title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
Distance approximation using Isolation Forests
This work briefly explores the possibility of approximating spatial distance (alternatively, similarity) between data points using the Isolation Forest method envisioned for outlier detection. The logic is similar to that of isolation: the more similar or closer two points are, the more random splits it will take to separate them. The separation depth between two points can be standardized in the same way as the isolation depth, transforming it into a distance metric that is limited in range, centered, and in compliance with the axioms of distance. This metric presents some desirable properties such as being invariant to the scales of variables or being able to account for non-linear relationships between variables, which other metrics such as Euclidean or Mahalanobis distance do not. Extensions to the Isolation Forest method are also proposed for handling categorical variables and missing values, resulting in a more generalizable and robust metric.
stat
Glucose values prediction five years ahead with a new framework of missing responses in reproducing kernel Hilbert spaces, and the use of continuous glucose monitoring technology
AEGIS study possesses unique information on longitudinal changes in circulating glucose through continuous glucose monitoring technology (CGM). However, as usual in longitudinal medical studies, there is a significant amount of missing data in the outcome variables. For example, 40 percent of glycosylated hemoglobin (A1C) biomarker data are missing five years ahead. With the purpose to reduce the impact of this issue, this article proposes a new data analysis framework based on learning in reproducing kernel Hilbert spaces (RKHS) with missing responses that allows to capture non-linear relations between variable studies in different supervised modeling tasks. First, we extend the Hilbert-Schmidt dependence measure to test statistical independence in this context introducing a new bootstrap procedure, for which we prove consistency. Next, we adapt or use existing models of variable selection, regression, and conformal inference to obtain new clinical findings about glucose changes five years ahead with the AEGIS data. The most relevant findings are summarized below: i) We identify new factors associated with long-term glucose evolution; ii) We show the clinical sensibility of CGM data to detect changes in glucose metabolism; iii) We can improve clinical interventions based on our algorithms' expected glucose changes according to patients' baseline characteristics.
stat
Heavy-tailed Representations, Text Polarity Classification & Data Augmentation
The dominant approaches to text representation in natural language rely on learning embeddings on massive corpora which have convenient properties such as compositionality and distance preservation. In this paper, we develop a novel method to learn a heavy-tailed embedding with desirable regularity properties regarding the distributional tails, which allows to analyze the points far away from the distribution bulk using the framework of multivariate extreme value theory. In particular, a classifier dedicated to the tails of the proposed embedding is obtained which performance outperforms the baseline. This classifier exhibits a scale invariance property which we leverage by introducing a novel text generation method for label preserving dataset augmentation. Numerical experiments on synthetic and real text data demonstrate the relevance of the proposed framework and confirm that this method generates meaningful sentences with controllable attribute, e.g. positive or negative sentiment.
stat
Why bigger is not always better: on finite and infinite neural networks
Recent work has argued that neural networks can be understood theoretically by taking the number of channels to infinity, at which point the outputs become Gaussian process (GP) distributed. However, we note that infinite Bayesian neural networks lack a key facet of the behaviour of real neural networks: the fixed kernel, determined only by network hyperparameters, implies that they cannot do any form of representation learning. The lack of representation or equivalently kernel learning leads to less flexibility and hence worse performance, giving a potential explanation for the inferior performance of infinite networks observed in the literature (e.g. Novak et al. 2019). We give analytic results characterising the prior over representations and representation learning in finite deep linear networks. We show empirically that the representations in SOTA architectures such as ResNets trained with SGD are much closer to those suggested by our deep linear results than by the corresponding infinite network. This motivates the introduction of a new class of network: infinite networks with bottlenecks, which inherit the theoretical tractability of infinite networks while at the same time allowing representation learning.
stat
Generative Learning of Counterfactual for Synthetic Control Applications in Econometrics
A common statistical problem in econometrics is to estimate the impact of a treatment on a treated unit given a control sample with untreated outcomes. Here we develop a generative learning approach to this problem, learning the probability distribution of the data, which can be used for downstream tasks such as post-treatment counterfactual prediction and hypothesis testing. We use control samples to transform the data to a Gaussian and homoschedastic form and then perform Gaussian process analysis in Fourier space, evaluating the optimal Gaussian kernel via non-parametric power spectrum estimation. We combine this Gaussian prior with the data likelihood given by the pre-treatment data of the single unit, to obtain the synthetic prediction of the unit post-treatment, which minimizes the error variance of synthetic prediction. Given the generative model the minimum variance counterfactual is unique, and comes with an associated error covariance matrix. We extend this basic formalism to include correlations of primary variable with other covariates of interest. Given the probabilistic description of generative model we can compare synthetic data prediction with real data to address the question of whether the treatment had a statistically significant impact. For this purpose we develop a hypothesis testing approach and evaluate the Bayes factor. We apply the method to the well studied example of California (CA) tobacco sales tax of 1988. We also perform a placebo analysis using control states to validate our methodology. Our hypothesis testing method suggests 5.8:1 odds in favor of CA tobacco sales tax having an impact on the tobacco sales, a value that is at least three times higher than any of the 38 control states.
stat
How Does GAN-based Semi-supervised Learning Work?
Generative adversarial networks (GANs) have been widely used and have achieved competitive results in semi-supervised learning. This paper theoretically analyzes how GAN-based semi-supervised learning (GAN-SSL) works. We first prove that, given a fixed generator, optimizing the discriminator of GAN-SSL is equivalent to optimizing that of supervised learning. Thus, the optimal discriminator in GAN-SSL is expected to be perfect on labeled data. Then, if the perfect discriminator can further cause the optimization objective to reach its theoretical maximum, the optimal generator will match the true data distribution. Since it is impossible to reach the theoretical maximum in practice, one cannot expect to obtain a perfect generator for generating data, which is apparently different from the objective of GANs. Furthermore, if the labeled data can traverse all connected subdomains of the data manifold, which is reasonable in semi-supervised classification, we additionally expect the optimal discriminator in GAN-SSL to also be perfect on unlabeled data. In conclusion, the minimax optimization in GAN-SSL will theoretically output a perfect discriminator on both labeled and unlabeled data by unexpectedly learning an imperfect generator, i.e., GAN-SSL can effectively improve the generalization ability of the discriminator by leveraging unlabeled information.
stat
An Embedded Model Estimator for Non-Stationary Random Functions using Multiple Secondary Variables
An algorithm for non-stationary spatial modelling using multiple secondary variables is developed. It combines Geostatistics with Quantile Random Forests to give a new interpolation and stochastic simulation algorithm. This paper introduces the method and shows that it has consistency results that are similar in nature to those applying to geostatistical modelling and to Quantile Random Forests. The method allows for embedding of simpler interpolation techniques, such as Kriging, to further condition the model. The algorithm works by estimating a conditional distribution for the target variable at each target location. The family of such distributions is called the envelope of the target variable. From this, it is possible to obtain spatial estimates, quantiles and uncertainty. An algorithm to produce conditional simulations from the envelope is also developed. As they sample from the envelope, realizations are therefore locally influenced by relative changes of importance of secondary variables, trends and variability.
stat
Obesity Prediction with EHR Data: A deep learning approach with interpretable elements
Childhood obesity is a major public health challenge. Obesity in early childhood and adolescence can lead to obesity and other health problems in adulthood. Early prediction and identification of the children at a high risk of developing childhood obesity may help in engaging earlier and more effective interventions to prevent and manage this and other related health conditions. Existing predictive tools designed for childhood obesity primarily rely on traditional regression-type methods without exploiting longitudinal patterns of children's data (ignoring data temporality). In this paper, we present a machine learning model specifically designed for predicting future obesity patterns from generally available items on children's medical history. To do this, we have used a large unaugmented EHR (Electronic Health Record) dataset from a major pediatric health system in the US. We adopt a general LSTM (long short-term memory) network architecture for our model for training over dynamic (sequential) and static (demographic) EHR data. We have additionally included a set embedding and attention layers to compute the feature ranking of each timestamp and attention scores of each hidden layer corresponding to each input timestamp. These feature ranking and attention scores added interpretability at both the features and the timestamp-level.
stat
High-dimensional structure learning of binary pairwise Markov networks: A comparative numerical study
Learning the undirected graph structure of a Markov network from data is a problem that has received a lot of attention during the last few decades. As a result of the general applicability of the model class, a myriad of methods have been developed in parallel in several research fields. Recently, as the size of the considered systems has increased, the focus of new methods has been shifted towards the high-dimensional domain. In particular, introduction of the pseudo-likelihood function has pushed the limits of score-based methods which were originally based on the likelihood function. At the same time, methods based on simple pairwise tests have been developed to meet the challenges arising from increasingly large data sets in computational biology. Apart from being applicable to high-dimensional problems, methods based on the pseudo-likelihood and pairwise tests are fundamentally very different. To compare the accuracy of the different types of methods, an extensive numerical study is performed on data generated by binary pairwise Markov networks. A parallelizable Gibbs sampler, based on restricted Boltzmann machines, is proposed as a tool to efficiently sample from sparse high-dimensional networks. The results of the study show that pairwise methods can be more accurate than pseudo-likelihood methods in settings often encountered in high-dimensional structure learning applications.
stat
A new tidy data structure to support exploration and modeling of temporal data
Mining temporal data for information is often inhibited by a multitude of formats: irregular or multiple time intervals, point events that need aggregating, multiple observational units or repeated measurements on multiple individuals, and heterogeneous data types. On the other hand, the software supporting time series modeling and forecasting, makes strict assumptions on the data to be provided, typically requiring a matrix of numeric data with implicit time indexes. Going from raw data to model-ready data is painful. This work presents a cohesive and conceptual framework for organizing and manipulating temporal data, which in turn flows into visualization, modeling and forecasting routines. Tidy data principles are extended to temporal data by: (1) mapping the semantics of a dataset into its physical layout; (2) including an explicitly declared index variable representing time; (3) incorporating a "key" comprising single or multiple variables to uniquely identify units over time. This tidy data representation most naturally supports thinking of operations on the data as building blocks, forming part of a "data pipeline" in time-based contexts. A sound data pipeline facilitates a fluent workflow for analyzing temporal data. The infrastructure of tidy temporal data has been implemented in the R package "tsibble".
stat
A central limit theorem for an omnibus embedding of multiple random graphs and implications for multiscale network inference
Performing statistical analyses on collections of graphs is of import to many disciplines, but principled, scalable methods for multi-sample graph inference are few. Here we describe an "omnibus" embedding in which multiple graphs on the same vertex set are jointly embedded into a single space with a distinct representation for each graph. We prove a central limit theorem for this embedding and demonstrate how it streamlines graph comparison, obviating the need for pairwise subspace alignments. The omnibus embedding achieves near-optimal inference accuracy when graphs arise from a common distribution and yet retains discriminatory power as a test procedure for the comparison of different graphs. Moreover, this joint embedding and the accompanying central limit theorem are important for answering multiscale graph inference questions, such as the identification of specific subgraphs or vertices responsible for similarity or difference across networks. We illustrate this with a pair of analyses of connectome data derived from dMRI and fMRI scans of human subjects. In particular, we show that this embedding allows the identification of specific brain regions associated with population-level differences. Finally, we sketch how the omnibus embedding can be used to address pressing open problems, both theoretical and practical, in multisample graph inference.
