title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
Wasserstein $F$-tests and Confidence Bands for the Fr\`echet Regression of Density Response Curves
Data consisting of samples of probability density functions are increasingly prevalent, necessitating the development of methodologies for their analysis that respect the inherent nonlinearities associated with densities. In many applications, density curves appear as functional response objects in a regression model with vector predictors. For such models, inference is key to understand the importance of density-predictor relationships, and the uncertainty associated with the estimated conditional mean densities, defined as conditional Fr\'echet means under a suitable metric. Using the Wasserstein geometry of optimal transport, we consider the Fr\'echet regression of density curve responses and develop tests for global and partial effects, as well as simultaneous confidence bands for estimated conditional mean densities. The asymptotic behavior of these objects is based on underlying functional central limit theorems within Wasserstein space, and we demonstrate that they are asymptotically of the correct size and coverage, with uniformly strong consistency of the proposed tests under sequences of contiguous alternatives. The accuracy of these methods, including nominal size, power, and coverage, is assessed through simulations, and their utility is illustrated through a regression analysis of post-intracerebral hemorrhage hematoma densities and their associations with a set of clinical and radiological covariates.
stat
Equivalence tests for binary efficacy-toxicity responses
Clinical trials often aim to compare a new drug with a reference treatment in terms of efficacy and/or toxicity depending on covariates such as, for example, the dose level of the drug. Equivalence of these treatments can be claimed if the difference in average outcome is below a certain threshold over the covariate range. In this paper we assume that the efficacy and toxicity of the treatments are measured as binary outcome variables and we address two problems. First, we develop a new test procedure for the assessment of equivalence of two treatments over the entire covariate range for a single binary endpoint. Our approach is based on a parametric bootstrap, which generates data under the constraint that the distance between the curves is equal to the pre-specified equivalence threshold. Second, we address equivalence for bivariate binary (correlated) outcomes by extending the previous approach for a univariate response. For this purpose we use a 2-dimensional Gumbel model for binary efficacy-toxicity responses. We investigate the operating characteristics of the proposed approaches by means of a simulation study and present a case study as an illustration.
stat
Implicit differentiation for fast hyperparameter selection in non-smooth convex learning
Finding the optimal hyperparameters of a model can be cast as a bilevel optimization problem, typically solved using zero-order techniques. In this work we study first-order methods when the inner optimization problem is convex but non-smooth. We show that the forward-mode differentiation of proximal gradient descent and proximal coordinate descent yield sequences of Jacobians converging toward the exact Jacobian. Using implicit differentiation, we show it is possible to leverage the non-smoothness of the inner problem to speed up the computation. Finally, we provide a bound on the error made on the hypergradient when the inner optimization problem is solved approximately. Results on regression and classification problems reveal computational benefits for hyperparameter optimization, especially when multiple hyperparameters are required.
stat
On Heavy-user Bias in A/B Testing
On-line experimentation (also known as A/B testing) has become an integral part of software development. To timely incorporate user feedback and continuously improve products, many software companies have adopted the culture of agile deployment, requiring online experiments to be conducted and concluded on limited sets of users for a short period. While conceptually efficient, the result observed during the experiment duration can deviate from what is seen after the feature deployment, which makes the A/B test result biased. In this paper, we provide theoretical analysis to show that heavy-users can contribute significantly to the bias, and propose a re-sampling estimator for bias adjustment.
stat
Low-pass filtering as Bayesian inference
We propose a Bayesian nonparametric method for low-pass filtering that can naturally handle unevenly-sampled and noise-corrupted observations. The proposed model is constructed as a latent-factor model for time series, where the latent factors are Gaussian processes with non-overlapping spectra. With this construction, the low-pass version of the time series can be identified as the low-frequency latent component, and therefore it can be found by means of Bayesian inference. We show that the model admits exact training and can be implemented with minimal numerical approximations. Finally, the proposed model is validated against standard linear filters on synthetic and real-world time series.
stat
Calibrating Multivariate L\'evy Processes with Neural Networks
Calibrating a L\'evy process usually requires characterizing its jump distribution. Traditionally this problem can be solved with nonparametric estimation using the empirical characteristic functions (ECF), assuming certain regularity, and results to date are mostly in 1D. For multivariate L\'evy processes and less smooth L\'evy densities, the problem becomes challenging as ECFs decay slowly and have large uncertainty because of limited observations. We solve this problem by approximating the L\'evy density with a parametrized functional form; the characteristic function is then estimated using numerical integration. In our benchmarks, we used deep neural networks and found that they are robust and can capture sharp transitions in the L\'evy density. They perform favorably compared to piecewise linear functions and radial basis functions. The methods and techniques developed here apply to many other problems that involve nonparametric estimation of functions embedded in a system model.
stat
Modelling spine locations on dendrite trees using inhomogeneous Cox point processes
Dendritic spines, which are small protrusions on the dendrites of a neuron, are of interest in neuroscience as they are related to cognitive processes such as learning and memory. We analyse the distribution of spine locations on six different dendrite trees from mouse neurons using point process theory for linear networks. Besides some possible small-scale repulsion, { we find that two of the spine point pattern data sets may be described by inhomogeneous Poisson process models}, while the other point pattern data sets exhibit clustering between spines at a larger scale. To model this we propose an inhomogeneous Cox process model constructed by thinning a Poisson process on a linear network with retention probabilities determined by a spatially correlated random field. For model checking we consider network analogues of the empirical $F$-, $G$-, and $J$-functions originally introduced for inhomogeneous point processes on a Euclidean space. The fitted Cox process models seem to catch the clustering of spine locations between spines, but also posses a large variance in the number of points for some of the data sets causing large confidence regions for the empirical $F$- and $G$-functions.
stat
EnergyStar++: Towards more accurate and explanatory building energy benchmarking
Building energy performance benchmarking has been adopted widely in the USA and Canada through the Energy Star Portfolio Manager platform. Building operations and energy management professionals have long used a simple 1-100 score to understand how their building compares to its peers. This single number is easy to use, but is created by inaccurate linear regression (MLR) models. This paper proposes a methodology that enhances the existing Energy Star calculation method by increasing accuracy and providing additional model output processing to help explain why a building is achieving a certain score. We propose and test two new prediction models: multiple linear regression with feature interactions (MLRi) and gradient boosted trees (GBT). Both models have better average accuracy than the baseline Energy Star models. The third order MLRi and GBT models achieve 4.9% and 24.9% increase in adjusted R2, respectively, and 7.0% and 13.7% decrease in normalized root mean squared error (NRMSE), respectively, on average than MLR models for six building types. Even more importantly, a set of techniques is developed to help determine which factors most influence the score using SHAP values. The SHAP force visualization in particular offers an accessible overview of the aspects of the building that influence the score that non-technical users can readily interpret. This methodology is tested on the 2012 Commercial Building Energy Consumption Survey (CBECS)(1,812 buildings) and public data sets from the energy disclosure programs of New York City (11,131 buildings) and Seattle (2,073 buildings).
stat
Non-convex weakly smooth Langevin Monte Carlo using regularization
Discretization of continuous-time diffusion processes is a widely recognized method for sampling. However, the canonical Euler Maruyama discretization of the Langevin diffusion process, referred as Langevin Monte Carlo (LMC), studied mostly in the context of smooth (gradient Lipschitz) and strongly log-concave densities, is a considerable hindrance for its deployment in many sciences, including computational statistics and statistical learning. In this paper, we establish several theoretical contributions to the literature on such sampling methods for weakly smooth and non-convex densities. Particularly, we use convexification of nonconvex domain \citep{ma2019sampling} in combination with regularization to prove convergence in Kullback-Leibler (KL) divergence with the number of iterations to reach $\epsilon-$ neighborhood of a target distribution in only polynomial dependence on the dimension. We relax the conditions of \citep{vempala2019rapid} and prove convergence guarantees under isoperimetry, degenerated convex, and non strongly convex at infinity.
stat
Dream Distillation: A Data-Independent Model Compression Framework
Model compression is eminently suited for deploying deep learning on IoT-devices. However, existing model compression techniques rely on access to the original or some alternate dataset. In this paper, we address the model compression problem when no real data is available, e.g., when data is private. To this end, we propose Dream Distillation, a data-independent model compression framework. Our experiments show that Dream Distillation can achieve 88.5% accuracy on the CIFAR-10 test set without actually training on the original data!
stat
Conjoined Dirichlet Process
Biclustering is a class of techniques that simultaneously clusters the rows and columns of a matrix to sort heterogeneous data into homogeneous blocks. Although many algorithms have been proposed to find biclusters, existing methods suffer from the pre-specification of the number of biclusters or place constraints on the model structure. To address these issues, we develop a novel, non-parametric probabilistic biclustering method based on Dirichlet processes to identify biclusters with strong co-occurrence in both rows and columns. The proposed method utilizes dual Dirichlet process mixture models to learn row and column clusters, with the number of resulting clusters determined by the data rather than pre-specified. Probabilistic biclusters are identified by modeling the mutual dependence between the row and column clusters. We apply our method to two different applications, text mining and gene expression analysis, and demonstrate that our method improves bicluster extraction in many settings compared to existing approaches.
stat
Linear-Cost Covariance Functions for Gaussian Random Fields
Gaussian random fields (GRF) are a fundamental stochastic model for spatiotemporal data analysis. An essential ingredient of GRF is the covariance function that characterizes the joint Gaussian distribution of the field. Commonly used covariance functions give rise to fully dense and unstructured covariance matrices, for which required calculations are notoriously expensive to carry out for large data. In this work, we propose a construction of covariance functions that result in matrices with a hierarchical structure. Empowered by matrix algorithms that scale linearly with the matrix dimension, the hierarchical structure is proved to be efficient for a variety of random field computations, including sampling, kriging, and likelihood evaluation. Specifically, with $n$ scattered sites, sampling and likelihood evaluation has an $O(n)$ cost and kriging has an $O(\log n)$ cost after preprocessing, particularly favorable for the kriging of an extremely large number of sites (e.g., predicting on more sites than observed). We demonstrate comprehensive numerical experiments to show the use of the constructed covariance functions and their appealing computation time. Numerical examples on a laptop include simulated data of size up to one million, as well as a climate data product with over two million observations.
stat
Composite Estimation for Quantile Regression Kink Models with Longitudinal Data
Kink model is developed to analyze the data where the regression function is twostage linear but intersects at an unknown threshold. In quantile regression with longitudinal data, previous work assumed that the unknown threshold parameters or kink points are heterogeneous across different quantiles. However, the location where kink effect happens tend to be the same across different quantiles, especially in a region of neighboring quantile levels. Ignoring such homogeneity information may lead to efficiency loss for estimation. In view of this, we propose a composite estimator for the common kink point by absorbing information from multiple quantiles. In addition, we also develop a sup-likelihood-ratio test to check the kink effect at a given quantile level. A test-inversion confidence interval for the common kink point is also developed based on the quantile rank score test. The simulation study shows that the proposed composite kink estimator is more competitive with the least square estimator and the single quantile estimator. We illustrate the practical value of this work through the analysis of a body mass index and blood pressure data set.
