 'image-classification', 'image-duplicate-detection', 'image-processing', 'image-similarity', 'machine-learning', 'novelty-detection', 'object-detection', 'outlier-detection', 'visual-search', 'visualization', 'visualization-tools']
2024-01-09
[('albumentations-team/albumentations', 0.5445998311042786, 'ml-dl', 5), ('towhee-io/towhee', 0.5181317925453186, 'ml-ops', 2), ('huggingface/datasets', 0.5084423422813416, 'nlp', 2)]
20
1
null
12.88
28
18
20
0
61
83
61
28
31
90
1.1
48
971
ml
https://github.com/google/vizier
[]
null
[]
[]
null
null
null
google/vizier
vizier
1,138
71
20
Python
https://oss-vizier.readthedocs.io
Python-based research interface for blackbox and hyperparameter optimization, based on the internal Google Vizier Service.
google
2024-01-14
2022-02-16
101
11.172511
https://avatars.githubusercontent.com/u/1342004?v=4
Python-based research interface for blackbox and hyperparameter optimization, based on the internal Google Vizier Service.
['algorithm', 'bayesian-optimization', 'blackbox-optimization', 'deep-learning', 'distributed-computing', 'distributed-systems', 'evolutionary-algorithms', 'google', 'grpc', 'hyperparameter-optimization', 'hyperparameter-tuning', 'machine-learning', 'open-source', 'optimization', 'tuning', 'tuning-parameters', 'vizier']
['algorithm', 'bayesian-optimization', 'blackbox-optimization', 'deep-learning', 'distributed-computing', 'distributed-systems', 'evolutionary-algorithms', 'google', 'grpc', 'hyperparameter-optimization', 'hyperparameter-tuning', 'machine-learning', 'open-source', 'optimization', 'tuning', 'tuning-parameters', 'vizier']
2024-01-12
[('scikit-optimize/scikit-optimize', 0.6410875916481018, 'ml', 5), ('determined-ai/determined', 0.6237358450889587, 'ml-ops', 4), ('epistasislab/tpot', 0.6137571930885315, 'ml', 2), ('microsoft/nni', 0.5949028134346008, 'ml', 5), ('ray-project/ray', 0.5806607604026794, 'ml-ops', 4), ('hyperopt/hyperopt', 0.5750223994255066, 'ml', 0), ('gradio-app/gradio', 0.5744260549545288, 'viz', 2), ('microsoft/deepspeed', 0.5668622851371765, 'ml-dl', 2), ('wandb/client', 0.5621833801269531, 'ml', 4), ('automl/auto-sklearn', 0.5519843101501465, 'ml', 3), ('kubeflow/katib', 0.5503707528114319, 'ml', 0), ('microsoft/flaml', 0.5446196794509888, 'ml', 4), ('ray-project/tune-sklearn', 0.5394313931465149, 'ml', 2), ('polyaxon/polyaxon', 0.5294651389122009, 'ml-ops', 3), ('kubeflow/fairing', 0.5291571021080017, 'ml-ops', 0), ('ml-tooling/opyrator', 0.528394877910614, 'viz', 1), ('plasma-umass/scalene', 0.5277619957923889, 'profiling', 0), ('optuna/optuna', 0.5277183055877686, 'ml', 2), ('tensorflow/tensor2tensor', 0.5147285461425781, 'ml', 2), ('radiantearth/radiant-mlhub', 0.5126688480377197, 'gis', 1), ('oegedijk/explainerdashboard', 0.5101515650749207, 'ml-interpretability', 0), ('mljar/mljar-supervised', 0.5090547204017639, 'ml', 2), ('dialogflow/dialogflow-python-client-v2', 0.5073549151420593, 'nlp', 1), ('google/gin-config', 0.5030581951141357, 'util', 0), ('rasbt/machine-learning-book', 0.5023799538612366, 'study', 2), ('ageron/handson-ml2', 0.5004328489303589, 'ml', 0)]
21
4
null
9.52
99
94
23
0
15
17
15
99
25
90
0.3
48
1,573
data
https://github.com/pathwaycom/pathway
['llmops']
null
[]
[]
null
null
null
pathwaycom/pathway
pathway
1,079
42
18
Python
https://pathway.com
Pathway is a high-throughput, low-latency data processing framework that handles live data & streaming for you. Made with ❀️ for Python & ML/AI developers.
pathwaycom
2024-01-13
2022-11-27
61
17.606061
https://avatars.githubusercontent.com/u/25750857?v=4
Pathway is a high-throughput, low-latency data processing framework that handles live data & streaming for you. Made with ❀️ for Python & ML/AI developers.
['batch-processing', 'kafka', 'machine-learning-algorithms', 'pathway', 'real-time', 'streaming']
['batch-processing', 'kafka', 'llmops', 'machine-learning-algorithms', 'pathway', 'real-time', 'streaming']
2024-01-12
[('airtai/faststream', 0.6327610611915588, 'perf', 1), ('google/mediapipe', 0.5712288022041321, 'ml', 0), ('mage-ai/mage-ai', 0.5671728849411011, 'ml-ops', 0), ('activeloopai/deeplake', 0.5419109463691711, 'ml-ops', 0), ('online-ml/river', 0.5360531210899353, 'ml', 1), ('dagworks-inc/hamilton', 0.5315225720405579, 'ml-ops', 1), ('polyaxon/datatile', 0.5242671370506287, 'pandas', 0), ('kestra-io/kestra', 0.5241698026657104, 'ml-ops', 0), ('streamlit/streamlit', 0.519947350025177, 'viz', 0), ('ml-tooling/opyrator', 0.5166861414909363, 'viz', 0), ('superduperdb/superduperdb', 0.5140187740325928, 'data', 1), ('mlflow/mlflow', 0.5128524899482727, 'ml-ops', 0), ('ploomber/ploomber', 0.5119403004646301, 'ml-ops', 0), ('pathwaycom/llm-app', 0.5075528621673584, 'llm', 3), ('polyaxon/polyaxon', 0.5067856311798096, 'ml-ops', 0), ('wandb/client', 0.5043047666549683, 'ml', 0), ('flyteorg/flyte', 0.503392219543457, 'ml-ops', 0), ('airbytehq/airbyte', 0.5019164681434631, 'data', 0)]
13
5
null
1
1
1
14
0
22
19
22
1
2
90
2
48
1,895
time-series
https://github.com/google/temporian
['feature-engineering', 'temporal-data']
null
[]
[]
1
null
null
google/temporian
temporian
445
28
11
Python
https://temporian.readthedocs.io
Temporian is an open-source Python library for preprocessing ⚑ and feature engineering πŸ›  temporal data πŸ“ˆ for machine learning applications πŸ€–
google
2024-01-12
2023-01-17
54
8.240741
https://avatars.githubusercontent.com/u/1342004?v=4
Temporian is an open-source Python library for preprocessing ⚑ and feature engineering πŸ›  temporal data πŸ“ˆ for machine learning applications πŸ€–
['cpp', 'feature-engineering', 'temporal-data', 'time-series']
['cpp', 'feature-engineering', 'temporal-data', 'time-series']
2024-01-12
[('featurelabs/featuretools', 0.7070109844207764, 'ml', 1), ('pycaret/pycaret', 0.6051017045974731, 'ml', 1), ('firmai/atspy', 0.6023882031440735, 'time-series', 1), ('rasbt/mlxtend', 0.58907151222229, 'ml', 0), ('alkaline-ml/pmdarima', 0.5879765152931213, 'time-series', 1), ('gradio-app/gradio', 0.5871459245681763, 'viz', 0), ('blue-yonder/tsfresh', 0.5776029229164124, 'time-series', 1), ('sktime/sktime', 0.5772302150726318, 'time-series', 1), ('dateutil/dateutil', 0.5748814344406128, 'util', 0), ('rjt1990/pyflux', 0.5719876289367676, 'time-series', 1), ('awslabs/gluonts', 0.5661502480506897, 'time-series', 1), ('ta-lib/ta-lib-python', 0.5626396536827087, 'finance', 0), ('unit8co/darts', 0.5616124272346497, 'time-series', 1), ('tdameritrade/stumpy', 0.5609158277511597, 'time-series', 0), ('scikit-learn/scikit-learn', 0.5564255714416504, 'ml', 0), ('kubeflow/fairing', 0.5490253567695618, 'ml-ops', 0), ('rasbt/machine-learning-book', 0.5215150117874146, 'study', 0), ('pandas-dev/pandas', 0.5212157368659973, 'pandas', 0), ('pytoolz/toolz', 0.5204028487205505, 'util', 0), ('huggingface/huggingface_hub', 0.5130770802497864, 'ml', 0), ('winedarksea/autots', 0.5130333304405212, 'time-series', 2), ('jovianml/opendatasets', 0.512967050075531, 'data', 0), ('stan-dev/pystan', 0.5121117234230042, 'ml', 0), ('microsoft/flaml', 0.511090874671936, 'ml', 0), ('pastas/pastas', 0.5104494094848633, 'time-series', 0), ('microsoft/nni', 0.5072931051254272, 'ml', 1), ('online-ml/river', 0.5042147040367126, 'ml', 0), ('crflynn/stochastic', 0.5019282698631287, 'sim', 0)]
12
3
null
36.23
60
56
12
0
7
9
7
60
122
90
2
48
491
ml-dl
https://github.com/rasbt/deeplearning-models
[]
null
[]
[]
null
null
null
rasbt/deeplearning-models
deeplearning-models
16,133
3,949
599
Jupyter Notebook
null
A collection of various deep learning architectures, models, and tips
rasbt
2024-01-14
2019-06-05
242
66.43
null
A collection of various deep learning architectures, models, and tips
[]
[]
2023-02-16
[('pytorch/ignite', 0.5799865126609802, 'ml-dl', 0), ('tensorflow/tensor2tensor', 0.5731253623962402, 'ml', 0), ('tensorflow/tensorflow', 0.5665931105613708, 'ml-dl', 0), ('christoschristofidis/awesome-deep-learning', 0.5625115036964417, 'study', 0), ('mrdbourke/pytorch-deep-learning', 0.5607303977012634, 'study', 0), ('nvidia/deeplearningexamples', 0.554612934589386, 'ml-dl', 0), ('xl0/lovely-tensors', 0.5497564673423767, 'ml-dl', 0), ('mosaicml/composer', 0.5479599833488464, 'ml-dl', 0), ('udlbook/udlbook', 0.5459153056144714, 'study', 0), ('aiqc/aiqc', 0.5450917482376099, 'ml-ops', 0), ('calculatedcontent/weightwatcher', 0.5426604747772217, 'ml-dl', 0), ('microsoft/jarvis', 0.5421392321586609, 'llm', 0), ('facebookresearch/ppuda', 0.5405725240707397, 'ml-dl', 0), ('nyandwi/modernconvnets', 0.5375327467918396, 'ml-dl', 0), ('datasystemslab/geotorch', 0.5235190391540527, 'gis', 0), ('karpathy/nn-zero-to-hero', 0.5198577642440796, 'study', 0), ('intellabs/bayesian-torch', 0.516359806060791, 'ml', 0), ('huggingface/accelerate', 0.5161780714988708, 'ml', 0), ('determined-ai/determined', 0.5105359554290771, 'ml-ops', 0), ('keras-rl/keras-rl', 0.5067861080169678, 'ml-rl', 0), ('tatsu-lab/stanford_alpaca', 0.5054455399513245, 'llm', 0), ('keras-team/keras', 0.5051916837692261, 'ml-dl', 0), ('karpathy/micrograd', 0.5046243667602539, 'study', 0), ('denys88/rl_games', 0.5041263103485107, 'ml-rl', 0), ('ggerganov/ggml', 0.5030370354652405, 'ml', 0), ('unity-technologies/ml-agents', 0.501521110534668, 'ml-rl', 0)]
13
6
null
0.08
0
0
56
11
0
0
0
0
0
90
0
47
24
ml-rl
https://github.com/google/dopamine
[]
null
[]
[]
null
null
null
google/dopamine
dopamine
10,288
1,410
435
Jupyter Notebook
https://github.com/google/dopamine
Dopamine is a research framework for fast prototyping of reinforcement learning algorithms.
google
2024-01-11
2018-07-26
287
35.757696
https://avatars.githubusercontent.com/u/1342004?v=4
Dopamine is a research framework for fast prototyping of reinforcement learning algorithms.
['ai', 'google', 'ml', 'rl', 'tensorflow']
['ai', 'google', 'ml', 'rl', 'tensorflow']
2023-11-27
[('pytorch/rl', 0.6595585942268372, 'ml-rl', 2), ('unity-technologies/ml-agents', 0.6415248513221741, 'ml-rl', 0), ('thu-ml/tianshou', 0.6199951171875, 'ml-rl', 1), ('tensorlayer/tensorlayer', 0.5985347628593445, 'ml-rl', 2), ('keras-rl/keras-rl', 0.5969773530960083, 'ml-rl', 1), ('farama-foundation/gymnasium', 0.5846539735794067, 'ml-rl', 0), ('humancompatibleai/imitation', 0.576420783996582, 'ml-rl', 0), ('facebookresearch/habitat-lab', 0.5727390646934509, 'sim', 1), ('denys88/rl_games', 0.5697341561317444, 'ml-rl', 0), ('pettingzoo-team/pettingzoo', 0.5669017434120178, 'ml-rl', 0), ('openai/baselines', 0.5650805830955505, 'ml-rl', 0), ('ai4finance-foundation/finrl', 0.5640981793403625, 'finance', 0), ('deepmind/dm_control', 0.562454104423523, 'ml-rl', 0), ('openai/gym', 0.5587803721427917, 'ml-rl', 0), ('openai/spinningup', 0.5561296939849854, 'study', 0), ('facebookresearch/reagent', 0.5503111481666565, 'ml-rl', 0), ('prefecthq/marvin', 0.547942042350769, 'nlp', 1), ('googlecloudplatform/vertex-ai-samples', 0.5409380793571472, 'ml', 2), ('google-research/google-research', 0.5344747304916382, 'ml', 1), ('tensorflow/tensor2tensor', 0.5282601118087769, 'ml', 0), ('operand/agency', 0.5216368436813354, 'llm', 1), ('shangtongzhang/reinforcement-learning-an-introduction', 0.5188839435577393, 'study', 0), ('pytorchlightning/pytorch-lightning', 0.5187596082687378, 'ml-dl', 1), ('oegedijk/explainerdashboard', 0.5178472399711609, 'ml-interpretability', 0), ('microsoft/lmops', 0.5175570249557495, 'llm', 0), ('deepmind/acme', 0.5139473080635071, 'ml-rl', 0), ('google/trax', 0.5098437666893005, 'ml-dl', 0), ('nvidia-omniverse/omniisaacgymenvs', 0.5081252455711365, 'sim', 0), ('mlflow/mlflow', 0.5052387118339539, 'ml-ops', 2), ('explosion/thinc', 0.5020156502723694, 'ml-dl', 2), ('salesforce/warp-drive', 0.5014780759811401, 'ml-rl', 0), ('nvidia-omniverse/isaacgymenvs', 0.5014722943305969, 'sim', 0), ('inspirai/timechamber', 0.5013951063156128, 'sim', 0)]
15
4
null
0.19
5
2
67
2
0
0
0
5
3
90
0.6
47
1,107
ml
https://github.com/twitter/the-algorithm-ml
[]
null
[]
[]
null
null
null
twitter/the-algorithm-ml
the-algorithm-ml
9,797
2,242
100
Python
https://blog.twitter.com/engineering/en_us/topics/open-source/2023/twitter-recommendation-algorithm
Source code for Twitter's Recommendation Algorithm
twitter
2024-01-13
2023-03-27
44
221.938511
https://avatars.githubusercontent.com/u/50278?v=4
Source code for Twitter's Recommendation Algorithm
[]
[]
2023-04-06
[]
0
-1
23
1
2
2
10
9
0
0
0
2
0
90
0
47
996
finance
https://github.com/ta-lib/ta-lib-python
[]
null
[]
[]
null
null
null
ta-lib/ta-lib-python
ta-lib-python
8,658
1,703
325
Cython
http://ta-lib.github.io/ta-lib-python
Python wrapper for TA-Lib (http://ta-lib.org/).
ta-lib
2024-01-14
2012-03-23
618
13.996767
https://avatars.githubusercontent.com/u/21127168?v=4
Python wrapper for TA-Lib (http://ta-lib.org/).
['finance', 'pattern-recognition', 'quantitative-finance', 'ta-lib', 'technical-analysis']
['finance', 'pattern-recognition', 'quantitative-finance', 'ta-lib', 'technical-analysis']
2023-12-30
[('goldmansachs/gs-quant', 0.6905857920646667, 'finance', 0), ('pytoolz/toolz', 0.653429388999939, 'util', 0), ('cuemacro/finmarketpy', 0.6374157071113586, 'finance', 0), ('twopirllc/pandas-ta', 0.6217855215072632, 'finance', 2), ('alkaline-ml/pmdarima', 0.6164563894271851, 'time-series', 0), ('rasbt/mlxtend', 0.5990067720413208, 'ml', 0), ('gbeced/pyalgotrade', 0.5967674851417542, 'finance', 0), ('dylanhogg/awesome-python', 0.59423828125, 'study', 0), ('pmorissette/ffn', 0.5941312909126282, 'finance', 0), ('wesm/pydata-book', 0.5871008038520813, 'study', 0), ('firmai/atspy', 0.5853879451751709, 'time-series', 1), ('domokane/financepy', 0.5799912810325623, 'finance', 1), ('probml/pyprobml', 0.5762322545051575, 'ml', 0), ('pandas-dev/pandas', 0.5740821957588196, 'pandas', 0), ('pycaret/pycaret', 0.5695496201515198, 'ml', 0), ('ranaroussi/quantstats', 0.566260814666748, 'finance', 2), ('gradio-app/gradio', 0.5636385679244995, 'viz', 0), ('google/temporian', 0.5626396536827087, 'time-series', 0), ('mito-ds/monorepo', 0.5616872906684875, 'jupyter', 0), ('mementum/backtrader', 0.560478925704956, 'finance', 0), ('pypy/pypy', 0.5588146448135376, 'util', 0), ('timofurrer/awesome-asyncio', 0.5574406981468201, 'study', 0), ('fchollet/deep-learning-with-python-notebooks', 0.5513738393783569, 'study', 0), ('krzjoa/awesome-python-data-science', 0.5507447123527527, 'study', 0), ('quantconnect/lean', 0.5490601062774658, 'finance', 1), ('google/tf-quant-finance', 0.5487057566642761, 'finance', 2), ('hydrosquall/tiingo-python', 0.5465307831764221, 'finance', 1), ('featurelabs/featuretools', 0.5429303646087646, 'ml', 0), ('eleutherai/pyfra', 0.5423515439033508, 'ml', 0), ('quantecon/quantecon.py', 0.54204261302948, 'sim', 0), ('quantopian/zipline', 0.5401220321655273, 'finance', 0), ('jovianml/opendatasets', 0.5373624563217163, 'data', 0), ('1200wd/bitcoinlib', 0.5371884703636169, 'crypto', 0), ('man-c/pycoingecko', 0.5362427234649658, 'crypto', 0), ('landscapeio/prospector', 0.5358104109764099, 'util', 0), ('mementum/bta-lib', 0.5354213714599609, 'finance', 0), ('brandon-rhodes/python-patterns', 0.5266119837760925, 'util', 0), ('huggingface/huggingface_hub', 0.5248498916625977, 'ml', 0), ('scikit-learn/scikit-learn', 0.5245856642723083, 'ml', 0), ('mynameisfiber/high_performance_python_2e', 0.5237243175506592, 'study', 0), ('rjt1990/pyflux', 0.5227634906768799, 'time-series', 0), ('plotly/dash', 0.522579550743103, 'viz', 1), ('python/cpython', 0.5212801098823547, 'util', 0), ('ageron/handson-ml2', 0.5182675123214722, 'ml', 0), ('malloydata/malloy-py', 0.5163371562957764, 'data', 0), ('scikit-mobility/scikit-mobility', 0.5160692930221558, 'gis', 0), ('ai4finance-foundation/fingpt', 0.5139918327331543, 'finance', 2), ('erotemic/ubelt', 0.513969361782074, 'util', 0), ('tensorly/tensorly', 0.5138649344444275, 'ml-dl', 0), ('wilsonrljr/sysidentpy', 0.5129168033599854, 'time-series', 0), ('kernc/backtesting.py', 0.512697160243988, 'finance', 1), ('masoniteframework/masonite', 0.512328028678894, 'web', 0), ('sqlalchemy/mako', 0.511563241481781, 'template', 0), ('legrandin/pycryptodome', 0.5114703178405762, 'util', 0), ('tdameritrade/stumpy', 0.509051501750946, 'time-series', 0), ('pyscf/pyscf', 0.5085233449935913, 'sim', 0), ('clips/pattern', 0.5062140226364136, 'nlp', 0), ('fastai/fastcore', 0.5056002140045166, 'util', 0), ('lballabio/quantlib-swig', 0.505255401134491, 'finance', 1), ('openai/openai-python', 0.5044464468955994, 'util', 0), ('pyca/cryptography', 0.5043237209320068, 'util', 0), ('dit/dit', 0.5039918422698975, 'math', 0), ('imageio/imageio', 0.5035238862037659, 'util', 0), ('google/pytype', 0.5031558275222778, 'typing', 0), ('fredrik-johansson/mpmath', 0.5021244287490845, 'math', 0), ('astral-sh/ruff', 0.5013483166694641, 'util', 0), ('aswinnnn/pyscan', 0.501020610332489, 'security', 0), ('polyaxon/datatile', 0.500678539276123, 'pandas', 0)]
29
1
null
0.58
25
10
144
0
0
2
2
25
47
90
1.9
47
838
time-series
https://github.com/blue-yonder/tsfresh
[]
null
[]
[]
null
null
null
blue-yonder/tsfresh
tsfresh
7,953
1,199
167
Jupyter Notebook
http://tsfresh.readthedocs.io
Automatic extraction of relevant features from time series:
blue-yonder
2024-01-13
2016-10-26
378
20.992081
https://avatars.githubusercontent.com/u/6234170?v=4
Automatic extraction of relevant features from time series:
['data-science', 'feature-extraction', 'time-series']
['data-science', 'feature-extraction', 'time-series']
2023-10-24
[('salesforce/merlion', 0.6107531189918518, 'time-series', 1), ('sktime/sktime', 0.5950053930282593, 'time-series', 2), ('tdameritrade/stumpy', 0.5777381062507629, 'time-series', 1), ('google/temporian', 0.5776029229164124, 'time-series', 1), ('alkaline-ml/pmdarima', 0.5346757173538208, 'time-series', 1), ('unit8co/darts', 0.5309851765632629, 'time-series', 2), ('winedarksea/autots', 0.5182939171791077, 'time-series', 1)]
91
3
null
0.48
6
2
88
3
1
4
1
6
6
90
1
47
1,128
ml
https://github.com/scikit-learn-contrib/imbalanced-learn
[]
null
[]
[]
null
null
null
scikit-learn-contrib/imbalanced-learn
imbalanced-learn
6,603
1,274
140
Python
https://imbalanced-learn.org
A Python Package to Tackle the Curse of Imbalanced Datasets in Machine Learning
scikit-learn-contrib
2024-01-12
2014-08-16
493
13.381876
https://avatars.githubusercontent.com/u/17349883?v=4
A Python Package to Tackle the Curse of Imbalanced Datasets in Machine Learning
['data-analysis', 'data-science', 'machine-learning', 'statistics']
['data-analysis', 'data-science', 'machine-learning', 'statistics']
2023-10-23
[('pycaret/pycaret', 0.6684343814849854, 'ml', 2), ('scikit-learn/scikit-learn', 0.6626807451248169, 'ml', 4), ('rasbt/mlxtend', 0.651149570941925, 'ml', 2), ('yzhao062/pyod', 0.589371383190155, 'data', 3), ('facebookresearch/balance', 0.5837095379829407, 'ml', 0), ('jovianml/opendatasets', 0.5723727941513062, 'data', 2), ('gradio-app/gradio', 0.571931004524231, 'viz', 3), ('featurelabs/featuretools', 0.5710511207580566, 'ml', 2), ('scikit-learn-contrib/lightning', 0.5669341087341309, 'ml', 1), ('tensorflow/data-validation', 0.5666349530220032, 'ml-ops', 0), ('huggingface/evaluate', 0.557458758354187, 'ml', 1), ('epistasislab/tpot', 0.545037567615509, 'ml', 2), ('krzjoa/awesome-python-data-science', 0.535544753074646, 'study', 4), ('scikit-learn-contrib/metric-learn', 0.5348906517028809, 'ml', 1), ('unit8co/darts', 0.5324269533157349, 'time-series', 2), ('dask/dask-ml', 0.5264381170272827, 'ml', 0), ('rasbt/machine-learning-book', 0.5242375731468201, 'study', 1), ('firmai/industry-machine-learning', 0.5154035687446594, 'study', 2), ('merantix-momentum/squirrel-core', 0.5136831998825073, 'ml', 2), ('online-ml/river', 0.5116428732872009, 'ml', 2), ('dylanhogg/awesome-python', 0.5090502500534058, 'study', 2), ('huggingface/datasets', 0.507771372795105, 'nlp', 1), ('teamhg-memex/eli5', 0.5050359964370728, 'ml', 2)]
80
6
null
0.83
14
10
115
3
1
3
1
14
13
90
0.9
47
421
util
https://github.com/tebelorg/rpa-python
[]
null
[]
[]
null
null
null
tebelorg/rpa-python
RPA-Python
4,316
648
103
Python
null
Python package for doing RPA
tebelorg
2024-01-13
2019-03-30
252
17.097906
https://avatars.githubusercontent.com/u/10379612?v=4
Python package for doing RPA
['cross-platform', 'opencv', 'rpa', 'sikuli', 'tagui', 'tesseract']
['cross-platform', 'opencv', 'rpa', 'sikuli', 'tagui', 'tesseract']
2023-12-24
[('openai/openai-python', 0.5686379671096802, 'util', 0), ('earthlab/earthpy', 0.5264238715171814, 'gis', 0), ('pypy/pypy', 0.5048558115959167, 'util', 0), ('imageio/imageio', 0.502187967300415, 'util', 0)]
4
2
null
0.44
25
23
58
1
2
11
2
25
79
90
3.2
47
1,800
ml
https://github.com/nv-tlabs/get3d
['generative-model', '3d']
Generative Model of High Quality 3D Textured Shapes Learned from Images
[]
[]
null
null
null
nv-tlabs/get3d
GET3D
4,002
364
142
Python
null
null
nv-tlabs
2024-01-13
2022-09-08
72
55.037328
https://avatars.githubusercontent.com/u/49653101?v=4
Generative Model of High Quality 3D Textured Shapes Learned from Images
[]
['3d', 'generative-model']
2023-10-23
[('openai/image-gpt', 0.5187845826148987, 'llm', 0), ('sharonzhou/long_stable_diffusion', 0.5064239501953125, 'diffusion', 0)]
4
1
null
0.08
12
6
16
3
0
0
0
12
20
90
1.7
47
610
testing
https://github.com/spulec/freezegun
[]
null
[]
[]
null
null
null
spulec/freezegun
freezegun
3,890
267
34
Python
null
Let your Python tests travel through time
spulec
2024-01-12
2012-12-11
581
6.695353
null
Let your Python tests travel through time
[]
[]
2023-12-19