stat
On the variability of regression shrinkage methods for clinical prediction models: simulation study on predictive performance
When developing risk prediction models, shrinkage methods are recommended, especially when the sample size is limited. Several earlier studies have shown that the shrinkage of model coefficients can reduce overfitting of the prediction model and subsequently result in better predictive performance on average. In this simulation study, we aimed to investigate the variability of regression shrinkage on predictive performance for a binary outcome, with focus on the calibration slope. The slope indicates whether risk predictions are too extreme (slope < 1) or not extreme enough (slope > 1). We investigated the following shrinkage methods in comparison to standard maximum likelihood estimation: uniform shrinkage (likelihood-based and bootstrap-based), ridge regression, penalized maximum likelihood, LASSO regression, adaptive LASSO, non-negative garrote, and Firth's correction. There were three main findings. First, shrinkage improved calibration slopes on average. Second, the between-sample variability of calibration slopes was often increased relative to maximum likelihood. Among the shrinkage methods, the bootstrap-based uniform shrinkage worked well overall. In contrast to other shrinkage approaches, Firth's correction had only a small shrinkage effect but did so with low variability. Third, the correlation between the estimated shrinkage and the optimal shrinkage to remove overfitting was typically negative. Hence, although shrinkage improved predictions on average, it often worked poorly in individual datasets, in particular when shrinkage was most needed. The observed variability of shrinkage methods implies that these methods do not solve problems associated with small sample size or low number of events per variable.
stat
Modeling excess hazard with time--to--cure as a parameter
Cure models have been widely developed to estimate the cure fraction when some subjects never experience the event of interest. However these models were rarely focused on the estimation of the time-to-cure i.e. the delay elapsed between the diagnosis and "the time from which cure is reached", an important indicator, for instance to address the question of access to insurance or loans for subjects with personal history of cancer. We propose a new excess hazard regression model that includes the time-to-cure as a covariate dependent parameter to be estimated. The model is written similarly to a Beta probability distribution function and is shown to be a particular case of the non-mixture cure models. Parameters are estimated through a maximum likelihood approach and simulation studies demonstrate good performance of the model. Illustrative applications to two cancer data sets are provided and some limitations as well as possible extensions of the model are discussed. The proposed model offers a simple and comprehensive way to estimate more accurately the time-to-cure. Key words: Cancer; Cure model; Cure time; Net survival; Right to be forgotten.
stat
Enhancing Certifiable Robustness via a Deep Model Ensemble
We propose an algorithm to enhance certified robustness of a deep model ensemble by optimally weighting each base model. Unlike previous works on using ensembles to empirically improve robustness, our algorithm is based on optimizing a guaranteed robustness certificate of neural networks. Our proposed ensemble framework with certified robustness, RobBoost, formulates the optimal model selection and weighting task as an optimization problem on a lower bound of classification margin, which can be efficiently solved using coordinate descent. Experiments show that our algorithm can form a more robust ensemble than naively averaging all available models using robustly trained MNIST or CIFAR base models. Additionally, our ensemble typically has better accuracy on clean (unperturbed) data. RobBoost allows us to further improve certified robustness and clean accuracy by creating an ensemble of already certified models.
stat
Why did the distribution change?
We describe a formal approach based on graphical causal models to identify the "root causes" of the change in the probability distribution of variables. After factorizing the joint distribution into conditional distributions of each variable, given its parents (the "causal mechanisms"), we attribute the change to changes of these causal mechanisms. This attribution analysis accounts for the fact that mechanisms often change independently and sometimes only some of them change. Through simulations, we study the performance of our distribution change attribution method. We then present a real-world case study identifying the drivers of the difference in the income distribution between men and women.
stat
Modeling proportion of success in high school leaving examination- A comparative study of Inflated Unit Lindley and Inflated Beta distribution
In this article, we first introduced the inflated unit Lindley distribution considering zero or/and one inflation scenario and studied its basic distributional and structural properties. Both the distributions are shown to be members of exponential family with full rank. Different parameter estimation methods are discussed and supporting simulation studies to check their efficacy are also presented. Proportion of students passing the high school leaving examination for the schools across the state of Manipur in India for the year 2020 are then modeled using the proposed distributions and compared with the inflated beta distribution to justify its benefits.
stat
Statistical Methods for Replicability Assessment
Large-scale replication studies like the Reproducibility Project: Psychology (RP:P) provide invaluable systematic data on scientific replicability, but most analyses and interpretations of the data fail to agree on the definition of "replicability" and disentangle the inexorable consequences of known selection bias from competing explanations. We discuss three concrete definitions of replicability based on (1) whether published findings about the signs of effects are mostly correct, (2) how effective replication studies are in reproducing whatever true effect size was present in the original experiment, and (3) whether true effect sizes tend to diminish in replication. We apply techniques from multiple testing and post-selection inference to develop new methods that answer these questions while explicitly accounting for selection bias. Our analyses suggest that the RP:P dataset is largely consistent with publication bias due to selection of significant effects. The methods in this paper make no distributional assumptions about the true effect sizes.
stat
Bayesian recurrent state space model for rs-fMRI
We propose a hierarchical Bayesian recurrent state space model for modeling switching network connectivity in resting state fMRI data. Our model allows us to uncover shared network patterns across disease conditions. We evaluate our method on the ADNI2 dataset by inferring latent state patterns corresponding to altered neural circuits in individuals with Mild Cognitive Impairment (MCI). In addition to states shared across healthy and individuals with MCI, we discover latent states that are predominantly observed in individuals with MCI. Our model outperforms current state of the art deep learning method on ADNI2 dataset.
stat
Homogeneity Test for Functional Data based on Data-Depth Plots
One of the classic concerns in statistics is determining if two samples come from thesame population, i.e. homogeneity testing. In this paper, we propose a homogeneitytest in the context of Functional Data Analysis, adopting an idea from multivariatedata analysis: the data depth plot (DD-plot). This DD-plot is a generalization of theunivariate Q-Q plot (quantile-quantile plot). We propose some statistics based onthese DD-plots, and we use bootstrapping techniques to estimate their distributions.We estimate the finite-sample size and power of our test via simulation, obtainingbetter results than other homogeneity test proposed in the literature. Finally, weillustrate the procedure in samples of real heterogeneous data and get consistent results.
stat
A Closed Form Solution to Best Rank-1 Tensor Approximation via KL divergence Minimization
Tensor decomposition is a fundamentally challenging problem. Even the simplest case of tensor decomposition, the rank-1 approximation in terms of the Least Squares (LS) error, is known to be NP-hard. Here, we show that, if we consider the KL divergence instead of the LS error, we can analytically derive a closed form solution for the rank-1 tensor that minimizes the KL divergence from a given positive tensor. Our key insight is to treat a positive tensor as a probability distribution and formulate the process of rank-1 approximation as a projection onto the set of rank-1 tensors. This enables us to solve rank-1 approximation by convex optimization. We empirically demonstrate that our algorithm is an order of magnitude faster than the existing rank-1 approximation methods and gives better approximation of given tensors, which supports our theoretical finding.
stat
Semi-Mechanistic Bayesian Modeling of COVID-19 with Renewal Processes
We propose a general Bayesian approach to modeling epidemics such as COVID-19. The approach grew out of specific analyses conducted during the pandemic, in particular an analysis concerning the effects of non-pharmaceutical interventions (NPIs) in reducing COVID-19 transmission in 11 European countries. The model parameterizes the time varying reproduction number $R_t$ through a regression framework in which covariates can e.g be governmental interventions or changes in mobility patterns. This allows a joint fit across regions and partial pooling to share strength. This innovation was critical to our timely estimates of the impact of lockdown and other NPIs in the European epidemics, whose validity was borne out by the subsequent course of the epidemic. Our framework provides a fully generative model for latent infections and observations deriving from them, including deaths, cases, hospitalizations, ICU admissions and seroprevalence surveys. One issue surrounding our model's use during the COVID-19 pandemic is the confounded nature of NPIs and mobility. We use our framework to explore this issue. We have open sourced an R package epidemia implementing our approach in Stan. Versions of the model are used by New York State, Tennessee and Scotland to estimate the current situation and make policy decisions.
stat
Robust Optimisation Monte Carlo
This paper is on Bayesian inference for parametric statistical models that are defined by a stochastic simulator which specifies how data is generated. Exact sampling is then possible but evaluating the likelihood function is typically prohibitively expensive. Approximate Bayesian Computation (ABC) is a framework to perform approximate inference in such situations. While basic ABC algorithms are widely applicable, they are notoriously slow and much research has focused on increasing their efficiency. Optimisation Monte Carlo (OMC) has recently been proposed as an efficient and embarrassingly parallel method that leverages optimisation to accelerate the inference. In this paper, we demonstrate an important previously unrecognised failure mode of OMC: It generates strongly overconfident approximations by collapsing regions of similar or near-constant likelihood into a single point. We propose an efficient, robust generalisation of OMC that corrects this. It makes fewer assumptions, retains the main benefits of OMC, and can be performed either as post-processing to OMC or as a stand-alone computation. We demonstrate the effectiveness of the proposed Robust OMC on toy examples and tasks in inverse-graphics where we perform Bayesian inference with a complex image renderer.
stat
The Variational Bandwidth Bottleneck: Stochastic Evaluation on an Information Budget
In many applications, it is desirable to extract only the relevant information from complex input data, which involves making a decision about which input features are relevant. The information bottleneck method formalizes this as an information-theoretic optimization problem by maintaining an optimal tradeoff between compression (throwing away irrelevant input information), and predicting the target. In many problem settings, including the reinforcement learning problems we consider in this work, we might prefer to compress only part of the input. This is typically the case when we have a standard conditioning input, such as a state observation, and a "privileged" input, which might correspond to the goal of a task, the output of a costly planning algorithm, or communication with another agent. In such cases, we might prefer to compress the privileged input, either to achieve better generalization (e.g., with respect to goals) or to minimize access to costly information (e.g., in the case of communication). Practical implementations of the information bottleneck based on variational inference require access to the privileged input in order to compute the bottleneck variable, so although they perform compression, this compression operation itself needs unrestricted, lossless access. In this work, we propose the variational bandwidth bottleneck, which decides for each example on the estimated value of the privileged information before seeing it, i.e., only based on the standard input, and then accordingly chooses stochastically, whether to access the privileged input or not. We formulate a tractable approximation to this framework and demonstrate in a series of reinforcement learning experiments that it can improve generalization and reduce access to computationally costly information.
stat
Spatial multiresolution analysis approach to identify crash hotspots and estimate crash risk
In this paper, the authors evaluate the performance of a spatial multiresolution analysis (SMA) method that behaves like a variable bandwidth kernel density estimation (KDE) method, for hazardous road segments identification (HRSI) and crash risk (expected number of crashes) estimation. The proposed SMA, is similar to the KDE method with the additional benefit of allowing for the bandwidth to be different at different road segments depending on how homogenous the segments are. Furthermore, the optimal bandwidth at each road segment is determined solely based on the data by minimizing an unbiased estimate of the mean square error. The authors compare the SMA method with the state of the practice crash analysis method, the empirical Bayes (EB) method, in terms of their HRSI ability and their ability to predict future crashes. The results indicate that the SMA may outperform the EB method, at least with the crash data of the entire Virginia interstate network used in this paper. The SMA is implemented in an Excel spreadsheet that is freely available for download.
stat
Finding Stable Groups of Cross-Correlated Features in Multi-View data
Multi-view data, in which data of different types are obtained from a common set of samples, is now common in many scientific problems. An important problem in the analysis of multi-view data is identifying interactions between groups of features from different data types. A bimodule is a pair $(A,B)$ of feature sets from two different data types such that the aggregate cross-correlation between the features in $A$ and those in $B$ is large. A bimodule $(A,B)$ is stable if $A$ coincides with the set of features having significant aggregate correlation with the features in $B$, and vice-versa. At the population level, stable bimodules correspond to connected components of the cross-correlation network, which is the bipartite graph whose edges are pairs of features with non-zero cross-correlations. We develop an iterative, testing-based procedure, called BSP, to identify stable bimodules in two moderate- to high-dimensional data sets. BSP relies on permutation-based p-values for sums of squared cross-correlations. We efficiently approximate the p-values using tail probabilities of gamma distributions that are fit using analytical estimates of the permutation moments of the test statistic. Our moment estimates depend on the eigenvalues of the intra-correlation matrices of $A$ and $B$ and as a result, the significance of observed cross-correlations accounts for the correlations within each data type. We carry out a thorough simulation study to assess the performance of BSP, and present an extended application of BSP to the problem of expression quantitative trait loci (eQTL) analysis using recent data from the GTEx project. In addition, we apply BSP to climatology data in order to identify regions in North America where annual temperature variation affects precipitation.