stat
(f)RFCDE: Random Forests for Conditional Density Estimation and Functional Data
Random forests is a common non-parametric regression technique which performs well for mixed-type unordered data and irrelevant features, while being robust to monotonic variable transformations. Standard random forests, however, do not efficiently handle functional data and runs into a curse-of dimensionality when presented with high-resolution curves and surfaces. Furthermore, in settings with heteroskedasticity or multimodality, a regression point estimate with standard errors do not fully capture the uncertainty in our predictions. A more informative quantity is the conditional density p(y | x) which describes the full extent of the uncertainty in the response y given covariates x. In this paper we show how random forests can be efficiently leveraged for conditional density estimation, functional covariates, and multiple responses without increasing computational complexity. We provide open-source software for all procedures with R and Python versions that call a common C++ library.
stat
Measuring the Algorithmic Convergence of Randomized Ensembles: The Regression Setting
When randomized ensemble methods such as bagging and random forests are implemented, a basic question arises: Is the ensemble large enough? In particular, the practitioner desires a rigorous guarantee that a given ensemble will perform nearly as well as an ideal infinite ensemble (trained on the same data). The purpose of the current paper is to develop a bootstrap method for solving this problem in the context of regression --- which complements our companion paper in the context of classification (Lopes 2019). In contrast to the classification setting, the current paper shows that theoretical guarantees for the proposed bootstrap can be established under much weaker assumptions. In addition, we illustrate the flexibility of the method by showing how it can be adapted to measure algorithmic convergence for variable selection. Lastly, we provide numerical results demonstrating that the method works well in a range of situations.
stat
Measuring and assessing economic uncertainty
This paper evaluates the dynamic response of economic activity to shocks in uncertainty as percieved by agents.The study focuses on the comparison between the perception of economic uncertainty by manufacturers and consumers.Since uncertainty is not directly observable, we approximate it using the geometric discrepancy indicator of Claveria et al.(2019).This approach allows us quantifying the proportion of disagreement in business and consumer expectations of eleven European countries and the Euro Area.First, we compute three independent indices of discrepancy corresponding to three dimensions of uncertainty (economic, inflation and employment) and we average them to obtain aggregate disagreement measures for businesses and for consumers.Next, we use a bivariate Bayesian vector autoregressive framework to estimate the impulse response functions to innovations in disagreement in every country.We find that the effect on economic activity of shocks to the perception of uncertainty differ markedly between manufacturers and consumers.On the one hand, shocks to consumer discrepancy tend to be of greater magnitude and duration than those to manufacturer discrepancy.On the other hand, innovations in disagreement between the two collectives have an opposite effect on economic activity:shocks to manufacturer discrepancy lead to a decrease in economic activity, as opposed to shocks to consumer discrepancy.This finding is of particular relevance to researchers when using cross-sectional dispersion of survey-based expectations, since the effect on economic growth of shocks to disagreement depend on the type of agent.
stat
Addressing the Mystery of Population Decline of the Rose-Crested Blue Pipit in a Nature Preserve using Data Visualization
Two main methods for exploring patterns in data are data visualization and machine learning. The former relies on humans for investigating the patterns while the latter relies on machine learning algorithms. This paper tries to find the patterns using only data visualization. It addresses the mystery of population decline of a bird, named Rose-Crested Blue Pipit, in a hypothetical nature preserve. Different visualization techniques are used and the reasons of the problem are found and categorized. Finally, the solutions for preventing the future similar problems are suggested. This paper can be useful for getting introduced to some data visualization tools and techniques.
stat
Anomaly Detection of Mobility Data with Applications to COVID-19 Situational Awareness
This work introduces a live anomaly detection system for high frequency and high-dimensional data collected at regional scale such as Origin Destination Matrices of mobile positioning data. To take into account different granularity in time and space of the data coming from different sources, the system is designed to be simple, yet robust to the data diversity, with the aim of detecting abrupt increase of mobility towards specific regions as well as sudden drops of movements. The methodology is designed to help policymakers or practitioners, and makes it possible to visualise anomalies as well as estimate the effect of COVID-19 related containment or lifting measures in terms of their impact on human mobility as well as spot potential new outbreaks related to large gatherings.
stat
A Bayesian model of microbiome data for simultaneous identification of covariate associations and prediction of phenotypic outcomes
One of the major research questions regarding human microbiome studies is the feasibility of designing interventions that modulate the composition of the microbiome to promote health and cure disease. This requires extensive understanding of the modulating factors of the microbiome, such as dietary intake, as well as the relation between microbial composition and phenotypic outcomes, such as body mass index (BMI). Previous efforts have modeled these data separately, employing two-step approaches that can produce biased interpretations of the results. Here, we propose a Bayesian joint model that simultaneously identifies clinical covariates associated with microbial composition data and predicts a phenotypic response using information contained in the compositional data. Using spike-and-slab priors, our approach can handle high-dimensional compositional as well as clinical data. Additionally, we accommodate the compositional structure of the data via balances and overdispersion typically found in microbial samples. We apply our model to understand the relations between dietary intake, microbial samples, and BMI. In this analysis, we find numerous associations between microbial taxa and dietary factors that may lead to a microbiome that is generally more hospitable to the development of chronic diseases, such as obesity. Additionally, we demonstrate on simulated data how our method outperforms two-step approaches and also present a sensitivity analysis.
stat
Nonlinear Regression without i.i.d. Assumption
In this paper, we consider a class of nonlinear regression problems without the assumption of being independent and identically distributed. We propose a correspondent mini-max problem for nonlinear regression and give a numerical algorithm. Such an algorithm can be applied in regression and machine learning problems, and yield better results than traditional least square and machine learning methods.
stat
Learning Weighted Submanifolds with Variational Autoencoders and Riemannian Variational Autoencoders
Manifold-valued data naturally arises in medical imaging. In cognitive neuroscience, for instance, brain connectomes base the analysis of coactivation patterns between different brain regions on the analysis of the correlations of their functional Magnetic Resonance Imaging (fMRI) time series - an object thus constrained by construction to belong to the manifold of symmetric positive definite matrices. One of the challenges that naturally arises consists of finding a lower-dimensional subspace for representing such manifold-valued data. Traditional techniques, like principal component analysis, are ill-adapted to tackle non-Euclidean spaces and may fail to achieve a lower-dimensional representation of the data - thus potentially pointing to the absence of lower-dimensional representation of the data. However, these techniques are restricted in that: (i) they do not leverage the assumption that the connectomes belong on a pre-specified manifold, therefore discarding information; (ii) they can only fit a linear subspace to the data. In this paper, we are interested in variants to learn potentially highly curved submanifolds of manifold-valued data. Motivated by the brain connectomes example, we investigate a latent variable generative model, which has the added benefit of providing us with uncertainty estimates - a crucial quantity in the medical applications we are considering. While latent variable models have been proposed to learn linear and nonlinear spaces for Euclidean data, or geodesic subspaces for manifold data, no intrinsic latent variable model exists to learn nongeodesic subspaces for manifold data. This paper fills this gap and formulates a Riemannian variational autoencoder with an intrinsic generative model of manifold-valued data. We evaluate its performances on synthetic and real datasets by introducing the formalism of weighted Riemannian submanifolds.
stat
IMMIGRATE: A Margin-based Feature Selection Method with Interaction Terms
Relief based algorithms have often been claimed to uncover feature interactions. However, it is still unclear whether and how interaction terms will be differentiated from marginal effects. In this paper, we propose IMMIGRATE algorithm by including and training weights for interaction terms. Besides applying the large margin principle, we focus on the robustness of the contributors of margin and consider local and global information simultaneously. Moreover, IMMIGRATE has been shown to enjoy attractive properties, such as robustness and combination with Boosting. We evaluate our proposed method on several tasks, which achieves state-of-the-art results significantly.
stat
Navigated Weighting to Improve Inverse Probability Weighting for Missing Data Problems and Causal Inference
The inverse probability weighting (IPW) is broadly utilized to address missing data problems including causal inference but may suffer from large variances and biases due to propensity score model misspecification. To solve these problems, I propose an estimation method called the navigated weighting (NAWT), which utilizes estimating equations suitable for a specific pre-specified parameter of interest (e.g., the average treatment effects on the treated). Since these pre-specified parameters determine the relative importance of each unit as a function of propensity scores, the NAWT prioritizes important units in the propensity score estimation to improve efficiency and robustness to model misspecification. I investigate its large-sample properties and demonstrate its finite sample improvements through simulation studies and an empirical example. An R package nawtilus which implements the NAWT is developed and available from the Comprehensive R Archive Network (http://cran.r-project.org/package=nawtilus).
stat
Learning interaction kernels in mean-field equations of 1st-order systems of interacting particles
We introduce a nonparametric algorithm to learn interaction kernels of mean-field equations for 1st-order systems of interacting particles. The data consist of discrete space-time observations of the solution. By least squares with regularization, the algorithm learns the kernel on data-adaptive hypothesis spaces efficiently. A key ingredient is a probabilistic error functional derived from the likelihood of the mean-field equation's diffusion process. The estimator converges, in a reproducing kernel Hilbert space and an L2 space under an identifiability condition, at a rate optimal in the sense that it equals the numerical integrator's order. We demonstrate our algorithm on three typical examples: the opinion dynamics with a piecewise linear kernel, the granular media model with a quadratic kernel, and the aggregation-diffusion with a repulsive-attractive kernel.
stat
Modeling the Health Expenditure in Japan, 2011. A Healthy Life Years Lost Methodology
The Healthy Life Years Lost Methodology (HLYL) is introduced to model and estimate the Health Expenditure in Japan in 2011. The HLYL theory and estimation methods are presented in our books in the Springer Series on Demographic Methods and Population Analysis vol. 45 and 46 titled: Exploring the Health State of a Population by Dynamic Modeling Methods and Demography and Health Issues: Population Aging, Mortality and Data Analysis. Special applications appear in Chapters of these books as in The Health-Mortality Approach in Estimating the Healthy Life Years Lost Compared to the Global Burden of Disease Studies and Applications in World, USA and Japan and in Estimation of the Healthy Life Expectancy in Italy Through a Simple Model Based on Mortality Rate by Skiadas and Arezzo. Here further to present the main part of the methodology with more details and illustrations, we develop and extend a life table important to estimate the healthy life years lost along with the fitting to the health expenditure in the related case. The application results are quite promising and important to support decision makers and health agencies with a powerful tool to improve the health expenditure allocation and the future predictions.
stat
Small Area Estimation with Linked Data
In Small Area Estimation data linkage can be used to combine values of the variableof interest from a national survey with values of auxiliary variables obtained from another source like a population register. Linkage errors can induce bias when fitting regression models; moreover, they can create non-representative outliers in the linked data in addition to the presence of potential representative outliers. In this paper we adopt a secondary analyst's point view, assuming limited information is available on the linkage process, and we develop small area estimators based on linear mixed and linear M-quantile models to accommodate linked data containing a mix of both types of outliers. We illustrate the properties of these small area estimators, as well as estimators of their mean squared error, by means of model-based and design-based simulation experiments. These experiments show that the proposed predictors can lead to more efficient estimators when there is linkage error. Furthermore, the proposed mean-squared error estimation methods appear to perform well.
