title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
Enhancing statistical inference in psychological research via prospective and retrospective design analysis
In the past two decades, psychological science has experienced an unprecedented replicability crisis which uncovered several issues. Among others, statistical inference is too often viewed as an isolated procedure limited to the analysis of data that have already been collected. We build on and further develop an idea proposed by Gelman and Carlin (2014) termed "prospective and retrospective design analysis". Rather than focusing only on the statistical significance of a result and on the classical control of type I and type II errors, a comprehensive design analysis involves reasoning about what can be considered a plausible effect size. Furthermore, it introduces two relevant inferential risks: the exaggeration ratio or Type M error (i.e., the predictable average overestimation of an effect that emerges as statistically significant), and the sign error or Type S error (i.e., the risk that a statistically significant effect is estimated in the wrong direction). Another important aspect of design analysis is that it can be usefully carried out both in the planning phase of a study and for the evaluation of studies that have already been conducted, thus increasing researchers' awareness during all phases of a research project. We use a familiar example in psychology where the researcher is interested in analyzing the differences between two independent groups. We examine the case in which the plausible effect size is formalized as a single value, and propose a method in which uncertainty concerning the magnitude of the effect is formalized via probability distributions. Through several examples, we show that even though a design analysis requires big effort, it has the potential to contribute to planning more robust and replicable studies. Finally, future developments in the Bayesian framework are discussed.
stat
Subspace Clustering of Very Sparse High-Dimensional Data
In this paper we consider the problem of clustering collections of very short texts using subspace clustering. This problem arises in many applications such as product categorisation, fraud detection, and sentiment analysis. The main challenge lies in the fact that the vectorial representation of short texts is both high-dimensional, due to the large number of unique terms in the corpus, and extremely sparse, as each text contains a very small number of words with no repetition. We propose a new, simple subspace clustering algorithm that relies on linear algebra to cluster such datasets. Experimental results on identifying product categories from product names obtained from the US Amazon website indicate that the algorithm can be competitive against state-of-the-art clustering algorithms.
stat
The Implicit Bias of AdaGrad on Separable Data
We study the implicit bias of AdaGrad on separable linear classification problems. We show that AdaGrad converges to a direction that can be characterized as the solution of a quadratic optimization problem with the same feasible set as the hard SVM problem. We also give a discussion about how different choices of the hyperparameters of AdaGrad might impact this direction. This provides a deeper understanding of why adaptive methods do not seem to have the generalization ability as good as gradient descent does in practice.
stat
Learning finite-dimensional coding schemes with nonlinear reconstruction maps
This paper generalizes the Maurer--Pontil framework of finite-dimensional lossy coding schemes to the setting where a high-dimensional random vector is mapped to an element of a compact set of latent representations in a lower-dimensional Euclidean space, and the reconstruction map belongs to a given class of nonlinear maps. Under this setup, which encompasses a broad class of unsupervised representation learning problems, we establish a connection to approximate generative modeling under structural constraints using the tools from the theory of optimal transportation. Next, we consider problem of learning a coding scheme on the basis of a finite collection of training samples and present generalization bounds that hold with high probability. We then illustrate the general theory in the setting where the reconstruction maps are implemented by deep neural nets.
stat
A New Spatial Count Data Model with Time-varying Parameters
Recent crash frequency studies incorporate spatiotemporal correlations, but these studies have two key limitations: i) none of these studies accounts for temporal variation in model parameters; and ii) Gibbs sampler suffers from convergence issues due to non-conjugacy. To address the first limitation, we propose a new count data model that identifies the underlying temporal patterns of the regression parameters while simultaneously allowing for time-varying spatial correlation. The model is also extended to incorporate heterogeneity in non-temporal parameters across spatial units. We tackle the second shortcoming by deriving a Gibbs sampler that ensures conditionally conjugate posterior updates for all model parameters. To this end, we take the advantages of P\'olya-Gamma data augmentation and forward filtering backward sampling (FFBS) algorithm. After validating the properties of the Gibbs sampler in a Monte Carlo study, the advantages of the proposed specification are demonstrated in an empirical application to uncover relationships between crash frequency spanning across nine years and pavement characteristics. Model parameters exhibit practically significant temporal patterns (i.e., temporal instability). For example, the safety benefits of better pavement ride quality are estimated to increase over time.
stat
Adaptive Configuration Oracle for Online Portfolio Selection Methods
Financial markets are complex environments that produce enormous amounts of noisy and non-stationary data. One fundamental problem is online portfolio selection, the goal of which is to exploit this data to sequentially select portfolios of assets to achieve positive investment outcomes while managing risks. Various algorithms have been proposed for solving this problem in fields such as finance, statistics and machine learning, among others. Most of the methods have parameters that are estimated from backtests for good performance. Since these algorithms operate on non-stationary data that reflects the complexity of financial markets, we posit that adaptively tuning these parameters in an intelligent manner is a remedy for dealing with this complexity. In this paper, we model the mapping between the parameter space and the space of performance metrics using a Gaussian process prior. We then propose an oracle based on adaptive Bayesian optimization for automatically and adaptively configuring online portfolio selection methods. We test the efficacy of our solution on algorithms operating on equity and index data from various markets.
stat
Perturbations and Causality in Gaussian Latent Variable Models
Causal inference is a challenging problem with observational data alone. The task becomes easier when having access to data from perturbing the underlying system, even when happening in a non-randomized way: this is the setting we consider, encompassing also latent confounding variables. To identify causal relations among a collections of covariates and a response variable, existing procedures rely on at least one of the following assumptions: i) the response variable remains unperturbed, ii) the latent variables remain unperturbed, and iii) the latent effects are dense. In this paper, we examine a perturbation model for interventional data, which can be viewed as a mixed-effects linear structural causal model, over a collection of Gaussian variables that does not satisfy any of these conditions. We propose a maximum-likelihood estimator -- dubbed DirectLikelihood -- that exploits system-wide invariances to uniquely identify the population causal structure from unspecific perturbation data, and our results carry over to linear structural causal models without requiring Gaussianity. We illustrate the utility of our framework on synthetic data as well as real data involving California reservoirs and protein expressions.
stat
Blocks as geographic discontinuities: The effect of polling place assignment on voting
A potential voter must incur a number of costs in order to successfully cast an in-person ballot, including the costs associated with identifying and traveling to a polling place. In order to investigate how these costs affect voting behavior, we introduce two quasi-experimental designs that can be used to study how the political participation of registered voters is affected by differences in the relative distance that registrants must travel to their assigned Election Day polling place and whether their polling place remains at the same location as in a previous election. Our designs make comparisons of registrants who live on the same residential block, but are assigned to vote at different polling places. We find that living farther from a polling place and being assigned to a new polling place reduce in-person Election Day voting, but that registrants largely offset for this by casting more early in-person and mail ballots.
stat
The X Factor: A Robust and Powerful Approach to X-chromosome-Inclusive Whole-genome Association Studies
The X-chromosome is often excluded from genome-wide association studies because of analytical challenges. Some have been investigated such as the random, skewed or no X-inactivation model uncertainty. Others have received little to no attention such as the value in considering non-additive and gene-sex interaction effects, and the inferential consequence of choosing different baseline alleles. Here we propose a unified and flexible regression-based association test for the X-chromosome. We provide theoretical justifications for its robustness in the presence of various model uncertainties, as well as for its improved power under certain alternatives when compared with the existing approaches. For completeness, we also revisit the autosomes and show that the proposed framework leads to a robust and sometimes much more powerful test than the standard method. Finally, we provide supporting evidence by revisiting several published genome-wide association studies. Supplementary materials for this article are available online.
stat
Estimating High-dimensional Covariance and Precision Matrices under General Missing Dependence
A sample covariance matrix $\boldsymbol{S}$ of completely observed data is the key statistic in a large variety of multivariate statistical procedures, such as structured covariance/precision matrix estimation, principal component analysis, and testing of equality of mean vectors. However, when the data are partially observed, the sample covariance matrix from the available data is biased and does not provide valid multivariate procedures. To correct the bias, a simple adjustment method called inverse probability weighting (IPW) has been used in previous research, yielding the IPW estimator. The estimator plays the role of $\boldsymbol{S}$ in the missing data context so that it can be plugged into off-the-shelf multivariate procedures. However, theoretical properties (e.g. concentration) of the IPW estimator have been only established under very simple missing structures; every variable of each sample is independently subject to missing with equal probability. We investigate the deviation of the IPW estimator when observations are partially observed under general missing dependency. We prove the optimal convergence rate $O_p(\sqrt{\log p / n})$ of the IPW estimator based on the element-wise maximum norm. We also derive similar deviation results even when implicit assumptions (known mean and/or missing probability) are relaxed. The optimal rate is especially crucial in estimating a precision matrix, because of the "meta-theorem" that claims the rate of the IPW estimator governs that of the resulting precision matrix estimator. In the simulation study, we discuss non-positive semi-definiteness of the IPW estimator and compare the estimator with imputation methods, which are practically important.
stat
Complexity of zigzag sampling algorithm for strongly log-concave distributions
We study the computational complexity of zigzag sampling algorithm for strongly log-concave distributions. The zigzag process has the advantage of not requiring time discretization for implementation, and that each proposed bouncing event requires only one evaluation of partial derivative of the potential, while its convergence rate is dimension independent. Using these properties, we prove that the zigzag sampling algorithm achieves $\varepsilon$ error in chi-square divergence with a computational cost equivalent to $O\bigl(\kappa^2 d^\frac{1}{2}(\log\frac{1}{\varepsilon})^{\frac{3}{2}}\bigr)$ gradient evaluations in the regime $\kappa \ll \frac{d}{\log d}$ under a warm start assumption, where $\kappa$ is the condition number and $d$ is the dimension.
stat
Theory of Optimal Bayesian Feature Filtering
Optimal Bayesian feature filtering (OBF) is a supervised screening method designed for biomarker discovery. In this article, we prove two major theoretical properties of OBF. First, optimal Bayesian feature selection under a general family of Bayesian models reduces to filtering if and only if the underlying Bayesian model assumes all features are mutually independent. Therefore, OBF is optimal if and only if one assumes all features are mutually independent, and OBF is the only filter method that is optimal under at least one model in the general Bayesian framework. Second, OBF under independent Gaussian models is consistent under very mild conditions, including cases where the data is non-Gaussian with correlated features. This result provides conditions where OBF is guaranteed to identify the correct feature set given enough data, and it justifies the use of OBF in non-design settings where its assumptions are invalid.
stat
Functional Optimal Transport: Mapping Estimation and Domain Adaptation for Functional data
Optimal transport (OT) has generated much recent interest by its capability of finding mappings that transport mass from one distribution to another, and found useful roles in machine learning tasks such as unsupervised learning, domain adaptation and transfer learning. On the other hand, in many applications data are generated by complex mechanisms involving convoluted spaces of functions, curves and surfaces in high dimensions. Functional data analysis provides a useful framework of treatment for such domains. In this paper we introduce a novel formulation of optimal transport problem in functional spaces and develop an efficient learning algorithm for finding the stochastic map between functional domains. We apply our method to synthetic datasets and study the geometric properties of the transport map. Experiments on real-world datasets of robot arm trajectories and digit numbers further demonstrate the effectiveness of our method on applications of domain adaptation and generative modeling.