stat
Models for Genetic Diversity Generated by Negative Binomial Point Processes
We develop a model based on a generalised Poisson-Dirichlet distribution for the analysis of genetic diversity, and illustrate its use on microsatellite data for the genus Dasyurus (the quoll, a marsupial carnivore listed as near-threatened in Australia). Our class of distributions, termed $PD_\alpha^{(r)}$, is constructed from a negative binomial point process, generalizing the usual one-parameter $PD_\alpha$ model, which is constructed from a Poisson point process. Both models have at their heart a Stable$(\alpha)$ process, but in $PD_\alpha^{(r)}$, an extra parameter $r>0$ adds flexibility, analogous to the way the negative binomial distribution allows for "overdispersion" in the analysis of count data. A key result obtained is a generalised version of Ewens' sampling formula for $PD_\alpha^{(r)}$. We outline the theoretical basis for the model, and, for the quolls data, estimate the parameters $\alpha$ and r by least squares, showing how the extra parameter r aids in the interpretability of the data by comparison with the standard $PD_\alpha$ model. The methods potentially have implications for the management and conservation of threatened populations.
stat
Transparent Privacy is Principled Privacy
Differential privacy revolutionizes the way we think about statistical disclosure limitation. Among the benefits it brings to the table, one is particularly profound and impactful. Under this formal approach to privacy, the mechanism with which data is privatized can be spelled out in full transparency, without sacrificing the privacy guarantee. Curators of open-source demographic and scientific data are at a position to offer privacy without obscurity. This paper supplies a technical treatment to the pitfalls of obscure privacy, and establishes transparent privacy as a prerequisite to drawing correct statistical inference. It advocates conceiving transparent privacy as a dynamic component that can improve data quality from the total survey error perspective, and discusses the limited statistical usability of mere procedural transparency which may arise when dealing with mandated invariants. Transparent privacy is the only viable path towards principled inference from privatized data releases. Its arrival marks great progress towards improved reproducibility, accountability and public trust.
stat
Doubly Robust Covariate Shift Regression with Semi-nonparametric Nuisance Models
In contemporary statistical learning, covariate shift correction plays an important role when distribution of the testing data is shifted from the training data. Importance weighting is used to adjust for this but is not robust to model misspecifcation or excessive estimation error. In this paper, we propose a doubly robust covariate shift regression approach that introduces an imputation model for the targeted response, and uses it to augment the importance weighting equation. With a novel semi-nonparametric construction for the two nuisance models, our method is less prone to the curse of dimensionality compared to the nonparametric approaches, and is less prone to model mis-specification than the parametric approach. To remove the overfitting bias of the nonparametric components under potential model mis-specification, we construct calibrated moment estimating equations for the semi-nonparametric models. We show that our estimator is root-n consistent when at least one nuisance model is correctly specified, estimation for the parametric part of the nuisance models achieves parametric rate, and the nonparametric components are rate doubly robust. Simulation studies demonstrate that our method is more robust and efficient than existing parametric and fully nonparametric (machine learning) estimators under various configurations. We also examine the utility of our method through a real example about transfer learning of phenotyping algorithm for bipolar disorder. Finally, we propose ways to improve the (intrinsic) efficiency of our estimator and to incorporate high dimensional or machine learning models with our proposed framework.
stat
Improved Confidence Regions in Meta-analysis of Diagnostic Test Accuracy
Meta-analyses of diagnostic test accuracy (DTA) studies have been gathering attention in research in clinical epidemiology and health technology development, and bivariate random-effects model is becoming a standard tool. However, standard inference methods usually underestimate statistical errors and possibly provide highly overconfident results under realistic situations since they ignore the variability in the estimation of variance parameters. To overcome the difficulty, a new improved inference method, namely, an accurate confidence region for the meta-analysis of DTA, by asymptotically expanding the coverage probability of the standard confidence region. The advantage of the proposed confidence region is that it holds a relatively simple expression and does not require any repeated calculations such as Bootstrap or Monte Carlo methods to compute the region, thereby the proposed method can be easily carried out in practical applications. The effectiveness of the proposed method is demonstrated through simulation studies and an application to meta-analysis of screening test accuracy for alcohol problems.
stat
Comparing the Performance of Statistical Adjustment Methods By Recovering the Experimental Benchmark from the REFLUX Trial
Much evidence in comparative effectiveness research is based on observational studies. Researchers who conduct observational studies typically assume that there are no unobservable differences between the treated and control groups. Treatment effects are estimated after adjusting for observed differences between treated and controls. However, treatment effect estimates may be biased due to model misspecification. That is, if the method of treatment effect estimation imposes unduly strong functional form assumptions, treatment effect estimates may be significantly biased. In this study, we compare the performance of a wide variety of treatment effect estimation methods. We do so within the context of the REFLUX study from the UK. In REFLUX, after study qualification, participants were enrolled in either a randomized trial arm or patient preference arm. In the randomized trial, patients were randomly assigned to either surgery or medical management. In the patient preference arm, participants selected to either have surgery or medical management. We attempt to recover the treatment effect estimate from the randomized trial arm using the data from the patient preference arm of the study. We vary the method of treatment effect estimation and record which methods are successful and which are not. We apply over 20 different methods including standard regression models as well as advanced machine learning methods. We find that simple propensity score matching methods perform the worst. We also find significant variation in performance across methods. The wide variation in performance suggests analysts should use multiple methods of estimation as a robustness check.
stat
Estimating Monte Carlo variance from multiple Markov chains
The ever-increasing power of the personal computer has led to easy parallel implementations of Markov chain Monte Carlo (MCMC). However, almost all work in estimating the variance of Monte Carlo averages, including the efficient batch means (BM) estimator, focuses on a single-chain MCMC run. We demonstrate that simply averaging covariance matrix estimators from multiple chains (average BM) can yield critical underestimates in small sample sizes, especially for slow mixing Markov chains. We propose a multivariate replicated batch means (RBM) estimator that utilizes information from parallel chains, thereby correcting for the underestimation. Under weak conditions on the mixing rate of the process, the RBM and ABM estimator are both strongly consistent and exhibit similar large-sample bias and variance. However, in small runs the RBM estimator can be dramatically superior. This is demonstrated through a variety of examples, including a two-variable Gibbs sampler for a bivariate Gaussian target distribution. Here, we obtain a closed-form expression for the asymptotic covariance matrix of the Monte Carlo estimator, a useful result for benchmarking in the future.
stat
Comparison of ARIMA, ETS, NNAR and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy
Coronavirus disease (COVID-19) is a severe ongoing novel pandemic that has emerged in Wuhan, China, in December 2019. As of October 13, the outbreak has spread rapidly across the world, affecting over 38 million people, and causing over 1 million deaths. In this article, I analysed several time series forecasting methods to predict the spread of COVID-19 second wave in Italy, over the period after October 13, 2020. I used an autoregressive model (ARIMA), an exponential smoothing state space model (ETS), a neural network autoregression model (NNAR), and the following hybrid combinations of them: ARIMA-ETS, ARIMA-NNAR, ETS-NNAR, and ARIMA-ETS-NNAR. About the data, I forecasted the number of patients hospitalized with mild symptoms, and in intensive care units (ICU). The data refer to the period February 21, 2020-October 13, 2020 and are extracted from the website of the Italian Ministry of Health (www.salute.gov.it). The results show that i) the hybrid models, except for ARIMA-ETS, are better at capturing the linear and non-linear epidemic patterns, by outperforming the respective single models; and ii) the number of COVID-19-related hospitalized with mild symptoms and in ICU will rapidly increase in the next weeks, by reaching the peak in about 50-60 days, i.e. in mid-December 2020, at least. To tackle the upcoming COVID-19 second wave, on one hand, it is necessary to hire healthcare workers and implement sufficient hospital facilities, protective equipment, and ordinary and intensive care beds; and on the other hand, it may be useful to enhance social distancing by improving public transport and adopting the double-shifts schooling system, for example.
stat
Regularity as Regularization: Smooth and Strongly Convex Brenier Potentials in Optimal Transport
Estimating Wasserstein distances between two high-dimensional densities suffers from the curse of dimensionality: one needs an exponential (wrt dimension) number of samples to ensure that the distance between two empirical measures is comparable to the distance between the original densities. Therefore, optimal transport (OT) can only be used in machine learning if it is substantially regularized. On the other hand, one of the greatest achievements of the OT literature in recent years lies in regularity theory: Caffarelli showed that the OT map between two well behaved measures is Lipschitz, or equivalently when considering 2-Wasserstein distances, that Brenier convex potentials (whose gradient yields an optimal map) are smooth. We propose in this work to draw inspiration from this theory and use regularity as a regularization tool. We give algorithms operating on two discrete measures that can recover nearly optimal transport maps with small distortion, or equivalently, nearly optimal Brenier potentials that are strongly convex and smooth. The problem boils down to solving alternatively a convex QCQP and a discrete OT problem, granting access to the values and gradients of the Brenier potential not only on sampled points, but also out of sample at the cost of solving a simpler QCQP for each evaluation. We propose algorithms to estimate and evaluate transport maps with desired regularity properties, benchmark their statistical performance, apply them to domain adaptation and visualize their action on a color transfer task.
stat
Adjusting for Partial Compliance in SMARTs: a Bayesian Semiparametric Approach
The cyclical and heterogeneous nature of many substance use disorders highlights the need to adapt the type or the dose of treatment to accommodate the specific and changing needs of individuals. The Adaptive Treatment for Alcohol and Cocaine Dependence study (ENGAGE) is a multi-stage randomized trial that aimed to provide longitudinal data for constructing treatment strategies to improve patients' engagement in therapy. However, the high rate of noncompliance and lack of analytic tools to account for noncompliance have impeded researchers from using the data to achieve the main goal of the trial. We overcome this issue by defining our target parameter as the mean outcome under different treatment strategies for given potential compliance strata and propose a Bayesian semiparametric model to estimate this quantity. While it adds substantial complexities to the analysis, one important feature of our work is that we consider partial rather than binary compliance classes which is more relevant in longitudinal studies. We assess the performance of our method through comprehensive simulation studies. We illustrate its application on the ENGAGE study and demonstrate that the optimal treatment strategy depends on compliance strata.
stat
Informed Pooled Testing with Quantitative Assays
Pooled testing is widely used for screening for viral or bacterial infections with low prevalence when individual testing is not cost-efficient. Pooled testing with qualitative assays that give binary results has been well-studied. However, characteristics of pooling with quantitative assays were mostly demonstrated using simulations or empirical studies. We investigate properties of three pooling strategies with quantitative assays: traditional two-stage mini-pooling (MP) (Dorfman, 1943), mini-pooling with deconvolution algorithm (MPA) (May et al., 2010), and marker-assisted MPA (mMPA) (Liu et al., 2017). MPA and mMPA test individuals in a sequence after a positive pool and implement a deconvolution algorithm to determine when testing can cease to ascertain all individual statuses. mMPA uses information from other available markers to determine an optimal order for individual testings. We derive and compare the general statistical properties of the three pooling methods. We show that with a proper pool size, MP, MPA, and mMPA can be more cost-efficient than individual testing, and mMPA is superior to MPA and MP. For diagnostic accuracy, mMPA and MPA have higher specificity and positive predictive value but lower sensitivity and negative predictive value than MP and individual testing. Included in this paper are applications to various simulations and an application for HIV treatment monitoring.