stat
Quantifying uncertainty in spikes estimated from calcium imaging data
In recent years, a number of methods have been proposed to estimate the times at which neurons spike on the basis of calcium imaging data. However, quantifying the uncertainty associated with these estimated spikes remains an open problem. We consider a simple and well-studied model for calcium imaging data, which states that calcium decays exponentially in the absence of a spike, and instantaneously increases when a spike occurs. We wish to test the null hypothesis that the neuron did not spike -- i.e., that there was no increase in calcium -- at a particular timepoint at which a spike was estimated. In this setting, classical hypothesis tests lead to inflated Type I error, because the spike was estimated on the same data. To address this problem, we propose a selective inference approach to test the null hypothesis. We describe an efficient algorithm to compute finite-sample p-values that control selective Type I error, and confidence intervals with correct selective coverage, for spikes estimated using a recent proposal from the literature. We apply our proposal in simulation and on calcium imaging data from the spikefinder challenge.
stat
VAR estimators using binary measurements
In this paper, two novel algorithms to estimate a Gaussian Vector Autoregressive (VAR) model from 1-bit measurements are introduced. They are based on the Yule-Walker scheme modified to account for quantisation. The scalar case has been studied before. The main difficulty when going from the scalar to the vector case is how to estimate the ratios of the variances of pairwise components of the VAR model. The first method overcomes this difficulty by requiring the quantisation to be non-symmetric: each component of the VAR model output is replaced by a binary "zero" or a binary "one" depending on whether its value is greater than a strictly positive threshold. Different components of the VAR model can have different thresholds. As the choice of these thresholds has a strong influence on the performance, this first method is best suited for applications where the variance of each time series is approximately known prior to choosing the corresponding threshold. The second method relies instead on symmetric quantisations of not only each component of the VAR model but also on the pairwise differences of the components. These additional measurements are equivalent to a ranking of the instantaneous VAR model output, from the smallest component to the largest component. This avoids the need for choosing thresholds but requires additional hardware for quantising the components in pairs. Numerical simulations show the efficiency of both schemes.
stat
Robust subgaussian estimation with VC-dimension
Median-of-means (MOM) based procedures provide non-asymptotic and strong deviation bounds even when data are heavy-tailed and/or corrupted. This work proposes a new general way to bound the excess risk for MOM estimators. The core technique is the use of VC-dimension (instead of Rademacher complexity) to measure the statistical complexity. In particular, this allows to give the first robust estimators for sparse estimation which achieves the so-called subgaussian rate only assuming a finite second moment for the uncorrupted data. By comparison, previous works using Rademacher complexities required a number of finite moments that grows logarithmically with the dimension. With this technique, we derive new robust sugaussian bounds for mean estimation in any norm. We also derive a new robust estimator for covariance estimation that is the first to achieve subgaussian bounds without $L_4-L_2$ norm equivalence.
stat
Adversarially Robust Classification based on GLRT
Machine learning models are vulnerable to adversarial attacks that can often cause misclassification by introducing small but well designed perturbations. In this paper, we explore, in the setting of classical composite hypothesis testing, a defense strategy based on the generalized likelihood ratio test (GLRT), which jointly estimates the class of interest and the adversarial perturbation. We evaluate the GLRT approach for the special case of binary hypothesis testing in white Gaussian noise under $\ell_{\infty}$ norm-bounded adversarial perturbations, a setting for which a minimax strategy optimizing for the worst-case attack is known. We show that the GLRT approach yields performance competitive with that of the minimax approach under the worst-case attack, and observe that it yields a better robustness-accuracy trade-off under weaker attacks, depending on the values of signal components relative to the attack budget. We also observe that the GLRT defense generalizes naturally to more complex models for which optimal minimax classifiers are not known.
stat
Ensuring Reliable Monte Carlo Estimates of Network Properties
The literature in social network analysis has largely focused on methods and models which require complete network data; however there exist many networks which can only be studied via sampling methods due to the scale or complexity of the network, access limitations, or the population of interest is hard to reach. In such cases, the application of random walk-based Markov chain Monte Carlo (MCMC) methods to estimate multiple network features is common. However, the reliability of these estimates has been largely ignored. We consider and further develop multivariate MCMC output analysis methods in the context of network sampling to directly address the reliability of the multivariate estimation. This approach yields principled, computationally efficient, and broadly applicable methods for assessing the Monte Carlo estimation procedure. In particular, with respect to two random-walk algorithms, a simple random walk and a Metropolis-Hastings random walk, we construct and compare network parameter estimates, effective sample sizes, coverage probabilities, and stopping rules, all of which speaks to the estimation reliability.
stat
ABCDP: Approximate Bayesian Computation with Differential Privacy
We develop a novel approximate Bayesian computation (ABC) framework, ABCDP, that produces differentially private (DP) and approximate posterior samples. Our framework takes advantage of the Sparse Vector Technique (SVT), widely studied in the differential privacy literature. SVT incurs the privacy cost only when a condition (whether a quantity of interest is above/below a threshold) is met. If the condition is met sparsely during the repeated queries, SVT can drastically reduces the cumulative privacy loss, unlike the usual case where every query incurs the privacy loss. In ABC, the quantity of interest is the distance between observed and simulated data, and only when the distance is below a threshold, we take the corresponding prior sample as a posterior sample. Hence, applying SVT to ABC is an organic way to transform an ABC algorithm to a privacy-preserving variant with minimal modification, but yields the posterior samples with a high privacy level. We theoretically analyze the interplay between the noise added for privacy and the accuracy of the posterior samples.
stat
Data integration for high-resolution, continental-scale estimation of air pollution concentrations
Air pollution constitutes the highest environmental risk factor in relation to heath. In order to provide the evidence required for health impact analyses, to inform policy and to develop potential mitigation strategies comprehensive information is required on the state of air pollution. Information on air pollution traditionally comes from ground monitoring (GM) networks but these may not be able to provide sufficient coverage and may need to be supplemented with information from other sources (e.g. chemical transport models; CTMs). However, these may only be available on grids and may not capture micro-scale features that may be important in assessing air quality in areas of high population. We develop a model that allows calibration between multiple data sources available at different levels of support by allowing the coefficients of calibration equations to vary over space and time, enabling downscaling where the data is sufficient to support it. The model is used to produce high-resolution (1km $\times$ 1km) estimates of NO$_2$ and PM$_{2.5}$ across Western Europe for 2010-2016. Concentrations of both pollutants are decreasing during this period, however there remain large populations exposed to levels exceeding the WHO Air Quality Guidelines and thus air pollution remains a serious threat to health.
stat
Debiased distributed learning for sparse partial linear models in high dimensions
Although various distributed machine learning schemes have been proposed recently for pure linear models and fully nonparametric models, little attention has been paid on distributed optimization for semi-paramemetric models with multiple-level structures (e.g. sparsity, linearity and nonlinearity). To address these issues, the current paper proposes a new communication-efficient distributed learning algorithm for partially sparse linear models with an increasing number of features. The proposed method is based on the classical divide and conquer strategy for handing big data and each sub-method defined on each subsample consists of a debiased estimation of the double-regularized least squares approach. With the proposed method, we theoretically prove that our global parametric estimator can achieve optimal parametric rate in our semi-parametric model given an appropriate partition on the total data. Specially, the choice of data partition relies on the underlying smoothness of the nonparametric component, but it is adaptive to the sparsity parameter. Even under the non-distributed setting, we develop a new and easily-read proof for optimal estimation of the parametric error in high dimensional partial linear model. Finally, several simulated experiments are implemented to indicate comparable empirical performance of our debiased technique under the distributed setting.
stat
Incomplete Reparameterizations and Equivalent Metrics
Reparameterizing a probabilisitic system is common advice for improving the performance of a statistical algorithm like Markov chain Monte Carlo, even though in theory such reparameterizations should leave the system, and the performance of any algorithm, invariant. In this paper I show how the reparameterizations common in practice are only incomplete reparameterizations which result in different interactions between a target probabilistic system and a given algorithm. I then consider how these changing interactions manifest in the context of Markov chain Monte Carlo algorithms defined on Riemannian manifolds. In particular I show how any incomplete reparameterization is equivalent to modifying the metric geometry directly.
stat
Variational Inference with Numerical Derivatives: variance reduction through coupling
The Black Box Variational Inference (Ranganath et al. (2014)) algorithm provides a universal method for Variational Inference, but taking advantage of special properties of the approximation family or of the target can improve the convergence speed significantly. For example, if the approximation family is a transformation family, such as a Gaussian, then switching to the reparameterization gradient (Kingma and Welling (2014)) often yields a major reduction in gradient variance. Ultimately, reducing the variance can reduce the computational cost and yield better approximations. We present a new method to extend the reparameterization trick to more general exponential families including the Wishart, Gamma, and Student distributions. Variational Inference with Numerical Derivatives (VIND) approximates the gradient with numerical derivatives and reduces its variance using a tight coupling of the approximation family. The resulting algorithm is simple to implement and can profit from widely known couplings. Our experiments confirm that VIND effectively decreases the gradient variance and therefore improves the posterior approximation in relevant cases. It thus provides an efficient yet simple Variational Inference method for computing non-Gaussian approximations.
stat
Sparse Normal Means Estimation with Sublinear Communication
We consider the problem of sparse normal means estimation in a distributed setting with communication constraints. We assume there are $M$ machines, each holding a $d$-dimensional observation of a $K$-sparse vector $\mu$ corrupted by additive Gaussian noise. A central fusion machine is connected to the $M$ machines in a star topology, and its goal is to estimate the vector $\mu$ with a low communication budget. Previous works have shown that to achieve the centralized minimax rate for the $\ell_2$ risk, the total communication must be high - at least linear in the dimension $d$. This phenomenon occurs, however, at very weak signals. We show that once the signal-to-noise ratio (SNR) is slightly higher, the support of $\mu$ can be correctly recovered with much less communication. Specifically, we present two algorithms for the distributed sparse normal means problem, and prove that above a certain SNR threshold, with high probability, they recover the correct support with total communication that is sublinear in the dimension $d$. Furthermore, the communication decreases exponentially as a function of signal strength. If in addition $KM\ll d$, then with an additional round of sublinear communication, our algorithms achieve the centralized rate for the $\ell_2$ risk. Finally, we present simulations that illustrate the performance of our algorithms in different parameter regimes.
stat
The Statistics of Circular Optimal Transport
Empirical optimal transport (OT) plans and distances provide effective tools to compare and statistically match probability measures defined on a given ground space. Fundamental to this are distributional limit laws and we derive a central limit theorem for the empirical OT distance of circular data. Our limit results require only mild assumptions in general and include prominent examples such as the von Mises or wrapped Cauchy family. Most notably, no assumptions are required when data are sampled from the probability measure to be compared with, which is in strict contrast to the real line. A bootstrap principle follows immediately as our proof relies on Hadamard differentiability of the OT functional. This paves the way for a variety of statistical inference tasks and is exemplified for asymptotic OT based goodness of fit testing for circular distributions. We discuss numerical implementation, consistency and investigate its statistical power. For testing uniformity, it turns out that this approach performs particularly well for unimodal alternatives and is almost as powerful as Rayleigh's test, the most powerful invariant test for von Mises alternatives. For regimes with many modes the circular OT test is less powerful which is explained by the shape of the corresponding transport plan.