stat
Calibrating wood products for load duration and rate: A statistical look at three damage models
Lumber and wood-based products are versatile construction materials that are susceptible to weakening as a result of applied stresses. To assess the effects of load duration and rate, experiments have been carried out by applying preset load profiles to sample specimens. This paper studies these effects via a damage modeling approach, by considering three models in the literature: the Gerhards and Foschi accumulated damage models, and a degradation model based on the gamma process. We present a statistical framework for fitting these models to failure time data generated by a combination of ramp and constant load settings, and show how estimation uncertainty can be quantified. The models and methods are illustrated and compared via a novel analysis of a Hemlock lumber dataset. Practical usage of the fitted damage models is demonstrated with an application to long-term reliability prediction under stochastic future loadings.
stat
Group sequential designs for negative binomial outcomes
Count data and recurrent events in clinical trials, such as the number of lesions in magnetic resonance imaging in multiple sclerosis, the number of relapses in multiple sclerosis, the number of hospitalizations in heart failure, and the number of exacerbations in asthma or in chronic obstructive pulmonary disease (COPD) are often modeled by negative binomial distributions. In this manuscript we study planning and analyzing clinical trials with group sequential designs for negative binomial outcomes. We propose a group sequential testing procedure for negative binomial outcomes based on Wald statistics using maximum likelihood estimators. The asymptotic distribution of the proposed group sequential tests statistics are derived. The finite sample size properties of the proposed group sequential test for negative binomial outcomes and the methods for planning the respective clinical trials are assessed in a simulation study. The simulation scenarios are motivated by clinical trials in chronic heart failure and relapsing multiple sclerosis, which cover a wide range of practically relevant settings. Our research assures that the asymptotic normal theory of group sequential designs can be applied to negative binomial outcomes when the hypotheses are tested using Wald statistics and maximum likelihood estimators. We also propose two methods, one based on Student's t-distribution and one based on resampling, to improve type I error rate control in small samples. The statistical methods studied in this manuscript are implemented in the R package \textit{gscounts}, which is available for download on the Comprehensive R Archive Network (CRAN).
stat
Calibration of Distributionally Robust Empirical Optimization Models
We study the out-of-sample properties of robust empirical optimization problems with smooth $\phi$-divergence penalties and smooth concave objective functions, and develop a theory for data-driven calibration of the non-negative "robustness parameter" $\delta$ that controls the size of the deviations from the nominal model. Building on the intuition that robust optimization reduces the sensitivity of the expected reward to errors in the model by controlling the spread of the reward distribution, we show that the first-order benefit of ``little bit of robustness" (i.e., $\delta$ small, positive) is a significant reduction in the variance of the out-of-sample reward while the corresponding impact on the mean is almost an order of magnitude smaller. One implication is that substantial variance (sensitivity) reduction is possible at little cost if the robustness parameter is properly calibrated. To this end, we introduce the notion of a robust mean-variance frontier to select the robustness parameter and show that it can be approximated using resampling methods like the bootstrap. Our examples show that robust solutions resulting from "open loop" calibration methods (e.g., selecting a $90\%$ confidence level regardless of the data and objective function) can be very conservative out-of-sample, while those corresponding to the robustness parameter that optimizes an estimate of the out-of-sample expected reward (e.g., via the bootstrap) with no regard for the variance are often insufficiently robust.
stat
A multi-surrogate higher-order singular value decomposition tensor emulator for spatio-temporal simulators
We introduce methodology to construct an emulator for environmental and ecological spatio-temporal processes that uses the higher order singular value decomposition (HOSVD) as an extension of singular value decomposition (SVD) approaches to emulation. Some important advantages of the method are that it allows for the use of a combination of supervised learning methods (e.g., neural networks, random forests, and Gaussian process regression) and also allows for the prediction of process values at spatial locations and time points that were not used in the training sample. The method is demonstrated with two applications: the first is a periodic solution to a shallow ice approximation partial differential equation from glaciology, and second is an agent-based model of collective animal movement. In both cases, we demonstrate the value of combining different machine learning models (i.e., a multi-surrogate approach) for accurate emulation. In addition, in the agent-based model case we demonstrate the ability of the tensor emulator to successfully capture individual behavior in space and time. We demonstrate via a real data example the ability to perform Bayesian inference in order to learn parameters governing collective animal behavior.
stat
Popper's falsification and corroboration from the statistical perspectives
The role of probability appears unchallenged as the key measure of uncertainty, used among other things for practical induction in the empirical sciences. Yet, Popper was emphatic in his rejection of inductive probability and of the logical probability of hypotheses; furthermore, for him, the degree of corroboration cannot be a probability. Instead he proposed a deductive method of testing. In many ways this dialectic tension has many parallels in statistics, with the Bayesians on logico-inductive side vs the non-Bayesians or the frequentists on the other side. Simplistically Popper seems to be on the frequentist side, but recent synthesis on the non-Bayesian side might direct the Popperian views to a more nuanced destination. Logical probability seems perfectly suited to measure partial evidence or support, so what can we use if we are to reject it? For the past 100 years, statisticians have also developed a related concept called likelihood, which has played a central role in statistical modelling and inference. Remarkably, this Fisherian concept of uncertainty is largely unknown or at least severely under-appreciated in non-statistical literature. As a measure of corroboration, the likelihood satisfies the Popperian requirement that it is not a probability. Our aim is to introduce the likelihood and its recent extension via a discussion of two well-known logical fallacies in order to highlight that its lack of recognition may have led to unnecessary confusion in our discourse about falsification and corroboration of hypotheses. We highlight the 100 years of development of likelihood concepts. The year 2021 will mark the 100-year anniversary of the likelihood, so with this paper we wish it a long life and increased appreciation in non-statistical literature.
stat
A fractional Brownian -- Hawkes model for the Italian electricity spot market: estimation and forecasting
We propose a model for the description and the forecast of the gross prices of electricity in the liberalized Italian energy market via an additive two-factor model driven by both a Hawkes and a fractional Brownian processes. We discuss the seasonality, the identification of spikes and the estimates of the Hurst coefficient. After the calibration and the validation of the model, we discuss its forecasting performance via a class of adequate evaluation metrics.
stat
The Power of Graph Convolutional Networks to Distinguish Random Graph Models: Short Version
Graph convolutional networks (GCNs) are a widely used method for graph representation learning. We investigate the power of GCNs, as a function of their number of layers, to distinguish between different random graph models on the basis of the embeddings of their sample graphs. In particular, the graph models that we consider arise from graphons, which are the most general possible parameterizations of infinite exchangeable graph models and which are the central objects of study in the theory of dense graph limits. We exhibit an infinite class of graphons that are well-separated in terms of cut distance and are indistinguishable by a GCN with nonlinear activation functions coming from a certain broad class if its depth is at least logarithmic in the size of the sample graph. These results theoretically match empirical observations of several prior works. Finally, we show a converse result that for pairs of graphons satisfying a degree profile separation property, a very simple GCN architecture suffices for distinguishability. To prove our results, we exploit a connection to random walks on graphs.
stat
A principle feature analysis
A key task of data science is to identify relevant features linked to certain output variables that are supposed to be modeled or predicted. To obtain a small but meaningful model, it is important to find stochastically independent variables capturing all the information necessary to model or predict the output variables sufficiently. Therefore, we introduce in this work a framework to detect linear and non-linear dependencies between different features. As we will show, features that are actually functions of other features do not represent further information. Consequently, a model reduction neglecting such features conserves the relevant information, reduces noise and thus improves the quality of the model. Furthermore, a smaller model makes it easier to adopt a model of a given system. In addition, the approach structures dependencies within all the considered features. This provides advantages for classical modeling starting from regression ranging to differential equations and for machine learning. To show the generality and applicability of the presented framework 2154 features of a data center are measured and a model for classification for faulty and non-faulty states of the data center is set up. This number of features is automatically reduced by the framework to 161 features. The prediction accuracy for the reduced model even improves compared to the model trained on the total number of features. A second example is the analysis of a gene expression data set where from 9513 genes 9 genes are extracted from whose expression levels two cell clusters of macrophages can be distinguished.
stat
Quantifying Observed Prior Impact
We distinguish two questions (i) how much information does the prior contain? and (ii) what is the effect of the prior? Several measures have been proposed for quantifying effective prior sample size, for example Clarke [1996] and Morita et al. [2008]. However, these measures typically ignore the likelihood for the inference currently at hand, and therefore address (i) rather than (ii). Since in practice (ii) is of great concern, Reimherr et al. [2014] introduced a new class of effective prior sample size measures based on prior-likelihood discordance. We take this idea further towards its natural Bayesian conclusion by proposing measures of effective prior sample size that not only incorporate the general mathematical form of the likelihood but also the specific data at hand. Thus, our measures do not average across datasets from the working model, but condition on the current observed data. Consequently, our measures can be highly variable, but we demonstrate that this is because the impact of a prior can be highly variable. Our measures are Bayes estimates of meaningful quantities and well communicate the extent to which inference is determined by the prior, or framed differently, the amount of effort saved due to having prior information. We illustrate our ideas through a number of examples including a Gaussian conjugate model (continuous observations), a Beta-Binomial model (discrete observations), and a linear regression model (two unknown parameters). Future work on further developments of the methodology and an application to astronomy are discussed at the end.
stat
Efficient nonparametric causal inference with missing exposure information
Missing exposure information is a very common feature of many observational studies. Here we study identifiability and efficient estimation of causal effects on vector outcomes, in such cases where treatment is unconfounded but partially missing. We consider a missing at random setting where missingness in treatment can depend not only on complex covariates, but also on post-treatment outcomes. We give a new identifying expression for average treatment effects in this setting, along with the efficient influence function for this parameter in a nonparametric model, which yields a nonparametric efficiency bound. We use this latter result to construct nonparametric estimators that are less sensitive to the curse of dimensionality than usual, e.g., by having faster rates of convergence than the complex nuisance estimators they rely on. Further we show that these estimators can be root-n consistent and asymptotically normal under weak nonparametric conditions, even when constructed using flexible machine learning. Finally we apply these results to the problem of causal inference with a partially missing instrumental variable.
stat
Empirical Bayes mean estimation with nonparametric errors via order statistic regression
We study empirical Bayes estimation of the effect sizes of $N$ units from $K$ noisy observations on each unit. We show that it is possible to achieve near-Bayes optimal mean squared error, without any assumptions or knowledge about the effect size distribution or the noise. The noise distribution can be heteroskedastic and vary arbitrarily from unit to unit. Our proposal, which we call Aurora, leverages the replication inherent in the $K$ observations per unit and recasts the effect size estimation problem as a general regression problem. Aurora with linear regression provably matches the performance of a wide array of estimators including the sample mean, the trimmed mean, the sample median, as well as James-Stein shrunk versions thereof. Aurora automates effect size estimation for Internet-scale datasets, as we demonstrate on Google data.