stat
An ordinal measure of interrater absolute agreement
A measure of interrater absolute agreement for ordinal scales is proposed capitalizing on the dispersion index for ordinal variables proposed by Giuseppe Leti. The procedure allows to avoid the problem of restriction of variance that sometimes affect traditional measures of interrater agreement in different fields of application. An unbiased estimator of the proposed measure is introduced and its sampling properties are investigated. In order to construct confidence intervals for interrater absolute agreement both asymptotic results and bootstrapping methods are used and their performance is evaluated. Simulated data are employed to demonstrate the accuracy and practical utility of the new procedure for assessing agreement. Finally, an application to a real case is provided.
stat
Combined Tail Estimation Using Censored Data and Expert Information
We study tail estimation in Pareto-like settings for datasets with a high percentage of randomly right-censored data, and where some expert information on the tail index is available for the censored observations. This setting arises for instance naturally for liability insurance claims, where actuarial experts build reserves based on the specificity of each open claim, which can be used to improve the estimation based on the already available data points from closed claims. Through an entropy-perturbed likelihood we derive an explicit estimator and establish a close analogy with Bayesian methods. Embedded in an extreme value approach, asymptotic normality of the estimator is shown, and when the expert is clair-voyant, a simple combination formula can be deduced, bridging the classical statistical approach with the expert information. Following the aforementioned combination formula, a combination of quantile estimators can be naturally defined. In a simulation study, the estimator is shown to often outperform the Hill estimator for censored observations and recent Bayesian solutions, some of which require more information than usually available. Finally we perform a case study on a motor third-party liability insurance claim dataset, where Hill-type and quantile plots incorporate ultimate values into the estimation procedure in an intuitive manner.
stat
A permutation-based Bayesian approach for inverse covariance estimation
Covariance estimation and selection for multivariate datasets in a high-dimensional regime is a fundamental problem in modern statistics. Gaussian graphical models are a popular class of models used for this purpose. Current Bayesian methods for inverse covariance matrix estimation under Gaussian graphical models require the underlying graph and hence the ordering of variables to be known. However, in practice, such information on the true underlying model is often unavailable. We therefore propose a novel permutation-based Bayesian approach to tackle the unknown variable ordering issue. In particular, we utilize multiple maximum a posteriori estimates under the DAG-Wishart prior for each permutation, and subsequently construct the final estimate of the inverse covariance matrix. The proposed estimator has smaller variability and yields order-invariant property. We establish posterior convergence rates under mild assumptions and illustrate that our method outperforms existing approaches in estimating the inverse covariance matrices via simulation studies.
stat
Unbiased MLMC stochastic gradient-based optimization of Bayesian experimental designs
In this paper we propose an efficient stochastic optimization algorithm to search for Bayesian experimental designs such that the expected information gain is maximized. The gradient of the expected information gain with respect to experimental design parameters is given by a nested expectation, for which the standard Monte Carlo method using a fixed number of inner samples yields a biased estimator. In this paper, applying the idea of randomized multilevel Monte Carlo (MLMC) methods, we introduce an unbiased Monte Carlo estimator for the gradient of the expected information gain with finite expected squared $\ell_2$-norm and finite expected computational cost per sample. Our unbiased estimator can be combined well with stochastic gradient descent algorithms, which results in our proposal of an optimization algorithm to search for an optimal Bayesian experimental design. Numerical experiments confirm that our proposed algorithm works well not only for a simple test problem but also for a more realistic pharmacokinetic problem.
stat
A Hierarchical Meta-Analysis for Settings Involving Multiple Outcomes across Multiple Cohorts
Evidence from animal models and epidemiological studies has linked prenatal alcohol exposure (PAE) to a broad range of long-term cognitive and behavioral deficits. However, there is virtually no information in the scientific literature regarding the levels of PAE associated with an increased risk of clinically significant adverse effects. During the period from 1975-1993, several prospective longitudinal cohort studies were conducted in the U.S., in which maternal reports regarding alcohol use were obtained during pregnancy and the cognitive development of the offspring was assessed from early childhood through early adulthood. The sample sizes in these cohorts did not provide sufficient power to examine effects associated with different levels and patterns of PAE. To address this critical public health issue, we have developed a hierarchical meta-analysis to synthesize information regarding the effects of PAE on cognition, integrating data on multiple endpoints from six U.S. longitudinal cohort studies. Our approach involves estimating the dose-response coefficients for each endpoint and then pooling these correlated dose-response coefficients to obtain an estimated `global' effect of exposure on cognition. In the first stage, we use individual participant data to derive estimates of the effects of PAE by fitting regression models that adjust for potential confounding variables using propensity scores. The correlation matrix characterizing the dependence between the endpoint-specific dose-response coefficients estimated within each cohort is then run, while accommodating incomplete information on some endpoints. We also compare and discuss inferences based on the proposed approach to inferences based on a full multivariate analysis
stat
Unsupervised Learning of GMM with a Uniform Background Component
Gaussian Mixture Models are one of the most studied and mature models in unsupervised learning. However, outliers are often present in the data and could influence the cluster estimation. In this paper, we study a new model that assumes that data comes from a mixture of a number of Gaussians as well as a uniform ``background'' component assumed to contain outliers and other non-interesting observations. We develop a novel method based on robust loss minimization that performs well in clustering such GMM with a uniform background. We give theoretical guarantees for our clustering algorithm to obtain best clustering results with high probability. Besides, we show that the result of our algorithm does not depend on initialization or local optima, and the parameter tuning is an easy task. By numeric simulations, we demonstrate that our algorithm enjoys high accuracy and achieves the best clustering results given a large enough sample size. Finally, experimental comparisons with typical clustering methods on real datasets witness the potential of our algorithm in real applications.
stat
Randomized Exploration for Non-Stationary Stochastic Linear Bandits
We investigate two perturbation approaches to overcome conservatism that optimism based algorithms chronically suffer from in practice. The first approach replaces optimism with a simple randomization when using confidence sets. The second one adds random perturbations to its current estimate before maximizing the expected reward. For non-stationary linear bandits, where each action is associated with a $d$-dimensional feature and the unknown parameter is time-varying with total variation $B_T$, we propose two randomized algorithms, Discounted Randomized LinUCB (D-RandLinUCB) and Discounted Linear Thompson Sampling (D-LinTS) via the two perturbation approaches. We highlight the statistical optimality versus computational efficiency trade-off between them in that the former asymptotically achieves the optimal dynamic regret $\tilde{\mathcal{O}}(d ^{2/3}B_T^{1/3} T^{2/3})$, but the latter is oracle-efficient with an extra logarithmic factor in the number of arms compared to minimax-optimal dynamic regret. In a simulation study, both algorithms show outstanding performance in tackling conservatism issue that Discounted LinUCB struggles with.
stat
Regularized Optimal Transport for Dynamic Semi-supervised Learning
Semi-supervised learning provides an effective paradigm for leveraging unlabeled data to improve a model's performance. Among the many strategies proposed, graph-based methods have shown excellent properties, in particular since they allow to solve directly the transductive tasks according to Vapnik's principle and they can be extended efficiently for inductive tasks. In this paper, we propose a novel approach for the transductive semi-supervised learning, using a complete bipartite edge-weighted graph. The proposed approach uses the regularized optimal transport between empirical measures defined on labelled and unlabelled data points in order to obtain an affinity matrix from the optimal transport plan. This matrix is further used to propagate labels through the vertices of the graph in an incremental process ensuring the certainty of the predictions by incorporating a certainty score based on Shannon's entropy. We also analyze the convergence of our approach and we derive an efficient way to extend it for out-of-sample data. Experimental analysis was used to compare the proposed approach with other label propagation algorithms on 12 benchmark datasets, for which we surpass state-of-the-art results. We release our code.
stat
Marginally Interpretable Linear Transformation Models for Clustered Observations
Clustered observations are ubiquitous in controlled and observational studies and arise naturally in multicenter trials or longitudinal surveys. I present two novel models for the analysis of clustered observations where the marginal distributions are described by a linear transformation model and the correlations by a joint multivariate normal distribution. Both models provide analytic formulae for the marginal distributions, one of which features directly interpretable parameters. Owing to the richness of transformation models, the techniques are applicable to any type of response variable, including bounded, skewed, binary, ordinal, or survival responses. I present re-analyses of five applications from different domains, including models for non-normal and discrete responses, and explain how specific models for the estimation of marginal distributions can be defined within this novel modelling framework and how the results can be interpreted in a marginal way.
stat
Bayesian Quantile Matching Estimation
Due to increased awareness of data protection and corresponding laws many data, especially involving sensitive personal information, are not publicly accessible. Accordingly, many data collecting agencies only release aggregated data, e.g. providing the mean and selected quantiles of population distributions. Yet, research and scientific understanding, e.g. for medical diagnostics or policy advice, often relies on data access. To overcome this tension, we propose a Bayesian method for learning from quantile information. Being based on order statistics of finite samples our method adequately and correctly reflects the uncertainty of empirical quantiles. After outlining the theory, we apply our method to simulated as well as real world examples.
stat
PCAS: Pruning Channels with Attention Statistics for Deep Network Compression
Compression techniques for deep neural networks are important for implementing them on small embedded devices. In particular, channel-pruning is a useful technique for realizing compact networks. However, many conventional methods require manual setting of compression ratios in each layer. It is difficult to analyze the relationships between all layers, especially for deeper models. To address these issues, we propose a simple channel-pruning technique based on attention statistics that enables to evaluate the importance of channels. We improved the method by means of a criterion for automatic channel selection, using a single compression ratio for the entire model in place of per-layer model analysis. The proposed approach achieved superior performance over conventional methods with respect to accuracy and the computational costs for various models and datasets. We provide analysis results for behavior of the proposed criterion on different datasets to demonstrate its favorable properties for channel pruning.
stat
Bayesian Spatial Binary Regression for Label Fusion in Structural Neuroimaging
Many analyses of neuroimaging data involve studying one or more regions of interest (ROIs) in a brain image. In order to do so, each ROI must first be identified. Since every brain is unique, the location, size, and shape of each ROI varies across subjects. Thus, each ROI in a brain image must either be manually identified or (semi-) automatically delineated, a task referred to as segmentation. Automatic segmentation often involves mapping a previously manually segmented image to a new brain image and propagating the labels to obtain an estimate of where each ROI is located in the new image. A more recent approach to this problem is to propagate labels from multiple manually segmented atlases and combine the results using a process known as label fusion. To date, most label fusion algorithms either employ voting procedures or impose prior structure and subsequently find the maximum a posteriori estimator (i.e., the posterior mode) through optimization. We propose using a fully Bayesian spatial regression model for label fusion that facilitates direct incorporation of covariate information while making accessible the entire posterior distribution. We discuss the implementation of our model via Markov chain Monte Carlo and illustrate the procedure through both simulation and application to segmentation of the hippocampus, an anatomical structure known to be associated with Alzheimer's disease.
stat
Two equalities expressing the determinant of a matrix in terms of expectations over matrix-vector products
We introduce two equations expressing the inverse determinant of a full rank matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ in terms of expectations over matrix-vector products. The first relationship is $|\mathrm{det} (\mathbf{A})|^{-1} = \mathbb{E}_{\mathbf{s} \sim \mathcal{S}^{n-1}}\bigl[\, \Vert \mathbf{As}\Vert^{-n} \bigr]$, where expectations are over vectors drawn uniformly on the surface of an $n$-dimensional radius one hypersphere. The second relationship is $|\mathrm{det}(\mathbf{A})|^{-1} = \mathbb{E}_{\mathbf{x} \sim q}[\,p(\mathbf{Ax}) /\, q(\mathbf{x})]$, where $p$ and $q$ are smooth distributions, and $q$ has full support.