stat
Learning sparse linear dynamic networks in a hyper-parameter free setting
We address the issue of estimating the topology and dynamics of sparse linear dynamic networks in a hyperparameter-free setting. We propose a method to estimate the network dynamics in a computationally efficient and parameter tuning-free iterative framework known as SPICE (Sparse Iterative Covariance Estimation). The estimated dynamics directly reveal the underlying topology. Our approach does not assume that the network is undirected and is applicable even with varying noise levels across the modules of the network. We also do not assume any explicit prior knowledge on the network dynamics. Numerical experiments with realistic dynamic networks illustrate the usefulness of our method.
stat
Adapting BH to One- and Two-Way Classified Structures of Hypotheses
Multiple testing literature contains ample research on controlling false discoveries for hypotheses classified according to one criterion, which we refer to as one-way classified hypotheses. Although simultaneous classification of hypotheses according to two different criteria, resulting in two-way classified hypotheses, do often occur in scientific studies, no such research has taken place yet, as far as we know, under this structure. This article produces procedures, both in their oracle and data-adaptive forms, for controlling the overall false discovery rate (FDR) across all hypotheses effectively capturing the underlying one- or two-way classification structure. They have been obtained by using results associated with weighted Benjamini-Hochberg (BH) procedure in their more general forms providing guidance on how to adapt the original BH procedure to the underlying one- or two-way classification structure through an appropriate choice of the weights. The FDR is maintained non-asymptotically by our proposed procedures in their oracle forms under positive regression dependence on subset of null $p$-values (PRDS) and in their data-adaptive forms under independence of the $p$-values. Possible control of FDR for our data-adaptive procedures in certain scenarios involving dependent $p$-values have been investigated through simulations. The fact that our suggested procedures can be superior to contemporary practices has been demonstrated through their applications in simulated scenarios and to real-life data sets. While the procedures proposed here for two-way classified hypotheses are new, the data-adaptive procedure obtained for one-way classified hypotheses is alternative to and often more powerful than those proposed in Hu et al. (2010).
stat
Estimating Tukey Depth Using Incremental Quantile Estimators
The concept of depth represents methods to measure how deep an arbitrary point is positioned in a dataset and can be seen as the opposite of outlyingness. It has proved very useful and a wide range of methods have been developed based on the concept. To address the well-known computational challenges associated with the depth concept, we suggest to estimate Tukey depth contours using recently developed incremental quantile estimators. The suggested algorithm can estimate depth contours when the dataset in known in advance, but also recursively update and even track Tukey depth contours for dynamically varying data stream distributions. Tracking was demonstrated in a real-life data example where changes in human activity was detected in real-time from accelerometer observations.
stat
Learning Theory for Estimation of Animal Motion Submanifolds
This paper describes the formulation and experimental testing of a novel method for the estimation and approximation of submanifold models of animal motion. It is assumed that the animal motion is supported on a configuration manifold $Q$ that is a smooth, connected, regularly embedded Riemannian submanifold of Euclidean space $X\approx \mathbb{R}^d$ for some $d>0$, and that the manifold $Q$ is homeomorphic to a known smooth, Riemannian manifold $S$. Estimation of the manifold is achieved by finding an unknown mapping $\gamma:S\rightarrow Q\subset X$ that maps the manifold $S$ into $Q$. The overall problem is cast as a distribution-free learning problem over the manifold of measurements $\mathbb{Z}=S\times X$. That is, it is assumed that experiments generate a finite sets $\{(s_i,x_i)\}_{i=1}^m\subset \mathbb{Z}^m$ of samples that are generated according to an unknown probability density $\mu$ on $\mathbb{Z}$. This paper derives approximations $\gamma_{n,m}$ of $\gamma$ that are based on the $m$ samples and are contained in an $N(n)$ dimensional space of approximants. The paper defines sufficient conditions that shows that the rates of convergence in $L^2_\mu(S)$ correspond to those known for classical distribution-free learning theory over Euclidean space. Specifically, the paper derives sufficient conditions that guarantee rates of convergence that have the form $$\mathbb{E} \left (\|\gamma_\mu^j-\gamma_{n,m}^j\|_{L^2_\mu(S)}^2\right )\leq C_1 N(n)^{-r} + C_2 \frac{N(n)\log(N(n))}{m}$$for constants $C_1,C_2$ with $\gamma_\mu:=\{\gamma^1_\mu,\ldots,\gamma^d_\mu\}$ the regressor function $\gamma_\mu:S\rightarrow Q\subset X$ and $\gamma_{n,m}:=\{\gamma^1_{n,j},\ldots,\gamma^d_{n,m}\}$.
stat
A novel topology design approach using an integrated deep learning network architecture
Topology design optimization offers tremendous opportunity in design and manufacturing freedoms by designing and producing a part from the ground-up without a meaningful initial design as required by conventional shape design optimization approaches. Ideally, with adequate problem statements, to formulate and solve the topology design problem using a standard topology optimization process, such as SIMP (Simplified Isotropic Material with Penalization) is possible. In reality, an estimated over thousands of design iterations is often required for just a few design variables, the conventional optimization approach is in general impractical or computationally unachievable for real world applications significantly diluting the development of the topology optimization technology. There is, therefore, a need for a different approach that will be able to optimize the initial design topology effectively and rapidly. Therefore, this work presents a new topology design procedure to generate optimal structures using an integrated Generative Adversarial Networks (GANs) and convolutional neural network architecture.
stat
Semi-supervised learning in unbalanced and heterogeneous networks
Community detection was a hot topic on network analysis, where the main aim is to perform unsupervised learning or clustering in networks. Recently, semi-supervised learning has received increasing attention among researchers. In this paper, we propose a new algorithm, called weighted inverse Laplacian (WIL), for predicting labels in partially labeled networks. The idea comes from the first hitting time in random walk, and it also has nice explanations both in information propagation and the regularization framework. We propose a partially labeled degree-corrected block model (pDCBM) to describe the generation of partially labeled networks. We show that WIL ensures the misclassification rate is of order $O(\frac{1}{d})$ for the pDCBM with average degree $d=\Omega(\log n),$ and that it can handle situations with greater unbalanced than traditional Laplacian methods. WIL outperforms other state-of-the-art methods in most of our simulations and real datasets, especially in unbalanced networks and heterogeneous networks.
stat
On the Stability of Random Matrix Product with Markovian Noise: Application to Linear Stochastic Approximation and TD Learning
This paper studies the exponential stability of random matrix products driven by a general (possibly unbounded) state space Markov chain. It is a cornerstone in the analysis of stochastic algorithms in machine learning (e.g. for parameter tracking in online learning or reinforcement learning). The existing results impose strong conditions such as uniform boundedness of the matrix-valued functions and uniform ergodicity of the Markov chains. Our main contribution is an exponential stability result for the $p$-th moment of random matrix product, provided that (i) the underlying Markov chain satisfies a super-Lyapunov drift condition, (ii) the growth of the matrix-valued functions is controlled by an appropriately defined function (related to the drift condition). Using this result, we give finite-time $p$-th moment bounds for constant and decreasing stepsize linear stochastic approximation schemes with Markovian noise on general state space. We illustrate these findings for linear value-function estimation in reinforcement learning. We provide finite-time $p$-th moment bound for various members of temporal difference (TD) family of algorithms.
stat
How little data do we need for patient-level prediction?
Objective: Provide guidance on sample size considerations for developing predictive models by empirically establishing the adequate sample size, which balances the competing objectives of improving model performance and reducing model complexity as well as computational requirements. Materials and Methods: We empirically assess the effect of sample size on prediction performance and model complexity by generating learning curves for 81 prediction problems in three large observational health databases, requiring training of 17,248 prediction models. The adequate sample size was defined as the sample size for which the performance of a model equalled the maximum model performance minus a small threshold value. Results: The adequate sample size achieves a median reduction of the number of observations between 9.5% and 78.5% for threshold values between 0.001 and 0.02. The median reduction of the number of predictors in the models at the adequate sample size varied between 8.6% and 68.3%, respectively. Discussion: Based on our results a conservative, yet significant, reduction in sample size and model complexity can be estimated for future prediction work. Though, if a researcher is willing to generate a learning curve a much larger reduction of the model complexity may be possible as suggested by a large outcome-dependent variability. Conclusion: Our results suggest that in most cases only a fraction of the available data was sufficient to produce a model close to the performance of one developed on the full data set, but with a substantially reduced model complexity.
stat
Bayesian Inference with Generative Adversarial Network Priors
Bayesian inference is used extensively to infer and to quantify the uncertainty in a field of interest from a measurement of a related field when the two are linked by a physical model. Despite its many applications, Bayesian inference faces challenges when inferring fields that have discrete representations of large dimension, and/or have prior distributions that are difficult to represent mathematically. In this manuscript we consider the use of Generative Adversarial Networks (GANs) in addressing these challenges. A GAN is a type of deep neural network equipped with the ability to learn the distribution implied by multiple samples of a given field. Once trained on these samples, the generator component of a GAN maps the iid components of a low-dimensional latent vector to an approximation of the distribution of the field of interest. In this work we demonstrate how this approximate distribution may be used as a prior in a Bayesian update, and how it addresses the challenges associated with characterizing complex prior distributions and the large dimension of the inferred field. We demonstrate the efficacy of this approach by applying it to the problem of inferring and quantifying uncertainty in the initial temperature field in a heat conduction problem from a noisy measurement of the temperature at later time.
stat
Stopping Criterion for Active Learning Based on Error Stability
Active learning is a framework for supervised learning to improve the predictive performance by adaptively annotating a small number of samples. To realize efficient active learning, both an acquisition function that determines the next datum and a stopping criterion that determines when to stop learning should be considered. In this study, we propose a stopping criterion based on error stability, which guarantees that the change in generalization error upon adding a new sample is bounded by the annotation cost and can be applied to any Bayesian active learning. We demonstrate that the proposed criterion stops active learning at the appropriate timing for various learning models and real datasets.
stat
Deep Latent-Variable Kernel Learning
Deep kernel learning (DKL) leverages the connection between Gaussian process (GP) and neural networks (NN) to build an end-to-end, hybrid model. It combines the capability of NN to learn rich representations under massive data and the non-parametric property of GP to achieve automatic regularization that incorporates a trade-off between model fit and model complexity. However, the deterministic encoder may weaken the model regularization of the following GP part, especially on small datasets, due to the free latent representation. We therefore present a complete deep latent-variable kernel learning (DLVKL) model wherein the latent variables perform stochastic encoding for regularized representation. We further enhance the DLVKL from two aspects: (i) the expressive variational posterior through neural stochastic differential equation (NSDE) to improve the approximation quality, and (ii) the hybrid prior taking knowledge from both the SDE prior and the posterior to arrive at a flexible trade-off. Intensive experiments imply that the DLVKL-NSDE performs similarly to the well calibrated GP on small datasets, and outperforms existing deep GPs on large datasets.
stat
Analysis of a DNA mixture case involving Romani reference populations
Here we present an Italian criminal case that shows how statistical methods can be used to extract information from a series of mixed DNA profiles. The case involves several different individuals and a set of different DNA traces. The case possibly involves persons of interest of a small, inbred population of Romani origin. First, a brief description of the case is provided. Secondly, we introduce some heuristic tools that can be used to evaluate the data and briefly outline the statistical model used for analysing DNA mixtures. Finally, we illustrate some of the findings on the case and discuss further directions of research. The results show how the use of different population database allele frequencies for analysing the DNA mixtures can lead to very different results, some seemingly inculpatory and some seemingly exculpatory. We also illustrate the results obtained from combining the evidence from different samples.