[('pmorissette/bt', 0.5981432199478149, 'finance', 0), ('wolever/parameterized', 0.5846211314201355, 'testing', 0), ('sdispater/pendulum', 0.54648357629776, 'util', 0), ('ionelmc/pytest-benchmark', 0.5428466200828552, 'testing', 0), ('nedbat/coveragepy', 0.5298979878425598, 'testing', 0), ('arrow-py/arrow', 0.5130565166473389, 'util', 0)]
112
7
null
0.42
56
21
135
0
3
5
3
56
50
90
0.9
47
441
gis
https://github.com/shapely/shapely
['geometric-algorithms', 'geometry']
null
[]
[]
1
null
null
shapely/shapely
shapely
3,549
554
88
Python
https://shapely.readthedocs.io/en/stable/
Manipulation and analysis of geometric objects
shapely
2024-01-12
2011-12-31
630
5.629504
https://avatars.githubusercontent.com/u/59894073?v=4
Manipulation and analysis of geometric objects
[]
['geometric-algorithms', 'geometry']
2024-01-04
[('benbovy/spherely', 0.873152494430542, 'gis', 2), ('scikit-geometry/scikit-geometry', 0.5902884602546692, 'gis', 2), ('google-deepmind/alphageometry', 0.5421801805496216, 'math', 1)]
151
5
null
1.4
67
20
147
0
2
8
2
67
123
90
1.8
47
657
util
https://github.com/zeromq/pyzmq
[]
null
[]
[]
null
null
null
zeromq/pyzmq
pyzmq
3,498
666
103
Python
http://zguide.zeromq.org/py:all
PyZMQ: Python bindings for zeromq
zeromq
2024-01-13
2010-07-21
705
4.955677
https://avatars.githubusercontent.com/u/109777?v=4
PyZMQ: Python bindings for zeromq
['cython', 'zeromq']
['cython', 'zeromq']
2024-01-04
[('quantumlib/cirq', 0.5248025059700012, 'sim', 0), ('pyscf/pyscf', 0.5071917772293091, 'sim', 0)]
196
5
null
2.38
23
17
164
0
0
6
6
23
37
90
1.6
47
249
web
https://github.com/websocket-client/websocket-client
[]
null
[]
[]
null
null
null
websocket-client/websocket-client
websocket-client
3,381
805
86
Python
https://github.com/websocket-client/websocket-client
WebSocket client for Python
websocket-client
2024-01-12
2010-12-28
683
4.95022
https://avatars.githubusercontent.com/u/24536015?v=4
WebSocket client for Python
['rfc-6455', 'websocket', 'websocket-client', 'websockets', 'websockets-client']
['rfc-6455', 'websocket', 'websocket-client', 'websockets', 'websockets-client']
2024-01-12
[('miguelgrinberg/python-socketio', 0.7025880217552185, 'util', 1), ('encode/httpx', 0.6006039381027222, 'web', 0), ('simple-salesforce/simple-salesforce', 0.5527551770210266, 'data', 0), ('bmoscon/cryptofeed', 0.5356486439704895, 'crypto', 2), ('aio-libs/aiohttp', 0.5178495049476624, 'web', 0), ('paramiko/paramiko', 0.5153641700744629, 'util', 0), ('masoniteframework/masonite', 0.5101653933525085, 'web', 0), ('encode/uvicorn', 0.5029712319374084, 'web', 0)]
221
5
null
1.31
23
15
159
0
10
6
10
23
28
90
1.2
47
94
web
https://github.com/unbit/uwsgi
[]
null
[]
[]
null
null
null
unbit/uwsgi
uwsgi
3,374
681
111
C
http://projects.unbit.it/uwsgi
uWSGI application server container
unbit
2024-01-13
2011-10-09
642
5.253114
null
uWSGI application server container
[]
[]
2023-12-26
[]
359
5
null
0.48
54
24
149
1
0
10
10
54
88
90
1.6
47
618
util
https://github.com/more-itertools/more-itertools
[]
null
[]
[]
null
null
null
more-itertools/more-itertools
more-itertools
3,314
266
40
Python
https://more-itertools.rtfd.io
More routines for operating on iterables, beyond itertools
more-itertools
2024-01-13
2012-04-26
613
5.399907
https://avatars.githubusercontent.com/u/61018589?v=4
More routines for operating on iterables, beyond itertools
[]
[]
2024-01-12
[('fluentpython/example-code-2e', 0.5874441862106323, 'study', 0)]
114
5
null
3.12
41
33
143
0
6
4
6
41
42
90
1
47
1,499
ml-rl
https://github.com/deepmind/acme
[]
null
[]
[]
1
null
null
deepmind/acme
acme
3,302
410
83
Python
null
A library of reinforcement learning components and agents
deepmind
2024-01-12
2020-05-01
195
16.883857
https://avatars.githubusercontent.com/u/8596759?v=4
A library of reinforcement learning components and agents
['agents', 'reinforcement-learning', 'research']
['agents', 'reinforcement-learning', 'research']
2024-01-03
[('pytorch/rl', 0.6701556444168091, 'ml-rl', 1), ('shangtongzhang/reinforcement-learning-an-introduction', 0.6519054770469666, 'study', 1), ('openai/gym', 0.6127493381500244, 'ml-rl', 1), ('thu-ml/tianshou', 0.5823108553886414, 'ml-rl', 0), ('pettingzoo-team/pettingzoo', 0.578000545501709, 'ml-rl', 1), ('farama-foundation/gymnasium', 0.5646693110466003, 'ml-rl', 1), ('humancompatibleai/imitation', 0.5565671920776367, 'ml-rl', 0), ('tensorlayer/tensorlayer', 0.5421755909919739, 'ml-rl', 1), ('facebookresearch/reagent', 0.536990761756897, 'ml-rl', 0), ('denys88/rl_games', 0.5312319397926331, 'ml-rl', 1), ('facebookresearch/habitat-lab', 0.52789306640625, 'sim', 2), ('google/dopamine', 0.5139473080635071, 'ml-rl', 0), ('unity-technologies/ml-agents', 0.5082459449768066, 'ml-rl', 1), ('salesforce/warp-drive', 0.5006597638130188, 'ml-rl', 1)]
84
3
null
0.6
9
2
45
0
0
3
3
9
6
90
0.7
47
718
util
https://github.com/ashleve/lightning-hydra-template
[]
null
[]
[]
null
null
null
ashleve/lightning-hydra-template
lightning-hydra-template
3,296
545
25
Python
null
PyTorch Lightning + Hydra. A very user-friendly template for ML experimentation. ⚑πŸ”₯⚑
ashleve
2024-01-14
2020-11-04
168
19.519459
null
PyTorch Lightning + Hydra. A very user-friendly template for ML experimentation. ⚑πŸ”₯⚑
['best-practices', 'config', 'deep-learning', 'hydra', 'mlops', 'project-structure', 'pytorch', 'pytorch-lightning', 'reproducibility', 'template']
['best-practices', 'config', 'deep-learning', 'hydra', 'mlops', 'project-structure', 'pytorch', 'pytorch-lightning', 'reproducibility', 'template']
2023-09-25
[('pytorch/ignite', 0.6497684717178345, 'ml-dl', 2), ('intel/intel-extension-for-pytorch', 0.6405739188194275, 'perf', 2), ('determined-ai/determined', 0.6221935153007507, 'ml-ops', 3), ('rasbt/machine-learning-book', 0.619256317615509, 'study', 2), ('aws/sagemaker-python-sdk', 0.6082078814506531, 'ml', 1), ('mrdbourke/pytorch-deep-learning', 0.605148196220398, 'study', 2), ('skorch-dev/skorch', 0.6017202138900757, 'ml-dl', 1), ('huggingface/transformers', 0.5985631942749023, 'nlp', 2), ('tlkh/tf-metal-experiments', 0.5975523591041565, 'perf', 1), ('facebookresearch/hydra', 0.5850319266319275, 'util', 0), ('pytorch/data', 0.5815867781639099, 'data', 0), ('horovod/horovod', 0.5749367475509644, 'ml-ops', 2), ('uber/petastorm', 0.5747993588447571, 'data', 2), ('facebookresearch/pytorch3d', 0.565503716468811, 'ml-dl', 0), ('kubeflow/fairing', 0.5602784752845764, 'ml-ops', 0), ('neuralmagic/sparseml', 0.5597487688064575, 'ml-dl', 1), ('huggingface/huggingface_hub', 0.5572559237480164, 'ml', 2), ('karpathy/micrograd', 0.5562566518783569, 'study', 0), ('nicolas-chaulet/torch-points3d', 0.5534338355064392, 'ml', 0), ('nvidia/apex', 0.553119957447052, 'ml-dl', 0), ('gradio-app/gradio', 0.5525809526443481, 'viz', 1), ('denys88/rl_games', 0.550940990447998, 'ml-rl', 2), ('arogozhnikov/einops', 0.5508671998977661, 'ml-dl', 2), ('microsoft/onnxruntime', 0.5507823824882507, 'ml', 2), ('oml-team/open-metric-learning', 0.5497283339500427, 'ml', 3), ('rafiqhasan/auto-tensorflow', 0.5461589694023132, 'ml-dl', 0), ('blackhc/toma', 0.545914351940155, 'ml-dl', 1), ('wandb/client', 0.5431339740753174, 'ml', 4), ('fastai/fastcore', 0.5420973300933838, 'util', 0), ('huggingface/accelerate', 0.5420671105384827, 'ml', 0), ('microsoft/nni', 0.5410720109939575, 'ml', 3), ('allenai/allennlp', 0.5402539968490601, 'nlp', 2), ('mosaicml/composer', 0.5401220917701721, 'ml-dl', 2), ('xl0/lovely-tensors', 0.539811372756958, 'ml-dl', 2), ('lutzroeder/netron', 0.5372906923294067, 'ml', 2), ('huggingface/datasets', 0.5349999666213989, 'nlp', 2), ('keras-team/autokeras', 0.534925103187561, 'ml-dl', 1), ('aistream-peelout/flow-forecast', 0.5330670475959778, 'time-series', 2), ('tensorlayer/tensorlayer', 0.5330002307891846, 'ml-rl', 1), ('google/gin-config', 0.5326757431030273, 'util', 0), ('tensorflow/tensor2tensor', 0.5318635106086731, 'ml', 1), ('nvidia/deeplearningexamples', 0.5269266963005066, 'ml-dl', 2), ('christoschristofidis/awesome-deep-learning', 0.52616947889328, 'study', 1), ('pytorch/rl', 0.5253444314002991, 'ml-rl', 1), ('explosion/thinc', 0.5251020193099976, 'ml-dl', 2), ('microsoft/flaml', 0.5247229337692261, 'ml', 1), ('zenml-io/zenml', 0.5233268141746521, 'ml-ops', 3), ('rentruewang/koila', 0.5227289199829102, 'ml', 2), ('microsoft/deepspeed', 0.5205578207969666, 'ml-dl', 2), ('merantix-momentum/squirrel-core', 0.5204800367355347, 'ml', 2), ('fchollet/deep-learning-with-python-notebooks', 0.5156070590019226, 'study', 0), ('streamlit/streamlit', 0.5148152112960815, 'viz', 1), ('apache/incubator-mxnet', 0.5147703886032104, 'ml-dl', 0), ('ludwig-ai/ludwig', 0.5141164064407349, 'ml-ops', 2), ('tensorflow/tensorflow', 0.5114924311637878, 'ml-dl', 1), ('google/tf-quant-finance', 0.5111380219459534, 'finance', 0), ('pyg-team/pytorch_geometric', 0.5103349089622498, 'ml-dl', 2), ('tensorflow/addons', 0.5103277564048767, 'ml', 1), ('ray-project/ray', 0.510144054889679, 'ml-ops', 2), ('pytorch/captum', 0.5099735260009766, 'ml-interpretability', 0), ('bobazooba/xllm', 0.5093933939933777, 'llm', 2), ('kubeflow-kale/kale', 0.5069912075996399, 'ml-ops', 0), ('deepmodeling/deepmd-kit', 0.5063115358352661, 'sim', 1), ('graykode/nlp-tutorial', 0.5006478428840637, 'study', 1), ('polyaxon/datatile', 0.5006352066993713, 'pandas', 2), ('teamhg-memex/eli5', 0.5004812479019165, 'ml', 0), ('huggingface/exporters', 0.5000954270362854, 'ml', 2)]
32
6
null
0.56
19
4
39
4
7
4
7
19
6
90
0.3
47
1,003
finance
https://github.com/matplotlib/mplfinance
[]
null
[]
[]
null
null
null
matplotlib/mplfinance
mplfinance
3,155
589
85
Python
https://pypi.org/project/mplfinance/
Financial Markets Data Visualization using Matplotlib
matplotlib
2024-01-13
2019-12-05
216
14.558339
https://avatars.githubusercontent.com/u/215947?v=4
Financial Markets Data Visualization using Matplotlib
['candlestick', 'candlestick-chart', 'candlestickchart', 'finance', 'intraday-data', 'market-data', 'matplotlib', 'mplfinance', 'ohlc', 'ohlc-chart', 'ohlc-data', 'ohlc-plot', 'ohlcv', 'trading-days']
['candlestick', 'candlestick-chart', 'candlestickchart', 'finance', 'intraday-data', 'market-data', 'matplotlib', 'mplfinance', 'ohlc', 'ohlc-chart', 'ohlc-data', 'ohlc-plot', 'ohlcv', 'trading-days']
2023-08-01
[('mwaskom/seaborn', 0.6046485900878906, 'viz', 1), ('cuemacro/chartpy', 0.574644148349762, 'viz', 1), ('hydrosquall/tiingo-python', 0.5679528713226318, 'finance', 1), ('ranaroussi/yfinance', 0.5448886156082153, 'finance', 1), ('holoviz/hvplot', 0.5378217101097107, 'pandas', 0), ('matplotlib/matplotlib', 0.5346719622612, 'viz', 1), ('man-group/dtale', 0.5290730595588684, 'viz', 0), ('holoviz/panel', 0.5236456394195557, 'viz', 1), ('kanaries/pygwalker', 0.517193078994751, 'pandas', 1), ('bokeh/bokeh', 0.5142570734024048, 'viz', 0), ('netflix/flamescope', 0.5054373741149902, 'viz', 0), ('ranaroussi/quantstats', 0.5049977898597717, 'finance', 1), ('residentmario/geoplot', 0.5038678050041199, 'gis', 1), ('cuemacro/findatapy', 0.5023597478866577, 'finance', 1)]
48
7
null
0.98
17
8
50
6
1
3
1
17
41
90
2.4
47
474
gis
https://github.com/holoviz/datashader
[]
null
[]
[]
1
null
null
holoviz/datashader
datashader
3,127
366
91
Python
http://datashader.org
Quickly and accurately render even the largest data.
holoviz
2024-01-12
2015-12-23
422
7.394932
https://avatars.githubusercontent.com/u/51678735?v=4
Quickly and accurately render even the largest data.
['data-visualizations', 'datashader', 'holoviz', 'rasterization']
['data-visualizations', 'datashader', 'holoviz', 'rasterization']
2024-01-08
[('nomic-ai/deepscatter', 0.6156784296035767, 'viz', 0), ('pyqtgraph/pyqtgraph', 0.5956966876983643, 'viz', 0), ('holoviz/hvplot', 0.5903522372245789, 'pandas', 2), ('holoviz/holoviz', 0.5855922698974609, 'viz', 2), ('vaexio/vaex', 0.5661620497703552, 'perf', 0), ('man-group/dtale', 0.5459538698196411, 'viz', 0), ('visgl/deck.gl', 0.521821916103363, 'viz', 0), ('altair-viz/altair', 0.5193212032318115, 'viz', 0), ('holoviz/holoviews', 0.5166183710098267, 'viz', 1), ('contextlab/hypertools', 0.5120874643325806, 'ml', 0), ('hazyresearch/meerkat', 0.5083599090576172, 'viz', 0), ('holoviz/panel', 0.5079904198646545, 'viz', 1), ('enthought/mayavi', 0.504320502281189, 'viz', 0), ('facebookresearch/hiplot', 0.5003904104232788, 'viz', 0)]
54
6
null
1.88
44
19
98
0
5
13
5
44
38
90
0.9
47
1,210
llm
https://github.com/freedomintelligence/llmzoo
['language-model']
null
[]
[]
null
null
null
freedomintelligence/llmzoo
LLMZoo
2,786
189
50
Python
null
⚑LLM Zoo is a project that provides data, models, and evaluation benchmark for large language models.⚑
freedomintelligence
2024-01-12
2023-04-01
43
64.151316
https://avatars.githubusercontent.com/u/127706844?v=4
⚑LLM Zoo is a project that provides data, models, and evaluation benchmark for large language models.⚑
[]
['language-model']
2023-07-25
[('ai21labs/lm-evaluation', 0.7427138090133667, 'llm', 1), ('hannibal046/awesome-llm', 0.7315229177474976, 'study', 1), ('lm-sys/fastchat', 0.6950333714485168, 'llm', 1), ('ctlllll/llm-toolmaker', 0.6779150366783142, 'llm', 1), ('eleutherai/lm-evaluation-harness', 0.6675116419792175, 'llm', 1), ('fasteval/fasteval', 0.6659313440322876, 'llm', 0), ('juncongmoo/pyllama', 0.6618118286132812, 'llm', 0), ('lianjiatech/belle', 0.6501920819282532, 'llm', 0), ('cg123/mergekit', 0.641423225402832, 'llm', 0), ('baichuan-inc/baichuan-13b', 0.640003502368927, 'llm', 0), ('togethercomputer/redpajama-data', 0.6302767992019653, 'llm', 0), ('openlmlab/leval', 0.6185758113861084, 'llm', 1), ('reasoning-machines/pal', 0.6142875552177429, 'llm', 1), ('paddlepaddle/paddlenlp', 0.6110307574272156, 'llm', 0), ('bigscience-workshop/biomedical', 0.6107045412063599, 'data', 0), ('guidance-ai/guidance', 0.5987256169319153, 'llm', 1), ('thudm/chatglm2-6b', 0.5987119078636169, 'llm', 0), ('young-geng/easylm', 0.5935439467430115, 'llm', 1), ('next-gpt/next-gpt', 0.5918599963188171, 'llm', 0), ('jonasgeiping/cramming', 0.5916814804077148, 'nlp', 1), ('prefecthq/langchain-prefect', 0.5867060422897339, 'llm', 0), ('oobabooga/text-generation-webui', 0.5807399153709412, 'llm', 1), ('hazyresearch/h3', 0.5786004066467285, 'llm', 0), ('explosion/spacy-models', 0.5769272446632385, 'nlp', 0), ('thudm/chatglm-6b', 0.5757870674133301, 'llm', 1), ('infinitylogesh/mutate', 0.5752876996994019, 'nlp', 1), ('mit-han-lab/streaming-llm', 0.5750225782394409, 'llm', 0), ('srush/minichain', 0.5740912556648254, 'llm', 0), ('huawei-noah/pretrained-language-model', 0.5728333592414856, 'nlp', 0), ('sjtu-ipads/powerinfer', 0.5668209195137024, 'llm', 0), ('databrickslabs/dolly', 0.5654436945915222, 'llm', 0), ('salesforce/xgen', 0.5646532773971558, 'llm', 1), ('nvlabs/prismer', 0.5624253153800964, 'diffusion', 1), ('tatsu-lab/stanford_alpaca', 0.5588739514350891, 'llm', 1), ('microsoft/lora', 0.5567244291305542, 'llm', 1), ('lupantech/chameleon-llm', 0.5542495250701904, 'llm', 1), ('microsoft/autogen', 0.553227961063385, 'llm', 0), ('eleutherai/the-pile', 0.5475942492485046, 'data', 0), ('lucidrains/toolformer-pytorch', 0.5474002957344055, 'llm', 1), ('yizhongw/self-instruct', 0.5435721278190613, 'llm', 1), ('ai21labs/in-context-ralm', 0.5410796403884888, 'llm', 1), ('cstankonrad/long_llama', 0.5405339002609253, 'llm', 1), ('keirp/automatic_prompt_engineer', 0.5354942083358765, 'llm', 1), ('openai/gpt-2', 0.532707691192627, 'llm', 0), ('paperswithcode/galai', 0.5310094356536865, 'llm', 1), ('jalammar/ecco', 0.5306503772735596, 'ml-interpretability', 0), ('openbmb/toolbench', 0.5291275978088379, 'llm', 0), ('hiyouga/llama-factory', 0.5281153321266174, 'llm', 1), ('hiyouga/llama-efficient-tuning', 0.5281152129173279, 'llm', 1), ('yueyu1030/attrprompt', 0.5263165831565857, 'llm', 0), ('huggingface/text-generation-inference', 0.523625373840332, 'llm', 0), ('paddlepaddle/rocketqa', 0.5235476493835449, 'nlp', 0), ('conceptofmind/toolformer', 0.5184057950973511, 'llm', 1), ('mlc-ai/web-llm', 0.517315149307251, 'llm', 1), ('extreme-bert/extreme-bert', 0.5171335935592651, 'llm', 1), ('bigscience-workshop/megatron-deepspeed', 0.5145018100738525, 'llm', 0), ('microsoft/megatron-deepspeed', 0.5145018100738525, 'llm', 0), ('explosion/spacy-llm', 0.5140294432640076, 'llm', 0), ('bobazooba/xllm', 0.5108060240745544, 'llm', 0), ('facebookresearch/codellama', 0.508786141872406, 'llm', 1), ('openlmlab/moss', 0.5085688233375549, 'llm', 1), ('bytedance/lightseq', 0.5059230327606201, 'nlp', 0), ('llmware-ai/llmware', 0.5058205127716064, 'llm', 0), ('thudm/glm-130b', 0.5044916272163391, 'llm', 0), ('aiwaves-cn/agents', 0.5030314922332764, 'nlp', 1), ('mooler0410/llmspracticalguide', 0.5019903182983398, 'study', 0), ('jina-ai/finetuner', 0.5019564628601074, 'ml', 0)]
10
3
null
3.96
2
1
10
6
0
0
0
2
1
90
0.5
47
863
profiling
https://github.com/reloadware/reloadium
[]
null
[]
[]
1
null
null
reloadware/reloadium
reloadium
2,621
57
25
Python
https://reloadium.io
Hot Reloading, Profiling and AI debugging for Python
reloadware
2024-01-14
2022-01-15
106
24.626846
https://avatars.githubusercontent.com/u/85869255?v=4
Hot Reloading, Profiling and AI debugging for Python
['ai', 'artificial-intelligence', 'chatgpt', 'django', 'edit-and-continue', 'flask', 'hot-reload', 'hot-reloading', 'pandas']
['ai', 'artificial-intelligence', 'chatgpt', 'django', 'edit-and-continue', 'flask', 'hot-reload', 'hot-reloading', 'pandas']
2024-01-04
[('carla-recourse/carla', 0.5905767679214478, 'ml', 1), ('fastai/fastcore', 0.5807570219039917, 'util', 0), ('sourcery-ai/sourcery', 0.5745614767074585, 'util', 1), ('alexmojaki/snoop', 0.5736259818077087, 'debug', 0), ('eleutherai/pyfra', 0.5577932596206665, 'ml', 0), ('willmcgugan/textual', 0.5569230318069458, 'term', 0), ('google/gin-config', 0.5562544465065002, 'util', 0), ('google/pyglove', 0.5510817766189575, 'util', 0), ('nedbat/coveragepy', 0.5490651726722717, 'testing', 0), ('polyaxon/datatile', 0.5487061738967896, 'pandas', 1), ('gradio-app/gradio', 0.5461754202842712, 'viz', 0), ('oegedijk/explainerdashboard', 0.5406351089477539, 'ml-interpretability', 0), ('kubeflow/fairing', 0.5393650531768799, 'ml-ops', 0), ('pytorchlightning/pytorch-lightning', 0.5348438024520874, 'ml-dl', 2), ('dylanhogg/awesome-python', 0.5307287573814392, 'study', 2), ('cheshire-cat-ai/core', 0.5294227004051208, 'llm', 1), ('faster-cpython/ideas', 0.5288839936256409, 'perf', 0), ('klen/py-frameworks-bench', 0.5263360142707825, 'perf', 0), ('pympler/pympler', 0.5263128876686096, 'perf', 0), ('sumerc/yappi', 0.5243247151374817, 'profiling', 0), ('fmind/mlops-python-package', 0.5241882801055908, 'template', 1), ('python-rope/rope', 0.5215712785720825, 'util', 0), ('holoviz/panel', 0.5191416144371033, 'viz', 0), ('python-cachier/cachier', 0.5175240635871887, 'perf', 0), ('avaiga/taipy', 0.5162569284439087, 'data', 0), ('online-ml/river', 0.5157492160797119, 'ml', 0), ('teamhg-memex/eli5', 0.5111801624298096, 'ml', 0), ('sweepai/sweep', 0.5105124711990356, 'llm', 1), ('pyutils/line_profiler', 0.5102075338363647, 'profiling', 0), ('minimaxir/simpleaichat', 0.509559154510498, 'llm', 2), ('gventuri/pandas-ai', 0.5095576047897339, 'pandas', 2), ('mindsdb/mindsdb', 0.5066758990287781, 'data', 2), ('plotly/dash', 0.5045337080955505, 'viz', 1), ('plasma-umass/scalene', 0.5005995035171509, 'profiling', 0), ('huggingface/datasets', 0.500510036945343, 'nlp', 1), ('merantix-momentum/squirrel-core', 0.5004510283470154, 'ml', 1), ('amaargiru/pyroad', 0.5002206563949585, 'study', 0), ('allrod5/injectable', 0.5002021193504333, 'util', 0)]
3
2
null
0.27
14
11
24
0
0
3
3
14
19
90
1.4
47
307
util
https://github.com/legrandin/pycryptodome
[]
null
[]
[]
null
null
null
legrandin/pycryptodome
pycryptodome
2,582
468
63
C
https://www.pycryptodome.org
A self-contained cryptographic library for Python
legrandin
2024-01-14
2014-05-02
508
5.076966
null
A self-contained cryptographic library for Python
['cryptography', 'security']
['cryptography', 'security']
2024-01-13
[('pyca/cryptography', 0.8198734521865845, 'util', 1), ('pyca/pynacl', 0.7229923605918884, 'util', 1), ('primal100/pybitcointools', 0.6471469402313232, 'crypto', 0), ('1200wd/bitcoinlib', 0.6432069540023804, 'crypto', 0), ('snyk/faker-security', 0.5843793153762817, 'security', 0), ('pytoolz/toolz', 0.5827405452728271, 'util', 0), ('man-c/pycoingecko', 0.5711352229118347, 'crypto', 0), ('pyupio/safety', 0.5586642622947693, 'security', 1), ('fredrik-johansson/mpmath', 0.5532434582710266, 'math', 0), ('pyeve/cerberus', 0.5516589283943176, 'data', 0), ('pyston/pyston', 0.5480275750160217, 'util', 0), ('paramiko/paramiko', 0.5410947203636169, 'util', 0), ('pypy/pypy', 0.5345046520233154, 'util', 0), ('trailofbits/pip-audit', 0.5239244103431702, 'security', 1), ('gbeced/pyalgotrade', 0.5236385464668274, 'finance', 0), ('pypa/installer', 0.5224993228912354, 'util', 0), ('sympy/sympy', 0.5150558352470398, 'math', 0), ('ta-lib/ta-lib-python', 0.5114703178405762, 'finance', 0), ('mkdocstrings/griffe', 0.5096718668937683, 'util', 0), ('erotemic/ubelt', 0.5003699660301208, 'util', 0)]
146
4
null
2.42
27
20
118
0
10
12
10
27
46
90
1.7
47
130
viz
https://github.com/holoviz/holoviews
[]
null
[]
[]
null
null
null
holoviz/holoviews
holoviews
2,550
386
58
Python
https://holoviews.org
With Holoviews, your data visualizes itself.
holoviz
2024-01-13
2014-05-07
507
5.021097
https://avatars.githubusercontent.com/u/51678735?v=4
With Holoviews, your data visualizes itself.