stat
Noise Contrastive Meta-Learning for Conditional Density Estimation using Kernel Mean Embeddings
Current meta-learning approaches focus on learning functional representations of relationships between variables, i.e. on estimating conditional expectations in regression. In many applications, however, we are faced with conditional distributions which cannot be meaningfully summarized using expectation only (due to e.g. multimodality). Hence, we consider the problem of conditional density estimation in the meta-learning setting. We introduce a novel technique for meta-learning which combines neural representation and noise-contrastive estimation with the established literature of conditional mean embeddings into reproducing kernel Hilbert spaces. The method is validated on synthetic and real-world problems, demonstrating the utility of sharing learned representations across multiple conditional density estimation tasks.
stat
Non-linear regression models for behavioral and neural data analysis
Regression models are popular tools in empirical sciences to infer the influence of a set of variables onto a dependent variable given an experimental dataset. In neuroscience and cognitive psychology, Generalized Linear Models (GLMs) -including linear regression, logistic regression, and Poisson GLM- is the regression model of choice to study the factors that drive participant's choices, reaction times and neural activations. These methods are however limited as they only capture linear contributions of each regressors. Here, we introduce an extension of GLMs called Generalized Unrestricted Models (GUMs), which allows to infer a much richer set of contributions of the regressors to the dependent variable, including possible interactions between the regressors. In a GUM, each regressor is passed through a linear or nonlinear function, and the contribution of the different resulting transformed regressors can be summed or multiplied to generate a predictor for the dependent variable. We propose a Bayesian treatment of these models in which we endow functions with Gaussian Process priors, and we present two methods to compute a posterior over the functions given a dataset: the Laplace method and a sparse variational approach, which scales better for large dataset. For each method, we assess the quality of the model estimation and we detail how the hyperparameters (defining for example the expected smoothness of the function) can be fitted. Finally, we illustrate the power of the method on a behavioral dataset where subjects reported the average perceived orientation of a series of gratings. The method allows to recover the mapping of the grating angle onto perceptual evidence for each subject, as well as the impact of the grating based on its position. Overall, GUMs provides a very rich and flexible framework to run nonlinear regression analysis in neuroscience, psychology, and beyond.
stat
Big Variates: Visualizing and identifying key variables in a multivariate world
Big Data involves both a large number of events but also many variables. This paper will concentrate on the challenge presented by the large number of variables in a Big Dataset. It will start with a brief review of exploratory data visualisation for large dimensional datasets and the use of parallel coordinates. This motivates the use of information theoretic ideas to understand multivariate data. Two key information-theoretic statistics (Similarity Index and Class Distance Indicator) will be described which are used to identify the key variables and then guide the user in a subsequent machine learning analysis. Key to the approach is a novel algorithm to histogram data which quantifies the information content of the data. The Class Distance Indicator also sets a limit on the classification performance of machine learning algorithms for the specific dataset.
stat
Evaluation Uncertainty in Data-Driven Self-Driving Testing
Safety evaluation of self-driving technologies has been extensively studied. One recent approach uses Monte Carlo based evaluation to estimate the occurrence probabilities of safety-critical events as safety measures. These Monte Carlo samples are generated from stochastic input models constructed based on real-world data. In this paper, we propose an approach to assess the impact on the probability estimates from the evaluation procedures due to the estimation error caused by data variability. Our proposed method merges the classical bootstrap method for estimating input uncertainty with a likelihood ratio based scheme to reuse experiment outputs. This approach is economical and efficient in terms of implementation costs in assessing input uncertainty for the evaluation of self-driving technology. We use an example in autonomous vehicle (AV) safety evaluation to demonstrate the proposed approach as a diagnostic tool for the quality of the fitted input model.
stat
Rank-normalization, folding, and localization: An improved $\widehat{R}$ for assessing convergence of MCMC
Markov chain Monte Carlo is a key computational tool in Bayesian statistics, but it can be challenging to monitor the convergence of an iterative stochastic algorithm. In this paper we show that the convergence diagnostic $\widehat{R}$ of Gelman and Rubin (1992) has serious flaws. Traditional $\widehat{R}$ will fail to correctly diagnose convergence failures when the chain has a heavy tail or when the variance varies across the chains. In this paper we propose an alternative rank-based diagnostic that fixes these problems. We also introduce a collection of quantile-based local efficiency measures, along with a practical approach for computing Monte Carlo error estimates for quantiles. We suggest that common trace plots should be replaced with rank plots from multiple chains. Finally, we give recommendations for how these methods should be used in practice.
stat
Multivariate postprocessing methods for high-dimensional seasonal weather forecasts
Seasonal weather forecasts are crucial for long-term planning in many practical situations and skillful forecasts may have substantial economic and humanitarian implications. Current seasonal forecasting models require statistical postprocessing of the output to correct systematic biases and unrealistic uncertainty assessments. We propose a multivariate postprocessing approach utilizing covariance tapering, combined with a dimension reduction step based on principal component analysis for efficient computation. Our proposed technique can correctly and efficiently handle non-stationary, non-isotropic and negatively correlated spatial error patterns, and is applicable on a global scale. Further, a moving average approach to marginal postprocessing is shown to flexibly handle trends in biases caused by global warming, and short training periods. In an application to global sea surface temperature forecasts issued by the Norwegian Climate Prediction Model (NorCPM), our proposed methodology is shown to outperform known reference methods.
stat
Higher Order Generalization Error for First Order Discretization of Langevin Diffusion
We propose a novel approach to analyze generalization error for discretizations of Langevin diffusion, such as the stochastic gradient Langevin dynamics (SGLD). For an $\epsilon$ tolerance of expected generalization error, it is known that a first order discretization can reach this target if we run $\Omega(\epsilon^{-1} \log (\epsilon^{-1}) )$ iterations with $\Omega(\epsilon^{-1})$ samples. In this article, we show that with additional smoothness assumptions, even first order methods can achieve arbitrarily runtime complexity. More precisely, for each $N>0$, we provide a sufficient smoothness condition on the loss function such that a first order discretization can reach $\epsilon$ expected generalization error given $\Omega( \epsilon^{-1/N} \log (\epsilon^{-1}) )$ iterations with $\Omega(\epsilon^{-1})$ samples.
stat
Uncertainty quantification for epidemiological forecasts of COVID-19 through combinations of model predictions
A common statistical problem is prediction, or forecasting, in the presence of an ensemble of multiple candidate models. For example, multiple candidate models may be available to predict case numbers in a disease epidemic, resulting from different modelling approaches (e.g. mechanistic or empirical) or differing assumptions about spatial or age mixing. Alternative models capture genuine uncertainty in scientific understanding of disease dynamics, and/or different simplifying assumptions underpinning each model derivation. While the analysis of multi-model ensembles can be computationally challenging, accounting for this 'structural uncertainty' can improve forecast accuracy and reduce the risk of over-estimated confidence. In this paper we look at combining epidemiological forecasts for COVID-19 daily deaths, hospital admissions, and hospital and ICU occupancy, in order to improve the predictive accuracy of the short term forecasts. We combining models via combinations of individual predictive densities with weights chosen via application of predictive scoring, as commonly applied in meteorological and economic forecasting.
stat
$\mathcal{G}$-SGD: Optimizing ReLU Neural Networks in its Positively Scale-Invariant Space
It is well known that neural networks with rectified linear units (ReLU) activation functions are positively scale-invariant. Conventional algorithms like stochastic gradient descent optimize the neural networks in the vector space of weights, which is, however, not positively scale-invariant. This mismatch may lead to problems during the optimization process. Then, a natural question is: \emph{can we construct a new vector space that is positively scale-invariant and sufficient to represent ReLU neural networks so as to better facilitate the optimization process }? In this paper, we provide our positive answer to this question. First, we conduct a formal study on the positive scaling operators which forms a transformation group, denoted as $\mathcal{G}$. We show that the value of a path (i.e. the product of the weights along the path) in the neural network is invariant to positive scaling and prove that the value vector of all the paths is sufficient to represent the neural networks under mild conditions. Second, we show that one can identify some basis paths out of all the paths and prove that the linear span of their value vectors (denoted as $\mathcal{G}$-space) is an invariant space with lower dimension under the positive scaling group. Finally, we design stochastic gradient descent algorithm in $\mathcal{G}$-space (abbreviated as $\mathcal{G}$-SGD) to optimize the value vector of the basis paths of neural networks with little extra cost by leveraging back-propagation. Our experiments show that $\mathcal{G}$-SGD significantly outperforms the conventional SGD algorithm in optimizing ReLU networks on benchmark datasets.
stat
Doubly Robust Thompson Sampling for linear payoffs
A challenging aspect of the bandit problem is that a stochastic reward is observed only for the chosen arm and the rewards of other arms remain missing. Since the arm choice depends on the past context and reward pairs, the contexts of chosen arms suffer from correlation and render the analysis difficult. We propose a novel multi-armed contextual bandit algorithm called Doubly Robust (DR) Thompson Sampling (TS) that applies the DR technique used in missing data literature to TS. The proposed algorithm improves the bound of TS by a factor of $\sqrt{d}$, where $d$ is the dimension of the context. A benefit of the proposed method is that it uses all the context data, chosen or not chosen, thus allowing to circumvent the technical definition of unsaturated arms used in theoretical analysis of TS. Empirical studies show the advantage of the proposed algorithm over TS.
stat
A generalized double robust Bayesian model averaging approach to causal effect estimation with application to the Study of Osteoporotic Fractures
Analysts often use data-driven approaches to supplement their substantive knowledge when selecting covariates for causal effect estimation. Multiple variable selection procedures tailored for causal effect estimation have been devised in recent years, but additional developments are still required to adequately address the needs of data analysts. In this paper, we propose a Generalized Bayesian Causal Effect Estimation (GBCEE) algorithm to perform variable selection and produce double robust estimates of causal effects for binary or continuous exposures and outcomes. GBCEE employs a prior distribution that targets the selection of true confounders and predictors of the outcome for the unbiased estimation of causal effects with reduced standard errors. Double robust estimators provide some robustness against model misspecification, whereas the Bayesian machinery allows GBCEE to directly produce inferences for its estimate. GBCEE was compared to multiple alternatives in various simulation scenarios and was observed to perform similarly or to outperform double robust alternatives. Its ability to directly produce inferences is also an important advantage from a computational perspective. The method is finally illustrated for the estimation of the effect of meeting physical activity recommendations on the risk of hip or upper-leg fractures among elderly women in the Study of Osteoporotic Fractures. The 95% confidence interval produced by GBCEE is 61% shorter than that of a double robust estimator adjusting for all potential confounders in this illustration.
stat
Total Variation Regularization for Compartmental Epidemic Models with Time-Varying Dynamics
Compartmental epidemic models are among the most popular ones in epidemiology. For the parameters (e.g., the transmission rate) characterizing these models, the majority of researchers simplify them as constants, while some others manage to detect their continuous variations. In this paper, we aim at capturing, on the other hand, discontinuous variations, which better describe the impact of many noteworthy events, such as city lockdowns, the opening of field hospitals, and the mutation of the virus, whose effect should be instant. To achieve this, we balance the model's likelihood by total variation, which regulates the temporal variations of the model parameters. To infer these parameters, instead of using Monte Carlo methods, we design a novel yet straightforward optimization algorithm, dubbed Iterated Nelder--Mead, which repeatedly applies the Nelder--Mead algorithm. Experiments conducted on the simulated data demonstrate that our approach can reproduce these discontinuities and precisely depict the epidemics.
stat
Weston-Watkins Hinge Loss and Ordered Partitions
Multiclass extensions of the support vector machine (SVM) have been formulated in a variety of ways. A recent empirical comparison of nine such formulations [Do\v{g}an et al. 2016] recommends the variant proposed by Weston and Watkins (WW), despite the fact that the WW-hinge loss is not calibrated with respect to the 0-1 loss. In this work we introduce a novel discrete loss function for multiclass classification, the ordered partition loss, and prove that the WW-hinge loss is calibrated with respect to this loss. We also argue that the ordered partition loss is maximally informative among discrete losses satisfying this property. Finally, we apply our theory to justify the empirical observation made by Do\v{g}an et al. that the WW-SVM can work well even under massive label noise, a challenging setting for multiclass SVMs.