stat
The P-T Probability Framework for Semantic Communication, Falsification, Confirmation, and Bayesian Reasoning
Many researchers want to unify probability and logic by defining logical probability or probabilistic logic reasonably. This paper tries to unify statistics and logic so that we can use both statistical probability and logical probability at the same time. For this purpose, this paper proposes the P-T probability framework, which is assembled with Shannon's statistical probability framework for communication, Kolmogorov's probability axioms for logical probability, and Zadeh's membership functions used as truth functions. Two kinds of probabilities are connected by an extended Bayes' theorem, with which we can convert a likelihood function and a truth function from one to another. Hence, we can train truth functions (in logic) by sampling distributions (in statistics). This probability framework was developed in the author's long-term studies on semantic information, statistical learning, and color vision. This paper first proposes the P-T probability framework and explains different probabilities in it by its applications to semantic information theory. Then, this framework and the semantic information methods are applied to statistical learning, statistical mechanics, hypothesis evaluation (including falsification), confirmation, and Bayesian reasoning. Theoretical applications illustrate the reasonability and practicability of this framework. This framework is helpful for interpretable AI. To interpret neural networks, we need further study.
stat
High-dimensional MANOVA via Bootstrapping and its Application to Functional and Sparse Count Data
We propose a new approach to the problem of high-dimensional multivariate ANOVA via bootstrapping max statistics that involve the differences of sample mean vectors. The proposed method proceeds via the construction of simultaneous confidence regions for the differences of population mean vectors. It is suited to simultaneously test the equality of several pairs of mean vectors of potentially more than two populations. By exploiting the variance decay property that is a natural feature in relevant applications, we are able to provide dimension-free and nearly-parametric convergence rates for Gaussian approximation, bootstrap approximation, and the size of the test. We demonstrate the proposed approach with ANOVA problems for functional data and sparse count data. The proposed methodology is shown to work well in simulations and several real data applications.
stat
Analysis of "Learn-As-You-Go" (LAGO) Studies
In learn-as-you-go (LAGO) adaptive studies, the intervention is a complex package consisting of multiple components, and is adapted in stages during the study based on past outcome data. This design formalizes standard practice, and desires for practice, in public health intervention studies. An effective intervention package is sought, while minimizing intervention package cost. When analyzing data from a learn-as-you-go study, the interventions in later stages depend upon the outcomes in the previous stages, violating standard statistical theory. We develop methods for estimating the intervention effects in a LAGO study. We prove consistency and asymptotic normality using a novel coupling argument, ensuring the validity of the test for the hypothesis of no overall intervention effect. We develop a confidence set for the optimal intervention package and confidence bands for the success probabilities under alternative package compositions. We illustrate our methods in the BetterBirth Study, which aimed to improve maternal and neonatal outcomes among 157,689 births in Uttar Pradesh, India through a complex, multi-component intervention package.
stat
Towards Optimal Estimation of Bivariate Isotonic Matrices with Unknown Permutations
Many applications, including rank aggregation, crowd-labeling, and graphon estimation, can be modeled in terms of a bivariate isotonic matrix with unknown permutations acting on its rows and/or columns. We consider the problem of estimating an unknown matrix in this class, based on noisy observations of (possibly, a subset of) its entries. We design and analyze polynomial-time algorithms that improve upon the state of the art in two distinct metrics, showing, in particular, that minimax optimal, computationally efficient estimation is achievable in certain settings. Along the way, we prove matching upper and lower bounds on the minimax radii of certain cone testing problems, which may be of independent interest.
stat
The use of registry data to extrapolate overall survival results from randomised controlled trials
Background: Pre-marketing authorisation estimates of survival are generally restricted to those observed directly in randomised controlled trials (RCTs). However, for regulatory and Health Technology Assessment (HTA) decision-making a longer time horizon is often required than is studied in RCTs. Therefore, extrapolation is required to estimate long-term treatment effect. Registry data can provide evidence to support extrapolation of treatment effects from RCTs, which are considered the main sources of evidence of effect for new drug applications. A number of methods are available to extrapolate survival data, such as Exponential, Weibull, Gompertz, log-logistic or log-normal parametric models. The different methods have varying functional forms and can result in different survival estimates. Methods: The aim of this paper was to use registry data to supplement the relatively short term RCT data to obtain long term estimates of effect. No formal hypotheses were tested. We explore the above parametric regression models as well as a nonparametric regression model based on local linear (parametric) regression. We also explore a Bayesian model constrained to the long term estimate of survival reported in literature, a Bayesian power prior approach on the variability observed from published literature, and a Bayesian Model Averaging (BMA) approach. The methods were applied to extrapolate overall survival of a RCT in metastatic melanoma. Results: The results showed that the BMA approach was able to fit the RCT data well, with the lowest variability of the area under the curve up to 72 months with or without the SEER Medicare registry. Conclusion: the BMA approach is a viable approach to extrapolate overall survival in the absence of long term data.
stat
CRPS Learning
Combination and aggregation techniques can improve forecast accuracy substantially. This also holds for probabilistic forecasting methods where full predictive distributions are combined. There are several time-varying and adaptive weighting schemes like Bayesian model averaging (BMA). However, the performance of different forecasters may vary not only over time but also in parts of the distribution. So one may be more accurate in the center of the distributions, and other ones perform better in predicting the distribution's tails. Consequently, we introduce a new weighting procedure that considers both varying performance across time and the distribution. We discuss pointwise online aggregation algorithms that optimize with respect to the continuous ranked probability score (CRPS). After analyzing the theoretical properties of a fully adaptive Bernstein online aggregation (BOA) method, we introduce smoothing procedures for pointwise CRPS learning. The properties are confirmed and discussed using simulation studies. Additionally, we illustrate the performance in a forecasting study for carbon markets. In detail, we predict the distribution of European emission allowance prices.
stat
A Generative Approach to Joint Modeling of Quantitative and Qualitative Responses
In many scientific areas, data with quantitative and qualitative (QQ) responses are commonly encountered with a large number of predictors. By exploring the association between QQ responses, existing approaches often consider a joint model of QQ responses given the predictor variables. However, the dependency among predictive variables also provides useful information for modeling QQ responses. In this work, we propose a generative approach to model the joint distribution of the QQ responses and predictors. The proposed generative model provides efficient parameter estimation under a penalized likelihood framework. It achieves accurate classification for qualitative response and accurate prediction for quantitative response with efficient computation. Because of the generative approach framework, the asymptotic optimality of classification and prediction of the proposed method can be established under some regularity conditions. The performance of the proposed method is examined through simulations and real case studies in material science and genetics.
stat
Classification with unknown class-conditional label noise on non-compact feature spaces
We investigate the problem of classification in the presence of unknown class-conditional label noise in which the labels observed by the learner have been corrupted with some unknown class dependent probability. In order to obtain finite sample rates, previous approaches to classification with unknown class-conditional label noise have required that the regression function is close to its extrema on sets of large measure. We shall consider this problem in the setting of non-compact metric spaces, where the regression function need not attain its extrema. In this setting we determine the minimax optimal learning rates (up to logarithmic factors). The rate displays interesting threshold behaviour: When the regression function approaches its extrema at a sufficient rate, the optimal learning rates are of the same order as those obtained in the label-noise free setting. If the regression function approaches its extrema more gradually then classification performance necessarily degrades. In addition, we present an adaptive algorithm which attains these rates without prior knowledge of either the distributional parameters or the local density. This identifies for the first time a scenario in which finite sample rates are achievable in the label noise setting, but they differ from the optimal rates without label noise.
stat
Flexible marked spatio-temporal point processes with applications to event sequences from association football
We develop a new family of marked point processes by focusing the characteristic properties of marked Hawkes processes exclusively to the space of marks, providing the freedom to specify a different model for the occurrence times. This is possible through a decomposition of the joint distribution of marks and times that allows to separately specify the conditional distribution of marks given the filtration of the process and the current time. We develop a Bayesian framework for the inference and prediction from this family of marked point processes that can naturally accommodate process and point-specific covariate information to drive cross-excitations, offering wide flexibility and applicability in the modelling of real-world processes. The framework is used here for the modelling of in-game event sequences from association football, resulting not only in inferences about previously unquantified characteristics of the game dynamics and extraction of event-specific team abilities, but also in predictions for the occurrence of events of interest, such as goals, corners or fouls, in a specified interval of time.
stat
Kullback-Leibler-Based Discrete Relative Risk Models for Integration of Published Prediction Models with New Dataset
Existing literature for prediction of time-to-event data has primarily focused on risk factors from an individual dataset. However, these analyses may suffer from small sample sizes, high dimensionality and low signal-to-noise ratios. To improve prediction stability and better understand risk factors associated with outcomes of interest, we propose a Kullback-Leibler-based discrete relative risk modeling procedure. Simulations and real data analysis are conducted to show the advantage of the proposed methods compared with those solely based on local dataset or prior models.
stat
Individualized Group Learning
Many massive data are assembled through collections of information of a large number of individuals in a population. The analysis of such data, especially in the aspect of individualized inferences and solutions, has the potential to create significant value for practical applications. Traditionally, inference for an individual in the data set is either solely relying on the information of the individual or from summarizing the information about the whole population. However, with the availability of big data, we have the opportunity, as well as a unique challenge, to make a more effective individualized inference that takes into consideration of both the population information and the individual discrepancy. To deal with the possible heterogeneity within the population while providing effective and credible inferences for individuals in a data set, this article develops a new approach called the individualized group learning (iGroup). The iGroup approach uses local nonparametric techniques to generate an individualized group by pooling other entities in the population which share similar characteristics with the target individual, even when individual estimates are biased due to limited number of observations. Three general cases of iGroup are discussed, and their asymptotic performances are investigated. Both theoretical results and empirical simulations reveal that, by applying iGroup, the performance of statistical inference on the individual level are ensured and can be substantially improved from inference based on either solely individual information or entire population information. The method has a broad range of applications. Two examples in financial statistics and maritime anomaly detection are presented.
stat
Off-policy Learning for Multiple Loggers
It is well known that the historical logs are used for evaluating and learning policies in interactive systems, e.g. recommendation, search, and online advertising. Since direct online policy learning usually harms user experiences, it is more crucial to apply off-policy learning in real-world applications instead. Though there have been some existing works, most are focusing on learning with one single historical policy. However, in practice, usually a number of parallel experiments, e.g. multiple AB tests, are performed simultaneously. To make full use of such historical data, learning policies from multiple loggers becomes necessary. Motivated by this, in this paper, we investigate off-policy learning when the training data coming from multiple historical policies. Specifically, policies, e.g. neural networks, can be learned directly from multi-logger data, with counterfactual estimators. In order to understand the generalization ability of such estimator better, we conduct generalization error analysis for the empirical risk minimization problem. We then introduce the generalization error bound as the new risk function, which can be reduced to a constrained optimization problem. Finally, we give the corresponding learning algorithm for the new constrained problem, where we can appeal to the minimax problems to control the constraints. Extensive experiments on benchmark datasets demonstrate that the proposed methods achieve better performances than the state-of-the-arts.
