prompt
stringlengths
1.74k
34.3k
ref
stringlengths
4
432
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: modelscope/normal-depth-diffusion # Path: ldm/camera_utils.py def get_camera(num_frames, elevation=15, azimuth_start=0, azimuth_span=360, blender_coord=True, camera_distance=1.): angle_gap = azimuth_span / num_frames cameras = [] for azimuth in np.arange(azimuth_start, azimuth_span + azimuth_start, angle_gap): camera_matrix = create_camera_to_world_matrix(elevation, azimuth, camera_distance) if blender_coord: camera_matrix = convert_opengl_to_blender(camera_matrix) cameras.append(camera_matrix.flatten()) return torch.tensor(np.stack(cameras, 0)).float() # Path: ldm/models/diffusion/ddim.py class DDIMSampler(object): def __init__(self, model, schedule='linear', **kwargs): super().__init__() self.model = model self.ddpm_num_timesteps = model.num_timesteps self.schedule = schedule def register_buffer(self, name, attr): if type(attr) == torch.Tensor: if attr.device != torch.device('cuda'): attr = attr.to(torch.device('cuda')) setattr(self, name, attr) def make_schedule(self, ddim_num_steps, ddim_discretize='uniform', ddim_eta=0., verbose=True): self.ddim_timesteps = make_ddim_timesteps( ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps, num_ddpm_timesteps=self.ddpm_num_timesteps, verbose=verbose) alphas_cumprod = self.model.alphas_cumprod assert alphas_cumprod.shape[ 0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep' to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model .device) self.register_buffer('betas', to_torch(self.model.betas)) self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev)) # calculations for diffusion q(x_t | x_{t-1}) and others self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu()))) self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu()))) self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu()))) self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu()))) self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1))) # ddim sampling parameters ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters( alphacums=alphas_cumprod.cpu(), ddim_timesteps=self.ddim_timesteps, eta=ddim_eta, verbose=verbose) self.register_buffer('ddim_sigmas', ddim_sigmas) self.register_buffer('ddim_alphas', ddim_alphas) self.register_buffer('ddim_alphas_prev', ddim_alphas_prev) self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas)) sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (1 - self.alphas_cumprod / self.alphas_cumprod_prev)) self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps) @torch.no_grad() def sample( self, S, batch_size, shape, conditioning=None, callback=None, normals_sequence=None, img_callback=None, quantize_x0=False, eta=0., mask=None, x0=None, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, verbose=True, x_T=None, log_every_t=100, unconditional_guidance_scale=1., unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... **kwargs): if conditioning is not None: if isinstance(conditioning, dict): cbs = conditioning[list(conditioning.keys())[0]].shape[0] if cbs != batch_size: print( f'Warning: Got {cbs} conditionings but batch-size is {batch_size}' ) else: if conditioning.shape[0] != batch_size: print( f'Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}' ) self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) # sampling C, H, W = shape size = (batch_size, C, H, W) samples, intermediates = self.ddim_sampling( conditioning, size, callback=callback, img_callback=img_callback, quantize_denoised=quantize_x0, mask=mask, x0=x0, ddim_use_original_steps=False, noise_dropout=noise_dropout, temperature=temperature, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, x_T=x_T, log_every_t=log_every_t, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=unconditional_conditioning, **kwargs) return samples, intermediates @torch.no_grad() def ddim_sampling(self, cond, shape, x_T=None, ddim_use_original_steps=False, callback=None, timesteps=None, quantize_denoised=False, mask=None, x0=None, img_callback=None, log_every_t=100, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, unconditional_guidance_scale=1., unconditional_conditioning=None, **kwargs): device = self.model.betas.device b = shape[0] if x_T is None: img = torch.randn(shape, device=device) else: img = x_T if timesteps is None: timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps elif timesteps is not None and not ddim_use_original_steps: subset_end = int( min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1 timesteps = self.ddim_timesteps[:subset_end] intermediates = {'x_inter': [img], 'pred_x0': [img]} time_range = reversed(range( 0, timesteps)) if ddim_use_original_steps else np.flip(timesteps) total_steps = timesteps if ddim_use_original_steps else timesteps.shape[ 0] iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps) for i, step in enumerate(iterator): index = total_steps - i - 1 ts = torch.full((b, ), step, device=device, dtype=torch.long) if mask is not None: assert x0 is not None img_orig = self.model.q_sample( x0, ts) # TODO: deterministic forward pass? img = img_orig * mask + (1. - mask) * img outs = self.p_sample_ddim( img, cond, ts, index=index, use_original_steps=ddim_use_original_steps, quantize_denoised=quantize_denoised, temperature=temperature, noise_dropout=noise_dropout, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=unconditional_conditioning, **kwargs) img, pred_x0 = outs if callback: callback(i) if img_callback: img_callback(pred_x0, i) if index % log_every_t == 0 or index == total_steps - 1: intermediates['x_inter'].append(img) intermediates['pred_x0'].append(pred_x0) return img, intermediates @torch.no_grad() def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None, **kwargs): b, *_, device = *x.shape, x.device if unconditional_conditioning is None or unconditional_guidance_scale == 1.: model_output = self.model.apply_model(x, t, c) else: x_in = torch.cat([x] * 2) t_in = torch.cat([t] * 2) if isinstance(c, dict): assert isinstance(unconditional_conditioning, dict) c_in = dict() for k in c: if isinstance(c[k], list): c_in[k] = [ torch.cat( [unconditional_conditioning[k][i], c[k][i]]) for i in range(len(c[k])) ] elif isinstance(c[k], torch.Tensor): c_in[k] = torch.cat( [unconditional_conditioning[k], c[k]]) else: assert c[k] == unconditional_conditioning[k] c_in[k] = c[k] elif isinstance(c, list): c_in = list() assert isinstance(unconditional_conditioning, list) for i in range(len(c)): c_in.append( torch.cat([unconditional_conditioning[i], c[i]])) else: c_in = torch.cat([unconditional_conditioning, c]) model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) # model_t = self.model.apply_model(x, t, c, **kwargs) # model_uncond = self.model.apply_model(x, t, unconditional_conditioning, **kwargs) model_output = model_uncond + unconditional_guidance_scale * ( model_t - model_uncond) if self.model.parameterization == 'v': print('using v!') e_t = self.model.predict_eps_from_z_and_v(x, t, model_output) else: e_t = model_output if score_corrector is not None: assert self.model.parameterization == 'eps', 'not implemented' e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs) alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas # select parameters corresponding to the currently considered timestep a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device) # current prediction for x_0 if self.model.parameterization != 'v': pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() else: pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output) if quantize_denoised: pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) if dynamic_threshold is not None: raise NotImplementedError() # direction pointing to x_t dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature if noise_dropout > 0.: noise = torch.nn.functional.dropout(noise, p=noise_dropout) x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise return x_prev, pred_x0 @torch.no_grad() def stochastic_encode(self, x0, t, use_original_steps=False, noise=None): # fast, but does not allow for exact reconstruction # t serves as an index to gather the correct alphas if use_original_steps: sqrt_alphas_cumprod = self.sqrt_alphas_cumprod sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod else: sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas) sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas if noise is None: noise = torch.randn_like(x0) return ( extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 + extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise) @torch.no_grad() def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None, use_original_steps=False, **kwargs): timesteps = np.arange(self.ddpm_num_timesteps ) if use_original_steps else self.ddim_timesteps timesteps = timesteps[:t_start] time_range = np.flip(timesteps) total_steps = timesteps.shape[0] iterator = tqdm(time_range, desc='Decoding image', total=total_steps) x_dec = x_latent for i, step in enumerate(iterator): index = total_steps - i - 1 ts = torch.full((x_latent.shape[0], ), step, device=x_latent.device, dtype=torch.long) x_dec, _ = self.p_sample_ddim( x_dec, cond, ts, index=index, use_original_steps=use_original_steps, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=unconditional_conditioning, **kwargs) return x_dec # Path: ldm/util.py def instantiate_from_config(config): if not 'target' in config: print(config) if config == '__is_first_stage__': return None elif config == '__is_unconditional__': return None raise KeyError('Expected key `target` to instantiate.') return get_obj_from_str(config['target'])(**config.get('params', dict())) # Path: model_zoo.py def build_model(model_name, ckpt_path=None, cache_dir=None, return_cfg=False, strict=True): if not model_name in PRETRAINED_MODELS: raise RuntimeError( f'Model name {model_name} is not a pre-trained model. Available models are:\n- ' + \ '\n- '.join(PRETRAINED_MODELS.keys()) ) model_info = PRETRAINED_MODELS[model_name] # Instiantiate the model print(f"Loading model from config: {model_info['config']}") config_file = os.path.join(REPO_DIR, model_info['config']) assert os.path.exists(config_file) config = OmegaConf.load(config_file) # loading from ema_model model = instantiate_from_config(config.model) if ckpt_path.endswith('_ema.ckpt'): ema_ckpt_path = ckpt_path else: ema_ckpt_path = os.path.splitext(ckpt_path)[0] + '_ema.ckpt' # model_ckpt = torch.load(ckpt_path, map_location='cpu')['state_dict'] # model_ckpt = extract_ema(model, model_ckpt) print(ema_ckpt_path) if os.path.exists(ema_ckpt_path): print(f'load from ema_ckpt:{ema_ckpt_path}') ckpt_path = ema_ckpt_path model_ckpt = torch.load(ckpt_path, map_location='cpu')['state_dict'] else: model_ckpt = torch.load(ckpt_path, map_location='cpu') model_ckpt = extract_ema(model, model_ckpt['state_dict']) torch.save({'state_dict': model_ckpt}, ema_ckpt_path) model.load_state_dict(model_ckpt, strict=strict) if not return_cfg: return model else: return model, config # Path: scripts/t2i_mv.py import argparse import os import random import sys import numpy as np import torch import torch.nn.functional as F from ldm.camera_utils import get_camera from ldm.models.diffusion.ddim import DDIMSampler from ldm.util import instantiate_from_config from model_zoo import build_model from omegaconf import OmegaConf from PIL import Image sys.path.append('./') def set_seed(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) def show_img(imgs): if imgs.shape[-1] == 4: tokens = [] rgb_tensors = imgs[..., :3] depth_tensors = imgs[..., 3:] depth_tensors = np.concatenate( [depth_tensors, depth_tensors, depth_tensors], -1) batch_size = rgb_tensors.shape[0] for rgb, depth in zip( np.split(rgb_tensors, batch_size // 4, axis=0), np.split(depth_tensors, batch_size // 4, axis=0)): tokens.append(rgb) tokens.append(depth) imgs = np.concatenate(tokens, axis=0) ret_imgs = [] for i in range(0, imgs.shape[0] // 4): cur_imgs = imgs[i * 4:(i + 1) * 4] cur_img_list = np.split(cur_imgs, 4) cur_imgs = np.concatenate(cur_img_list, axis=2)[0] ret_imgs.append(cur_imgs) imgs = np.concatenate(ret_imgs, axis=0) return imgs def t2i(model, image_size, prompt, uc, sampler, step=20,
scale=7.5,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: facebookresearch/DCI # Path: reproduction/crowdsourcing/annotate/preprocessing/mask_creation_utils.py TARGET_STEP = 100 SKIP_LOGGING = True class GroupItem(TypedDict): class FinalGroup(TypedDict): def jitter(size: float) -> float: def bound(v, lo, hi): def _load_final_group_from_json(json_dict) -> FinalGroup: def load_final_group_from_json(json_dict) -> FinalGrouping: def get_grid( step: int, top_left: Point, bottom_right: Point, noise: Optional[float] = None ) -> List[Point]: def get_missing_points_greedy(mask: np.ndarray, min_size: int) -> List[Point]: def get_points_from_canny_greedy( image: np.ndarray, distance_threshold: int = 40, jitter_amount: int = 40, num_extra: int = 3, ) -> List[Point]: def predict_all( predictor: "SamPredictor", image: np.ndarray, step: int = TARGET_STEP, top_left: Optional[Point] = None, bottom_right: Optional[Point] = None, containing_mask: Optional[np.ndarray] = None ) -> Dict[Point, List[EfficientMask]]: def predict_for_points( predictor: "SamPredictor", points: List[Point], ) -> Dict[Point, List[EfficientMask]]: def predict_for_bounded_points( predictor: "SamPredictor", image: np.ndarray, points: List[Point], mask: EfficientMask, ) -> Dict[Point, List[EfficientMask]]: def get_canny_masks( predictor: "SamPredictor", image: np.ndarray, distance_threshold: int = 40, jitter_amount: int = 40 ): def process_best_largest( results: Dict[Point, List[EfficientMask]], penalty_gap: float = 0.2, ) -> Dict[Point, Dict[MaskMergeKey, EfficientMask]]: def get_groups( processed_results: Dict[Point, Dict[MaskMergeKey, EfficientMask]], merge_key: MaskMergeKey = 'best', groups: Optional[GroupDict] = None, ) -> GroupDict: def get_groups_simple( sam_results: List[EfficientMask], ) -> FinalGrouping: def print_groups(groups: FinalGrouping) -> None: def _get_group_map(curr_g: FinalGrouping) -> Dict[Union[int, str], Any]: def refine_groups_simple(groups: FinalGrouping, merge_thresh = 0.03) -> FinalGrouping: def first_iteration_groups( predictor: "SamPredictor", processed_results: Dict[Point, Dict[MaskMergeKey, EfficientMask]], step: int, merge_key: MaskMergeKey = "largest", ) -> GroupDict: def get_subgroup_mask_lists( groups: GroupDict, base_masks: Dict[Point, List[EfficientMask]], canny_masks: Dict[Point, List[EfficientMask]], score_cutoff: float = 0.7, retain_best: bool = False, ) -> GroupDict: def compute_subgroups( group_mask_item: GroupItem, contained_in_thresh: float = 0.90, outer_sim_thresh: float = 0.77, mutual_sim_thresh: float = 0.85, retain_best: bool = False, ) -> GroupDict: def add_points_in_mask( predictor: "SamPredictor", image: np.ndarray, item: GroupItem, score_cutoff: float = 0.7, num_points = 5, ) -> GroupItem: def compute_subgroup_recursively( predictor: "SamPredictor", image: np.ndarray, group_mask_item: GroupItem, score_cutoff: float = 0.7, contained_in_thresh: float = 0.90, outer_sim_thresh: float = 0.77, mutual_sim_thresh: float = 0.85, retain_best: bool = False, depth: int = 0, ) -> FinalGroup: def compute_group_tree( predictor: "SamPredictor", image: np.ndarray, score_cutoff: float = 0.7, contained_in_thresh: float = 0.9, outer_sim_thresh: float = 0.8, mutual_sim_thresh: float = 0.9, retain_best: bool = False, ) -> FinalGrouping: # Path: reproduction/crowdsourcing/annotate/preprocessing/efficient_mask.py class EfficientMask(): """Class for more efficient mask mask over full numpy ndarrays""" def __init__(self, mask: np.ndarray, score: float, size: Optional[int] = None): self.mask = mask self.score = score self._size: Optional[int] = size self._tlbr: Optional[Tuple[Point, Point]] = None def __repr__(self) -> str: return f"<EM : {self.get_size()}, {self.get_tlbr()}>" def _reset_cache(self): self._tlbr = None self._size = None def set_to(self, other: "EfficientMask"): """Set this mask's values to that of other""" self.mask = other.mask self.score = other.score self._size = other._size self._tlbr = other._tlbr def get_tlbr(self) -> Tuple[Point, Point]: """Return the top left and bottom right bounds of this mask""" if self._tlbr is None: try: np_where = np.where(self.mask == True) left = np.min(np_where[1]) right = np.max(np_where[1]) + 1 top = np.min(np_where[0]) bottom = np.max(np_where[0]) + 1 except ValueError: top, left, bottom, right = (0, 0, 0, 0) self._tlbr = ((cast(Ydm, top), cast(Xdm, left)), (cast(Ydm, bottom), cast(Xdm, right))) return self._tlbr def get_size(self) -> int: """Return the total number of true pixels in this mask""" if self._size is None: (top, left), (bottom, right) = self.get_tlbr() self._size = np.sum(self.mask[top:bottom,left:right]*1) return self._size def get_density(self) -> float: """Provide rough density with number of pixels and bbox size""" size = self.get_size() (t, l), (b, r) = self.get_tlbr() area = (b-t) * (r-l) + 1 return size / area def dense_score(self) -> float: """Return the score times the density, a heuristic for quality""" return self.score * math.sqrt(self.get_density()) def _bbox_overlaps(self, other: "EfficientMask") -> bool: """Check points of opposite diagonals in each other bbox""" (t1, l1), (b1, r1) = self.get_tlbr() (t2, l2), (b2, r2) = other.get_tlbr() return ( point_in_box(t1, l1, other.get_tlbr()) or point_in_box(b1, r1, other.get_tlbr()) or point_in_box(t2, r2, self.get_tlbr()) or point_in_box(b2, l2, self.get_tlbr()) ) def _get_overlap_submask(self, other: "EfficientMask") -> np.ndarray: """Get a classic ndarray of pixels in the overlap between this and other""" if not self._bbox_overlaps(other): return np.array([]) (t1, l1), (b1, r1) = self.get_tlbr() (t2, l2), (b2, r2) = other.get_tlbr() maxt, maxl = max(t1, t2), max(l1, l2) minb, minr = min(b1, b2), min(r1, r2) return (self.mask[maxt:minb,maxl:minr]*1 + other.mask[maxt:minb,maxl:minr]*1 == 2) def _get_xor_submask(self, other: "EfficientMask") -> np.ndarray: """Get a classic ndarray of pixels in the xor between this and other""" if not self._bbox_overlaps(other): return np.array([]) (t1, l1), (b1, r1) = self.get_tlbr() (t2, l2), (b2, r2) = other.get_tlbr() mint, minl = min(t1, t2), min(l1, l2) maxb, maxr = max(b1, b2), max(r1, r2) return (self.mask[mint:maxb,minl:maxr]*1 + other.mask[mint:maxb,minl:maxr]*1 == 1) def intersect(self, other: "EfficientMask") -> "EfficientMask": """Return an efficient mask of the overlap between this and other""" res = np.full(self.mask.shape, False) submask = self._get_overlap_submask(other) if len(submask) != 0: (t1, l1), (b1, r1) = self.get_tlbr() (t2, l2), (b2, r2) = other.get_tlbr() maxt, maxl = max(t1, t2), max(l1, l2) minb, minr = min(b1, b2), min(r1, r2) res[maxt:minb,maxl:minr] = submask return EfficientMask(res, (self.score + other.score)/2) def mostly_contained_in(self, out_mask: "EfficientMask", thresh: float = 0.95) -> bool: """Returns True if thresh of self's pixels are in out_mask""" size_in = self.get_size() + 1 overlap = mask_size(self._get_overlap_submask(out_mask)) return overlap / size_in > thresh def overlaps_threshold(self, other: "EfficientMask", thresh: float = 0.50) -> bool: """Returns true if over thresh of either mask is contained in the other""" size_1 = self.get_size() + 1 size_2 = other.get_size() + 1 overlap = mask_size(self._get_overlap_submask(other)) return overlap / size_1 > thresh or overlap / size_2 > thresh def near_equivalent_to(self, other: "EfficientMask", thresh: float = 0.96) -> bool: """Return true if these two masks have prop overlapping pixels > thresh""" size_1 = self.get_size() + 1 size_2 = other.get_size() + 1 if size_1 / size_2 < thresh or size_2 / size_1 < thresh: return False difference = mask_size(self._get_xor_submask(other)) if (difference / size_1) > (1-thresh) or (difference / size_2) > (1-thresh): return False return True def union(self, other: "EfficientMask") -> "EfficientMask": """Return a new efficient mask unioning these""" new_mask = self.mask * 1 (t2, l2), (b2, r2) = other.get_tlbr() new_mask[t2:b2,l2:r2] += other.mask[t2:b2,l2:r2]*1 return EfficientMask( mask=cast(np.ndarray, new_mask > 0), score=(self.score + other.score) / 2, # may be more appropriate as weighted mask sizes ) def subtract(self, other: "EfficientMask") -> "EfficientMask": """Subtract the other mask from this one""" new_mask = self.mask * 1 (t2, l2), (b2, r2) = other.get_tlbr() new_mask[t2:b2,l2:r2] -= other.mask[t2:b2,l2:r2]*1 return EfficientMask( mask=cast(np.ndarray, new_mask == 1), score=self.score, ) # Path: reproduction/crowdsourcing/annotate/preprocessing/preprocess_assets_segev.py import time import sys import numpy as np import os import base64 import cv2 import json from segment_anything import sam_model_registry from segment_anything.automatic_mask_generator import SamAutomaticMaskGenerator from .mask_creation_utils import get_groups_simple, refine_groups_simple, FinalGrouping, FinalGroup, get_points_from_canny_greedy from .efficient_mask import EfficientMask from PIL import Image from io import BytesIO from typing import TypedDict, List #!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the CC-BY-NC license found in the # LICENSE file in the root directory of this source tree. LOW = 5000 # Low value into the images array to start at HIGH = 12000 # High value in images array to go to SETEV_MODEL_ROOT = 'FILL_ME' # TODO fill in ANNOTATE_ROOT = os.path.dirname(os.path.dirname(__file__)) SOURCE_DIR = os.path.join(ANNOTATE_ROOT, "assets/images") OUT_DIR = os.path.join(ANNOTATE_ROOT, "assets/masks") class SAMResult(TypedDict): segmentation: np.ndarray # the mask itself bbox: List[float] #XYWH of the mask area: int # area of the mask predicted_iou: float # model predicted quality point_coords: List[List[float]] # coords of this point stability_score: float # model stability score crop_box: List[float] # image crop used to generate this mask, XYWH def fold_group_tree(g: FinalGrouping): def fold_group(subg: FinalGroup): outer_mask = subg['outer_mask'] mask_img = Image.fromarray(np.uint8(outer_mask.mask * 255)) # type: ignore mask_img = mask_img.convert('1') maskbuf = BytesIO() mask_img.save(maskbuf, format='png', bits=1, optimize=True) mask_bytes = maskbuf.getvalue() as_base64 = base64.b64encode(mask_bytes) as_str = as_base64.decode('utf-8') (t, l), (b, r) = subg['outer_mask'].get_tlbr() return { 'outer_mask': as_str, 'area': int(outer_mask.get_size()), 'bounds': ((int(t), int(l)), (int(b), int(r))), 'subgroups': { idx: fold_group(subsubg) for (idx, subsubg) in subg['subgroups'].items() } } return { idx: fold_group(subg) for (idx, subg) in g.items() } def group_outputs(outputs: List[SAMResult]) -> FinalGrouping: as_efficient_masks: List[EfficientMask] = [ EfficientMask( res['segmentation'], res['predicted_iou'] * (res['stability_score'] ** 2), size=res['area'], ) for res in outputs ] in_order = sorted(as_efficient_masks, key=lambda x: x.get_size(), reverse=True) return get_groups_simple(in_order) def main(): all_images = os.listdir(SOURCE_DIR) target_images = all_images[LOW:HIGH] sam_checkpoint = SETEV_MODEL_ROOT model_type = "vit_h" device = "cuda" sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) sam.to(device=device) generator = SamAutomaticMaskGenerator( sam, points_per_side = 50, points_per_batch = 64, pred_iou_thresh = 0.8, stability_score_thresh = 0.94, stability_score_offset = 1.0, box_nms_thresh = 0.97, min_mask_region_area = 1000, output_mode = "binary_mask", )
first_start = time.time()
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: daswer123/xtts-webui # Path: scripts/resemble_enhance/common.py class Normalizer(nn.Module): def __init__(self, momentum=0.01, eps=1e-9): super().__init__() self.momentum = momentum self.eps = eps self.running_mean_unsafe: Tensor self.running_var_unsafe: Tensor self.register_buffer("running_mean_unsafe", torch.full([], torch.nan)) self.register_buffer("running_var_unsafe", torch.full([], torch.nan)) @property def started(self): return not torch.isnan(self.running_mean_unsafe) @property def running_mean(self): if not self.started: return torch.zeros_like(self.running_mean_unsafe) return self.running_mean_unsafe @property def running_std(self): if not self.started: return torch.ones_like(self.running_var_unsafe) return (self.running_var_unsafe + self.eps).sqrt() @torch.no_grad() def _ema(self, a: Tensor, x: Tensor): return (1 - self.momentum) * a + self.momentum * x def update_(self, x): if not self.started: self.running_mean_unsafe = x.mean() self.running_var_unsafe = x.var() else: self.running_mean_unsafe = self._ema(self.running_mean_unsafe, x.mean()) self.running_var_unsafe = self._ema(self.running_var_unsafe, (x - self.running_mean).pow(2).mean()) def forward(self, x: Tensor, update=True): if self.training and update: self.update_(x) self.stats = dict(mean=self.running_mean.item(), std=self.running_std.item()) x = (x - self.running_mean) / self.running_std return x def inverse(self, x: Tensor): return x * self.running_std + self.running_mean # Path: scripts/resemble_enhance/denoiser/inference.py @cache def load_denoiser(run_dir, device): if run_dir is None: return Denoiser(HParams()) hp = HParams.load(run_dir) denoiser = Denoiser(hp) path = run_dir / "ds" / "G" / "default" / "mp_rank_00_model_states.pt" state_dict = torch.load(path, map_location="cpu")["module"] denoiser.load_state_dict(state_dict) denoiser.eval() denoiser.to(device) return denoiser # Path: scripts/resemble_enhance/melspec.py class MelSpectrogram(nn.Module): def __init__(self, hp: HParams): """ Torch implementation of Resemble's mel extraction. Note that the values are NOT identical to librosa's implementation due to floating point precisions. """ super().__init__() self.hp = hp self.melspec = TorchMelSpectrogram( hp.wav_rate, n_fft=hp.n_fft, win_length=hp.win_size, hop_length=hp.hop_size, f_min=0, f_max=hp.wav_rate // 2, n_mels=hp.num_mels, power=1, normalized=False, # NOTE: Folowing librosa's default. pad_mode="constant", norm="slaney", mel_scale="slaney", ) self.register_buffer("stft_magnitude_min", torch.FloatTensor([hp.stft_magnitude_min])) self.min_level_db = 20 * np.log10(hp.stft_magnitude_min) self.preemphasis = hp.preemphasis self.hop_size = hp.hop_size def forward(self, wav, pad=True): """ Args: wav: [B, T] """ device = wav.device if wav.is_mps: wav = wav.cpu() self.to(wav.device) if self.preemphasis > 0: wav = torch.nn.functional.pad(wav, [1, 0], value=0) wav = wav[..., 1:] - self.preemphasis * wav[..., :-1] mel = self.melspec(wav) mel = self._amp_to_db(mel) mel_normed = self._normalize(mel) assert not pad or mel_normed.shape[-1] == 1 + wav.shape[-1] // self.hop_size # Sanity check mel_normed = mel_normed.to(device) return mel_normed # (M, T) def _normalize(self, s, headroom_db=15): return (s - self.min_level_db) / (-self.min_level_db + headroom_db) def _amp_to_db(self, x): return x.clamp_min(self.hp.stft_magnitude_min).log10() * 20 # Path: scripts/resemble_enhance/utils/distributed.py def get_free_port(): def fix_unset_envs(): def init_distributed(): def local_rank(): def global_rank(): def is_local_leader(): def is_global_leader(): def leader_only(leader_only_type, fn: Callable | None = None, boardcast_return=False) -> Callable: def wrapper(fn): def wrapped(*args, **kwargs): # Path: scripts/resemble_enhance/utils/train_loop.py class TrainLoop: _ = KW_ONLY run_dir: Path train_dl: DataLoader load_G: EngineLoader feed_G: GenFeeder load_D: EngineLoader | None = None feed_D: DisFeeder | None = None update_every: int = 5_000 eval_every: int = 5_000 backup_steps: tuple[int, ...] = (5_000, 100_000, 500_000) device: str = "cuda" eval_fn: EvalFn | None = None gan_training_start_step: int | None = None @property def global_step(self): return self.engine_G.global_step # How many steps have been completed? @property def eval_dir(self) -> Path | None: if self.eval_every != 0: eval_dir = self.run_dir.joinpath("eval") eval_dir.mkdir(exist_ok=True) else: eval_dir = None return eval_dir @property def viz_dir(self) -> Path: return Path(self.run_dir / "viz") def make_current_step_viz_path(self, name: str, suffix: str) -> Path: path = (self.viz_dir / name / f"{self.global_step}").with_suffix(suffix) path.parent.mkdir(exist_ok=True, parents=True) return path def __post_init__(self): engine_G = self.load_G(self.run_dir) if self.load_D is None: engine_D = None else: engine_D = self.load_D(self.run_dir) self.engine_G = engine_G self.engine_D = engine_D @property def model_G(self): return self.engine_G.module @property def model_D(self): if self.engine_D is None: return None return self.engine_D.module def save_checkpoint(self, tag="default"): engine_G = self.engine_G engine_D = self.engine_D engine_G.save_checkpoint(tag=tag) if engine_D is not None: engine_D.save_checkpoint(tag=tag) def run(self, max_steps: int = -1): self.set_running_loop_(self) train_dl = self.train_dl update_every = self.update_every eval_every = self.eval_every device = self.device eval_fn = self.eval_fn engine_G = self.engine_G engine_D = self.engine_D eval_dir = self.eval_dir init_step = self.global_step logger.info(f"\nTraining from step {init_step} to step {max_steps}") warmup_steps = {init_step + x for x in [50, 100, 500]} engine_G.train() if engine_D is not None: engine_D.train() gan_start_step = self.gan_training_start_step while True: loss_G = loss_D = 0 for batch in train_dl: torch.cuda.synchronize() start_time = time.time() # What's the step after this batch? step = self.global_step + 1 # Send data to the GPU batch = tree_map(lambda x: x.to(device) if isinstance(x, Tensor) else x, batch) stats = {"step": step} # Include step == 1 for sanity check gan_started = gan_start_step is not None and (step >= gan_start_step or step == 1) gan_started &= engine_D is not None # Generator step fake, losses = self.feed_G(engine=engine_G, batch=batch) # Train generator if gan_started: assert engine_D is not None assert self.feed_D is not None # Freeze the discriminator to let gradient go through fake engine_D.freeze_() losses |= self.feed_D(engine=engine_D, batch=None, fake=fake) loss_G = sum(losses.values()) stats |= {f"G/{k}": v.item() for k, v in losses.items()} stats |= {f"G/{k}": v for k, v in engine_G.gather_attribute("stats").items()} del losses assert isinstance(loss_G, Tensor) stats["G/loss"] = loss_G.item() stats["G/lr"] = engine_G.get_lr()[0] stats["G/grad_norm"] = engine_G.get_grad_norm() or 0 if loss_G.isnan().item(): logger.error("Generator loss is NaN, skipping step") continue engine_G.backward(loss_G) engine_G.step() # Discriminator step if gan_started: assert engine_D is not None assert self.feed_D is not None engine_D.unfreeze_() losses = self.feed_D(engine=engine_D, batch=batch, fake=fake.detach()) del fake assert isinstance(losses, dict) loss_D = sum(losses.values()) assert isinstance(loss_D, Tensor) stats |= {f"D/{k}": v.item() for k, v in losses.items()} stats |= {f"D/{k}": v for k, v in engine_D.gather_attribute("stats").items()} del losses if loss_D.isnan().item(): logger.error("Discriminator loss is NaN, skipping step") continue engine_D.backward(loss_D) engine_D.step() stats["D/loss"] = loss_D.item() stats["D/lr"] = engine_D.get_lr()[0] stats["D/grad_norm"] = engine_D.get_grad_norm() or 0 torch.cuda.synchronize() stats["elapsed_time"] = time.time() - start_time stats = tree_map(lambda x: float(f"{x:.4g}") if isinstance(x, float) else x, stats) logger.info(json.dumps(stats, indent=0)) command = non_blocking_input() evaling = step % eval_every == 0 or step in warmup_steps or command.strip() == "eval" if eval_fn is not None and is_global_leader() and eval_dir is not None and evaling: engine_G.eval() eval_fn(engine_G, eval_dir=eval_dir) engine_G.train() if command.strip() == "quit": logger.info("Training paused") self.save_checkpoint("default") return if command.strip() == "backup" or step in self.backup_steps: logger.info("Backing up") self.save_checkpoint(tag=f"backup_{step:07d}") if step % update_every == 0 or command.strip() == "save": self.save_checkpoint(tag="default") if step == max_steps: logger.info("Training finished") self.save_checkpoint(tag="default") return @classmethod def set_running_loop_(cls, loop): assert isinstance(loop, cls), f"Expected {cls}, got {type(loop)}" cls._running_loop: cls = loop @classmethod def get_running_loop(cls) -> "TrainLoop | None": if hasattr(cls, "_running_loop"): assert isinstance(cls._running_loop, cls) return cls._running_loop return None @classmethod def get_running_loop_global_step(cls) -> int | None: if loop := cls.get_running_loop(): return loop.global_step return None @classmethod def get_running_loop_viz_path(cls, name: str, suffix: str) -> Path | None: if loop := cls.get_running_loop(): return loop.make_current_step_viz_path(name, suffix) return None # Path: scripts/resemble_enhance/enhancer/hparams.py class HParams(HParamsBase): cfm_solver_method: str = "midpoint" cfm_solver_nfe: int = 64 cfm_time_mapping_divisor: int = 4 univnet_nc: int = 96 lcfm_latent_dim: int = 64 lcfm_training_mode: str = "ae" lcfm_z_scale: float = 5 vocoder_extra_dim: int = 32 gan_training_start_step: int | None = 5_000 enhancer_stage1_run_dir: Path | None = None denoiser_run_dir: Path | None = None # Path: scripts/resemble_enhance/enhancer/lcfm/irmae.py class IRMAE(nn.Module): def __init__( self, input_dim, output_dim, latent_dim, hidden_dim=1024, num_irms=4, ): """ Args: input_dim: input dimension output_dim: output dimension latent_dim: latent dimension hidden_dim: hidden layer dimension num_irm_matrics: number of implicit rank minimization matrices norm: normalization layer """ self.input_dim = input_dim super().