stat
Marginal false discovery rate control for likelihood-based penalized regression models
The popularity of penalized regression in high-dimensional data analysis has led to a demand for new inferential tools for these models. False discovery rate control is widely used in high-dimensional hypothesis testing, but has only recently been considered in the context of penalized regression. Almost all of this work, however, has focused on lasso-penalized linear regression. In this paper, we derive a general method for controlling the marginal false discovery rate that can be applied to any penalized likelihood-based model, such as logistic regression and Cox regression. Our approach is fast, flexible and can be used with a variety of penalty functions including lasso, elastic net, MCP, and MNet. We derive theoretical results under which the proposed method is valid, and use simulation studies to demonstrate that the approach is reasonably robust, albeit slightly conservative, when these assumptions are violated. Despite being conservative, we show that our method often offers more power to select causally important features than existing approaches. Finally, the practical utility of the method is demonstrated on gene expression data sets with binary and time-to-event outcomes.
stat
Bayesian Semiparametric Longitudinal Drift-Diffusion Mixed Models for Tone Learning in Adults
Understanding how adult humans learn non-native speech categories such as tone information has shed novel insights into the mechanisms underlying experience-dependent brain plasticity. Scientists have traditionally examined these questions using longitudinal learning experiments under a multi-category decision making paradigm. Drift-diffusion processes are popular in such contexts for their ability to mimic underlying neural mechanisms. Motivated by these problems, we develop a novel Bayesian semiparametric inverse Gaussian drift-diffusion mixed model for multi-alternative decision making in longitudinal settings. We design a Markov chain Monte Carlo algorithm for posterior computation. We evaluate the method's empirical performances through synthetic experiments. Applied to our motivating longitudinal tone learning study, the method provides novel insights into how the biologically interpretable model parameters evolve with learning, differ between input-response tone combinations, and differ between well and poorly performing adults.
stat
Identifying the Influential Inputs for Network Output Variance Using Sparse Polynomial Chaos Expansion
Sensitivity analysis (SA) is an important aspect of process automation. It often aims to identify the process inputs that influence the process output's variance significantly. Existing SA approaches typically consider the input-output relationship as a black-box and conduct extensive random sampling from the actual process or its high-fidelity simulation model to identify the influential inputs. In this paper, an alternate, novel approach is proposed using a sparse polynomial chaos expansion-based model for a class of input-output relationships represented as directed acyclic networks. The model exploits the relationship structure by recursively relating a network node to its direct predecessors to trace the output variance back to the inputs. It, thereby, estimates the Sobol indices, which measure the influence of each input on the output variance, accurately and efficiently. Theoretical analysis establishes the validity of the model as the prediction of the network output converges in probability to the true output under certain regularity conditions. Empirical evaluation on two manufacturing processes shows that the model estimates the Sobol indices accurately with far fewer observations than a state-of-the-art Monte Carlo sampling method.
stat
Bayesian EWMA and CUSUM Control Charts Under Different Loss Functions
The Exponentially Weighted Moving Average (EWMA) and Cumulative Sum (CUSUM) control charts have been used in profile monitoring to track drift shifts that occur in a monitored process. We construct Bayesian EWMA and Bayesian CUSUM charts informed by posterior and posterior predictive distributions using different loss functions, prior distributions, and likelihood distributions. A simulation study is performed, and the performance of the charts are evaluated via average run length (ARL), standard deviation of the run length (SDRL), average time to signal (ATS), and standard deviation of time to signal (SDTS). A sensitivity analysis is conducted using choices for the smoothing parameter, out-of-control shift size, and hyper-parameters of the distribution. Based on obtained results, we provide recommendations for use of the Bayesian EWMA and Bayesian CUSUM control charts.
stat
Asynchronous Batch Bayesian Optimisation with Improved Local Penalisation
Batch Bayesian optimisation (BO) has been successfully applied to hyperparameter tuning using parallel computing, but it is wasteful of resources: workers that complete jobs ahead of others are left idle. We address this problem by developing an approach, Penalising Locally for Asynchronous Bayesian Optimisation on $k$ workers (PLAyBOOK), for asynchronous parallel BO. We demonstrate empirically the efficacy of PLAyBOOK and its variants on synthetic tasks and a real-world problem. We undertake a comparison between synchronous and asynchronous BO, and show that asynchronous BO often outperforms synchronous batch BO in both wall-clock time and number of function evaluations.
stat
An efficient methodology to estimate the parameters of a two-dimensional chirp signal model
In various capacities of statistical signal processing two-dimensional (2-D) chirp models have been considered significantly, particularly in image processing$-$ to model gray-scale and texture images, magnetic resonance imaging, optical imaging etc. In this paper we address the problem of estimation of the unknown parameters of a 2-D chirp model under the assumption that the errors are independently and identically distributed (i.i.d.). The key attribute of the proposed estimation procedure is that it is computationally more efficient than the least squares estimation method. Moreover, the proposed estimators are observed to have the same asymptotic properties as the least squares estimators, thus providing computational effectiveness without any compromise on the efficiency of the estimators. We extend the propounded estimation method to provide a sequential procedure to estimate the unknown parameters of a 2-D chirp model with multiple components and under the assumption of i.i.d. errors we study the large sample properties of these sequential estimators. Simulation studies and a synthetic data analysis show that the proposed estimators perform satisfactorily.
stat
A Framework for Adaptive MCMC Targeting Multimodal Distributions
We propose a new Monte Carlo method for sampling from multimodal distributions. The idea of this technique is based on splitting the task into two: finding the modes of a target distribution $\pi$ and sampling, given the knowledge of the locations of the modes. The sampling algorithm relies on steps of two types: local ones, preserving the mode; and jumps to regions associated with different modes. Besides, the method learns the optimal parameters of the algorithm while it runs, without requiring user intervention. Our technique should be considered as a flexible framework, in which the design of moves can follow various strategies known from the broad MCMC literature. In order to design an adaptive scheme that facilitates both local and jump moves, we introduce an auxiliary variable representing each mode and we define a new target distribution $\tilde{\pi}$ on an augmented state space $\mathcal{X}~\times~\mathcal{I}$, where $\mathcal{X}$ is the original state space of $\pi$ and $\mathcal{I}$ is the set of the modes. As the algorithm runs and updates its parameters, the target distribution $\tilde{\pi}$ also keeps being modified. This motivates a new class of algorithms, Auxiliary Variable Adaptive MCMC. We prove general ergodic results for the whole class before specialising to the case of our algorithm.
stat
Robust Particle Filtering via Bayesian Nonparametric Outlier Modeling
This paper is concerned with the online estimation of a nonlinear dynamic system from a series of noisy measurements. The focus is on cases wherein outliers are present in-between normal noises. We assume that the outliers follow an unknown generating mechanism which deviates from that of normal noises, and then model the outliers using a Bayesian nonparametric model called Dirichlet process mixture (DPM). A sequential particle-based algorithm is derived for posterior inference for the outlier model as well as the state of the system to be estimated. The resulting algorithm is termed DPM based robust PF (DPM-RPF). The nonparametric feature makes this algorithm allow the data to "speak for itself" to determine the complexity and structure of the outlier model. Simulation results show that it performs remarkably better than two state-of-the-art methods especially when outliers appear frequently along time.
stat
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Modern machine learning methods including deep learning have achieved great success in predictive accuracy for supervised learning tasks, but may still fall short in giving useful estimates of their predictive {\em uncertainty}. Quantifying uncertainty is especially critical in real-world settings, which often involve input distributions that are shifted from the training distribution due to a variety of factors including sample bias and non-stationarity. In such settings, well calibrated uncertainty estimates convey information about when a model's output should (or should not) be trusted. Many probabilistic deep learning methods, including Bayesian-and non-Bayesian methods, have been proposed in the literature for quantifying predictive uncertainty, but to our knowledge there has not previously been a rigorous large-scale empirical comparison of these methods under dataset shift. We present a large-scale benchmark of existing state-of-the-art methods on classification problems and investigate the effect of dataset shift on accuracy and calibration. We find that traditional post-hoc calibration does indeed fall short, as do several other previous methods. However, some methods that marginalize over models give surprisingly strong results across a broad spectrum of tasks.
stat
Exactly Computing the Local Lipschitz Constant of ReLU Networks
The local Lipschitz constant of a neural network is a useful metric with applications in robustness, generalization, and fairness evaluation. We provide novel analytic results relating the local Lipschitz constant of nonsmooth vector-valued functions to a maximization over the norm of the generalized Jacobian. We present a sufficient condition for which backpropagation always returns an element of the generalized Jacobian, and reframe the problem over this broad class of functions. We show strong inapproximability results for estimating Lipschitz constants of ReLU networks, and then formulate an algorithm to compute these quantities exactly. We leverage this algorithm to evaluate the tightness of competing Lipschitz estimators and the effects of regularized training on the Lipschitz constant.
stat
A method to identify geochemical mineralization on linear transect
Mineral exploration in biogeochemistry is related to the detection of anomalies in soil, which is driven by many factors and thus a complex problem. Mik\v{s}ov\'a, Rieser, and Filzmoser (2019) have introduced a method for the identification of spatial patterns with increased element concentrations in samples along a linear sampling transect. This procedure is based on fitting Generalized Additive Models (GAMs) to the concentration data, and computing a curvature measure from the pairwise log-ratios of these fits. The higher the curvature, the more likely one or both elements of the pair indicate local mineralization. This method is applied on two geochemical data sets which have been collected specifically for the purpose of mineral exploration. The aim is to test the technique for its ability to identify pathfinder elements to detect mineralized zones, and to verify whether the method can indicate which sampling material is best suited for this purpose. Reference: Mik\v{s}ov\'a D., Rieser C., Filzmoser P. (2019). "Identification of mineralization in geochemistry along a transect based on the spatial curvature of log-ratios." arXiv, (1912.02867).
stat
High-dimensional, multiscale online changepoint detection
We introduce a new method for high-dimensional, online changepoint detection in settings where a $p$-variate Gaussian data stream may undergo a change in mean. The procedure works by performing likelihood ratio tests against simple alternatives of different scales in each coordinate, and then aggregating test statistics across scales and coordinates. The algorithm is online in the sense that both its storage requirements and worst-case computational complexity per new observation are independent of the number of previous observations; in practice, it may even be significantly faster than this. We prove that the patience, or average run length under the null, of our procedure is at least at the desired nominal level, and provide guarantees on its response delay under the alternative that depend on the sparsity of the vector of mean change. Simulations confirm the practical effectiveness of our proposal, which is implemented in the R package 'ocd', and we also demonstrate its utility on a seismology data set.
stat
Efficient testing and effect size estimation for set-based genetic association inference via semiparametric multilevel mixture modeling: Application to a genome-wide association study of coronary artery disease
In genetic association studies, rare variants with extremely small allele frequency play a crucial role in complex traits, and the set-based testing methods that jointly assess the effects of groups of single nucleotide polymorphisms (SNPs) were developed to improve powers for the association tests. However, the powers of these tests are still severely limited due to the extremely small allele frequency, and precise estimations for the effect sizes of individual SNPs are substantially impossible. In this article, we provide an efficient set-based inference framework that addresses the two important issues simultaneously based on a Bayesian semiparametric multilevel mixture model. We propose to use the multilevel hierarchical model that incorporate the variations in set-specific effects and variant-specific effects, and to apply the optimal discovery procedure (ODP) that achieves the largest overall power in multiple significance testing. In addition, we provide Bayesian optimal "set-based" estimator of the empirical distribution of effect sizes. Efficiency of the proposed methods is demonstrated through application to a genome-wide association study of coronary artery disease (CAD), and through simulation studies. These results suggested there could be a lot of rare variants with large effect sizes for CAD, and the number of significant sets detected by the ODP was much greater than those by existing methods.