stat
Strong Sure Screening of Ultra-high Dimensional Data with Interaction Effects
Ultrahigh dimensional data sets are becoming increasingly prevalent in areas such as bioinformatics, medical imaging, and social network analysis. Sure independent screening of such data is commonly used to analyze such data. Nevertheless, few methods exist for screening for interactions among predictors. Moreover, extant interaction screening methods prove to be highly inaccurate when applied to data sets exhibiting strong interactive effects, but weak marginal effects, on the response. We propose a new interaction screening procedure based on joint cumulants which is not inhibited by such limitations. Under a collection of sensible conditions, we demonstrate that our interaction screening procedure has the strong sure screening property. Four simulations are used to investigate the performance of our method relative to two other interaction screening methods. We also apply a two-stage analysis to a real data example by first employing our proposed method, and then further examining a subset of selected covariates using multifactor dimensionality reduction.
stat
Model Averaging by Cross-validation for Partially Linear Functional Additive Models
We consider averaging a number of candidate models to produce a prediction of lower risk in the context of partially linear functional additive models. These models incorporate the parametric effect of scalar variables and the additive effect of a functional variable to describe the relationship between response variable and regressors. We develop a model averaging scheme that assigns the weights by minimizing a cross-validation criterion. Under the framework of model misspecification, the resulting estimator is proved to be asymptotically optimal in terms of the lowest possible square error loss of prediction. Also, simulation studies and real data analysis demonstrate the good performance of our proposed method.
stat
Theoretical and Practical Limits of Kolmogorov-Zurbenko Periodograms with DiRienzo-Zurbenko Algorithm Smoothing in the Spectral Analysis of Time Series Data
The Kolomogorov-Zurbenko periodogram with DiRienzo-Zurbenko algorithm smoothing is the state-of-the-art method for spectral analysis of time series data. Because this approach assumes that a sinusoidal model underlies time-series data and because its algorithms are adaptive in nature, it is superior to traditional use of autoregressive integral moving average (ARIMA) algorithms. This article begins with a presentation of its statistical derivation and development followed by instructions for accessing and utilizing this approach within the R statistical program platform. The discussion then turns to a presentation of its theoretical and practical limits with regard to sensitivity (i.e., ability to detect weak signals), accuracy (i.e., ability to correctly identify signal frequencies), resolution (i.e., ability to resolve signals with close frequencies), and robustness with respect to missing data (i.e., sensitivity and accuracy despite high levels of missingness). Next using a simulated time series in which two signals close in frequency are embedded in significant amounts of random noise, the predictive power of this approach is compared to the traditional ARIMA approach, with support also garnered for its being robust even in the face of significant levels of missing data. The article concludes with brief descriptions of studies across a range of scientific disciplines that have capitalized on the power of the Kolmogorov-Zurbenko periodogram with DiRienzo-Zurbenko algorithm smoothing.
stat
Bias and sensitivity analysis for unmeasured confounders in linear structural equation models
In this paper, we consider the extent of the biases that may arise when an unmeasured confounder is omitted from a structural equation model (SEM) and we propose sensitivity analysis techniques to correct for such biases. We give an analysis of which effects in an SEM are, and are not, biased by an unmeasured confounder. It is shown that a single unmeasured confounder will bias not just one, but numerous, effects in an SEM. We present sensitivity analysis techniques to correct for biases in total, direct, and indirect effects when using SEM analyses, and illustrate these techniques with a study of aging and cognitive function.
stat
A connection between the pattern classification problem and the General Linear Model for statistical inference
A connection between the General Linear Model (GLM) in combination with classical statistical inference and the machine learning (MLE)-based inference is described in this paper. Firstly, the estimation of the GLM parameters is expressed as a Linear Regression Model (LRM) of an indicator matrix, that is, in terms of the inverse problem of regressing the observations. In other words, both approaches, i.e. GLM and LRM, apply to different domains, the observation and the label domains, and are linked by a normalization value at the least-squares solution. Subsequently, from this relationship we derive a statistical test based on a more refined predictive algorithm, i.e. the (non)linear Support Vector Machine (SVM) that maximizes the class margin of separation, within a permutation analysis. The MLE-based inference employs a residual score and includes the upper bound to compute a better estimation of the actual (real) error. Experimental results demonstrate how the parameter estimations derived from each model resulted in different classification performances in the equivalent inverse problem. Moreover, using real data the aforementioned predictive algorithms within permutation tests, including such model-free estimators, are able to provide a good trade-off between type I error and statistical power.
stat
Stochastic Probabilistic Programs
We introduce the notion of a stochastic probabilistic program and present a reference implementation of a probabilistic programming facility supporting specification of stochastic probabilistic programs and inference in them. Stochastic probabilistic programs allow straightforward specification and efficient inference in models with nuisance parameters, noise, and nondeterminism. We give several examples of stochastic probabilistic programs, and compare the programs with corresponding deterministic probabilistic programs in terms of model specification and inference. We conclude with discussion of open research topics and related work.
stat
Limitations of Lazy Training of Two-layers Neural Networks
We study the supervised learning problem under either of the following two models: (1) Feature vectors ${\boldsymbol x}_i$ are $d$-dimensional Gaussians and responses are $y_i = f_*({\boldsymbol x}_i)$ for $f_*$ an unknown quadratic function; (2) Feature vectors ${\boldsymbol x}_i$ are distributed as a mixture of two $d$-dimensional centered Gaussians, and $y_i$'s are the corresponding class labels. We use two-layers neural networks with quadratic activations, and compare three different learning regimes: the random features (RF) regime in which we only train the second-layer weights; the neural tangent (NT) regime in which we train a linearization of the neural network around its initialization; the fully trained neural network (NN) regime in which we train all the weights in the network. We prove that, even for the simple quadratic model of point (1), there is a potentially unbounded gap between the prediction risk achieved in these three training regimes, when the number of neurons is smaller than the ambient dimension. When the number of neurons is larger than the number of dimensions, the problem is significantly easier and both NT and NN learning achieve zero risk.
stat
Leveraging the Fisher randomization test using confidence distributions: inference, combination and fusion learning
The flexibility and wide applicability of the Fisher randomization test (FRT) makes it an attractive tool for assessment of causal effects of interventions from modern-day randomized experiments that are increasing in size and complexity. This paper provides a theoretical inferential framework for FRT by establishing its connection with confidence distributions Such a connection leads to development of (i) an unambiguous procedure for inversion of FRTs to generate confidence intervals with guaranteed coverage, (ii) generic and specific methods to combine FRTs from multiple independent experiments with theoretical guarantees and (iii) new insights on the effect of size of the Monte Carlo sample on the results of FRT. Our developments pertain to finite sample settings but have direct extensions to large samples. Simulations and a case example demonstrate the benefit of these new developments.
stat
Seeing the Wind: Visual Wind Speed Prediction with a Coupled Convolutional and Recurrent Neural Network
Wind energy resource quantification, air pollution monitoring, and weather forecasting all rely on rapid, accurate measurement of local wind conditions. Visual observations of the effects of wind---the swaying of trees and flapping of flags, for example---encode information regarding local wind conditions that can potentially be leveraged for visual anemometry that is inexpensive and ubiquitous. Here, we demonstrate a coupled convolutional neural network and recurrent neural network architecture that extracts the wind speed encoded in visually recorded flow-structure interactions of a flag and tree in naturally occurring wind. Predictions for wind speeds ranging from 0.75-11 m/s showed agreement with measurements from a cup anemometer on site, with a root-mean-squared error approaching the natural wind speed variability due to atmospheric turbulence. Generalizability of the network was demonstrated by successful prediction of wind speed based on recordings of other flags in the field and in a controlled wind tunnel test. Furthermore, physics-based scaling of the flapping dynamics accurately predicts the dependence of the network performance on the video frame rate and duration.
stat
A Bayesian Hidden Semi-Markov Model with Covariate-Dependent State Duration Parameters for High-Frequency Data from Wearable Devices
Data collected by wearable devices in sports provide valuable information about an athlete's behavior such as their activity, performance, and ability. These time series data can be studied with approaches such as hidden Markov and semi-Markov models (HMM and HSMM) for varied purposes including activity recognition and event detection. HSMMs extend the HMM by explicitly modeling the time spent in each state. In a discrete-time HSMM, the duration in each state can be modeled with a zero-truncated Poisson distribution, where the duration parameter may be state-specific but constant in time. We extend the HSMM by allowing the state-specific duration parameters to vary in time and model them as a function of known covariates derived from the wearable device and observed over a period of time leading up to a state transition. In addition, we propose a data subsampling approach given that high-frequency data from wearable devices can violate the conditional independence assumption of the HSMM. We apply the model to wearable device data collected on a soccer referee in a Major League Soccer game. We model the referee's physiological response to the game demands and identify important time-varying effects of these demands associated with the duration in each state.
stat
Modeling Multivariate Spatial-Temporal Data with Latent Low-Dimensional Dynamics
High-dimensional multivariate spatial-temporal data arise frequently in a wide range of applications; however, there are relatively few statistical methods that can simultaneously deal with spatial, temporal and variable-wise dependencies in large data sets. In this paper, we propose a new approach to utilize the correlations in variable, space and time to achieve dimension reduction and to facilitate spatial/temporal predictions in the high-dimensional settings. The multivariate spatial-temporal process is represented as a linear transformation of a lower-dimensional latent factor process. The spatial dependence structure of the factor process is further represented non-parametrically in terms of latent empirical orthogonal functions. The low-dimensional structure is completely unknown in our setting and is learned entirely from data collected irregularly over space but regularly over time. We propose innovative estimation and prediction methods based on the latent low-rank structures. Asymptotic properties of the estimators and predictors are established. Extensive experiments on synthetic and real data sets show that, while the dimensions are reduced significantly, the spatial, temporal and variable-wise covariance structures are largely preserved. The efficacy of our method is further confirmed by the prediction performances on both synthetic and real data sets.
stat
A robust statistical method for Genome-wide association analysis of human copy number variation
Conducting genome-wide association studies (GWAS) in copy number variation (CNV) level is a field where few people involves and little statistical progresses have been achieved, traditional methods suffer from many problems such as batch effects, heterogeneity across genome, leading to low power or high false discovery rate. We develop a new robust method to find disease-risking regions related to CNV's disproportionately distributed between case and control samples, even if there are batch effects between them, our test formula is robust to such effects. We propose a new empirical Bayes rule to deal with overfitting when estimating parameters during testing, this rule can be extended to the field of model selection, it can be more efficient compared with traditional methods when there are too much potential models to be specified. We also give solid theoretical guarantees for our proposed method, and demonstrate the effectiveness by simulation and realdata analysis.
stat
Nonparametric multimodal regression for circular data
Multimodal regression estimation methods are introduced for regression models involving circular response and/or covariate. The regression estimators are based on the maximization of the conditional densities of the response variable over the covariate. Conditional versions of the mean shift and the circular mean shift algorithms are used to obtain the regression estimators. The asymptotic properties of the estimators are studied and the problem of bandwidth selection is discussed.
stat
Statistical Monitoring of the Covariance Matrix in Multivariate Processes: A Literature Review
Monitoring several correlated quality characteristics of a process is common in modern manufacturing and service industries. Although a lot of attention has been paid to monitoring the multivariate process mean, not many control charts are available for monitoring the covariance matrix. This paper presents a comprehensive overview of the literature on control charts for monitoring the covariance matrix in a multivariate statistical process monitoring (MSPM) framework. It classifies the research that has previously appeared in the literature. We highlight the challenging areas for research and provide some directions for future research.