__init__() self.encoder = nn.Sequential( nn.Conv1d(input_dim, hidden_dim, 3, padding="same"), *[ResBlock(hidden_dim) for _ in range(4)], # Try to obtain compact representation (https://proceedings.neurips.cc/paper/2020/file/a9078e8653368c9c291ae2f8b74012e7-Paper.pdf) *[nn.Conv1d(hidden_dim if i == 0 else latent_dim, latent_dim, 1, bias=False) for i in range(num_irms)], nn.Tanh(), ) self.decoder = nn.Sequential( nn.Conv1d(latent_dim, hidden_dim, 3, padding="same"), *[ResBlock(hidden_dim) for _ in range(4)], nn.Conv1d(hidden_dim, output_dim, 1), ) self.head = nn.Sequential( nn.Conv1d(output_dim, hidden_dim, 3, padding="same"), nn.GELU(), nn.Conv1d(hidden_dim, input_dim, 1), ) self.estimator = Normalizer() def encode(self, x): """ Args: x: (b c t) tensor """ z = self.encoder(x) # (b c t) _ = self.estimator(z) # Estimate the glboal mean and std of z self.stats = {} self.stats["z_mean"] = z.mean().item() self.stats["z_std"] = z.std().item() self.stats["z_abs_68"] = z.abs().quantile(0.6827).item() self.stats["z_abs_95"] = z.abs().quantile(0.9545).item() self.stats["z_abs_99"] = z.abs().quantile(0.9973).item() return z def decode(self, z): """ Args: z: (b c t) tensor """ return self.decoder(z) def forward(self, x, skip_decoding=False): """ Args: x: (b c t) tensor skip_decoding: if True, skip the decoding step """ z = self.encode(x) # q(z|x) if skip_decoding: # This speeds up the training in cfm only mode decoded = None else: decoded = self.decode(z) # p(x|z) predicted = self.head(decoded) self.losses = dict(mse=F.mse_loss(predicted, x)) return IRMAEOutput(latent=z, decoded=decoded) # Path: scripts/resemble_enhance/enhancer/lcfm/lcfm.py CFM = "cfm" # Path: scripts/resemble_enhance/enhancer/lcfm/lcfm.py class LCFM(nn.Module): class Mode(Enum): AE = "ae" CFM = "cfm" def __init__(self, ae: IRMAE, cfm: CFM, z_scale: float = 1.0): super().__init__() self.ae = ae self.cfm = cfm self.z_scale = z_scale self._mode = None self._eval_tau = 0.5 @property def mode(self): return self._mode def set_mode_(self, mode): mode = self.Mode(mode) self._mode = mode if mode == mode.AE: freeze_(self.cfm) logger.info("Freeze cfm") elif mode == mode.CFM: freeze_(self.ae) logger.info("Freeze ae (encoder and decoder)") else: raise ValueError(f"Unknown training mode: {mode}") def get_running_train_loop(self): try: # Lazy import from ...utils.train_loop import TrainLoop return TrainLoop.get_running_loop() except ImportError: return None @property def global_step(self): loop = self.get_running_train_loop() if loop is None: return None return loop.global_step @torch.no_grad() def _visualize(self, x, y, y_): loop = self.get_running_train_loop() if loop is None: return plt.subplot(221) plt.imshow(y[0].detach().cpu().numpy(), aspect="auto", origin="lower", interpolation="none") plt.title("GT") plt.subplot(222) y_ = y_[:, : y.shape[1]] plt.imshow(y_[0].detach().cpu().numpy(), aspect="auto", origin="lower", interpolation="none") plt.title("Posterior") plt.subplot(223) z_ = self.cfm(x) y__ = self.ae.decode(z_) y__ = y__[:, : y.shape[1]] plt.imshow(y__[0].detach().cpu().numpy(), aspect="auto", origin="lower", interpolation="none") plt.title("C-Prior") del y__ plt.subplot(224) z_ = torch.randn_like(z_) y__ = self.ae.decode(z_) y__ = y__[:, : y.shape[1]] plt.imshow(y__[0].detach().cpu().numpy(), aspect="auto", origin="lower", interpolation="none") plt.title("Prior") del z_, y__ path = loop.make_current_step_viz_path("recon", ".png") path.parent.mkdir(exist_ok=True, parents=True) plt.tight_layout() plt.savefig(path, dpi=500) plt.close() def _scale(self, z: Tensor): return z * self.z_scale def _unscale(self, z: Tensor): return z / self.z_scale def eval_tau_(self, tau): self._eval_tau = tau def forward(self, x, y: Tensor | None = None, ψ0: Tensor | None = None): """ Args: x: (b d t), condition mel y: (b d t), target mel ψ0: (b d t), starting mel """ if self.mode == self.Mode.CFM: self.ae.eval() # Always set to eval when training cfm if ψ0 is not None: ψ0 = self._scale(self.ae.encode(ψ0)) if self.training: tau = torch.rand_like(ψ0[:, :1, :1]) else: tau = self._eval_tau ψ0 = tau * torch.randn_like(ψ0) + (1 - tau) * ψ0 if y is None: if self.mode == self.Mode.AE: with torch.no_grad(): training = self.ae.training self.ae.eval() z = self.ae.encode(x) self.ae.train(training) else: z = self._unscale(self.cfm(x, ψ0=ψ0)) h = self.ae.decode(z) else: ae_output: IRMAEOutput = self.ae(y, skip_decoding=self.mode == self.Mode.CFM) if self.mode == self.Mode.CFM: _ = self.cfm(x, self._scale(ae_output.latent.detach()), ψ0=ψ0) h = ae_output.decoded if h is not None and self.global_step is not None and self.global_step % 100 == 0: self._visualize(x[:1], y[:1], h[:1]) return h # Path: scripts/resemble_enhance/enhancer/univnet/univnet.py class UnivNet(nn.Module): @property def d_noise(self): return 128 @property def strides(self): return [7, 5, 4, 3] @property def dilations(self): return [1, 3, 9, 27] @property def nc(self): return self.hp.univnet_nc @property def scale_factor(self) -> int: return self.hp.hop_size def __init__(self, hp: HParams, d_input): super().__init__() self.d_input = d_input self.hp = hp self.blocks = nn.ModuleList( [ LVCBlock( self.nc, d_input, stride=stride, dilations=self.dilations, cond_hop_length=hop_length, kpnet_conv_size=3, ) for stride, hop_length in zip(self.strides, np.cumprod(self.strides)) ] ) self.conv_pre = weight_norm(nn.Conv1d(self.d_noise, self.nc, 7, padding=3, padding_mode="reflect")) self.conv_post = nn.Sequential( nn.LeakyReLU(0.2), weight_norm(nn.Conv1d(self.nc, 1, 7, padding=3, padding_mode="reflect")), nn.Tanh(), ) self.mrstft = MRSTFTLoss(hp) @property def eps(self): return 1e-5 def forward(self, x: Tensor, y: Tensor | None = None, npad=10): """ Args: x: (b c t), acoustic features y: (b t), waveform Returns: z: (b t), waveform """ assert x.ndim == 3, "x must be 3D tensor" assert y is None or y.ndim == 2, "y must be 2D tensor" assert x.shape[1] == self.d_input, f"x.shape[1] must be {self.d_input}, but got {x.shape}" assert npad >= 0, "npad must be positive or zero" x = F.pad(x, (0, npad), "constant", 0) z = torch.randn(x.shape[0], self.d_noise, x.shape[2]).to(x) z = self.conv_pre(z) # (b c t) for block in self.blocks: z = block(z, x) # (b c t) z = self.conv_post(z) # (b 1 t) z = z[..., : -self.scale_factor * npad] z = z.squeeze(1) # (b t) if y is not None: self.losses = self.mrstft(z, y) return z # Path: scripts/resemble_enhance/enhancer/enhancer.py import logging import matplotlib.pyplot as plt import pandas as pd import torch from torch import Tensor, nn from torch.distributions import Beta from ..common import Normalizer from ..denoiser.inference import load_denoiser from ..melspec import MelSpectrogram from ..utils.distributed import global_leader_only from ..utils.train_loop import TrainLoop from .hparams import HParams from .lcfm import CFM, IRMAE, LCFM from .univnet import UnivNet logger = logging.getLogger(__name__) def _maybe(fn): def _fn(*args): if args[0] is None: return None return fn(*args) return _fn def _normalize_wav(x: Tensor): return x / (x.abs().max(dim=-1, keepdim=True).values + 1e-7) class Enhancer(nn.Module): def __init__(self, hp: HParams): super().__init__() self.hp = hp n_mels = self.hp.num_mels vocoder_input_dim = n_mels + self.hp.vocoder_extra_dim latent_dim = self.hp.lcfm_latent_dim self.lcfm = LCFM( IRMAE(
input_dim=n_mels,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: FrozenBurning/PrimDiffusion # Path: dva/ray_marcher.py class RayMarcher(nn.Module): def __init__( self, image_height, image_width, volradius, fadescale=8.0, fadeexp=8.0, dt=1.0, ray_subsample_factor=1, accum=2, termthresh=0.99, blocksize=None, with_t_img=True, chlast=False, assets=None, ): super().__init__() # TODO: add config? self.image_height = image_height self.image_width = image_width self.volradius = volradius self.dt = dt self.fadescale = fadescale self.fadeexp = fadeexp # NOTE: this seems to not work for other configs? if blocksize is None: blocksize = (8, 16) self.blocksize = blocksize self.with_t_img = with_t_img self.chlast = chlast self.accum = accum self.termthresh = termthresh base_pixel_coords = th.stack( th.meshgrid( th.arange(self.image_height, dtype=th.float32), th.arange(self.image_width, dtype=th.float32), )[::-1], dim=-1, ) self.register_buffer("base_pixel_coords", base_pixel_coords, persistent=False) self.fixed_bvh_cache = {-1: (th.empty(0), th.empty(0), th.empty(0))} self.ray_subsample_factor = ray_subsample_factor def _set_pix_coords(self): dev = self.base_pixel_coords.device self.base_pixel_coords = th.stack( th.meshgrid( th.arange(self.image_height, dtype=th.float32, device=dev), th.arange(self.image_width, dtype=th.float32, device=dev), )[::-1], dim=-1, ) def resize(self, h: int, w: int): self.image_height = h self.image_width = w self._set_pix_coords() def forward( self, prim_rgba: th.Tensor, prim_pos: th.Tensor, prim_rot: th.Tensor, prim_scale: th.Tensor, K: th.Tensor, RT: th.Tensor, ray_subsample_factor: Optional[int] = None, ): """ Args: prim_rgba: primitive payload [B, K, 4, S, S, S], K - # of primitives, S - primitive size prim_pos: locations [B, K, 3] prim_rot: rotations [B, K, 3, 3] prim_scale: scales [B, K, 3] K: intrinsics [B, 3, 3] RT: extrinsics [B, 3, 4] Returns: a dict of tensors """ # TODO: maybe we can re-use mvpraymarcher? B = prim_rgba.shape[0] device = prim_rgba.device # TODO: this should return focal 2x2? camera = convert_camera_parameters(RT, K) camera = {k: v.contiguous() for k, v in camera.items()} dt = self.dt / self.volradius if ray_subsample_factor is None: ray_subsample_factor = self.ray_subsample_factor if ray_subsample_factor > 1 and self.training: pixel_coords = subsample_pixel_coords( self.base_pixel_coords, int(B), ray_subsample_factor ) elif ray_subsample_factor > 1: pixel_coords = resize_pixel_coords( self.base_pixel_coords, int(B), ray_subsample_factor, ) else: pixel_coords = ( self.base_pixel_coords[np.newaxis].expand(B, -1, -1, -1).contiguous() ) prim_pos = prim_pos / self.volradius focal = th.diagonal(camera["focal"], dim1=1, dim2=2).contiguous() # TODO: port this? raypos, raydir, tminmax = compute_raydirs( viewpos=camera["campos"], viewrot=camera["camrot"], focal=focal, princpt=camera["princpt"], pixelcoords=pixel_coords, volradius=self.volradius, ) rgba = mvpraymarch( raypos, raydir, stepsize=dt, tminmax=tminmax, algo=0, template=prim_rgba.permute(0, 1, 3, 4, 5, 2).contiguous(), warp=None, termthresh=self.termthresh, primtransf=(prim_pos, prim_rot, prim_scale), fadescale=self.fadescale, fadeexp=self.fadeexp, usebvh="fixedorder", chlast=True, ) rgba = rgba.permute(0, 3, 1, 2) preds = { "rgba_image": rgba, "pixel_coords": pixel_coords, } return preds # Path: dva/ray_marcher.py def generate_colored_boxes(template, prim_rot, alpha=10000.0, seed=123456): B = template.shape[0] output = template.clone() device = template.device lightdir = -3 * th.ones([B, 3], dtype=th.float32, device=device) lightdir = lightdir / th.norm(lightdir, p=2, dim=1, keepdim=True) zz, yy, xx = th.meshgrid( th.linspace(-1.0, 1.0, template.size(-1), device=device), th.linspace(-1.0, 1.0, template.size(-1), device=device), th.linspace(-1.0, 1.0, template.size(-1), device=device), ) primnormalx = th.where( (th.abs(xx) >= th.abs(yy)) & (th.abs(xx) >= th.abs(zz)), th.sign(xx) * th.ones_like(xx), th.zeros_like(xx), ) primnormaly = th.where( (th.abs(yy) >= th.abs(xx)) & (th.abs(yy) >= th.abs(zz)), th.sign(yy) * th.ones_like(xx), th.zeros_like(xx), ) primnormalz = th.where( (th.abs(zz) >= th.abs(xx)) & (th.abs(zz) >= th.abs(yy)), th.sign(zz) * th.ones_like(xx), th.zeros_like(xx), ) primnormal = th.stack([primnormalx, -primnormaly, -primnormalz], dim=-1) primnormal = primnormal / th.sqrt(th.sum(primnormal**2, dim=-1, keepdim=True)) output[:, :, 3, :, :, :] = alpha np.random.seed(seed) for i in range(template.size(1)): # generating a random color output[:, i, 0, :, :, :] = np.random.rand() * 255.0 output[:, i, 1, :, :, :] = np.random.rand() * 255.0 output[:, i, 2, :, :, :] = np.random.rand() * 255.0 # get light direction in local coordinate system? lightdir0 = lightdir mult = th.sum( lightdir0[:, None, None, None, :] * primnormal[np.newaxis], dim=-1 )[:, np.newaxis, :, :, :].clamp(min=0.2) output[:, i, :3, :, :, :] *= 1.4 * mult return output # Path: primdiffusion/dataset/renderpeople_crossid_dataset.py class RenderPeopleSViewDataset(Dataset): def __init__( self, root_dir, subject_ids, smpl_poses, image, image_mask, image_part_mask, cam_path, frame_list=None, cameras=None, cond_cameras=None, sample_cameras=True, camera_id=None, image_height=1024, image_width=1024, is_train=True, **kwargs, ): super().__init__() # subject ids is a text file contains list of subject ids self.image_height = image_height self.image_width = image_width self.ref_frame = 0 with open(subject_ids, 'r') as f: human_list = f.read().splitlines() self.subject_ids = human_list self.root_dir = root_dir if frame_list is None: n_frames = len(os.listdir(os.path.join(self.root_dir, self.subject_ids[0], 'img', 'camera0000'))) self.frame_list = [str(fid) for fid in range(n_frames)] self.image_path = image self.image_mask_path = image_mask self.image_part_mask_path = image_part_mask self.is_train = is_train all_cameras = self.load_all_cameras(cam_path) # TODO: inference logics if not self.is_train: assert not sample_cameras assert camera_id is not None self.cameras = all_cameras self.cond_cameras = cond_cameras self.sample_cameras = sample_cameras self.camera_id = camera_id self.all_smpl = self.load_all_smpl(smpl_poses) def load_all_smpl(self, smpl_poses): all_smpl = {} for people_id in self.subject_ids: current_smpl_path = smpl_poses.format(people_id=people_id) smpl_param = dict(np.load(current_smpl_path, allow_pickle=True))['smpl'].item() poses = np.zeros((smpl_param['body_pose'].shape[0], 72)).astype(np.float32) poses[:, :3] = np.array(smpl_param['global_orient']).astype(np.float32) poses[:, 3:] = np.array(smpl_param['body_pose']).astype(np.float32) shapes = np.array(smpl_param['betas']).astype(np.float32) shapes = np.repeat(shapes[:], poses.shape[0], axis=0) Rh = smpl_param['global_orient'].astype(np.float32) Th = smpl_param['transl'].astype(np.float32) current_smpl = { 'shapes': shapes, 'Rh': Rh * 0, #FIXME: hack 'Th': Th, 'poses': poses, } all_smpl[people_id] = current_smpl return all_smpl def load_all_cameras(self, camera_path): # input path to camera.json under synbody sequence # all_cameras is dict of dict all_cameras = {} for people_id in self.subject_ids: current_camera_path = camera_path.format(people_id=people_id) current_camera = {} with open(current_camera_path) as f: camera = json.load(f) for view_index in range(len(camera.keys())): K, R, T, _ = get_KRTD(camera, view_index) current_camera['camera{:04d}'.format(view_index)] = { "Rt": np.concatenate([R, T[..., None]], axis=1).astype(np.float32), "K": K.astype(np.float32), } for c in current_camera.values(): c["cam_pos"] = -np.dot(c["Rt"][:3, :3].T, c["Rt"][:3, 3]) c["Rt"][:, -1] *= 1000.0 all_cameras[people_id] = current_camera return all_cameras def __len__(self): return len(self.subject_ids) * 200 def __getitem__(self, idx): # idx is subject_id wise index people_id = self.subject_ids[idx % len(self.subject_ids)] # random sample frames frame = ( random.choice(self.frame_list) ) # random sample cameras camera_id = ( random.choice(list(self.cameras[people_id].keys())) if self.sample_cameras else self.camera_id ) fmts = dict(people_id=people_id, frame=int(frame), camera=camera_id) sample = {"index": idx, **fmts} sample.update(load_smpl_params(self.all_smpl[people_id], int(frame))) ref_frame_smpl = {'ref_' + k: v for k, v in load_smpl_params(self.all_smpl[people_id], int(self.ref_frame)).items()} sample.update(ref_frame_smpl) sample["image"] = np.transpose( cv2.imread(self.image_path.format(**fmts))[..., ::-1].astype(np.float32), axes=(2, 0, 1), ) # reading all the cond images if self.cond_cameras: sample["cond_image"] = [] sample["cond_Rt"] = [] sample["cond_K"] = [] # for cond_camera_id in self.cond_cameras: # FIXME: hack for random condition views cond_camera_id = random.choice(list(self.cameras[people_id].keys())) if True: cond_image = np.transpose( cv2.imread( self.image_path.format( people_id=people_id, frame=int(self.ref_frame), camera=cond_camera_id ) )[..., ::-1].astype(np.float32), axes=(2, 0, 1), ) sample["cond_image"].append(cond_image) sample["cond_Rt"].append(self.cameras[people_id][cond_camera_id]["Rt"]) sample["cond_K"].append(self.cameras[people_id][cond_camera_id]["K"]) for key in ["image", "K", "Rt"]: sample[f"cond_{key}"] = np.stack(sample[f"cond_{key}"], axis=0) sample["cond_cameras"] = self.cond_cameras[:] sample["image"] = np.transpose( cv2.imread(self.image_path.format(**fmts))[..., ::-1].astype(np.float32), axes=(2, 0, 1), ) image_mask = cv2.imread(self.image_mask_path.format(**fmts)) border = 3 kernel = np.ones((border, border), np.uint8) msk_erode = cv2.erode(image_mask.copy(), kernel)[np.newaxis, ..., 0] sample["image_mask"] = (msk_erode != 0).astype(np.float32) image_part_mask = cv2.imread(self.image_part_mask_path.format(**fmts)) part_msk_erode = cv2.erode(image_part_mask.copy(), kernel)[np.newaxis, ..., 0] sample["image_part_mask"] = part_msk_erode sample["image_bg"] = sample["image"] * ~(sample["image_part_mask"] != 0) sample.update(self.cameras[people_id][camera_id]) return sample def gen_inf_cameras(self, num_views = 5): training_views = self.cameras[self.subject_ids[0]] self.training_views = training_views num_training_views = len(training_views.keys()) interpolation_anchors = [] for view_index in range(num_training_views): Rt = training_views['camera{:04d}'.format(view_index)]['Rt'] K = training_views['camera{:04d}'.format(view_index)]['K'] rot = Rt[:, :3] trans = Rt[:, 3] interpolation_anchors.append((rot, trans)) interpolated_poses = interpolate_poses(interpolation_anchors, num_views) inf_camera = {} for people_id in self.subject_ids: current_camera = {} for view_index in range(len(interpolated_poses)): R, T = interpolated_poses[view_index] current_camera['camera{:04d}'.format(view_index)] = { "Rt": np.concatenate([R, T[..., None]], axis=1).astype(np.float32), "K": K.astype(np.float32), } for c in current_camera.values(): c["cam_pos"] = -np.dot(c["Rt"][:3, :3].T, c["Rt"][:3, 3]) # c["Rt"][:, -1] *= 1000.0 inf_camera[people_id] = current_camera self.inf_cameras = inf_camera def inf_sample(self, people_id, camera_id, frame_id, cond_sample): fmts = dict(people_id=people_id, frame=int(frame_id), camera=camera_id) sample = {} sample.update({**fmts}) sample.update(load_smpl_params(self.all_smpl[people_id], int(frame_id))) sample.update(self.inf_cameras[people_id][camera_id]) for k, v in sample.items(): if isinstance(v, np.ndarray): sample[k] = v[None, ...] sample.update(cond_sample) return sample def cond_sample(self, people_id): sample = {} # reading all the cond images if self.cond_cameras: sample["cond_image"] = [] sample["cond_Rt"] = [] sample["cond_K"] = [] cond_camera_id = random.choice(list(self.cameras[people_id].keys())) if True: cond_image = np.transpose( cv2.imread( self.image_path.format( people_id=people_id, frame=int(self.ref_frame), camera=cond_camera_id ) )[..., ::-1].astype(np.float32), axes=(2, 0, 1), ) sample["cond_image"].append(cond_image) sample["cond_Rt"].append(self.cameras[people_id][cond_camera_id]["Rt"]) sample["cond_K"].append(self.cameras[people_id][cond_camera_id]["K"]) for key in ["image", "K", "Rt"]: sample[f"cond_{key}"] = np.stack(sample[f"cond_{key}"], axis=0) sample["cond_cameras"] = self.cond_cameras[:] for k, v in sample.items(): if isinstance(v, np.ndarray): sample[k] = v[None, ...] return sample def inf_sample_wsmpl(self, people_id, camera_id, frame_id, cond_sample, smpl_param): fmts = dict(people_id=people_id, frame=int(frame_id), camera=camera_id) sample = {} sample.update({**fmts}) sample.update(load_smpl_params(smpl_param, int(frame_id))) sample.update(self.inf_cameras[people_id][camera_id]) for k, v in sample.items(): if isinstance(v, np.ndarray): sample[k] = v[None, ...] sample.update(cond_sample) return sample def sample_cam_smpl(self): people_id = random.choice(self.subject_ids) frame_id = random.choice(self.frame_list) camera_id = random.choice(list(self.cameras[people_id].keys())) fmts = dict(people_id=people_id, frame=int(frame_id), camera=camera_id) sample = {} sample.update({**fmts}) sample.update(load_smpl_params(self.all_smpl[people_id], int(frame_id))) sample.update(self.cameras[people_id][camera_id]) for k, v in sample.items(): if isinstance(v, np.ndarray): sample[k] = v[None, ...] return sample # Path: dva/io.py def load_static_assets_crossid_smpl(config): # with chumpy dependency!!! data_struct = read_pickle(config.data.smpl_topology) vt = np.load(os.path.join(os.path.dirname(config.data.smpl_topology), 'basicModel_vt.npy')) ft = np.load(os.path.join(os.path.dirname(config.data.smpl_topology), 'basicModel_ft.npy')) n_verts = data_struct["v_template"].shape[0] topology = AttrDict( dict( vi=data_struct["f"].astype(np.int64), vt=vt.astype(np.float32), vti=ft.astype(np.int64), n_verts=n_verts, ) ) topology.v2uv = compute_v2uv(topology.n_verts, topology.vi, topology.vti) nbs_idxs, nbs_weights = compute_neighbours(topology.n_verts, topology["vi"]) topology.nbs_idxs = nbs_idxs topology.nbs_weights = nbs_weights static_assets = AttrDict( dict( topology=topology, lbs_template_verts=data_struct["v_template"], smpl_path=config.smpl_dir, ) ) if "ref_frame" in config: current_smpl_path = config.data.smpl_poses.format(people_id='seq_000016-rp_alison_rigged_002') smpl_param = dict(np.load(current_smpl_path, allow_pickle=True))['smpl'].item() poses = np.zeros((smpl_param['body_pose'].shape[0], 72)).astype(np.float32) poses[:, :3] = np.array(smpl_param['global_orient']).astype(np.float32) poses[:, 3:] = np.array(smpl_param['body_pose']).astype(np.float32) shapes = np.array(smpl_param['betas']).astype(np.float32) shapes = np.repeat(shapes[:], poses.shape[0], axis=0) Rh = smpl_param['global_orient'].astype(np.float32) Th = smpl_param['transl'].astype(np.float32) current_smpl = { 'shapes': shapes, 'Rh': Rh * 0, #FIXME: hack 'Th': Th, 'poses': poses, } static_assets["ref_frame"] = {k: v[config.ref_frame][None, ...] for k, v in current_smpl.items()} return static_assets # Path: dva/io.py def load_from_config(config, **kwargs): """Instantiate an object given a config and arguments.""" assert "class_name" in config and "module_name" not in config config = copy.deepcopy(config) class_name = config.pop("class_name") object_class = load_class(class_name) return object_class(**config, **kwargs) # Path: dva/utils.py def to_device(values, device=None, non_blocking=True): """Transfer a set of values to the device. Args: values: a nested dict/list/tuple of tensors device: argument to `to()` for the underlying vector NOTE: if the device is not specified, using `th.cuda()` """ if device is None: device = th.device("cuda") if isinstance(values, dict): return {k: to_device(v, device=device) for k, v in values.items()} elif isinstance(values, tuple): return tuple(to_device(v, device=device) for v in values) elif isinstance(values, list): return [to_device(v, device=device) for v in values] elif isinstance(values, th.Tensor): return values.to(device, non_blocking=non_blocking) elif isinstance(values, nn.Module): return values.to(device) elif isinstance(values, np.ndarray): return th.from_numpy(values).to(device) else: return values # Path: dva/geom.py def make_postex(v, idxim, barim): return ( barim[None, :, :, 0, None] * v[:, idxim[:, :, 0]] + barim[None, :, :, 1, None] * v[:, idxim[:, :, 1]] + barim[None, :, :, 2, None] * v[:, idxim[:, :, 2]] ).permute(0, 3, 1, 2) # Path: dva/geom.py def compute_tbn(geom, vt, vi, vti): """Computes tangent, bitangent, and normal vectors given a mesh. Args: geom: [N, n_verts, 3] th.Tensor Vertex positions. vt: [n_uv_coords, 2] th.Tensor UV coordinates. vi: [..., 3] th.Tensor Face vertex indices. vti: [..., 3] th.Tensor Face UV indices. Returns: [..., 3] th.Tensors for T, B, N. """ v0 = geom[:, vi[..., 0]] v1 = geom[:, vi[..., 1]] v2 = geom[:, vi[..., 2]] vt0 = vt[vti[..., 0]] vt1 = vt[vti[..., 1]] vt2 = vt[vti[..., 2]] v01 = v1 - v0 v02 = v2 - v0 vt01 = vt1 - vt0 vt02 = vt2 - vt0 f = 1.0 / ( vt01[None, ..., 0] * vt02[None, ..., 1] - vt01[None, ..., 1] * vt02[None, ..., 0] ) tangent = f[..., None] * th.stack( [ v01[..., 0] * vt02[None, ..., 1] - v02[..., 0] * vt01[None, ..., 1], v01[..., 1] * vt02[None, ..., 1] - v02[..., 1] * vt01[None, ..., 1], v01[..., 2] * vt02[None, ..., 1] - v02[..., 2] * vt01[None, ..., 1], ], dim=-1, ) tangent = F.normalize(tangent, dim=-1) normal = F.normalize(th.cross(v01, v02, dim=3), dim=-1) bitangent = F.normalize(th.cross(tangent, normal, dim=3), dim=-1) return tangent, bitangent, normal # Path: visualize.py import os import sys import imageio import torch as th import numpy as np import random import logging from omegaconf import OmegaConf from dva.ray_marcher import RayMarcher, generate_colored_boxes from primdiffusion.dataset.renderpeople_crossid_dataset import RenderPeopleSViewDataset from dva.io import load_static_assets_crossid_smpl, load_from_config from dva.utils import to_device from dva.geom import make_postex, compute_tbn device = th.device("cuda") logger = logging.getLogger("visualize.py") def render_mvp_boxes(rm, batch, preds):
with th.no_grad():