stat
A goodness-of-fit test for the functional linear model with functional response
The Functional Linear Model with Functional Response (FLMFR) is one of the most fundamental models to assess the relation between two functional random variables. In this paper, we propose a novel goodness-of-fit test for the FLMFR against a general, unspecified, alternative. The test statistic is formulated in terms of a Cram\'er-von Mises norm over a doubly-projected empirical process which, using geometrical arguments, yields an easy-to-compute weighted quadratic norm. A resampling procedure calibrates the test through a wild bootstrap on the residuals and the use of convenient computational procedures. As a sideways contribution, and since the statistic requires a reliable estimator of the FLMFR, we discuss and compare several regularized estimators, providing a new one specifically convenient for our test. The finite sample behavior of the test is illustrated via a simulation study. Also, the new proposal is compared with previous significance tests. Two novel real datasets illustrate the application of the new test.
stat
Data Generation in Low Sample Size Setting Using Manifold Sampling and a Geometry-Aware VAE
While much efforts have been focused on improving Variational Autoencoders through richer posterior and prior distributions, little interest was shown in amending the way we generate the data. In this paper, we develop two non \emph{prior-dependent} generation procedures based on the geometry of the latent space seen as a Riemannian manifold. The first one consists in sampling along geodesic paths which is a natural way to explore the latent space while the second one consists in sampling from the inverse of the metric volume element which is easier to use in practice. Both methods are then compared to \emph{prior-based} methods on various data sets and appear well suited for a limited data regime. Finally, the latter method is used to perform data augmentation in a small sample size setting and is validated across various standard and \emph{real-life} data sets. In particular, this scheme allows to greatly improve classification results on the OASIS database where balanced accuracy jumps from 80.7% for a classifier trained with the raw data to 89.1% when trained only with the synthetic data generated by our method. Such results were also observed on 4 standard data sets.
stat
Consistency issues in Gaussian Mixture Models reduction algorithms
In many contexts Gaussian Mixtures (GM) are used to approximate probability distributions, possibly time-varying. In some applications the number of GM components exponentially increases over time, and reduction procedures are required to keep them reasonably limited. The GM reduction (GMR) problem can be formulated by choosing different measures of the dissimilarity of GMs before and after reduction, like the Kullback-Leibler Divergence (KLD) and the Integral Squared Error (ISE). Since in no case the solution is obtained in closed form, many approximate GMR algorithms have been proposed in the past three decades, although none of them provides optimality guarantees. In this work we discuss the importance of the choice of the dissimilarity measure and the issue of consistency of all steps of a reduction algorithm with the chosen measure. Indeed, most of the existing GMR algorithms are composed by several steps which are not consistent with a unique measure, and for this reason may produce reduced GMs far from optimality. In particular, the use of the KLD, of the ISE and normalized ISE is discussed and compared in this perspective.
stat
Approximately Optimal Subset Selection for Statistical Design and Modelling
We study the problem of optimal subset selection from a set of correlated random variables. In particular, we consider the associated combinatorial optimization problem of maximizing the determinant of a symmetric positive definite matrix that characterizes the chosen subset. This problem arises in many domains, such as experimental designs, regression modeling, and environmental statistics. We establish an efficient polynomial-time algorithm using Determinantal Point Process for approximating the optimal solution to the problem. We demonstrate the advantages of our methods by presenting computational results for both synthetic and real data sets.
stat
A Bootstrap Lasso + Partial Ridge Method to Construct Confidence Intervals for Parameters in High-dimensional Sparse Linear Models
Constructing confidence intervals for the coefficients of high-dimensional sparse linear models remains a challenge, mainly because of the complicated limiting distributions of the widely used estimators, such as the lasso. Several methods have been developed for constructing such intervals. Bootstrap lasso+ols is notable for its technical simplicity, good interpretability, and performance that is comparable with that of other more complicated methods. However, bootstrap lasso+ols depends on the beta-min assumption, a theoretic criterion that is often violated in practice. Thus, we introduce a new method, called bootstrap lasso+partial ridge, to relax this assumption. Lasso+partial ridge is a two-stage estimator. First, the lasso is used to select features. Then, the partial ridge is used to refit the coefficients. Simulation results show that bootstrap lasso+partial ridge outperforms bootstrap lasso+ols when there exist small, but nonzero coefficients, a common situation that violates the beta-min assumption. For such coefficients, the confidence intervals constructed using bootstrap lasso+partial ridge have, on average, $50\%$ larger coverage probabilities than those of bootstrap lasso+ols. Bootstrap lasso+partial ridge also has, on average, $35\%$ shorter confidence interval lengths than those of the de-sparsified lasso methods, regardless of whether the linear models are misspecified. Additionally, we provide theoretical guarantees for bootstrap lasso+partial ridge under appropriate conditions, and implement it in the R package "HDCI."
stat
Bayesian Wavelet Shrinkage with Beta Priors
In wavelet shrinkage and thresholding, most of the standard techniques do not consider information that wavelet coefficients might be bounded, although information about bounded energy in signals can be readily available. To address this, we present a Bayesian approach for shrinkage of bounded wavelet coefficients in the context of non-parametric regression. We propose the use of a zero-contaminated beta distribution with a support symmetric around zero as the prior distribution for the location parameter in the wavelet domain in models with additive gaussian errors. The hyperparameters of the proposed model are closely related to the shrinkage level, which facilitates their elicitation and interpretation. For signals with a low signal-to-noise ratio, the associated Bayesian shrinkage rules provide significant improvement in performance in simulation studies when compared with standard techniques.
stat
Nested sampling cross-checks using order statistics
Nested sampling (NS) is an invaluable tool in data analysis in modern astrophysics, cosmology, gravitational wave astronomy and particle physics. We identify a previously unused property of NS related to order statistics: the insertion indexes of new live points into the existing live points should be uniformly distributed. This observation enabled us to create a novel cross-check of single NS runs. The tests can detect when an NS run failed to sample new live points from the constrained prior and plateaus in the likelihood function, which break an assumption of NS and thus leads to unreliable results. We applied our cross-check to NS runs on toy functions with known analytic results in 2 - 50 dimensions, showing that our approach can detect problematic runs on a variety of likelihoods, settings and dimensions. As an example of a realistic application, we cross-checked NS runs performed in the context of cosmological model selection. Since the cross-check is simple, we recommend that it become a mandatory test for every applicable NS run.
stat
Maximum Relevance and Minimum Redundancy Feature Selection Methods for a Marketing Machine Learning Platform
In machine learning applications for online product offerings and marketing strategies, there are often hundreds or thousands of features available to build such models. Feature selection is one essential method in such applications for multiple objectives: improving the prediction accuracy by eliminating irrelevant features, accelerating the model training and prediction speed, reducing the monitoring and maintenance workload for feature data pipeline, and providing better model interpretation and diagnosis capability. However, selecting an optimal feature subset from a large feature space is considered as an NP-complete problem. The mRMR (Minimum Redundancy and Maximum Relevance) feature selection framework solves this problem by selecting the relevant features while controlling for the redundancy within the selected features. This paper describes the approach to extend, evaluate, and implement the mRMR feature selection methods for classification problem in a marketing machine learning platform at Uber that automates creation and deployment of targeting and personalization models at scale. This study first extends the existing mRMR methods by introducing a non-linear feature redundancy measure and a model-based feature relevance measure. Then an extensive empirical evaluation is performed for eight different feature selection methods, using one synthetic dataset and three real-world marketing datasets at Uber to cover different use cases. Based on the empirical results, the selected mRMR method is implemented in production for the marketing machine learning platform. A description of the production implementation is provided and an online experiment deployed through the platform is discussed.
stat
Finding your feet: A Gaussian process model for estimating the abilities of batsmen in Test cricket
In the sport of cricket, player batting ability is traditionally measured using the batting average. However, the batting average fails to measure both short-term changes in ability that occur during an innings, and long-term changes that occur between innings, due to the likes of age and experience in various match conditions. We derive and fit a Bayesian parametric model that employs a Gaussian process to measure and predict how the batting abilities of cricket players vary and fluctuate over the course of entire playing careers. The results allow us to better quantify and predict player batting ability, compared with both traditional cricket statistics, such as the batting average, and more complex models, such as the official International Cricket Council ratings.
stat
Optimal reinsurance for risk over surplus ratios
Optimal reinsurance when Value at Risk and expected surplus is balanced through their ratio is studied, and it is demonstrated how results for risk-adjusted surplus can be utilized. Simplifications for large portfolios are derived, and this large-portfolio study suggests a new condition on the reinsurance pricing regime which is crucial for the results obtained. One or two-layer contracts now become optimal for both risk-adjusted surplus and the risk over expected surplus ratio, but there is no second layer when portfolios are large or when reinsurance prices are below some threshold. Simple approximations of the optimum portfolio are considered, and their degree of degradation compared to the optimum is studied which leads to theoretical degradation rates as the number of policies grows. The theory is supported by numerical experiments which suggest that the shape of the claim severity distributions may not be of primary importance when designing an optimal reinsurance program. It is argued that the approach can be applied to Conditional Value at Risk as well.
stat
Analysis of the AOK Lower Saxony hospitalisation records data (years 2008 -- 2015)
Multidrug-resistant Enterobacteriaceae (MDR-E) have become a major public health threat in many European countries. While traditional infection control strategies primarily target the containment of intra-hospital transmission, there is growing evidence highlighting the importance of inter-hospital patient traffic for the spread of MDR-E within healthcare systems. Our aim is to propose a network model, which will reflect patient traffic in various European healthcare systems and will thus provide the framework to study systematically transmission dynamics of MDR-E and the effectiveness of infection control strategies to contain their spread within and potentially across healthcare systems. However, to do that first we need to analyse real patients data and base on that propose network model reflecting the complexity of the real hospital network connections and dynamics of patient transfers between healthcare facilities.
stat
Best Practices in Scientific Computing
The world is becoming increasingly complex, both in terms of the rich sources of data we have access to as well as in terms of the statistical and computational methods we can use on those data. These factors create an ever-increasing risk for errors in our code and sensitivity in our findings to data preparation and execution of complex statistical and computing methods. The consequences of coding and data mistakes can be substantial. Openness (e.g., providing others with data code) and transparency (e.g., requiring that data processing and code follow standards) are two key solutions to help alleviate concerns about replicability and errors. In this paper, we describe the key steps for implementing a code quality assurance (QA) process for researchers to follow to improve their coding practices throughout a project to assure the quality of the final data, code, analyses and ultimately the results. These steps include: (i) adherence to principles for code writing and style that follow best practices, (ii) clear written documentation that describes code, workflow and key analytic decisions; (iii) careful version control, (iv) good data management; and (iv) regular testing and review. Following all these steps will greatly improve the ability of a study to assure results are accurate and reproducible. The responsibility for code QA falls not only on individual researchers but institutions, journals, and funding agencies as well.
stat
Bayesian Set of Best Dynamic Treatment Regimes and Sample Size Determination for SMARTs with Binary Outcomes
One of the main goals of sequential, multiple assignment, randomized trials (SMART) is to find the most efficacious design embedded dynamic treatment regimes. The analysis method known as multiple comparisons with the best (MCB) allows comparison between dynamic treatment regimes and identification of a set of optimal regimes in the frequentist setting for continuous outcomes, thereby, directly addressing the main goal of a SMART. In this paper, we develop a Bayesian generalization to MCB for SMARTs with binary outcomes. Furthermore, we show how to choose the sample size so that the inferior embedded DTRs are screened out with a specified power. We compare log-odds between different DTRs using their exact distribution without relying on asymptotic normality in either the analysis or the power calculation. We conduct extensive simulation studies under two SMART designs and illustrate our method's application to the Adaptive Treatment for Alcohol and Cocaine Dependence (ENGAGE) trial.