stat
Bayesian Mixed Effect Sparse Tensor Response Regression Model with Joint Estimation of Activation and Connectivity
Brain activation and connectivity analyses in task-based functional magnetic resonance imaging (fMRI) experiments with multiple subjects are currently at the forefront of data-driven neuroscience. In such experiments, interest often lies in understanding activation of brain voxels due to external stimuli and strong association or connectivity between the measurements on a set of pre-specified group of brain voxels, also known as regions of interest (ROI). This article proposes a joint Bayesian additive mixed modeling framework that simultaneously assesses brain activation and connectivity patterns from multiple subjects. In particular, fMRI measurements from each individual obtained in the form of a multi-dimensional array/tensor at each time are regressed on functions of the stimuli. We impose a low-rank PARAFAC decomposition on the tensor regression coefficients corresponding to the stimuli to achieve parsimony. Multiway stick breaking shrinkage priors are employed to infer activation patterns and associated uncertainties in each voxel. Further, the model introduces region specific random effects which are jointly modeled with a Bayesian Gaussian graphical prior to account for the connectivity among pairs of ROIs. Empirical investigations under various simulation studies demonstrate the effectiveness of the method as a tool to simultaneously assess brain activation and connectivity. The method is then applied to a multi-subject fMRI dataset from a balloon-analog risk-taking experiment in order to make inference about how the brain processes risk.
stat
Clustering microbiome data using mixtures of logistic normal multinomial models
Discrete data such as counts of microbiome taxa resulting from next-generation sequencing are routinely encountered in bioinformatics. Taxa count data in microbiome studies are typically high-dimensional, over-dispersed, and can only reveal relative abundance therefore being treated as compositional. Analyzing compositional data presents many challenges because they are restricted on a simplex. In a logistic normal multinomial model, the relative abundance is mapped from a simplex to a latent variable that exists on the real Euclidean space using the additive log-ratio transformation. While a logistic normal multinomial approach brings in flexibility for modeling the data, it comes with a heavy computational cost as the parameter estimation typically relies on Bayesian techniques. In this paper, we develop a novel mixture of logistic normal multinomial models for clustering microbiome data. Additionally, we utilize an efficient framework for parameter estimation using variational Gaussian approximations (VGA). Adopting a variational Gaussian approximation for the posterior of the latent variable reduces the computational overhead substantially. The proposed method is illustrated on simulated and real datasets.
stat
Spatial Functional Data Modeling of Plant Reflectances
Plant reflectance spectra - the profile of light reflected by leaves across different wavelengths - supply the spectral signature for a species at a spatial location to enable estimation of functional and taxonomic diversity for plants. We consider leaf spectra as "responses" to be explained spatially. These spectra/reflectances are functions over a wavelength band that respond to the environment. Our motivating data are gathered for several families from the Cape Floristic Region (CFR) in South Africa and lead us to develop rich novel spatial models that can explain spectra for genera within families. Wavelength responses for an individual leaf are viewed as a function of wavelength, leading to functional data modeling. Local environmental features become covariates. We introduce wavelength - covariate interaction since the response to environmental regressors may vary with wavelength, so may variance. Formal spatial modeling enables prediction of reflectances for genera at unobserved locations with known environmental features. We incorporate spatial dependence, wavelength dependence, and space-wavelength interaction (in the spirit of space-time interaction). We implement out-of-sample validation to select a best model, discovering that the model features listed above are all informative for the functional data analysis. We then supply interpretation of the results under the selected model.
stat
Active learning for level set estimation under cost-dependent input uncertainty
As part of a quality control process in manufacturing it is often necessary to test whether all parts of a product satisfy a required property, with as few inspections as possible. When multiple inspection apparatuses with different costs and precision exist, it is desirable that testing can be carried out cost-effectively by properly controlling the trade-off between the costs and the precision. In this paper, we formulate this as a level set estimation (LSE) problem under cost-dependent input uncertainty - LSE being a type of active learning for estimating the level set, i.e., the subset of the input space in which an unknown function value is greater or smaller than a pre-determined threshold. Then, we propose a new algorithm for LSE under cost-dependent input uncertainty with theoretical convergence guarantee. We demonstrate the effectiveness of the proposed algorithm by applying it to synthetic and real datasets.
stat
Optimal Transport Relaxations with Application to Wasserstein GANs
We propose a family of relaxations of the optimal transport problem which regularize the problem by introducing an additional minimization step over a small region around one of the underlying transporting measures. The type of regularization that we obtain is related to smoothing techniques studied in the optimization literature. When using our approach to estimate optimal transport costs based on empirical measures, we obtain statistical learning bounds which are useful to guide the amount of regularization, while maintaining good generalization properties. To illustrate the computational advantages of our regularization approach, we apply our method to training Wasserstein GANs. We obtain running time improvements, relative to current benchmarks, with no deterioration in testing performance (via FID). The running time improvement occurs because our new optimality-based threshold criterion reduces the number of expensive iterates of the generating networks, while increasing the number of actor-critic iterations.
stat
On the Occasional Exactness of the Distributional Transform Approximation for Direct Gaussian Copula Models with Discrete Margins
The direct Gaussian copula model with discrete marginal distributions is an appealing data-analytic tool but poses difficult computational challenges due to its intractable likelihood. A number of approximations/surrogates for the likelihood have been proposed, including the continuous extension-based approximation (CE) and the distributional transform-based approximation (DT). The continuous extension approach is exact up to Monte Carlo error but does not scale well computationally. The distributional transform approach permits efficient computation but offers no theoretical guarantee that it is exact. In practice, though, the distributional transform-based approximate likelihood is so very nearly exact for some variants of the model as to permit genuine maximum likelihood or Bayesian inference. We demonstrate the exactness of the distributional transform-based objective function for two interesting variants of the model, and propose a quantity that can be used to assess exactness for experimentally observed datasets. Said diagnostic will permit practitioners to determine whether genuine Bayesian inference or ordinary maximum likelihood inference using the DT-based likelihood is possible for a given dataset.
stat
Dynamic Batch Learning in High-Dimensional Sparse Linear Contextual Bandits
We study the problem of dynamic batch learning in high-dimensional sparse linear contextual bandits, where a decision maker, under a given maximum-number-of-batch constraint and only able to observe rewards at the end of each batch, can dynamically decide how many individuals to include in the next batch (at the end of the current batch) and what personalized action-selection scheme to adopt within each batch. Such batch constraints are ubiquitous in a variety of practical contexts, including personalized product offerings in marketing and medical treatment selection in clinical trials. We characterize the fundamental learning limit in this problem via a regret lower bound and provide a matching upper bound (up to log factors), thus prescribing an optimal scheme for this problem. To the best of our knowledge, our work provides the first inroad into a theoretical understanding of dynamic batch learning in high-dimensional sparse linear contextual bandits. Notably, even a special case of our result (when no batch constraint is present) yields the first minimax optimal $\tilde{O}(\sqrt{s_0T})$ regret bound for standard online learning in high-dimensional linear contextual bandits (for the no-margin case), where $s_0$ is the sparsity parameter (or an upper bound thereof) and $T$ is the learning horizon. This result (both that $\tilde{O}(\sqrt{s_0 T})$ is achievable and that $\Omega(\sqrt{s_0 T})$ is a lower bound) appears to be unknown in the emerging literature of high-dimensional contextual bandits.
stat
On gradient regularizers for MMD GANs
We propose a principled method for gradient-based regularization of the critic of GAN-like models trained by adversarially optimizing the kernel of a Maximum Mean Discrepancy (MMD). We show that controlling the gradient of the critic is vital to having a sensible loss function, and devise a method to enforce exact, analytical gradient constraints at no additional cost compared to existing approximate techniques based on additive regularizers. The new loss function is provably continuous, and experiments show that it stabilizes and accelerates training, giving image generation models that outperform state-of-the art methods on $160 \times 160$ CelebA and $64 \times 64$ unconditional ImageNet.
stat
Heteroscedastic Gaussian Process Regression on the Alkenone over Sea Surface Temperatures
To restore the historical sea surface temperatures (SSTs) better, it is important to construct a good calibration model for the associated proxies. In this paper, we introduce a new model for alkenone (${\rm{U}}_{37}^{\rm{K}'}$) based on the heteroscedastic Gaussian process (GP) regression method. Our nonparametric approach not only deals with the variable pattern of noises over SSTs but also contains a Bayesian method of classifying potential outliers.
stat
Mendelian Randomization with Incomplete Exposure Data: a Bayesian Approach
We expand Mendelian Randomization (MR) methodology to deal with randomly missing data on either the exposure or the outcome variable, and furthermore with data from nonindependent individuals (eg components of a family). Our method rests on the Bayesian MR framework proposed by Berzuini et al (2018), which we apply in a study of multiplex Multiple Sclerosis (MS) Sardinian families to characterise the role of certain plasma proteins in MS causation. The method is robust to presence of pleiotropic effects in an unknown number of instruments, and is able to incorporate inter-individual kinship information. Introduction of missing data allows us to overcome the bias introduced by the (reverse) effect of treatment (in MS cases) on level of protein. From a substantive point of view, our study results confirm recent suspicion that an increase in circulating IL12A and STAT4 protein levels does not cause an increase in MS risk, as originally believed, suggesting that these two proteins may not be suitable drug targets for MS.
stat
Revisiting ICH E9 (R1) during the COVID-19 pandemic
The current COVID-19 pandemic poses numerous challenges for ongoing clinical trials and provides a stress-testing environment for the existing principles and practice of estimands in clinical trials. The pandemic may increase the rate of intercurrent events (ICEs) and missing values, spurring a great deal of discussion on amending protocols and statistical analysis plans to address these issues. In this article we revisit recent research on estimands and handling of missing values, especially the ICH E9 (R1) on Estimands and Sensitivity Analysis in Clinical Trials. Based on an in-depth discussion of the strategies for handling ICEs using a causal inference framework, we suggest some improvements in applying the estimand and estimation framework in ICH E9 (R1). Specifically, we discuss a mix of strategies allowing us to handle ICEs differentially based on reasons for ICEs. We also suggest ICEs should be handled primarily by hypothetical strategies and provide examples of different hypothetical strategies for different types of ICEs as well as a road map for estimation and sensitivity analyses. We conclude that the proposed framework helps streamline translating clinical objectives into targets of statistical inference and automatically resolves many issues with defining estimands and choosing estimation procedures arising from events such as the pandemic.
stat
Simulations evaluating resampling methods for causal discovery: ensemble performance and calibration
Causal discovery can be a powerful tool for investigating causality when a system can be observed but is inaccessible to experiments in practice. Despite this, it is rarely used in any scientific or medical fields. One of the major hurdles preventing the field of causal discovery from having a larger impact is that it is difficult to determine when the output of a causal discovery method can be trusted in a real-world setting. Trust is especially critical when human health is on the line. In this paper, we report the results of a series of simulation studies investigating the performance of different resampling methods as indicators of confidence in discovered graph features. We found that subsampling and sampling with replacement both performed surprisingly well, suggesting that they can serve as grounds for confidence in graph features. We also found that the calibration of subsampling and sampling with replacement had different convergence properties, suggesting that one's choice of which to use should depend on the sample size.