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: ml-stat-Sustech/TorchCP # Path: torchcp/classification/predictors/classwise.py class ClassWisePredictor(SplitPredictor): """ Applications of Class-Conditional Conformal Predictor in Multi-Class Classification (Shi et al., 2013) paper: https://ieeexplore.ieee.org/document/6784618 :param score_function: non-conformity score function. :param model: a pytorch model. """ def __init__(self, score_function, model=None): super(ClassWisePredictor, self).__init__(score_function, model) self.q_hat = None def calculate_threshold(self, logits, labels, alpha): if alpha >= 1 or alpha <= 0: raise ValueError("Significance level 'alpha' must be in (0,1).") logits = logits.to(self._device) labels = labels.to(self._device) # Count the number of classes num_classes = logits.shape[1] self.q_hat = torch.zeros(num_classes, device=self._device) for label in range(num_classes): x_cal_tmp = logits[labels == label] y_cal_tmp = labels[labels == label] scores = self.score_function(x_cal_tmp, y_cal_tmp) self.q_hat[label] = self._calculate_conformal_value(scores, alpha) # Path: torchcp/classification/predictors/cluster.py class ClusterPredictor(SplitPredictor): """ Class-Conditional Conformal Prediction with Many Classes (Ding et al., 2023). paper: https://arxiv.org/abs/2306.09335. :param score_function: a non-conformity score function. :param model: a pytorch model. :param ratio_clustering: the ratio of examples in the calibration dataset used to cluster classes. :param num_clusters: the number of clusters. If ratio_clustering is "auto", the number of clusters is automatically computed. :param split: the method to split the dataset into clustering dataset and calibration set. Options are 'proportional' (sample proportional to distribution such that rarest class has n_clustering example), 'doubledip' (don't split and use all data for both steps, or 'random' (each example is assigned to clustering step with some fixed probability). """ def __init__(self, score_function, model=None, ratio_clustering="auto", num_clusters="auto", split='random', temperature=1): super(ClusterPredictor, self).__init__(score_function, model, temperature) self.__ratio_clustering = ratio_clustering self.__num_clusters = num_clusters self.__split = split def calculate_threshold(self, logits, labels, alpha): if alpha >= 1 or alpha <= 0: raise ValueError("Significance level 'alpha' must be in (0,1).") logits = logits.to(self._device) labels = labels.to(self._device) num_classes = logits.shape[1] scores = self.score_function(logits, labels) alpha = torch.tensor(alpha, device=self._device) classes_statistics = torch.tensor([torch.sum(labels == k).item() for k in range(num_classes)], device=self._device) # 1) Choose necessary parameters for Cluster algorithm if self.__ratio_clustering == 'auto' and self.__num_clusters == 'auto': n_min = torch.min(classes_statistics) n_thresh = self.__get_quantile_minimum(alpha) # Classes with fewer than n_thresh examples will be excluded from clustering n_min = torch.maximum(n_min, n_thresh) num_remaining_classes = torch.sum((classes_statistics >= n_min).float()) # Compute the number of clusters and the minium number of examples for each class n_clustering = (n_min * num_remaining_classes / (75 + num_remaining_classes)).clone().to( torch.int32).to(self._device) self.__num_clusters = torch.floor(n_clustering / 2).to(torch.int32) self.__ratio_clustering = n_clustering / n_min # 2) Split data clustering_scores, clustering_labels, cal_scores, cal_labels = self.__split_data(scores, labels, classes_statistics) # 3) Filter "rare" classes rare_classes = self.__get_rare_classes(clustering_labels, alpha, num_classes) # 4) Run clustering if (num_classes - len(rare_classes) > self.__num_clusters) and (self.__num_clusters > 1): # Filter out rare classes and re-index remaining_idx, filtered_labels, class_remapping = self.__remap_classes(clustering_labels, rare_classes) filtered_scores = clustering_scores[remaining_idx] # Compute embedding for each class and get class counts embeddings, class_cts = self.__embed_all_classes(filtered_scores, filtered_labels) kmeans = KMeans(n_clusters=int(self.__num_clusters), n_init=10).fit(X=embeddings.detach().cpu().numpy(), sample_weight=np.sqrt( class_cts.detach().cpu().numpy())) nonrare_class_cluster_assignments = torch.tensor(kmeans.labels_, device=self._device) cluster_assignments = - torch.ones((num_classes,), dtype=torch.int32, device=self._device) for cls, remapped_cls in class_remapping.items(): cluster_assignments[cls] = nonrare_class_cluster_assignments[remapped_cls] else: cluster_assignments = - torch.ones((num_classes,), dtype=torch.int32, device=self._device) # 5) Compute qhats for each cluster self.q_hat = self.__compute_cluster_specific_qhats(cluster_assignments, cal_scores, cal_labels, alpha) def __split_data(self, scores, labels, classes_statistics): if self.__split == 'proportional': # Split dataset along with fraction "frac_clustering" num_classes = classes_statistics.shape[0] n_k = torch.tensor([self.__ratio_clustering * classes_statistics[k] for k in range(num_classes)], device=self._device, dtype=torch.int32) idx1 = torch.zeros(labels.shape, dtype=torch.bool, device=self._device) for k in range(num_classes): # Randomly select n instances of class k idx = torch.argwhere(labels == k).flatten() random_indices = torch.randint(0, classes_statistics[k], (n_k[k],), device=self._device) selected_idx = idx[random_indices] idx1[selected_idx] = 1 clustering_scores = scores[idx1] clustering_labels = labels[idx1] cal_scores = scores[~idx1] cal_labels = labels[~idx1] elif self.__split == 'doubledip': clustering_scores, clustering_labels = scores, labels cal_scores, cal_labels = scores, labels elif self.__split == 'random': # Each point is assigned to clustering set w.p. frac_clustering idx1 = torch.rand(size=(len(labels),), device=self._device) < self.__ratio_clustering clustering_scores = scores[idx1] clustering_labels = labels[idx1] cal_scores = scores[~idx1] cal_labels = labels[~idx1] else: raise Exception("Invalid split method. Options are 'proportional', 'doubledip', and 'random'") return clustering_scores, clustering_labels, cal_scores, cal_labels def __get_quantile_minimum(self, alpha): """ Compute smallest n such that ceil((n+1)*(1-alpha)/n) <= 1 """ n = torch.tensor(0, device=alpha.device) while torch.ceil((n + 1) * (1 - alpha) / n) > 1: n += 1 return n def __get_rare_classes(self, labels, alpha, num_classes): """ Choose classes whose number is less than or equal to . """ thresh = self.__get_quantile_minimum(alpha) classes, cts = torch.unique(labels, return_counts=True) rare_classes = classes[cts < thresh].to(self._device) # Also included any classes that are so rare that we have 0 labels for it all_classes = torch.arange(num_classes, device=self._device) zero_ct_classes = all_classes[(all_classes.view(1, -1) != classes.view(-1, 1)).all(dim=0)] rare_classes = torch.concatenate((rare_classes, zero_ct_classes)) return rare_classes def __remap_classes(self, labels, rare_classes): """ Exclude classes in rare_classes and remap remaining classes to be 0-indexed :returns: - remaining_idx: Boolean array the same length as labels. Entry i is True if labels[i] is not in rare_classes - remapped_labels : Array that only contains the entries of labels that are not in rare_classes (in order) - remapping : Dict mapping old class index to new class index """ labels = labels.detach().cpu().numpy() rare_classes = rare_classes.detach().cpu().numpy() remaining_idx = ~np.isin(labels, rare_classes) remaining_labels = labels[remaining_idx] remapped_labels = np.zeros(remaining_labels.shape, dtype=int) new_idx = 0 remapping = {} for i in range(len(remaining_labels)): if remaining_labels[i] in remapping: remapped_labels[i] = remapping[remaining_labels[i]] else: remapped_labels[i] = new_idx remapping[remaining_labels[i]] = new_idx new_idx += 1 return torch.from_numpy(remaining_idx).to(self._device), torch.tensor(remapped_labels, device=self._device), remapping def __embed_all_classes(self, scores_all, labels, q=[0.5, 0.6, 0.7, 0.8, 0.9]): """ :param scores_all: num_instances-length array where scores_all[i] = score of true class for instance i. :param labels: num_instances-length array of true class labels. :param q: quantiles to include in embedding. :returns: - embeddings: num_classes x len(q) array where ith row is the embeddings of class i. - cts: num_classes-length array where cts[i] = # of times class i appears in labels . """ num_classes = len(torch.unique(labels)) embeddings = torch.zeros((num_classes, len(q)), device=self._device) cts = torch.zeros((num_classes,), device=self._device) for i in range(num_classes): if len(scores_all.shape) > 1: raise DimensionError(f"Expected 1-dimension, but got {len(scores_all.shape)}-dimension.") class_i_scores = scores_all[labels == i] cts[i] = class_i_scores.shape[0] # Computes the q-quantiles of samples and returns the vector of quantiles embeddings[i, :] = torch.quantile(class_i_scores, torch.tensor(q, device=self._device)) return embeddings, cts def __compute_cluster_specific_qhats(self, cluster_assignments, cal_class_scores, cal_true_labels, alpha): ''' Computes cluster-specific quantiles (one for each class) that will result in marginal coverage of (1-alpha) :param cluster_assignments: num_classes length array where entry i is the index of the cluster that class i belongs to. Rare classes can be assigned to cluster -1 and they will automatically be given as default_qhat. :param cal_class_scores: cal_class_scores[i] is the score for instance i. :param cal_true_labels: true class labels for instances :param alpha: Desired coverage level :return : num_classes length array where entry i is the quantile correspond to the cluster that class i belongs to. ''' # Map true class labels to clusters cal_true_clusters = torch.tensor([cluster_assignments[label] for label in cal_true_labels], device=self._device) num_clusters = torch.max(cluster_assignments) + 1 cluster_qhats = self.__compute_class_specific_qhats(cal_class_scores, cal_true_clusters, num_clusters, alpha) # Map cluster qhats back to classes num_classes = len(cluster_assignments) qhats_class = torch.tensor([cluster_qhats[cluster_assignments[k]] for k in range(num_classes)], device=self._device) return qhats_class def __compute_class_specific_qhats(self, cal_class_scores, cal_true_clusters, num_clusters, alpha): ''' Computes class-specific quantiles (one for each class) that will result in marginal coverage of (1-alpha) :param cal_class_scores: num_instances-length array where cal_class_scores[i] is the score for instance i :param cal_true_clusters: num_instances-length array of true class labels. If class -1 appears, it will be assigned the null_qhat value. It is appended as an extra entry of the returned q_hats so that q_hats[-1] = null_qhat. :param num_clusters: the number of clusters. :param alpha: Desired coverage level. :return: the threshold of each class ''' # Compute quantile q_hat that will result in marginal coverage of (1-alpha) null_qhat = self._calculate_conformal_value(cal_class_scores, alpha) q_hats = torch.zeros((num_clusters,), device=self._device) # q_hats[i] = quantile for class i for k in range(num_clusters): # Only select data for which k is true class idx = (cal_true_clusters == k) scores = cal_class_scores[idx] q_hats[k] = self._calculate_conformal_value(scores, alpha) if -1 in cal_true_clusters: q_hats = torch.concatenate((q_hats, torch.tensor([null_qhat], device=self._device))) return q_hats # Path: torchcp/classification/predictors/split.py class SplitPredictor(BasePredictor): """ Split Conformal Prediction (Vovk et a., 2005). Book: https://link.springer.com/book/10.1007/978-3-031-06649-8. :param score_function: non-conformity score function. :param model: a pytorch model. :param temperature: the temperature of Temperature Scaling. """ def __init__(self, score_function, model=None, temperature=1): super().__init__(score_function, model, temperature) ############################# # The calibration process ############################ def calibrate(self, cal_dataloader, alpha): self._model.eval() logits_list = [] labels_list = [] with torch.no_grad(): for examples in cal_dataloader: tmp_x, tmp_labels = examples[0].to(self._device), examples[1].to(self._device) tmp_logits = self._logits_transformation(self._model(tmp_x)).detach() logits_list.append(tmp_logits) labels_list.append(tmp_labels) logits = torch.cat(logits_list).float() labels = torch.cat(labels_list) self.calculate_threshold(logits, labels, alpha) def calculate_threshold(self, logits, labels, alpha): if alpha >= 1 or alpha <= 0: raise ValueError("Significance level 'alpha' must be in (0,1).") logits = logits.to(self._device) labels = labels.to(self._device) scores = self.score_function(logits, labels) self.q_hat = self._calculate_conformal_value(scores, alpha) def _calculate_conformal_value(self, scores, alpha): """ Calculate the 1-alpha quantile of scores. :param scores: non-conformity scores. :param alpha: a significance level. :return: the threshold which is use to construct prediction sets. """ if len(scores) == 0: warnings.warn( "The number of scores is 0, which is a invalid scores. To avoid program crash, the threshold is set as torch.inf.") return torch.inf qunatile_value = math.ceil(scores.shape[0] + 1) * (1 - alpha) / scores.shape[0] if qunatile_value > 1: warnings.warn( "The value of quantile exceeds 1. It should be a value in (0,1). To avoid program crash, the threshold is set as torch.inf.") return torch.inf return torch.quantile(scores, qunatile_value).to(self._device) ############################# # The prediction process ############################ def predict(self, x_batch): """ The input of score function is softmax probability. :param x_batch: a batch of instances. """ self._model.eval() if self._model != None: x_batch = self._model(x_batch.to(self._device)).float() x_batch = self._logits_transformation(x_batch).detach() sets = self.predict_with_logits(x_batch) return sets def predict_with_logits(self, logits, q_hat=None): """ The input of score function is softmax probability. if q_hat is not given by the function 'self.calibrate', the construction progress of prediction set is a naive method. :param logits: model output before softmax. :param q_hat: the conformal threshold. :return: prediction sets """ scores = self.score_function(logits).to(self._device) if q_hat is None: S = self._generate_prediction_set(scores, self.q_hat) else: S = self._generate_prediction_set(scores, q_hat) return S ############################# # The evaluation process ############################ def evaluate(self, val_dataloader): prediction_sets = [] labels_list = [] with torch.no_grad(): for examples in val_dataloader: tmp_x, tmp_label = examples[0].to(self._device), examples[1].to(self._device) prediction_sets_batch = self.predict(tmp_x) prediction_sets.extend(prediction_sets_batch) labels_list.append(tmp_label) val_labels = torch.cat(labels_list) res_dict = {"Coverage_rate": self._metric('coverage_rate')(prediction_sets, val_labels), "Average_size": self._metric('average_size')(prediction_sets, val_labels)} return res_dict # Path: torchcp/classification/scores/aps.py class APS(BaseScore): """ Adaptive Prediction Sets (Romano et al., 2020) paper :https://proceedings.neurips.cc/paper/2020/file/244edd7e85dc81602b7615cd705545f5-Paper.pdf """ def __call__(self, logits, label=None): assert len(logits.shape) <= 2, "The dimension of logits must be less than 2." if len(logits.shape) == 1: logits = logits.unsqueeze(0) probs = torch.softmax(logits, dim=-1) if label is None: return self._calculate_all_label(probs) else: return self._calculate_single_label(probs, label) def _calculate_all_label(self, probs): indices, ordered, cumsum = self._sort_sum(probs) U = torch.rand(probs.shape, device=probs.device) ordered_scores = cumsum - ordered * U _, sorted_indices = torch.sort(indices, descending=False, dim=-1) scores = ordered_scores.gather(dim=-1, index=sorted_indices) return scores def _sort_sum(self, probs): # ordered: the ordered probabilities in descending order # indices: the rank of ordered probabilities in descending order # cumsum: the accumulation of sorted probabilities ordered, indices = torch.sort(probs, dim=-1, descending=True) cumsum = torch.cumsum(ordered, dim=-1) return indices, ordered, cumsum def _calculate_single_label(self, probs, label): indices, ordered, cumsum = self._sort_sum(probs) U = torch.rand(indices.shape[0], device=probs.device) idx = torch.where(indices == label.view(-1, 1)) scores_first_rank = U * cumsum[idx] idx_minus_one = (idx[0], idx[1] - 1) scores_usual = U * ordered[idx] + cumsum[idx_minus_one] return torch.where(idx[1] == 0, scores_first_rank, scores_usual) # Path: torchcp/classification/scores/raps.py class RAPS(APS): """ Regularized Adaptive Prediction Sets (Angelopoulos et al., 2020) paper : https://arxiv.org/abs/2009.14193 :param penalty: the weight of regularization. When penalty = 0, RAPS=APS. :param kreg: the rank of regularization which is an integer in [0,labels_num]. """ def __init__(self, penalty, kreg=0): if penalty <= 0: raise ValueError("The parameter 'penalty' must be a positive value.") if kreg < 0: raise ValueError("The parameter 'kreg' must be a nonnegative value.") if type(kreg) != int: raise TypeError("The parameter 'kreg' must be a integer.") super(RAPS, self).__init__() self.__penalty = penalty self.__kreg = kreg def _calculate_all_label(self, probs): indices, ordered, cumsum = self._sort_sum(probs) U = torch.rand(probs.shape, device=probs.device) reg = torch.maximum(self.__penalty * (torch.arange(1, probs.shape[-1] + 1, device=probs.device) - self.__kreg), torch.tensor(0, device=probs.device)) ordered_scores = cumsum - ordered * U + reg _, sorted_indices = torch.sort(indices, descending=False, dim=-1) scores = ordered_scores.gather(dim=-1, index=sorted_indices) return scores def _calculate_single_label(self, probs, label): indices, ordered, cumsum = self._sort_sum(probs) U = torch.rand(indices.shape[0], device=probs.device) idx = torch.where(indices == label.view(-1, 1)) reg = torch.maximum(self.__penalty * (idx[1] + 1 - self.__kreg), torch.tensor(0).to(probs.device)) scores_first_rank = U * ordered[idx] + reg idx_minus_one = (idx[0], idx[1] - 1) scores_usual = U * ordered[idx] + cumsum[idx_minus_one] + reg return torch.where(idx[1] == 0, scores_first_rank, scores_usual) # Path: torchcp/classification/scores/saps.py class SAPS(APS): """ Sorted Adaptive Prediction Sets (Huang et al., 2023) paper: https://arxiv.org/abs/2310.06430 :param weight: the weight of label ranking. """ def __init__(self, weight): super(SAPS, self).__init__() if weight <= 0: raise ValueError("The parameter 'weight' must be a positive value.") self.__weight = weight def _calculate_all_label(self, probs): indices, ordered, cumsum = self._sort_sum(probs) ordered[:, 1:] = self.__weight cumsum = torch.cumsum(ordered, dim=-1) U = torch.rand(probs.shape, device=probs.device) ordered_scores = cumsum - ordered * U _, sorted_indices = torch.sort(indices, descending=False, dim=-1) scores = ordered_scores.gather(dim=-1, index=sorted_indices) return scores def _calculate_single_label(self, probs, label): indices, ordered, cumsum = self._sort_sum(probs) U = torch.rand(indices.shape[0], device=probs.device) idx = torch.where(indices == label.view(-1, 1)) scores_first_rank = U * cumsum[idx] scores_usual = self.__weight * (idx[1] - U) + ordered[:, 0] return torch.where(idx[1] == 0, scores_first_rank, scores_usual) # Path: torchcp/classification/scores/thr.py class THR(BaseScore): """ Threshold conformal predictors (Sadinle et al., 2016). paper : https://arxiv.org/abs/1609.00451. :param score_type: a transformation on logits. Default: "softmax". Optional: "softmax", "Identity", "log_softmax" or "log". """ def __init__(self, score_type="softmax") -> None: super().__init__() self.score_type = score_type if score_type == "Identity": self.transform = lambda x: x elif score_type == "softmax": self.transform = lambda x: torch.softmax(x, dim=- 1) elif score_type == "log_softmax": self.transform = lambda x: torch.log_softmax(x, dim=-1) elif score_type == "log": self.transform = lambda x: torch.log(x) else: raise NotImplementedError def __call__(self, logits, label=None): assert len(logits.shape) <= 2, "The dimension of logits must be less than 2." if len(logits.shape) == 1: logits = logits.unsqueeze(0) temp_values = self.transform(logits) if label is None: return self.__calculate_all_label(temp_values) else: return self.__calculate_single_label(temp_values, label) def __calculate_single_label(self, temp_values, label): return 1 - temp_values[torch.arange(label.shape[0], device=temp_values.device), label] def __calculate_all_label(self, temp_values): return 1 - temp_values # Path: torchcp/classification/utils/metrics.py class Metrics: def __call__(self, metric) -> Any: if metric not in METRICS_REGISTRY_CLASSIFICATION.registered_names(): raise NameError(f"The metric: {metric} is not defined in TorchCP.") return METRICS_REGISTRY_CLASSIFICATION.get(metric) # Path: torchcp/utils/common.py def fix_randomness(seed=0): """ Fix the random seed for python, torch, numpy. :param seed: the random seed """ np.random.seed(seed=seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) random.seed(seed) # Path: examples/common/dataset.py def build_dataset(dataset_name, transform=None, mode='train'): # path of usr usr_dir = os.path.expanduser('~') data_dir = os.path.join(usr_dir, "data") if dataset_name == 'imagenet': if transform is None: transform = trn.Compose([ trn.Resize(256), trn.CenterCrop(224), trn.ToTensor(), trn.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) dataset = dset.ImageFolder(data_dir + "/imagenet/val", transform) elif dataset_name == 'mnist': if transform is None: transform = trn.Compose([ trn.ToTensor(), trn.Normalize((0.1307,), (0.3081,)) ]) if mode == "train": dataset = dset.MNIST(data_dir, train=True, download=True, transform=transform) elif mode == "test": dataset = dset.MNIST(data_dir, train=False, download=True, transform=transform) else: raise NotImplementedError return dataset # Path: examples/imagenet_example.py import argparse import os import torch import torchvision import torchvision.datasets as dset import torchvision.transforms as trn from tqdm import tqdm from torchcp.classification.predictors import ClusterPredictor, ClassWisePredictor, SplitPredictor from torchcp.classification.scores import THR, APS, SAPS, RAPS from torchcp.classification import Metrics from torchcp.utils import fix_randomness from examples.common.dataset import build_dataset # Copyright (c) 2023-present, SUSTech-ML. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # if __name__ == '__main__': parser = argparse.ArgumentParser(description='') parser.add_argument('--seed', default=0, type=int) parser.add_argument('--alpha', default=0.1, type=float) args = parser.parse_args() fix_randomness(seed=args.seed) ####################################### # Loading ImageNet dataset and a pytorch model ####################################### model_name = 'ResNet101' model = torchvision.models.resnet101(weights="IMAGENET1K_V1", progress=True) model_device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(model_device)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: vintagedave/Fontimize # Path: fontimize.py def get_used_characters_in_html(html : str) -> set[chr]: soup = BeautifulSoup(html, 'html.parser') text = soup.get_text() return get_used_characters_in_str(text) # Path: fontimize.py class charPair: def __init__(self, first : chr, second : chr): self.first = first self.second = second def __str__(self): return "[" + self.first + "-" + self.second + "]" # Pairs are inclusive # For print()-ing def __repr__(self): return self.__str__() def __eq__(self, other): if isinstance(other, charPair): return self.first == other.first and self.second == other.second return False def get_range(self): if self.first == self.second: return _get_unicode_string(self.first) else: return _get_unicode_string(self.first) + '-' + _get_unicode_string(self.second, False) # Eg "U+0061-0071" # Path: fontimize.py def _get_char_ranges(chars : list[chr]): chars.sort() if not chars: return [] res : list[charPair] = [] first : chr = chars[0] prev_seen : chr = first for c in chars[1:]: expected_next_char = chr(ord(prev_seen) + 1) if c != expected_next_char: # non-sequential, so time to start a new set pair = charPair(first, prev_seen) res.append(pair) first = c prev_seen = c # add final set if it hasn't been added yet if (not res) or (res[-1].second != prev_seen): pair = charPair(first, prev_seen) res.append(pair) return res # Path: fontimize.py def optimise_fonts(text : str, fonts : list[str], fontpath : str = "", subsetname = "FontimizeSubset", verbose : bool = False, print_stats : bool = True) -> dict[str, typing.Any]: verbosity = 2 if verbose else 0 # ttf2web has 0, 1, 2, so match that to off and on res : dict[str, typing.Any] = {} res["css"] = {} # at this level there are no CSS files, include just to prevent errors for API consumer characters = get_used_characters_in_str(text) char_list = list(characters) if verbosity >= 2: print("Characters:") print(" " + str(char_list)) res["chars"] = characters # set of characters used in the input text char_ranges = _get_char_ranges(char_list) if verbosity >= 2: print("Character ranges:") print(" " + str(char_ranges)) uranges_str = ', '.join(r.get_range() for r in char_ranges) uranges = [[subsetname, uranges_str]] # subsetname here will be in the generated font, eg 'Arial.FontimizeSubset.woff2' if verbosity >= 2: print("Unicode ranges:") print(" " + uranges_str) res["uranges"] = uranges_str # list of unicode ranges matching the characters used in the input text # For each font, generate a new font file using only the used characters # By default, place it in the same folder as the respective font, unless fontpath is specified res["fonts"] = {} # dict of old font path -> new font path for font in fonts: assetdir = fontpath if fontpath else path.dirname(font) t2w = TTF2Web(font, uranges, assetdir=assetdir) woff2_list = t2w.generateWoff2(verbosity=verbosity) # print(woff2_list) assert len(woff2_list) == 1 # We only expect one font file to be generated, per font input assert len(woff2_list[0]) == 2 # Pair of font, plus ranges -- we only care about [0], the font res["fonts"][font] = woff2_list[0][0] if verbosity >= 2: print("Generated the following fonts from the originals:") for k in res["fonts"].keys(): print(" " + k + " ->\n " + res["fonts"][k]) if (verbosity >= 2) or print_stats: print("Results:") print(" Fonts processed: " + str(len(res["fonts"]))) if (verbosity == 1): # If 2, printed above already print(" Generated (use verbose output for input -> generated map):") for k in res["fonts"].keys(): print(" " + res["fonts"][k]) sum_orig = _get_file_size_sum(list(res["fonts"].keys())) sum_new = _get_file_size_sum(list(res["fonts"].values())) print(" Total original font size: " + _file_size_to_readable(sum_orig)) print(" Total optimised font size: " + _file_size_to_readable(sum_new)) savings = sum_orig - sum_new; savings_percent = savings / sum_orig * 100 print(" Savings: " + _file_size_to_readable(savings) + " less, which is " + str(round(savings_percent, 1)) + "%!") print("Thankyou for using Fontimize!") # A play on Font and Optimise, haha, so good pun clever. But seriously - hopefully a memorable name! return res # Path: fontimize.py def optimise_fonts_for_files(files : list[str], font_output_dir = "", subsetname = "FontimizeSubset", verbose : bool = False, print_stats : bool = True, fonts : list[str] = [], addtl_text : str = "") -> dict[str, typing.Any]: if (len(files) == 0) and len(addtl_text) == 0: # If you specify any text, input files are optional -- note, not documented, used for cmd line app print("Error: No input files. Exiting.") res = { "css" : [], "fonts" : [], "chars": set(), "uranges": [] } text = addtl_text css_files : set[str] = set() font_files : set[str] = set() for f in fonts: # user-specified input font files font_files.add(f) for f in files: file_ext = pathlib.Path(f).suffix.lower() with open(f, 'r') as file: if file_ext == '.html' or file_ext == '.htm': html = file.read() soup = BeautifulSoup(html, 'html.parser') # Extract used text text += soup.get_text() # Extract CSS files the HTML references for link in soup.find_all('link', href=True): if 'css' in link['href']: css_ref = link['href'] adjusted_css_path = _get_path(f, css_ref) # It'll be relative, so relative to the HTML file css_files.add(adjusted_css_path) else: # not HTML, treat as text text += file.read() # Sanity check that there is any text to process if len(text) == 0: print("Error: No text found in the input files or additional text. Exiting.") res = { "css" : [], "fonts" : [], "chars": set(), "uranges": [] } return res # Extract fonts from CSS files for css_file in css_files: with open(css_file, 'r') as file: css = file.read() # Extract the contents of all :before and :after CSS pseudo-elements; add these to the text pseudo_elements = _extract_pseudo_elements_content(css) for pe in pseudo_elements: text += pe # List of all fonts from @font-face src url: statements. This assumes they're all local files font_urls = _find_font_face_urls(css) for font_url in font_urls: # Only handle local files -- this does not support remote files adjusted_font_path = _get_path(adjusted_css_path, font_url) # Relative to the CSS file if path.isfile(adjusted_font_path): font_files.add(adjusted_font_path) else: # if verbose: print("Warning: Font file not found (may be remote not local?); skipping: " + font_url + " (resolved to " + adjusted_font_path + ")") if verbose: print("Found the following CSS files:") for css_file in css_files: print(" " + css_file) print("Found the following fonts:") for font_file in font_files: print(" " + font_file) # print("Found the following text:") # print(text) if len(font_files) == 0: print("Error: No fonts found in the input files. Exiting.") res = { "css" : css_files, "fonts" : [], "chars": set(), "uranges": [] } return res res = optimise_fonts(text, font_files, fontpath=font_output_dir, subsetname=subsetname, verbose=verbose, print_stats=print_stats) res["css"] = css_files return res; # Path: tests.py import os import unittest import sys from unittest.mock import patch from fontimize import get_used_characters_in_html, charPair, _get_char_ranges, optimise_fonts, optimise_fonts_for_files from fontTools.ttLib import woff2, TTFont def test_empty(self): self.assertEqual(_get_char_ranges([]), []) def test_single_char(self): self.assertEqual(_get_char_ranges(['a']), [charPair('a', 'a')]) def test_two_sequential_chars(self): self.assertEqual(_get_char_ranges(['a', 'b']), [charPair('a', 'b')]) def test_two_nonsequential_chars(self): self.assertEqual(_get_char_ranges(['a', 'c']), [charPair('a', 'a'), charPair('c', 'c')]) def test_multiple_ranges(self): self.assertEqual(_get_char_ranges(['a', 'b', 'd', 'e', 'f', 'h']), [charPair('a', 'b'), charPair('d', 'f'), charPair('h', 'h')]) # Used to verify the number of glyphs in a font matches the number of (unique!) characters in the test string def _count_glyphs_in_font(fontpath): # with open(fontpath, 'rb') as f: # wfr = woff2.WOFF2Reader(f) # cmap = font['cmap'] # return len(cmap.getBestCmap()) # font.flavor = None # Decompress the font data font = TTFont(fontpath)#flavor='woff2')#, sfntReader=wfr) font.flavor = None # Decompress the font data num_glyphs = font['maxp'].numGlyphs # Use font.getGlyphOrder() and https://fontdrop.info to examine, if weird return num_glyphs # Does a named glyph exist in the font? def _font_contains(fontpath, charname : str) -> bool: font = TTFont(fontpath) font.flavor = None # Decompress the font data return charname in font.getGlyphOrder() class TestOptimiseFonts(unittest.TestCase): # Contains unique characters, none repeated, a couple of capitals, some symbols, and 26 lowercase test_string = " ,.@QT_abcdefghijklmnopqrstuvwxyz" def test_optimise_fonts_with_single_font(self): result = optimise_fonts(self.test_string, ['tests/Spirax-Regular.ttf'], fontpath='tests/output', verbose=False, print_stats=False) # Basics self.assertIsInstance(result, dict) foundfonts = result["fonts"] self.assertIn('tests/Spirax-Regular.ttf', foundfonts) # Generated with the right name self.assertEqual(foundfonts['tests/Spirax-Regular.ttf'], 'tests/output/Spirax-Regular.FontimizeSubset.woff2') # If the number of glyphs in the font matches the expected number # For +1, see test_optimise_fonts_with_empty_text self.assertEqual(len(self.test_string) + 1, _count_glyphs_in_font(foundfonts['tests/Spirax-Regular.ttf'])) def test_optimise_fonts_with_multiple_fonts(self): result = optimise_fonts(self.test_string, ['tests/Spirax-Regular.ttf', 'tests/EBGaramond-VariableFont_wght.ttf', 'tests/EBGaramond-Italic-VariableFont_wght.ttf'], fontpath='tests/output', verbose=False, print_stats=False) self.assertIsInstance(result, dict) foundfonts = result["fonts"] self.assertIn('tests/Spirax-Regular.ttf', foundfonts) self.assertEqual(foundfonts['tests/Spirax-Regular.ttf'], 'tests/output/Spirax-Regular.FontimizeSubset.woff2') self.assertIn('tests/EBGaramond-VariableFont_wght.ttf', foundfonts) self.assertEqual(foundfonts['tests/EBGaramond-VariableFont_wght.ttf'], 'tests/output/EBGaramond-VariableFont_wght.FontimizeSubset.woff2') self.assertIn('tests/EBGaramond-Italic-VariableFont_wght.ttf', foundfonts) self.assertEqual(foundfonts['tests/EBGaramond-Italic-VariableFont_wght.ttf'], 'tests/output/EBGaramond-Italic-VariableFont_wght.FontimizeSubset.woff2') # If the number of glyphs in the font matches the expected number # + 1 for the tests below -- see test_optimise_fonts_with_empty_text self.assertEqual(len(self.test_string) + 1, _count_glyphs_in_font('tests/output/Spirax-Regular.FontimizeSubset.woff2')) # + 16, + 12: EB Garamond contains multiple f-ligatures (eg fi), plus other variants, so the number of glyphs is higher. Italic has fewer. self.assertEqual(len(self.test_string) + 1 + 16, _count_glyphs_in_font('tests/output/EBGaramond-VariableFont_wght.FontimizeSubset.woff2')) self.assertEqual(len(self.test_string) + 1 + 12, _count_glyphs_in_font('tests/output/EBGaramond-Italic-VariableFont_wght.FontimizeSubset.woff2')) def test_optimise_fonts_with_empty_text(self): result = optimise_fonts("", ['tests/Spirax-Regular.ttf'], fontpath='tests/output', verbose=False, print_stats=False) self.assertIsInstance(result, dict) foundfonts = result["fonts"] self.assertIn('tests/Spirax-Regular.ttf', foundfonts) self.assertEqual(foundfonts['tests/Spirax-Regular.ttf'], 'tests/output/Spirax-Regular.FontimizeSubset.woff2') # If the number of glyphs in the font matches the expected number: two, because an empty string is reported as containing space, see get_used_characters_in_str # and fonts also seem to contain ".notdef": # > font.getGlyphOrder() # > ['.notdef', 'space'] self.assertEqual(2, _count_glyphs_in_font('tests/output/Spirax-Regular.FontimizeSubset.woff2')) class TestOptimiseFontsForFiles(unittest.TestCase): def setUp(self): self.files = ['tests/test1-index-css.html', 'tests/test.txt', 'tests/test2.html'] self.font_output_dir = 'tests/output' self.subsetname = 'TestFilesSubset' self.verbose = False self.print_stats = False # Not used by any HTML/CSS, mimics manually adding a font self.fonts = ['tests/Whisper-Regular.ttf', 'tests/NotoSans-VariableFont_wdth,wght.ttf', 'tests/NotoSansJP-VariableFont_wght.ttf'] @patch.object(sys, 'stdout') # provides mock_stdout in order to hide and verify console output def test_optimise_fonts_for_files(self, mock_stdout): result = optimise_fonts_for_files(files=self.files, font_output_dir=self.font_output_dir, subsetname=self.subsetname, fonts=self.fonts, verbose=False, print_stats=False) # css_test.css has: # src: url('DOESNOTEXIST.ttf') format('truetype'); # This will emit a warning, check it was written to standard output mock_stdout.write.assert_any_call('Warning: Font file not found (may be remote not local?); skipping: DOESNOTEXIST.ttf (resolved to tests/DOESNOTEXIST.ttf)') self.assertIsInstance(result, dict) self.assertIn('css', result) self.assertIn('fonts', result) css = result['css'] self.assertIn('tests/css_test.css', css) self.assertIn('tests/css_test-index.css', css) self.assertEqual(len(css), 2) fonts = result['fonts'] font_keys = fonts.keys() self.assertEqual(len(fonts), 7) # These five found in CSS, via HTML input self.assertIn('tests/EBGaramond-VariableFont_wght.ttf', font_keys)