['holoviews', 'holoviz', 'plotting']
['holoviews', 'holoviz', 'plotting']
2023-12-22
[('holoviz/hvplot', 0.682068407535553, 'pandas', 3), ('holoviz/geoviews', 0.6530880331993103, 'gis', 3), ('holoviz/holoviz', 0.585200309753418, 'viz', 2), ('matplotlib/matplotlib', 0.564393937587738, 'viz', 1), ('facebookresearch/hiplot', 0.5553148984909058, 'viz', 0), ('holoviz/datashader', 0.5166183710098267, 'gis', 1), ('enthought/mayavi', 0.5158518552780151, 'viz', 0), ('altair-viz/altair', 0.5143608450889587, 'viz', 0), ('mwaskom/seaborn', 0.513229489326477, 'viz', 0), ('has2k1/plotnine', 0.5102058053016663, 'viz', 1)]
140
4
null
5.21
176
82
118
1
8
41
8
174
226
90
1.3
47
1,731
testing
https://github.com/kevin1024/vcrpy
[]
null
[]
[]
null
null
null
kevin1024/vcrpy
vcrpy
2,547
363
38
Python
null
Automatically mock your HTTP interactions to simplify and speed up testing
kevin1024
2024-01-12
2012-05-29
609
4.182266
null
Automatically mock your HTTP interactions to simplify and speed up testing
['http', 'mocking', 'testing']
['http', 'mocking', 'testing']
2024-01-05
[('jamielennox/requests-mock', 0.6570014953613281, 'testing', 1), ('lundberg/respx', 0.6465907692909241, 'testing', 2), ('getsentry/responses', 0.5679908990859985, 'testing', 1)]
139
5
null
2.52
66
40
142
0
5
5
5
66
125
90
1.9
47
867
perf
https://github.com/ipython/ipyparallel
[]
null
[]
[]
null
null
null
ipython/ipyparallel
ipyparallel
2,518
1,051
121
Jupyter Notebook
https://ipyparallel.readthedocs.io/
IPython Parallel: Interactive Parallel Computing in Python
ipython
2024-01-13
2015-04-09
459
5.477315
https://avatars.githubusercontent.com/u/230453?v=4
IPython Parallel: Interactive Parallel Computing in Python
['jupyter', 'parallel']
['jupyter', 'parallel']
2024-01-05
[('jupyterlab/jupyterlab', 0.6818181872367859, 'jupyter', 1), ('ipython/ipykernel', 0.6646348237991333, 'util', 1), ('dask/dask', 0.64837247133255, 'perf', 0), ('pypy/pypy', 0.6435779333114624, 'util', 0), ('joblib/joblib', 0.6388868689537048, 'util', 0), ('maartenbreddels/ipyvolume', 0.6384920477867126, 'jupyter', 1), ('python/cpython', 0.6357694268226624, 'util', 0), ('faster-cpython/tools', 0.6260746717453003, 'perf', 0), ('pyston/pyston', 0.6226590275764465, 'util', 0), ('jupyter/notebook', 0.6222683191299438, 'jupyter', 1), ('quantopian/qgrid', 0.611356794834137, 'jupyter', 0), ('vizzuhq/ipyvizzu', 0.604579508304596, 'jupyter', 1), ('jupyter-widgets/ipywidgets', 0.5989540219306946, 'jupyter', 0), ('faster-cpython/ideas', 0.5969278216362, 'perf', 0), ('nalepae/pandarallel', 0.585684597492218, 'pandas', 1), ('jupyterlab/jupyterlab-desktop', 0.5839833617210388, 'jupyter', 1), ('micropython/micropython', 0.5837920904159546, 'util', 0), ('jakevdp/pythondatasciencehandbook', 0.5817736983299255, 'study', 0), ('opengeos/leafmap', 0.580319344997406, 'gis', 1), ('jupyter/nbformat', 0.5791874527931213, 'jupyter', 0), ('wesm/pydata-book', 0.579038143157959, 'study', 0), ('brandtbucher/specialist', 0.5722348093986511, 'perf', 0), ('fchollet/deep-learning-with-python-notebooks', 0.5656928420066833, 'study', 0), ('cohere-ai/notebooks', 0.5586426258087158, 'llm', 0), ('eleutherai/pyfra', 0.5585790276527405, 'ml', 0), ('voila-dashboards/voila', 0.5572918057441711, 'jupyter', 1), ('numba/numba', 0.5564903020858765, 'perf', 1), ('gotcha/ipdb', 0.5557621717453003, 'debug', 0), ('adafruit/circuitpython', 0.5501038432121277, 'util', 0), ('fastai/fastcore', 0.5499588251113892, 'util', 0), ('python-trio/trio', 0.549788773059845, 'perf', 0), ('p403n1x87/austin', 0.5462062954902649, 'profiling', 0), ('cython/cython', 0.5451430678367615, 'util', 0), ('numpy/numpy', 0.5446184277534485, 'math', 0), ('exaloop/codon', 0.5431182980537415, 'perf', 0), ('ageron/handson-ml2', 0.5427348017692566, 'ml', 0), ('markshannon/faster-cpython', 0.541959285736084, 'perf', 0), ('eventlet/eventlet', 0.5408223271369934, 'perf', 0), ('computationalmodelling/nbval', 0.5368309617042542, 'jupyter', 0), ('wxwidgets/phoenix', 0.5365442633628845, 'gui', 0), ('bloomberg/ipydatagrid', 0.5364363193511963, 'jupyter', 0), ('aws/graph-notebook', 0.5359687805175781, 'jupyter', 1), ('koaning/drawdata', 0.5354899168014526, 'jupyter', 1), ('agronholm/apscheduler', 0.529596745967865, 'util', 0), ('klen/muffin', 0.5273743271827698, 'web', 0), ('manrajgrover/halo', 0.5247726440429688, 'term', 1), ('jupyter-lsp/jupyterlab-lsp', 0.5247416496276855, 'jupyter', 1), ('jupyter/nbconvert', 0.5246542096138, 'jupyter', 0), ('rasbt/watermark', 0.5231406688690186, 'util', 1), ('nvidia/warp', 0.5195223093032837, 'sim', 0), ('hyperopt/hyperopt', 0.5190962553024292, 'ml', 0), ('holoviz/holoviz', 0.5176970362663269, 'viz', 0), ('pytorch/data', 0.5157786011695862, 'data', 0), ('google/jax', 0.514338493347168, 'ml', 0), ('ethereum/py-evm', 0.5111911296844482, 'crypto', 0), ('backtick-se/cowait', 0.5108761787414551, 'util', 0), ('hoffstadt/dearpygui', 0.5102288126945496, 'gui', 0), ('sumerc/yappi', 0.5100932121276855, 'profiling', 0), ('joblib/loky', 0.5099025964736938, 'perf', 0), ('tkrabel/bamboolib', 0.5092272162437439, 'pandas', 0), ('pypa/virtualenv', 0.5087124109268188, 'util', 0), ('pyqtgraph/pyqtgraph', 0.5072664022445679, 'viz', 0), ('tqdm/tqdm', 0.5037369728088379, 'term', 2), ('sympy/sympy', 0.5034547448158264, 'math', 0), ('holoviz/panel', 0.5028029084205627, 'viz', 1), ('klen/py-frameworks-bench', 0.5014100074768066, 'perf', 0)]
113
6
null
1.63
21
12
107
0
0
7
7
21
36
90
1.7
47
439
gis
https://github.com/rasterio/rasterio
[]
null
[]
[]
1
null
null
rasterio/rasterio
rasterio
2,074
521
147
Python
https://rasterio.readthedocs.io/
Rasterio reads and writes geospatial raster datasets
rasterio
2024-01-13
2013-11-04
534
3.882856
https://avatars.githubusercontent.com/u/46967650?v=4
Rasterio reads and writes geospatial raster datasets
['cli', 'cython', 'gdal', 'gis', 'mapbox-satellite-oss', 'raster']
['cli', 'cython', 'gdal', 'gis', 'mapbox-satellite-oss', 'raster']
2024-01-09
[('cogeotiff/rio-tiler', 0.7036706209182739, 'gis', 2), ('toblerity/fiona', 0.5375838279724121, 'gis', 4), ('corteva/rioxarray', 0.5225644707679749, 'gis', 3)]
155
5
null
2.65
101
80
124
0
8
17
8
101
134
90
1.3
47
116
perf
https://github.com/h5py/h5py
['hdf5']
null
[]
[]
null
null
null
h5py/h5py
h5py
1,965
545
57
Python
http://www.h5py.org
HDF5 for Python -- The h5py package is a Pythonic interface to the HDF5 binary data format.
h5py
2024-01-12
2012-09-21
592
3.316056
https://avatars.githubusercontent.com/u/2389852?v=4
HDF5 for Python -- The h5py package is a Pythonic interface to the HDF5 binary data format.
[]
['hdf5']
2024-01-12
[]
199
6
null
2.65
49
27
138
0
3
4
3
49
164
90
3.3
47
1,234
llm
https://github.com/lucidrains/toolformer-pytorch
['toolformer', 'language-model']
null
[]
[]
null
null
null
lucidrains/toolformer-pytorch
toolformer-pytorch
1,802
111
38
Python
null
Implementation of Toolformer, Language Models That Can Use Tools, by MetaAI
lucidrains
2024-01-14
2023-02-10
50
35.632768
null
Implementation of Toolformer, Language Models That Can Use Tools, by MetaAI
['api-calling', 'artificial-intelligence', 'attention-mechanisms', 'deep-learning', 'transformers']
['api-calling', 'artificial-intelligence', 'attention-mechanisms', 'deep-learning', 'language-model', 'toolformer', 'transformers']
2023-12-21
[('conceptofmind/toolformer', 0.7667592167854309, 'llm', 2), ('ctlllll/llm-toolmaker', 0.6329768300056458, 'llm', 1), ('lm-sys/fastchat', 0.6176435947418213, 'llm', 1), ('huggingface/transformers', 0.6121810674667358, 'nlp', 2), ('thilinarajapakse/simpletransformers', 0.6100559234619141, 'nlp', 1), ('oobabooga/text-generation-webui', 0.5891088843345642, 'llm', 1), ('openbmb/toolbench', 0.5833466649055481, 'llm', 0), ('explosion/thinc', 0.5822931528091431, 'ml-dl', 2), ('ml-tooling/opyrator', 0.5760772228240967, 'viz', 0), ('nvidia/deeplearningexamples', 0.576062798500061, 'ml-dl', 1), ('young-geng/easylm', 0.5753515362739563, 'llm', 2), ('microsoft/lmops', 0.5752981901168823, 'llm', 1), ('deepset-ai/haystack', 0.5719588398933411, 'llm', 2), ('huggingface/datasets', 0.5622266530990601, 'nlp', 1), ('cheshire-cat-ai/core', 0.5618926882743835, 'llm', 0), ('microsoft/generative-ai-for-beginners', 0.559565544128418, 'study', 2), ('paddlepaddle/paddlenlp', 0.5539929866790771, 'llm', 1), ('keras-team/keras-nlp', 0.5536922216415405, 'nlp', 1), ('eugeneyan/obsidian-copilot', 0.5504752397537231, 'llm', 0), ('rasahq/rasa', 0.5501740574836731, 'llm', 0), ('lianjiatech/belle', 0.5494219064712524, 'llm', 0), ('llmware-ai/llmware', 0.5493955016136169, 'llm', 1), ('kubeflow/fairing', 0.5491804480552673, 'ml-ops', 0), ('fastai/fastcore', 0.5489647388458252, 'util', 0), ('freedomintelligence/llmzoo', 0.5474002957344055, 'llm', 1), ('prefecthq/marvin', 0.5462851524353027, 'nlp', 0), ('tigerlab-ai/tiger', 0.5445385575294495, 'llm', 0), ('explosion/spacy-transformers', 0.5443832278251648, 'llm', 1), ('operand/agency', 0.5433422923088074, 'llm', 1), ('deeppavlov/deeppavlov', 0.5414809584617615, 'nlp', 2), ('apple/coremltools', 0.5380272269248962, 'ml', 0), ('bentoml/bentoml', 0.5346093773841858, 'ml-ops', 1), ('microsoft/nni', 0.531758725643158, 'ml', 1), ('nccr-itmo/fedot', 0.5307614803314209, 'ml-ops', 0), ('wandb/client', 0.5302769541740417, 'ml', 1), ('pythagora-io/gpt-pilot', 0.5301491022109985, 'llm', 0), ('nvlabs/prismer', 0.5290699005126953, 'diffusion', 1), ('vitalik/django-ninja', 0.528582751750946, 'web', 0), ('hannibal046/awesome-llm', 0.5266475677490234, 'study', 1), ('mlc-ai/mlc-llm', 0.5253450274467468, 'llm', 1), ('transformeroptimus/superagi', 0.5244137048721313, 'llm', 1), ('lupantech/chameleon-llm', 0.5233466029167175, 'llm', 1), ('argilla-io/argilla', 0.5221193432807922, 'nlp', 0), ('gradio-app/gradio', 0.5205651521682739, 'viz', 1), ('microsoft/autogen', 0.5196950435638428, 'llm', 0), ('explosion/spacy', 0.5190293192863464, 'nlp', 2), ('xtekky/gpt4free', 0.5187653303146362, 'llm', 1), ('cdpierse/transformers-interpret', 0.5184912085533142, 'ml-interpretability', 2), ('espnet/espnet', 0.5174741744995117, 'nlp', 1), ('keras-team/autokeras', 0.516575276851654, 'ml-dl', 1), ('google/pyglove', 0.5139380097389221, 'util', 0), ('tiangolo/fastapi', 0.5137580037117004, 'web', 0), ('bigscience-workshop/megatron-deepspeed', 0.5127219557762146, 'llm', 0), ('microsoft/megatron-deepspeed', 0.5127219557762146, 'llm', 0), ('next-gpt/next-gpt', 0.5125038027763367, 'llm', 0), ('mlflow/mlflow', 0.5123224258422852, 'ml-ops', 0), ('mosaicml/composer', 0.5117185115814209, 'ml-dl', 1), ('nvidia/nemo', 0.5109055042266846, 'nlp', 2), ('kalliope-project/kalliope', 0.5108852982521057, 'util', 0), ('explosion/spacy-streamlit', 0.5099772214889526, 'nlp', 0), ('modularml/mojo', 0.5094813108444214, 'util', 0), ('tatsu-lab/stanford_alpaca', 0.5094295740127563, 'llm', 2), ('openlmlab/moss', 0.508660614490509, 'llm', 2), ('huggingface/huggingface_hub', 0.5079225301742554, 'ml', 1), ('polyaxon/polyaxon', 0.5062516927719116, 'ml-ops', 2), ('mindsdb/mindsdb', 0.5057101249694824, 'data', 1), ('selfexplainml/piml-toolbox', 0.5051028728485107, 'ml-interpretability', 0), ('night-chen/toolqa', 0.5044512152671814, 'llm', 0), ('alibaba/easynlp', 0.5038707852363586, 'nlp', 2), ('pathwaycom/llm-app', 0.5037291049957275, 'llm', 0), ('langchain-ai/opengpts', 0.5033729672431946, 'llm', 0), ('lastmile-ai/aiconfig', 0.5029549598693848, 'util', 0), ('starlite-api/starlite', 0.5022919774055481, 'web', 0), ('google-research/language', 0.5021114945411682, 'nlp', 0), ('openlm-research/open_llama', 0.5018919110298157, 'llm', 1), ('mlc-ai/web-llm', 0.5002791881561279, 'llm', 2)]
3
1
null
1.17
9
2
11
1
24
27
24
9
10
90
1.1
47
1,093
ml-interpretability
https://github.com/eleutherai/pythia
['interpretability', 'interpretable-ml']
Interpretability analysis and scaling laws to understand how knowledge develops and evolves during training in autoregressive transformers
[]
[]
null
null
null
eleutherai/pythia
pythia
1,801
117
29
Jupyter Notebook
null
The hub for EleutherAI's work on interpretability and learning dynamics
eleutherai
2024-01-13
2021-12-25
109
16.458225
https://avatars.githubusercontent.com/u/68924597?v=4
The hub for EleutherAI's work on interpretability and learning dynamics
[]
['interpretability', 'interpretable-ml']
2023-12-31
[('pair-code/lit', 0.641786515712738, 'ml-interpretability', 0), ('csinva/imodels', 0.5875741243362427, 'ml', 1), ('tensorflow/lucid', 0.5809341669082642, 'ml-interpretability', 1), ('marcotcr/lime', 0.5768492817878723, 'ml-interpretability', 1), ('interpretml/interpret', 0.5574303269386292, 'ml-interpretability', 2), ('pytorch/captum', 0.5508965253829956, 'ml-interpretability', 2), ('seldonio/alibi', 0.5343512296676636, 'ml-interpretability', 1), ('maif/shapash', 0.5036888122558594, 'ml', 1)]
17
4
null
3.37
30
23
25
0
0
0
0
30
36
90
1.2
47
1,116
web
https://github.com/cherrypy/cherrypy
[]
null
[]
[]
null
null
null
cherrypy/cherrypy
cherrypy
1,748
359
55
Python
https://docs.cherrypy.dev
CherryPy is a pythonic, object-oriented HTTP framework. https://cherrypy.dev
cherrypy
2024-01-10
2016-04-30
404
4.322148
https://avatars.githubusercontent.com/u/6617466?v=4
CherryPy is a pythonic, object-oriented HTTP framework. https://cherrypy.dev
['cherrypy', 'cross-platform', 'daemon-mode', 'http', 'http-server', 'http-streaming', 'https', 'idiomatic-python', 'jython', 'pure-python', 'pypy', 'pypy3']
['cherrypy', 'cross-platform', 'daemon-mode', 'http', 'http-server', 'http-streaming', 'https', 'idiomatic-python', 'jython', 'pure-python', 'pypy', 'pypy3']
2024-01-05
[('bottlepy/bottle', 0.6888998746871948, 'web', 0), ('webpy/webpy', 0.6774104833602905, 'web', 0), ('encode/httpx', 0.65858393907547, 'web', 1), ('encode/uvicorn', 0.6493438482284546, 'web', 2), ('masoniteframework/masonite', 0.6259151697158813, 'web', 0), ('pallets/flask', 0.6162318587303162, 'web', 0), ('neoteroi/blacksheep', 0.6155569553375244, 'web', 2), ('scrapy/scrapy', 0.6140583157539368, 'data', 0), ('falconry/falcon', 0.6051623821258545, 'web', 1), ('benoitc/gunicorn', 0.5961728096008301, 'web', 2), ('klen/muffin', 0.5874270796775818, 'web', 0), ('pallets/werkzeug', 0.5869470834732056, 'web', 1), ('pypy/pypy', 0.5867733955383301, 'util', 0), ('requests/toolbelt', 0.5835244059562683, 'util', 1), ('pyodide/pyodide', 0.5807443857192993, 'util', 0), ('pallets/quart', 0.5793529748916626, 'web', 1), ('psf/requests', 0.5770725607872009, 'web', 1), ('simple-salesforce/simple-salesforce', 0.5702207088470459, 'data', 0), ('pylons/pyramid', 0.5556930303573608, 'web', 0), ('reflex-dev/reflex', 0.553268313407898, 'web', 0), ('1200wd/bitcoinlib', 0.5514862537384033, 'crypto', 0), ('pylons/waitress', 0.5498244762420654, 'web', 1), ('eleutherai/pyfra', 0.5470208525657654, 'ml', 0), ('aio-libs/aiohttp', 0.5461557507514954, 'web', 2), ('jupyterlite/jupyterlite', 0.5396081805229187, 'jupyter', 0), ('python/cpython', 0.5312963724136353, 'util', 0), ('paramiko/paramiko', 0.5295555591583252, 'util', 0), ('timofurrer/awesome-asyncio', 0.5200496912002563, 'study', 0), ('willmcgugan/textual', 0.5189430117607117, 'term', 0), ('pyston/pyston', 0.5174131989479065, 'util', 0), ('fastai/fastcore', 0.5150647759437561, 'util', 0), ('hugapi/hug', 0.5129648447036743, 'util', 2), ('voila-dashboards/voila', 0.5070238709449768, 'jupyter', 0), ('ethereum/web3.py', 0.5029838681221008, 'crypto', 0), ('clips/pattern', 0.500634491443634, 'nlp', 0)]
143
7
null
0.5
22
15
94
0
0
17
17
22
54
90
2.5
47
1,824
llm
https://github.com/noahshinn/reflexion
[]
null
[]
[]
null
null
null
noahshinn/reflexion
reflexion
1,697
160
29
Python
null
[NeurIPS 2023] Reflexion: Language Agents with Verbal Reinforcement Learning
noahshinn
2024-01-14
2023-03-22
44
37.83121
null
[NeurIPS 2023] Reflexion: Language Agents with Verbal Reinforcement Learning
['ai', 'artificial-intelligence', 'llm']
['ai', 'artificial-intelligence', 'llm']
2023-11-26
[('aiwaves-cn/agents', 0.5806130170822144, 'nlp', 1), ('jina-ai/thinkgpt', 0.5254539847373962, 'llm', 0), ('lupantech/scienceqa', 0.5062936544418335, 'llm', 0), ('oliveirabruno01/babyagi-asi', 0.5022252798080444, 'llm', 1), ('humanoidagents/humanoidagents', 0.5013625621795654, 'sim', 0), ('thilinarajapakse/simpletransformers', 0.5012626051902771, 'nlp', 0), ('prefecthq/marvin', 0.5003121495246887, 'nlp', 2)]
7
3
null
3.15
13
9
10
2
0
0
0
13
16
90
1.2
47
427
jupyter
https://github.com/jupyter-lsp/jupyterlab-lsp
[]
null
[]
[]
null
null
null
jupyter-lsp/jupyterlab-lsp
jupyterlab-lsp
1,663
134
20
TypeScript
null
Coding assistance for JupyterLab (code navigation + hover suggestions + linters + autocompletion + rename) using Language Server Protocol
jupyter-lsp
2024-01-13
2019-08-17
232
7.154886
https://avatars.githubusercontent.com/u/92232904?v=4
Coding assistance for JupyterLab (code navigation + hover suggestions + linters + autocompletion + rename) using Language Server Protocol
['autocompletion', 'ipython', 'julia-language', 'jupyter', 'jupyter-lab', 'jupyter-notebook', 'jupyterlab', 'jupyterlab-extension', 'language-server-protocol', 'linter', 'lsp', 'notebook', 'notebook-jupyter', 'r']
['autocompletion', 'ipython', 'julia-language', 'jupyter', 'jupyter-lab', 'jupyter-notebook', 'jupyterlab', 'jupyterlab-extension', 'language-server-protocol', 'linter', 'lsp', 'notebook', 'notebook-jupyter', 'r']
2023-11-26
[('mwouts/jupytext', 0.6457168459892273, 'jupyter', 3), ('jupyter-widgets/ipywidgets', 0.5988917946815491, 'jupyter', 1), ('cohere-ai/notebooks', 0.5917092561721802, 'llm', 0), ('jupyter/notebook', 0.5912204384803772, 'jupyter', 3), ('jupyterlab/jupyterlab', 0.5912031531333923, 'jupyter', 2), ('jupyterlab/jupyterlab-desktop', 0.5716159343719482, 'jupyter', 3), ('aws/graph-notebook', 0.5679754018783569, 'jupyter', 2), ('fchollet/deep-learning-with-python-notebooks', 0.5593620538711548, 'study', 0), ('voila-dashboards/voila', 0.5473379492759705, 'jupyter', 3), ('jupyter-widgets/ipyleaflet', 0.5437476634979248, 'gis', 2), ('jupyter/nbformat', 0.5423336029052734, 'jupyter', 0), ('vizzuhq/ipyvizzu', 0.539960503578186, 'jupyter', 3), ('opengeos/leafmap', 0.5345747470855713, 'gis', 2), ('jupyterlab/jupyter-ai', 0.5275683403015137, 'jupyter', 3), ('ipython/ipykernel', 0.5254985690116882, 'util', 3), ('jupyterlite/jupyterlite', 0.5251054763793945, 'jupyter', 3), ('ipython/ipyparallel', 0.5247416496276855, 'perf', 1), ('python/cpython', 0.523478627204895, 'util', 0), ('nteract/papermill', 0.5029893517494202, 'jupyter', 3)]
51
5
null
5.02
49
34
54
2
12
12
12
49
75
90
1.5
47
1,075
util
https://github.com/rhettbull/osxphotos
[]
null
[]
[]
null
null
null
rhettbull/osxphotos
osxphotos
1,521
85
21
Python
null
Python app to export pictures and associated metadata from Apple Photos on macOS. Also includes a package to provide programmatic access to the Photos library, pictures, and metadata.
rhettbull
2024-01-13
2019-06-16
241
6.30373
null
Python app to export pictures and associated metadata from Apple Photos on macOS. Also includes a package to provide programmatic access to the Photos library, pictures, and metadata.