stat
Semiparametric Inference for Non-monotone Missing-Not-at-Random Data: the No Self-Censoring Model
We study the identification and estimation of statistical functionals of multivariate data missing non-monotonically and not-at-random, taking a semiparametric approach. Specifically, we assume that the missingness mechanism satisfies what has been previously called "no self-censoring" or "itemwise conditionally independent nonresponse," which roughly corresponds to the assumption that no partially-observed variable directly determines its own missingness status. We show that this assumption, combined with an odds ratio parameterization of the joint density, enables identification of functionals of interest, and we establish the semiparametric efficiency bound for the nonparametric model satisfying this assumption. We propose a practical augmented inverse probability weighted estimator, and in the setting with a (possibly high-dimensional) always-observed subset of covariates, our proposed estimator enjoys a certain double-robustness property. We explore the performance of our estimator with simulation experiments and on a previously-studied data set of HIV-positive mothers in Botswana.
stat
Methods and Software for the Multilevel Social Relations Model: A Tutorial
This tutorial demonstrates the estimation and interpretation of the Multilevel Social Relations Model for dyadic data. The Social Relations Model is appropriate for data structures in which individuals appear multiple times as both the source and recipient of dyadic outcomes. Estimated using Stat-JR statistical software, the models are fitted to multiple outcome types: continuous, count, and binary outcomes. In addition, models are demonstrated for dyadic data from a single group and from multiple groups. The modeling approaches are illustrated via a series of case studies, and the data and software to replicate these analyses are available as supplemental files.
stat
Elements of Sequential Monte Carlo
A core problem in statistics and probabilistic machine learning is to compute probability distributions and expectations. This is the fundamental problem of Bayesian statistics and machine learning, which frames all inference as expectations with respect to the posterior distribution. The key challenge is to approximate these intractable expectations. In this tutorial, we review sequential Monte Carlo (SMC), a random-sampling-based class of methods for approximate inference. First, we explain the basics of SMC, discuss practical issues, and review theoretical results. We then examine two of the main user design choices: the proposal distributions and the so called intermediate target distributions. We review recent results on how variational inference and amortization can be used to learn efficient proposals and target distributions. Next, we discuss the SMC estimate of the normalizing constant, how this can be used for pseudo-marginal inference and inference evaluation. Throughout the tutorial we illustrate the use of SMC on various models commonly used in machine learning, such as stochastic recurrent neural networks, probabilistic graphical models, and probabilistic programs.
stat
A functional autoregressive model based on exogenous hydrometeorological variables for river flow prediction
In this research, a functional time series model was introduced to predict future realizations of river flow time series. The proposed model was constructed based on a functional time series's correlated lags and the essential exogenous climate variables. Rainfall, temperature, and evaporation variables were hypothesized to have substantial functionality in river flow simulation. Because an actual time series model is unspecified and the input variables' significance for the learning process is unknown in practice, it was employed a variable selection procedure to determine only the significant variables for the model. A nonparametric bootstrap model was also proposed to investigate predictions' uncertainty and construct pointwise prediction intervals for the river flow curve time series. Historical datasets at three meteorological stations (Mosul, Baghdad, and Kut) located in the semi-arid region, Iraq, were used for model development. The prediction performance of the proposed model was validated against existing functional and traditional time series models. The numerical analyses revealed that the proposed model provides competitive or even better performance than the benchmark models. Also, the incorporated exogenous climate variables have substantially improved the modeling predictability performance. Overall, the proposed model indicated a reliable methodology for modeling river flow within the semi-arid region.
stat
Fiedler Regularization: Learning Neural Networks with Graph Sparsity
We introduce a novel regularization approach for deep learning that incorporates and respects the underlying graphical structure of the neural network. Existing regularization methods often focus on dropping/penalizing weights in a global manner that ignores the connectivity structure of the neural network. We propose to use the Fiedler value of the neural network's underlying graph as a tool for regularization. We provide theoretical support for this approach via spectral graph theory. We list several useful properties of the Fiedler value that makes it suitable in regularization. We provide an approximate, variational approach for fast computation in practical training of neural networks. We provide bounds on such approximations. We provide an alternative but equivalent formulation of this framework in the form of a structurally weighted L1 penalty, thus linking our approach to sparsity induction. We performed experiments on datasets that compare Fiedler regularization with traditional regularization methods such as dropout and weight decay. Results demonstrate the efficacy of Fiedler regularization.
stat
Training Invertible Linear Layers through Rank-One Perturbations
Many types of neural network layers rely on matrix properties such as invertibility or orthogonality. Retaining such properties during optimization with gradient-based stochastic optimizers is a challenging task, which is usually addressed by either reparameterization of the affected parameters or by directly optimizing on the manifold. This work presents a novel approach for training invertible linear layers. In lieu of directly optimizing the network parameters, we train rank-one perturbations and add them to the actual weight matrices infrequently. This P$^{4}$Inv update allows keeping track of inverses and determinants without ever explicitly computing them. We show how such invertible blocks improve the mixing and thus the mode separation of the resulting normalizing flows. Furthermore, we outline how the P$^4$ concept can be utilized to retain properties other than invertibility.
stat
The Jensen Effect and Functional Single Index Models: Estimating the Ecological Implications of Nonlinear Reaction Norms
This paper develops tools to characterize how species are affected by environmental variability, based on a functional single index model relating a response such as growth rate or survival to environmental conditions. In ecology, the curvature of such responses are used, via Jensen's inequality, to determine whether environmental variability is harmful or beneficial, and differing nonlinear responses to environmental variability can contribute to the coexistence of competing species. Here, we address estimation and inference for these models with observational data on individual responses to environmental conditions. Because nonparametric estimation of the curvature (second derivative) in a nonparametric functional single index model requires unrealistic sample sizes, we instead focus on directly estimating the effect of the nonlinearity, by comparing the average response to a variable environment with the response at the expected environment, which we call the Jensen Effect. We develop a test statistic to assess whether this effect is significantly different from zero. In doing so we re-interpret the SiZer method of Chaudhuri and Marron (1995) by maximizing a test statistic over smoothing parameters. We show that our proposed method works well both in simulations and on real ecological data from the long-term data set described in Drake (2005).
stat
Semi-supervised empirical Bayes group-regularized factor regression
The features in high dimensional biomedical prediction problems are often well described with lower dimensional manifolds. An example is genes that are organised in smaller functional networks. The outcome can then be described with the factor regression model. A benefit of the factor model is that is allows for straightforward inclusion of unlabeled observations in the estimation of the model, i.e., semi-supervised learning. In addition, the high dimensional features in biomedical prediction problems are often well characterised. Examples are genes, for which annotation is available, and metabolites with $p$-values from a previous study available. In this paper, the extra information on the features is included in the prior model for the features. The extra information is weighted and included in the estimation through empirical Bayes, with Variational approximations to speed up the computation. The method is demonstrated in simulations and two applications. One application considers influenza vaccine efficacy prediction based on microarray data. The second application predictions oral cancer metastatsis from RNAseq data.
stat
Tensor denoising and completion based on ordinal observations
Higher-order tensors arise frequently in applications such as neuroimaging, recommendation system, social network analysis, and psychological studies. We consider the problem of low-rank tensor estimation from possibly incomplete, ordinal-valued observations. Two related problems are studied, one on tensor denoising and the other on tensor completion. We propose a multi-linear cumulative link model, develop a rank-constrained M-estimator, and obtain theoretical accuracy guarantees. Our mean squared error bound enjoys a faster convergence rate than previous results, and we show that the proposed estimator is minimax optimal under the class of low-rank models. Furthermore, the procedure developed serves as an efficient completion method which guarantees consistent recovery of an order-$K$ $(d,\ldots,d)$-dimensional low-rank tensor using only $\tilde{\mathcal{O}}(Kd)$ noisy, quantized observations. We demonstrate the outperformance of our approach over previous methods on the tasks of clustering and collaborative filtering.
stat
Estimating linear covariance models with numerical nonlinear algebra
Numerical nonlinear algebra is applied to maximum likelihood estimation for Gaussian models defined by linear constraints on the covariance matrix. We examine the generic case as well as special models (e.g. Toeplitz, sparse, trees) that are of interest in statistics. We study the maximum likelihood degree and its dual analogue, and we introduce a new software package LinearCovarianceModels.jl for solving the score equations. All local maxima can thus be computed reliably. In addition we identify several scenarios for which the estimator is a rational function.
stat
A Function Emulation Approach for Doubly Intractable Distributions
Doubly intractable distributions arise in many settings, for example in Markov models for point processes and exponential random graph models for networks. Bayesian inference for these models is challenging because they involve intractable normalising "constants" that are actually functions of the parameters of interest. Although several clever computational methods have been developed for these models, each method suffers from computational issues that makes it computationally burdensome or even infeasible for many problems. We propose a novel algorithm that provides computational gains over existing methods by replacing Monte Carlo approximations to the normalising function with a Gaussian process-based approximation. We provide theoretical justification for this method. We also develop a closely related algorithm that is applicable more broadly to any likelihood function that is expensive to evaluate. We illustrate the application of our methods to a variety of challenging simulated and real data examples, including an exponential random graph model, a Markov point process, and a model for infectious disease dynamics. The algorithm shows significant gains in computational efficiency over existing methods, and has the potential for greater gains for more challenging problems. For a random graph model example, we show how this gain in efficiency allows us to carry out accurate Bayesian inference when other algorithms are computationally impractical.
stat
Separating common (global and local) and distinct variation in multiple mixed types data sets
Multiple sets of measurements on the same objects obtained from different platforms may reflect partially complementary information of the studied system. The integrative analysis of such data sets not only provides us with the opportunity of a deeper understanding of the studied system, but also introduces some new statistical challenges. First, the separation of information that is common across all or some of the data sets, and the information that is specific to each data set is problematic. Furthermore, these data sets are often a mix of quantitative and discrete (binary or categorical) data types, while commonly used data fusion methods require all data sets to be quantitative. In this paper, we propose an exponential family simultaneous component analysis (ESCA) model to tackle the potential mixed data types problem of multiple data sets. In addition, a structured sparse pattern of the loading matrix is induced through a nearly unbiased group concave penalty to disentangle the global, local common and distinct information of the multiple data sets. A Majorization-Minimization based algorithm is derived to fit the proposed model. Analytic solutions are derived for updating all the parameters of the model in each iteration, and the algorithm will decrease the objective function in each iteration monotonically. For model selection, a missing value based cross validation procedure is implemented. The advantages of the proposed method in comparison with other approaches are assessed using comprehensive simulations as well as the analysis of real data from a chronic lymphocytic leukaemia (CLL) study. Availability: the codes to reproduce the results in this article are available at https://gitlab.com/uvabda.