self.assertIn('tests/Spirax-Regular.ttf', font_keys)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: wanghao-cst/Omni-VideoAssistant # Path: llava/model/multimodal_encoder/builder.py def build_vision_tower(vision_tower_cfg, **kwargs): vision_tower = getattr(vision_tower_cfg, 'mm_vision_tower', getattr(vision_tower_cfg, 'vision_tower', None)) is_absolute_path_exists = os.path.exists(vision_tower) if is_absolute_path_exists or vision_tower.startswith("openai") or vision_tower.startswith("laion"): return CLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) raise ValueError(f'Unknown vision tower: {vision_tower}') # Path: llava/model/multimodal_projector/builder.py def build_vision_projector(config, delay_load=False, **kwargs): projector_type = getattr(config, 'mm_projector_type', 'linear') if projector_type == 'linear': return nn.Linear(config.mm_hidden_size, config.hidden_size) mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type) if mlp_gelu_match: mlp_depth = int(mlp_gelu_match.group(1)) modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)] for _ in range(1, mlp_depth): modules.append(nn.GELU()) modules.append(nn.Linear(config.hidden_size, config.hidden_size)) # import pdb;pdb.set_trace() return nn.Sequential(*modules) if projector_type == 'identity': return IdentityMap() raise ValueError(f'Unknown projector type: {projector_type}') # Path: llava/constants.py IGNORE_INDEX = -100 # Path: llava/constants.py IMAGE_TOKEN_INDEX = -200 # Path: llava/constants.py DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>" # Path: llava/constants.py DEFAULT_IM_START_TOKEN = "<im_start>" # Path: llava/constants.py DEFAULT_IM_END_TOKEN = "<im_end>" # Path: llava/model/omni_arch.py from abc import ABC, abstractmethod from .multimodal_encoder.builder import build_vision_tower from .multimodal_projector.builder import build_vision_projector from llava.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN import torch import torch.nn as nn cur_frames_features = cur_frames_features.reshape(-1,4096) # torch.Size([1024, 4096]) image_token_start = image_token_indices[0] # tensor(35, device='cuda:0') if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): # False cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start-1]).detach()) cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start-1:image_token_start])) cur_new_input_embeds.append(cur_frames_features) cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start+1:image_token_start+2])) if labels is not None: cur_new_labels.append(cur_labels[:image_token_start]) cur_new_labels.append(torch.full((cur_frames_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) cur_new_labels.append(cur_labels[image_token_start:image_token_start+1]) cur_labels = cur_labels[image_token_start+2:] else: # True # import pdb;pdb.set_trace() cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start])) # instru部分的embed: torch.Size([35, 4096]) cur_new_input_embeds.append(cur_frames_features) # torch.Size([1024, 4096]) input加入frames特征 if labels is not None: cur_new_labels.append(cur_labels[:image_token_start]) # torch.Size([35]) 全-100 cur_new_labels.append(torch.full((cur_frames_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) # torch.Size([1024]) cur_labels = cur_labels[image_token_start+1:] # 339 = 375-35-1(img_token) 稍后加到cur_new_labels中 cur_video_idx += 1 if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): # False cur_input_ids = cur_input_ids[image_token_start+2:] else: cur_input_ids = cur_input_ids[image_token_start+1:] # torch.Size([339]) image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] # 空 if cur_input_ids.numel() > 0: # True if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): # False cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids).detach()) else: cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids)) # [torch.Size([35, 4096])固定template,torch.Size([1024, 4096])图像特征, QA:torch.Size([339, 4096])] if labels is not None: cur_new_labels.append(cur_labels) # [torch.Size([35]),torch.Size([1024]), 前面全为-100 torch.Size([339])] cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds] cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0) # torch.Size([1398, 4096]): 35+1024+339 new_input_embeds.append(cur_new_input_embeds) if labels is not None: cur_new_labels = torch.cat(cur_new_labels, dim=0) # torch.Size([1398]) new_labels.append(cur_new_labels) if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds): # True max_len = max(x.shape[0] for x in new_input_embeds) # 1910 new_input_embeds_align = [] for cur_new_embed in new_input_embeds: cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0) new_input_embeds_align.append(cur_new_embed) new_input_embeds = torch.stack(new_input_embeds_align, dim=0) if labels is not None: new_labels_align = [] _new_labels = new_labels for cur_new_label in new_labels: cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0) new_labels_align.append(cur_new_label) new_labels = torch.stack(new_labels_align, dim=0) if attention_mask is not None: new_attention_mask = [] for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels): new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device) new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device) cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0) new_attention_mask.append(cur_new_attention_mask) attention_mask = torch.stack(new_attention_mask, dim=0) assert attention_mask.shape == new_labels.shape else: # False img模式默认只有256长度相等 # import pdb;pdb.set_trace() new_input_embeds = torch.stack(new_input_embeds, dim=0) # torch.Size([4, 716, 4096]) 716=461-1imgtoken+256imgfeature if labels is not None: # torch.Size([4, 461]) new_labels = torch.stack(new_labels, dim=0) # torch.Size([4, 716]) if attention_mask is not None: # torch.Size([4, 461]) new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device) # torch.Size([4, 255]个True 相当于256个img特征-1个imgtoken attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1) # torch.Size([4, 716]) 716=461+255(新加入的img特征255个token mask为True) assert attention_mask.shape == new_input_embeds.shape[:2] return None, attention_mask, past_key_values, new_input_embeds, new_labels def initialize_vision_tokenizer(self, model_args, tokenizer): if model_args.mm_use_im_patch_token: # False tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) self.resize_token_embeddings(len(tokenizer)) if model_args.mm_use_im_start_end: # False num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) self.resize_token_embeddings(len(tokenizer)) if num_new_tokens > 0: input_embeddings = self.get_input_embeddings().weight.data output_embeddings = self.get_output_embeddings().weight.data input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) input_embeddings[-num_new_tokens:] = input_embeddings_avg output_embeddings[-num_new_tokens:] = output_embeddings_avg if model_args.tune_mm_mlp_adapter: for p in self.get_input_embeddings().parameters(): p.requires_grad = True for p in self.get_output_embeddings().parameters(): p.requires_grad = False if model_args.pretrain_mm_mlp_adapter: mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu') embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight'] assert num_new_tokens == 2 if input_embeddings.shape == embed_tokens_weight.shape: input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:] elif embed_tokens_weight.shape[0] == num_new_tokens: input_embeddings[-num_new_tokens:] = embed_tokens_weight else: raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.") elif model_args.mm_use_im_patch_token: # False
if model_args.tune_mm_mlp_adapter:
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: RobertCsordas/moe_attention # Path: tasks/simple/language_model/wikitext103_sp_transformer.py class Wikitext103SPTransformer(Enwik8Transformer): helper: framework.helpers.TrainingHelper def create_datasets(self): self.batch_dim = 1 self.train_set = dataset.Wikitext103SentencePiece("train", self.helper.args.lm.unroll, n_pieces=self.helper.args.sentencepiece.n_pieces) self.valid_sets.val = dataset.Wikitext103SentencePiece("valid", self.helper.args.lm.unroll_eval or self.helper.args.lm.unroll, n_pieces=self.helper.args.sentencepiece.n_pieces) self.valid_sets.test = dataset.Wikitext103SentencePiece("test", self.helper.args.lm.unroll_eval or self.helper.args.lm.unroll, n_pieces=self.helper.args.sentencepiece.n_pieces) # Path: tasks/simple/language_model/enwik8_transformer.py class Enwik8Transformer(TransformerLMMixin, SimpleTask): VALID_NUM_WORKERS = 1 TRAIN_NUM_WORKERS = 2 def create_state(self): self.helper.state.epoch = 0 def create_model_interface(self): self.model_interface = LanguageModelInterface( self.model, drop_state_prob=self.helper.args.lm.state_drop_probability, dist_env=self.helper.dist_env, n_ubatches=self.helper.args.n_microbatch) self.helper.saver["interface"] = self.model_interface def validate_on(self, set: torch.utils.data.Dataset, loader: torch.utils.data.DataLoader) -> Tuple[Any, float]: state = self.model_interface.state self.model_interface.reset_state() res = super().validate_on(set, loader) self.model_interface.state = state return res def log_epoch(self): self.helper.log({"epoch": self.helper.state.epoch}) def start_next_epoch(self): self.model_interface.reset_state() self.helper.state.epoch += 1 self.log_epoch() def get_train_batch(self) -> Dict[str, Any]: try: return next(self.data_iter) except StopIteration: self.start_next_epoch() self.data_iter = iter(self.train_loader) return next(self.data_iter) def create_sampler(self, loader: torch.utils.data.Dataset, batch_size: int) -> \ framework.loader.sampler.MultibatchSequentialSampler: return framework.loader.sampler.MultibatchSequentialSampler(loader, batch_size, world_size=self.helper.dist_env.world_size, rank=self.helper.dist_env.rank) def create_valid_loader(self, vset: torch.utils.data.Dataset) -> torch.utils.data.DataLoader: return torch.utils.data.DataLoader(vset, batch_sampler=self.create_sampler(vset, self.test_batch_size), collate_fn=framework.loader.collate.VarLengthCollate(batch_dim=self.batch_dim), num_workers=self.VALID_NUM_WORKERS) def create_train_loader(self, loader: torch.utils.data.Dataset) -> torch.utils.data.DataLoader: sampler = self.create_sampler(loader, self.helper.args.batch_size) self.helper.saver.register("sampler", sampler, replace=True) return torch.utils.data.DataLoader(loader, batch_sampler=sampler, num_workers=self.TRAIN_NUM_WORKERS, pin_memory=True, collate_fn=framework.loader.collate.VarLengthCollate( batch_dim=self.batch_dim)) def create_datasets(self): self.batch_dim = 1 self.train_set = dataset.Enwik8("train", self.helper.args.lm.unroll) self.valid_sets.val = dataset.Enwik8("valid", self.helper.args.lm.unroll_eval or self.helper.args.lm.unroll) self.valid_sets.test = dataset.Enwik8("test", self.helper.args.lm.unroll_eval or self.helper.args.lm.unroll) def train(self): self.log_epoch() super().train() # Path: tasks/task_db.py def task(name: Optional[str] = None): def wrapper(cls): n = TASK_PREFIX + (name or camel_to_snake(cls.__name__)) assert n not in TASKS, f"Task {n} already exists" TASKS[n] = cls return cls return wrapper # Path: tasks/task_db.py def args(fn): global ARGS_REGISTERS ARGS_REGISTERS.append(fn) return fn # Path: framework/helpers/training_helper.py class TrainingHelper: args: DotDict find_slash = re.compile(r'/+') remove_firstlast_slash = re.compile(r'^/|/$') class Dirs: pass def __init__(self, register_args: Optional[Callable[[ArgumentParser], None]], wandb_project_name: Optional[str] = None, log_async: bool = False, extra_dirs: List[str] = [], restore: Optional[str] = None): self.dist_env = get_dist_env() self.dist_env.init_env() self.is_sweep = False self.log_async = log_async self.wandb_project_name = wandb_project_name self.all_dirs = ["checkpoint", "tensorboard"] + extra_dirs self.create_parser() self.last_saved = -1 if register_args is not None: register_args(self.arg_parser) self.start(restore) def print_env_info(self): try: import pkg_resources print("---------------- Environment information: ----------------") installed_packages = pkg_resources.working_set print(list(sorted(["%s==%s" % (i.key, i.version) for i in installed_packages]))) print("----------------------------------------------------------") except: # noqa: E722 pass try: git = subprocess.run(["git", "rev-parse", "--verify", "HEAD"], stderr=subprocess.DEVNULL, stdout=subprocess.PIPE) if git.returncode == 0: print(f"Git hash: {git.stdout.decode().strip()}") except: # noqa: E722 pass def create_parser(self): self.arg_parser = ArgumentParser(get_train_dir=lambda x: os.path.join("save", x.name) if x.name is not None else None) self.arg_parser.add_argument("-name", type=str, help="Train dir name") self.arg_parser.add_argument("-reset", default=False, help="reset training - ignore saves", save=False) self.arg_parser.add_argument("-log", default="tb") self.arg_parser.add_argument("-save_interval", default="5000", parser=self.arg_parser.int_or_none_parser) self.arg_parser.add_argument("-wandb_save_interval", default="None", parser=self.arg_parser.int_or_none_parser) self.arg_parser.add_argument("-seed", default="none", parser=self.arg_parser.int_or_none_parser) self.arg_parser.add_argument("-gpu", default="auto", help="use this gpu") self.arg_parser.add_argument("-keep_alive", default=False) self.arg_parser.add_argument("-sweep_id_for_grid_search", default=0, help="Doesn't do anything, just to run multiple W&B iterations.") self.arg_parser.add_argument("-restore", default="") self.arg_parser.add_argument("-wandb_bug_workaround", default=False) @master def create_dirs(self): self.dirs = self.Dirs() self.dirs.base = self.summary.save_dir for d in self.all_dirs: assert d not in self.dirs.__dict__, f"Directory {d} already exists" self.dirs.__dict__[d] = os.path.join(self.dirs.base, d) if self.args.reset: print("Resetting training state...") for d in self.all_dirs: shutil.rmtree(self.dirs.__dict__[d], ignore_errors=True) for d in self.all_dirs: os.makedirs(self.dirs.__dict__[d], exist_ok=True) @master def save_startup_log(self): self.arg_parser.save(os.path.join(self.summary.save_dir, "args.json")) with open(os.path.join(self.summary.save_dir, "startup_log.txt"), "a+") as f: f.write(f"{str(datetime.now())} {socket.gethostname()}: {' '.join(sys.argv)}\n") @master def start_tensorboard(self): if self.use_tensorboard: os.makedirs(self.dirs.tensorboard, exist_ok=True) framework.visualize.tensorboard.start(log_dir=self.dirs.tensorboard) def use_cuda(self) -> bool: return torch.cuda.is_available() and self.args.gpu.lower() != "none" def setup_environment(self): use_gpu(self.args.gpu) if self.args.seed is not None: assert not self.dist_env.is_distributed seed.fix(self.args.seed) self.device = torch.device(f"cuda:{torch.cuda.current_device()}") if self.use_cuda() else torch.device("cpu") def get_batch_size(self, full_batch_size: Optional[int] = None) -> int: batch_size = full_batch_size or self.args.batch_size if self.dist_env.is_distributed: bs = batch_size // self.dist_env.world_size if self.dist_env.rank == 1: bs = bs + batch_size % self.dist_env.world_size return bs else: return batch_size def get_loss_scaling(self) -> float: # Scale that accounts for uneven world sizes. For mean reduction return self.get_batch_size() / self.args.batch_size def start(self, restore: Optional[str]): self.args = self.arg_parser.parse_and_try_load() self.restore_pending = None self.wandb_bug_found = False if self.dist_env.is_master(): if restore or self.args.restore: # Restore args first such that the rest of the config is loaded correctly. Do not restore the GPU settings. gpu_backup = self.args.gpu reset_backup = self.args.reset self.restore_pending = Saver.do_load(restore or self.args.restore) self.args = self.arg_parser.from_dict(self.restore_pending["run_invariants"]["args"]) self.args.gpu = gpu_backup self.args.reset = reset_backup if self.dist_env.is_distributed: torch.distributed.broadcast_object_list([self.arg_parser.to_dict()], src=0) else: a = [None] torch.distributed.broadcast_object_list(a, src=0) self.args = self.arg_parser.from_dict(a[0]) self.use_tensorboard, self.use_wandb = get_plot_config(self.args) self.state = DotDict() self.state.iter = 0 self.run_invariants = { "args": self.arg_parser.to_dict() } if self.dist_env.is_master(): constructor = plot.AsyncLogger if self.log_async else plot.Logger assert (not self.use_wandb) or (self.wandb_project_name is not None), \ 'Must specify wandb project name if logging to wandb.' assert self.args.name is not None or self.use_wandb, "Either name must be specified or W&B should be used" if self.args.restore and self.restore_pending["run_invariants"]["wandb_id"]: wandb_args = { "project": self.restore_pending["run_invariants"]["wandb_id"]["project"], "id": self.restore_pending["run_invariants"]["wandb_id"]["run_id"], "resume": "must" } else: wandb_args = { "project": self.wandb_project_name, "config": self.arg_parser.to_dict() } self.summary = constructor(save_dir=os.path.join("save", self.args.name) if self.args.name is not None else None, use_tb=self.use_tensorboard, use_wandb=self.use_wandb, wandb_init_args=wandb_args, wandb_extra_config={ "experiment_name": self.args.name, "n_nodes": self.dist_env.world_size or 1, }, get_global_step = lambda: self.state.iter) self.run_invariants["wandb_id"] = self.summary.wandb_id if self.summary.wandb_id: self.wandb_project_name = self.summary.wandb_id["project"] if self.use_wandb: self.print_env_info() print(self.dist_env) self.create_dirs() self.save_startup_log() self.start_tensorboard() self.saver = Saver(self.dirs.checkpoint if self.dist_env.is_master() else None, self.args.save_interval, keep_every_n_hours=None if self.use_wandb else 4) self.saver["state"] = self.state self.saver["run_invariants"] = deepcopy(self.run_invariants) self.setup_environment() @master def wait_for_termination(self): if self.args.keep_alive and self.use_tensorboard and not self.use_wandb: print("Done. Waiting for termination") while True: time.sleep(100) @master def save(self): if not self.dist_env.is_master(): return self.saver.save(iter=self.state.iter) self.saver.cleanup() @master def tick(self): self.saver.tick(iter=self.state.iter) @master def finish(self): self.summary.finish() if self.is_sweep or self.saver.last_saved_iter != self.state.iter: self.save() self.wait_for_termination() def to_device(self, data: Any) -> Any: return U.apply_to_tensors(data, lambda d: d.to(self.device)) def restore(self): if self.dist_env.is_master(): if self.restore_pending is not None: assert self.saver.load_data(self.restore_pending), "Restoring failed." self.restore_pending = None restored = True else: restored = self.saver.load() if restored: # Do not restore these things self.saver.register("run_invariants", deepcopy(self.run_invariants), replace=True) # if ditributed, send the full state to all workers if self.dist_env.is_distributed: # PyTorch bug: there is an int32 conversion in the distributed code that overflows if the data is # > 2G. So send it in pieces. for k, v in self.saver.get_data().items(): torch.distributed.broadcast_object_list([k, v], src=0) else: # if ditributed and worker, restore state form master ckpt = {} # Stich the pieces together for _ in range(len(self.saver.get_data())): a = [None, None] torch.distributed.broadcast_object_list(a, src=0) ckpt[a[0]] = a[1] ckpt = self.to_device(ckpt) self.saver.load_data(ckpt) def get_storage_path(self, path: str) -> str: assert self.dist_env.is_master() path = os.path.join(self.dirs.export, path) os.makedirs(os.path.dirname(path), exist_ok=True) return path @master def export_tensor(self, rel_path: str, data: Union[torch.Tensor, np.ndarray]): data = U.apply_to_tensors(data, lambda x: x.detach().cpu().numpy()) torch.save(data, self.get_storage_path(rel_path + ".pth")) def fix_names(self, plotlist: Dict[str, Any]) -> Dict[str, Any]: def fix_name(s: str) -> str: s = self.find_slash.sub('/', s) s = self.remove_firstlast_slash.sub('', s) return s return {fix_name(k): v for k, v in plotlist.items()} @master def log(self, plotlist, step=None): if self.args.wandb_bug_workaround and self.use_wandb: filtered = {k: v for k, v in plotlist.items() if not isinstance(v, framework.visualize.plot.TextTable)} if len(filtered) != len(plotlist) and not self.wandb_bug_found: print("WARNING: wandb_bug_workaround enabled. Refusing to log tables") self.wandb_bug_found = True plotlist = filtered plotlist = self.fix_names(plotlist) if plotlist: self.summary.log(plotlist, step) # Path: layers/transformer/relative_preln_transformer.py class PrelnRelativeTransformerEncoderLayer(RelativeTransformerEncoderLayer): is_preln = True def __init__(self, d_model, nhead, n_layers: int, dim_feedforward=2048, dropout=0.1, activation: ActivationFunction = F.relu, attention_dropout=0, test_pos_clamp: Optional[int] = None, drop_expand: bool = True, head_projection_size: Optional[int] = None): super().__init__( d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, dropout=dropout, activation=activation, attention_dropout=attention_dropout, test_pos_clamp=test_pos_clamp, drop_expand=drop_expand, head_projection_size=head_projection_size) reset_prenorm_params(self, n_layers) def forward(self, src: torch.Tensor, mask: Optional[AttentionMask] = None, attend_to: Optional[torch.Tensor] = None, pos_offset: Optional[int] = None) -> torch.Tensor: src2 = self.norm1(src) src2 = self.self_attn(src2, self.norm1(attend_to) if attend_to is not None else src2, mask, pos_offset=pos_offset) src = src + self.dropout1(src2) src2 = self.norm2(src) src2 = self.linear2(self.dropout(self.activation(self.linear1(src2)))) src = src + self.dropout2(src2) return src # Path: tasks/simple/language_model/transformer_relu_analyze.py from typing import Any, Dict from .wikitext103_sp_transformer import Wikitext103SPTransformer from .enwik8_transformer import Enwik8Transformer from ... import task, args from framework.helpers import TrainingHelper from layers.transformer import PrelnRelativeTransformerEncoderLayer import torch import torch.nn import dataset import framework class TransformerReluCountAnalyzeMixin: helper: framework.helpers.TrainingHelper def __init__(self, helper: TrainingHelper): super().__init__(helper) if not isinstance(self.model.layers[0], PrelnRelativeTransformerEncoderLayer): raise ValueError("Expected PrelnRelativeTransformerEncoderLayer") self.counts = {} self.sq_counts = {} self.norm = {} self.mod_id_to_layer = {} def fw_pre_hook(m, inputs): i = self.mod_id_to_layer[id(m)] inp = inputs[0] print("hook", i, inp.shape) cl = (inp > 0).float().sum(-1) self.counts[i] = self.counts.get(i, 0) + cl.sum() self.sq_counts[i] = self.sq_counts.get(i, 0) + (cl**2).sum() self.norm[i] = self.norm.get(i, 0) + cl.numel() for i, l in enumerate(self.model.layers): self.mod_id_to_layer[id(l.linear2)] = i l.linear2.register_forward_pre_hook(fw_pre_hook) def validate(self) -> Dict[str, Any]: self.counts = {} self.norm = {} res = super().validate() means = {k: (c/self.norm[k]).item() for k, c in self.counts.items()} stds = {k: ((self.sq_counts[k]/self.norm[k] - means[k]**2)**0.5).item() for k in self.counts.keys()} torch.save({ "means": means, "stds": stds, }, "counts.pth") @task() class Wikitext103SPTransformerAnalyze(TransformerReluCountAnalyzeMixin, Wikitext103SPTransformer):
pass
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Q-Future/Q-Align # Path: q_align/model/configuration_mplug_owl2.py class MPLUGOwl2Config(LlamaConfig): model_type = "mplug_owl2" def __init__(self, visual_config=None, **kwargs): if visual_config is None: self.visual_config = DEFAULT_VISUAL_CONFIG else: self.visual_config = visual_config super().__init__( **kwargs, ) # Path: q_align/model/configuration_mplug_owl2.py class MplugOwlVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MplugOwlVisionModel`]. It is used to instantiate a mPLUG-Owl vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration defaults will yield a similar configuration to that of the mPLUG-Owl [x-plug/x_plug-llama-7b](https://huggingface.co/x-plug/x_plug-llama-7b) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 32): The size (resolution) of each patch. hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. initializer_factor (`float`, *optional*, defaults to 1): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). ```""" model_type = "mplug_owl_vision_model" def __init__( self, hidden_size=1024, intermediate_size=4096, projection_dim=768, num_hidden_layers=24, num_attention_heads=16, num_channels=3, image_size=448, patch_size=14, hidden_act="quick_gelu", layer_norm_eps=1e-6, attention_dropout=0.0, initializer_range=0.02, initializer_factor=1.0, use_flash_attn=False, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_channels = num_channels self.patch_size = patch_size self.image_size = image_size self.initializer_range = initializer_range self.initializer_factor = initializer_factor self.attention_dropout = attention_dropout self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.use_flash_attn = use_flash_attn @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the vision config dict if we are loading from MplugOwlConfig if config_dict.get("model_type") == "mplug-owl": config_dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) # Path: q_align/model/configuration_mplug_owl2.py class MplugOwlVisualAbstractorConfig(PretrainedConfig): model_type = "mplug_owl_visual_abstract" def __init__( self, num_learnable_queries=64, hidden_size=1024, num_hidden_layers=6, num_attention_heads=16, intermediate_size=2816, attention_probs_dropout_prob=0., initializer_range=0.02, layer_norm_eps=1e-6, encoder_hidden_size=1024, grid_size=None, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_learnable_queries = num_learnable_queries self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.encoder_hidden_size = encoder_hidden_size self.grid_size = grid_size if grid_size else 32 @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the visual_abstractor config dict if we are loading from MplugOwlConfig if config_dict.get("model_type") == "mplug-owl": config_dict = config_dict["abstractor_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) # Path: q_align/model/visual_encoder.py class MplugOwlVisionModel(PreTrainedModel): main_input_name = "pixel_values" _no_split_modules = ["MplugOwlVisionEncoderLayer"] def __init__(self, config): super().__init__(config) self.config = config self.hidden_size = config.hidden_size self.embeddings = MplugOwlVisionEmbeddings(config) self.encoder = MplugOwlVisionEncoder(config) self.post_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps) self.post_init() def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") hidden_states = self.embeddings(pixel_values) encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.post_layernorm(last_hidden_state) pooled_output = last_hidden_state[:, 0, :] pooled_output = self.post_layernorm(pooled_output) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def get_input_embeddings(self): return self.embeddings # Path: q_align/model/visual_encoder.py class MplugOwlVisualAbstractorModel(PreTrainedModel): _no_split_modules = ["MplugOwlVisualAbstractorLayer"] def __init__(self, config, language_hidden_size): super().