['apple', 'apple-photos', 'apple-photos-export', 'library-photos', 'macos', 'macosx', 'osx', 'photos', 'photos-database', 'photos-export', 'pictures']
['apple', 'apple-photos', 'apple-photos-export', 'library-photos', 'macos', 'macosx', 'osx', 'photos', 'photos-database', 'photos-export', 'pictures']
2024-01-13
[('imageio/imageio', 0.6166835427284241, 'util', 0), ('python-pillow/pillow', 0.5487352609634399, 'util', 0), ('python-odin/odin', 0.5156180262565613, 'util', 0), ('erotemic/ubelt', 0.5059564709663391, 'util', 0)]
35
2
null
6.46
129
99
56
0
50
98
50
129
231
90
1.8
47
1,559
nlp
https://github.com/marella/ctransformers
[]
null
[]
[]
null
null
null
marella/ctransformers
ctransformers
1,510
118
18
C
null
Python bindings for the Transformer models implemented in C/C++ using GGML library.
marella
2024-01-14
2023-05-14
37
40.498084
null
Python bindings for the Transformer models implemented in C/C++ using GGML library.
['ai', 'ctransformers', 'llm', 'transformers']
['ai', 'ctransformers', 'llm', 'transformers']
2023-09-10
[('alignmentresearch/tuned-lens', 0.5659533143043518, 'ml-interpretability', 1), ('huggingface/transformers', 0.5550124645233154, 'nlp', 0), ('nielsrogge/transformers-tutorials', 0.553908109664917, 'study', 1), ('google/jax', 0.5531230568885803, 'ml', 0), ('eleutherai/gpt-neox', 0.5529630184173584, 'llm', 1), ('pybind/pybind11', 0.5483258962631226, 'perf', 0), ('opengeos/earthformer', 0.5367976427078247, 'gis', 0), ('eleutherai/gpt-neo', 0.5227762460708618, 'llm', 1), ('nvidia/cuda-python', 0.5207217931747437, 'ml', 0), ('pytoolz/toolz', 0.5103341341018677, 'util', 0)]
6
0
null
2.77
56
10
8
4
30
46
30
56
72
90
1.3
47
402
perf
https://github.com/agronholm/anyio
[]
null
[]
[]
null
null
null
agronholm/anyio
anyio
1,482
117
27
Python
null
High level asynchronous concurrency and networking framework that works on top of either trio or asyncio
agronholm
2024-01-13
2018-08-19
284
5.213065
null
High level asynchronous concurrency and networking framework that works on top of either trio or asyncio
['async-await', 'asyncio', 'curio', 'trio']
['async-await', 'asyncio', 'curio', 'trio']
2024-01-13
[('python-trio/trio', 0.8090512156486511, 'perf', 2), ('magicstack/uvloop', 0.7205407619476318, 'util', 2), ('tiangolo/asyncer', 0.7173997759819031, 'perf', 2), ('aio-libs/aiohttp', 0.6634643077850342, 'web', 1), ('samuelcolvin/arq', 0.6350996494293213, 'data', 1), ('noxdafox/pebble', 0.6101366281509399, 'perf', 1), ('pallets/quart', 0.6049391627311707, 'web', 1), ('sumerc/yappi', 0.593978226184845, 'profiling', 1), ('alirn76/panther', 0.5871341824531555, 'web', 0), ('airtai/faststream', 0.5833213329315186, 'perf', 1), ('encode/starlette', 0.5785104036331177, 'web', 0), ('eventlet/eventlet', 0.5704464912414551, 'perf', 0), ('tornadoweb/tornado', 0.5639466643333435, 'web', 0), ('encode/httpx', 0.558357298374176, 'web', 2), ('alex-sherman/unsync', 0.5539295673370361, 'util', 0), ('klen/muffin', 0.5409852266311646, 'web', 3), ('miguelgrinberg/python-socketio', 0.5345661640167236, 'util', 1), ('timofurrer/awesome-asyncio', 0.5322125554084778, 'study', 1), ('neoteroi/blacksheep', 0.5259332656860352, 'web', 1), ('samuelcolvin/aioaws', 0.5206239223480225, 'data', 1), ('python-greenlet/greenlet', 0.517914354801178, 'perf', 0), ('tiangolo/fastapi', 0.5019605159759521, 'web', 1)]
46
4
null
2.98
56
48
66
0
3
9
3
56
200
90
3.6
47
621
data
https://github.com/zarr-developers/zarr-python
[]
null
[]
[]
null
null
null
zarr-developers/zarr-python
zarr-python
1,274
263
46
Python
http://zarr.readthedocs.io/
An implementation of chunked, compressed, N-dimensional arrays for Python.
zarr-developers
2024-01-13
2015-12-15
424
3.004717
https://avatars.githubusercontent.com/u/35050297?v=4
An implementation of chunked, compressed, N-dimensional arrays for Python.
['compressed', 'ndimensional-arrays', 'zarr']
['compressed', 'ndimensional-arrays', 'zarr']
2024-01-10
[('google/tensorstore', 0.668194591999054, 'data', 0), ('blosc/python-blosc', 0.5569503903388977, 'perf', 0), ('pyston/pyston', 0.5102282762527466, 'util', 0), ('pydata/xarray', 0.5044090151786804, 'util', 0)]
95
8
null
2.67
148
88
98
0
11
11
11
148
242
90
1.6
47
764
data
https://github.com/google/tensorstore
[]
null
[]
[]
null
null
null
google/tensorstore
tensorstore
1,248
103
31
C++
https://google.github.io/tensorstore/
Library for reading and writing large multi-dimensional arrays.
google
2024-01-12
2020-03-30
200
6.235546
https://avatars.githubusercontent.com/u/1342004?v=4
Library for reading and writing large multi-dimensional arrays.
[]
[]
2024-01-04
[('zarr-developers/zarr-python', 0.668194591999054, 'data', 0), ('xl0/lovely-numpy', 0.5052934288978577, 'util', 0)]
22
3
null
8.33
18
10
46
0
0
14
14
18
54
90
3
47
572
util
https://github.com/fsspec/filesystem_spec
[]
null
[]
[]
null
null
null
fsspec/filesystem_spec
filesystem_spec
723
308
20
Python
null
A specification that python filesystems should adhere to.
fsspec
2024-01-14
2018-04-23
301
2.400854
https://avatars.githubusercontent.com/u/92825505?v=4
A specification that python filesystems should adhere to.
[]
[]
2024-01-13
[('pyfilesystem/pyfilesystem2', 0.7090234160423279, 'util', 0), ('tox-dev/py-filelock', 0.6173799633979797, 'util', 0), ('platformdirs/platformdirs', 0.5413647294044495, 'util', 0), ('grantjenks/python-diskcache', 0.5200872421264648, 'util', 0), ('pytoolz/toolz', 0.5183253288269043, 'util', 0), ('google/yapf', 0.5129982233047485, 'util', 0), ('pyupio/safety', 0.5129398107528687, 'security', 0), ('python-odin/odin', 0.5112189054489136, 'util', 0), ('drivendataorg/cloudpathlib', 0.5109065175056458, 'data', 0), ('scikit-hep/uproot5', 0.5076752305030823, 'data', 0)]
223
9
null
3.63
124
87
70
0
0
13
13
124
296
90
2.4
47
1,324
util
https://github.com/anthropics/anthropic-sdk-python
['sdk', 'language-model', 'api']
SDK providing access to Anthropic's safety-first language model APIs
[]
[]
null
null
null
anthropics/anthropic-sdk-python
anthropic-sdk-python
584
65
42
Python
null
null
anthropics
2024-01-13
2023-01-17
54
10.814815
https://avatars.githubusercontent.com/u/76263028?v=4
SDK providing access to Anthropic's safety-first language model APIs
[]
['api', 'language-model', 'sdk']
2024-01-08
[('langchain-ai/langsmith-sdk', 0.5629613995552063, 'llm', 1), ('cohere-ai/cohere-python', 0.5114951133728027, 'util', 1), ('kubeflow/fairing', 0.5095229148864746, 'ml-ops', 0)]
16
5
null
4.38
120
119
12
0
42
43
42
120
57
90
0.5
47
1,733
ml
https://github.com/qdrant/fastembed
['vectordb']
null
[]
[]
null
null
null
qdrant/fastembed
fastembed
503
27
7
Jupyter Notebook
https://qdrant.github.io/fastembed/
Fast, Accurate, Lightweight Python library to make State of the Art Embedding
qdrant
2024-01-12
2023-07-14
28
17.605
https://avatars.githubusercontent.com/u/73504361?v=4
Fast, Accurate, Lightweight Python library to make State of the Art Embedding
['embeddings', 'openai', 'rag', 'retrieval', 'retrieval-augmented-generation', 'vector-search']
['embeddings', 'openai', 'rag', 'retrieval', 'retrieval-augmented-generation', 'vector-search', 'vectordb']
2023-12-13
[('chroma-core/chroma', 0.7453431487083435, 'data', 2), ('jina-ai/vectordb', 0.7195001244544983, 'data', 2), ('neuml/txtai', 0.6601556539535522, 'nlp', 4), ('kagisearch/vectordb', 0.6594275832176208, 'data', 1), ('plasticityai/magnitude', 0.6370154619216919, 'nlp', 1), ('koaning/embetter', 0.6213396787643433, 'data', 0), ('koaning/whatlies', 0.5915380120277405, 'nlp', 1), ('jina-ai/clip-as-service', 0.584290087223053, 'nlp', 1), ('castorini/pyserini', 0.556861937046051, 'ml', 0), ('jina-ai/finetuner', 0.5480974912643433, 'ml', 0), ('cvxgrp/pymde', 0.5445080995559692, 'ml', 0), ('facebookresearch/faiss', 0.5384175777435303, 'ml', 2), ('erotemic/ubelt', 0.5371770262718201, 'util', 0), ('mcfunley/pugsql', 0.5356664657592773, 'data', 0), ('qdrant/qdrant-client', 0.5288180708885193, 'util', 1), ('pytoolz/toolz', 0.5285203456878662, 'util', 0), ('llmware-ai/llmware', 0.5254819989204407, 'llm', 3), ('milvus-io/bootcamp', 0.5193023681640625, 'data', 1), ('qdrant/vector-db-benchmark', 0.519282341003418, 'perf', 1), ('pola-rs/polars', 0.5184158682823181, 'pandas', 0), ('rom1504/clip-retrieval', 0.5138350129127502, 'ml', 0), ('ukplab/sentence-transformers', 0.5122830867767334, 'nlp', 0), ('activeloopai/deeplake', 0.5088616609573364, 'ml-ops', 1), ('lancedb/lancedb', 0.507724940776825, 'data', 1), ('accenture/ampligraph', 0.5070711970329285, 'data', 0), ('pytorch/torchrec', 0.5069307088851929, 'ml-dl', 0), ('paddlepaddle/paddlenlp', 0.5066239833831787, 'llm', 0), ('awslabs/dgl-ke', 0.5057823061943054, 'ml', 0), ('dgilland/cacheout', 0.5054611563682556, 'perf', 0), ('sebischair/lbl2vec', 0.5038244128227234, 'nlp', 0), ('ddangelov/top2vec', 0.5031333565711975, 'nlp', 0), ('intellabs/fastrag', 0.5029743909835815, 'nlp', 0), ('nomic-ai/semantic-search-app-template', 0.5012847781181335, 'study', 1), ('pytorch/data', 0.5008647441864014, 'data', 0), ('alphasecio/langchain-examples', 0.5004814267158508, 'llm', 2)]
7
3
null
5.75
70
46
6
1
3
20
3
70
125
90
1.8
47
1,606
llm
https://github.com/opengvlab/omniquant
[]
null
[]
[]
null
null
null
opengvlab/omniquant
OmniQuant
457
36
13
Python
null
OmniQuant is a simple and powerful quantization technique for LLMs.
opengvlab
2024-01-12
2023-08-22
23
19.869565
https://avatars.githubusercontent.com/u/94522163?v=4
OmniQuant is a simple and powerful quantization technique for LLMs.
['large-language-models', 'llm', 'quantization']
['large-language-models', 'llm', 'quantization']
2023-12-27
[('artidoro/qlora', 0.7345274090766907, 'llm', 0), ('squeezeailab/squeezellm', 0.6535307168960571, 'llm', 3), ('vahe1994/spqr', 0.6055932641029358, 'llm', 1), ('bobazooba/xllm', 0.5902096033096313, 'llm', 2), ('lightning-ai/lit-gpt', 0.5481755137443542, 'llm', 1), ('lightning-ai/lit-llama', 0.5302090048789978, 'llm', 0), ('timdettmers/bitsandbytes', 0.5289829969406128, 'util', 0), ('salesforce/xgen', 0.5267922878265381, 'llm', 2), ('ray-project/ray-llm', 0.5080553293228149, 'llm', 2), ('hiyouga/llama-efficient-tuning', 0.5039510726928711, 'llm', 3), ('hiyouga/llama-factory', 0.5039510726928711, 'llm', 3), ('vllm-project/vllm', 0.5003920197486877, 'llm', 1)]
12
6
null
0.63
38
29
5
1
1
2
1
38
99
90
2.6
47
782
study
https://github.com/wesm/pydata-book
[]
null
[]
[]
null
null
null
wesm/pydata-book
pydata-book
20,766
14,692
1,476
Jupyter Notebook
null
Materials and IPython notebooks for "Python for Data Analysis" by Wes McKinney, published by O'Reilly Media
wesm
2024-01-14
2012-06-30
604
34.356417
null
Materials and IPython notebooks for "Python for Data Analysis" by Wes McKinney, published by O'Reilly Media
[]
[]
2023-04-12
[('jakevdp/pythondatasciencehandbook', 0.7202770709991455, 'study', 0), ('fchollet/deep-learning-with-python-notebooks', 0.6737366318702698, 'study', 0), ('python/cpython', 0.6508677005767822, 'util', 0), ('pandas-dev/pandas', 0.6384697556495667, 'pandas', 0), ('mynameisfiber/high_performance_python_2e', 0.6341950297355652, 'study', 0), ('eleutherai/pyfra', 0.631885826587677, 'ml', 0), ('ageron/handson-ml2', 0.6252664923667908, 'ml', 0), ('jupyter/nbformat', 0.6051349639892578, 'jupyter', 0), ('ipython/ipython', 0.6048235893249512, 'util', 0), ('imageio/imageio', 0.6035079956054688, 'util', 0), ('pytoolz/toolz', 0.599173903465271, 'util', 0), ('cuemacro/finmarketpy', 0.5989004969596863, 'finance', 0), ('man-group/dtale', 0.5984211564064026, 'viz', 0), ('rasbt/mlxtend', 0.5947810411453247, 'ml', 0), ('cohere-ai/notebooks', 0.5929689407348633, 'llm', 0), ('pypy/pypy', 0.5926802158355713, 'util', 0), ('holoviz/panel', 0.5906403064727783, 'viz', 0), ('opengeos/leafmap', 0.5878331065177917, 'gis', 0), ('ta-lib/ta-lib-python', 0.5871008038520813, 'finance', 0), ('ipython/ipyparallel', 0.579038143157959, 'perf', 0), ('goldmansachs/gs-quant', 0.5769721269607544, 'finance', 0), ('krzjoa/awesome-python-data-science', 0.5766783952713013, 'study', 0), ('altair-viz/altair', 0.5764631032943726, 'viz', 0), ('plotly/dash', 0.5707026124000549, 'viz', 0), ('mwaskom/seaborn', 0.5627793073654175, 'viz', 0), ('scikit-mobility/scikit-mobility', 0.5627614259719849, 'gis', 0), ('realpython/python-guide', 0.5613322854042053, 'study', 0), ('kanaries/pygwalker', 0.5609186887741089, 'pandas', 0), ('faster-cpython/ideas', 0.5588380694389343, 'perf', 0), ('residentmario/geoplot', 0.5581743121147156, 'gis', 0), ('tkrabel/bamboolib', 0.557572066783905, 'pandas', 0), ('landscapeio/prospector', 0.5570473670959473, 'util', 0), ('rasbt/watermark', 0.5561281442642212, 'util', 0), ('gotcha/ipdb', 0.5557295083999634, 'debug', 0), ('probml/pyprobml', 0.5555208325386047, 'ml', 0), ('plotly/plotly.py', 0.5537784099578857, 'viz', 0), ('mito-ds/monorepo', 0.5535025000572205, 'jupyter', 0), ('faster-cpython/tools', 0.5520884990692139, 'perf', 0), ('dylanhogg/awesome-python', 0.548250138759613, 'study', 0), ('quantecon/quantecon.py', 0.5465633273124695, 'sim', 0), ('ranaroussi/quantstats', 0.5430867671966553, 'finance', 0), ('numpy/numpy', 0.5418587327003479, 'math', 0), ('mementum/bta-lib', 0.5407599806785583, 'finance', 0), ('vizzuhq/ipyvizzu', 0.5378664135932922, 'jupyter', 0), ('jovianml/opendatasets', 0.5370580554008484, 'data', 0), ('maartenbreddels/ipyvolume', 0.5356112122535706, 'jupyter', 0), ('alkaline-ml/pmdarima', 0.5350579619407654, 'time-series', 0), ('contextlab/hypertools', 0.5346917510032654, 'ml', 0), ('has2k1/plotnine', 0.5339842438697815, 'viz', 0), ('python-odin/odin', 0.5320025682449341, 'util', 0), ('geopandas/geopandas', 0.531495213508606, 'gis', 0), ('gradio-app/gradio', 0.5288758873939514, 'viz', 0), ('pyqtgraph/pyqtgraph', 0.5280112624168396, 'viz', 0), ('brandon-rhodes/python-patterns', 0.5279967188835144, 'util', 0), ('lux-org/lux', 0.5268304944038391, 'viz', 0), ('cython/cython', 0.5262758135795593, 'util', 0), ('jazzband/tablib', 0.5241658687591553, 'data', 0), ('quantopian/qgrid', 0.5240903496742249, 'jupyter', 0), ('gerdm/prml', 0.5239573121070862, 'study', 0), ('amaargiru/pyroad', 0.5237447023391724, 'study', 0), ('gbeced/pyalgotrade', 0.5229116082191467, 'finance', 0), ('graphistry/pygraphistry', 0.522087812423706, 'data', 0), ('holoviz/holoviz', 0.5204950571060181, 'viz', 0), ('timofurrer/awesome-asyncio', 0.5189331769943237, 'study', 0), ('malloydata/malloy-py', 0.5186687707901001, 'data', 0), ('ipython/ipykernel', 0.5184985995292664, 'util', 0), ('bokeh/bokeh', 0.5152010321617126, 'viz', 0), ('clips/pattern', 0.5136392116546631, 'nlp', 0), ('albahnsen/pycircular', 0.5135537981987, 'math', 0), ('polyaxon/datatile', 0.513410747051239, 'pandas', 0), ('rjt1990/pyflux', 0.5128363966941833, 'time-series', 0), ('earthlab/earthpy', 0.512826681137085, 'gis', 0), ('vaexio/vaex', 0.5123580098152161, 'perf', 0), ('pysal/pysal', 0.5121508836746216, 'gis', 0), ('statsmodels/statsmodels', 0.5118904709815979, 'ml', 0), ('pyglet/pyglet', 0.5112947225570679, 'gamedev', 0), ('sympy/sympy', 0.511038601398468, 'math', 0), ('pytorch/data', 0.5109310746192932, 'data', 0), ('dlt-hub/dlt', 0.5088979005813599, 'data', 0), ('firmai/industry-machine-learning', 0.5071250200271606, 'study', 0), ('marcomusy/vedo', 0.5054879784584045, 'viz', 0), ('pympler/pympler', 0.505323588848114, 'perf', 0), ('scikit-learn/scikit-learn', 0.5047890543937683, 'ml', 0), ('1200wd/bitcoinlib', 0.5045524835586548, 'crypto', 0), ('pytables/pytables', 0.5043383836746216, 'data', 0), ('twopirllc/pandas-ta', 0.5033674240112305, 'finance', 0), ('federicoceratto/dashing', 0.5012456178665161, 'term', 0), ('fastai/fastcore', 0.5009101629257202, 'util', 0)]
9
5
null
0.06
6
3
140
9
0
0
0
6
4
90
0.7
46
187
ml
https://github.com/harisiqbal88/plotneuralnet
['diagrams', 'latex']
null
[]
[]
null
null
null
harisiqbal88/plotneuralnet
PlotNeuralNet
20,540
2,735
229
TeX
null
Latex code for making neural networks diagrams
harisiqbal88
2024-01-13
2018-07-24
288
71.319444
null
Latex code for making neural networks diagrams
['deep-neural-networks', 'latex']
['deep-neural-networks', 'diagrams', 'latex']
2020-11-06
[('lutzroeder/netron', 0.542097270488739, 'ml', 0)]
13
6
null
0
0
0
67
39
0
0
0
0
0
90
0
46
145
llm
https://github.com/openai/gpt-2
[]
null
[]
[]
null
null
null
openai/gpt-2
gpt-2
20,469
5,247
635
Python
https://openai.com/blog/better-language-models/
Code for the paper "Language Models are Unsupervised Multitask Learners"
openai
2024-01-13
2019-02-11
259
78.987321
https://avatars.githubusercontent.com/u/14957082?v=4
Code for the paper "Language Models are Unsupervised Multitask Learners"
['paper']
['paper']
2020-12-02
[('openai/finetune-transformer-lm', 0.6553829312324524, 'llm', 1), ('yueyu1030/attrprompt', 0.5717838406562805, 'llm', 0), ('jonasgeiping/cramming', 0.5695840716362, 'nlp', 0), ('hannibal046/awesome-llm', 0.5629648566246033, 'study', 0), ('tatsu-lab/stanford_alpaca', 0.5557239055633545, 'llm', 0), ('facebookresearch/codellama', 0.550112247467041, 'llm', 0), ('srush/minichain', 0.5330092310905457, 'llm', 0), ('freedomintelligence/llmzoo', 0.532707691192627, 'llm', 0), ('next-gpt/next-gpt', 0.5251544713973999, 'llm', 0), ('facebookresearch/llama', 0.5193938612937927, 'llm', 0), ('nvlabs/prismer', 0.5184028744697571, 'diffusion', 0), ('bigscience-workshop/megatron-deepspeed', 0.5042035579681396, 'llm', 0), ('microsoft/megatron-deepspeed', 0.5042035579681396, 'llm', 0), ('juncongmoo/pyllama', 0.504024863243103, 'llm', 0), ('facebookresearch/shepherd', 0.5036864280700684, 'llm', 0), ('explosion/spacy-models', 0.5017908215522766, 'nlp', 0), ('hazyresearch/h3', 0.5015887022018433, 'llm', 0)]
16
2
null
0
3
1
60
38
0
0
0
3
1
90
0.3
46
149
data
https://github.com/twintproject/twint
[]
null
[]
[]
null
null
null
twintproject/twint
twint
15,365
2,744
322
Python
null
An advanced Twitter scraping & OSINT tool written in Python that doesn't use Twitter's API, allowing you to scrape a user's followers, following, Tweets and more while evading most API limitations.
twintproject
2024-01-13
2017-06-10
346
44.352577
https://avatars.githubusercontent.com/u/40190352?v=4
An advanced Twitter scraping & OSINT tool written in Python that doesn't use Twitter's API, allowing you to scrape a user's followers, following, Tweets and more while evading most API limitations.