stat
Beyond unidimensional poverty analysis using distributional copula models for mixed ordered-continuous outcomes
Poverty is a multidimensional concept often comprising a monetary outcome and other welfare dimensions such as education, subjective well-being or health, that are measured on an ordinal scale. In applied research, multidimensional poverty is ubiquitously assessed by studying each poverty dimension independently in univariate regression models or by combining several poverty dimensions into a scalar index. This inhibits a thorough analysis of the potentially varying interdependence between the poverty dimensions. We propose a multivariate copula generalized additive model for location, scale and shape (copula GAMLSS or distributional copula model) to tackle this challenge. By relating the copula parameter to covariates, we specifically examine if certain factors determine the dependence between poverty dimensions. Furthermore, specifying the full conditional bivariate distribution, allows us to derive several features such as poverty risks and dependence measures coherently from one model for different individuals. We demonstrate the approach by studying two important poverty dimensions: income and education. Since the level of education is measured on an ordinal scale while income is continuous, we extend the bivariate copula GAMLSS to the case of mixed ordered-continuous outcomes. The new model is integrated into the GJRM package in R and applied to data from Indonesia. Particular emphasis is given to the spatial variation of the income-education dependence and groups of individuals at risk of being simultaneously poor in both education and income dimensions.
stat
Clustering multivariate functional data using unsupervised binary trees
We propose a model-based clustering algorithm for a general class of functional data for which the components could be curves or images. The random functional data realizations could be measured with error at discrete, and possibly random, points in the definition domain. The idea is to build a set of binary trees by recursive splitting of the observations. The number of groups are determined in a data-driven way. The new algorithm provides easily interpretable results and fast predictions for online data sets. Results on simulated datasets reveal good performance in various complex settings. The methodology is applied to the analysis of vehicle trajectories on a German roundabout.
stat
Provable Convex Co-clustering of Tensors
Cluster analysis is a fundamental tool for pattern discovery of complex heterogeneous data. Prevalent clustering methods mainly focus on vector or matrix-variate data and are not applicable to general-order tensors, which arise frequently in modern scientific and business applications. Moreover, there is a gap between statistical guarantees and computational efficiency for existing tensor clustering solutions due to the nature of their non-convex formulations. In this work, we bridge this gap by developing a provable convex formulation of tensor co-clustering. Our convex co-clustering (CoCo) estimator enjoys stability guarantees and its computational and storage costs are polynomial in the size of the data. We further establish a non-asymptotic error bound for the CoCo estimator, which reveals a surprising "blessing of dimensionality" phenomenon that does not exist in vector or matrix-variate cluster analysis. Our theoretical findings are supported by extensive simulated studies. Finally, we apply the CoCo estimator to the cluster analysis of advertisement click tensor data from a major online company. Our clustering results provide meaningful business insights to improve advertising effectiveness.
stat
Atlantic Causal Inference Conference (ACIC) Data Analysis Challenge 2017
This brief note documents the data generating processes used in the 2017 Data Analysis Challenge associated with the Atlantic Causal Inference Conference (ACIC). The focus of the challenge was estimation and inference for conditional average treatment effects (CATEs) in the presence of targeted selection, which leads to strong confounding. The associated data files and further plots can be found on the first author's web page.
stat
BaCOUn: Bayesian Classifers with Out-of-Distribution Uncertainty
Traditional training of deep classifiers yields overconfident models that are not reliable under dataset shift. We propose a Bayesian framework to obtain reliable uncertainty estimates for deep classifiers. Our approach consists of a plug-in "generator" used to augment the data with an additional class of points that lie on the boundary of the training data, followed by Bayesian inference on top of features that are trained to distinguish these "out-of-distribution" points.
stat
Efficient multiply robust imputation in the presence of influential units in surveys
Item nonresponse is a common issue in surveys. Because unadjusted estimators may be biased in the presence of nonresponse, it is common practice to impute the missing values with the objective of reducing the nonresponse bias as much as possible. However, commonly used imputation procedures may lead to unstable estimators of population totals/means when influential units are present in the set of respondents. In this article, we consider the class of multiply robust imputation procedures that provide some protection against the failure of underlying model assumptions. We develop an efficient version of multiply robust estimators based on the concept of conditional bias, a measure of influence. We present the results of a simulation study to show the benefits of the proposed method in terms of bias and efficiency.
stat
Ask-n-Learn: Active Learning via Reliable Gradient Representations for Image Classification
Deep predictive models rely on human supervision in the form of labeled training data. Obtaining large amounts of annotated training data can be expensive and time consuming, and this becomes a critical bottleneck while building such models in practice. In such scenarios, active learning (AL) strategies are used to achieve faster convergence in terms of labeling efforts. Existing active learning employ a variety of heuristics based on uncertainty and diversity to select query samples. Despite their wide-spread use, in practice, their performance is limited by a number of factors including non-calibrated uncertainties, insufficient trade-off between data exploration and exploitation, presence of confirmation bias etc. In order to address these challenges, we propose Ask-n-Learn, an active learning approach based on gradient embeddings obtained using the pesudo-labels estimated in each iteration of the algorithm. More importantly, we advocate the use of prediction calibration to obtain reliable gradient embeddings, and propose a data augmentation strategy to alleviate the effects of confirmation bias during pseudo-labeling. Through empirical studies on benchmark image classification tasks (CIFAR-10, SVHN, Fashion-MNIST, MNIST), we demonstrate significant improvements over state-of-the-art baselines, including the recently proposed BADGE algorithm.
stat
Comparison Between Bayesian and Frequentist Tail Probability Estimates
In this paper, we investigate the reasons that the Bayesian estimator of the tail probability is always higher than the frequentist estimator. Sufficient conditions for this phenomenon are established both by using Jensen's Inequality and by looking at Taylor series approximations, both of which point to the convexity of the distribution function.
stat
A Test for Independence Via Bayesian Nonparametric Estimation of Mutual Information
Mutual information is a well-known tool to measure the mutual dependence between variables. In this paper, a Bayesian nonparametric estimation of mutual information is established by means of the Dirichlet process and the $k$-nearest neighbor distance. As a direct outcome of the estimation, an easy-to-implement test of independence is introduced through the relative belief ratio. Several theoretical properties of the approach are presented. The procedure is investigated through various examples where the results are compared to its frequentist counterpart and demonstrate a good performance.
stat
Comparing clusterings and numbers of clusters by aggregation of calibrated clustering validity indexes
A key issue in cluster analysis is the choice of an appropriate clustering method and the determination of the best number of clusters. Different clusterings are optimal on the same data set according to different criteria, and the choice of such criteria depends on the context and aim of clustering. Therefore, researchers need to consider what data analytic characteristics the clusters they are aiming at are supposed to have, among others within-cluster homogeneity, between-clusters separation, and stability. Here, a set of internal clustering validity indexes measuring different aspects of clustering quality is proposed, including some indexes from the literature. Users can choose the indexes that are relevant in the application at hand. In order to measure the overall quality of a clustering (for comparing clusterings from different methods and/or different numbers of clusters), the index values are calibrated for aggregation. Calibration is relative to a set of random clusterings on the same data. Two specific aggregated indexes are proposed and compared with existing indexes on simulated and real data.
stat
Empirical and Constrained Empirical Bayes Variance Estimation Under A One Unit Per Stratum Sample Design
A single primary sampling unit (PSU) per stratum design is a popular design for estimating the parameter of interest. Although, the point estimator of the design is unbiased and efficient, an unbiased variance estimator does not exist. A common practice to solve this is to collapse or combine the two adjacent strata, but the attained estimator of variance is not design-unbiased, and the bias increases as the population means of the collapsed strata become more variant. Therefore, the one PSU per stratum design with collapsed stratum variance estimator might not be a good choice, and some statisticians prefer a design in which two PSUs per stratum are selected. In this paper, we first compare a one PSU per stratum design to a two PSUs per stratum design. Then, we propose an empirical Bayes estimator for the variance of one PSU per stratum design, where it over-shrinks towards the prior mean. To protect against this, we investigate the potential of a constrained empirical Bayes estimator. Through a simulation study, we show that the empirical Bayes and constrained empirical Bayes estimators outperform the classical collapsed one in terms of empirical relative mean squared error.
stat
DOPE: D-Optimal Pooling Experimental design with application for SARS-CoV-2 screening
Testing individuals for the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen causing the coronavirus disease 2019 (COVID-19), is crucial for curtailing transmission chains. Moreover, rapidly testing many potentially infected individuals is often a limiting factor in controlling COVID-19 outbreaks. Hence, pooling strategies, wherein individuals are grouped and tested simultaneously, are employed. We present a novel pooling strategy that implements D-Optimal Pooling Experimental design (DOPE). DOPE defines optimal pooled tests as those maximizing the mutual information between data and infection states. We estimate said mutual information via Monte-Carlo sampling and employ a discrete optimization heuristic for maximizing it. DOPE outperforms common pooling strategies both in terms of lower error rates and fewer tests utilized. DOPE holds several additional advantages: it provides posterior distributions of the probability of infection, rather than only binary classification outcomes; it naturally incorporates prior information of infection probabilities and test error rates; and finally, it can be easily extended to include other, newly discovered information regarding COVID-19. Hence, we believe that implementation of Bayesian D-optimal experimental design holds a great promise for the efforts of combating COVID-19 and other future pandemics.
stat
Bayesian analysis of ranking data with the constrained Extended Plackett-Luce model
Multistage ranking models, including the popular Plackett-Luce distribution (PL), rely on the assumption that the ranking process is performed sequentially, by assigning the positions from the top to the bottom one (forward order). A recent contribution to the ranking literature relaxed this assumption with the addition of the discrete-valued reference order parameter, yielding the novel Extended Plackett-Luce model (EPL). Inference on the EPL and its generalization into a finite mixture framework was originally addressed from the frequentist perspective. In this work, we propose the Bayesian estimation of the EPL with order constraints on the reference order parameter. The proposed restrictions reflect a meaningful rank assignment process. By combining the restrictions with the data augmentation strategy and the conjugacy of the Gamma prior distribution with the EPL, we facilitate the construction of a tuned joint Metropolis-Hastings algorithm within Gibbs sampling to simulate from the posterior distribution. The Bayesian approach allows to address more efficiently the inference on the additional discrete-valued parameter and the assessment of its estimation uncertainty. The usefulness of the proposal is illustrated with applications to simulated and real datasets.
stat
Characterizing the Probability Law on Time Until Core Damage With PRA
Certain modeling assumptions underlying Probabilistic Risk Assessment (PRA) allow a simple computation of core damage frequency (CDF). These assumptions also guarantee that the time remaining until a core damage event follows an exponential distribution having parameter value equal to that computed for the CDF. While it is commonly understood that these modeling assumptions lead to an approximate characterization of uncertainty, we offer a simple argument that explains why the resulting exponential time until core damage distribution under-estimates risk. Our explanation will first review operational physics properties of hazard functions, and then offer a non-measure-theoretic argument to reveal the the consequences of these properties for PRA. The conclusions offered, here, hold for any possible operating history that respects the underlying assumptions of PRA. Hence, the measure-theoretic constructs on filtered probability spaces is unnecessary for our developments. We will then conclude with a brief discussion that connects intuition with our analytical development.
stat
Nonparametric Estimation of Repeated Densities with Heterogeneous Sample Sizes
We consider the estimation of densities in multiple subpopulations, where the available sample size in each subpopulation greatly varies. For example, in epidemiology, different diseases may share similar pathogenic mechanism but differ in their prevalence. Without specifying a parametric form, our proposed approach pools information from the population and estimate the density in each subpopulation in a data-driven fashion. Low-dimensional approximating density families in the form of exponential families are constructed from the principal modes of variation in the log-densities, within which subpopulation densities are then fitted based on likelihood principles and shrinkage. The approximating families increase in their flexibility as the number of components increases and can approximate arbitrary infinite-dimensional densities with discrete observations, for which we derived convergence results. The proposed methods are shown to be interpretable and efficient in simulation as well as applications to electronic medical record and rainfall data.