stat
Regression by clustering using Metropolis-Hastings
High quality risk adjustment in health insurance markets weakens insurer incentives to engage in inefficient behavior to attract lower-cost enrollees. We propose a novel methodology based on Markov Chain Monte Carlo methods to improve risk adjustment by clustering diagnostic codes into risk groups optimal for health expenditure prediction. We test the performance of our methodology against common alternatives using panel data from 500 thousand enrollees of the Colombian Healthcare System. Results show that our methodology outperforms common alternatives and suggest that it has potential to improve access to quality healthcare for the chronically ill.
stat
Maximum likelihood estimation of the Fisher-Bingham distribution via efficient calculation of its normalizing constant
This paper proposes an efficient numerical integration formula to compute the normalizing constant of Fisher--Bingham distributions. This formula uses a numerical integration formula with the continuous Euler transform to a Fourier-type integral representation of the normalizing constant. As this method is fast and accurate, it can be applied to the calculation of the normalizing constant of high-dimensional Fisher--Bingham distributions. More precisely, the error decays exponentially with an increase in the integration points, and the computation cost increases linearly with the dimensions. In addition, this formula is useful for calculating the gradient and Hessian matrix of the normalizing constant. Therefore, we apply this formula to efficiently calculate the maximum likelihood estimation (MLE) of high-dimensional data. Finally, we apply the MLE to the hyperspherical variational auto-encoder (S-VAE), a deep-learning-based generative model that restricts the latent space to a unit hypersphere. We use the S-VAE trained with images of handwritten numbers to estimate the distributions of each label. This application is useful for adding new labels to the models.
stat
Strategic Bayesian Asset Allocation
Strategic asset allocation requires an investor to select stocks from a given basket of assets. The perspective of our investor is to maximize risk-adjusted alpha returns relative to a benchmark index. Historical returns are used to provide inputs into an optimization algorithm. Our approach uses Bayesian regularization to not only provide stock selection but also optimal sequential portfolio weights. By incorporating investor preferences with a number of different regularization penalties we extend the approaches of Black (1992) and Puelz (2015). We tailor standard sparse MCMC algorithms to calculate portfolio weights and perform selection. We illustrate our methodology on stock selection from the SP100 stock index and from the top fifty holdings of two hedge funds Renaissance Technologies and Viking Global. Finally, we conclude with directions for future research.
stat
Convex and Nonconvex Optimization Are Both Minimax-Optimal for Noisy Blind Deconvolution
We investigate the effectiveness of convex relaxation and nonconvex optimization in solving bilinear systems of equations (a.k.a. blind deconvolution under a subspace model). Despite the wide applicability, the theoretical understanding about these two paradigms remains largely inadequate in the presence of noise. The current paper makes two contributions by demonstrating that: (1) convex relaxation achieves minimax-optimal statistical accuracy vis-\`a-vis random noise, and (2) a two-stage nonconvex algorithm attains minimax-optimal accuracy within a logarithmic number of iterations. Both results improve upon the state-of-the-art results by some factors that scale polynomially in the problem dimension.
stat
Global convergence of neuron birth-death dynamics
Neural networks with a large number of parameters admit a mean-field description, which has recently served as a theoretical explanation for the favorable training properties of "overparameterized" models. In this regime, gradient descent obeys a deterministic partial differential equation (PDE) that converges to a globally optimal solution for networks with a single hidden layer under appropriate assumptions. In this work, we propose a non-local mass transport dynamics that leads to a modified PDE with the same minimizer. We implement this non-local dynamics as a stochastic neuronal birth-death process and we prove that it accelerates the rate of convergence in the mean-field limit. We subsequently realize this PDE with two classes of numerical schemes that converge to the mean-field equation, each of which can easily be implemented for neural networks with finite numbers of parameters. We illustrate our algorithms with two models to provide intuition for the mechanism through which convergence is accelerated.
stat
Causality-aware counterfactual confounding adjustment as an alternative to linear residualization in anticausal prediction tasks based on linear learners
Linear residualization is a common practice for confounding adjustment in machine learning (ML) applications. Recently, causality-aware predictive modeling has been proposed as an alternative causality-inspired approach for adjusting for confounders. The basic idea is to simulate counterfactual data that is free from the spurious associations generated by the observed confounders. In this paper, we compare the linear residualization approach against the causality-aware confounding adjustment in anticausal prediction tasks, and show that the causality-aware approach tends to (asymptotically) outperform the residualization adjustment in terms of predictive performance in linear learners. Importantly, our results still holds even when the true model is not linear. We illustrate our results in both regression and classification tasks, where we compared the causality-aware and residualization approaches using mean squared errors and classification accuracy in synthetic data experiments where the linear regression model is mispecified, as well as, when the linear model is correctly specified. Furthermore, we illustrate how the causality-aware approach is more stable than residualization with respect to dataset shifts in the joint distribution of the confounders and outcome variables.
stat
Graphical Lasso and Thresholding: Equivalence and Closed-form Solutions
Graphical Lasso (GL) is a popular method for learning the structure of an undirected graphical model, which is based on an $l_1$ regularization technique. The objective of this paper is to compare the computationally-heavy GL technique with a numerically-cheap heuristic method that is based on simply thresholding the sample covariance matrix. To this end, two notions of sign-consistent and inverse-consistent matrices are developed, and then it is shown that the thresholding and GL methods are equivalent if: (i) the thresholded sample covariance matrix is both sign-consistent and inverse-consistent, and (ii) the gap between the largest thresholded and the smallest un-thresholded entries of the sample covariance matrix is not too small. By building upon this result, it is proved that the GL method---as a conic optimization problem---has an explicit closed-form solution if the thresholded sample covariance matrix has an acyclic structure. This result is then generalized to arbitrary sparse support graphs, where a formula is found to obtain an approximate solution of GL. Furthermore, it is shown that the approximation error of the derived explicit formula decreases exponentially fast with respect to the length of the minimum-length cycle of the sparsity graph. The developed results are demonstrated on synthetic data, functional MRI data, traffic flows for transportation networks, and massive randomly generated data sets. We show that the proposed method can obtain an accurate approximation of the GL for instances with the sizes as large as $80,000\times 80,000$ (more than 3.2 billion variables) in less than 30 minutes on a standard laptop computer running MATLAB, while other state-of-the-art methods do not converge within 4 hours.
stat
Time-based analysis of the NBA hot hand fallacy
The debate surrounding the hot hand in the NBA has been ongoing for many years. However, many of the previous works on this theme has focused on only the very next sequential shot attempt, often on very select players. This work looks in more detail the effect of a made or missed shot on the next series of shots over a two-year span, with time between shots shown to be a critical factor in the analysis. Also, multi-year streakiness is analyzed, and all indications are that players cannot really sustain their good (or bad) fortune from year to year.
stat
Bidirectional Inference Networks: A Class of Deep Bayesian Networks for Health Profiling
We consider the problem of inferring the values of an arbitrary set of variables (e.g., risk of diseases) given other observed variables (e.g., symptoms and diagnosed diseases) and high-dimensional signals (e.g., MRI images or EEG). This is a common problem in healthcare since variables of interest often differ for different patients. Existing methods including Bayesian networks and structured prediction either do not incorporate high-dimensional signals or fail to model conditional dependencies among variables. To address these issues, we propose bidirectional inference networks (BIN), which stich together multiple probabilistic neural networks, each modeling a conditional dependency. Predictions are then made via iteratively updating variables using backpropagation (BP) to maximize corresponding posterior probability. Furthermore, we extend BIN to composite BIN (CBIN), which involves the iterative prediction process in the training stage and improves both accuracy and computational efficiency by adaptively smoothing the optimization landscape. Experiments on synthetic and real-world datasets (a sleep study and a dermatology dataset) show that CBIN is a single model that can achieve state-of-the-art performance and obtain better accuracy in most inference tasks than multiple models each specifically trained for a different task.
stat
Matrix Completion under Low-Rank Missing Mechanism
Matrix completion is a modern missing data problem where both the missing structure and the underlying parameter are high dimensional. Although missing structure is a key component to any missing data problems, existing matrix completion methods often assume a simple uniform missing mechanism. In this work, we study matrix completion from corrupted data under a novel low-rank missing mechanism. The probability matrix of observation is estimated via a high dimensional low-rank matrix estimation procedure, and further used to complete the target matrix via inverse probabilities weighting. Due to both high dimensional and extreme (i.e., very small) nature of the true probability matrix, the effect of inverse probability weighting requires careful study. We derive optimal asymptotic convergence rates of the proposed estimators for both the observation probabilities and the target matrix.
stat
A Kalman particle filter for online parameter estimation with applications to affine models
In this paper we address the problem of estimating the posterior distribution of the static parameters of a continuous time state space model with discrete time observations by an algorithm that combines the Kalman filter and a particle filter. The proposed algorithm is semi-recursive and has a two layer structure, in which the outer layer provides the estimation of the posterior distribution of the unknown parameters and the inner layer provides the estimation of the posterior distribution of the state variables. This algorithm has a similar structure as the so-called recursive nested particle filter, but unlike the latter filter, in which both layers use a particle filter, this proposed algorithm introduces a dynamic kernel to sample the parameter particles in the outer layer to obtain a higher convergence speed. Moreover, this algorithm also implements the Kalman filter in the inner layer to reduce the computational time. This algorithm can also be used to estimate the parameters that suddenly change value. We prove that, for a state space model with a certain structure, the estimated posterior distribution of the unknown parameters and the state variables converge to the actual distribution in $L_p$ with rate of order $\mathcal{O}(N^{-\frac{1}{2}}+\delta^{\frac{1}{2}})$, where $N$ is the number of particles for the parameters in the outer layer and $\delta$ is the maximum time step between two consecutive observations. We present numerical results of the implementation of this algorithm, in particularly we implement this algorithm for affine interest models, possibly with stochastic volatility, although the algorithm can be applied to a much broader class of models.
stat
Towards Robust and Stable Deep Learning Algorithms for Forward Backward Stochastic Differential Equations
Applications in quantitative finance such as optimal trade execution, risk management of options, and optimal asset allocation involve the solution of high dimensional and nonlinear Partial Differential Equations (PDEs). The connection between PDEs and systems of Forward-Backward Stochastic Differential Equations (FBSDEs) enables the use of advanced simulation techniques to be applied even in the high dimensional setting. Unfortunately, when the underlying application contains nonlinear terms, then classical methods both for simulation and numerical methods for PDEs suffer from the curse of dimensionality. Inspired by the success of deep learning, several researchers have recently proposed to address the solution of FBSDEs using deep learning. We discuss the dynamical systems point of view of deep learning and compare several architectures in terms of stability, generalization, and robustness. In order to speed up the computations, we propose to use a multilevel discretization technique. Our preliminary results suggest that the multilevel discretization method improves solutions times by an order of magnitude compared to existing methods without sacrificing stability or robustness.