['elasticsearch', 'kibana', 'osint', 'scrape', 'scrape-followers', 'scrape-following', 'scrape-likes', 'tweep', 'tweets', 'twint', 'twitter']
['elasticsearch', 'kibana', 'osint', 'scrape', 'scrape-followers', 'scrape-following', 'scrape-likes', 'tweep', 'tweets', 'twint', 'twitter']
2021-03-02
[('sherlock-project/sherlock', 0.5957009196281433, 'web', 1), ('alirezamika/autoscraper', 0.5726699233055115, 'data', 1), ('scrapy/scrapy', 0.5525391101837158, 'data', 0), ('roniemartinez/dude', 0.5376254916191101, 'util', 0)]
65
4
null
0
1
1
80
35
0
4
4
1
0
90
0
46
1,058
ml
https://github.com/ddbourgin/numpy-ml
[]
null
[]
[]
null
null
null
ddbourgin/numpy-ml
numpy-ml
14,370
3,641
452
Python
https://numpy-ml.readthedocs.io/
Machine learning, in numpy
ddbourgin
2024-01-14
2019-04-06
251
57.153409
null
Machine learning, in numpy
['attention', 'bayesian-inference', 'gaussian-mixture-models', 'gaussian-processes', 'good-turing-smoothing', 'gradient-boosting', 'hidden-markov-models', 'knn', 'lstm', 'machine-learning', 'mfcc', 'neural-networks', 'reinforcement-learning', 'resnet', 'topic-modeling', 'vae', 'wavenet', 'wgan-gp', 'word2vec']
['attention', 'bayesian-inference', 'gaussian-mixture-models', 'gaussian-processes', 'good-turing-smoothing', 'gradient-boosting', 'hidden-markov-models', 'knn', 'lstm', 'machine-learning', 'mfcc', 'neural-networks', 'reinforcement-learning', 'resnet', 'topic-modeling', 'vae', 'wavenet', 'wgan-gp', 'word2vec']
2022-01-08
[('mosaicml/composer', 0.6701366305351257, 'ml-dl', 2), ('huggingface/datasets', 0.6540278196334839, 'nlp', 1), ('google/trax', 0.6432744264602661, 'ml-dl', 2), ('huggingface/transformers', 0.6313506960868835, 'nlp', 1), ('onnx/onnx', 0.6284279227256775, 'ml', 1), ('tensorflow/tensorflow', 0.6283783912658691, 'ml-dl', 1), ('nvidia/deeplearningexamples', 0.6215345859527588, 'ml-dl', 0), ('gradio-app/gradio', 0.6104564666748047, 'viz', 1), ('keras-team/keras', 0.6089706420898438, 'ml-dl', 2), ('keras-rl/keras-rl', 0.6088154911994934, 'ml-rl', 3), ('explosion/thinc', 0.6082127094268799, 'ml-dl', 1), ('tensorly/tensorly', 0.6033033728599548, 'ml-dl', 1), ('online-ml/river', 0.6021139025688171, 'ml', 1), ('ageron/handson-ml2', 0.6011914014816284, 'ml', 0), ('lutzroeder/netron', 0.6000135540962219, 'ml', 1), ('rwightman/pytorch-image-models', 0.5986382961273193, 'ml-dl', 1), ('scikit-learn/scikit-learn', 0.5975611209869385, 'ml', 1), ('tensorlayer/tensorlayer', 0.5864402651786804, 'ml-rl', 1), ('nyandwi/modernconvnets', 0.5848450660705566, 'ml-dl', 1), ('xl0/lovely-numpy', 0.5750322937965393, 'util', 0), ('awslabs/gluonts', 0.5705474615097046, 'time-series', 2), ('jeshraghian/snntorch', 0.5650865435600281, 'ml-dl', 2), ('determined-ai/determined', 0.5607567429542542, 'ml-ops', 1), ('fatiando/verde', 0.5586436986923218, 'gis', 1), ('tensorflow/tensor2tensor', 0.5577438473701477, 'ml', 2), ('bentoml/bentoml', 0.5563209652900696, 'ml-ops', 1), ('keras-team/keras-nlp', 0.5563119053840637, 'nlp', 1), ('explosion/spacy', 0.5528154373168945, 'nlp', 2), ('microsoft/nni', 0.5512529015541077, 'ml', 1), ('polyaxon/polyaxon', 0.5511565208435059, 'ml-ops', 2), ('csinva/imodels', 0.5491467118263245, 'ml', 1), ('microsoft/onnxruntime', 0.5489387512207031, 'ml', 2), ('pycaret/pycaret', 0.5488267540931702, 'ml', 1), ('rasbt/machine-learning-book', 0.5466738343238831, 'study', 2), ('amanchadha/coursera-deep-learning-specialization', 0.5457329154014587, 'study', 1), ('roboflow/supervision', 0.5450491309165955, 'ml', 1), ('pyro-ppl/pyro', 0.5446068644523621, 'ml-dl', 2), ('unity-technologies/ml-agents', 0.5443470478057861, 'ml-rl', 3), ('sloria/textblob', 0.5411363244056702, 'nlp', 0), ('huggingface/huggingface_hub', 0.5406401753425598, 'ml', 1), ('nccr-itmo/fedot', 0.5393419861793518, 'ml-ops', 1), ('googlecloudplatform/vertex-ai-samples', 0.5378352403640747, 'ml', 0), ('mlflow/mlflow', 0.5377799868583679, 'ml-ops', 1), ('rare-technologies/gensim', 0.5375690460205078, 'nlp', 3), ('pytorch/pytorch', 0.5358303189277649, 'ml-dl', 1), ('stellargraph/stellargraph', 0.5346408486366272, 'graph', 1), ('neuralmagic/sparseml', 0.5339189171791077, 'ml-dl', 0), ('xl0/lovely-tensors', 0.5339087843894958, 'ml-dl', 0), ('deepmind/dm_control', 0.5336541533470154, 'ml-rl', 3), ('tensorflow/lucid', 0.5334033370018005, 'ml-interpretability', 1), ('bigscience-workshop/petals', 0.532703697681427, 'data', 2), ('intel/intel-extension-for-pytorch', 0.5318039059638977, 'perf', 1), ('kevinmusgrave/pytorch-metric-learning', 0.5313518643379211, 'ml', 1), ('thilinarajapakse/simpletransformers', 0.5308157801628113, 'nlp', 0), ('firmai/industry-machine-learning', 0.5301154255867004, 'study', 1), ('milvus-io/bootcamp', 0.5297070741653442, 'data', 0), ('opentensor/bittensor', 0.5296874642372131, 'ml', 2), ('lucidrains/imagen-pytorch', 0.5289348363876343, 'ml-dl', 0), ('ourownstory/neural_prophet', 0.5267665982246399, 'ml', 1), ('skorch-dev/skorch', 0.526438295841217, 'ml-dl', 1), ('pytorch/rl', 0.5264372229576111, 'ml-rl', 2), ('districtdatalabs/yellowbrick', 0.5262637138366699, 'ml', 1), ('pytorch/ignite', 0.5257222652435303, 'ml-dl', 1), ('open-mmlab/mmediting', 0.5251216292381287, 'ml', 0), ('neuralmagic/deepsparse', 0.5217757225036621, 'nlp', 0), ('blackhc/toma', 0.521062433719635, 'ml-dl', 1), ('rasbt/mlxtend', 0.5202142000198364, 'ml', 1), ('koaning/human-learn', 0.520194947719574, 'data', 1), ('interpretml/interpret', 0.5201536417007446, 'ml-interpretability', 2), ('lukaszahradnik/pyneuralogic', 0.5184630155563354, 'math', 1), ('microsoft/deepspeed', 0.5183699727058411, 'ml-dl', 1), ('wandb/client', 0.5179868936538696, 'ml', 2), ('ludwig-ai/ludwig', 0.5178036689758301, 'ml-ops', 1), ('rasahq/rasa', 0.5173048377037048, 'llm', 1), ('automl/auto-sklearn', 0.5156731605529785, 'ml', 0), ('arogozhnikov/einops', 0.5156410336494446, 'ml-dl', 0), ('horovod/horovod', 0.5155518651008606, 'ml-ops', 1), ('alpa-projects/alpa', 0.5153135657310486, 'ml-dl', 1), ('kubeflow/fairing', 0.5149458050727844, 'ml-ops', 0), ('cvxgrp/pymde', 0.51487797498703, 'ml', 1), ('aiqc/aiqc', 0.5140572190284729, 'ml-ops', 0), ('microsoft/semi-supervised-learning', 0.5134571194648743, 'ml', 1), ('ml-tooling/opyrator', 0.5126323699951172, 'viz', 1), ('awslabs/autogluon', 0.5125497579574585, 'ml', 1), ('ai4finance-foundation/finrl', 0.511791467666626, 'finance', 1), ('pytorchlightning/pytorch-lightning', 0.5105450749397278, 'ml-dl', 1), ('tensorflow/similarity', 0.510289192199707, 'ml-dl', 2), ('nvidia/nemo', 0.5102659463882446, 'nlp', 0), ('aistream-peelout/flow-forecast', 0.5097944140434265, 'time-series', 1), ('google/tf-quant-finance', 0.509579598903656, 'finance', 0), ('probml/pyprobml', 0.508565366268158, 'ml', 1), ('slundberg/shap', 0.5084296464920044, 'ml-interpretability', 2), ('danielegrattarola/spektral', 0.5083205699920654, 'ml-dl', 0), ('fepegar/torchio', 0.507611870765686, 'ml-dl', 1), ('tensorflow/addons', 0.5075183510780334, 'ml', 1), ('microsoft/jarvis', 0.5069154500961304, 'llm', 0), ('activeloopai/deeplake', 0.505265474319458, 'ml-ops', 1), ('docarray/docarray', 0.5052067637443542, 'data', 1), ('polyaxon/datatile', 0.5043874382972717, 'pandas', 0), ('aleju/imgaug', 0.5041775107383728, 'ml', 1), ('lightly-ai/lightly', 0.5032593607902527, 'ml', 1), ('alirezadir/machine-learning-interview-enlightener', 0.5029667019844055, 'study', 1), ('ray-project/ray', 0.5012813210487366, 'ml-ops', 2)]
16
5
null
0
4
0
58
24
0
0
0
4
1
90
0.2
46
218
ml
https://github.com/spotify/annoy
[]
null
[]
[]
1
null
null
spotify/annoy
annoy
12,337
1,171
322
C++
null
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk
spotify
2024-01-13
2013-04-01
565
21.829879
https://avatars.githubusercontent.com/u/251374?v=4
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk
['approximate-nearest-neighbor-search', 'c-plus-plus', 'golang', 'locality-sensitive-hashing', 'lua', 'nearest-neighbor-search']
['approximate-nearest-neighbor-search', 'c-plus-plus', 'golang', 'locality-sensitive-hashing', 'lua', 'nearest-neighbor-search']
2023-08-20
[('nmslib/hnswlib', 0.7858440279960632, 'ml', 0), ('spotify/voyager', 0.6272151470184326, 'ml', 1), ('lmcinnes/pynndescent', 0.6271777749061584, 'ml', 2), ('dgilland/cacheout', 0.5922878980636597, 'perf', 0), ('erotemic/ubelt', 0.5622727870941162, 'util', 0), ('cython/cython', 0.5542510151863098, 'util', 0), ('pyston/pyston', 0.5413413643836975, 'util', 0), ('python-cachier/cachier', 0.5307378768920898, 'perf', 0), ('plasma-umass/scalene', 0.5279016494750977, 'profiling', 0), ('joblib/joblib', 0.5218635201454163, 'util', 0), ('pypy/pypy', 0.5199677348136902, 'util', 0), ('grantjenks/python-diskcache', 0.5176307559013367, 'util', 0), ('facebookresearch/faiss', 0.5121656060218811, 'ml', 0), ('life4/textdistance', 0.5062219500541687, 'nlp', 0), ('pythonspeed/filprofiler', 0.5058916807174683, 'profiling', 0)]
88
2
null
0.6
3
0
131
5
2
3
2
3
3
90
1
46
1,006
finance
https://github.com/mementum/backtrader
[]
null
[]
[]
1
null
null
mementum/backtrader
backtrader
12,322
3,618
601
Python
https://www.backtrader.com
Python Backtesting library for trading strategies
mementum
2024-01-14
2015-01-10
472
26.08225
null
Python Backtesting library for trading strategies
['backtesting', 'metaclass', 'trading']
['backtesting', 'metaclass', 'trading']
2023-04-19
[('cuemacro/finmarketpy', 0.8932955265045166, 'finance', 0), ('gbeced/pyalgotrade', 0.6685662269592285, 'finance', 0), ('kernc/backtesting.py', 0.6531647443771362, 'finance', 2), ('pmorissette/bt', 0.6390605568885803, 'finance', 0), ('robcarver17/pysystemtrade', 0.6113889813423157, 'finance', 0), ('goldmansachs/gs-quant', 0.5926412343978882, 'finance', 0), ('gbeced/basana', 0.5649062991142273, 'finance', 1), ('ta-lib/ta-lib-python', 0.560478925704956, 'finance', 0), ('quantopian/zipline', 0.5593721866607666, 'finance', 0), ('pytoolz/toolz', 0.5593503713607788, 'util', 0), ('domokane/financepy', 0.5463677048683167, 'finance', 0), ('mementum/bta-lib', 0.5395269989967346, 'finance', 0), ('eleutherai/pyfra', 0.5332545638084412, 'ml', 0), ('wolever/parameterized', 0.5309708714485168, 'testing', 0), ('pmorissette/ffn', 0.5245431661605835, 'finance', 0), ('google/pyglove', 0.5199276208877563, 'util', 0), ('klen/py-frameworks-bench', 0.5150114893913269, 'perf', 0), ('polakowo/vectorbt', 0.5124863982200623, 'finance', 2), ('getsentry/responses', 0.5119891166687012, 'testing', 0), ('python-rope/rope', 0.50078284740448, 'util', 0)]
56
2
null
0.31
6
3
110
9
0
15
15
6
1
90
0.2
46
111
ml-interpretability
https://github.com/marcotcr/lime
['interpretable-ml']
null
[]
[]
null
null
null
marcotcr/lime
lime
11,075
1,798
264
JavaScript
null
Lime: Explaining the predictions of any machine learning classifier
marcotcr
2024-01-13
2016-03-15
411
26.946472
null
Lime: Explaining the predictions of any machine learning classifier
[]
['interpretable-ml']
2021-07-29
[('seldonio/alibi', 0.7131057977676392, 'ml-interpretability', 0), ('pair-code/lit', 0.6946200132369995, 'ml-interpretability', 0), ('maif/shapash', 0.6499969363212585, 'ml', 0), ('csinva/imodels', 0.6466513276100159, 'ml', 0), ('teamhg-memex/eli5', 0.6452601552009583, 'ml', 0), ('slundberg/shap', 0.6387524604797363, 'ml-interpretability', 0), ('interpretml/interpret', 0.634106457233429, 'ml-interpretability', 1), ('tensorflow/lucid', 0.61471027135849, 'ml-interpretability', 0), ('huggingface/evaluate', 0.6089439392089844, 'ml', 0), ('eleutherai/pythia', 0.5768492817878723, 'ml-interpretability', 1), ('pytorch/captum', 0.5743399262428284, 'ml-interpretability', 1), ('tensorflow/data-validation', 0.5638388395309448, 'ml-ops', 0), ('linkedin/fasttreeshap', 0.5298793315887451, 'ml', 0), ('patchy631/machine-learning', 0.5150882601737976, 'ml', 0), ('xplainable/xplainable', 0.5037121176719666, 'ml-interpretability', 0)]
62
5
null
0
9
2
95
30
0
2
2
9
8
90
0.9
46
746
study
https://github.com/karpathy/nn-zero-to-hero
[]
null
[]
[]
null
null
null
karpathy/nn-zero-to-hero
nn-zero-to-hero
9,163
1,068
259
Jupyter Notebook
null
Neural Networks: Zero to Hero
karpathy
2024-01-13
2022-09-08
72
126.013752
null
Neural Networks: Zero to Hero
[]
[]
2023-01-17
[('rasbt/deeplearning-models', 0.5198577642440796, 'ml-dl', 0), ('mosaicml/composer', 0.5013008713722229, 'ml-dl', 0)]
2
0
null
0
4
3
16
12
0
0
0
4
3
90
0.8
46
230
template
https://github.com/drivendata/cookiecutter-data-science
[]
null
[]
[]
1
null
null
drivendata/cookiecutter-data-science
cookiecutter-data-science
7,324
2,282
120
Python
http://drivendata.github.io/cookiecutter-data-science/
A logical, reasonably standardized, but flexible project structure for doing and sharing data science work.
drivendata
2024-01-13
2015-10-30
430
17.009954
null
A logical, reasonably standardized, but flexible project structure for doing and sharing data science work.
['ai', 'cookiecutter', 'cookiecutter-data-science', 'cookiecutter-template', 'data-science', 'machine-learning']
['ai', 'cookiecutter', 'cookiecutter-data-science', 'cookiecutter-template', 'data-science', 'machine-learning']
2023-09-22
[('crmne/cookiecutter-modern-datascience', 0.7191076874732971, 'template', 3), ('airbnb/knowledge-repo', 0.5590470433235168, 'data', 1), ('netflix/metaflow', 0.5439575910568237, 'ml-ops', 3), ('onnx/onnx', 0.5203287601470947, 'ml', 1), ('avaiga/taipy', 0.519536018371582, 'data', 0), ('meltano/meltano', 0.5092251300811768, 'ml-ops', 0), ('google-research/google-research', 0.5077729225158691, 'ml', 2), ('firmai/industry-machine-learning', 0.5075307488441467, 'study', 2), ('merantix-momentum/squirrel-core', 0.5045228004455566, 'ml', 3)]
46
6
null
0.02
23
11
100
4
0
0
0
24
22
90
0.9
46
453
ml-rl
https://github.com/tensorlayer/tensorlayer
[]
null
[]
[]
null
null
null
tensorlayer/tensorlayer
TensorLayer
7,264
1,636
461
Python
http://tensorlayerx.com
Deep Learning and Reinforcement Learning Library for Scientists and Engineers
tensorlayer
2024-01-12
2016-06-07
399
18.205514
https://avatars.githubusercontent.com/u/32261543?v=4
Deep Learning and Reinforcement Learning Library for Scientists and Engineers
['a3c', 'artificial-intelligence', 'chatbot', 'deep-learning', 'dqn', 'gan', 'google', 'imagenet', 'neural-network', 'object-detection', 'reinforcement-learning', 'tensorflow', 'tensorflow-tutorial', 'tensorflow-tutorials', 'tensorlayer']
['a3c', 'artificial-intelligence', 'chatbot', 'deep-learning', 'dqn', 'gan', 'google', 'imagenet', 'neural-network', 'object-detection', 'reinforcement-learning', 'tensorflow', 'tensorflow-tutorial', 'tensorflow-tutorials', 'tensorlayer']
2023-02-18
[('pytorch/rl', 0.7300659418106079, 'ml-rl', 1), ('keras-rl/keras-rl', 0.6922048926353455, 'ml-rl', 2), ('tensorflow/tensor2tensor', 0.6871770024299622, 'ml', 2), ('explosion/thinc', 0.6832032203674316, 'ml-dl', 3), ('google/trax', 0.6657304167747498, 'ml-dl', 2), ('keras-team/keras', 0.6656548976898193, 'ml-dl', 2), ('denys88/rl_games', 0.6643456816673279, 'ml-rl', 2), ('thu-ml/tianshou', 0.6603164076805115, 'ml-rl', 1), ('deepmind/dm_control', 0.654015064239502, 'ml-rl', 3), ('facebookresearch/habitat-lab', 0.6519606113433838, 'sim', 2), ('d2l-ai/d2l-en', 0.6486682891845703, 'study', 3), ('keras-team/autokeras', 0.622309148311615, 'ml-dl', 2), ('unity-technologies/ml-agents', 0.61866694688797, 'ml-rl', 2), ('rasbt/machine-learning-book', 0.6144220232963562, 'study', 1), ('deeppavlov/deeppavlov', 0.6134109497070312, 'nlp', 4), ('tensorflow/tensorflow', 0.6108736991882324, 'ml-dl', 3), ('pytorch/ignite', 0.6070582866668701, 'ml-dl', 2), ('pyg-team/pytorch_geometric', 0.6017088294029236, 'ml-dl', 1), ('mrdbourke/pytorch-deep-learning', 0.5996901392936707, 'study', 1), ('google/dopamine', 0.5985347628593445, 'ml-rl', 2), ('nvidia/deeplearningexamples', 0.5958699584007263, 'ml-dl', 2), ('google/tf-quant-finance', 0.5923408269882202, 'finance', 1), ('microsoft/onnxruntime', 0.5911857485771179, 'ml', 2), ('ddbourgin/numpy-ml', 0.5864402651786804, 'ml', 1), ('huggingface/transformers', 0.5841869711875916, 'nlp', 2), ('deepmodeling/deepmd-kit', 0.5839037299156189, 'sim', 2), ('salesforce/warp-drive', 0.5802738666534424, 'ml-rl', 2), ('mrdbourke/tensorflow-deep-learning', 0.576848566532135, 'study', 3), ('ray-project/ray', 0.5710065960884094, 'ml-ops', 3), ('alirezadir/machine-learning-interview-enlightener', 0.5669152140617371, 'study', 1), ('skorch-dev/skorch', 0.5663044452667236, 'ml-dl', 0), ('ai4finance-foundation/finrl', 0.5661175847053528, 'finance', 1), ('ageron/handson-ml2', 0.5648738741874695, 'ml', 0), ('intel/intel-extension-for-pytorch', 0.5644388198852539, 'perf', 2), ('deepmind/dm-haiku', 0.5642551183700562, 'ml-dl', 1), ('determined-ai/determined', 0.5628274083137512, 'ml-ops', 2), ('merantix-momentum/squirrel-core', 0.5620189905166626, 'ml', 2), ('onnx/onnx', 0.5610949397087097, 'ml', 3), ('aws/sagemaker-python-sdk', 0.5589292645454407, 'ml', 1), ('openai/spinningup', 0.5584976673126221, 'study', 0), ('ml-for-high-risk-apps-book/machine-learning-for-high-risk-applications-book', 0.5567829608917236, 'study', 1), ('pettingzoo-team/pettingzoo', 0.554624080657959, 'ml-rl', 1), ('facebookresearch/theseus', 0.553860068321228, 'math', 1), ('nyandwi/modernconvnets', 0.5535702705383301, 'ml-dl', 1), ('udacity/deep-learning-v2-pytorch', 0.550219714641571, 'study', 2), ('xl0/lovely-tensors', 0.5486395359039307, 'ml-dl', 1), ('huggingface/deep-rl-class', 0.5484325885772705, 'study', 2), ('ggerganov/ggml', 0.548178493976593, 'ml', 0), ('firmai/industry-machine-learning', 0.5479680299758911, 'study', 0), ('gradio-app/gradio', 0.5461198091506958, 'viz', 1), ('rucaibox/recbole', 0.5453563928604126, 'ml', 1), ('karpathy/micrograd', 0.544183075428009, 'study', 0), ('microsoft/deepspeed', 0.5429177284240723, 'ml-dl', 1), ('deepmind/acme', 0.5421755909919739, 'ml-rl', 1), ('lutzroeder/netron', 0.5410547256469727, 'ml', 3), ('kornia/kornia', 0.5397638082504272, 'ml-dl', 3), ('intellabs/bayesian-torch', 0.5386697053909302, 'ml', 1), ('a-r-j/graphein', 0.538101315498352, 'sim', 1), ('davidadsp/generative_deep_learning_2nd_edition', 0.5377876162528992, 'study', 2), ('bentoml/bentoml', 0.5359321236610413, 'ml-ops', 1), ('activeloopai/deeplake', 0.535557210445404, 'ml-ops', 2), ('ashleve/lightning-hydra-template', 0.5330002307891846, 'util', 1), ('huggingface/datasets', 0.5325732827186584, 'nlp', 2), ('fchollet/deep-learning-with-python-notebooks', 0.5313844680786133, 'study', 0), ('aistream-peelout/flow-forecast', 0.5312919020652771, 'time-series', 1), ('polyaxon/datatile', 0.5311883687973022, 'pandas', 1), ('facebookresearch/pytorch3d', 0.530800461769104, 'ml-dl', 0), ('rafiqhasan/auto-tensorflow', 0.5306537747383118, 'ml-dl', 1), ('tlkh/tf-metal-experiments', 0.5288784503936768, 'perf', 2), ('pyro-ppl/pyro', 0.5288735628128052, 'ml-dl', 1), ('adap/flower', 0.5287955403327942, 'ml-ops', 3), ('huggingface/huggingface_hub', 0.5281078815460205, 'ml', 1), ('amanchadha/coursera-deep-learning-specialization', 0.5279957056045532, 'study', 2), ('azavea/raster-vision', 0.5277007818222046, 'gis', 2), ('christoschristofidis/awesome-deep-learning', 0.5272840857505798, 'study', 2), ('dmlc/dgl', 0.5261937975883484, 'ml-dl', 1), ('pytorch/pytorch', 0.5231267213821411, 'ml-dl', 2), ('horovod/horovod', 0.5228431820869446, 'ml-ops', 2), ('microsoft/nni', 0.5219287872314453, 'ml', 3), ('tensorflow/addons', 0.5212689638137817, 'ml', 3), ('wandb/client', 0.5211523771286011, 'ml', 3), ('bulletphysics/bullet3', 0.5209137201309204, 'sim', 1), ('googlecloudplatform/vertex-ai-samples', 0.5206416845321655, 'ml', 0), ('farama-foundation/gymnasium', 0.5202954411506653, 'ml-rl', 1), ('isl-org/open3d', 0.5200856328010559, 'sim', 1), ('ludwig-ai/ludwig', 0.5189732909202576, 'ml-ops', 2), ('neuralmagic/sparseml', 0.5187444090843201, 'ml-dl', 2), ('lightly-ai/lightly', 0.5181266665458679, 'ml', 1), ('apache/incubator-mxnet', 0.5166865587234497, 'ml-dl', 0), ('danielegrattarola/spektral', 0.5144057869911194, 'ml-dl', 2), ('oml-team/open-metric-learning', 0.5133138298988342, 'ml', 1), ('koaning/human-learn', 0.5132976770401001, 'data', 0), ('oegedijk/explainerdashboard', 0.5132309794425964, 'ml-interpretability', 0), ('aimhubio/aim', 0.5126657485961914, 'ml-ops', 1), ('arise-initiative/robosuite', 0.5120179057121277, 'ml-rl', 1), ('lucidrains/imagen-pytorch', 0.5119508504867554, 'ml-dl', 2), ('allenai/allennlp', 0.5114910006523132, 'nlp', 1), ('mrdbourke/zero-to-mastery-ml', 0.5104413628578186, 'study', 1), ('jina-ai/jina', 0.5102136135101318, 'ml', 1), ('pytorchlightning/pytorch-lightning', 0.5099591612815857, 'ml-dl', 2), ('tensorly/tensorly', 0.508705198764801, 'ml-dl', 1), ('uber/petastorm', 0.5072025060653687, 'data', 2), ('mlflow/mlflow', 0.5055288672447205, 'ml-ops', 0), ('fepegar/torchio', 0.5055205225944519, 'ml-dl', 1), ('arogozhnikov/einops', 0.5044419765472412, 'ml-dl', 2), ('alpa-projects/alpa', 0.5041244029998779, 'ml-dl', 1), ('docarray/docarray', 0.5022443532943726, 'data', 1), ('roboflow/supervision', 0.502228319644928, 'ml', 3), ('dylanhogg/awesome-python', 0.5007988810539246, 'study', 1), ('csinva/imodels', 0.5001160502433777, 'ml', 1)]
134
6
null
0.02
2
0
93
11
0
11
11
2
1
90
0.5
46
1,462
util
https://github.com/hugapi/hug
[]
null
[]
[]
null
null
null
hugapi/hug
hug
6,756
389
161
Python
null
Embrace the APIs of the future. Hug aims to make developing APIs as simple as possible, but no simpler.
hugapi
2024-01-13
2015-07-17
445
15.162552
https://avatars.githubusercontent.com/u/49378345?v=4
Embrace the APIs of the future. Hug aims to make developing APIs as simple as possible, but no simpler.