stat
John's Walk
We present an affine-invariant random walk for drawing uniform random samples from a convex body $\mathcal{K} \subset \mathbb{R}^n$ that uses maximum volume inscribed ellipsoids, known as John's ellipsoids, for the proposal distribution. Our algorithm makes steps using uniform sampling from the John's ellipsoid of the symmetrization of $\mathcal{K}$ at the current point. We show that from a warm start, the random walk mixes in $\widetilde{O}(n^7)$ steps where the log factors depend only on constants associated with the warm start and desired total variation distance to uniformity. We also prove polynomial mixing bounds starting from any fixed point $x$ such that for any chord $pq$ of $\mathcal{K}$ containing $x$, $\left|\log \frac{|p-x|}{|q-x|}\right|$ is bounded above by a polynomial in $n$.
stat
Combining independent p-values in replicability analysis: A comparative study
Given a family of null hypotheses $H_{1},\ldots,H_{s}$, we are interested in the hypothesis $H_{s}^{\gamma}$ that at most $\gamma-1$ of these null hypotheses are false. Assuming that the corresponding $p$-values are independent, we are investigating combined $p$-values that are valid for testing $H_{s}^{\gamma}$. In various settings in which $H_{s}^{\gamma}$ is false, we determine which combined $p$-value works well in which setting. Via simulations, we find that the Stouffer method works well if the null $p$-values are uniformly distributed and the signal strength is low, and the Fisher method works better if the null $p$-values are conservative, i.e. stochastically larger than the uniform distribution. The minimum method works well if the evidence for the rejection of $H_{s}^{\gamma}$ is focused on only a few non-null $p$-values, especially if the null $p$-values are conservative. Methods that incorporate the combination of $e$-values work well if the null hypotheses $H_{1},\ldots,H_{s}$ are simple.
stat
A Simple Convergence Proof of Adam and Adagrad
We provide a simple proof of convergence covering both the Adam and Adagrad adaptive optimization algorithms when applied to smooth (possibly non-convex) objective functions with bounded gradients. We show that in expectation, the squared norm of the objective gradient averaged over the trajectory has an upper-bound which is explicit in the constants of the problem, parameters of the optimizer and the total number of iterations $N$. This bound can be made arbitrarily small: Adam with a learning rate $\alpha=1/\sqrt{N}$ and a momentum parameter on squared gradients $\beta_2=1-1/N$ achieves the same rate of convergence $O(\ln(N)/\sqrt{N})$ as Adagrad. Finally, we obtain the tightest dependency on the heavy ball momentum among all previous convergence bounds for non-convex Adam and Adagrad, improving from $O((1-\beta_1)^{-3})$ to $O((1-\beta_1)^{-1})$. Our technique also improves the best known dependency for standard SGD by a factor $1 - \beta_1$.
stat
Bootstrap Based Inference for Sparse High-Dimensional Time Series Models
Fitting sparse models to high-dimensional time series is an important area of statistical inference. In this paper we consider sparse vector autoregressive models and develop appropriate bootstrap methods to infer properties of such processes. Our bootstrap methodology generates pseudo time series using a model-based bootstrap procedure which involves an estimated, sparsified version of the underlying vector autoregressive model. Inference is performed using so-called de-sparsified or de-biased estimators of the autoregressive model parameters. We derive the asymptotic distribution of such estimators in the time series context and establish asymptotic validity of the bootstrap procedure proposed for estimation and, appropriately modified, for testing purposes. In particular we focus on testing that large groups of autoregressive coefficients equal zero. Our theoretical results are complemented by simulations which investigate the finite sample performance of the bootstrap methodology proposed. A real-life data application is also presented.
stat
Improving forecasting with sub-seasonal time series patterns
Time series forecasting plays an increasingly important role in modern business decisions. In today's data-rich environment, people often aim to choose the optimal forecasting model for their data. However, identifying the optimal model often requires professional knowledge and experience, making accurate forecasting a challenging task. To mitigate the importance of model selection, we propose a simple and reliable algorithm and successfully improve the forecasting performance. Specifically, we construct multiple time series with different sub-seasons from the original time series. These derived series highlight different sub-seasonal patterns of the original series, making it possible for the forecasting methods to capture diverse patterns and components of the data. Subsequently, we make forecasts for these multiple series separately with classical statistical models (ETS or ARIMA). Finally, the forecasts of these multiple series are combined with equal weights. We evaluate our approach on the widely-used forecasting competition datasets (M1, M3, and M4), in terms of both point forecasts and prediction intervals. We observe improvements in performance compared with the benchmarks. Our approach is particularly suitable and robust for the datasets with higher frequencies. To demonstrate the practical value of our proposition, we showcase the performance improvements from our approach on hourly load data.
stat
A weighted Discrepancy Bound of quasi-Monte Carlo Importance Sampling
Importance sampling Monte-Carlo methods are widely used for the approximation of expectations with respect to partially known probability measures. In this paper we study a deterministic version of such an estimator based on quasi-Monte Carlo. We obtain an explicit error bound in terms of the star-discrepancy for this method.
stat
Causal learning with sufficient statistics: an information bottleneck approach
The inference of causal relationships using observational data from partially observed multivariate systems with hidden variables is a fundamental question in many scientific domains. Methods extracting causal information from conditional independencies between variables of a system are common tools for this purpose, but are limited in the lack of independencies. To surmount this limitation, we capitalize on the fact that the laws governing the generative mechanisms of a system often result in substructures embodied in the generative functional equation of a variable, which act as sufficient statistics for the influence that other variables have on it. These functional sufficient statistics constitute intermediate hidden variables providing new conditional independencies to be tested. We propose to use the Information Bottleneck method, a technique commonly applied for dimensionality reduction, to find underlying sufficient sets of statistics. Using these statistics we formulate new additional rules of causal orientation that provide causal information not obtainable from standard structure learning algorithms, which exploit only conditional independencies between observable variables. We validate the use of sufficient statistics for structure learning both with simulated systems built to contain specific sufficient statistics and with benchmark data from regulatory rules previously and independently proposed to model biological signal transduction networks.
stat
Cultural evolution in Vietnam's early 20th century: a Bayesian networks analysis of Franco-Chinese house designs
The study of cultural evolution has taken on an increasingly interdisciplinary and diverse approach in explicating phenomena of cultural transmission and adoptions. Inspired by this computational movement, this study uses Bayesian networks analysis, combining both the frequentist and the Hamiltonian Markov chain Monte Carlo (MCMC) approach, to investigate the highly representative elements in the cultural evolution of a Vietnamese city's architecture in the early 20th century. With a focus on the fa\c{c}ade design of 68 old houses in Hanoi's Old Quarter (based on 78 data lines extracted from 248 photos), the study argues that it is plausible to look at the aesthetics, architecture and designs of the house fa\c{c}ade to find traces of cultural evolution in Vietnam, which went through more than six decades of French colonization and centuries of sociocultural influence from China. The in-depth technical analysis, though refuting the presumed model on the probabilistic dependency among the variables, yields several results, the most notable of which is the strong influence of Buddhism over the decorations of the house fa\c{c}ade. Particularly, in the top 5 networks with the best Bayesian Information criterion (BIC) scores and p<0.05, the variable for decorations (DC) always has a direct probabilistic dependency on the variable B for Buddhism. The paper then checks the robustness of these models using Hamiltonian MCMC method and find the posterior distributions of the models' coefficients all satisfy the technical requirement. Finally, this study suggests integrating Bayesian statistics in social sciences in general and for study of cultural evolution and architectural transformation in particular.
stat
Causal variance decompositions for institutional comparisons in healthcare
There is increasing interest in comparing institutions delivering healthcare in terms of disease-specific quality indicators (QIs) that capture processes or outcomes showing variations in the care provided. Such comparisons can be framed in terms of causal models, where adjusting for patient case-mix is analogous to controlling for confounding, and exposure is being treated in a given hospital, for instance. Our goal here is to help identifying good QIs rather than comparing hospitals in terms of an already chosen QI, and so we focus on the presence and magnitude of overall variation in care between the hospitals rather than the pairwise differences between any two hospitals. We consider how the observed variation in care received at patient level can be decomposed into that causally explained by the hospital performance adjusting for the case-mix, the case-mix itself, and residual variation. For this purpose, we derive a three-way variance decomposition, with particular attention to its causal interpretation in terms of potential outcome variables. We propose model-based estimators for the decomposition, accommodating different link functions and either fixed or random effect models. We evaluate their performance in a simulation study and demonstrate their use in a real data application.
stat
Design Principles for Data Analysis
The data science revolution has led to an increased interest in the practice of data analysis. While much has been written about statistical thinking, a complementary form of thinking that appears in the practice of data analysis is design thinking -- the problem-solving process to understand the people for whom a product is being designed. For a given problem, there can be significant or subtle differences in how a data analyst (or producer of a data analysis) constructs, creates, or designs a data analysis, including differences in the choice of methods, tooling, and workflow. These choices can affect the data analysis products themselves and the experience of the consumer of the data analysis. Therefore, the role of a producer can be thought of as designing the data analysis with a set of design principles. Here, we introduce design principles for data analysis and describe how they can be mapped to data analyses in a quantitative, objective and informative manner. We also provide empirical evidence of variation of principles within and between both producers and consumers of data analyses. Our work leads to two insights: it suggests a formal mechanism to describe data analyses based on the design principles for data analysis, and it provides a framework to teach students how to build data analyses using formal design principles.
stat
CLAIMED: A CLAssification-Incorporated Minimum Energy Design to explore a multivariate response surface with feasibility constraints
Motivated by the problem of optimization of force-field systems in physics using large-scale computer simulations, we consider exploration of a deterministic complex multivariate response surface. The objective is to find input combinations that generate output close to some desired or "target" vector. In spite of reducing the problem to exploration of the input space with respect to a one-dimensional loss function, the search is nontrivial and challenging due to infeasible input combinations, high dimensionalities of the input and output space and multiple "desirable" regions in the input space and the difficulty of emulating the objective function well with a surrogate model. We propose an approach that is based on combining machine learning techniques with smart experimental design ideas to locate multiple good regions in the input space.
stat
Computation of the expected value of a function of a chi-distributed random variable
We consider the problem of numerically evaluating the expected value of a smooth bounded function of a chi-distributed random variable, divided by the square root of the number of degrees of freedom. This problem arises in the contexts of simultaneous inference, the selection and ranking of populations and in the evaluation of multivariate t probabilities. It also arises in the assessment of the coverage probability and expected volume properties of the some non-standard confidence regions. We use a transformation put forward by Mori, followed by the application of the trapezoidal rule. This rule has the remarkable property that, for suitable integrands, it is exponentially convergent. We use it to create a nested sequence of quadrature rules, for the estimation of the approximation error, so that previous evaluations of the integrand are not wasted. The application of the trapezoidal rule requires the approximation of an infinite sum by a finite sum. We provide a new easily computed upper bound on the error of this approximation. Our overall conclusion is that this method is a very suitable candidate for the computation of the coverage and expected volume properties of non-standard confidence regions.
stat
Bayesian Approximations to Hidden Semi-Markov Models
We propose a Bayesian hidden Markov model for analyzing time series and sequential data where a special structure of the transition probability matrix is embedded to model explicit-duration semi-Markovian dynamics. Our formulation allows for the development of highly flexible and interpretable models that can integrate available prior information on state durations while keeping a moderate computational cost to perform efficient posterior inference. We show the benefits of choosing a Bayesian approach over its frequentist counterpart, in terms of incorporation of prior information, quantification of uncertainty, model selection and out-of-sample forecasting. The use of our methodology is illustrated in an application relevant to e-Health, where we investigate rest-activity rhythms using telemetric activity data collected via a wearable sensing device.
stat