stat
Statistical Inference on the Cure Time
In population-based cancer survival analysis, the net survival is important for government to assess health care programs. For decades, it is observed that the net survival reaches a plateau after long-term follow-up, this is so called ``statistical cure''. Several methods were proposed to address the statistical cure. Besides, the cure time can be used to evaluate the time period of a health care program for a specific patient population, and it also can be helpful for a clinician to explain the prognosis for patients, therefore the cure time is an important health care index. However, those proposed methods assume the cure time to be infinity, thus it is inconvenient to make inference on the cure time. In this dissertation, we define a more general concept of statistical cure via conditional survival. Based on the newly defined statistical cure, the cure time is well defined. We develop cure time model methodologies and show a variety of properties through simulation. In data analysis, cure times are estimated for 22 major cancers in Taiwan, we further use colorectal cancer data as an example to conduct statistical inference via cure time model with covariate sex, age group, and stage. This dissertation provides a methodology to obtain cure time estimate, which can contribute to public health policy making.
stat
Volatility Analysis with Realized GARCH-Ito Models
This paper introduces a unified approach for modeling high-frequency financial data that can accommodate both the continuous-time jump-diffusion and discrete-time realized GARCH model by embedding the discrete realized GARCH structure in the continuous instantaneous volatility process. The key feature of the proposed model is that the corresponding conditional daily integrated volatility adopts an autoregressive structure where both integrated volatility and jump variation serve as innovations. We name it as the realized GARCH-Ito model. Given the autoregressive structure in the conditional daily integrated volatility, we propose a quasi-likelihood function for parameter estimation and establish its asymptotic properties. To improve the parameter estimation, we propose a joint quasi-likelihood function that is built on the marriage of daily integrated volatility estimated by high-frequency data and nonparametric volatility estimator obtained from option data. We conduct a simulation study to check the finite sample performance of the proposed methodologies and an empirical study with the S&P500 stock index and option data.
stat
Experimental Evaluation of Individualized Treatment Rules
The increasing availability of individual-level data has led to numerous applications of individualized (or personalized) treatment rules (ITRs). Policy makers often wish to empirically evaluate ITRs and compare their relative performance before implementing them in a target population. We propose a new evaluation metric, the population average prescriptive effect (PAPE). The PAPE compares the performance of ITR with that of non-individualized treatment rule, which randomly treats the same proportion of units. Averaging the PAPE over a range of budget constraints yields our second evaluation metric, the area under the prescriptive effect curve (AUPEC). The AUPEC represents an overall performance measure for evaluation, like the area under the receiver and operating characteristic curve (AUROC) does for classification, and is a generalization of the QINI coefficient utilized in uplift modeling. We use Neyman's repeated sampling framework to estimate the PAPE and AUPEC and derive their exact finite-sample variances based on random sampling of units and random assignment of treatment. We extend our methodology to a common setting, in which the same experimental data is used to both estimate and evaluate ITRs. In this case, our variance calculation incorporates the additional uncertainty due to random splits of data used for cross-validation. The proposed evaluation metrics can be estimated without requiring modeling assumptions, asymptotic approximation, or resampling methods. As a result, it is applicable to any ITR including those based on complex machine learning algorithms. The open-source software package is available for implementing the proposed methodology.
stat
SGA: A Robust Algorithm for Partial Recovery of Tree-Structured Graphical Models with Noisy Samples
We consider learning Ising tree models when the observations from the nodes are corrupted by independent but non-identically distributed noise with unknown statistics. Katiyar et al. (2020) showed that although the exact tree structure cannot be recovered, one can recover a partial tree structure; that is, a structure belonging to the equivalence class containing the true tree. This paper presents a systematic improvement of Katiyar et al. (2020). First, we present a novel impossibility result by deriving a bound on the necessary number of samples for partial recovery. Second, we derive a significantly improved sample complexity result in which the dependence on the minimum correlation $\rho_{\min}$ is $\rho_{\min}^{-8}$ instead of $\rho_{\min}^{-24}$. Finally, we propose Symmetrized Geometric Averaging (SGA), a more statistically robust algorithm for partial tree recovery. We provide error exponent analyses and extensive numerical results on a variety of trees to show that the sample complexity of SGA is significantly better than the algorithm of Katiyar et al. (2020). SGA can be readily extended to Gaussian models and is shown via numerical experiments to be similarly superior.
stat
Categorical Exploratory Data Analysis: From Multiclass Classification and Response Manifold Analytics perspectives of baseball pitching dynamics
From two coupled Multiclass Classification (MCC) and Response Manifold Analytics (RMA) perspectives, we develop Categorical Exploratory Data Analysis (CEDA) on PITCHf/x database for the information content of Major League Baseball's (MLB) pitching dynamics. MCC and RMA information contents are represented by one collection of multi-scales pattern categories from mixing geometries and one collection of global-to-local geometric localities from response-covariate manifolds, respectively. These collectives shed light on the pitching dynamics and maps out uncertainty of popular machine learning approaches. On MCC setting, an indirect-distance-measure based label embedding tree leads to discover asymmetry of mixing geometries among labels' point-clouds. A selected chain of complementary covariate feature groups collectively brings out multi-order mixing geometric pattern categories. Such categories then reveal the true nature of MCC predictive inferences. On RMA setting, multiple response features couple with multiple major covariate features to demonstrate physical principles bearing manifolds with a lattice of natural localities. With minor features' heterogeneous effects being locally identified, such localities jointly weave their focal characteristics into system understanding and provide a platform for RMA predictive inferences. Our CEDA works for universal data types, adopts non-linear associations and facilitates efficient feature-selections and inferences.
stat
Perfect reconstruction of sparse signals with piecewise continuous nonconvex penalties and nonconvexity control
We consider compressed sensing formulated as a minimization problem of nonconvex sparse penalties, Smoothly Clipped Absolute deviation (SCAD) and Minimax Concave Penalty (MCP). The nonconvexity of these penalties is controlled by nonconvexity parameters, and L1 penalty is contained as a limit with respect to these parameters. The analytically derived reconstruction limit overcomes that of L1 and the algorithmic limit in the Bayes-optimal setting, when the nonconvexity parameters have suitable values. However, for small nonconvexity parameters, where the reconstruction of the relatively dense signals is theoretically guaranteed, the corresponding approximate message passing (AMP) cannot achieve perfect reconstruction. We identify that the shrinks in the basin of attraction to the perfect reconstruction causes the discrepancy between the AMP and corresponding theory using state evolution. A part of the discrepancy is resolved by introducing the control of the nonconvexity parameters to guide the AMP trajectory to the basin of the attraction.
stat
Generalized Multiple Importance Sampling
Importance Sampling methods are broadly used to approximate posterior distributions or some of their moments. In its standard approach, samples are drawn from a single proposal distribution and weighted properly. However, since the performance depends on the mismatch between the targeted and the proposal distributions, several proposal densities are often employed for the generation of samples. Under this Multiple Importance Sampling (MIS) scenario, many works have addressed the selection or adaptation of the proposal distributions, interpreting the sampling and the weighting steps in different ways. In this paper, we establish a general framework for sampling and weighing procedures when more than one proposal are available. The most relevant MIS schemes in the literature are encompassed within the new framework, and, moreover novel valid schemes appear naturally. All the MIS schemes are compared and ranked in terms of the variance of the associated estimators. Finally, we provide illustrative examples which reveal that, even with a good choice of the proposal densities, a careful interpretation of the sampling and weighting procedures can make a significant difference in the performance of the method.
stat
Interpretable brain age prediction using linear latent variable models of functional connectivity
Neuroimaging-driven prediction of brain age, defined as the predicted biological age of a subject using only brain imaging data, is an exciting avenue of research. In this work we seek to build models of brain age based on functional connectivity while prioritizing model interpretability and understanding. This way, the models serve to both provide accurate estimates of brain age as well as allow us to investigate changes in functional connectivity which occur during the ageing process. The methods proposed in this work consist of a two-step procedure: first, linear latent variable models, such as PCA and its extensions, are employed to learn reproducible functional connectivity networks present across a cohort of subjects. The activity within each network is subsequently employed as a feature in a linear regression model to predict brain age. The proposed framework is employed on the data from the CamCAN repository and the inferred brain age models are further demonstrated to generalize using data from two open-access repositories: the Human Connectome Project and the ATR Wide-Age-Range.
stat
Building high accuracy emulators for scientific simulations with deep neural architecture search
Computer simulations are invaluable tools for scientific discovery. However, accurate simulations are often slow to execute, which limits their applicability to extensive parameter exploration, large-scale data analysis, and uncertainty quantification. A promising route to accelerate simulations by building fast emulators with machine learning requires large training datasets, which can be prohibitively expensive to obtain with slow simulations. Here we present a method based on neural architecture search to build accurate emulators even with a limited number of training data. The method successfully accelerates simulations by up to 2 billion times in 10 scientific cases including astrophysics, climate science, biogeochemistry, high energy density physics, fusion energy, and seismology, using the same super-architecture, algorithm, and hyperparameters. Our approach also inherently provides emulator uncertainty estimation, adding further confidence in their use. We anticipate this work will accelerate research involving expensive simulations, allow more extensive parameters exploration, and enable new, previously unfeasible computational discovery.
stat
Fisher Auto-Encoders
It has been conjectured that the Fisher divergence is more robust to model uncertainty than the conventional Kullback-Leibler (KL) divergence. This motivates the design of a new class of robust generative auto-encoders (AE) referred to as Fisher auto-encoders. Our approach is to design Fisher AEs by minimizing the Fisher divergence between the intractable joint distribution of observed data and latent variables, with that of the postulated/modeled joint distribution. In contrast to KL-based variational AEs (VAEs), the Fisher AE can exactly quantify the distance between the true and the model-based posterior distributions. Qualitative and quantitative results are provided on both MNIST and celebA datasets demonstrating the competitive performance of Fisher AEs in terms of robustness compared to other AEs such as VAEs and Wasserstein AEs.
stat
A statistical test to reject the structural interpretation of a latent factor model
Factor analysis is often used to assess whether a single univariate latent variable is sufficient to explain most of the covariance among a set of indicators for some underlying construct. When evidence suggests that a single factor is adequate, research often proceeds by using a univariate summary of the indicators in subsequent research. Implicit in such practices is the assumption that it is the underlying latent, rather than the indicators, that is causally efficacious. The assumption that the indicators do not have effects on anything subsequent, and that they are themselves only affected by antecedents through the underlying latent is a strong assumption, effectively imposing a structural interpretation on the latent factor model. In this paper, we show that this structural assumption has empirically testable implications, even though the latent is unobserved. We develop a statistical test to potentially reject the structural interpretation of a latent factor model. We apply this test to data concerning associations between the Satisfaction-with-Life-Scale and subsequent all-cause mortality, which provides strong evidence against a structural interpretation for a univariate latent underlying the scale. Discussion is given to the implications of this result for the development, evaluation, and use of measures related to latent factor models.
stat