__init__(config) self.config = config self.encoder = MplugOwlVisualAbstractorEncoder(config) self.visual_fc = torch.nn.Linear(config.hidden_size, language_hidden_size) self.query_embeds = torch.nn.Parameter(torch.randn(1, config.num_learnable_queries, config.hidden_size)) self.vit_eos = torch.nn.Parameter(torch.randn(1, 1, language_hidden_size)) self.post_init() def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) def get_extended_attention_mask( self, attention_mask: torch.Tensor, input_shape: Tuple[int], device: torch.device, ) -> torch.Tensor: """ Makes broadcastable attention and causal masks so that future and masked tokens are ignored. Arguments: attention_mask (`torch.Tensor`): Mask with ones indicating tokens to attend to, zeros for tokens to ignore. input_shape (`Tuple[int]`): The shape of the input to the model. device: (`torch.device`): The device of the input to the model. Returns: `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`. """ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if attention_mask.dim() == 3: extended_attention_mask = attention_mask[:, None, :, :] elif attention_mask.dim() == 2: # Provided a padding mask of dimensions [batch_size, seq_length] # - the model is an encoder, so make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] extended_attention_mask = attention_mask[:, None, None, :] else: raise ValueError( "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( input_shape, attention_mask.shape ) ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 return extended_attention_mask def forward( self, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of: shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict query_embeds = self.query_embeds.repeat(encoder_hidden_states.shape[0], 1, 1) embedding_output = query_embeds input_shape = embedding_output.size()[:-1] batch_size, seq_length = input_shape device = embedding_output.device # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if attention_mask is None: attention_mask = torch.ones( (query_embeds.shape[0], query_embeds.shape[1]), dtype=torch.long, device=query_embeds.device ) extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_hidden_states is not None: if type(encoder_hidden_states) == list: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size() else: ( encoder_batch_size, encoder_sequence_length, _, ) = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if type(encoder_attention_mask) == list: encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask] elif encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = sequence_output[:, 0, :] sequence_output = self.visual_fc(sequence_output) sequence_output = torch.cat([sequence_output, self.vit_eos.repeat(sequence_output.shape[0], 1, 1)], dim=1) return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, ) # Path: q_align/model/modeling_llama2.py def replace_llama_modality_adaptive(): transformers.models.llama.configuration_llama.LlamaConfig = LlamaConfig transformers.models.llama.modeling_llama.LlamaAttention = LlamaAttention transformers.models.llama.modeling_llama.LlamaFlashAttention2 = LlamaFlashAttention2 transformers.models.llama.modeling_llama.LlamaSdpaAttention = LlamaSdpaAttention transformers.models.llama.modeling_llama.LlamaDecoderLayer = LlamaDecoderLayer transformers.models.llama.modeling_llama.LlamaModel.forward = model_forward transformers.models.llama.modeling_llama.LlamaForCausalLM.forward = causal_model_forward # Path: q_align/model/modeling_mplug_owl2.py from abc import ABC, abstractmethod from typing import List, Optional, Tuple, Union from torch.nn import CrossEntropyLoss from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, CLIPImageProcessor, LlamaConfig, LlamaModel, LlamaForCausalLM from transformers.modeling_outputs import CausalLMOutputWithPast from .configuration_mplug_owl2 import MPLUGOwl2Config, MplugOwlVisionConfig, MplugOwlVisualAbstractorConfig from .visual_encoder import MplugOwlVisionModel, MplugOwlVisualAbstractorModel from .modeling_llama2 import replace_llama_modality_adaptive from icecream import ic from PIL import Image from icecream import ic import torch import torch.nn as nn import copy import os import sys # FIXME: this is a hacky fix, for deepspeed zero3 to work half_len = cur_input_ids.shape[0] // 2 cur_image_features = image_features[cur_image_idx] cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len]) cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:]) cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0], cur_input_embeds_2], dim=0) new_input_embeds.append(cur_input_embeds) cur_modality_indicators = torch.zeros(len(cur_input_embeds)).long().to(self.device) new_modality_indicators.append(cur_modality_indicators) if labels is not None: new_labels.append(labels[batch_idx]) cur_image_idx += 1 continue image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] cur_new_input_embeds = [] cur_modality_indicators = [] if labels is not None: cur_labels = labels[batch_idx] cur_new_labels = [] assert cur_labels.shape == cur_input_ids.shape while image_token_indices.numel() > 0: cur_image_features = image_features[cur_image_idx] image_token_start = image_token_indices[0] cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start])) cur_new_input_embeds.append(cur_image_features) # Add modality indicator assert image_token_start == len(cur_input_ids[:image_token_start]) cur_modality_indicators.append(torch.zeros(len(cur_input_ids[:image_token_start])).long()) cur_modality_indicators.append(torch.ones(len(cur_image_features)).long()) if labels is not None: cur_new_labels.append(cur_labels[:image_token_start]) cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) cur_labels = cur_labels[image_token_start+1:] cur_image_idx += 1 cur_input_ids = cur_input_ids[image_token_start+1:] image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] if cur_input_ids.numel() > 0: cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids)) cur_modality_indicators.append(torch.zeros(len(cur_input_ids)).long()) if labels is not None: cur_new_labels.append(cur_labels) cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds] cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0) new_input_embeds.append(cur_new_input_embeds) # Modality cur_modality_indicators = [x.to(device=self.device) for x in cur_modality_indicators] cur_modality_indicators = torch.cat(cur_modality_indicators, dim=0) new_modality_indicators.append(cur_modality_indicators) if labels is not None: cur_new_labels = torch.cat(cur_new_labels, dim=0) new_labels.append(cur_new_labels) if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds): max_len = max(x.shape[0] for x in new_input_embeds) # Embedding new_input_embeds_align = [] for cur_new_embed in new_input_embeds: cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0) new_input_embeds_align.append(cur_new_embed) new_input_embeds = torch.stack(new_input_embeds_align, dim=0) # Modality new_modality_indicators_align = [] for cur_modality_indicator in new_modality_indicators: cur_new_embed = torch.cat((cur_modality_indicator, torch.zeros(max_len - cur_modality_indicator.shape[0], dtype=cur_modality_indicator.dtype, device=cur_modality_indicator.device)), dim=0) new_modality_indicators_align.append(cur_new_embed) new_modality_indicators = torch.stack(new_modality_indicators_align, dim=0) # Label if labels is not None: new_labels_align = [] _new_labels = new_labels for cur_new_label in new_labels: cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0) new_labels_align.append(cur_new_label) new_labels = torch.stack(new_labels_align, dim=0) # Attention Mask if attention_mask is not None: new_attention_mask = [] for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels): new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device) new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device) cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0) new_attention_mask.append(cur_new_attention_mask) attention_mask = torch.stack(new_attention_mask, dim=0) assert attention_mask.shape == new_labels.shape else: new_input_embeds = torch.stack(new_input_embeds, dim=0) new_modality_indicators = torch.stack(new_modality_indicators, dim=0) if labels is not None: new_labels = torch.stack(new_labels, dim=0) if attention_mask is not None: new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device) attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1) assert attention_mask.shape == new_input_embeds.shape[:2] return None, new_modality_indicators, attention_mask, past_key_values, new_input_embeds, new_labels class MPLUGOwl2LlamaModel(MPLUGOwl2MetaModel, LlamaModel): config_class = MPLUGOwl2Config def __init__(self, config: MPLUGOwl2Config): super(MPLUGOwl2LlamaModel, self).__init__(config) class MPLUGOwl2LlamaForCausalLM(LlamaForCausalLM, MPLUGOwl2MetaForCausalLM): config_class = MPLUGOwl2Config def __init__(self, config): super(LlamaForCausalLM, self).__init__(config)
self.model = MPLUGOwl2LlamaModel(config)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: berlino/gated_linear_attention # Path: kernels/inter_chunk_contribution/preprocess_cumsum_gk.py class PreprocessCumSum_GK(torch.autograd.Function): @staticmethod def forward(ctx, q, k, gk, normalizer_gk=8, clamp_min=-3): q = q.contiguous() k = k.contiguous() gk = gk.contiguous() B, H, NUM_CHUNK, CHUNK_SIZE, D = q.shape D_k = k.shape[-1] # D_v = v.shape[-1] # (B, H, L, D_K, D_V) # , memory_format=torch.contiguous_format) # o = torch.empty_like(v).contiguous() # share memory's limit. # BLOCK_MODEL_K = 128 # BLOCK_MODEL_V = 128 #split k grid = (B * H, NUM_CHUNK) ctx.grid = grid k_reduce = torch.empty_like(k) q_exp = torch.empty_like(q) gk_cumsum = torch.empty_like(gk) gk_last_exp = torch.empty_like(gk[:, :, :, 0], dtype=torch.float32) _fwd_preprocess_cumsum_gk[grid]( q, k, gk, gk_cumsum, q_exp, k_reduce, gk_last_exp, CHUNK_SIZE=CHUNK_SIZE, NUM_CHUNK = NUM_CHUNK, L = CHUNK_SIZE * NUM_CHUNK, normalizer=normalizer_gk, clamp_min=clamp_min, D_MODEL_K=D_k, num_warps=8 if D_k >= 512 else 4 ) ctx.grid = grid ctx.save_for_backward(q, k, gk, gk_cumsum) ctx.normalizer_gk = normalizer_gk ctx.clamp_min = clamp_min return gk_cumsum, k_reduce, q_exp, gk_last_exp @staticmethod def backward(ctx, dgk_cumsum, dk_reduce, dq_exp, dgk_last_exp): dgk_cumsum = dgk_cumsum.contiguous() dk_reduce = dk_reduce.contiguous() dq_exp = dq_exp.contiguous() dgk_last_exp = dgk_last_exp.contiguous() q, k, gk, gk_cumsum = ctx.saved_tensors grid = ctx.grid dq = torch.empty_like(q) dk = torch.empty_like(k) dgk = torch.empty_like(gk) B, H, NUM_CHUNK, CHUNK_SIZE, D_k = q.shape # D_v = v.shape[-1] _bwd_preprocess_cumsum_gk[grid]( q, k, gk, gk_cumsum, dq_exp, dk_reduce, dgk_last_exp, dgk_cumsum, dq, dk, dgk, CHUNK_SIZE=CHUNK_SIZE, NUM_CHUNK = NUM_CHUNK, L = CHUNK_SIZE * NUM_CHUNK, normalizer=ctx.normalizer_gk, clamp_min = ctx.clamp_min, D_MODEL_K=D_k, num_warps=8 if D_k >= 512 else 4 ) return dq, dk, dgk, None, None, None # Path: kernels/inter_chunk_contribution/preprocess_cumsum_gv.py class PreprocessCumSum_GV(torch.autograd.Function): @staticmethod def forward(ctx, v, gv, normalizer_gv=8, clamp_min=-3): v = v.contiguous() gv = gv.contiguous() B, H, NUM_CHUNK, CHUNK_SIZE, D_v = v.shape # D_k = k.shape[-1] # D_v = v.shape[-1] # (B, H, L, D_K, D_V) # , memory_format=torch.contiguous_format) # o = torch.empty_like(v).contiguous() # share memory's limit. # BLOCK_MODEL_K = 128 # BLOCK_MODEL_V = 128 #split k grid = (B * H, NUM_CHUNK) ctx.grid = grid gv_cumsum = torch.empty_like(gv, dtype=torch.float32) gv_cumsum_exp = torch.empty_like(gv) v_reduce = torch.empty_like(v) gv_last_exp = torch.empty_like(gv[:, :, :, 0], dtype=torch.float32) _fwd_preprocess_cumsum_gv[grid]( v, gv, gv_cumsum, gv_cumsum_exp, v_reduce, gv_last_exp, CHUNK_SIZE=CHUNK_SIZE, NUM_CHUNK = NUM_CHUNK, L = CHUNK_SIZE * NUM_CHUNK, normalizer=normalizer_gv, clamp_min=clamp_min, D_MODEL_V=D_v, num_warps=8 if D_v >= 512 else 4 ) ctx.grid = grid ctx.save_for_backward(v, gv, gv_cumsum) ctx.normalizer_gv = normalizer_gv ctx.clamp_min = clamp_min return gv_cumsum, v_reduce, gv_cumsum_exp, gv_last_exp @staticmethod def backward(ctx, dgv_cumsum, dv_reduce, dgv_cumsum_exp, dgv_last_exp): dgv_cumsum = dgv_cumsum.contiguous() dv_reduce = dv_reduce.contiguous() dgv_cumsum_exp = dgv_cumsum_exp.contiguous() dgv_last_exp = dgv_last_exp.contiguous() v, gv, gv_cumsum = ctx.saved_tensors grid = ctx.grid B, H, NUM_CHUNK, CHUNK_SIZE, D_v = v.shape dv = torch.empty_like(v) dgv = torch.empty_like(gv) _bwd_preprocess_cumsum_gv[grid]( v, gv, gv_cumsum, dgv_cumsum_exp, dv_reduce, dgv_last_exp, dgv_cumsum, dv, dgv, CHUNK_SIZE=CHUNK_SIZE, NUM_CHUNK = NUM_CHUNK, L = CHUNK_SIZE * NUM_CHUNK, normalizer=ctx.normalizer_gv, clamp_min = ctx.clamp_min, D_MODEL_V=D_v, num_warps=8 if D_v >= 512 else 4 ) return dv, dgv, None, None, None # Path: kernels/inter_chunk_contribution/chunk_scan_triton_full.py class Chunk_memory_update_full(torch.autograd.Function): @staticmethod def forward(ctx, decay_key_last, decay_value_last, to_add): decay_key_last = decay_key_last.contiguous() decay_value_last = decay_value_last.contiguous() to_add = to_add.contiguous() B, H, N, D_k, D_v = to_add.shape output = torch.empty_like(to_add) BLOCK_MODEL = 32 assert D_k % 32 == 0 assert D_v % 32 == 0 assert D_k == decay_key_last.shape[-1] assert D_v == decay_value_last.shape[-1] grid = (B*H, D_k//BLOCK_MODEL, D_v//BLOCK_MODEL) ctx.grid = grid ctx.BLOCK_MODEL = BLOCK_MODEL _fwd_recurrence[grid]( to_add, decay_key_last, decay_value_last, output, D_MODEL_K=D_k, D_MODEL_V=D_v, NUM_BLOCK=N, BLOCK_MODEL=BLOCK_MODEL ) output[:, :, 0] = 0 ctx.save_for_backward(output, decay_key_last, decay_value_last) return output @staticmethod def backward(ctx, DO): DO = DO.contiguous() output, decay_key_last, decay_value_last = ctx.saved_tensors B, H, N, D_k, D_v = output.shape num_block = N BLOCK_MODEL = 32 grid = (B*H, D_k//BLOCK_MODEL, D_v//BLOCK_MODEL) # I don't want atomic_add to be used in the backward pass # so I add another dimension to the output tensor (D_k/v // BLOCK_MODEL) # afterward, I sum over this dimension to get the correct gradient D_p1 = torch.empty(B, H, N, D_v // BLOCK_MODEL, D_k, device=DO.device, dtype=torch.float32) D_p2 = torch.empty(B, H, N, D_k // BLOCK_MODEL, D_v, device=DO.device, dtype=torch.float32) _bwd_recurrence[grid]( output, decay_key_last, decay_value_last, DO, D_p1, D_p2, NUM_BLOCK = num_block, NUM_SPLIT_K = D_k // BLOCK_MODEL, NUM_SPLIT_V = D_v // BLOCK_MODEL, D_MODEL_K = D_k, D_MODEL_V = D_v, BLOCK_MODEL = BLOCK_MODEL ) output[:, :, -1] = 0 D_p1[:, :, 0] = 0 D_p1[:, :, -1] = 0 D_p2[:, :, 0] = 0 D_p2[:, :, -1] = 0 return D_p1.sum(-2), D_p2.sum(-2), output # Path: kernels/inter_chunk_contribution/chunk_scan_triton_only_gk.py class Chunk_memory_update_only_gk(torch.autograd.Function): @staticmethod def forward(ctx, decay_key_last, to_add): decay_key_last = decay_key_last.contiguous() to_add = to_add.contiguous() B, H, N, D_k, D_v = to_add.shape output = torch.empty_like(to_add) BLOCK_MODEL = 32 assert D_k % 32 == 0 assert D_v % 32 == 0 assert D_k == decay_key_last.shape[-1] # assert D_v == to_add.shape[-1] grid = (B*H, D_k//BLOCK_MODEL, D_v//BLOCK_MODEL) ctx.grid = grid ctx.BLOCK_MODEL = BLOCK_MODEL _fwd_recurrence[grid]( to_add, decay_key_last, output, D_MODEL_K=D_k, D_MODEL_V=D_v, NUM_BLOCK=N, BLOCK_MODEL=BLOCK_MODEL ) output[:, :, 0] = 0 ctx.save_for_backward(output, decay_key_last) return output @staticmethod def backward(ctx, DO): DO = DO.contiguous() output, decay_key_last = ctx.saved_tensors B, H, N, D_k, D_v = output.shape num_block = N BLOCK_MODEL = 32 grid = (B*H, D_k//BLOCK_MODEL, D_v//BLOCK_MODEL) # I don't want atomic_add to be used in the backward pass # so I add another dimension to the output tensor (D_k/v // BLOCK_MODEL) # afterward, I sum over this dimension to get the correct gradient D_p1 = torch.empty(B, H, N, D_v // BLOCK_MODEL, D_k, device=DO.device, dtype=torch.float32) # D_p2 = torch.empty(B, H, N, D_k // BLOCK_MODEL, D_v, device=DO.device, dtype=torch.float32) _bwd_recurrence[grid]( output, decay_key_last, DO, D_p1, NUM_BLOCK = num_block, NUM_SPLIT_K = D_k // BLOCK_MODEL, NUM_SPLIT_V = D_v // BLOCK_MODEL, D_MODEL_K = D_k, D_MODEL_V = D_v, BLOCK_MODEL = BLOCK_MODEL ) output[:, :, -1] = 0 D_p1[:, :, 0] = 0 D_p1[:, :, -1] = 0 return D_p1.sum(-2), output # Path: kernels/inter_chunk_contribution/chunk_scan_triton_only_gv.py class Chunk_memory_update_only_gv(torch.autograd.Function): @staticmethod def forward(ctx, decay_value_last, to_add): decay_value_last = decay_value_last.contiguous() to_add = to_add.contiguous() B, H, N, D_k, D_v = to_add.shape output = torch.empty_like(to_add) BLOCK_MODEL = 32 assert D_k % 32 == 0 assert D_v % 32 == 0 # assert D_k == decay_key_last.shape[-1] assert D_v == decay_value_last.shape[-1] grid = (B*H, D_k//BLOCK_MODEL, D_v//BLOCK_MODEL) ctx.grid = grid ctx.BLOCK_MODEL = BLOCK_MODEL _fwd_recurrence[grid]( to_add, decay_value_last, output, D_MODEL_K=D_k, D_MODEL_V=D_v, NUM_BLOCK=N, BLOCK_MODEL=BLOCK_MODEL ) output[:, :, 0] = 0 ctx.save_for_backward(output, decay_value_last) return output @staticmethod def backward(ctx, DO): DO = DO.contiguous() output, decay_value_last = ctx.saved_tensors B, H, N, D_k, D_v = output.shape num_block = N BLOCK_MODEL = 32 grid = (B*H, D_k//BLOCK_MODEL, D_v//BLOCK_MODEL) # I don't want atomic_add to be used in the backward pass # so I add another dimension to the output tensor (D_k/v // BLOCK_MODEL) # afterward, I sum over this dimension to get the correct gradient D_p2 = torch.empty(B, H, N, D_k // BLOCK_MODEL, D_v, device=DO.device, dtype=torch.float32) _bwd_recurrence[grid]( output, decay_value_last, DO, D_p2, NUM_BLOCK = num_block, NUM_SPLIT_K = D_k // BLOCK_MODEL, NUM_SPLIT_V = D_v // BLOCK_MODEL, D_MODEL_K = D_k, D_MODEL_V = D_v, BLOCK_MODEL = BLOCK_MODEL ) output[:, :, -1] = 0 # D_p1[:, :, 0] = 0 # D_p1[:, :, -1] = 0 D_p2[:, :, 0] = 0 D_p2[:, :, -1] = 0 return D_p2.sum(-2), output # Path: kernels/inter_chunk_contribution/chunk_scan_triton_no_decay.py class Chunk_memory_update_no_decay(torch.autograd.Function): @staticmethod def forward(ctx, to_add): # decay_key_last = decay_key_last.contiguous() # decay_value_last = decay_value_last.contiguous() to_add = to_add.contiguous() B, H, N, D_k, D_v = to_add.shape output = torch.empty_like(to_add) BLOCK_MODEL = 32 assert D_k % 32 == 0 assert D_v % 32 == 0 # assert D_k == decay_key_last.shape[-1] # assert D_v == decay_value_last.shape[-1] grid = (B*H, D_k//BLOCK_MODEL, D_v//BLOCK_MODEL) ctx.grid = grid ctx.BLOCK_MODEL = BLOCK_MODEL _fwd_recurrence[grid]( to_add, # decay_key_last, # decay_value_last, output, D_MODEL_K=D_k, D_MODEL_V=D_v, NUM_BLOCK=N, BLOCK_MODEL=BLOCK_MODEL ) output[:, :, 0] = 0 ctx.save_for_backward(output) return output @staticmethod def backward(ctx, DO): DO = DO.contiguous() output, = ctx.saved_tensors B, H, N, D_k, D_v = output.shape num_block = N BLOCK_MODEL = 32 grid = (B*H, D_k//BLOCK_MODEL, D_v//BLOCK_MODEL) # I don't want atomic_add to be used in the backward pass # so I add another dimension to the output tensor (D_k/v // BLOCK_MODEL) # afterward, I sum over this dimension to get the correct gradient # D_p1 = torch.empty(B, H, N, D_v // BLOCK_MODEL, D_k, device=DO.device, dtype=torch.float32) # D_p2 = torch.empty(B, H, N, D_k // BLOCK_MODEL, D_v, device=DO.device, dtype=torch.float32) _bwd_recurrence[grid]( output, DO, NUM_BLOCK = num_block, NUM_SPLIT_K = D_k // BLOCK_MODEL, NUM_SPLIT_V = D_v // BLOCK_MODEL, D_MODEL_K = D_k, D_MODEL_V = D_v, BLOCK_MODEL = BLOCK_MODEL ) output[:, :, -1] = 0 return output # Path: kernels/inter_chunk_contribution/fn.py from .preprocess_cumsum_gk import PreprocessCumSum_GK from .preprocess_cumsum_gv import PreprocessCumSum_GV from .chunk_scan_triton_full import Chunk_memory_update_full from .chunk_scan_triton_only_gk import Chunk_memory_update_only_gk from .chunk_scan_triton_only_gv import Chunk_memory_update_only_gv from .chunk_scan_triton_no_decay import Chunk_memory_update_no_decay def inter_chunk_onc(query, key, value, gk, gv, normalizer_gk=16, normalizer_gv=16, clam_min=-3): if gk is not None: g_key_cumsum, reduce_key, q_exp, g_key_last_exp = PreprocessCumSum_GK.apply(query, key, gk, normalizer_gk, clam_min) else: reduce_key = key q_exp = None g_key_cumsum = None g_key_last_exp = None # gv_cumsum, v_reduce, gv_cumsum_exp, gv_last_exp if gv is not None: g_value_cumsum, reduce_value, g_value_cumsum_exp, g_value_last_exp = PreprocessCumSum_GV.apply( value, gv, normalizer_gv, clam_min) else: reduce_value = value g_value_cumsum = None g_value_last_exp = None to_add = reduce_key.transpose(-1, -2) @ reduce_value if gk is not None and gv is not None: memory_cache = Chunk_memory_update_full.apply(g_key_last_exp, g_value_last_exp, to_add) inter_chunk_contribution = ((q_exp) @ memory_cache) * g_value_cumsum_exp elif gk is None and gv is not None: memory_cache = Chunk_memory_update_only_gv.apply(g_value_last_exp, to_add) inter_chunk_contribution = ((query) @ memory_cache) * g_value_cumsum_exp elif gk is not None and gv is None: memory_cache = Chunk_memory_update_only_gk.apply(g_key_last_exp, to_add) inter_chunk_contribution = ((q_exp) @ memory_cache) else: memory_cache = Chunk_memory_update_no_decay.apply(to_add) inter_chunk_contribution = ((query) @ memory_cache)
return g_key_cumsum, g_value_cumsum, inter_chunk_contribution
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: kakaobrain/honeybee # Path: serve/conversation.py class SeparatorStyle(Enum): class Conversation: SINGLE = auto() TWO = auto() W, H = image.size H, W = longest_edge, shortest_edge H, W = shortest_edge, longest_edge def get_prompt(self): def append_message(self, role, message): def get_index(self, num_frames, num_segments): def load_video(self, path, num_frames=4): def get_images(self, log_dir=None): def to_gradio_chatbot(self): def copy(self): def dict(self): # Path: serve/gradio_css.py # Path: serve/model_utils.py def post_process_code(code): sep = "\n```" if sep in code: blocks = code.split(sep) if len(blocks) % 2 == 1: for i in range(1, len(blocks), 2): blocks[i] = blocks[i].replace("\\_", "_") code = sep.join(blocks) return code # Path: serve/model_worker.py class Honeybee_Server: def __init__( self, base_model="checkpoints/7B-C-Abs-M144/last", log_dir="./", load_in_8bit=False, bf16=True, device="cuda", io=None, ): self.log_dir = log_dir self.model, self.tokenizer, self.processor = get_model( base_model, use_bf16=bf16, load_in_8bit=load_in_8bit, ) self.model.to(device) self.bf16 = bf16 self.load_in_8bit = load_in_8bit if not load_in_8bit: if bf16: self.model.bfloat16() else: self.model.half() self.model.eval() self.io = io def evaluate( self, pixel_values=None, input_ids=None, temperature=1.0, top_p=0.9, top_k=5, num_beams=3, max_new_tokens=256, stream_output=True, length_penalty=1.0, no_repeat_ngram_size=2, do_sample=False, early_stopping=True, **kwargs ): generation_config = { "temperature": temperature, "top_p": top_p, "top_k": top_k, "num_beams": num_beams, "no_repeat_ngram_size": no_repeat_ngram_size, "do_sample": do_sample, "early_stopping": early_stopping, "length_penalty": length_penalty, } generate_params = { "pixel_values": pixel_values, "input_ids": input_ids, "return_dict_in_generate": True, "output_scores": True, "max_new_tokens": max_new_tokens, } generate_params.update(generation_config) if stream_output: # Stream the reply 1 token at a time. # This is based on the trick of using 'stopping_criteria' to create an iterator, # from https://github.com/oobabooga/text-generation-webui/blob/ad37f396fc8bcbab90e11ecf17c56c97bfbd4a9c/modules/text_generation.py#L216-L243. def generate_with_callback(callback=None, **kwargs): kwargs.setdefault("stopping_criteria", transformers.StoppingCriteriaList()) kwargs["stopping_criteria"].append(Stream(callback_func=callback)) with torch.no_grad(): self.model.generate(**kwargs) def generate_with_streaming(**kwargs): return Iteratorize(generate_with_callback, kwargs, callback=None) with generate_with_streaming(**generate_params) as generator: for output in generator: # new_tokens = len(output) - len(input_ids[0]) decoded_output = self.tokenizer.decode(output) if output[-1] in [self.tokenizer.eos_token_id]: break yield post_process_output(decoded_output) return # early return for stream_output with torch.no_grad(): generation_output = self.model.generate( pixel_values=pixel_values, input_ids=input_ids, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, **generation_config ) s = generation_output.sequences[0].cpu() output = self.tokenizer.decode(s) yield post_process_output(output) def predict(self, data): prompt = [data["text_input"]] images = data["images"] if len(data["images"]) > 0 else None if images: images = [Image.open(BytesIO(base64.b64decode(image))) for image in images] inputs = self.processor(text=prompt, images=images, return_tensors="pt") input_ids = inputs["input_ids"].to(self.model.device) if "pixel_values" in inputs: if self.load_in_8bit: pixel_values = inputs["pixel_values"].half().to(self.model.device) elif self.bf16: pixel_values = inputs["pixel_values"].bfloat16().to(self.model.device) else: pixel_values = inputs["pixel_values"].half().to(self.model.device) else: pixel_values = None cache = None try: for x in self.evaluate( pixel_values, input_ids, stream_output=True, **data["generation_config"] ): cache = x # noqa: F841 yield (x, True) except ValueError as e: print("Caught ValueError:", e) yield (server_error_msg, False) except torch.cuda.CudaError as e: print("Caught torch.cuda.CudaError:", e) yield (server_error_msg, False) return # Path: serve/serve_utils.py def add_text(state, text, image, video, request: gr.Request): if len(text) <= 0 and (image is None or video is None): state.skip_next = True return (state, state.to_gradio_chatbot(), "", None, None) + (no_change_btn,) * 5 if image is not None: if "<image>" not in text: text = text + "\n<image>" text = (text, image) if video is not None: num_frames = 4 if "<image>" not in text: text = text + "\n<image>" * num_frames text = (text, video) state.append_message(state.roles[0], text) state.append_message(state.roles[1], None) state.skip_next = False return (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5 # Path: serve/serve_utils.py def regenerate(state, request: gr.Request): state.messages[-1][-1] = None state.skip_next = False return (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5 # Path: serve/serve_utils.py class _IOWrapper: def __init__(self): def set_io(self, new_io): def __getattr__(self, name): def __str__(self): def init(): def vote_last_response(state, vote_type, model_selector, request: gr.Request): def upvote_last_response(state, model_selector, request: gr.Request): def downvote_last_response(state, model_selector, request: gr.Request): def flag_last_response(state, model_selector, request: gr.Request): def regenerate(state, request: gr.Request): def clear_history(request: gr.Request): def add_text(state, text, image, video, request: gr.Request): def after_process_image(prompt): # Path: serve/web_server.py import argparse import json import os import time import gradio as gr import requests import torch from .conversation import default_conversation from .gradio_css import code_highlight_css from .model_utils import post_process_code from .model_worker import Honeybee_Server from .serve_utils import add_text # noqa: F401 from .serve_utils import regenerate # noqa: F401 from .serve_utils import ( after_process_image, clear_history, disable_btn, downvote_last_response, enable_btn, flag_last_response, get_window_url_params, init, no_change_btn, upvote_last_response, ) output = chunk[0].strip() output = post_process_code(output) state.messages[-1][-1] = output + "▌" yield (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5 else: output = chunk[0].strip() state.messages[-1][-1] = output yield (state, state.to_gradio_chatbot(), "", None, None) + ( disable_btn, disable_btn, disable_btn, enable_btn, enable_btn, ) return time.sleep(0.03) except requests.exceptions.RequestException as e: # noqa: F841 state.messages[-1][ -1 ] = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**" yield (state, state.to_gradio_chatbot(), "", None, None) + ( disable_btn, disable_btn, disable_btn, enable_btn, enable_btn, ) return state.messages[-1][-1] = state.messages[-1][-1][:-1] yield (state, state.to_gradio_chatbot(), "", None, None) + (enable_btn,) * 5 def regenerate_http_bot( state, max_output_tokens, temperature, top_k, top_p, num_beams, no_repeat_ngram_size, length_penalty, do_sample, request: gr.Request, ): state.messages[-1][-1] = None state.skip_next = False yield (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5 prompt = after_process_image(state.get_prompt()) images = state.get_images() data = { "text_input": prompt, "images": images if len(images) > 0 else [], "generation_config": { "top_k": int(top_k), "top_p": float(top_p), "num_beams": int(num_beams), "no_repeat_ngram_size": int(no_repeat_ngram_size), "length_penalty": float(length_penalty), "do_sample": bool(do_sample), "temperature": float(temperature), "max_new_tokens": min(int(max_output_tokens), 1536), }, } state.messages[-1][-1] = "▌" yield (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5 try: for chunk in model.predict(data): if chunk: if chunk[1]: output = chunk[0].strip() output = post_process_code(output) state.messages[-1][-1] = output + "▌" yield (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5 else: output = chunk[0].strip() state.messages[-1][-1] = output yield (state, state.to_gradio_chatbot(), "", None, None) + ( disable_btn, disable_btn, disable_btn, enable_btn, enable_btn, ) return time.sleep(0.03) except requests.exceptions.RequestException as e: # noqa: F841 state.messages[-1][ -1 ] = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**" yield (state, state.to_gradio_chatbot(), "", None, None) + ( disable_btn, disable_btn, disable_btn, enable_btn, enable_btn, ) return state.messages[-1][-1] = state.messages[-1][-1][:-1] yield (state, state.to_gradio_chatbot(), "", None, None) + (enable_btn,) * 5 title_markdown = """ **Notice**: The output is generated by top-k sampling scheme and may involve some randomness. """ tos_markdown = """ ### Terms of use By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research. Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator. For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