['command-line', 'falcon', 'http', 'http-server', 'hug-api', 'python-api']
['command-line', 'falcon', 'http', 'http-server', 'hug-api', 'python-api']
2023-06-30
[('vitalik/django-ninja', 0.6697272658348083, 'web', 0), ('tiangolo/fastapi', 0.6468743085861206, 'web', 0), ('falconry/falcon', 0.6300604343414307, 'web', 1), ('simple-salesforce/simple-salesforce', 0.6207526922225952, 'data', 0), ('python-restx/flask-restx', 0.6121255159378052, 'web', 0), ('asacristani/fastapi-rocket-boilerplate', 0.5935749411582947, 'template', 0), ('encode/httpx', 0.5931265950202942, 'web', 1), ('tiangolo/full-stack-fastapi-postgresql', 0.5920613408088684, 'template', 0), ('ml-tooling/opyrator', 0.5820281505584717, 'viz', 0), ('psf/requests', 0.5775818228721619, 'web', 1), ('willmcgugan/textual', 0.5758522152900696, 'term', 0), ('huggingface/huggingface_hub', 0.5746172070503235, 'ml', 0), ('starlite-api/starlite', 0.573395848274231, 'web', 0), ('requests/toolbelt', 0.5709561705589294, 'util', 1), ('fastai/ghapi', 0.5626925230026245, 'util', 0), ('masoniteframework/masonite', 0.5562730431556702, 'web', 0), ('taverntesting/tavern', 0.5526415705680847, 'testing', 1), ('shishirpatil/gorilla', 0.5522815585136414, 'llm', 0), ('pallets/quart', 0.533208429813385, 'web', 1), ('pallets/flask', 0.5281922221183777, 'web', 0), ('pallets/werkzeug', 0.5272501111030579, 'web', 1), ('radiantearth/radiant-mlhub', 0.5193449854850769, 'gis', 0), ('alirn76/panther', 0.5171224474906921, 'web', 0), ('snyk-labs/pysnyk', 0.515166163444519, 'security', 0), ('cherrypy/cherrypy', 0.5129648447036743, 'web', 2), ('prefecthq/server', 0.5119301676750183, 'util', 0), ('googleapis/google-api-python-client', 0.5113233327865601, 'util', 0), ('encode/uvicorn', 0.5106011629104614, 'web', 2), ('eternnoir/pytelegrambotapi', 0.507483184337616, 'util', 1), ('hydrosquall/tiingo-python', 0.5074604749679565, 'finance', 0), ('openai/openai-python', 0.5053588151931763, 'util', 0), ('aio-libs/aiohttp', 0.5045132040977478, 'web', 2), ('urwid/urwid', 0.5001529455184937, 'term', 0)]
120
6
null
0.08
1
0
103
7
0
7
7
1
1
90
1
46
1,117
web
https://github.com/webpy/webpy
[]
null
[]
[]
null
null
null
webpy/webpy
webpy
5,856
1,325
337
Python
http://webpy.org
web.py is a web framework for python that is as simple as it is powerful.
webpy
2024-01-13
2008-09-29
800
7.318693
https://avatars.githubusercontent.com/u/26682?v=4
web.py is a web framework for python that is as simple as it is powerful.
[]
[]
2024-01-12
[('bottlepy/bottle', 0.7816590070724487, 'web', 0), ('pallets/flask', 0.7347891926765442, 'web', 0), ('masoniteframework/masonite', 0.7172554731369019, 'web', 0), ('reflex-dev/reflex', 0.702220618724823, 'web', 0), ('cherrypy/cherrypy', 0.6774104833602905, 'web', 0), ('clips/pattern', 0.6514905095100403, 'nlp', 0), ('pylons/pyramid', 0.6500197052955627, 'web', 0), ('pypy/pypy', 0.6487240195274353, 'util', 0), ('klen/muffin', 0.6442074179649353, 'web', 0), ('r0x0r/pywebview', 0.6379135251045227, 'gui', 0), ('pyodide/pyodide', 0.6373624205589294, 'util', 0), ('scrapy/scrapy', 0.6368110775947571, 'data', 0), ('willmcgugan/textual', 0.6224280595779419, 'term', 0), ('falconry/falcon', 0.6171799302101135, 'web', 0), ('eleutherai/pyfra', 0.6089206337928772, 'ml', 0), ('pallets/werkzeug', 0.5957249999046326, 'web', 0), ('pyglet/pyglet', 0.5836023688316345, 'gamedev', 0), ('pywebio/pywebio', 0.5835192799568176, 'web', 0), ('python/cpython', 0.5767532587051392, 'util', 0), ('hoffstadt/dearpygui', 0.5751984119415283, 'gui', 0), ('pyodide/micropip', 0.5706849694252014, 'util', 0), ('encode/uvicorn', 0.5704232454299927, 'web', 0), ('alirezamika/autoscraper', 0.5700419545173645, 'data', 0), ('simple-salesforce/simple-salesforce', 0.5696903467178345, 'data', 0), ('neoteroi/blacksheep', 0.5648735761642456, 'web', 0), ('requests/toolbelt', 0.563819169998169, 'util', 0), ('voila-dashboards/voila', 0.5608404278755188, 'jupyter', 0), ('seleniumbase/seleniumbase', 0.5600611567497253, 'testing', 0), ('flet-dev/flet', 0.5566127896308899, 'web', 0), ('pallets/quart', 0.5523453950881958, 'web', 0), ('reactive-python/reactpy', 0.5520175695419312, 'web', 0), ('roniemartinez/dude', 0.5446486473083496, 'util', 0), ('holoviz/panel', 0.5416973829269409, 'viz', 0), ('encode/httpx', 0.5403591394424438, 'web', 0), ('jiffyclub/snakeviz', 0.5397558808326721, 'profiling', 0), ('bokeh/bokeh', 0.5360361933708191, 'viz', 0), ('urwid/urwid', 0.533157467842102, 'term', 0), ('pyston/pyston', 0.5299744606018066, 'util', 0), ('1200wd/bitcoinlib', 0.5290544033050537, 'crypto', 0), ('plotly/dash', 0.5255879163742065, 'viz', 0), ('cobrateam/splinter', 0.5233193635940552, 'testing', 0), ('pytoolz/toolz', 0.522210419178009, 'util', 0), ('pyinfra-dev/pyinfra', 0.5194896459579468, 'util', 0), ('dylanhogg/awesome-python', 0.5156476497650146, 'study', 0), ('pygamelib/pygamelib', 0.5152013301849365, 'gamedev', 0), ('amaargiru/pyroad', 0.5149017572402954, 'study', 0), ('connorferster/handcalcs', 0.5106810331344604, 'jupyter', 0), ('maartenbreddels/ipyvolume', 0.5092483162879944, 'jupyter', 0), ('timofurrer/awesome-asyncio', 0.5086891651153564, 'study', 0), ('binux/pyspider', 0.5072404742240906, 'data', 0), ('ethereum/web3.py', 0.5061323046684265, 'crypto', 0), ('pygments/pygments', 0.5060795545578003, 'util', 0), ('microsoft/playwright-python', 0.505174994468689, 'testing', 0), ('jquast/blessed', 0.5048279166221619, 'term', 0), ('psf/requests', 0.5032954812049866, 'web', 0), ('jupyterlite/jupyterlite', 0.5002906918525696, 'jupyter', 0)]
90
5
null
0.17
14
7
186
0
1
1
1
14
31
90
2.2
46
757
ml-dl
https://github.com/xpixelgroup/basicsr
[]
null
[]
[]
null
null
null
xpixelgroup/basicsr
BasicSR
5,775
1,036
96
Python
https://basicsr.readthedocs.io/en/latest/
Open Source Image and Video Restoration Toolbox for Super-resolution, Denoise, Deblurring, etc. Currently, it includes EDSR, RCAN, SRResNet, SRGAN, ESRGAN, EDVR, BasicVSR, SwinIR, ECBSR, etc. Also support StyleGAN2, DFDNet.
xpixelgroup
2024-01-13
2018-04-19
301
19.140625
https://avatars.githubusercontent.com/u/104772975?v=4
Open Source Image and Video Restoration Toolbox for Super-resolution, Denoise, Deblurring, etc. Currently, it includes EDSR, RCAN, SRResNet, SRGAN, ESRGAN, EDVR, BasicVSR, SwinIR, ECBSR, etc. Also support StyleGAN2, DFDNet.
['basicsr', 'basicvsr', 'dfdnet', 'ecbsr', 'edsr', 'edvr', 'esrgan', 'pytorch', 'rcan', 'restoration', 'srgan', 'srresnet', 'stylegan2', 'super-resolution', 'swinir']
['basicsr', 'basicvsr', 'dfdnet', 'ecbsr', 'edsr', 'edvr', 'esrgan', 'pytorch', 'rcan', 'restoration', 'srgan', 'srresnet', 'stylegan2', 'super-resolution', 'swinir']
2023-02-02
[('xinntao/real-esrgan', 0.6734346151351929, 'ml-dl', 3), ('tencentarc/gfpgan', 0.6321846842765808, 'ml', 2), ('open-mmlab/mmediting', 0.5552972555160522, 'ml', 2)]
19
7
null
0.06
32
2
70
12
0
6
6
32
25
90
0.8
46
1,646
util
https://github.com/prompt-toolkit/ptpython
['repl', 'cli']
null
[]
[]
1
null
null
prompt-toolkit/ptpython
ptpython
4,969
316
66
Python
null
A better Python REPL
prompt-toolkit
2024-01-13
2014-09-29
487
10.200293
https://avatars.githubusercontent.com/u/44159252?v=4
A better Python REPL
[]
['cli', 'repl']
2023-12-14
[('dosisod/refurb', 0.573533296585083, 'util', 1), ('google/python-fire', 0.5544407367706299, 'term', 1), ('urwid/urwid', 0.5443150997161865, 'term', 0), ('python/cpython', 0.5359960794448853, 'util', 0), ('sourcery-ai/sourcery', 0.5356951355934143, 'util', 0), ('pypy/pypy', 0.532114565372467, 'util', 0), ('pypi/warehouse', 0.5278775691986084, 'util', 0), ('pytoolz/toolz', 0.5264323949813843, 'util', 0), ('pdm-project/pdm', 0.518380880355835, 'util', 0), ('pypa/hatch', 0.5076357126235962, 'util', 1), ('erotemic/ubelt', 0.5056498646736145, 'util', 0), ('pyscript/pyscript-cli', 0.5022722482681274, 'web', 0)]
58
4
null
0.52
24
13
113
1
2
4
2
24
30
90
1.2
46
636
util
https://github.com/pycqa/pycodestyle
[]
null
[]
[]
null
null
null
pycqa/pycodestyle
pycodestyle
4,941
809
117
Python
https://pycodestyle.pycqa.org
Simple Python style checker in one Python file
pycqa
2024-01-13
2009-10-02
747
6.609402
https://avatars.githubusercontent.com/u/8749848?v=4
Simple Python style checker in one Python file
['flake8-plugin', 'linter-flake8', 'linter-plugin', 'pep8', 'style-guide', 'styleguide']
['flake8-plugin', 'linter-flake8', 'linter-plugin', 'pep8', 'style-guide', 'styleguide']
2024-01-08
[('pycqa/flake8', 0.6883364915847778, 'util', 4), ('pycqa/mccabe', 0.5681533813476562, 'util', 3), ('hhatto/autopep8', 0.5678965449333191, 'util', 1), ('pycqa/pyflakes', 0.5580477118492126, 'util', 0), ('landscapeio/prospector', 0.531697690486908, 'util', 0), ('microsoft/pyright', 0.5176783204078674, 'typing', 0), ('agronholm/typeguard', 0.5046524405479431, 'typing', 0)]
133
4
null
0.88
24
21
174
0
0
3
3
24
35
90
1.5
46
1,268
perf
https://github.com/ultrajson/ultrajson
[]
null
[]
[]
null
null
null
ultrajson/ultrajson
ultrajson
4,180
374
87
C
https://pypi.org/project/ujson/
Ultra fast JSON decoder and encoder written in C with Python bindings
ultrajson
2024-01-12
2011-02-27
674
6.199153
https://avatars.githubusercontent.com/u/61062879?v=4
Ultra fast JSON decoder and encoder written in C with Python bindings
['c', 'decoder', 'encoder', 'json', 'ujson', 'ultrajson']
['c', 'decoder', 'encoder', 'json', 'ujson', 'ultrajson']
2024-01-05
[('cython/cython', 0.5291088223457336, 'util', 1), ('pypy/pypy', 0.5242108106613159, 'util', 0), ('blosc/python-blosc', 0.5216162204742432, 'perf', 0)]
87
4
null
0.9
11
10
157
0
2
2
2
11
34
90
3.1
46
59
gamedev
https://github.com/panda3d/panda3d
[]
null
[]
[]
null
null
null
panda3d/panda3d
panda3d
4,140
780
199
C++
https://www.panda3d.org/
Powerful, mature open-source cross-platform game engine for Python and C++, developed by Disney and CMU
panda3d
2024-01-13
2013-09-30
539
7.678855
https://avatars.githubusercontent.com/u/590956?v=4
Powerful, mature open-source cross-platform game engine for Python and C++, developed by Disney and CMU
['c-plus-plus', 'cross-platform', 'game-development', 'game-engine', 'gamedev', 'multi-platform', 'open-source', 'opengl', 'panda3d', 'panda3d-game-engine']
['c-plus-plus', 'cross-platform', 'game-development', 'game-engine', 'gamedev', 'multi-platform', 'open-source', 'opengl', 'panda3d', 'panda3d-game-engine']
2024-01-08
[('pokepetter/ursina', 0.8077520132064819, 'gamedev', 2), ('kitao/pyxel', 0.6634293794631958, 'gamedev', 3), ('pygame/pygame', 0.609826922416687, 'gamedev', 2), ('lordmauve/pgzero', 0.5944162011146545, 'gamedev', 0), ('pythonarcade/arcade', 0.5839753746986389, 'gamedev', 1), ('pygamelib/pygamelib', 0.5582475662231445, 'gamedev', 2), ('renpy/renpy', 0.5438269972801208, 'viz', 0), ('cython/cython', 0.5402704477310181, 'util', 0), ('isl-org/open3d', 0.5318998694419861, 'sim', 1), ('scikit-build/scikit-build', 0.5191662907600403, 'ml', 1), ('fastai/fastcore', 0.5172508955001831, 'util', 0), ('pyglet/pyglet', 0.5137691497802734, 'gamedev', 2), ('sail-sg/envpool', 0.5131605267524719, 'sim', 0), ('exaloop/codon', 0.5107043981552124, 'perf', 0), ('polyaxon/datatile', 0.5070898532867432, 'pandas', 0), ('eventual-inc/daft', 0.5059236288070679, 'pandas', 0), ('kivy/kivy', 0.5057852268218994, 'util', 0), ('quantconnect/lean', 0.5038788318634033, 'finance', 0)]
162
1
null
5.98
71
28
125
0
1
2
1
71
121
90
1.7
46
1,154
data
https://github.com/mongodb/mongo-python-driver
[]
null
[]
[]
null
null
null
mongodb/mongo-python-driver
mongo-python-driver
3,982
1,192
240
Python
https://pymongo.readthedocs.io
PyMongo - the Official MongoDB Python driver
mongodb
2024-01-13
2009-01-15
784
5.074458
https://avatars.githubusercontent.com/u/45120?v=4
PyMongo - the Official MongoDB Python driver
['mongodb', 'mongodb-driver', 'pymongo']
['mongodb', 'mongodb-driver', 'pymongo']
2024-01-12
[('pyeve/eve', 0.5024893879890442, 'web', 1), ('mause/duckdb_engine', 0.5003612041473389, 'data', 0)]
206
2
null
5.9
94
87
183
0
6
10
6
92
109
90
1.2
46
775
diffusion
https://github.com/jina-ai/discoart
[]
null
[]
[]
null
null
null
jina-ai/discoart
discoart
3,834
254
34
Python
null
πŸͺ© Create Disco Diffusion artworks in one line
jina-ai
2024-01-13
2022-06-30
82
46.352332
https://avatars.githubusercontent.com/u/60539444?v=4
πŸͺ© Create Disco Diffusion artworks in one line
['clip-guided-diffusion', 'creative-ai', 'creative-art', 'cross-modal', 'dalle', 'diffusion', 'disco-diffusion', 'discodiffusion', 'generative-art', 'imgen', 'latent-diffusion', 'midjourney', 'multimodal', 'prompts', 'stable-diffusion']
['clip-guided-diffusion', 'creative-ai', 'creative-art', 'cross-modal', 'dalle', 'diffusion', 'disco-diffusion', 'discodiffusion', 'generative-art', 'imgen', 'latent-diffusion', 'midjourney', 'multimodal', 'prompts', 'stable-diffusion']
2023-05-16
[('nateraw/stable-diffusion-videos', 0.5996933579444885, 'diffusion', 1), ('carson-katri/dream-textures', 0.5772116184234619, 'diffusion', 1), ('automatic1111/stable-diffusion-webui', 0.560263454914093, 'diffusion', 2), ('invoke-ai/invokeai', 0.55684894323349, 'diffusion', 3), ('compvis/stable-diffusion', 0.5315988659858704, 'diffusion', 1), ('lkwq007/stablediffusion-infinity', 0.5142841935157776, 'diffusion', 1), ('huggingface/diffusers', 0.5044229030609131, 'diffusion', 2)]
7
2
null
0.06
2
2
19
8
1
77
1
2
3
90
1.5
46
692
util
https://github.com/joblib/joblib
[]
null
[]
[]
null
null
null
joblib/joblib
joblib
3,544
436
61
Python
http://joblib.readthedocs.org
Computing with Python functions.
joblib
2024-01-13
2010-05-07
716
4.945774
https://avatars.githubusercontent.com/u/332661?v=4
Computing with Python functions.
['caching', 'memoization', 'multiprocessing', 'parallel-computing', 'threading']
['caching', 'memoization', 'multiprocessing', 'parallel-computing', 'threading']
2023-12-01
[('dgilland/cacheout', 0.6794201135635376, 'perf', 2), ('python-cachier/cachier', 0.6731811165809631, 'perf', 2), ('noxdafox/pebble', 0.6440830826759338, 'perf', 2), ('ipython/ipyparallel', 0.6388868689537048, 'perf', 0), ('dask/dask', 0.6337271332740784, 'perf', 0), ('sumerc/yappi', 0.6218010783195496, 'profiling', 0), ('pympler/pympler', 0.6179777979850769, 'perf', 0), ('exaloop/codon', 0.6015269160270691, 'perf', 0), ('fastai/fastcore', 0.6007087826728821, 'util', 0), ('pyston/pyston', 0.6001591086387634, 'util', 0), ('pythonspeed/filprofiler', 0.5940987467765808, 'profiling', 0), ('pypy/pypy', 0.5741433501243591, 'util', 0), ('python-trio/trio', 0.5737351179122925, 'perf', 0), ('cython/cython', 0.5678399801254272, 'util', 0), ('sympy/sympy', 0.5607999563217163, 'math', 0), ('jmcarpenter2/swifter', 0.5563712120056152, 'pandas', 1), ('pythonprofilers/memory_profiler', 0.5550679564476013, 'profiling', 0), ('nalepae/pandarallel', 0.5519195199012756, 'pandas', 0), ('numpy/numpy', 0.5501325130462646, 'math', 0), ('blackhc/toma', 0.5492387413978577, 'ml-dl', 0), ('samuelcolvin/arq', 0.5469869375228882, 'data', 0), ('google/jax', 0.5429615378379822, 'ml', 0), ('klen/py-frameworks-bench', 0.540972888469696, 'perf', 0), ('agronholm/apscheduler', 0.5400955080986023, 'util', 0), ('nvidia/warp', 0.5375118851661682, 'sim', 0), ('locustio/locust', 0.534275233745575, 'testing', 0), ('grantjenks/python-diskcache', 0.5340135097503662, 'util', 0), ('plasma-umass/scalene', 0.5323008298873901, 'profiling', 0), ('micropython/micropython', 0.5310302376747131, 'util', 0), ('pytoolz/toolz', 0.5292420983314514, 'util', 0), ('python/cpython', 0.5285337567329407, 'util', 0), ('eleutherai/pyfra', 0.5282385349273682, 'ml', 0), ('google/pyglove', 0.526533305644989, 'util', 0), ('joblib/loky', 0.5221757292747498, 'perf', 0), ('spotify/annoy', 0.5218635201454163, 'ml', 0), ('klen/muffin', 0.5203728675842285, 'web', 0), ('hyperopt/hyperopt', 0.5118980407714844, 'ml', 0), ('erotemic/ubelt', 0.5093076825141907, 'util', 0), ('geeogi/async-python-lambda-template', 0.5088009834289551, 'template', 0), ('scipy/scipy', 0.508256196975708, 'math', 0), ('lcompilers/lpython', 0.5082236528396606, 'util', 0), ('baruchel/tco', 0.5076671838760376, 'perf', 0), ('evhub/coconut', 0.5061070322990417, 'util', 0), ('eventlet/eventlet', 0.5059096217155457, 'perf', 0), ('pytables/pytables', 0.5035998225212097, 'data', 0), ('fluentpython/example-code-2e', 0.5024613738059998, 'study', 0), ('jeshraghian/snntorch', 0.5017874836921692, 'ml-dl', 0), ('fugue-project/fugue', 0.5016358494758606, 'pandas', 0), ('adafruit/circuitpython', 0.5005473494529724, 'util', 0)]
127
6
null
1.27
46
21
167
1
3
6
3
46
103
90
2.2
46
419
ml-rl
https://github.com/facebookresearch/reagent
[]
null
[]
[]
null
null
null
facebookresearch/reagent
ReAgent
3,495
534
152
Python
https://reagent.ai
A platform for Reasoning systems (Reinforcement Learning, Contextual Bandits, etc.)
facebookresearch
2024-01-14
2017-07-27
339
10.288057
https://avatars.githubusercontent.com/u/16943930?v=4
A platform for Reasoning systems (Reinforcement Learning, Contextual Bandits, etc.)
[]
[]
2024-01-09
[('openai/gym', 0.573969841003418, 'ml-rl', 0), ('farama-foundation/gymnasium', 0.5644688606262207, 'ml-rl', 0), ('google/dopamine', 0.5503111481666565, 'ml-rl', 0), ('pettingzoo-team/pettingzoo', 0.5440720915794373, 'ml-rl', 0), ('deepmind/acme', 0.536990761756897, 'ml-rl', 0), ('thu-ml/tianshou', 0.5355173945426941, 'ml-rl', 0), ('unity-technologies/ml-agents', 0.5251111388206482, 'ml-rl', 0), ('ai4finance-foundation/finrl', 0.5226213932037354, 'finance', 0), ('shangtongzhang/reinforcement-learning-an-introduction', 0.5210154056549072, 'study', 0), ('stanfordnlp/dspy', 0.5081221461296082, 'llm', 0), ('pytorch/rl', 0.5019720196723938, 'ml-rl', 0)]
164
5
null
1.31
1
0
79
0
0
0
0
1
2
90
2
46
139
ml-interpretability
https://github.com/pair-code/lit
[]
null
[]
[]
1
null
null
pair-code/lit
lit
3,273
339
71
TypeScript
https://pair-code.github.io/lit
The Learning Interpretability Tool: Interactively analyze ML models to understand their behavior in an extensible and framework agnostic interface.
pair-code
2024-01-14
2020-07-28
183
17.885246
https://avatars.githubusercontent.com/u/29804435?v=4
The Learning Interpretability Tool: Interactively analyze ML models to understand their behavior in an extensible and framework agnostic interface.