stat
Permutation tests under a rotating sampling plan with clustered data
Consider a population consisting of clusters of sampling units, evolving temporally, spatially, or according to other dynamics. We wish to monitor the evolution of its means, medians, or other parameters. For administrative convenience and informativeness, clustered data are often collected via a rotating plan. Under rotating plans, the observations in the same clusters are correlated, and observations on the same unit collected on different occasions are also correlated. Ignoring this correlation structure may lead to invalid inference procedures. Accommodating cluster structure in parametric models is difficult or will have a high level of misspecification risk. In this paper, we explore exchangeability in clustered data collected via a rotating sampling plan to develop a permutation scheme for testing various hypotheses of interest. We also introduce a semiparametric density ratio model to facilitate the multiple population structure in rotating sampling plans. The combination ensures the validity of the inference methods while extracting maximum information from the sampling plan. A simulation study indicates that the proposed tests firmly control the type I error whether or not the data are clustered. The use of the density ratio model improves the power of the tests.
stat
What do adoption patterns of solar panels observed so far tell about governments' incentive? insight from diffusion models
The paper uses diffusion models to understand the main determinants of diffusion of solar photovoltaic panels (SPP) worldwide, focusing on the role of public incentives. We applied the generalized Bass model (GBM) to adoption data of 26 countries between 1992-2016. The SPP market appears as a frail and complicate one, lacking public media support. Even the major shocks in adoption curves, following state incentive implemented after 2006, failed to go beyond short-term effects and therefore were unable to provide sustained momentum to the market. This suggests that further barriers to adoption should be removed.
stat
Sparse Network Estimation for Dynamical Spatio-temporal Array Models
Neural field models represent neuronal communication on a population level via synaptic weight functions. Using voltage sensitive dye (VSD) imaging it is possible to obtain measurements of neural fields with a relatively high spatial and temporal resolution. The synaptic weight functions represent functional connectivity in the brain and give rise to a spatio-temporal dependence structure. We present a stochastic functional differential equation for modeling neural fields, which leads to a vector autoregressive model of the data via basis expansions of the synaptic weight functions and time and space discretization. Fitting the model to data is a pratical challenge as this represents a large scale regression problem. By using a 1-norm penalty in combination with localized basis functions it is possible to learn a sparse network representation of the functional connectivity of the brain, but still, the explicit construction of a design matrix can be computationally prohibitive. We demonstrate that by using tensor product basis expansions, the computation of the penalized estimator via a proximal gradient algorithm becomes feasible. It is crucial for the computations that the data is organized in an array as is the case for the three dimensional VSD imaging data. This allows for the use of array arithmetic that is both memory and time efficient.The proposed method is implemented and showcased in the R package dynamo available from CRAN.
stat
Individually Fair Ranking
We develop an algorithm to train individually fair learning-to-rank (LTR) models. The proposed approach ensures items from minority groups appear alongside similar items from majority groups. This notion of fair ranking is based on the definition of individual fairness from supervised learning and is more nuanced than prior fair LTR approaches that simply ensure the ranking model provides underrepresented items with a basic level of exposure. The crux of our method is an optimal transport-based regularizer that enforces individual fairness and an efficient algorithm for optimizing the regularizer. We show that our approach leads to certifiably individually fair LTR models and demonstrate the efficacy of our method on ranking tasks subject to demographic biases.
stat
Large scale analysis of generalization error in learning using margin based classification methods
Large-margin classifiers are popular methods for classification. We derive the asymptotic expression for the generalization error of a family of large-margin classifiers in the limit of both sample size $n$ and dimension $p$ going to $\infty$ with fixed ratio $\alpha=n/p$. This family covers a broad range of commonly used classifiers including support vector machine, distance weighted discrimination, and penalized logistic regression. Our result can be used to establish the phase transition boundary for the separability of two classes. We assume that the data are generated from a single multivariate Gaussian distribution with arbitrary covariance structure. We explore two special choices for the covariance matrix: spiked population model and two layer neural networks with random first layer weights. The method we used for deriving the closed-form expression is from statistical physics known as the replica method. Our asymptotic results match simulations already when $n,p$ are of the order of a few hundreds. For two layer neural networks, we reproduce the recently developed `double descent' phenomenology for several classification models. We also discuss some statistical insights that can be drawn from these analysis.
stat
Learning distant cause and effect using only local and immediate credit assignment
We present a recurrent neural network memory that uses sparse coding to create a combinatoric encoding of sequential inputs. Using several examples, we show that the network can associate distant causes and effects in a discrete stochastic process, predict partially-observable higher-order sequences, and enable a DQN agent to navigate a maze by giving it memory. The network uses only biologically-plausible, local and immediate credit assignment. Memory requirements are typically one order of magnitude less than existing LSTM, GRU and autoregressive feed-forward sequence learning models. The most significant limitation of the memory is generalization to unseen input sequences. We explore this limitation by measuring next-word prediction perplexity on the Penn Treebank dataset.
stat
A Contextual Bandit Bake-off
Contextual bandit algorithms are essential for solving many real-world interactive machine learning problems. Despite multiple recent successes on statistically and computationally efficient methods, the practical behavior of these algorithms is still poorly understood. We leverage the availability of large numbers of supervised learning datasets to empirically evaluate contextual bandit algorithms, focusing on practical methods that learn by relying on optimization oracles from supervised learning. We find that a recent method (Foster et al., 2018) using optimism under uncertainty works the best overall. A surprisingly close second is a simple greedy baseline that only explores implicitly through the diversity of contexts, followed by a variant of Online Cover (Agarwal et al., 2014) which tends to be more conservative but robust to problem specification by design. Along the way, we also evaluate various components of contextual bandit algorithm design such as loss estimators. Overall, this is a thorough study and review of contextual bandit methodology.
stat
A reckless guide to P-values: local evidence, global errors
This chapter demystifies P-values, hypothesis tests and significance tests, and introduces the concepts of local evidence and global error rates. The local evidence is embodied in \textit{this} data and concerns the hypotheses of interest for \textit{this} experiment, whereas the global error rate is a property of the statistical analysis and sampling procedure. It is shown using simple examples that local evidence and global error rates can be, and should be, considered together when making inferences. Power analysis for experimental design for hypothesis testing are explained, along with the more locally focussed expected P-values. Issues relating to multiple testing, HARKing, and P-hacking are explained, and it is shown that, in many situation, their effects on local evidence and global error rates are in conflict, a conflict that can always be overcome by a fresh dataset from replication of key experiments. Statistics is complicated, and so is science. There is no singular right way to do either, and universally acceptable compromises may not exist. Statistics offers a wide array of tools for assisting with scientific inference by calibrating uncertainty, but statistical inference is not a substitute for scientific inference. P-values are useful indices of evidence and deserve their place in the statistical toolbox of basic pharmacologists.
stat
Can we trust the standardized mortality ratio? A formal analysis and evaluation based on axiomatic requirements
Background: The standardized mortality ratio (SMR) is often used to assess and compare hospital performance. While it has been recognized that hospitals may differ in their SMRs due to differences in patient composition, there is a lack of rigorous analysis of this and other - largely unrecognized - properties of the SMR. Methods: This paper proposes five axiomatic requirements for adequate standardized mortality measures: strict monotonicity, case-mix insensitivity, scale insensitivity, equivalence principle, and dominance principle. Given these axiomatic requirements, effects of variations in patient composition, hospital size, and actual and expected mortality rates on the SMR were examined using basic algebra and calculus. In this regard, we distinguished between standardization using expected mortality rates derived from a different dataset (external standardization) and standardization based on a dataset including the considered hospitals (internal standardization). Results: Under external standardization, the SMR fulfills the axiomatic requirements of strict monotonicity and scale insensitivity but violates the requirement of case-mix insensitivity, the equivalence principle, and the dominance principle. All axiomatic requirements not fulfilled under external standardization are also not fulfilled under internal standardization. In addition, the SMR under internal standardization is scale sensitive and violates the axiomatic requirement of strict monotonicity. Conclusions: The SMR fulfills only two (none) out of the five proposed axiomatic requirements under external (internal) standardization. Generally, the SMRs of hospitals are differently affected by variations in case mix and actual and expected mortality rates unless the hospitals are identical in these characteristics. These properties hamper valid assessment and comparison of hospital performance based on the SMR.
stat
Online Batch Decision-Making with High-Dimensional Covariates
We propose and investigate a class of new algorithms for sequential decision making that interacts with \textit{a batch of users} simultaneously instead of \textit{a user} at each decision epoch. This type of batch models is motivated by interactive marketing and clinical trial, where a group of people are treated simultaneously and the outcomes of the whole group are collected before the next stage of decision. In such a scenario, our goal is to allocate a batch of treatments to maximize treatment efficacy based on observed high-dimensional user covariates. We deliver a solution, named \textit{Teamwork LASSO Bandit algorithm}, that resolves a batch version of explore-exploit dilemma via switching between teamwork stage and selfish stage during the whole decision process. This is made possible based on statistical properties of LASSO estimate of treatment efficacy that adapts to a sequence of batch observations. In general, a rate of optimal allocation condition is proposed to delineate the exploration and exploitation trade-off on the data collection scheme, which is sufficient for LASSO to identify the optimal treatment for observed user covariates. An upper bound on expected cumulative regret of the proposed algorithm is provided.
stat
Estimating the Prediction Performance of Spatial Models via Spatial k-Fold Cross Validation
In machine learning one often assumes the data are independent when evaluating model performance. However, this rarely holds in practise. Geographic information data sets are an example where the data points have stronger dependencies among each other the closer they are geographically. This phenomenon known as spatial autocorrelation (SAC) causes the standard cross validation (CV) methods to produce optimistically biased prediction performance estimates for spatial models, which can result in increased costs and accidents in practical applications. To overcome this problem we propose a modified version of the CV method called spatial k-fold cross validation (SKCV), which provides a useful estimate for model prediction performance without optimistic bias due to SAC. We test SKCV with three real world cases involving open natural data showing that the estimates produced by the ordinary CV are up to 40% more optimistic than those of SKCV. Both regression and classification cases are considered in our experiments. In addition, we will show how the SKCV method can be applied as a criterion for selecting data sampling density for new research area.
stat
Joint Estimation of Location and Scatter in Complex Elliptical Distributions: A robust semiparametric and computationally efficient $R$-estimator of the shape matrix
The joint estimation of the location vector and the shape matrix of a set of independent and identically Complex Elliptically Symmetric (CES) distributed observations is investigated from both the theoretical and computational viewpoints. This joint estimation problem is framed in the original context of semiparametric models allowing us to handle the (generally unknown) density generator as an \textit{infinite-dimensional} nuisance parameter. In the first part of the paper, a computationally efficient and memory saving implementation of the robust and semiparmaetric efficient $R$-estimator for shape matrices is derived. Building upon this result, in the second part, a joint estimator, relying on the Tyler's $M$-estimator of location and on the $R$-estimator of shape matrix, is proposed and its Mean Squared Error (MSE) performance compared with the Semiparametric Cram\'{e}r-Rao Bound (CSCRB).
stat
Bayesian Pool-based Active Learning With Abstention Feedbacks
We study pool-based active learning with abstention feedbacks, where a labeler can abstain from labeling a queried example with some unknown abstention rate. This is an important problem with many useful applications. We take a Bayesian approach to the problem and develop two new greedy algorithms that learn both the classification problem and the unknown abstention rate at the same time. These are achieved by simply incorporating the estimated abstention rate into the greedy criteria. We prove that both of our algorithms have near-optimality guarantees: they respectively achieve a ${(1-\frac{1}{e})}$ constant factor approximation of the optimal expected or worst-case value of a useful utility function. Our experiments show the algorithms perform well in various practical scenarios.