**Copyright 2023 Alibaba DAMO Academy.**
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: taikinman/langrila # Path: src/langrila/base.py class BaseConversationLengthAdjuster(ABC): @abstractmethod def run(self, messages: list[dict[str, str]]) -> list[dict[str, str]]: raise NotImplementedError def __call__(self, messages: list[dict[str, str]]) -> list[dict[str, str]]: return self.run(messages) # Path: src/langrila/base.py class BaseFilter(ABC): @abstractmethod def apply(self, messages: list[dict[str, str]]) -> list[dict[str, str]]: raise NotImplementedError @abstractmethod def restore(self, messages: list[dict[str, str]]) -> list[dict[str, str]]: raise NotImplementedError # Path: src/langrila/base.py class BaseModule(ABC): @abstractmethod def run(self, *args, **kwargs): raise NotImplementedError async def arun(self, *args, **kwargs): raise NotImplementedError def stream(self, *args, **kwargs): raise NotImplementedError async def astream(self, *args, **kwargs): raise NotImplementedError def __call__(self, *args, **kwargs): _async = kwargs.pop("arun", False) _stream = kwargs.pop("stream", False) if _async: if _stream: return self.astream(*args, **kwargs) else: return asyncio.create_task(self.arun(*args, **kwargs)) else: if _stream: return self.stream(*args, **kwargs) else: return self.run(*args, **kwargs) # Path: src/langrila/conversation_adjuster/truncate.py class OldConversationTruncationModule(BaseConversationLengthAdjuster): """ Adjust the number of tokens to be less than or equal to context_length, starting from the oldest message forward """ def __init__(self, model_name: str, context_length: int): if model_name in MODEL_POINT.keys(): print(f"{model_name} is automatically converted to {MODEL_POINT[model_name]}") model_name = MODEL_POINT[model_name] assert ( model_name in MODEL_CONFIG.keys() ), f"model_name must be one of {', '.join(sorted(MODEL_CONFIG.keys()))}." self.model_name = model_name self.context_length = context_length def run(self, messages: list[dict[str, str]]) -> list[dict[str, str]]: adjusted_messages: list[dict[str, str]] = [] total_n_tokens: int = 0 for message in messages[::-1]: if total_n_tokens <= self.context_length: message, total_n_tokens = self.adjust_message_length_and_update_total_tokens( message, total_n_tokens ) if message is not None: adjusted_messages.append(message) return adjusted_messages[::-1] def adjust_message_length_and_update_total_tokens( self, message: dict[str, Any], total_n_tokens: int = 0 ) -> str: n_tokens = get_n_tokens(message, self.model_name) if total_n_tokens + n_tokens["total"] <= self.context_length: total_n_tokens += n_tokens["total"] return message, total_n_tokens else: available_n_tokens = max( self.context_length - total_n_tokens - n_tokens["other"], 0 ) # available_n_tokens for content if available_n_tokens > 0: if isinstance(message["content"], str): message["content"] = self.truncate(message["content"], available_n_tokens) total_n_tokens += available_n_tokens + n_tokens["other"] print( "Input message is truncated because total length of messages exceeds context length." ) return message, total_n_tokens elif "vision" in self.model_name and isinstance(message["content"], list): return None, total_n_tokens # truncate whole image else: raise ValueError( f"message['content'] must be str or list, but {type(message['content'])} is given." ) else: return None, total_n_tokens def truncate(self, text: str, n_tokens: int) -> str: try: TOKENIZER = tiktoken.encoding_for_model(self.model_name) except KeyError: print("Warning: model not found. Using cl100k_base encoding.") TOKENIZER = tiktoken.get_encoding("cl100k_base") if n_tokens > 0: return TOKENIZER.decode(TOKENIZER.encode(text)[-n_tokens:]) else: return "" # Path: src/langrila/message.py class Message(BaseModel): content: str images: Any | list[Any] | None = None image_resolution: str | None = None @property def as_system(self): return {"role": "system", "content": self.content} @property def as_user(self): if self.images: content = [{"type": "text", "text": self.content}] if not isinstance(self.images, list): images = [self.images] else: images = self.images for image in images: content.append( { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{encode_image(image)}", "detail": self.image_resolution if self.image_resolution else "low", }, } ) return {"role": "user", "content": content} else: return {"role": "user", "content": self.content} @property def as_assistant(self): return {"role": "assistant", "content": self.content} @property def as_tool(self): return {"role": "tool", "content": self.content} @property def as_function(self): return {"role": "function", "content": self.content} @field_validator("image_resolution") def check_image_resolution_value(cls, val): if val not in ["low", "high"]: raise ValueError( "image_resolution must be either 'low' or 'high' due to token management." ) return val # Path: src/langrila/model_config.py _NEWER_MODEL_CONFIG = { "gpt-4-1106-preview": { "max_tokens": 128000, "prompt_cost_per_token": 0.00001, "completion_cost_per_token": 0.00003, }, "gpt-4-vision-preview": { "max_tokens": 128000, "prompt_cost_per_token": 0.00001, "completion_cost_per_token": 0.00003, }, "gpt-3.5-turbo-1106": { "max_tokens": 4096, "prompt_cost_per_token": 0.000001, "completion_cost_per_token": 0.000002, }, } # Path: src/langrila/model_config.py _OLDER_MODEL_CONFIG = { "gpt-4-0314": { "max_tokens": 8192, "prompt_cost_per_token": 0.00003, "completion_cost_per_token": 0.00006, }, "gpt-4-0613": { "max_tokens": 8192, "prompt_cost_per_token": 0.00003, "completion_cost_per_token": 0.00006, }, "gpt-4-32k-0314": { "max_tokens": 32768, "prompt_cost_per_token": 0.00006, "completion_cost_per_token": 0.00012, }, "gpt-4-32k-0613": { "max_tokens": 32768, "prompt_cost_per_token": 0.00006, "completion_cost_per_token": 0.00012, }, "gpt-3.5-turbo-0301": { "max_tokens": 4096, "prompt_cost_per_token": 0.0000015, "completion_cost_per_token": 0.000002, }, "gpt-3.5-turbo-0613": { "max_tokens": 4096, "prompt_cost_per_token": 0.0000015, "completion_cost_per_token": 0.000002, }, "gpt-3.5-turbo-16k-0613": { "max_tokens": 16384, "prompt_cost_per_token": 0.000003, "completion_cost_per_token": 0.000004, }, "gpt-3.5-turbo-instruct": { "max_tokens": 8192, "prompt_cost_per_token": 0.0000015, "completion_cost_per_token": 0.000002, }, } # Path: src/langrila/model_config.py MODEL_CONFIG = {} # Path: src/langrila/model_config.py MODEL_POINT = { "gpt-4": "gpt-4-0613", "gpt-4-32k": "gpt-4-32k-0613", "gpt-4-128k": "gpt-4-1106-preview", "gpt-4-vision": "gpt-4-vision-preview", "gpt-3.5-turbo": "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k": "gpt-3.5-turbo-16k-0613", } # Path: src/langrila/result.py class FunctionCallingResults(BaseModel): usage: Usage results: list[ToolOutput] prompt: Optional[str | dict[str, str] | list[dict[str, str]]] = None # Path: src/langrila/result.py class ToolOutput(BaseModel): call_id: str | None funcname: str | None args: str | None output: Any # Path: src/langrila/usage.py class Usage(BaseModel): prompt_tokens: int = 0 completion_tokens: int = 0 def __add__(self, other: __class__ | dict | CompletionUsage): if isinstance(other, dict): other = Usage(**other) if hasattr(other, 'prompt_tokens'): prompt_tokens = self.prompt_tokens + other.prompt_tokens else: prompt_tokens = self.prompt_tokens if hasattr(other, 'completion_tokens'): completion_tokens = self.completion_tokens + other.completion_tokens else: completion_tokens = self.completion_tokens return Usage( prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, ) def __sub__(self, other: __class__ | dict | CompletionUsage): if isinstance(other, dict): other = Usage(**other) if hasattr(other, 'prompt_tokens'): prompt_tokens = self.prompt_tokens - other.prompt_tokens else: prompt_tokens = self.prompt_tokens if hasattr(other, 'completion_tokens'): completion_tokens = self.completion_tokens - other.completion_tokens else: completion_tokens = self.completion_tokens return Usage( prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, ) @property def total_tokens(self): return self.prompt_tokens + self.completion_tokens @field_validator('prompt_tokens') def check_prompt_tokens(cls, v): if v < 0: raise ValueError('prompt_tokens must be greater or equal to 0') return v @field_validator('completion_tokens') def check_completion_tokens(cls, v): if v < 0: raise ValueError('completion_tokens must be greater or equal to 0') return v def __repr__(self): return f'Usage(prompt_tokens={self.prompt_tokens}, completion_tokens={self.completion_tokens}, total_tokens={self.total_tokens})' # Path: src/langrila/utils.py def get_async_client( api_key_env_name: str, api_version: Optional[str] = None, endpoint_env_name: Optional[str] = None, organization_id_env_name: Optional[str] = None, deployment_id_env_name: Optional[str] = None, api_type: Optional[str] = "openai", timeout: int = 60, max_retries: int = 5, ): if api_type == "azure": return AsyncAzureOpenAI( **get_openai_client_settings( api_key_env_name=api_key_env_name, organization_id_env_name=organization_id_env_name, api_version=api_version, endpoint_env_name=endpoint_env_name, deployment_id_env_name=deployment_id_env_name, max_retries=max_retries, timeout=timeout, ) ) elif api_type == "openai": return AsyncOpenAI( **get_openai_client_settings( api_key_env_name=api_key_env_name, organization_id_env_name=organization_id_env_name, max_retries=max_retries, timeout=timeout, ) ) else: raise ValueError(f"api_type must be 'azure' or 'openai'. Got {api_type}.") # Path: src/langrila/utils.py def get_client( api_key_env_name: str, api_version: Optional[str] = None, endpoint_env_name: Optional[str] = None, organization_id_env_name: Optional[str] = None, deployment_id_env_name: Optional[str] = None, api_type: Optional[str] = "openai", timeout: int = 60, max_retries: int = 5, ): if api_type == "azure": assert ( api_version and endpoint_env_name and deployment_id_env_name ), "api_version, endpoint_env_name, and deployment_id_env_name must be specified when api_type is 'azure'." return AzureOpenAI( **get_openai_client_settings( api_key_env_name=api_key_env_name, organization_id_env_name=organization_id_env_name, api_version=api_version, endpoint_env_name=endpoint_env_name, deployment_id_env_name=deployment_id_env_name, max_retries=max_retries, timeout=timeout, ) ) elif api_type == "openai": return OpenAI( **get_openai_client_settings( api_key_env_name=api_key_env_name, organization_id_env_name=organization_id_env_name, max_retries=max_retries, timeout=timeout, ) ) else: raise ValueError(f"api_type must be 'azure' or 'openai'. Got {api_type}.") # Path: src/langrila/utils.py def get_token_limit(model_name: str): if model_name in MODEL_ZOO: return MODEL_CONFIG[model_name]["max_tokens"] else: raise NotImplementedError( f"get_token_limit() is not implemented for model {model_name}. Please choose from following model : {', '.join(sorted(list(MODEL_ZOO)))}." ) # Path: src/langrila/utils.py def make_batch(iterable, batch_size=1): length = len(iterable) for ndx in range(0, length, batch_size): yield iterable[ndx : min(ndx + batch_size, length)] # Path: src/langrila/chat_module/function_calling.py import asyncio import json from typing import Callable, Optional from pydantic import BaseModel, field_validator from ..base import BaseConversationLengthAdjuster, BaseFilter, BaseModule from ..conversation_adjuster.truncate import OldConversationTruncationModule from ..message import Message from ..model_config import _NEWER_MODEL_CONFIG, _OLDER_MODEL_CONFIG, MODEL_CONFIG, MODEL_POINT from ..result import FunctionCallingResults, ToolOutput from ..usage import Usage from ..utils import get_async_client, get_client, get_token_limit, make_batch type: str description: str def model_dump(self): return {self.name: super().model_dump(exclude=["name"])} @field_validator("type") def check_type_value(cls, v): if v not in {"string", "number", "boolean"}: raise ValueError("type must be one of string or number.") return v class ToolParameter(BaseModel): type: str = "object" properties: list[ToolProperty] required: Optional[list[str]] = None def model_dump(self): dumped = super().model_dump(exclude=["properties", "required"]) _properties = {} for p in self.properties: _properties.update(p.model_dump()) dumped["properties"] = _properties if self.required is not None: dumped["required"] = self.required return dumped @field_validator("type") def check_type_value(cls, v): if v not in {"object"}: raise ValueError("supported type is only object") return v @field_validator("required") def check_required_value(cls, required, values): properties = values.data["properties"] property_names = {p.name for p in properties} if required is not None: for r in required: if r not in property_names: raise ValueError(f"required property '{r}' is not defined in properties.") return required class ToolConfig(BaseModel): name: str type: str = "function" description: str parameters: ToolParameter def model_dump(self): dumped = super().model_dump(exclude=["parameters", "type"]) dumped["parameters"] = self.parameters.model_dump() return {"type": self.type, self.type: dumped} @field_validator("type") def check_type_value(cls, v): if v not in {"function"}: raise ValueError("supported type is only function") return v class BaseFunctionCallingModule(BaseModule): def __init__( self, api_key_env_name: str, model_name: str, tools: list[Callable], tool_configs: list[ToolConfig], tool_choice: str = "auto", api_type: str = "openai", api_version: Optional[str] = None, endpoint_env_name: Optional[str] = None, deployment_id_env_name: Optional[str] = None, organization_id_env_name: Optional[str] = None, timeout: int = 30, max_retries: int = 2, max_tokens: int = 2048, seed: Optional[int] = None, ) -> None: assert api_type in ["openai", "azure"], "api_type must be 'openai' or 'azure'." if api_type == "azure": assert ( api_version and endpoint_env_name and deployment_id_env_name ), "api_version, endpoint_env_name, and deployment_id_env_name must be specified for Azure API." self.api_key_env_name = api_key_env_name self.organization_id_env_name = organization_id_env_name self.api_type = api_type self.api_version = api_version self.endpoint_env_name = endpoint_env_name self.deployment_id_env_name = deployment_id_env_name self.model_name = model_name self.timeout = timeout self.max_retries = max_retries self.tools = {f.__name__: f for f in tools} _tool_names_from_config = {f.name for f in tool_configs} assert ( len(_tool_names_from_config ^ set(self.tools.keys())) == 0 ), f"tool names in tool_configs must be the same as the function names in tools. tool names in tool_configs: {_tool_names_from_config}, function names in tools: {set(self.tools.keys())}" self.tool_choice = tool_choice self.max_tokens = max_tokens self.additional_inputs = {} if model_name in _NEWER_MODEL_CONFIG.keys(): self.seed = seed self.additional_inputs["seed"] = seed self.tool_configs = [f.model_dump() for f in tool_configs] self.additional_inputs["tools"] = self.tool_configs self.additional_inputs["tool_choice"] = self.tool_choice else: if seed:
print(
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Open-All-Scale-Causal-Engine/OpenASCE # Path: openasce/inference/tree/tree_node.py class GradientCausalTreeNode(CausalTreeNode): """A class for a node in a Gradient Boosting Causal Tree.""" def __init__(self, conf: ConfigTree = None, **kwargs): super().__init__(conf, **kwargs) self.eta = kwargs.get('eta', None) def estimate(self, G, H, **kwargs): """ Estimate the treatment effect given the gradients and hessians. Arguments: G: The gradients. H: The hessians. **kwargs: Additional keyword arguments. Returns: ndarray: The estimated treatment effect. """ lambd = kwargs.get('lambd', 0) return -G / (H + lambd) # Path: openasce/inference/tree/dataset.py class Dataset(object): """Abstract interface of class dataset""" def __init__(self): pass def __len__(self): return self.features.shape[0] @staticmethod def new_instance(conf): data_conf = conf.get('dataset', conf) cls_name = data_conf.get('type', 'dataset.CSVDataset') return get_class(cls_name).new_instance(conf) def read(self, filename): pass def sub_dataset(self, index=None): """ Abstract interface of sub-sampling Arguments: index (_type_, optional): _description_. Defaults to None. Raises: NotImplementedError: _description_ """ raise NotImplementedError def description(self, detail: bool = False) -> None: """ description the dataset Arguments: detail (bool, optional): [description]. Defaults to False. """ n_ins, n_feat = self.features.shape n_y_len = self.targets.shape[1] # calculate treatment distinct count treats = np.unique(self.treatment) logger.info(f'#inst: {n_ins}') logger.info(f'#feat: {n_feat}') logger.info(f'#time serise length: {n_y_len}') logger.info(f'#treatments : {len(treats)}') @property def targets(self): raise NotImplementedError @property def features(self): raise NotImplementedError @property def treatment(self): raise NotImplementedError @property def feature_columns(self): if hasattr(self, 'used_features'): return getattr(self, 'used_features') elif isinstance(self.features, pd.DataFrame): return self.features.columns else: raise RuntimeError('There is no attribute `feature_columns`!') # Path: openasce/inference/tree/histogram.py class Histogram(object): def __init__(self, conf: ConfigTree): hist_conf = conf.get('histogram', conf) self.conf = conf self.info = CausalDataInfo(conf) self.tr_dts = [] self.max_bin_num = hist_conf.max_bin_num # Maximum number of bins self.min_point_per_bin = hist_conf.min_point_per_bin # Minimum number of points for binning # [leaf, feature, treatment, bin, target] self.bin_counts = None self.bin_hists = {} self._data = None def update_hists(self, target, index, leaves_range, treatment, bin_features, is_gradient, is_splitting, threads): """ Update histograms for all nodes in the same level of a tree Arguments: target (_type_): _description_ index (_type_): _description_ leaves_range (_type_): _description_ treatment (_type_): _description_ bin_features (_type_): _description_ is_gradient (bool): _description_ is_splitting (bool): _description_ threads (_type_): _description_ Raises: ValueError: _description_ Returns: _type_: _description_ """ n, m = bin_features.shape n_w = self.info.n_treatment l = len(leaves_range) leaves = list(range(0, l, 2)) n_bins = self.max_bin_num if is_gradient: assert isinstance(target, (dict, )), f'target should be a dict!' keys = [k for k in target.keys()] outs = [np.zeros([l, m, n_bins, n_w, target[k].shape[1]], target[k].dtype) for k in keys] targets = [target[k] for k in keys] # update histogram of target update_histograms(targets, bin_features, index, leaves_range, treatment, outs, leaves, n_w, n_bins, threads) for i, k in enumerate(keys): if l > 1: outs[i][1::2] = self.bin_hists[k][is_splitting] - outs[i][::2] self.bin_hists[k] = outs[i] else: assert isinstance(target, (dict, )), '' keys = target.keys() outs = [np.zeros([l, m, n_bins, n_w, target[k].shape[1]], target[k].dtype) for k in keys] targets = [target[k] for k in keys] # update histogram of target update_histograms(targets, bin_features, index, leaves_range, treatment, outs, leaves, n_w, n_bins, threads) for i, k in enumerate(keys): if l > 1: outs[i][1::2] = self.bin_hists[k][is_splitting] - outs[i][::2] self.bin_hists[k] = outs[i] # update counts out = np.zeros([l, m, n_bins, n_w, 1], np.int32) update_histogram(np.ones([n, 1], np.int32), bin_features, index, leaves_range, treatment, out, leaves, n_w, n_bins, threads) if l > 1: out[1::2] = np.expand_dims(self.bin_counts[is_splitting], -1) - out[::2] self.bin_counts = out[:, :, :, :, 0] return self def __getattr__(self, __name: str): """ Get the attribute value. Arguments: __name (str): The name of the attribute. Returns: ndarray: The attribute value. Raises: AttributeError: If the attribute is not found. """ if __name in self.bin_hists: return self.bin_hists[__name] raise AttributeError() @classmethod def new_instance(cls, dataset: Dataset, conf: ConfigTree = None, **kwargs): """ Create a new instance of the histogram. Arguments: dataset (Dataset): The dataset. conf (ConfigTree): The configuration tree. kwargs: Additional keyword arguments. Returns: Histogram: The new instance of the histogram. """ hist = cls(conf, dataset.treatment, dataset.targets) hist.binning(dataset) return hist # Path: openasce/inference/tree/information.py class CausalDataInfo(object): def __init__(self, conf, **kwargs): data_conf = conf.get('dataset', conf) self.n_treatment = data_conf.get('n_treatment') self.feature_columns = data_conf.get('feature', None) self.treatment_column = data_conf.get('treatment', None) self.feature_ratio = conf.get('feature_ratio', None) self.instance_ratio = conf.get('instance_ratio', None) self.n_period = data_conf.get('n_period') self.treat_dt = data_conf.get('treat_dt') hist_conf = conf.get('histogram', {}) self.n_bins = hist_conf.get('max_bin_num', 64) self.min_point_per_bin = hist_conf.get('min_point_per_bin', 10) tree_conf = conf.get('tree', {}) self.lambd = tree_conf.get('lambd', None) self.gamma = tree_conf.get('gamma', None) self.coef = tree_conf.get('coefficient', None) self.parallel_l2 = tree_conf.get('parallel_l2', None) self.min_point_num_node = tree_conf.get('min_point_num_node', None) self.max_depth = tree_conf.get('max_depth', None) # Path: openasce/inference/tree/bin.py class BinMapper(KBinsDiscretizer): """A class for binning numerical features.""" def __init__(self, conf: ConfigTree): self.info = CausalDataInfo(conf) self._binmaper_cpp: list = None def transform(self, X): """ Transform the input features using the bin mapper. Arguments: X: Input features. Returns: The transformed features. """ return value_bin_parallel(X, self._binmaper_cpp) def fit(self, X, y=None): """ Fit the bin mapper on the input features. Arguments: X: Input features. y: The target variable (not used). Returns: The fitted bin mapper object. """ xshape = X.shape assert len(xshape) == 2, f'`X` must be 2-dimension!' self._binmaper_cpp = find_bin_parallel(X, self.info.n_bins, self.info.min_point_per_bin, self.info.min_point_per_bin, True) self.description() return self def description(self): """Print the description of the bin mapper.""" TRACE(f'{"*"*43}description bin{"*"*43}') TRACE(f'*{len(self._binmaper_cpp)} features*') TRACE(f'*number of bins:{[len(b.GetUpperBoundValue()) for b in self._binmaper_cpp]}') TRACE(f'{"*"*100}') def inverse_transform(self, Xt, index: int = None): """ Inverse transform the transformed features to the original values. Arguments: Xt: Transformed features. index: Index of the feature to inverse transform. Returns: The inverse transformed features. """ if index is not None: assert len(self._binmaper_cpp) > index and index >= 0, f'index must between [0, {len(self._binmaper_cpp)})!' return self._binmaper_cpp[index].BinToValue(Xt) raise NotImplementedError def fit_transform(self, X, y=None, **fit_params): """ Fit the bin mapper on the input features and transform them. Arguments: X: Input features. y: The target variable (not used). fit_params: Additional parameters for fitting. Returns: The transformed features. """ self.fit(X) return self.transform(X) def fit_dataset(self, data): """ Fit the bin mapper on the dataset. Arguments: data: Dataset object containing the input features. """ x = to_row_major(data.features) if self.is_fit is False: self.fit(x) bin_features = self.transform(x) bin_features = pd.DataFrame(bin_features, columns=data.feature_columns) data.bin_features = bin_features @property def is_fit(self): """ Check if the bin mapper is fit. Returns: True if the bin mapper is fit, False otherwise. """ return self._binmaper_cpp is not None @property def upper_bounds(self): """ Get the upper bounds of the bins. Returns: The upper bounds of the bins. """ return np.asfarray([m.GetUpperBoundValue() for m in self._binmaper_cpp]) # Path: openasce/inference/tree/cppnode.py def create_didnode_from_dict(info): """ Create a CppDebiasNode from a dictionary. Arguments: info (Dict): The node information. Returns: CppDebiasNode: The CppDebiasNode instance. """ # basic information for tree node assert len(info['children']) == 2, f'children should be 2!' node = common.CppDebiasNode() basic_keys = node.get_property_keys() for k in info.keys(): if k in basic_keys: setattr(node, k, info[k]) else: node.set_info(k, info[k]) return node # Path: openasce/inference/tree/cppnode.py def predict(nodes: List[common.CppDiDNode], x, out, key, threads=20): """ Predict using the tree nodes. Arguments: nodes (List): The list of tree nodes. x (ndarray): The input data. out (ndarray): The output array. key (ndarray): The prediction key. threads (int): The number of threads. Returns: ndarray: The predicted values. Raises: RuntimeError: If the number of nodes is less than or equal to 0. ValueError: If the node type is not supported. """ if len(nodes) <= 0: raise RuntimeError(f'The number of nodes must be greater than 0!') elif isinstance(nodes[0], list) is False: nodes = [nodes] if isinstance(nodes[0][0], common.CppDiDNode): return common.predict_did(nodes, out, x, key, threads) elif isinstance(nodes[0][0], common.CppDebiasNode): return common.predict_debias(nodes, out, x, key, threads) else: raise ValueError(f'{type(nodes[0][0])} is not supported!') # Path: openasce/inference/tree/losses.py class Loss(metaclass=ABCMeta): """Abstract base class for loss functions.""" def __init__(self, **kwargs): self._name = kwargs.get('name', self.__class__.__name__) self.classification = True @staticmethod def new_instance(conf): """ Create a new instance of the loss function. Arguments: conf: Configuration. Returns: An instance of the loss function. """ conf = conf.get('tree', conf) loss_cls = conf.get('loss_cls', None) return new_instance(loss_cls) @abstractmethod def loss(self, target, prediction, *args): """ Calculate the loss. Arguments: target: Target values. prediction: Predicted values. args: Additional arguments. Raises: NotImplementedError: If the method is not implemented. Returns: The loss value. """ raise NotImplementedError # Path: openasce/inference/tree/gradient_causal_tree.py from typing import Dict, List from collections import OrderedDict from pyhocon import ConfigTree from .tree_node import GradientCausalTreeNode from .dataset import Dataset from .histogram import Histogram from .information import CausalDataInfo from .bin import BinMapper from .splitting_losses import * from .cppnode import create_didnode_from_dict, predict from .losses import Loss from .utils import * import numpy as np tr_data: The training dataset. hist (Histogram): The histogram object. idx_map: The index mapping. leaves (List[GradientCausalTreeNode]): The list of leaves. leaves_range: The range of leaves. eta: The parallel interval between the treated and control group. Returns: leaves_new (List[GradientCausalTreeNode]): The new leaves. leaves_range_new: The new range of leaves. """ leaves, leaves_range, is_splitting = _filter(leaves, leaves_range) n_leaf = len(split_conds) if len(leaves) == 0 or len(split_conds) == 0: return leaves, leaves_range x_binned = to_row_major(tr_data.bin_features[self.feature_used], np.int32) treatment = to_row_major(tr_data.treatment, np.int32) sorted_split = OrderedDict(sorted(split_conds.items())) split_info = np.asarray([[info['feature'], info['threshold']] for _, info in sorted_split.items()]).astype( np.int32 ) out = np.zeros([n_leaf * 2, 2], np.int32) update_x_map(x_binned, idx_map, split_info, leaves_range, out) leaves_range_new = out hist.update_hists( { 'bin_grad_hist': gradients[0], 'bin_hess_hist': gradients[1], 'bin_cgrad_hist': cgradients[0], 'bin_chess_hist': cgradients[1], 'bin_eta_hist': eta, }, idx_map, leaves_range_new, treatment, x_binned, is_gradient=True, is_splitting=is_splitting, threads=self.nthreads, ) # create new node leaves_new = [] for i, leaf in enumerate(leaves): ltheta, rtheta = split_conds[leaf.level_id]['theta'] l_eta, r_eta = split_conds[leaf.level_id]['eta'] leaf._children = [ GradientCausalTreeNode( self.conf, leaf_id=leaf.leaf_id * 2 + 1, level_id=i * 2, theta=ltheta, eta=l_eta ), GradientCausalTreeNode( self.conf, leaf_id=leaf.leaf_id * 2 + 2, level_id=i * 2 + 1, theta=rtheta, eta=r_eta ), ] leaves_new.extend(leaf._children) fid, bin_id = split_info[i] leaf.split_feature = self.feature_used_map[fid] leaf.split_thresh = bin_id leaf.split_rawthresh = self.bin_mapper.inverse_transform(bin_id, self.feature_used_map[fid]) return leaves_new, leaves_range_new def _split_cpp(self, leaves: List[GradientCausalTreeNode], hist: Histogram): """ Split the leaf nodes at the current level using C++ implementation. Arguments: leaves: The list of leaf nodes. hist: The histogram object. Returns: split_conds: The split conditions. """ # Step 1: Collect all the split points that need to calculate the loss # Step 2: Perform the split info = self.info n_leaves, m, n_bins, n_w, n_y = hist.bin_grad_hist.shape t0, T, n_w = info.treat_dt, info.n_period, info.n_treatment lambd = info.lambd coef = info.coef min_num = self.info.min_point_num_node configs = {leaf.level_id: {fid: [0, n_bins] for fid in range(m)} for leaf in leaves} parameters = f"""{{ "tree": {{ "lambd": {lambd}, "coeff": {coef}, "min_point_num_node": {min_num}, "min_var_rate": {0.1}, "monotonic_constraints": {self.w_monotonic}, "parallel_l2": {self.info.parallel_l2} }}, "threads": {self.nthreads}, "dataset": {{ "treat_dt": {t0} }} }}""" res = didtree_splitting_losses( configs, hist.bin_grad_hist, hist.bin_hess_hist, hist.bin_cgrad_hist, hist.bin_chess_hist, hist.bin_eta_hist, hist.bin_counts, parameters, ) split_conds = {} for leaf in leaves: level_id = leaf.level_id if level_id not in res: leaf.is_leaf = True continue # opt_feature, opt_bin_idx, opt_loss if bool(np.isinf(res[level_id][2])) is False: etas = res[level_id][4] split_conds[level_id] = { 'feature': res[level_id][0], 'threshold': res[level_id][1], 'loss': res[level_id][2], 'theta': (res[level_id][3][0], res[level_id][3][1]),
'eta': (np.asarray([etas[0], -etas[0]]), np.asarray([etas[1], -etas[1]])),