['machine-learning', 'natural-language-processing', 'visualization']
['machine-learning', 'natural-language-processing', 'visualization']
2023-11-08
[('marcotcr/lime', 0.6946200132369995, 'ml-interpretability', 0), ('tensorflow/lucid', 0.6758688688278198, 'ml-interpretability', 2), ('csinva/imodels', 0.6702791452407837, 'ml', 1), ('seldonio/alibi', 0.6469577550888062, 'ml-interpretability', 1), ('eleutherai/pythia', 0.641786515712738, 'ml-interpretability', 0), ('maif/shapash', 0.62184739112854, 'ml', 1), ('selfexplainml/piml-toolbox', 0.6214944124221802, 'ml-interpretability', 0), ('interpretml/interpret', 0.6197747588157654, 'ml-interpretability', 1), ('huggingface/evaluate', 0.5728373527526855, 'ml', 1), ('teamhg-memex/eli5', 0.5625553727149963, 'ml', 1), ('pytorch/captum', 0.5618991851806641, 'ml-interpretability', 0), ('districtdatalabs/yellowbrick', 0.5486710071563721, 'ml', 2), ('tensorflow/data-validation', 0.5432097315788269, 'ml-ops', 0), ('hazyresearch/meerkat', 0.5387915968894958, 'viz', 1), ('xplainable/xplainable', 0.5334827303886414, 'ml-interpretability', 1), ('slundberg/shap', 0.532273530960083, 'ml-interpretability', 1)]
34
3
null
5.25
34
16
42
2
2
3
2
33
13
90
0.4
46
1,200
ml
https://github.com/huggingface/notebooks
[]
null
[]
[]
null
null
null
huggingface/notebooks
notebooks
3,012
1,308
73
Jupyter Notebook
null
Notebooks using the Hugging Face libraries πŸ€—
huggingface
2024-01-14
2020-06-15
189
15.924471
https://avatars.githubusercontent.com/u/25720743?v=4
Notebooks using the Hugging Face libraries πŸ€—
[]
[]
2024-01-05
[('huggingface/huggingface_hub', 0.5788795948028564, 'ml', 0), ('koaning/calm-notebooks', 0.5623078942298889, 'study', 0), ('huggingface/diffusion-models-class', 0.5564571619033813, 'study', 0), ('cohere-ai/notebooks', 0.529309868812561, 'llm', 0)]
75
1
null
4.69
35
12
44
0
0
0
0
35
49
90
1.4
46
1,717
util
https://github.com/jendrikseipp/vulture
['code-quality']
null
[]
[]
null
null
null
jendrikseipp/vulture
vulture
2,874
175
26
Python
null
Find dead Python code
jendrikseipp
2024-01-13
2017-03-06
360
7.980167
null
Find dead Python code
['dead-code-removal']
['code-quality', 'dead-code-removal']
2024-01-06
[('facebookincubator/bowler', 0.5705008506774902, 'util', 0), ('dosisod/refurb', 0.5567197203636169, 'util', 0), ('rubik/radon', 0.5527566075325012, 'util', 0), ('agronholm/typeguard', 0.5461918711662292, 'typing', 1), ('google/yapf', 0.5393766164779663, 'util', 1), ('microsoft/pyright', 0.536612331867218, 'typing', 1), ('sourcery-ai/sourcery', 0.5342533588409424, 'util', 1), ('nedbat/coveragepy', 0.5239750146865845, 'testing', 0), ('pythonprofilers/memory_profiler', 0.5172761678695679, 'profiling', 0)]
40
4
null
0.62
17
10
84
0
4
7
4
17
29
90
1.7
46
99
data
https://github.com/zoomeranalytics/xlwings
[]
null
[]
[]
null
null
null
zoomeranalytics/xlwings
xlwings
2,773
482
122
Python
https://www.xlwings.org
xlwings is a Python library that makes it easy to call Python from Excel and vice versa. It works with Excel on Windows and macOS as well as with Google Sheets and Excel on the web.
zoomeranalytics
2024-01-13
2014-03-17
515
5.382973
https://avatars.githubusercontent.com/u/6239016?v=4
xlwings is a Python library that makes it easy to call Python from Excel and vice versa. It works with Excel on Windows and macOS as well as with Google Sheets and Excel on the web.
['automation', 'excel', 'google-sheets', 'googlesheets', 'reporting']
['automation', 'excel', 'google-sheets', 'googlesheets', 'reporting']
2024-01-05
[('jmcnamara/xlsxwriter', 0.7553142309188843, 'data', 0), ('jazzband/tablib', 0.5972012877464294, 'data', 0), ('connorferster/handcalcs', 0.5488008856773376, 'jupyter', 0), ('plotly/dash', 0.5458297729492188, 'viz', 0), ('tkrabel/bamboolib', 0.5089218616485596, 'pandas', 0)]
64
2
null
3.02
47
27
120
0
17
16
17
48
84
90
1.8
46
1,437
util
https://github.com/lxml/lxml
['xml']
null
[]
[]
null
null
null
lxml/lxml
lxml
2,512
586
80
Python
https://lxml.de/
The lxml XML toolkit for Python
lxml
2024-01-14
2011-02-11
676
3.712838
https://avatars.githubusercontent.com/u/612230?v=4
The lxml XML toolkit for Python
[]
['xml']
2024-01-12
[('roniemartinez/dude', 0.5113477110862732, 'util', 0)]
156
5
null
5.48
19
16
157
0
9
11
9
19
26
90
1.4
46
1,067
nlp
https://github.com/bigscience-workshop/promptsource
[]
null
[]
[]
null
null
null
bigscience-workshop/promptsource
promptsource
2,325
320
28
Python
null
Toolkit for creating, sharing and using natural language prompts.
bigscience-workshop
2024-01-14
2021-05-19
140
16.506085
https://avatars.githubusercontent.com/u/82455566?v=4
Toolkit for creating, sharing and using natural language prompts.
['machine-learning', 'natural-language-processing', 'nlp']
['machine-learning', 'natural-language-processing', 'nlp']
2023-10-23
[('promptslab/awesome-prompt-engineering', 0.5903843641281128, 'study', 1), ('rasahq/rasa', 0.5880197882652283, 'llm', 3), ('promptslab/promptify', 0.5728100538253784, 'nlp', 2), ('srush/minichain', 0.5696084499359131, 'llm', 0), ('nltk/nltk', 0.5687624216079712, 'nlp', 3), ('gunthercox/chatterbot-corpus', 0.5633988976478577, 'nlp', 0), ('keirp/automatic_prompt_engineer', 0.5572788715362549, 'llm', 0), ('stanfordnlp/dspy', 0.5486031770706177, 'llm', 0), ('tmbo/questionary', 0.5423410534858704, 'term', 0), ('conceptofmind/toolformer', 0.5377352237701416, 'llm', 0), ('openlmlab/moss', 0.5367189049720764, 'llm', 1), ('rcgai/simplyretrieve', 0.5266952514648438, 'llm', 3), ('hegelai/prompttools', 0.526086688041687, 'llm', 1), ('killianlucas/open-interpreter', 0.5243964195251465, 'llm', 0), ('neulab/prompt2model', 0.5239977240562439, 'llm', 0), ('agenta-ai/agenta', 0.52383953332901, 'llm', 0), ('alibaba/easynlp', 0.5199021697044373, 'nlp', 2), ('argilla-io/argilla', 0.5188122987747192, 'nlp', 3), ('lm-sys/fastchat', 0.514387309551239, 'llm', 0), ('flairnlp/flair', 0.5140012502670288, 'nlp', 3), ('hazyresearch/ama_prompting', 0.512933611869812, 'llm', 0), ('guidance-ai/guidance', 0.5123276114463806, 'llm', 0), ('allenai/allennlp', 0.5015190839767456, 'nlp', 2)]
65
6
null
0.13
11
11
32
3
0
2
2
11
10
90
0.9
46
1,367
sim
https://github.com/rdkit/rdkit
['chemistry']
null
[]
[]
null
null
null
rdkit/rdkit
rdkit
2,305
808
85
HTML
null
The official sources for the RDKit library
rdkit
2024-01-12
2013-05-12
559
4.121328
https://avatars.githubusercontent.com/u/2018047?v=4
The official sources for the RDKit library
['c-plus-plus', 'cheminformatics', 'rdkit']
['c-plus-plus', 'cheminformatics', 'chemistry', 'rdkit']
2024-01-11
[('espressomd/espresso', 0.5796418786048889, 'sim', 1), ('rasbt/machine-learning-book', 0.5607836246490479, 'study', 0), ('skorch-dev/skorch', 0.510020911693573, 'ml-dl', 0)]
208
1
null
6.33
220
142
130
0
11
16
11
220
304
90
1.4
46
377
ml-interpretability
https://github.com/oegedijk/explainerdashboard
[]
null
[]
[]
null
null
null
oegedijk/explainerdashboard
explainerdashboard
2,123
305
22
Python
http://explainerdashboard.readthedocs.io
Quickly build Explainable AI dashboards that show the inner workings of so-called "blackbox" machine learning models.
oegedijk
2024-01-11
2019-10-30
221
9.569221
null
Quickly build Explainable AI dashboards that show the inner workings of so-called "blackbox" machine learning models.
['dash', 'dashboard', 'data-scientists', 'explainer', 'inner-workings', 'interactive-dashboards', 'interactive-plots', 'model-predictions', 'permutation-importances', 'plotly', 'shap', 'shap-values', 'xai', 'xai-library']
['dash', 'dashboard', 'data-scientists', 'explainer', 'inner-workings', 'interactive-dashboards', 'interactive-plots', 'model-predictions', 'permutation-importances', 'plotly', 'shap', 'shap-values', 'xai', 'xai-library']
2023-12-18
[('interpretml/interpret', 0.6743864417076111, 'ml-interpretability', 1), ('xplainable/xplainable', 0.627983570098877, 'ml-interpretability', 2), ('seldonio/alibi', 0.6191368699073792, 'ml-interpretability', 1), ('teamhg-memex/eli5', 0.602367103099823, 'ml', 0), ('polyaxon/datatile', 0.5954424142837524, 'pandas', 1), ('mindsdb/mindsdb', 0.5860490798950195, 'data', 0), ('maif/shapash', 0.5845269560813904, 'ml', 1), ('prefecthq/marvin', 0.584237813949585, 'nlp', 0), ('alirezadir/machine-learning-interview-enlightener', 0.5830463171005249, 'study', 0), ('rafiqhasan/auto-tensorflow', 0.5813491940498352, 'ml-dl', 0), ('googlecloudplatform/vertex-ai-samples', 0.5758024454116821, 'ml', 0), ('csinva/imodels', 0.5566130876541138, 'ml', 0), ('gradio-app/gradio', 0.5561123490333557, 'viz', 0), ('bentoml/bentoml', 0.553854763507843, 'ml-ops', 0), ('cheshire-cat-ai/core', 0.5511989593505859, 'llm', 0), ('tensorflow/lucid', 0.5506213903427124, 'ml-interpretability', 0), ('unity-technologies/ml-agents', 0.5465452671051025, 'ml-rl', 0), ('antonosika/gpt-engineer', 0.545367956161499, 'llm', 0), ('slundberg/shap', 0.5450636148452759, 'ml-interpretability', 1), ('carla-recourse/carla', 0.5436306595802307, 'ml', 0), ('lutzroeder/netron', 0.54157954454422, 'ml', 0), ('reloadware/reloadium', 0.5406351089477539, 'profiling', 0), ('wandb/client', 0.5388295650482178, 'ml', 0), ('pytorchlightning/pytorch-lightning', 0.5369613766670227, 'ml-dl', 0), ('google-research/google-research', 0.5351460576057434, 'ml', 0), ('aimhubio/aim', 0.5350830554962158, 'ml-ops', 0), ('whylabs/whylogs', 0.5336712598800659, 'util', 0), ('explosion/thinc', 0.5325929522514343, 'ml-dl', 0), ('tensorflow/tensor2tensor', 0.5324363708496094, 'ml', 0), ('sweepai/sweep', 0.5306786298751831, 'llm', 0), ('transformeroptimus/superagi', 0.5287240147590637, 'llm', 0), ('ml-tooling/opyrator', 0.5270505547523499, 'viz', 0), ('mosaicml/composer', 0.5244570374488831, 'ml-dl', 0), ('districtdatalabs/yellowbrick', 0.5237336158752441, 'ml', 0), ('ml-for-high-risk-apps-book/machine-learning-for-high-risk-applications-book', 0.52154141664505, 'study', 0), ('activeloopai/deeplake', 0.5188158750534058, 'ml-ops', 0), ('google/dopamine', 0.5178472399711609, 'ml-rl', 0), ('oneil512/insight', 0.5162001848220825, 'ml', 0), ('salesforce/logai', 0.5160885453224182, 'util', 0), ('mlc-ai/mlc-llm', 0.5132462978363037, 'llm', 0), ('tensorlayer/tensorlayer', 0.5132309794425964, 'ml-rl', 0), ('ray-project/ray', 0.5122550129890442, 'ml-ops', 0), ('hpcaitech/colossalai', 0.5112443566322327, 'llm', 0), ('mlflow/mlflow', 0.5103710889816284, 'ml-ops', 0), ('google/vizier', 0.5101515650749207, 'ml', 0), ('huggingface/datasets', 0.5090382695198059, 'nlp', 0), ('google-research/language', 0.5075442790985107, 'nlp', 0), ('microsoft/nni', 0.507343053817749, 'ml', 0), ('nvidia/deeplearningexamples', 0.5068669319152832, 'ml-dl', 0)]
21
6
null
1.04
14
5
51
1
6
19
6
14
22
90
1.6
46
1,136
util
https://github.com/libaudioflux/audioflux
[]
null
[]
[]
null
null
null
libaudioflux/audioflux
audioFlux
1,957
95
26
C
https://audioflux.top
A library for audio and music analysis, feature extraction.
libaudioflux
2024-01-13
2023-01-16
54
36.145119
https://avatars.githubusercontent.com/u/105165315?v=4
A library for audio and music analysis, feature extraction.
['audio', 'audio-analysis', 'audio-features', 'audio-processing', 'deep-learning', 'machine-learning', 'mfcc', 'mir', 'music', 'music-analysis', 'music-information-retrieval', 'pitch', 'signal-processing', 'spectral-analysis', 'spectrogram', 'time-frequency-analysis', 'wavelet-analysis', 'wavelet-transform']
['audio', 'audio-analysis', 'audio-features', 'audio-processing', 'deep-learning', 'machine-learning', 'mfcc', 'mir', 'music', 'music-analysis', 'music-information-retrieval', 'pitch', 'signal-processing', 'spectral-analysis', 'spectrogram', 'time-frequency-analysis', 'wavelet-analysis', 'wavelet-transform']
2023-12-22
[('bastibe/python-soundfile', 0.6440500617027283, 'util', 0), ('spotify/pedalboard', 0.5974409580230713, 'util', 2), ('facebookresearch/audiocraft', 0.551815927028656, 'util', 1), ('speechbrain/speechbrain', 0.5162292718887329, 'nlp', 3), ('quodlibet/mutagen', 0.5058978796005249, 'util', 1)]
5
1
null
1.33
6
3
12
1
8
8
8
6
4
90
0.7
46
955
gis
https://github.com/azavea/raster-vision
[]
null
[]
[]
null
null
null
azavea/raster-vision
raster-vision
1,956
374
74
Python
https://docs.rastervision.io
An open source library and framework for deep learning on satellite and aerial imagery.
azavea
2024-01-11
2017-02-02
364
5.363102
https://avatars.githubusercontent.com/u/595231?v=4
An open source library and framework for deep learning on satellite and aerial imagery.
['classification', 'computer-vision', 'deep-learning', 'geospatial', 'machine-learning', 'object-detection', 'pytorch', 'remote-sensing', 'semantic-segmentation']
['classification', 'computer-vision', 'deep-learning', 'geospatial', 'machine-learning', 'object-detection', 'pytorch', 'remote-sensing', 'semantic-segmentation']
2024-01-11
[('datasystemslab/geotorch', 0.6860873103141785, 'gis', 1), ('developmentseed/label-maker', 0.6791407465934753, 'gis', 3), ('microsoft/torchgeo', 0.6176372766494751, 'gis', 5), ('remotesensinglab/raster4ml', 0.5898652076721191, 'gis', 2), ('tensorflow/tensorflow', 0.5648720860481262, 'ml-dl', 2), ('deci-ai/super-gradients', 0.5499731302261353, 'ml-dl', 5), ('kevinmusgrave/pytorch-metric-learning', 0.5324239134788513, 'ml', 4), ('tensorlayer/tensorlayer', 0.5277007818222046, 'ml-rl', 2), ('kornia/kornia', 0.5268778204917908, 'ml-dl', 4), ('weecology/deepforest', 0.5204096436500549, 'gis', 0), ('google-research/deeplab2', 0.5186462998390198, 'ml', 0), ('lightly-ai/lightly', 0.5178630352020264, 'ml', 4), ('sentinelsat/sentinelsat', 0.5150529742240906, 'gis', 1), ('plant99/felicette', 0.5094917416572571, 'gis', 1), ('nvlabs/gcvit', 0.5082259178161621, 'diffusion', 3), ('tensorflow/tensor2tensor', 0.5076959133148193, 'ml', 2), ('albumentations-team/albumentations', 0.50620436668396, 'ml-dl', 3)]
35
5
null
4.73
77
56
85
0
6
3
6
77
80
90
1
46
940
nlp
https://github.com/alibaba/easynlp
[]
null
[]
[]
null
null
null
alibaba/easynlp
EasyNLP
1,872
238
37
Python
null
EasyNLP: A Comprehensive and Easy-to-use NLP Toolkit
alibaba
2024-01-13
2022-04-06
94
19.73494
https://avatars.githubusercontent.com/u/1961952?v=4
EasyNLP: A Comprehensive and Easy-to-use NLP Toolkit
['bert', 'deep-learning', 'fewshot-learning', 'knowledge-distillation', 'knowledge-pretraining', 'machine-learning', 'nlp', 'pretrained-models', 'pytorch', 'text-classification', 'text-image-retrieval', 'text-to-image-synthesis', 'transfer-learning', 'transformers']
['bert', 'deep-learning', 'fewshot-learning', 'knowledge-distillation', 'knowledge-pretraining', 'machine-learning', 'nlp', 'pretrained-models', 'pytorch', 'text-classification', 'text-image-retrieval', 'text-to-image-synthesis', 'transfer-learning', 'transformers']
2024-01-10
[('allenai/allennlp', 0.6890572309494019, 'nlp', 3), ('paddlepaddle/paddlenlp', 0.6783795952796936, 'llm', 4), ('graykode/nlp-tutorial', 0.6614455580711365, 'study', 3), ('huggingface/transformers', 0.6499559879302979, 'nlp', 6), ('deepset-ai/farm', 0.6495715975761414, 'nlp', 6), ('norskregnesentral/skweak', 0.6338717341423035, 'nlp', 0), ('jina-ai/finetuner', 0.6169459819793701, 'ml', 3), ('nltk/nltk', 0.6162857413291931, 'nlp', 2), ('extreme-bert/extreme-bert', 0.614682674407959, 'llm', 5), ('explosion/spacy', 0.6040478348731995, 'nlp', 4), ('jina-ai/clip-as-service', 0.6006197333335876, 'nlp', 3), ('llmware-ai/llmware', 0.592271625995636, 'llm', 5), ('lucidrains/imagen-pytorch', 0.5900583267211914, 'ml-dl', 1), ('maartengr/bertopic', 0.5850814580917358, 'nlp', 4), ('flairnlp/flair', 0.5845892429351807, 'nlp', 3), ('huggingface/datasets', 0.5757067799568176, 'nlp', 4), ('explosion/spacy-transformers', 0.5717461109161377, 'llm', 5), ('jbesomi/texthero', 0.5708900690078735, 'nlp', 2), ('ddangelov/top2vec', 0.5686218738555908, 'nlp', 1), ('openai/clip', 0.5683876872062683, 'ml-dl', 2), ('koaning/whatlies', 0.5676613450050354, 'nlp', 1), ('nvidia/deeplearningexamples', 0.5610079169273376, 'ml-dl', 3), ('rasahq/rasa', 0.5567002892494202, 'llm', 2), ('salesforce/blip', 0.553688108921051, 'diffusion', 0), ('ofa-sys/ofa', 0.5513916611671448, 'llm', 2), ('huggingface/setfit', 0.5513603091239929, 'nlp', 1), ('ukplab/sentence-transformers', 0.551360011100769, 'nlp', 0), ('jalammar/ecco', 0.549338698387146, 'ml-interpretability', 2), ('explosion/spacy-models', 0.5481346845626831, 'nlp', 2), ('huggingface/text-generation-inference', 0.5467448234558105, 'llm', 3), ('google-research/electra', 0.5465848445892334, 'ml-dl', 2), ('explosion/spacy-llm', 0.5462448596954346, 'llm', 3), ('minimaxir/textgenrnn', 0.5449576377868652, 'nlp', 1), ('zjunlp/deepke', 0.5432515144348145, 'ml', 4), ('makcedward/nlpaug', 0.5402962565422058, 'nlp', 2), ('infinitylogesh/mutate', 0.5399907231330872, 'nlp', 0), ('keras-team/keras-nlp', 0.539397120475769, 'nlp', 3), ('microsoft/unilm', 0.5370928645133972, 'nlp', 1), ('qanastek/drbert', 0.5349388718605042, 'llm', 3), ('yueyu1030/attrprompt', 0.5339798331260681, 'llm', 1), ('nvidia/nemo', 0.527443528175354, 'nlp', 2), ('jonasgeiping/cramming', 0.5274117588996887, 'nlp', 1), ('sloria/textblob', 0.5273472666740417, 'nlp', 1), ('deeppavlov/deeppavlov', 0.52702796459198, 'nlp', 3), ('awslabs/autogluon', 0.5265514850616455, 'ml', 4), ('neuml/txtai', 0.5239185690879822, 'nlp', 3), ('huggingface/huggingface_hub', 0.5210217237472534, 'ml', 4), ('eleutherai/lm-evaluation-harness', 0.520174503326416, 'llm', 0), ('bigscience-workshop/promptsource', 0.5199021697044373, 'nlp', 2), ('lucidrains/dalle2-pytorch', 0.5197792649269104, 'diffusion', 1), ('jaidedai/easyocr', 0.5166882872581482, 'data', 3), ('thilinarajapakse/simpletransformers', 0.5156533122062683, 'nlp', 2), ('open-mmlab/mmediting', 0.5134133696556091, 'ml', 2), ('intellabs/fastrag', 0.5131124258041382, 'nlp', 2), ('huggingface/autotrain-advanced', 0.5123465657234192, 'ml', 2), ('speechbrain/speechbrain', 0.5123403072357178, 'nlp', 3), ('amansrivastava17/embedding-as-service', 0.5122250318527222, 'nlp', 3), ('argilla-io/argilla', 0.5120981335639954, 'nlp', 2), ('explosion/thinc', 0.5110622048377991, 'ml-dl', 4), ('milvus-io/bootcamp', 0.5068036317825317, 'data', 2), ('espnet/espnet', 0.5063716173171997, 'nlp', 2), ('fourthbrain/fastapi-for-machine-learning-live-demo', 0.5053616762161255, 'web', 0), ('prithivirajdamodaran/styleformer', 0.504541277885437, 'nlp', 1), ('saharmor/dalle-playground', 0.5042204260826111, 'diffusion', 2), ('lucidrains/toolformer-pytorch', 0.5038707852363586, 'llm', 2), ('bigscience-workshop/megatron-deepspeed', 0.5024697184562683, 'llm', 0), ('microsoft/megatron-deepspeed', 0.5024697184562683, 'llm', 0)]
39
5
null
1.33
11
5
22
0
0
1
1
11
4
90
0.4
46
1,135
math
https://github.com/pyomo/pyomo
[]
null
[]
[]
null
null
null
pyomo/pyomo
pyomo
1,749
479
61
Python
https://www.pyomo.org
An object-oriented algebraic modeling language in Python for structured optimization problems.
pyomo
2024-01-12
2016-05-27
400
4.366262
https://avatars.githubusercontent.com/u/10505959?v=4
An object-oriented algebraic modeling language in Python for structured optimization problems.
['linear-programming', 'mathematical-programming', 'modeling-language', 'nonlinear-programming', 'optimization']
['linear-programming', 'mathematical-programming', 'modeling-language', 'nonlinear-programming', 'optimization']
2024-01-13
[('sympy/sympy', 0.5923652052879333, 'math', 0), ('keon/algorithms', 0.5572477579116821, 'util', 0), ('google/pyglove', 0.5334599018096924, 'util', 0), ('scikit-optimize/scikit-optimize', 0.5328642129898071, 'ml', 1), ('pyston/pyston', 0.5302437543869019, 'util', 0), ('pytoolz/toolz', 0.5213468670845032, 'util', 0), ('eth-sri/lmql', 0.5141502022743225, 'llm', 0), ('python/cpython', 0.5133528709411621, 'util', 0), ('cma-es/pycma', 0.5060227513313293, 'math', 0), ('artemyk/dynpy', 0.5054152011871338, 'sim', 0), ('pymc-devs/pymc3', 0.5023778080940247, 'ml', 0), ('evhub/coconut', 0.5014179944992065, 'util', 0)]
137
1
null
48.38
186
132
93
0
5
8
5
186
238
90
1.3
46
660
ml
https://github.com/huggingface/evaluate
[]
null
[]
[]
null
null
null
huggingface/evaluate
evaluate
1,673
206
48
Python
https://huggingface.co/docs/evaluate
πŸ€— Evaluate: A library for easily evaluating machine learning models and datasets.
huggingface
2024-01-13
2022-03-30
95
17.453055
https://avatars.githubusercontent.com/u/25720743?v=4
πŸ€— Evaluate: A library for easily evaluating machine learning models and datasets.