stat
Using Contextual Information to Improve Blood Glucose Prediction
Blood glucose value prediction is an important task in diabetes management. While it is reported that glucose concentration is sensitive to social context such as mood, physical activity, stress, diet, alongside the influence of diabetes pathologies, we need more research on data and methodologies to incorporate and evaluate signals about such temporal context into prediction models. Person-generated data sources, such as actively contributed surveys as well as passively mined data from social media offer opportunity to capture such context, however the self-reported nature and sparsity of such data mean that such data are noisier and less specific than physiological measures such as blood glucose values themselves. Therefore, here we propose a Gaussian Process model to both address these data challenges and combine blood glucose and latent feature representations of contextual data for a novel multi-signal blood glucose prediction task. We find this approach outperforms common methods for multi-variate data, as well as using the blood glucose values in isolation. Given a robust evaluation across two blood glucose datasets with different forms of contextual information, we conclude that multi-signal Gaussian Processes can improve blood glucose prediction by using contextual information and may provide a significant shift in blood glucose prediction research and practice.
stat
Getting Better from Worse: Augmented Bagging and a Cautionary Tale of Variable Importance
As the size, complexity, and availability of data continues to grow, scientists are increasingly relying upon black-box learning algorithms that can often provide accurate predictions with minimal a priori model specifications. Tools like random forests have an established track record of off-the-shelf success and even offer various strategies for analyzing the underlying relationships among variables. Here, motivated by recent insights into random forest behavior, we introduce the simple idea of augmented bagging (AugBagg), a procedure that operates in an identical fashion to classical bagging and random forests, but which operates on a larger, augmented space containing additional randomly generated noise features. Surprisingly, we demonstrate that this simple act of including extra noise variables in the model can lead to dramatic improvements in out-of-sample predictive accuracy, sometimes outperforming even an optimally tuned traditional random forest. As a result, intuitive notions of variable importance based on improved model accuracy may be deeply flawed, as even purely random noise can routinely register as statistically significant. Numerous demonstrations on both real and synthetic data are provided along with a proposed solution.
stat
Inhomogeneous Markov Survival Regression Models
We propose new regression models in survival analysis based on homogeneous and inhomogeneous phase-type distributions. The intensity function in this setting plays the role of the hazard function. For unidimensional intensity matrices, we recover the proportional hazard and accelerated failure time models, among others. However, when considering higher dimensions, the proposed methods are only asymptotically equivalent to their classical counterparts and enjoy greater flexibility in the body of the distribution. For their estimation, the latent path representation of semi-Markov models is exploited. Consequently, an adapted EM algorithm is provided and the likelihood is shown to increase at each iteration. We provide several examples of practical significance and outline relevant extensions. The practical feasibility of the models is illustrated on simulated and real-world datasets.
stat
Identification of taxon through fuzzy classification
Identification of taxa can be significantly assisted by statistical classification in two major ways. With a collection of subjects with common traits measured, it is possible to determine combinations of trait measurements that signify each taxon in question. These decision regions also make it possible to classify new observations. In this paper we present a general Bayesian approach for classifying observations based on traits, whose measurements follow some (latent) multivariate Gaussian distribution, by analysis of an original, example data set. Decision rules based on supervised learning and blockwise Gibbs sampling are presented that either predict a specific category or fuzzy versions that rather predict a set of categories containing the most probable categories. This fuzzy discriminant analysis employs a unified framework of set valued reward functions. We also present a way of safeguarding for outlying new observations, based on a multivariate type of $p$-values. Finally, we incorporate model selection through cross-validation on another original data set.
stat
Statistical Molecule Counting in Super-Resolution Fluorescence Microscopy: Towards Quantitative Nanoscopy
Super-resolution microscopy is rapidly gaining importance as an analytical tool in the life sciences. A compelling feature is the ability to label biological units of interest with fluorescent markers in living cells and to observe them with considerably higher resolution than conventional microscopy permits. The images obtained this way, however, lack an absolute intensity scale in terms of numbers of fluorophores observed. We provide an elaborate model to estimate this information from the raw data. To this end we model the entire process of photon generation in the fluorophore, their passage trough the microscope, detection and photo electron amplification in the camera, and extraction of time series from the microscopic images. At the heart of these modeling steps is a careful description of the fluorophore dynamics by a novel hidden Markov model that operates on two time scales (HTMM). Besides the fluorophore number, information about the kinetic transition rates of the fluorophore's internal states is also inferred during estimation. We comment on computational issues that arise when applying our model to simulated or measured fluorescence traces and illustrate our methodology on simulated data.
stat
Robust Model Selection for Finite Mixture of Regression Models Through Trimming
In this article, we introduce a new variable selection technique through trimming for finite mixture of regression models. Compared to the traditional variable selection techniques, the new method is robust and not sensitive to outliers. The estimation algorithm is introduced and numerical studies are conducted to examine the finite sample performance of the proposed procedure and to compare it with other existing methods.
stat
Causal Mediation Analysis for Longitudinal Mediators and Survival Outcomes
Causal mediation analysis studies how the treatment effect of an exposure on outcomes is mediated through intermediate variables. Although many applications involve longitudinal data, the existing methods are not directly applicable to settings where the mediators are measured on irregular time grids. In this paper, we propose a causal mediation method that accommodates longitudinal mediators on arbitrary time grids and survival outcomes simultaneously. We take a functional data analysis perspective and view longitudinal mediators as realizations of underlying smooth stochastic processes. We define causal estimands of direct and indirect effects accordingly and provide corresponding identification assumptions. We employ a functional principal component analysis approach to estimate the mediator process, and propose a Cox hazard model for the survival outcome that flexibly adjusts the mediator process. We then derive a g-computation formula to express the causal estimands using the model coefficients. The proposed method is applied to a longitudinal data set from the Amboseli Baboon Research Project to investigate the causal relationships between early adversity, adult physiological stress responses, and survival among wild female baboons. We find that adversity experienced in early life has a significant direct effect on females' life expectancy and survival probability, but find little evidence that these effects were mediated by markers of the stress response in adulthood. We further developed a sensitivity analysis method to assess the impact of potential violation to the key assumption of sequential ignorability.
stat
Bayesian classification, anomaly detection, and survival analysis using network inputs with application to the microbiome
While the study of a single network is well-established, technological advances now allow for the collection of multiple networks with relative ease. Increasingly, anywhere from several to thousands of networks can be created from brain imaging, gene co-expression data, or microbiome measurements. And these networks, in turn, are being looked to as potentially powerful features to be used in modeling. However, with networks being non-Euclidean in nature, how best to incorporate them into standard modeling tasks is not obvious. In this paper, we propose a Bayesian modeling framework that provides a unified approach to binary classification, anomaly detection, and survival analysis with network inputs. We encode the networks in the kernel of a Gaussian process prior via their pairwise differences and we discuss several choices of provably positive definite kernel that can be plugged into our models. Although our methods are widely applicable, we are motivated here in particular by microbiome research (where network analysis is emerging as the standard approach for capturing the interconnectedness of microbial taxa across both time and space) and its potential for reducing preterm delivery and improving personalization of prenatal care.
stat
Dynamic time series clustering via volatility change-points
This note outlines a method for clustering time series based on a statistical model in which volatility shifts at unobserved change-points. The model accommodates some classical stylized features of returns and its relation to GARCH is discussed. Clustering is performed using a probability metric evaluated between posterior distributions of the most recent change-point associated with each series. This implies series are grouped together at a given time if there is evidence the most recent shifts in their respective volatilities were coincident or closely timed. The clustering method is dynamic, in that groupings may be updated in an online manner as data arrive. Numerical results are given analyzing daily returns of constituents of the S&P 500.
stat
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning
Uncertainty estimation and ensembling methods go hand-in-hand. Uncertainty estimation is one of the main benchmarks for assessment of ensembling performance. At the same time, deep learning ensembles have provided state-of-the-art results in uncertainty estimation. In this work, we focus on in-domain uncertainty for image classification. We explore the standards for its quantification and point out pitfalls of existing metrics. Avoiding these pitfalls, we perform a broad study of different ensembling techniques. To provide more insight in this study, we introduce the deep ensemble equivalent score (DEE) and show that many sophisticated ensembling techniques are equivalent to an ensemble of only few independently trained networks in terms of test performance.
stat
Evaluating Overfit and Underfit in Models of Network Community Structure
A common data mining task on networks is community detection, which seeks an unsupervised decomposition of a network into structural groups based on statistical regularities in the network's connectivity. Although many methods exist, the No Free Lunch theorem for community detection implies that each makes some kind of tradeoff, and no algorithm can be optimal on all inputs. Thus, different algorithms will over or underfit on different inputs, finding more, fewer, or just different communities than is optimal, and evaluation methods that use a metadata partition as a ground truth will produce misleading conclusions about general accuracy. Here, we present a broad evaluation of over and underfitting in community detection, comparing the behavior of 16 state-of-the-art community detection algorithms on a novel and structurally diverse corpus of 406 real-world networks. We find that (i) algorithms vary widely both in the number of communities they find and in their corresponding composition, given the same input, (ii) algorithms can be clustered into distinct high-level groups based on similarities of their outputs on real-world networks, and (iii) these differences induce wide variation in accuracy on link prediction and link description tasks. We introduce a new diagnostic for evaluating overfitting and underfitting in practice, and use it to roughly divide community detection methods into general and specialized learning algorithms. Across methods and inputs, Bayesian techniques based on the stochastic block model and a minimum description length approach to regularization represent the best general learning approach, but can be outperformed under specific circumstances. These results introduce both a theoretically principled approach to evaluate over and underfitting in models of network community structure and a realistic benchmark by which new methods may be evaluated and compared.
stat
Scalable Nonparametric Sampling from Multimodal Posteriors with the Posterior Bootstrap
Increasingly complex datasets pose a number of challenges for Bayesian inference. Conventional posterior sampling based on Markov chain Monte Carlo can be too computationally intensive, is serial in nature and mixes poorly between posterior modes. Further, all models are misspecified, which brings into question the validity of the conventional Bayesian update. We present a scalable Bayesian nonparametric learning routine that enables posterior sampling through the optimization of suitably randomized objective functions. A Dirichlet process prior on the unknown data distribution accounts for model misspecification, and admits an embarrassingly parallel posterior bootstrap algorithm that generates independent and exact samples from the nonparametric posterior distribution. Our method is particularly adept at sampling from multimodal posterior distributions via a random restart mechanism. We demonstrate our method on Gaussian mixture model and sparse logistic regression examples.
stat
A Multi-Site Stochastic Weather Generator for High-Frequency Precipitation Using Censored Skew-Symmetric Distribution
Stochastic weather generators (SWGs) are digital twins of complex weather processes and widely used in agriculture and urban design. Due to improved measuring instruments, an accurate SWG for high-frequency precipitation is now possible. However, high-frequency precipitation data are more zero-inflated, skewed, and heavy-tailed than common (hourly or daily) precipitation data. Therefore, classical methods that either model precipitation occurrence independently of their intensity or assume that the precipitation follows a censored meta-Gaussian process may not be appropriate. In this work, we propose a novel multi-site precipitation generator that drives both occurrence and intensity by a censored non-Gaussian vector autoregression model with skew-symmetric dynamics. The proposed SWG is advantageous in modeling skewed and heavy-tailed data with direct physical and statistical interpretations. We apply the proposed model to 30-second precipitation based on the data obtained from a dense gauge network in Lausanne, Switzerland. In addition to reproducing the high-frequency precipitation, the model can provide accurate predictions as the long short-term memory (LSTM) network but with uncertainties and more interpretable results.