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: 8none1/idealLED # Path: custom_components/ideal_led/idealled.py class IDEALLEDInstance: def __init__(self, address, reset: bool, delay: int, hass) -> None: self.loop = asyncio.get_running_loop() self._mac = address self._reset = reset self._delay = delay self._hass = hass self._device: BLEDevice | None = None self._device = bluetooth.async_ble_device_from_address(self._hass, address) if not self._device: raise ConfigEntryNotReady( f"You need to add bluetooth integration (https://www.home-assistant.io/integrations/bluetooth) or couldn't find a nearby device with address: {address}" ) self._connect_lock: asyncio.Lock = asyncio.Lock() self._client: BleakClientWithServiceCache | None = None self._disconnect_timer: asyncio.TimerHandle | None = None self._cached_services: BleakGATTServiceCollection | None = None self._expected_disconnect = False self._is_on = None self._rgb_color = None self._brightness = 255 self._effect = None self._effect_speed = 0x64 self._color_mode = ColorMode.RGB self._write_uuid = None self._write_colour_uuid = None self._read_uuid = None self._turn_on_cmd = None self._turn_off_cmd = None self._model = self._detect_model() self._on_update_callbacks = [] LOGGER.debug( "Model information for device %s : ModelNo %s. MAC: %s", self._device.name, self._model, self._mac, ) def _detect_model(self): x = 0 for name in NAME_ARRAY: if self._device.name.lower().startswith(name.lower()): # TODO: match on BLE provided model instead of name return x x = x + 1 async def _write(self, data: bytearray): """Send command to device and read response.""" await self._ensure_connected() cipher = AES.new(SECRET_ENCRYPTION_KEY, AES.MODE_ECB) ciphered_data = cipher.encrypt(data) await self._write_while_connected(ciphered_data) async def _write_colour_data(self, data: bytearray): """Send command to device and read response.""" await self._ensure_connected() await self._write_colour_while_connected(data) async def _write_while_connected(self, data: bytearray): LOGGER.debug(f"Writing data to {self.name}: {data}") await self._client.write_gatt_char(self._write_uuid, data, False) async def _write_colour_while_connected(self, data: bytearray): LOGGER.debug(f"Writing colour data to {self.name}: {data}") await self._client.write_gatt_char(self._write_colour_uuid, data, False) def _notification_handler(self, _sender: BleakGATTCharacteristic, data: bytearray) -> None: # This doesn't work. I can't get the controller to send notifications. """Handle BLE notifications from the device. Update internal state to reflect the device state.""" LOGGER.debug("N: %s: Notification received", self.name) #self.local_callback() @property def mac(self): return self._device.address @property def reset(self): return self._reset @property def name(self): return self._device.name @property def rssi(self): return self._device.rssi @property def is_on(self): return self._is_on @property def brightness(self): return self._brightness @property def rgb_color(self): return self._rgb_color @property def effect_list(self) -> list[str]: return EFFECT_LIST @property def effect(self): return self._effect @property def color_mode(self): return self._color_mode @retry_bluetooth_connection_error async def set_rgb_color(self, rgb: Tuple[int, int, int], brightness: int | None = None): # TODO: Add support for brightness self._rgb_color = rgb if brightness is None: if self._brightness is None: self._brightness = 255 else: brightness = self._brightness brightness_percent = int(brightness * 100 / 255) # Now adjust the RBG values to match the brightness red = int(rgb[0] * brightness_percent / 100) green = int(rgb[1] * brightness_percent / 100) blue = int(rgb[2] * brightness_percent / 100) # RGB packet rgb_packet = bytearray.fromhex("0F 53 47 4C 53 00 00 64 50 1F 00 00 1F 00 00 32") red = int(red >> 3) # You CAN send 8 bit colours to this thing, but you probably shouldn't for power reasons. Thanks to the good folks at Hacker News for that insight. green = int(green >> 3) blue = int(blue >> 3) rgb_packet[9] = red rgb_packet[12] = red rgb_packet[10] = green rgb_packet[13] = green rgb_packet[11] = blue rgb_packet[14] = blue await self._write(rgb_packet) @retry_bluetooth_connection_error # effect, reverse=0, speed=50, saturation=50, colour_data=COLOUR_DATA async def set_effect(self, effect: str, brightness: int | None = NotImplemented): if effect not in EFFECT_LIST: LOGGER.error("Effect %s not supported", effect) return self._effect = effect effect_id = EFFECT_MAP.get(effect) if effect_id > 11: effect = 11 packet = bytearray.fromhex("0A 4D 55 4C 54 08 00 64 50 07 32 00 00 00 00 00") packet[5] = effect_id packet[6] = 0 # reverse packet[8] = 50 # speed packet[10] = 50 # saturation (brightness?) await self._write(packet) # Now we send the colour data await self.write_colour_data() @retry_bluetooth_connection_error async def write_colour_data(self): # This is sent after switching to an effect to tell the device what sort of pattern to show. # In the app you can edit this yourself, but HA doesn't have the UI for such a thing # so for now I'm just going to hardcode it to a rainbow pattern. You could change this to # whatever you want, but for an effect the maximum length is 7 colours. colour_list = [] colour_divisions = int(360 / 7) for i in range(7): h = i * colour_divisions r, g, b = colorsys.hsv_to_rgb(h / 360, 1, 1) r = int(r * 255) g = int(g * 255) b = int(b * 255) colour_list.append((r, g, b)) #print(f"Colour list: {colour_list}") length = len(colour_list) colour_data = [] colour_data.append(length*3) # 3 bytes per colour colour_data.append(0) # Don't know what this is, perhaps just a separator for colour in colour_list: colour_data.append(colour[0]) colour_data.append(colour[1]) colour_data.append(colour[2]) await self._write_colour_data(colour_data) @retry_bluetooth_connection_error async def turn_on(self): packet = bytearray.fromhex("05 54 55 52 4E 01 00 00 00 00 00 00 00 00 00 00") packet[5] = 1 await self._write(packet) self._is_on = True @retry_bluetooth_connection_error async def turn_off(self): packet = bytearray.fromhex("05 54 55 52 4E 01 00 00 00 00 00 00 00 00 00 00") packet[5] = 0 await self._write(packet) self._is_on = False @retry_bluetooth_connection_error async def update(self): LOGGER.debug("%s: Update in lwdnetwf called", self.name) try: await self._ensure_connected() self._is_on = False except Exception as error: self._is_on = None # failed to connect, this should mark it as unavailable LOGGER.error("Error getting status: %s", error) track = traceback.format_exc() LOGGER.debug(track) async def _ensure_connected(self) -> None: """Ensure connection to device is established.""" if self._connect_lock.locked(): LOGGER.debug( "%s: Connection already in progress, waiting for it to complete", self.name, ) if self._client and self._client.is_connected: self._reset_disconnect_timer() return async with self._connect_lock: # Check again while holding the lock if self._client and self._client.is_connected: self._reset_disconnect_timer() return LOGGER.debug("%s: Connecting", self.name) client = await establish_connection( BleakClientWithServiceCache, self._device, self.name, self._disconnected, cached_services=self._cached_services, ble_device_callback=lambda: self._device, ) LOGGER.debug("%s: Connected", self.name) resolved = self._resolve_characteristics(client.services) if not resolved: # Try to handle services failing to load resolved = self._resolve_characteristics(await client.get_services()) self._cached_services = client.services if resolved else None self._client = client self._reset_disconnect_timer() # Subscribe to notification is needed for LEDnetWF devices to accept commands self._notification_callback = self._notification_handler await client.start_notify(self._read_uuid, self._notification_callback) LOGGER.debug("%s: Subscribed to notifications", self.name) def _resolve_characteristics(self, services: BleakGATTServiceCollection) -> bool: """Resolve characteristics.""" for characteristic in NOTIFY_CHARACTERISTIC_UUIDS: if char := services.get_characteristic(characteristic): self._read_uuid = char LOGGER.debug("%s: Read UUID: %s", self.name, self._read_uuid) break for characteristic in WRITE_CMD_CHARACTERISTIC_UUIDS: if char := services.get_characteristic(characteristic): self._write_uuid = char LOGGER.debug("%s: Write UUID: %s", self.name, self._write_uuid) break for characteristic in WRITE_COL_CHARACTERISTIC_UUIDS: if char := services.get_characteristic(characteristic): self._write_colour_uuid = char LOGGER.debug("%s: Write colour UUID: %s", self.name, self._write_colour_uuid) break return bool(self._read_uuid and self._write_uuid and self._write_colour_uuid) def _reset_disconnect_timer(self) -> None: """Reset disconnect timer.""" if self._disconnect_timer: self._disconnect_timer.cancel() self._expected_disconnect = False if self._delay is not None and self._delay != 0: LOGGER.debug( "%s: Configured disconnect from device in %s seconds", self.name, self._delay ) self._disconnect_timer = self.loop.call_later(self._delay, self._disconnect) def _disconnected(self, client: BleakClientWithServiceCache) -> None: """Disconnected callback.""" if self._expected_disconnect: LOGGER.debug("%s: Disconnected from device", self.name) return LOGGER.warning("%s: Device unexpectedly disconnected", self.name) def _disconnect(self) -> None: """Disconnect from device.""" self._disconnect_timer = None asyncio.create_task(self._execute_timed_disconnect()) async def stop(self) -> None: """Stop the LEDBLE.""" LOGGER.debug("%s: Stop", self.name) await self._execute_disconnect() async def _execute_timed_disconnect(self) -> None: """Execute timed disconnection.""" LOGGER.debug( "%s: Disconnecting after timeout of %s", self.name, self._delay ) await self._execute_disconnect() async def _execute_disconnect(self) -> None: """Execute disconnection.""" async with self._connect_lock: read_char = self._read_uuid client = self._client self._expected_disconnect = True self._client = None self._write_uuid = None self._read_uuid = None if client and client.is_connected: await client.stop_notify(read_char) # TODO: I don't think this is needed. Bleak docs say it isnt. await client.disconnect() LOGGER.debug("%s: Disconnected", self.name) def local_callback(self): # Placeholder to be replaced by a call from light.py # I can't work out how to plumb a callback from here to light.py return # Path: custom_components/ideal_led/const.py DOMAIN = "ideal_led" # Path: custom_components/ideal_led/const.py CONF_RESET = "reset" # Path: custom_components/ideal_led/const.py CONF_DELAY = "delay" # Path: custom_components/ideal_led/config_flow.py import asyncio import voluptuous as vol import logging from .idealled import IDEALLEDInstance from typing import Any from bluetooth_data_tools import human_readable_name from homeassistant import config_entries from homeassistant.const import CONF_MAC from homeassistant.helpers.device_registry import format_mac from homeassistant.data_entry_flow import FlowResult from homeassistant.core import callback from homeassistant.components.bluetooth import ( BluetoothServiceInfoBleak, async_discovered_service_info, ) from bluetooth_sensor_state_data import BluetoothData from home_assistant_bluetooth import BluetoothServiceInfo from .const import DOMAIN, CONF_RESET, CONF_DELAY LOGGER = logging.getLogger(__name__) DATA_SCHEMA = vol.Schema({("host"): str}) class DeviceData(BluetoothData): def __init__(self, discovery_info) -> None: self._discovery = discovery_info LOGGER.debug("Discovered bluetooth devices, DeviceData, : %s , %s", self._discovery.address, self._discovery.name) def supported(self):
return self._discovery.name.lower().startswith("isp-")
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: amirzandieh/HyperAttention # Path: src/flash_attn_triton.py def _fwd_kernel( Q, K, V, Bias, Out, Lse, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_ob, stride_oh, stride_om, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, ): def _bwd_preprocess_do_o_dot( Out, DO, Delta, stride_ob, stride_oh, stride_om, stride_dob, stride_doh, stride_dom, nheads, seqlen_q, seqlen_q_rounded, headdim, BLOCK_M: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, ): def _bwd_store_dx( dx_ptrs, dx, offs_n, offs_d, seqlen, headdim, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, even_headdim, ): def _bwd_kernel_one_col_block( start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD: tl.constexpr, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, ): def init_to_zero(name): def _bwd_kernel( Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_dob, stride_doh, stride_dom, stride_dqb, stride_dqh, stride_dqm, stride_dkb, stride_dkh, stride_dkn, stride_dvb, stride_dvh, stride_dvn, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, SEQUENCE_PARALLEL: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, ): def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None): def _flash_attn_backward( do, q, k, v, o, lse, dq, dk, dv, bias=None, causal=False, softmax_scale=None ): def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None): def backward(ctx, do, dlse_use_needed=None): BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16) BLOCK = 128 BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16) class FlashAttnFunc(torch.autograd.Function): # Path: src/hyper_attn_triton.py def _fwd_hyper_kernel( Q, K, V, q_sort_idx, k_sort_idx, Out, Lse, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_q_sort_idxb, stride_q_sort_idxh, stride_q_sort_idxm, stride_k_sort_idxb, stride_k_sort_idxh, stride_k_sort_idxn, stride_ob, stride_oh, stride_om, nheads, block_size, sample_size, seqlen_k, seqlen_q, headdim, v_headdim, smooth_block, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BLOCK_HEADDIM: tl.constexpr, V_BLOCK_HEADDIM: tl.constexpr, EVEN_HEADDIM: tl.constexpr, EVEN_V_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, ): def _bwd_preprocess_do_o_dot( Out, DO, Delta, stride_ob, stride_oh, stride_om, stride_dob, stride_doh, stride_dom, nheads, seqlen_q, v_headdim, BLOCK_M: tl.constexpr, V_BLOCK_HEADDIM: tl.constexpr, ): def _bwd_store_dx( dx_ptrs, dx, offs_d, headdim, even_headdim, ): def _bwd_blocked_kernel_one_col( start_n, Q, K, V, Q_idx, K_idx, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_dom, stride_dqm, stride_dkn, stride_dvn, stride_q_idxm, stride_k_idxn, seqlen_q, block_size, headdim, v_headdim, smooth_block, BLOCK_HEADDIM: tl.constexpr, V_BLOCK_HEADDIM: tl.constexpr, EVEN_HEADDIM: tl.constexpr, EVEN_V_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, ): def _bwd_permuted_block_diagonal_kernel( Q, K, V, q_sort_idx, k_sort_idx, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_q_sort_idxb, stride_q_sort_idxh, stride_q_sort_idxm, stride_k_sort_idxb, stride_k_sort_idxh, stride_k_sort_idxn, stride_dob, stride_doh, stride_dom, stride_dqb, stride_dqh, stride_dqm, stride_dkb, stride_dkh, stride_dkn, stride_dvb, stride_dvh, stride_dvn, nheads, seqlen_q, block_size, headdim, v_headdim, smooth_block, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BLOCK_HEADDIM: tl.constexpr, V_BLOCK_HEADDIM: tl.constexpr, EVEN_HEADDIM: tl.constexpr, EVEN_V_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, ): def _bwd_sampled_col_kernel( Q, K, V, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_dob, stride_doh, stride_dom, stride_dqb, stride_dqh, stride_dqm, stride_dkb, stride_dkh, stride_dkn, stride_dvb, stride_dvh, stride_dvn, nheads, seqlen_q, headdim, v_headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BLOCK_HEADDIM: tl.constexpr, V_BLOCK_HEADDIM: tl.constexpr, EVEN_HEADDIM: tl.constexpr, EVEN_V_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, ): def _hyper_attn_forward(q, k, v, q_sort_idx, k_sort_idx, block_size, sample_size, softmax_scale=None, smooth_block=False): def _hyper_attn_backward( do, q, k, v, q_sort_idx, k_sort_idx, o, lse, dq, dk, dv, block_size, sample_size, softmax_scale=None, smooth_block=False): def forward(ctx, q, k, v, q_sort_idx, k_sort_idx, block_size, sample_size=0, softmax_scale=None, smooth_block=False): def backward(ctx, do, dlse_use_needed=None): BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16) V_BLOCK_HEADDIM = max(triton.next_power_of_2(v_headdim), 16) BLOCK = 128 V_BLOCK_HEADDIM = max(triton.next_power_of_2(v_headdim), 16) BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16) BLOCK = 128 class HyperAttnFunc(torch.autograd.Function): # Path: src/attn_utils.py def add_self_attentions(attn1, lse1, attn2, lse2): """ inputs: - attn1, attn2: 4d-tensors with shape [b, h, n, d] - lse1, lse2: 4d-tensors of log-sum-exp with shape [b, h, n, 1] output: - attn = (attn1 * exp(lse1) + attn2 * exp(lse2)) / (exp(lse1) + exp(lse2)) = (attn1 + attn2 * exp(lse2 - lse1)) / (1 + exp(lse2-lse1)) = attn1 * c + attn2 * (1-c), where c=1/(1 + exp(lse2-lse1)), - lse = log(exp(lse1) + exp(lse2)) = log(exp(lse1) * (1 + exp(lse2 - lse1))) = lse1 + log(1 + exp(lse2 - lse1)) = lse1 - log(c) """ c = (1 / (1 + (lse2 - lse1).exp())).to(dtype=attn1.dtype) attn = c * attn1 + (1-c) * attn2 lse = lse1 - (c + torch.finfo(lse1.dtype).eps).log() return attn, lse # Path: src/attn_utils.py def indexing(x, indices, chunk_size=-1): """ inputs: - x: 4d-tensor with shape [b, h, n, d] - indices: 3d-tensor with shape [b, h, s] where each entry should be in [0, n-1] output: - out: 4d-tensor with shape [b, h, s, d] where out[i,j] = x[i,j][indices[i,j],:] A naive implementation: out = torch.zeros(b, h, s, d) for i in range(b): for j in range(h): out[i,j] = x[i,j][idx[i,j],:] return out """ if chunk_size < 0 or (chunk_size > 0 and x.shape[-2] % chunk_size == 0): return x.gather(2, indices.unsqueeze(-1).expand(-1, -1, -1, x.shape[-1])) else: x = x.gather(2, indices.unsqueeze(-1).expand(-1, -1, -1, x.shape[-1])) new_n = math.ceil(x.shape[2] / chunk_size) * chunk_size if new_n <= 0 or new_n - x.shape[2] <= 0: import pdb; pdb.set_trace(); return torch.nn.functional.pad(x, (0, 0, 0, new_n - x.shape[2]), mode='constant', value=0.) # Path: unit_tests/test_hyper_attention.py import unittest import time import torch import triton import math import sys; sys.path.append("/home/ec2-user/workspace/hyper_attention") from src.flash_attn_triton import flash_attn_func from src.hyper_attn_triton import hyper_attn_func from src.attn_utils import add_self_attentions, indexing value = torch.randn((batch_size, head_size, seq_len, dim), device='cuda', dtype=dtype) q_buckets_idx = torch.randint(0, 64, (batch_size, head_size, seq_len), device='cuda') k_buckets_idx = torch.randint(0, 64, (batch_size, head_size, seq_len), device='cuda') _, query_sort_idx = torch.sort(q_buckets_idx, dim=2, stable=True) _, key_sort_idx = torch.sort(k_buckets_idx, dim=2, stable=True) check_memory() # compute attention by presorting queries and sorting back the output attention t0 = time.time() query_sort_idx_inv = torch.argsort(query_sort_idx, dim=2, stable=True) query_sorted = indexing(query, query_sort_idx) key_sorted = indexing(key, key_sort_idx) value_sorted = indexing(value, key_sort_idx) query_split_per_block = query_sorted.view(-1, 1, block_size, dim) key_split_per_block = key_sorted.view(-1, 1, block_size, dim) value_split_per_block = value_sorted.view(-1, 1, block_size, dim) attn_block, lse_block = flash_attn_func(query_split_per_block.transpose(1, 2), key_split_per_block.transpose(1, 2), value_split_per_block.transpose(1, 2)) attn_sample, lse_sample = flash_attn_func(query.transpose(1, 2), key[:, :, :sample_size, :].transpose(1, 2), value[:, :, :sample_size, :].transpose(1, 2)) attn_block = attn_block.transpose(1, 2) attn_block = attn_block.view(batch_size, head_size, query_sorted.shape[2], -1) attn_sample = attn_sample.transpose(1, 2) lse_block = lse_block[:, :, :query_sorted.shape[2]] lse_block = lse_block.view(batch_size, head_size, query_sorted.shape[2], -1) flash_attn_block = indexing(attn_block, query_sort_idx_inv)+attn_sample lse_block = indexing(lse_block, query_sort_idx_inv) attn, lse = add_self_attentions(flash_attn_block, lse_block, attn_sample, lse_sample.unsqueeze(-1)) lse = lse.squeeze(-1) t1 = time.time() check_memory() print('the runtime of flash attention with permutation and indexing of queries:', t1-t0) # torch lse computation qk = query_split_per_block @ key_split_per_block.transpose(-1, -2) / math.sqrt(dim) lse_block_torch = torch.logsumexp(qk, dim=-1, keepdim=True) lse_block_torch = lse_block_torch.view(batch_size, head_size, query_sorted.shape[2], -1) lse_block_torch = indexing(lse_block_torch, query_sort_idx_inv).squeeze(-1) lse_sample_torch = torch.logsumexp( query @ key[:, :, :sample_size, :].transpose(-1, -2) / math.sqrt(dim), dim=-1, keepdim=True ).squeeze(-1) lse_torch = (lse_sample_torch.exp() + lse_block_torch.exp()).log().to(dtype=lse_block_torch.dtype) print('diff between lse with sample and without: ', (lse_block_torch - lse_torch).norm(), lse_torch.norm()) print('error flash attention:', (lse - lse_torch).norm(), lse_torch.norm()) # compute attention kernel which permutes queries in triton check_memory(0) t2 = time.time() attn_hyper, lse_hyper = hyper_attn_func( query.transpose(1, 2), key.transpose(1, 2), value.transpose(1, 2), query_sort_idx.transpose(1, 2), key_sort_idx.transpose(1, 2), block_size, sample_size, 1./math.sqrt(dim), smooth_block, ) attn_hyper = attn_hyper.transpose(1, 2) t3 = time.time() check_memory() print('the runtime of hyper attention:', t3 - t2) print('diff lse hyper_attention and flash with indexing and permutation: ', (lse - lse_hyper).norm(), lse.norm()) print('error hyper attention lse: ', (lse_hyper - lse_torch).norm(), lse_torch.norm()) # check if dimension of V can be different from that of Q and K value_small = value[:, :, :, :dim//2].clone() attn_triton_unequal_dim, lse_triton_unequal_dim = hyper_attn_func( query.transpose(1, 2), key.transpose(1, 2), value_small.transpose(1, 2), query_sort_idx.transpose(1, 2), key_sort_idx.transpose(1, 2), block_size, sample_size, ) attn_triton_unequal_dim = attn_triton_unequal_dim.transpose(1, 2) print('testing unequal dimension for V compared to Q, K') print((attn_hyper[:, :, :, :dim//2] - attn_triton_unequal_dim).norm()) def test_gradient(self): print() print("2. this is gradients test") dtype = torch.bfloat16 batch_size = 4 block_size = 256 dim = 64 head_size = 32 seq_len = 2048 sample_size = 128 query = torch.randn((batch_size, head_size, seq_len, dim), device='cuda', dtype=dtype, requires_grad=True) key = torch.randn((batch_size, head_size, seq_len, dim), device='cuda', dtype=dtype, requires_grad=True) value = torch.randn((batch_size, head_size, seq_len, dim), device='cuda', dtype=dtype, requires_grad=True) do = torch.randn_like(value) q_buckets_idx = torch.randint(0, 64, (batch_size, head_size, seq_len), device='cuda') k_buckets_idx = torch.randint(0, 64, (batch_size, head_size, seq_len), device='cuda') _, query_sort_idx = torch.sort(q_buckets_idx, dim=2, stable=True) _, key_sort_idx = torch.sort(k_buckets_idx, dim=2, stable=True) t0 = time.time() query_sort_idx_inv = torch.argsort(query_sort_idx, dim=2, stable=True) query_sorted = indexing(query, query_sort_idx) key_sorted = indexing(key, key_sort_idx) value_sorted = indexing(value, key_sort_idx) query_split_per_block = query_sorted.view(-1, 1, block_size, dim)
key_split_per_block = key_sorted.view(-1, 1, block_size, dim)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Psivant/femto # Path: femto/fe/atm/_setup.py def _offset_ligand( ligand: parmed.Structure, offset: openmm.unit.Quantity ) -> parmed.Structure: """Offsets the coordinates of the specified ligand by a specified amount. Args: ligand: The ligand to offset. offset: The amount to offset the ligand by. Returns: The offset ligand. """ # we copy in this strange way because parmed doesn't # copy all attrs correctly when using copy.deepycopy with tempfile.TemporaryDirectory() as tmpdir: ligand.save(f"{tmpdir}/ligand.parm7") ligand.save(f"{tmpdir}/ligand.mol2") ligand = parmed.amber.AmberParm( f"{tmpdir}/ligand.parm7", f"{tmpdir}/ligand.mol2" ) for atom in ligand.atoms: atom.xx += offset[0].value_in_unit(openmm.unit.angstrom) atom.xy += offset[1].value_in_unit(openmm.unit.angstrom) atom.xz += offset[2].value_in_unit(openmm.unit.angstrom) return ligand # Path: femto/fe/atm/_setup.py def select_displacement( receptor: parmed.amber.AmberParm, ligand_1: parmed.amber.AmberParm, ligand_2: parmed.amber.AmberParm | None, distance: openmm.unit.Quantity, ) -> openmm.unit.Quantity: """Attempts to automatically select a displacement vector for the ligands. Args: receptor: The receptor. ligand_1: The first ligand positioned in the binding site. ligand_2: The second ligand positioned in the binding site. distance: The distance to translate ligands along the displacement vector by. Returns: The displacement vector. """ ligand_coords = numpy.vstack( [ligand_1.coordinates] + ([] if ligand_2 is None else [ligand_2.coordinates]) ) receptor_coords = receptor.coordinates directions = numpy.array( [ [-1.0, -1.0, -1.0], [+1.0, -1.0, -1.0], [+1.0, +1.0, -1.0], [-1.0, +1.0, -1.0], [-1.0, -1.0, +1.0], [+1.0, -1.0, +1.0], [+1.0, +1.0, +1.0], [-1.0, +1.0, +1.0], ] ) directions /= numpy.linalg.norm(directions, axis=1, keepdims=True) closest_distances = [] for direction in directions: displacement = direction * distance.value_in_unit(openmm.unit.angstrom) offset_coords = ligand_coords + displacement distances = scipy.spatial.distance.cdist(offset_coords, receptor_coords) closest_distances.append(distances.min()) direction = directions[numpy.argmax(closest_distances)] return direction.flatten() * distance # Path: femto/fe/atm/_setup.py def setup_system( config: "femto.fe.atm.ATMSetupStage", receptor: parmed.amber.AmberParm, ligand_1: parmed.amber.AmberParm, ligand_2: parmed.amber.AmberParm | None, displacement: openmm.unit.Quantity, receptor_ref_query: str | None, ligand_1_ref_query: tuple[str, str, str] | None = None, ligand_2_ref_query: tuple[str, str, str] | None = None, ) -> tuple[parmed.Structure, openmm.System]: """Prepares a system ready for running the ATM method. Returns: The prepared topology and OpenMM system object. """ _LOGGER.info(f"setting up an {'ABFE' if ligand_2 is None else 'RBFE'} calculation") if receptor_ref_query is None: # we need to select the receptor cavity atoms before offsetting any ligands # as the query is distance based _LOGGER.info("selecting receptor reference atoms") receptor_ref_query = femto.fe.reference.select_protein_cavity_atoms( receptor, [ligand_1] + ([] if ligand_2 is None else [ligand_2]), config.reference.receptor_cutoff, ) ligand_1_ref_idxs, ligand_2_ref_idxs = None, None # we carve out a 'cavity' where the first ligand will be displaced into during the # ATM calculations. this should make equilibration at all states easier. cavity_formers = [_offset_ligand(ligand_1, displacement)] if ligand_2 is not None: # we make sure that when placing solvent molecules we don't accidentally place # any on top of the ligands in the cavity itself cavity_formers.append(ligand_2) ( ligand_1_ref_idxs, ligand_2_ref_idxs, ) = femto.fe.reference.select_ligand_idxs( ligand_1, ligand_2, config.reference.ligand_method, ligand_1_ref_query, ligand_2_ref_query, ) assert ligand_2_ref_idxs is not None, "ligand 2 ref atoms were not selected" ligand_2_ref_idxs = tuple(i + len(ligand_1.atoms) for i in ligand_2_ref_idxs) ligand_2 = _offset_ligand(ligand_2, displacement) _LOGGER.info("solvating system") topology = femto.md.solvate.solvate_system( receptor, ligand_1, ligand_2, config.solvent, displacement, cavity_formers=cavity_formers, ) _LOGGER.info("creating OpenMM system") system = topology.createSystem( nonbondedMethod=openmm.app.PME, nonbondedCutoff=0.9 * openmm.unit.nanometer, constraints=openmm.app.HBonds, rigidWater=True, ) if config.apply_hmr: _LOGGER.info("applying HMR.") hydrogen_mass = config.hydrogen_mass femto.md.system.apply_hmr(system, topology, hydrogen_mass) ligand_1_idxs = list(range(len(ligand_1.atoms))) ligand_2_idxs = None if ligand_2 is not None: ligand_2_idxs = [i + len(ligand_1_idxs) for i in range(len(ligand_2.atoms))] if config.apply_rest: _LOGGER.info("applying REST2.") solute_idxs = ligand_1_idxs + ([] if ligand_2_idxs is None else ligand_2_idxs) femto.md.rest.apply_rest(system, set(solute_idxs), config.rest_config) _LOGGER.info("applying restraints.") ligands = [ligand_1] + ([] if ligand_2 is None else [ligand_2]) idx_offset = sum(len(ligand.atoms) for ligand in ligands) receptor_ref_mask = parmed.amber.AmberMask(receptor, receptor_ref_query).Selection() receptor_ref_idxs = [i + idx_offset for i, m in enumerate(receptor_ref_mask) if m] _LOGGER.info(f"receptor ref idxs={receptor_ref_idxs}") _apply_atm_restraints( system, config.restraints, ligand_1_com_idxs=ligand_1_idxs, ligand_1_ref_idxs=ligand_1_ref_idxs, ligand_2_com_idxs=ligand_2_idxs, ligand_2_ref_idxs=ligand_2_ref_idxs, receptor_ref_idxs=receptor_ref_idxs, offset=displacement, ) restraint_query = config.restraints.receptor_query restraint_mask = parmed.amber.AmberMask(receptor, restraint_query).Selection() restraint_idxs = [i + idx_offset for i, match in enumerate(restraint_mask) if match] _apply_receptor_restraints( system, config.restraints, {i: topology.positions[i] for i in restraint_idxs} ) femto.md.utils.openmm.assign_force_groups(system) return topology, system # Path: femto/fe/tests/systems.py TEMOA_SYSTEM = TestSystem( directory=TEMOA_DATA_DIR, receptor_name="temoa", receptor_coords=TEMOA_DATA_DIR / "temoa.rst7", receptor_params=TEMOA_DATA_DIR / "temoa.parm7", receptor_cavity_mask="@1-40", receptor_ref_atoms=("@1", "@2", "@3"), ligand_1_name="g1", ligand_1_coords=TEMOA_DATA_DIR / "g1.rst7", ligand_1_params=TEMOA_DATA_DIR / "g1.parm7", ligand_1_ref_atoms=("@8", "@6", "@4"), ligand_2_name="g4", ligand_2_coords=TEMOA_DATA_DIR / "g4.rst7", ligand_2_params=TEMOA_DATA_DIR / "g4.parm7", ligand_2_ref_atoms=("@3", "@5", "@1"), ) # Path: femto/md/constants.py LIGAND_1_RESIDUE_NAME = "L1" # Path: femto/md/constants.py LIGAND_2_RESIDUE_NAME = "R1" # Path: femto/md/constants.py class OpenMMForceGroup(enum.IntEnum): """Standard force groups to assign to common OpenMM forces to make them easier to identify.""" BOND = 0 ANGLE = 1 DIHEDRAL = 2 NONBONDED = 3 COM_RESTRAINT = 4 POSITION_RESTRAINT = 5 ALIGNMENT_RESTRAINT = 6 BAROSTAT = 7 ATM = 8 OTHER = 16 # Path: femto/md/tests/mocking.py def build_mock_structure(smiles: list[str]) -> parmed.Structure: """Build a mock structure from a list of SMILES patterns Notes: * A conformer is generated for each molecule. Args: smiles: A list of SMILES patterns. Returns: The mock structure. """ molecules = [Chem.MolFromSmiles(pattern) for pattern in smiles] for molecule, pattern in zip(molecules, smiles, strict=True): assert molecule is not None, f"{pattern} is not a valid SMILES pattern" complex = Chem.Mol() for i, molecule in enumerate(molecules): molecule = Chem.AddHs(molecule) AllChem.EmbedMolecule(molecule) is_water = Chem.MolToSmiles(Chem.RemoveHs(molecule)) == "O" residue_name = ( "WAT" if is_water else ( f"{molecule.GetAtomWithIdx(0).GetSymbol()}" if molecule.GetNumAtoms() == 1 else "UNK" ) ) symbol_count = collections.defaultdict(int) for atom in molecule.GetAtoms(): atom_name = f"{atom.GetSymbol()}{symbol_count[atom.GetSymbol()] + 1}" atom_info = Chem.AtomPDBResidueInfo( atom_name.ljust(4, " "), atom.GetIdx(), "", residue_name, i ) atom.SetMonomerInfo(atom_info) symbol_count[atom.GetSymbol()] += 1 complex = Chem.CombineMols(complex, molecule) with tempfile.NamedTemporaryFile(suffix=".pdb") as tmp_file: Chem.MolToPDBFile(complex, tmp_file.name) structure = parmed.load_file(tmp_file.name, structure=True) return structure # Path: femto/md/utils/openmm.py def all_close( v1: openmm.unit.Quantity, v2: openmm.unit.Quantity, rtol=1.0e-5, atol=1.0e-8, equal_nan=False, ) -> bool: """Compares if all values in two unit wrapped array are close using ``numpy.allclose`` """ if not v1.unit.is_compatible(v2.unit): return False if v1.shape != v2.shape: return False return numpy.allclose( v1.value_in_unit(v1.unit), v2.value_in_unit(v1.unit), atol=atol, rtol=rtol, equal_nan=equal_nan, ) # Path: femto/fe/tests/atm/test_setup.py import collections import numpy import openmm.app import openmm.unit import parmed import pytest import femto.md.config import femto.md.system import femto.fe.atm from femto.fe.atm._setup import _offset_ligand, select_displacement, setup_system from femto.fe.tests.systems import TEMOA_SYSTEM from femto.md.constants import ( LIGAND_1_RESIDUE_NAME, LIGAND_2_RESIDUE_NAME, OpenMMForceGroup, ) from femto.md.tests.mocking import build_mock_structure from femto.md.utils.openmm import all_close assert all_close(displacement, expected_displacement) def test_offset_ligand(): ligand = build_mock_structure(["[Ar]"]) system = openmm.System() system.addParticle(1.0) force = openmm.NonbondedForce() force.addParticle(0.0, 1.0, 0.0) system.addForce(force) ligand = parmed.openmm.load_topology(ligand.topology, system, ligand.coordinates) coords_0 = ligand.coordinates offset = numpy.array([5.0, 4.0, 3.0]) ligand_offset = _offset_ligand(ligand, offset * openmm.unit.angstrom) assert numpy.allclose(ligand.coordinates, coords_0) assert numpy.allclose(ligand_offset.coordinates, coords_0 + offset) def test_setup_system_abfe(temoa_ligand_1, temoa_receptor, mock_setup_config, mocker): n_ligand_atoms = len(temoa_ligand_1.atoms) n_receptor_atoms = len(temoa_receptor.atoms) def mock_solvate_fn(receptor, lig_1, lig_2, *_, **__): assert lig_2 is None complex = lig_1 + receptor complex.box = [100, 100, 100, 90, 90, 90] return complex mock_solvate = mocker.patch( "femto.md.solvate.solvate_system", autospec=True, side_effect=mock_solvate_fn, ) mock_apply_hmr = mocker.patch("femto.md.system.apply_hmr", autospec=True) mock_apply_rest = mocker.patch("femto.md.rest.apply_rest", autospec=True) mock_setup_config.apply_rest = True expected_h_mass = 2.0 * openmm.unit.amu mock_setup_config.hydrogen_mass = expected_h_mass topology, system = setup_system( mock_setup_config, temoa_receptor, temoa_ligand_1, None, numpy.ones(3) * 22.0 * openmm.unit.angstrom, receptor_ref_query=":1", ligand_1_ref_query=None, ligand_2_ref_query=None, ) assert isinstance(topology, parmed.Structure) assert isinstance(system, openmm.System) mock_solvate.assert_called_once() mock_apply_hmr.assert_called_once_with(mocker.ANY, mocker.ANY, expected_h_mass) mock_apply_rest.assert_called_once() assert mock_apply_rest.call_args.args[1] == set(range(n_ligand_atoms)) assert len(topology.atoms) == system.getNumParticles() assert len(topology[f":{LIGAND_1_RESIDUE_NAME}"].residues) == 1 forces = collections.defaultdict(list) for force in system.getForces(): forces[force.getForceGroup()].append(force) assert len(forces[OpenMMForceGroup.NONBONDED]) == 1 nonbonded_force = forces[OpenMMForceGroup.NONBONDED][0] assert nonbonded_force.getNumParticles() == len(topology.atoms) assert len(forces[OpenMMForceGroup.COM_RESTRAINT]) == 1 com_force = forces[OpenMMForceGroup.COM_RESTRAINT][0] assert isinstance(com_force, openmm.CustomCentroidBondForce) assert com_force.getNumBonds() == 1 # between ligand 1 com and receptor com expected_ligand_com_idxs = tuple(range(n_ligand_atoms)) ligand_com_idxs, _ = com_force.getGroupParameters(0) assert ligand_com_idxs == expected_ligand_com_idxs expected_receptor_com_idxs = tuple( range(n_ligand_atoms, n_ligand_atoms + n_receptor_atoms) ) receptor_com_idxs, _ = com_force.getGroupParameters(1) assert receptor_com_idxs == expected_receptor_com_idxs # make sure the receptor position restraints are applied to the right atoms restraint_forces = forces[OpenMMForceGroup.POSITION_RESTRAINT] assert len(restraint_forces) == 1 restraint_force: openmm.CustomExternalForce = restraint_forces[0] assert restraint_force.getNumParticles() == n_receptor_atoms atom_idx, restraint_params = restraint_force.getParticleParameters(0) assert atom_idx == n_ligand_atoms x0, y0, z0, k, radius = restraint_params assert numpy.isclose(x0, 1.76658000) assert numpy.isclose(y0, 2.76679000) assert numpy.isclose(z0, 2.33774000) expected_k = mock_setup_config.restraints.receptor.k.value_in_unit_system( openmm.unit.md_unit_system ) expected_radius = ( mock_setup_config.restraints.receptor.radius ).value_in_unit_system(openmm.unit.md_unit_system) assert numpy.isclose(k, expected_k)