['evaluation', 'machine-learning']
['evaluation', 'machine-learning']
2023-12-27
[('tensorflow/data-validation', 0.7562239170074463, 'ml-ops', 0), ('anthropics/evals', 0.7150794267654419, 'llm', 0), ('teamhg-memex/eli5', 0.6364562511444092, 'ml', 1), ('districtdatalabs/yellowbrick', 0.6335552334785461, 'ml', 1), ('rasbt/mlxtend', 0.6174339056015015, 'ml', 1), ('eugeneyan/testing-ml', 0.6167011260986328, 'testing', 1), ('marcotcr/lime', 0.6089439392089844, 'ml-interpretability', 0), ('scikit-learn/scikit-learn', 0.5982382893562317, 'ml', 1), ('selfexplainml/piml-toolbox', 0.5961371660232544, 'ml-interpretability', 0), ('csinva/imodels', 0.5934129357337952, 'ml', 1), ('ai21labs/lm-evaluation', 0.5928609371185303, 'llm', 0), ('patchy631/machine-learning', 0.5767751932144165, 'ml', 0), ('pair-code/lit', 0.5728373527526855, 'ml-interpretability', 1), ('firmai/industry-machine-learning', 0.5610095858573914, 'study', 1), ('jovianml/opendatasets', 0.5602533221244812, 'data', 1), ('huggingface/datasets', 0.5580374598503113, 'nlp', 1), ('scikit-learn-contrib/imbalanced-learn', 0.557458758354187, 'ml', 1), ('scikit-learn-contrib/metric-learn', 0.556303083896637, 'ml', 1), ('seldonio/alibi', 0.5494807958602905, 'ml-interpretability', 1), ('microsoft/flaml', 0.5472498536109924, 'ml', 1), ('gradio-app/gradio', 0.5471292734146118, 'viz', 1), ('evidentlyai/evidently', 0.5467391014099121, 'ml-ops', 1), ('pytorch/ignite', 0.5455392003059387, 'ml-dl', 1), ('microsoft/nni', 0.5446441173553467, 'ml', 1), ('paperswithcode/axcell', 0.5434747338294983, 'util', 0), ('automl/auto-sklearn', 0.5426995158195496, 'ml', 0), ('eleutherai/lm-evaluation-harness', 0.5417475700378418, 'llm', 1), ('rasbt/stat451-machine-learning-fs20', 0.5357676148414612, 'study', 0), ('determined-ai/determined', 0.5355773568153381, 'ml-ops', 1), ('scikit-learn-contrib/lightning', 0.5336165428161621, 'ml', 1), ('maif/shapash', 0.5302979946136475, 'ml', 1), ('rasbt/machine-learning-book', 0.5270928740501404, 'study', 1), ('wandb/client', 0.5268489122390747, 'ml', 1), ('openai/evals', 0.5261046886444092, 'llm', 1), ('tensorflow/lucid', 0.5247843861579895, 'ml-interpretability', 1), ('openbmb/toolbench', 0.5237149000167847, 'llm', 1), ('mlflow/mlflow', 0.5217682123184204, 'ml-ops', 1), ('oml-team/open-metric-learning', 0.5213491320610046, 'ml', 0), ('kubeflow/fairing', 0.5212286114692688, 'ml-ops', 0), ('dask/dask-ml', 0.5205085873603821, 'ml', 0), ('featurelabs/featuretools', 0.5203360915184021, 'ml', 1), ('bigscience-workshop/biomedical', 0.5192505121231079, 'data', 0), ('carla-recourse/carla', 0.5139058232307434, 'ml', 1), ('hazyresearch/meerkat', 0.5127301216125488, 'viz', 1), ('pycaret/pycaret', 0.5119611024856567, 'ml', 1), ('openlmlab/leval', 0.5112590193748474, 'llm', 1), ('ggerganov/ggml', 0.5103128552436829, 'ml', 1), ('hazyresearch/domino', 0.5064350366592407, 'ml', 0), ('shankarpandala/lazypredict', 0.5062326788902283, 'ml', 1), ('cleverhans-lab/cleverhans', 0.5058858394622803, 'ml', 1), ('truera/trulens', 0.5006502270698547, 'llm', 2)]
124
3
null
0.46
51
12
22
1
1
5
1
51
51
90
1
46
853
jupyter
https://github.com/jupyter/nbconvert
[]
null
[]
[]
null
null
null
jupyter/nbconvert
nbconvert
1,610
547
51
Python
https://nbconvert.readthedocs.io/
Jupyter Notebook Conversion
jupyter
2024-01-12
2015-04-09
459
3.502175
https://avatars.githubusercontent.com/u/7388996?v=4
Jupyter Notebook Conversion
[]
[]
2024-01-11
[('jupyter/nbformat', 0.810336709022522, 'jupyter', 0), ('jupyter/notebook', 0.7077092528343201, 'jupyter', 0), ('jupyterlab/jupyterlab-desktop', 0.6312793493270874, 'jupyter', 0), ('jupyter/nbgrader', 0.6126564145088196, 'jupyter', 0), ('cohere-ai/notebooks', 0.6110220551490784, 'llm', 0), ('jupyter-widgets/ipywidgets', 0.6067924499511719, 'jupyter', 0), ('mwouts/jupytext', 0.6044052839279175, 'jupyter', 0), ('jupyterlab/jupyterlab', 0.5970379710197449, 'jupyter', 0), ('jakevdp/pythondatasciencehandbook', 0.5953406095504761, 'study', 0), ('voila-dashboards/voila', 0.5891522169113159, 'jupyter', 0), ('ipython/ipykernel', 0.5823147892951965, 'util', 0), ('jupyter/nbdime', 0.5780813694000244, 'jupyter', 0), ('fchollet/deep-learning-with-python-notebooks', 0.5641415119171143, 'study', 0), ('nteract/testbook', 0.5553418397903442, 'jupyter', 0), ('ageron/handson-ml2', 0.5394284725189209, 'ml', 0), ('quantopian/qgrid', 0.538368284702301, 'jupyter', 0), ('xiaohk/stickyland', 0.536399781703949, 'jupyter', 0), ('ipython/ipyparallel', 0.5246542096138, 'perf', 0), ('nteract/papermill', 0.5243469476699829, 'jupyter', 0), ('aws/graph-notebook', 0.522909939289093, 'jupyter', 0), ('computationalmodelling/nbval', 0.5174958109855652, 'jupyter', 0), ('maartenbreddels/ipyvolume', 0.5078595280647278, 'jupyter', 0)]
270
7
null
1.9
67
31
107
0
24
10
24
67
63
90
0.9
46
1,076
ml
https://github.com/kubeflow/katib
[]
null
[]
[]
null
null
null
kubeflow/katib
katib
1,391
394
67
Go
null
Repository for hyperparameter tuning
kubeflow
2024-01-13
2018-04-03
304
4.575658
https://avatars.githubusercontent.com/u/33164907?v=4
Repository for hyperparameter tuning
[]
[]
2024-01-09
[('optuna/optuna', 0.6405646800994873, 'ml', 0), ('ray-project/tune-sklearn', 0.626979410648346, 'ml', 0), ('microsoft/flaml', 0.6054434776306152, 'ml', 0), ('hyperopt/hyperopt', 0.6022725701332092, 'ml', 0), ('determined-ai/determined', 0.5883219242095947, 'ml-ops', 0), ('google/vizier', 0.5503707528114319, 'ml', 0), ('scikit-optimize/scikit-optimize', 0.5325116515159607, 'ml', 0), ('huggingface/peft', 0.5282931327819824, 'llm', 0), ('automl/auto-sklearn', 0.5148612260818481, 'ml', 0), ('microsoft/nni', 0.5062976479530334, 'ml', 0)]
111
7
null
1.79
53
26
70
0
2
4
2
53
125
90
2.4
46
926
nlp
https://github.com/jonasgeiping/cramming
[]
null
[]
[]
null
null
null
jonasgeiping/cramming
cramming
1,191
90
21
Python
null
Cramming the training of a (BERT-type) language model into limited compute.
jonasgeiping
2024-01-11
2022-12-29
56
21
null
Cramming the training of a (BERT-type) language model into limited compute.
['english-language', 'language-model', 'machine-learning']
['english-language', 'language-model', 'machine-learning']
2023-09-03
[('bigscience-workshop/megatron-deepspeed', 0.6582860946655273, 'llm', 0), ('microsoft/megatron-deepspeed', 0.6582860946655273, 'llm', 0), ('extreme-bert/extreme-bert', 0.6568642258644104, 'llm', 2), ('deepset-ai/farm', 0.6375002861022949, 'nlp', 0), ('ai21labs/lm-evaluation', 0.6214629411697388, 'llm', 1), ('reasoning-machines/pal', 0.6135402917861938, 'llm', 1), ('hannibal046/awesome-llm', 0.603162944316864, 'study', 1), ('whu-zqh/chatgpt-vs.-bert', 0.6024624109268188, 'llm', 0), ('ctlllll/llm-toolmaker', 0.593092143535614, 'llm', 1), ('maartengr/bertopic', 0.5925445556640625, 'nlp', 1), ('tatsu-lab/stanford_alpaca', 0.5919219851493835, 'llm', 1), ('freedomintelligence/llmzoo', 0.5916814804077148, 'llm', 1), ('llmware-ai/llmware', 0.5896017551422119, 'llm', 1), ('openai/finetune-transformer-lm', 0.5850217342376709, 'llm', 0), ('juncongmoo/pyllama', 0.5846665501594543, 'llm', 0), ('qanastek/drbert', 0.5827434659004211, 'llm', 1), ('databrickslabs/dolly', 0.5738639831542969, 'llm', 0), ('lianjiatech/belle', 0.5717350244522095, 'llm', 0), ('huggingface/text-generation-inference', 0.5711867213249207, 'llm', 0), ('openai/gpt-2', 0.5695840716362, 'llm', 0), ('huggingface/transformers', 0.568610429763794, 'nlp', 2), ('eleutherai/lm-evaluation-harness', 0.5666804909706116, 'llm', 1), ('jina-ai/finetuner', 0.5652620792388916, 'ml', 0), ('graykode/nlp-tutorial', 0.5574339628219604, 'study', 0), ('bigscience-workshop/biomedical', 0.5536470413208008, 'data', 0), ('explosion/spacy-transformers', 0.5527690649032593, 'llm', 2), ('srush/minichain', 0.5501981973648071, 'llm', 0), ('lm-sys/fastchat', 0.5438570976257324, 'llm', 1), ('ddangelov/top2vec', 0.5433996915817261, 'nlp', 0), ('paddlepaddle/paddlenlp', 0.5425843596458435, 'llm', 0), ('baichuan-inc/baichuan-13b', 0.5425389409065247, 'llm', 0), ('yueyu1030/attrprompt', 0.5370364189147949, 'llm', 0), ('huawei-noah/pretrained-language-model', 0.5355748534202576, 'nlp', 0), ('explosion/spacy-models', 0.5299116373062134, 'nlp', 1), ('lvwerra/trl', 0.5296485424041748, 'llm', 0), ('alibaba/easynlp', 0.5274117588996887, 'nlp', 1), ('explosion/spacy-llm', 0.526769757270813, 'llm', 1), ('flairnlp/flair', 0.5266839265823364, 'nlp', 1), ('openlmlab/leval', 0.5251019597053528, 'llm', 1), ('guidance-ai/guidance', 0.5238267779350281, 'llm', 1), ('timdettmers/bitsandbytes', 0.5229673981666565, 'util', 0), ('bytedance/lightseq', 0.5221551656723022, 'nlp', 0), ('openbmb/toolbench', 0.521796703338623, 'llm', 0), ('cg123/mergekit', 0.5206159353256226, 'llm', 0), ('yizhongw/self-instruct', 0.5202336311340332, 'llm', 1), ('hazyresearch/h3', 0.5188775062561035, 'llm', 0), ('optimalscale/lmflow', 0.514919102191925, 'llm', 1), ('infinitylogesh/mutate', 0.5127670168876648, 'nlp', 1), ('maartengr/keybert', 0.5119235515594482, 'nlp', 0), ('google-research/electra', 0.5113855600357056, 'ml-dl', 0), ('keirp/automatic_prompt_engineer', 0.5112678408622742, 'llm', 1), ('mit-han-lab/streaming-llm', 0.5054171681404114, 'llm', 0), ('norskregnesentral/skweak', 0.505377471446991, 'nlp', 0)]
7
3
null
1.08
6
6
13
4
2
2
2
6
20
90
3.3
46
1,266
perf
https://github.com/intel/intel-extension-for-pytorch
[]
null
[]
[]
null
null
null
intel/intel-extension-for-pytorch
intel-extension-for-pytorch
1,150
167
34
Python
null
A Python package for extending the official PyTorch that can easily obtain performance on Intel platform
intel
2024-01-14
2020-04-15
197
5.812274
https://avatars.githubusercontent.com/u/17888862?v=4
A Python package for extending the official PyTorch that can easily obtain performance on Intel platform
['deep-learning', 'intel', 'machine-learning', 'neural-network', 'pytorch', 'quantization']
['deep-learning', 'intel', 'machine-learning', 'neural-network', 'pytorch', 'quantization']
2024-01-11
[('pytorch/ignite', 0.7741976380348206, 'ml-dl', 4), ('skorch-dev/skorch', 0.7512941360473633, 'ml-dl', 2), ('rasbt/machine-learning-book', 0.7345353960990906, 'study', 3), ('nvidia/apex', 0.7110769152641296, 'ml-dl', 0), ('karpathy/micrograd', 0.6794243454933167, 'study', 0), ('pytorch/data', 0.6773589849472046, 'data', 0), ('arogozhnikov/einops', 0.6702998876571655, 'ml-dl', 2), ('tlkh/tf-metal-experiments', 0.6522815227508545, 'perf', 1), ('huggingface/transformers', 0.6460942625999451, 'nlp', 3), ('ashleve/lightning-hydra-template', 0.6405739188194275, 'util', 2), ('mrdbourke/pytorch-deep-learning', 0.6339874267578125, 'study', 3), ('microsoft/onnxruntime', 0.6330754160881042, 'ml', 3), ('huggingface/accelerate', 0.6329745650291443, 'ml', 0), ('determined-ai/determined', 0.6318769454956055, 'ml-ops', 3), ('intel/scikit-learn-intelex', 0.6315147280693054, 'perf', 2), ('pyg-team/pytorch_geometric', 0.6297549605369568, 'ml-dl', 2), ('rentruewang/koila', 0.6254847645759583, 'ml', 4), ('google/tf-quant-finance', 0.6181202530860901, 'finance', 0), ('blackhc/toma', 0.6170483231544495, 'ml-dl', 2), ('pytorch/pytorch', 0.6112003922462463, 'ml-dl', 3), ('xl0/lovely-tensors', 0.610737144947052, 'ml-dl', 2), ('ageron/handson-ml2', 0.6076744198799133, 'ml', 0), ('pytorch/rl', 0.6046189069747925, 'ml-rl', 2), ('tensorflow/addons', 0.6045843958854675, 'ml', 3), ('denys88/rl_games', 0.6032094359397888, 'ml-rl', 2), ('pytorch/glow', 0.6005612015724182, 'ml', 0), ('facebookresearch/pytorch3d', 0.5983558893203735, 'ml-dl', 0), ('nvlabs/gcvit', 0.5956222414970398, 'diffusion', 1), ('allenai/allennlp', 0.5950837731361389, 'nlp', 2), ('horovod/horovod', 0.5949805974960327, 'ml-ops', 3), ('plasma-umass/scalene', 0.5931693315505981, 'profiling', 0), ('fastai/fastcore', 0.5917688012123108, 'util', 0), ('pypy/pypy', 0.5893913507461548, 'util', 0), ('laekov/fastmoe', 0.5892179012298584, 'ml', 0), ('faster-cpython/tools', 0.5863217115402222, 'perf', 0), ('intellabs/bayesian-torch', 0.582083523273468, 'ml', 2), ('huggingface/datasets', 0.5820187926292419, 'nlp', 3), ('mrdbourke/m1-machine-learning-test', 0.5805241465568542, 'ml', 1), ('huggingface/huggingface_hub', 0.5788046717643738, 'ml', 3), ('fchollet/deep-learning-with-python-notebooks', 0.5782514214515686, 'study', 0), ('nicolas-chaulet/torch-points3d', 0.5780234932899475, 'ml', 0), ('explosion/thinc', 0.5743740200996399, 'ml-dl', 3), ('gradio-app/gradio', 0.5713984966278076, 'viz', 2), ('hysts/pytorch_image_classification', 0.5713286399841309, 'ml-dl', 1), ('nvidia/deeplearningexamples', 0.5710954070091248, 'ml-dl', 2), ('neuralmagic/sparseml', 0.5700653195381165, 'ml-dl', 1), ('pytorch/captum', 0.5694814324378967, 'ml-interpretability', 0), ('microsoft/deepspeed', 0.5665271878242493, 'ml-dl', 3), ('lucidrains/imagen-pytorch', 0.5663982033729553, 'ml-dl', 1), ('neuralmagic/deepsparse', 0.5653654932975769, 'nlp', 1), ('tensorlayer/tensorlayer', 0.5644388198852539, 'ml-rl', 2), ('nyandwi/modernconvnets', 0.564269483089447, 'ml-dl', 0), ('uber/petastorm', 0.5632723569869995, 'data', 3), ('lightly-ai/lightly', 0.5627269148826599, 'ml', 3), ('ggerganov/ggml', 0.5619326233863831, 'ml', 1), ('cython/cython', 0.5606357455253601, 'util', 0), ('huggingface/optimum', 0.560483992099762, 'ml', 3), ('aws/sagemaker-python-sdk', 0.5577678680419922, 'ml', 2), ('keras-team/keras', 0.5548680424690247, 'ml-dl', 3), ('dmlc/dgl', 0.5548177361488342, 'ml-dl', 1), ('micropython/micropython', 0.5541401505470276, 'util', 0), ('kubeflow/fairing', 0.5540038347244263, 'ml-ops', 0), ('mdbloice/augmentor', 0.5521341562271118, 'ml', 2), ('koaning/human-learn', 0.5494535565376282, 'data', 1), ('tensorly/tensorly', 0.5494438409805298, 'ml-dl', 2), ('ray-project/ray', 0.5487441420555115, 'ml-ops', 3), ('tensorflow/tensorflow', 0.548033595085144, 'ml-dl', 3), ('thu-ml/tianshou', 0.5456005930900574, 'ml-rl', 1), ('speechbrain/speechbrain', 0.5442495942115784, 'nlp', 2), ('rafiqhasan/auto-tensorflow', 0.5420622825622559, 'ml-dl', 1), ('pycaret/pycaret', 0.5417818427085876, 'ml', 1), ('tensorflow/similarity', 0.5410365462303162, 'ml-dl', 2), ('pyro-ppl/pyro', 0.538422167301178, 'ml-dl', 3), ('salesforce/blip', 0.5368949770927429, 'diffusion', 0), ('kshitij12345/torchnnprofiler', 0.5366755723953247, 'profiling', 0), ('timdettmers/bitsandbytes', 0.5321269631385803, 'util', 0), ('ddbourgin/numpy-ml', 0.5318039059638977, 'ml', 1), ('google/gin-config', 0.5311468839645386, 'util', 0), ('google/jax', 0.5305117964744568, 'ml', 0), ('merantix-momentum/squirrel-core', 0.5278235077857971, 'ml', 3), ('lutzroeder/netron', 0.5267831683158875, 'ml', 4), ('klen/py-frameworks-bench', 0.5263614654541016, 'perf', 0), ('pytorch/torchrec', 0.5260089635848999, 'ml-dl', 2), ('pytorch-labs/gpt-fast', 0.5219361782073975, 'llm', 1), ('numpy/numpy', 0.5218780636787415, 'math', 0), ('catboost/catboost', 0.5203407406806946, 'ml', 1), ('mosaicml/composer', 0.5193430185317993, 'ml-dl', 4), ('onnx/onnx', 0.5180797576904297, 'ml', 4), ('adafruit/circuitpython', 0.5163028240203857, 'util', 0), ('faster-cpython/ideas', 0.5159723162651062, 'perf', 0), ('karpathy/mingpt', 0.5158076882362366, 'llm', 0), ('pytorchlightning/pytorch-lightning', 0.5152040123939514, 'ml-dl', 3), ('cvxgrp/pymde', 0.5150303244590759, 'ml', 2), ('wandb/client', 0.5133212208747864, 'ml', 3), ('featurelabs/featuretools', 0.512016773223877, 'ml', 1), ('jeshraghian/snntorch', 0.5118179321289062, 'ml-dl', 2), ('facebookresearch/dinov2', 0.5111134052276611, 'diffusion', 0), ('microsoft/nni', 0.5098321437835693, 'ml', 4), ('oml-team/open-metric-learning', 0.506502091884613, 'ml', 2), ('tensorflow/tensor2tensor', 0.5063350200653076, 'ml', 2), ('lucidrains/dalle2-pytorch', 0.5061784982681274, 'diffusion', 1), ('nvidia/tensorrt-llm', 0.505849301815033, 'viz', 0), ('pytoolz/toolz', 0.5057084560394287, 'util', 0), ('wxwidgets/phoenix', 0.5054412484169006, 'gui', 0), ('lucidrains/vit-pytorch', 0.502902626991272, 'ml-dl', 0), ('exaloop/codon', 0.5024413466453552, 'perf', 0), ('hoffstadt/dearpygui', 0.5012747645378113, 'gui', 0), ('markshannon/faster-cpython', 0.5006858706474304, 'perf', 0), ('keras-team/autokeras', 0.5002623200416565, 'ml-dl', 2)]
60
2
null
8.48
101
24
46
0
8
9
8
101
198
90
2
46
694
perf
https://github.com/intel/scikit-learn-intelex
[]
null
[]
[]
null
null
null
intel/scikit-learn-intelex
scikit-learn-intelex
1,105
167
30
Python
https://intel.github.io/scikit-learn-intelex/
Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application
intel
2024-01-12
2018-08-07
286
3.863636
https://avatars.githubusercontent.com/u/17888862?v=4
Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application
['ai-inference', 'ai-machine-learning', 'ai-training', 'analytics', 'big-data', 'data-analysis', 'gpu', 'intel', 'machine-learning', 'machine-learning-algorithms', 'oneapi', 'scikit-learn', 'swrepo']
['ai-inference', 'ai-machine-learning', 'ai-training', 'analytics', 'big-data', 'data-analysis', 'gpu', 'intel', 'machine-learning', 'machine-learning-algorithms', 'oneapi', 'scikit-learn', 'swrepo']
2024-01-11
[('intel/intel-extension-for-pytorch', 0.6315147280693054, 'perf', 2), ('automl/auto-sklearn', 0.5883508920669556, 'ml', 1), ('iryna-kondr/scikit-llm', 0.5876615047454834, 'llm', 2), ('koaning/human-learn', 0.5819746255874634, 'data', 2), ('skops-dev/skops', 0.5795713067054749, 'ml-ops', 2), ('microsoft/onnxruntime', 0.5744372010231018, 'ml', 2), ('rasbt/machine-learning-book', 0.5701589584350586, 'study', 2), ('koaning/scikit-lego', 0.5534452199935913, 'ml', 2), ('determined-ai/determined', 0.534125566482544, 'ml-ops', 1), ('google/tf-quant-finance', 0.5270321369171143, 'finance', 1), ('ray-project/ray', 0.5234288573265076, 'ml-ops', 1), ('explosion/thinc', 0.5210903882980347, 'ml-dl', 1), ('gradio-app/gradio', 0.5180376172065735, 'viz', 2), ('wandb/client', 0.5164636969566345, 'ml', 1), ('tlkh/tf-metal-experiments', 0.5120803713798523, 'perf', 1), ('huggingface/datasets', 0.5119993090629578, 'nlp', 1), ('districtdatalabs/yellowbrick', 0.5062663555145264, 'ml', 2), ('pytorch/glow', 0.5033442378044128, 'ml', 0), ('microsoft/nni', 0.5030348300933838, 'ml', 2), ('sweepai/sweep', 0.502382218837738, 'llm', 0)]
77
2
null
5.44
136
105
66
0
6
5
6
136
532
90
3.9
46
1,727
llm
https://github.com/truera/trulens
['evaluation']
null
[]
[]
null
null
null
truera/trulens
trulens
1,042
83
12
Jupyter Notebook
https://www.trulens.org/
Evaluation and Tracking for LLM Experiments
truera
2024-01-13
2020-11-02
169
6.160473
https://avatars.githubusercontent.com/u/51224128?v=4
Evaluation and Tracking for LLM Experiments
['explainable-ml', 'llm', 'llmops', 'machine-learning', 'neural-networks']
['evaluation', 'explainable-ml', 'llm', 'llmops', 'machine-learning', 'neural-networks']
2024-01-12
[('bentoml/openllm', 0.5837077498435974, 'ml-ops', 2), ('vllm-project/vllm', 0.5575326681137085, 'llm', 2), ('citadel-ai/langcheck', 0.5569631457328796, 'llm', 1), ('microsoft/jarvis', 0.5391638278961182, 'llm', 0), ('arize-ai/phoenix', 0.532617449760437, 'ml-interpretability', 1), ('wandb/client', 0.5260670185089111, 'ml', 1), ('tigerlab-ai/tiger', 0.5201952457427979, 'llm', 1), ('iryna-kondr/scikit-llm', 0.5199382901191711, 'llm', 2), ('argilla-io/argilla', 0.5192816853523254, 'nlp', 2), ('confident-ai/deepeval', 0.5170626640319824, 'testing', 3), ('alpha-vllm/llama2-accessory', 0.5145223140716553, 'llm', 0), ('nebuly-ai/nebullvm', 0.5128412842750549, 'perf', 1), ('openai/evals', 0.5125577449798584, 'llm', 1), ('determined-ai/determined', 0.510200023651123, 'ml-ops', 1), ('huggingface/evaluate', 0.5006502270698547, 'ml', 2)]
32
1
null
10.73
306
286
39
0
23
10
23
306
461
90
1.5
46
1,893
util
https://github.com/ofek/pyapp
['installer', 'bundle', 'packaging']
null
[]
[]
null
null
null
ofek/pyapp
pyapp
883
17
6
Rust
https://ofek.dev/pyapp/
Runtime installer for Python applications
ofek
2024-01-13
2023-05-07
38
23.063433
null
Runtime installer for Python applications
['application', 'build', 'cli', 'packaging', 'rust']
['application', 'build', 'bundle', 'cli', 'installer', 'packaging', 'rust']
2024-01-01
[('pyodide/micropip', 0.6668835282325745, 'util', 0), ('beeware/briefcase', 0.6602802276611328, 'util', 1), ('indygreg/pyoxidizer', 0.6547517776489258, 'util', 1), ('pypa/hatch', 0.6210417747497559, 'util', 3), ('pypa/pipx', 0.604620099067688, 'util', 1), ('pyinstaller/pyinstaller', 0.5914837121963501, 'util', 1), ('mitsuhiko/rye', 0.575480043888092, 'util', 1), ('pypi/warehouse', 0.5665706992149353, 'util', 0), ('pyo3/maturin', 0.5643833875656128, 'util', 2), ('python-poetry/poetry', 0.5570515394210815, 'util', 1), ('pypa/virtualenv', 0.5487356781959534, 'util', 0), ('pypa/flit', 0.5471957921981812, 'util', 1), ('linkedin/shiv', 0.5412315130233765, 'util', 0), ('pomponchik/instld', 0.5397077202796936, 'util', 0), ('pypa/installer', 0.5315470695495605, 'util', 0), ('pypa/build', 0.5296021103858948, 'util', 1), ('pypa/pipenv', 0.5295817852020264, 'util', 1), ('conda/constructor', 0.5201569199562073, 'util', 0), ('pdm-project/pdm', 0.514813244342804, 'util', 1), ('willmcgugan/textual', 0.5099067091941833, 'term', 1), ('conda/conda', 0.5070095658302307, 'util', 1), ('jazzband/pip-tools', 0.5037299394607544, 'util', 1)]
5
1
null
1.75
21
11
8
0
15
23
15
21
24
90
1.1
46