stat
Sharpened Generalization Bounds based on Conditional Mutual Information and an Application to Noisy, Iterative Algorithms
The information-theoretic framework of Russo and J. Zou (2016) and Xu and Raginsky (2017) provides bounds on the generalization error of a learning algorithm in terms of the mutual information between the algorithm's output and the training sample. In this work, we study the proposal, by Steinke and Zakynthinou (2020), to reason about the generalization error of a learning algorithm by introducing a super sample that contains the training sample as a random subset and computing mutual information conditional on the super sample. We first show that these new bounds based on the conditional mutual information are tighter than those based on the unconditional mutual information. We then introduce yet tighter bounds, building on the "individual sample" idea of Bu, S. Zou, and Veeravalli (2019) and the "data dependent" ideas of Negrea et al. (2019), using disintegrated mutual information. Finally, we apply these bounds to the study of Langevin dynamics algorithm, showing that conditioning on the super sample allows us to exploit information in the optimization trajectory to obtain tighter bounds based on hypothesis tests.
stat
A Bayesian Approach to Linking Data Without Unique Identifiers
Existing file linkage methods may produce sub-optimal results because they consider neither the interactions between different pairs of matched records nor relationships between variables that are exclusive to one of the files. In addition, many of the current methods fail to address the uncertainty in the linkage, which may result in overly precise estimates of relationships between variables that are exclusive to one of the files. Bayesian methods for record linkage can reduce the bias in the estimation of scientific relationships of interest and provide interval estimates that account for the uncertainty in the linkage; however, implementation of these methods can often be complex and computationally intensive. This article presents the GFS package for the R programming language that utilizes a Bayesian approach for file linkage. The linking procedure implemented in GFS samples from the joint posterior distribution of model parameters and the linking permutations. The algorithm approaches file linkage as a missing data problem and generates multiple linked data sets. For computational efficiency, only the linkage permutations are stored and multiple analyses are performed using each of the permutations separately. This implementation reduces the computational complexity of the linking process and the expertise required of researchers analyzing linked data sets. We describe the algorithm implemented in the GFS package and its statistical basis, and demonstrate its use on a sample data set.
stat
Likelihood-based missing data analysis in multivariate crossover trials
For gene expression data measured in a crossover trial, a multivariate mixed-effects model seems to be most appropriate. Standard statistical inference fails to provide reliable results when some responses are missing. Particularly for crossover studies, missingness is a serious concern as the trial requires a small number of participants. A Monte Carlo EM (MCEM) based technique has been adopted to deal with this situation. Along with estimation, a MCEM likelihood ratio test (LRTs) is developed for testing the fixed effects in such a multivariate crossover model with missing data. Intensive simulation studies have been carried out prior to the analysis of the gene expression data.
stat
Root Cause Analysis in Lithium-Ion Battery Production with FMEA-Based Large-Scale Bayesian Network
The production of lithium-ion battery cells is characterized by a high degree of complexity due to numerous cause-effect relationships between process characteristics. Knowledge about the multi-stage production is spread among several experts, rendering tasks as failure analysis challenging. In this paper, a new method is presented that includes expert knowledge acquisition in production ramp-up by combining Failure Mode and Effects Analysis (FMEA) with a Bayesian Network. Special algorithms are presented that help detect and resolve inconsistencies between the expert-provided parameters which are bound to occur when collecting knowledge from several process experts. We show the effectiveness of this holistic method by building up a large scale, cross-process Bayesian Failure Network in lithium-ion battery production and its application for root cause analysis.
stat
Conformal prediction intervals for the individual treatment effect
We propose several prediction intervals procedures for the individual treatment effect with either finite-sample or asymptotic coverage guarantee in a non-parametric regression setting, where non-linear regression functions, heteroskedasticity and non-Gaussianity are allowed. The construct the prediction intervals we use the conformal method of Vovk et al. (2005). In extensive simulations, we compare the coverage probability and interval length of our prediction interval procedures. We demonstrate that complex learning algorithms, such as neural networks, can lead to narrower prediction intervals than simple algorithms, such as linear regression, if the sample size is large enough.
stat
Supervised Principal Component Regression for Functional Response with High Dimensional Predictors
We propose a supervised principal component regression method for relating functional responses with high dimensional covariates. Unlike the conventional principal component analysis, the proposed method builds on a newly defined expected integrated residual sum of squares, which directly makes use of the association between functional response and predictors. Minimizing the integrated residual sum of squares gives the supervised principal components, which is equivalent to solving a sequence of nonconvex generalized Rayleigh quotient optimization problems and thus is computationally intractable. To overcome this computational challenge, we reformulate the nonconvex optimization problems into a simultaneous linear regression, with a sparse penalty added to deal with high dimensional predictors. Theoretically, we show that the reformulated regression problem recovers the same supervised principal subspace under suitable conditions. Statistically, we establish non-asymptotic error bounds for the proposed estimators. Numerical studies and an application to the Human Connectome Project lend further support.
stat
Predicting class-imbalanced business risk using resampling, regularization, and model ensembling algorithms
We aim at developing and improving the imbalanced business risk modeling via jointly using proper evaluation criteria, resampling, cross-validation, classifier regularization, and ensembling techniques. Area Under the Receiver Operating Characteristic Curve (AUC of ROC) is used for model comparison based on 10-fold cross validation. Two undersampling strategies including random undersampling (RUS) and cluster centroid undersampling (CCUS), as well as two oversampling methods including random oversampling (ROS) and Synthetic Minority Oversampling Technique (SMOTE), are applied. Three highly interpretable classifiers, including logistic regression without regularization (LR), L1-regularized LR (L1LR), and decision tree (DT) are implemented. Two ensembling techniques, including Bagging and Boosting, are applied on the DT classifier for further model improvement. The results show that, Boosting on DT by using the oversampled data containing 50% positives via SMOTE is the optimal model and it can achieve AUC, recall, and F1 score valued 0.8633, 0.9260, and 0.8907, respectively.
stat
Parametric quantile regression models for fitting double bounded response with application to COVID-19 mortality rate data
In this paper, we develop two fully parametric quantile regression models, based on power Johnson SB distribution Cancho et al. (2020), for modeling unit interval response at different quantiles. In particular, the conditional distribution is modelled by the power Johnson SB distribution. The maximum likelihood method is employed to estimate the model parameters. Simulation studies are conducted to evaluate the performance of the maximum likelihood estimators in finite samples. Furthermore, we discuss residuals and influence diagnostic tools. The effectiveness of our proposals is illustrated with two data set given by the mortality rate of COVID-19 in different countries.
stat
Late 19th-Century Navigational Uncertainties and Their Influence on Sea Surface Temperature Estimates
Accurate estimates of historical changes in sea surface temperatures (SSTs) and their uncertainties are important for documenting and understanding historical changes in climate. A source of uncertainty that has not previously been quantified in historical SST estimates stems from position errors. A Bayesian inference framework is proposed for quantifying errors in reported positions and their implications on SST estimates. The analysis framework is applied to data from the International Comprehensive Ocean-Atmosphere Data Set (ICOADS3.0) in 1885, a time when astronomical and chronometer estimation of position was common, but predating the use of radio signals. Focus is upon a subset of 943 ship tracks from ICOADS3.0 that report their position every two hours to a precision of 0.01{\deg} longitude and latitude. These data are interpreted as positions determined by dead reckoning that are periodically updated by celestial correction techniques. The posterior medians of uncertainties in celestial correction are 33.1 km (0.30{\deg} on the equator) in longitude and 24.4 km (0.22{\deg}) in latitude, respectively. The posterior medians of two-hourly dead reckoning uncertainties are 19.2% for ship speed and 13.2{\deg} for ship heading, leading to random position uncertainties with median 0.18{\deg} (20 km on the equator) in longitude and 0.15{\deg} (17 km) in latitude. Reported ship tracks also contain systematic position uncertainties relating to precursor dead-reckoning positions not being updated after obtaining celestial position estimates, indicating that more accurate positions can be provided for SST observations. Finally, we translate position errors into SST uncertainties by sampling an ensemble of SSTs from the Multi-scale Ultra-high resolution Sea Surface Temperature (MURSST) data set.
stat
Towards a mathematical theory of trajectory inference
We devise a theoretical framework and a numerical method to infer trajectories of a stochastic process from snapshots of its temporal marginals. This problem arises in the analysis of single cell RNA-sequencing data, which provide high dimensional measurements of cell states but cannot track the trajectories of the cells over time. We prove that for a class of stochastic processes it is possible to recover the ground truth trajectories from limited samples of the temporal marginals at each time-point, and provide an efficient algorithm to do so in practice. The method we develop, Global Waddington-OT (gWOT), boils down to a smooth convex optimization problem posed globally over all time-points involving entropy-regularized optimal transport. We demonstrate that this problem can be solved efficiently in practice and yields good reconstructions, as we show on several synthetic and real datasets.
stat
Sparse and Functional Principal Components Analysis
Regularized variants of Principal Components Analysis, especially Sparse PCA and Functional PCA, are among the most useful tools for the analysis of complex high-dimensional data. Many examples of massive data, have both sparse and functional (smooth) aspects and may benefit from a regularization scheme that can capture both forms of structure. For example, in neuro-imaging data, the brain's response to a stimulus may be restricted to a discrete region of activation (spatial sparsity), while exhibiting a smooth response within that region. We propose a unified approach to regularized PCA which can induce both sparsity and smoothness in both the row and column principal components. Our framework generalizes much of the previous literature, with sparse, functional, two-way sparse, and two-way functional PCA all being special cases of our approach. Our method permits flexible combinations of sparsity and smoothness that lead to improvements in feature selection and signal recovery, as well as more interpretable PCA factors. We demonstrate the efficacy of our method on simulated data and a neuroimaging example on EEG data.
stat
Dynamical analysis in a self-regulated system undergoing multiple excitations: first order differential equation approach
This article proposes a dynamical system modeling approach for the analysis of longitudinal data of self-regulated systems experiencing multiple excitations. The aim of such an approach is to focus on the evolution of a signal (e.g., heart rate) before, during, and after excitations taking the system out of its equilibrium (e.g., physical effort during cardiac stress testing). Dynamical modeling can be applied to a broad range of outcomes such as physiological processes in medicine and psychosocial processes in social sciences, and it allows to extract simple characteristics of the signal studied. The model we propose is based on a first order linear differential equation defined by three main parameters corresponding to the initial equilibrium value, the dynamic characteristic time, and the reaction to the excitation. In this paper, several estimation procedures for this model are considered and tested in a simulation study, that clarifies under which conditions accurate estimates are provided. Finally, applications of this model are illustrated using cardiology data recorded during effort tests.
stat