assert numpy.isclose(radius, expected_radius)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: AIFSH/NativeDancer # Path: nativedancer/helperdoc.py DOC =\ { 'python_not_supported': 'Python version is not supported, upgrade to {version} or higher', 'ffmpeg_not_installed': 'FFMpeg is not installed', 'install_dependency_help': 'select the variant of {dependency} to install', 'source_help': 'select a source image', 'target_help': 'select a target image or video', 'output_help': 'specify the output file or directory', 'frame_processors_help': 'choose from the available frame processors (choices: {choices}, ...)', 'frame_processor_model_help': 'choose the model for the frame processor', 'frame_processor_blend_help': 'specify the blend factor for the frame processor', 'ui_layouts_help': 'choose from the available ui layouts (choices: {choices}, ...)', 'keep_fps_help': 'preserve the frames per second (fps) of the target', 'keep_temp_help': 'retain temporary frames after processing', 'skip_audio_help': 'omit audio from the target', 'trim_frame_start_help': 'specify the start frame for extraction', 'trim_frame_end_help': 'specify the end frame for extraction', 'temp_frame_format_help': 'specify the image format used for frame extraction', 'temp_frame_quality_help': 'specify the image quality used for frame extraction', 'output_image_quality_help': 'specify the quality used for the output image', 'output_video_encoder_help': 'specify the encoder used for the output video', 'output_video_quality_help': 'specify the quality used for the output video', 'max_memory_help': 'specify the maximum amount of ram to be used (in gb)', 'execution_providers_help': 'choose from the available execution providers', 'execution_thread_count_help': 'specify the number of execution threads', 'execution_queue_count_help': 'specify the number of execution queries', 'skip_download_help': 'omit automate downloads and lookups', 'headless_help': 'run the program in headless mode', 'creating_temp': 'Creating temporary resources', 'extracting_frames_fps': 'Extracting frames with {fps} FPS', 'analysing': 'Analysing', 'processing': 'Processing', 'downloading': 'Downloading', 'temp_frames_not_found': 'Temporary frames not found', 'compressing_image': 'Compressing image', 'compressing_image_failed': 'Compressing image failed', 'merging_video_fps': 'Merging video with {fps} FPS', 'merging_video_failed': 'Merging video failed', 'skipping_audio': 'Skipping audio', 'restoring_audio': 'Restoring audio', 'restoring_audio_failed': 'Restoring audio failed', 'clearing_temp': 'Clearing temporary resources', 'processing_image_succeed': 'Processing to image succeed', 'processing_image_failed': 'Processing to image failed', 'processing_video_succeed': 'Processing to video succeed', 'processing_video_failed': 'Processing to video failed', 'model_download_not_done': 'Download of the model is not done', 'model_file_not_present': 'File of the model is not present', 'select_image_source': 'Select an image for source path', 'select_image_or_video_target': 'Select an image or video for target path', 'select_file_or_directory_output': 'Select an file or directory for output path', 'frame_processor_not_loaded': 'Frame processor {frame_processor} could not be loaded', 'frame_processor_not_implemented': 'Frame processor {frame_processor} not implemented correctly', 'ui_layout_not_loaded': 'UI layout {ui_layout} could not be loaded', 'ui_layout_not_implemented': 'UI layout {ui_layout} not implemented correctly', 'donate_button_label': 'DONATE', 'start_button_label': 'START ENHANCER', 'stop_button_label': 'STOP', 'clear_button_label': 'CLEAR', 'benchmark_runs_checkbox_group_label': 'BENCHMARK RUNS', 'benchmark_results_dataframe_label': 'BENCHMARK RESULTS', 'benchmark_cycles_slider_label': 'BENCHMARK CYCLES', 'execution_providers_checkbox_group_label': 'EXECUTION PROVIDERS', 'execution_thread_count_slider_label': 'EXECUTION THREAD COUNT', 'execution_queue_count_slider_label': 'EXECUTION QUEUE COUNT', 'max_memory_slider_label': 'MAX MEMORY', 'output_image_or_video_label': 'OUTPUT', 'output_path_textbox_label': 'OUTPUT PATH', 'output_image_quality_slider_label': 'OUTPUT IMAGE QUALITY', 'output_video_encoder_dropdown_label': 'OUTPUT VIDEO ENCODER', 'output_video_quality_slider_label': 'OUTPUT VIDEO QUALITY', 'preview_image_label': 'PREVIEW', 'preview_frame_slider_label': 'PREVIEW FRAME', 'frame_processors_checkbox_group_label': 'FRAME PROCESSORS', 'frame_enhancer_model_dropdown_label': 'FRAME ENHANCER MODEL', 'frame_enhancer_blend_slider_label': 'FRAME ENHANCER BLEND', 'common_options_checkbox_group_label': 'OPTIONS', 'temp_frame_format_dropdown_label': 'TEMP FRAME FORMAT', 'temp_frame_quality_slider_label': 'TEMP FRAME QUALITY', 'trim_frame_start_slider_label': 'TRIM FRAME START', 'trim_frame_end_slider_label': 'TRIM FRAME END', 'source_file_label': 'SOURCE', 'target_file_label': 'TARGET', 'webcam_image_label': 'WEBCAM', 'webcam_mode_radio_label': 'WEBCAM MODE', 'webcam_resolution_dropdown': 'WEBCAM RESOLUTION', 'webcam_fps_slider': 'WEBCAM FPS', 'point': '.', 'comma': ',', 'colon': ':', 'question_mark': '?', 'exclamation_mark': '!', 'random_seed_help' : 'random seed for magicanimate generate', 'guidance_scale_help' : 'guidance scale for magicanimate generate', 'step_help' : 'step per frame for magicanimate generate', 'face_debugger_items_help': 'specify the face debugger items', 'face_analyser_order_help': 'specify the order used for the face analyser', 'face_analyser_age_help': 'specify the age used for the face analyser', 'face_analyser_gender_help': 'specify the gender used for the face analyser', 'face_detector_model_help': 'specify the model used for the face detector', 'face_detector_size_help': 'specify the size threshold used for the face detector', 'face_detector_score_help': 'specify the score threshold used for the face detector', 'face_selector_mode_help': 'specify the mode for the face selector', 'reference_face_position_help': 'specify the position of the reference face', 'reference_face_distance_help': 'specify the distance between the reference face and the target face', 'reference_frame_number_help': 'specify the number of the reference frame', 'face_mask_blur_help': 'specify the blur amount for face mask', 'face_mask_padding_help': 'specify the face mask padding (top, right, bottom, left) in percent', 'no_source_face_detected': 'No source face detected', 'face_analyser_order_dropdown_label': 'FACE ANALYSER ORDER', 'face_analyser_age_dropdown_label': 'FACE ANALYSER AGE', 'face_analyser_gender_dropdown_label': 'FACE ANALYSER GENDER', 'face_detector_model_dropdown_label': 'FACE DETECTOR MODEL', 'face_detector_size_dropdown_label': 'FACE DETECTOR SIZE', 'face_detector_score_slider_label': 'FACE DETECTOR SCORE', 'face_selector_mode_dropdown_label': 'FACE SELECTOR MODE', 'reference_face_gallery_label': 'REFERENCE FACE', 'reference_face_distance_slider_label': 'REFERENCE FACE DISTANCE', 'face_mask_blur_slider_label': 'FACE MASK BLUR', 'face_mask_padding_top_slider_label': 'FACE MASK PADDING TOP', 'face_mask_padding_bottom_slider_label': 'FACE MASK PADDING BOTTOM', 'face_mask_padding_left_slider_label': 'FACE MASK PADDING LEFT', 'face_mask_padding_right_slider_label': 'FACE MASK PADDING RIGHT', 'face_swapper_model_dropdown_label': 'FACE SWAPPER MODEL', 'face_enhancer_model_dropdown_label': 'FACE ENHANCER MODEL', 'face_enhancer_blend_slider_label': 'FACE ENHANCER BLEND', 'face_debugger_items_checkbox_group_label': 'FACE DEBUGGER ITEMS', 'animate_seed_label' : 'ANIMATE SEED', 'animate_step_label' : 'ANIMATE STEP', 'animate_scale_label': 'ANIMATE SCALE', 'animate_start_label': 'GENERATE ANIMATE', 'animate_video_label': 'ANIMATE VIDEO' } def get(key : str) -> str: # Path: nativedancer/face_analyser.py def get_many_faces(frame : Frame) -> List[Face]: try: faces_cache = get_faces_cache(frame) if faces_cache: faces = faces_cache else: faces = extract_faces(frame) set_faces_cache(frame, faces) if nativedancer.globals.face_analyser_order: faces = sort_by_order(faces, nativedancer.globals.face_analyser_order) if nativedancer.globals.face_analyser_age: faces = filter_by_age(faces, nativedancer.globals.face_analyser_age) if nativedancer.globals.face_analyser_gender: faces = filter_by_gender(faces, nativedancer.globals.face_analyser_gender) return faces except (AttributeError, ValueError): return [] # Path: nativedancer/face_analyser.py def clear_face_analyser() -> Any: global FACE_ANALYSER FACE_ANALYSER = None # Path: nativedancer/face_helper.py def warp_face(temp_frame : Frame, kps : Kps, template : Template, size : Size) -> Tuple[Frame, Matrix]: normed_template = TEMPLATES.get(template) * size[1] / size[0] affine_matrix = cv2.estimateAffinePartial2D(kps, normed_template, method = cv2.LMEDS)[0] crop_frame = cv2.warpAffine(temp_frame, affine_matrix, (size[1], size[1]), borderMode = cv2.BORDER_REPLICATE) return crop_frame, affine_matrix # Path: nativedancer/face_helper.py def paste_back(temp_frame : Frame, crop_frame: Frame, affine_matrix : Matrix, face_mask_blur : float, face_mask_padding : Padding) -> Frame: inverse_matrix = cv2.invertAffineTransform(affine_matrix) temp_frame_size = temp_frame.shape[:2][::-1] mask_size = tuple(crop_frame.shape[:2]) mask_frame = create_static_mask_frame(mask_size, face_mask_blur, face_mask_padding) inverse_mask_frame = cv2.warpAffine(mask_frame, inverse_matrix, temp_frame_size).clip(0, 1) inverse_crop_frame = cv2.warpAffine(crop_frame, inverse_matrix, temp_frame_size, borderMode = cv2.BORDER_REPLICATE) paste_frame = temp_frame.copy() paste_frame[:, :, 0] = inverse_mask_frame * inverse_crop_frame[:, :, 0] + (1 - inverse_mask_frame) * temp_frame[:, :, 0] paste_frame[:, :, 1] = inverse_mask_frame * inverse_crop_frame[:, :, 1] + (1 - inverse_mask_frame) * temp_frame[:, :, 1] paste_frame[:, :, 2] = inverse_mask_frame * inverse_crop_frame[:, :, 2] + (1 - inverse_mask_frame) * temp_frame[:, :, 2] return paste_frame # Path: nativedancer/content_analyser.py def clear_content_analyser() -> None: global CONTENT_ANALYSER CONTENT_ANALYSER = None # Path: nativedancer/typing.py # Path: nativedancer/utils.py def conditional_download(download_directory_path : str, urls : List[str]) -> None: with ThreadPoolExecutor() as executor: for url in urls: executor.submit(get_download_size, url) for url in urls: download_file_path = os.path.join(download_directory_path, os.path.basename(url)) total = get_download_size(url) if is_file(download_file_path): initial = os.path.getsize(download_file_path) else: initial = 0 if initial < total: with tqdm(total = total, initial = initial, desc = helperdoc.get('downloading'), unit = 'B', unit_scale = True, unit_divisor = 1024, ascii = ' =') as progress: subprocess.Popen([ 'curl', '--create-dirs', '--silent', '--insecure', '--location', '--continue-at', '-', '--output', download_file_path, url ]) current = initial while current < total: if is_file(download_file_path): current = os.path.getsize(download_file_path) progress.update(current - progress.n) # Path: nativedancer/utils.py def resolve_relative_path(path : str) -> str: return os.path.abspath(os.path.join(os.path.dirname(__file__), path)) # Path: nativedancer/utils.py def is_image(image_path : str) -> bool: if is_file(image_path): mimetype = filetype.guess(image_path).mime return bool(mimetype and mimetype.startswith('image/')) return False # Path: nativedancer/utils.py def is_video(video_path : str) -> bool: if is_file(video_path): mimetype = filetype.guess(video_path).mime return bool(mimetype and mimetype.startswith('video/')) return False # Path: nativedancer/utils.py def is_file(file_path : str) -> bool: return bool(file_path and os.path.isfile(file_path)) # Path: nativedancer/utils.py def is_download_done(url : str, file_path : str) -> bool: if is_file(file_path): return get_download_size(url) == os.path.getsize(file_path) return False # Path: nativedancer/utils.py def create_metavar(ranges : List[Any]) -> str: return '[' + str(ranges[0]) + '-' + str(ranges[-1]) + ']' # Path: nativedancer/utils.py def update_status(message : str, scope : str = 'NATIVEDANCER.CORE') -> None: print('[' + scope + '] ' + message) # Path: nativedancer/vision.py def read_image(image_path : str) -> Optional[Frame]: if image_path: return cv2.imread(image_path) return None # Path: nativedancer/vision.py @lru_cache(maxsize = 128) def read_static_image(image_path : str) -> Optional[Frame]: return read_image(image_path) # Path: nativedancer/vision.py def write_image(image_path : str, frame : Frame) -> bool: if image_path: return cv2.imwrite(image_path, frame) return False # Path: nativedancer/processors/frame/globals.py # Path: nativedancer/processors/frame/choices.py # Path: nativedancer/processors/frame/modules/face_enhancer.py from typing import Any, List, Dict, Literal, Optional from argparse import ArgumentParser from nativedancer import helperdoc from nativedancer.face_analyser import get_many_faces, clear_face_analyser from nativedancer.face_helper import warp_face, paste_back from nativedancer.content_analyser import clear_content_analyser from nativedancer.typing import Face, Frame, Update_Process, ProcessMode, ModelValue, OptionsWithModel from nativedancer.utils import conditional_download, resolve_relative_path, is_image, is_video, is_file, is_download_done, create_metavar, update_status from nativedancer.vision import read_image, read_static_image, write_image from nativedancer.processors.frame import globals as frame_processors_globals from nativedancer.processors.frame import choices as frame_processors_choices import cv2 import threading import numpy import onnxruntime import nativedancer.globals import nativedancer.processors.frame.core as frame_processors FRAME_PROCESSOR = None THREAD_SEMAPHORE : threading.Semaphore = threading.Semaphore() THREAD_LOCK : threading.Lock = threading.Lock() NAME = 'NATIVEDANCER.FRAME_PROCESSOR.FACE_ENHANCER' MODELS : Dict[str, ModelValue] =\ { 'codeformer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/codeformer.onnx', 'path': resolve_relative_path('../weights/face_enhancer/codeformer.onnx'), 'template': 'ffhq', 'size': (512, 512) }, 'gfpgan_1.2': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gfpgan_1.2.onnx', 'path': resolve_relative_path('../weights/face_enhancer/gfpgan_1.2.onnx'), 'template': 'ffhq', 'size': (512, 512) }, 'gfpgan_1.3': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gfpgan_1.3.onnx', 'path': resolve_relative_path('../weights/face_enhancer/gfpgan_1.3.onnx'), 'template': 'ffhq', 'size': (512, 512) }, 'gfpgan_1.4': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gfpgan_1.4.onnx', 'path': resolve_relative_path('../weights/face_enhancer/gfpgan_1.4.onnx'), 'template': 'ffhq', 'size': (512, 512) }, 'gpen_bfr_256': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gpen_bfr_256.onnx', 'path': resolve_relative_path('../weights/face_enhancer/gpen_bfr_256.onnx'),
'template': 'arcface_v2',
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: ethanweber/nerfiller # Path: nerfiller/dreambooth/dataset.py class EquiDataset(Dataset): """ A dataset that operates on an equirectangular image and masks. """ def __init__( self, instance_prompt: str, tokenizer, dataset_type: str, dataset_name: Path, fov: float = 90.0, length: int = 100, resolution: int = 512, scale_factor: int = 4, max_distance: float = 10.0, tile_images: bool = False, tile_images_percentage: float = 0.5, mask_type: str = "rectangle", device: str = "cuda:0", ): self.instance_prompt = instance_prompt self.tokenizer = tokenizer self.fov = fov self.length = length self.resolution = resolution self.scale_factor = scale_factor self.max_distance = max_distance self.tile_images = tile_images self.tile_images_percentage = tile_images_percentage self.mask_type = mask_type self.device = device image, distance = image_distance_from_dataset( dataset_type=dataset_type, dataset_name=dataset_name, device=self.device, max_distance=self.max_distance, ) self.diameter = distance[distance != 0.0].min() self.equi_image = EquiImage( num_images=1, width=image.shape[-1], height=image.shape[-2], device=self.device, ) self.equi_image.image.data = image self.equi_image.distance = distance self.text_inputs = tokenize_prompt(self.tokenizer, self.instance_prompt, tokenizer_max_length=None) self.image_transforms = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __len__(self): return self.length def get_crop(self, index): num_crops = 1 image_indices = torch.zeros((num_crops)).int().to(self.device) yaws = torch.rand((num_crops), dtype=torch.float32) * 360 pitch_range = [-55, 55] pitches = torch.rand((num_crops), dtype=torch.float32) * (pitch_range[1] - pitch_range[0]) + pitch_range[0] with torch.no_grad(): ei_output = self.equi_image.forward( image_indices, yaws, pitches, self.fov, self.fov, self.resolution, self.resolution, ) image, distance = ei_output.image, ei_output.distance return image, distance def get_info(self, index): image, distance = self.get_crop(index) if self.mask_type == "rectangle": mask = random_mask_custom((self.resolution, self.resolution), max_np=20, min_np=10)[None, None] elif self.mask_type == "depth-aware": depth = distance_to_depth(distance, self.fov, self.fov) with torch.autocast(device_type="cuda", dtype=torch.float16, enabled=False): mask, rendered_image = create_depth_aware_mask( image, distance, self.fov, max_distance=float(self.diameter), resolution=self.resolution, scale_factor=self.scale_factor, ) mask = mask[None, None] rendered_image = rendered_image.permute(2, 0, 1)[None] return image, distance, depth, mask, rendered_image def __getitem__(self, index): example = {} if self.tile_images and torch.rand(1).item() < self.tile_images_percentage: # tile 4 images image1, distance1, depth1, mask1, rendered_image1 = self.get_info(index) image2, distance2, depth2, mask2, rendered_image2 = self.get_info(index) image3, distance3, depth3, mask3, rendered_image3 = self.get_info(index) image4, distance4, depth4, mask4, rendered_image4 = self.get_info(index) image = torch.cat( [ torch.cat([image1, image2], dim=-1), torch.cat([image3, image4], dim=-1), ], dim=-2, ) image = torch.nn.functional.interpolate(image, size=(self.resolution, self.resolution)) distance = torch.cat( [ torch.cat([distance1, distance2], dim=-1), torch.cat([distance3, distance4], dim=-1), ], dim=-2, ) distance = torch.nn.functional.interpolate(distance, size=(self.resolution, self.resolution)) depth = torch.cat( [ torch.cat([depth1, depth2], dim=-1), torch.cat([depth3, depth4], dim=-1), ], dim=-2, ) depth = torch.nn.functional.interpolate(depth, size=(self.resolution, self.resolution)) mask = torch.cat( [ torch.cat([mask1, mask2], dim=-1), torch.cat([mask3, mask4], dim=-1), ], dim=-2, ) mask = torch.nn.functional.interpolate(mask, size=(self.resolution, self.resolution), mode="nearest") rendered_image = torch.cat( [ torch.cat([rendered_image1, rendered_image2], dim=-1), torch.cat([rendered_image3, rendered_image4], dim=-1), ], dim=-2, ) rendered_image = torch.nn.functional.interpolate(rendered_image, size=(self.resolution, self.resolution)) else: image, distance, depth, mask, rendered_image = self.get_info(index) # shape is [3,H,W] or [1,H,W] example["image"] = image[0] example["distance"] = distance[0] example["depth"] = depth[0] example["rendered_image"] = rendered_image[0] example["mask"] = mask[0] # text stuff example["input_ids"] = self.text_inputs.input_ids[0] # shape (seq_len,) example["attention_mask"] = self.text_inputs.attention_mask[0] # shape (seq_len,) return example # Path: nerfiller/dreambooth/dataset.py class NerfbustersDataset(Dataset): """ A dataset that operates on a folder of images. """ def __init__( self, instance_prompt: str, tokenizer, dataset_type: str, dataset_name: Path, fov: float = 90.0, path_prefix: Path = Path("data"), tile_images: bool = False, tile_images_percentage: float = 0.5, length: int = 100, resolution: int = 512, scale_factor: int = 4, mask_type: str = "rectangle", device: str = "cuda:0", ): assert dataset_type == "nerfbusters" self.instance_prompt = instance_prompt self.tokenizer = tokenizer self.path_prefix = path_prefix self.dataset_type = dataset_type self.dataset_name = dataset_name self.fov = fov self.resolution = resolution self.scale_factor = scale_factor self.mask_type = mask_type self.device = device self.image_folder = self.path_prefix / self.dataset_type / self.dataset_name / "images" self.image_filenames = sorted(glob.glob(str(self.image_folder / "*"))) if self.mask_type == "train-dist": self.mask_filenames = sorted( glob.glob(str(self.path_prefix / self.dataset_type / self.dataset_name / "masks" / "*")) ) if len(self.mask_filenames) == 0: raise ValueError("no filenames in mask folder") self.mask_transforms = v2.Compose( [ v2.RandomResizedCrop( size=(512, 512), antialias=True, interpolation=InterpolationMode.NEAREST, ), v2.RandomHorizontalFlip(p=0.5), v2.RandomVerticalFlip(p=0.5), ] ) self.text_inputs = tokenize_prompt(self.tokenizer, self.instance_prompt, tokenizer_max_length=None) self.image_transforms = v2.Compose( [ v2.RandomResizedCrop(size=(512, 512), antialias=True), v2.RandomHorizontalFlip(p=0.5), ] ) if self.mask_type == "depth-aware": self.depth_inpainter = DepthInpainter(depth_method="zoedepth", device=self.device) self.idx_to_depth = {} def __len__(self): return len(self.image_filenames) def get_crop(self, index): idx = random.randint(0, len(self.image_filenames) - 1) filename = self.image_filenames[idx] image = torch.from_numpy(mediapy.read_image(filename)) / 255.0 image = image.permute(2, 0, 1) if self.mask_type == "depth-aware": if idx not in self.idx_to_depth: with torch.no_grad(): depth = ( self.depth_inpainter.get_depth(image=image[None].to(self.depth_inpainter.device))[0] .detach() .cpu() ) self.idx_to_depth[idx] = depth else: depth = self.idx_to_depth[idx] else: depth = torch.zeros_like(image[:1]) image, depth = torch.split(self.image_transforms(torch.cat([image, depth])), [3, 1]) return image, depth def __getitem__(self, index): example = {} image, depth = self.get_crop(index) if self.mask_type == "rectangle": mask = random_mask_custom((self.resolution, self.resolution), max_np=20, min_np=10)[None] elif self.mask_type == "depth-aware": with torch.autocast(device_type="cuda", dtype=torch.float16, enabled=False): mask, rendered_image = create_depth_aware_mask( image[None].to(self.device), depth[None].to(self.device), self.fov, max_distance=depth.median().item(), resolution=self.resolution, scale_factor=self.scale_factor, ) mask = mask[None].detach().cpu() elif self.mask_type == "train-dist": idx = random.randint(0, len(self.mask_filenames) - 1) filename = self.mask_filenames[idx] mask = 1.0 - torch.from_numpy(mediapy.read_image(filename))[None] / 255.0 mask = self.mask_transforms(mask) # shape is [3,H,W] or [1,H,W] example["image"] = image example["mask"] = mask example["depth"] = torch.zeros_like(mask) # text stuff example["input_ids"] = self.text_inputs.input_ids[0] # shape (seq_len,) example["attention_mask"] = self.text_inputs.attention_mask[0] # shape (seq_len,) return example # Path: nerfiller/utils/diff_utils.py def tokenize_prompt(tokenizer, prompt, tokenizer_max_length=None): if tokenizer_max_length is not None: max_length = tokenizer_max_length else: max_length = tokenizer.model_max_length text_inputs = tokenizer( prompt, truncation=True, padding="max_length", max_length=max_length, return_tensors="pt", ) return text_inputs # Path: nerfiller/utils/diff_utils.py def encode_prompt(text_encoder, input_ids, attention_mask, text_encoder_use_attention_mask=None): text_input_ids = input_ids.to(text_encoder.device) if text_encoder_use_attention_mask: attention_mask = attention_mask.to(text_encoder.device) else: attention_mask = None prompt_embeds = text_encoder( text_input_ids, attention_mask=attention_mask, ) prompt_embeds = prompt_embeds[0] return prompt_embeds # Path: nerfiller/utils/image_utils.py def get_inpainted_image_row( image: Float[Tensor, "B 3 H W"], mask: Float[Tensor, "B 1 H W"], inpainted_image: Optional[Float[Tensor, "B 3 H W"]] = None, color: Tuple[float, float, float] = Colors.NEON_PINK.value, show_original: bool = False, ): """Returns an image concatenated along the x-axis. It has the following form: image with inpaint regions highlighted | image with inpainted regions Inpaint where mask == 1. The default color is neon pink. If the inpainted image is None, then just show the `image with inpaint regions highlighted`. """ device = image.device c = torch.tensor(color, device=device).view(1, 3, 1, 1) color_image = torch.ones_like(image) * c image_with_highlights = torch.where(mask == 1, color_image, image) image_list = [image_with_highlights] if inpainted_image is not None: image_list = image_list + [inpainted_image] if show_original: image_list = [image] + image_list im = torch.cat(image_list, dim=-2) return im # Path: nerfiller/scripts/train_dreambooth_lora.py import argparse import gc import itertools import logging import math import multiprocessing import os import shutil import numpy as np import torch import torch.nn.functional as F import torch.utils.checkpoint import transformers import diffusers import wandb import xformers import bitsandbytes as bnb from pathlib import Path from typing import Dict from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed from huggingface_hub import create_repo, upload_folder from packaging import version from torchvision import transforms from tqdm.auto import tqdm from transformers import AutoTokenizer, PretrainedConfig from diffusers import ( AutoencoderKL, DDPMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, StableDiffusionInpaintPipeline, StableDiffusionPipeline, UNet2DConditionModel, ) from diffusers.loaders import LoraLoaderMixin, text_encoder_lora_state_dict from diffusers.models.attention_processor import ( AttnAddedKVProcessor, AttnAddedKVProcessor2_0, LoRAAttnAddedKVProcessor, LoRAAttnProcessor, LoRAAttnProcessor2_0, SlicedAttnAddedKVProcessor, ) from diffusers.optimization import get_scheduler from diffusers.utils import check_min_version, is_wandb_available from diffusers.utils.import_utils import is_xformers_available from nerfiller.dreambooth.dataset import EquiDataset, NerfbustersDataset from nerfiller.utils.diff_utils import tokenize_prompt, encode_prompt from nerfiller.utils.image_utils import get_inpainted_image_row from datetime import datetime from transformers import CLIPTextModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesModelWithTransformation, ) from transformers import T5EncoderModel #!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.18.0.dev0") logger = get_logger(__name__) def prepare_mask_and_masked_image(image, mask): image = np.array(image.convert("RGB")) image = image[None].transpose(0, 3, 1, 2) image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 mask = np.array(mask.convert("L")) mask = mask.astype(np.float32) / 255.0
mask = mask[None, None]
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: nnanhuang/Customize-it-3D # Path: nerf/utils.py def custom_meshgrid(*args): # ref: https://pytorch.org/docs/stable/generated/torch.meshgrid.html?highlight=meshgrid#torch.meshgrid if pver.parse(torch.__version__) < pver.parse('1.10'): return torch.meshgrid(*args) else: return torch.meshgrid(*args, indexing='ij') # Path: nerf/utils.py def safe_normalize(x, eps=1e-20): return x / torch.sqrt(torch.clamp(torch.sum(x * x, -1, keepdim=True), min=eps, max=1e32)) # Path: nerf/renderer.py import os import math import cv2 import trimesh import open3d as o3d import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import mcubes import raymarching import xatlas import nvdiffrast.torch as dr from .utils import custom_meshgrid, safe_normalize from meshutils import decimate_mesh, clean_mesh, poisson_mesh_reconstruction from sklearn.neighbors import NearestNeighbors from scipy.ndimage import binary_dilation, binary_erosion n_step = max(min(N // n_alive, 8), 1) xyzs, dirs, deltas = raymarching.march_rays(n_alive, n_step, rays_alive, rays_t, rays_o, rays_d, self.bound, self.density_bitfield, self.cascade, self.grid_size, nears, fars, 128, perturb if step == 0 else False, dt_gamma, max_steps) sigmas, rgbs, normals = self(xyzs, dirs, light_d, ratio=ambient_ratio, shading=shading) normals = (normals + 1) / 2 raymarching.composite_rays(n_alive, n_step, rays_alive, rays_t, sigmas, rgbs, normals, deltas, weights_sum, depth, image, normal, T_thresh) rays_alive = rays_alive[rays_alive >= 0] step += n_step # mix background color if bg_color is None: bg_color = 1 image = image + (1 - weights_sum).unsqueeze(-1) * bg_color image = image.view(*prefix, 3) if not self.training: normal = normal + (1 - weights_sum).unsqueeze(-1) * bg_color normal = normal.view(*prefix, 3) bg_depth = self.opt.max_depth depth = depth + (1 - weights_sum) * bg_depth if depth_scale is not None: depth = depth.view(*prefix, 1) * depth_scale.view(*prefix, 1) else: depth = depth.view(*prefix, 1) weights_sum = weights_sum.reshape(*prefix) mask = (nears < fars).reshape(*prefix) results['image'] = image results['depth'] = depth results['weights_sum'] = weights_sum results['mask'] = mask if not self.training: results['normal'] = normal return results @torch.no_grad() def update_extra_state(self, decay=0.95, S=128): # call before each epoch to update extra states. if not self.cuda_ray: return ### update density grid tmp_grid = - torch.ones_like(self.density_grid) X = torch.arange(self.grid_size, dtype=torch.int32, device=self.aabb_train.device).split(S) Y = torch.arange(self.grid_size, dtype=torch.int32, device=self.aabb_train.device).split(S) Z = torch.arange(self.grid_size, dtype=torch.int32, device=self.aabb_train.device).split(S) for xs in X: for ys in Y: for zs in Z: # construct points xx, yy, zz = custom_meshgrid(xs, ys, zs) coords = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1) # [N, 3], in [0, 128) indices = raymarching.morton3D(coords).long() # [N] xyzs = 2 * coords.float() / (self.grid_size - 1) - 1 # [N, 3] in [-1, 1] # cascading for cas in range(self.cascade): bound = min(2 ** cas, self.bound) half_grid_size = bound / self.grid_size # scale to current cascade's resolution cas_xyzs = xyzs * (bound - half_grid_size) # add noise in [-hgs, hgs] cas_xyzs += (torch.rand_like(cas_xyzs) * 2 - 1) * half_grid_size # query density sigmas = self.density(cas_xyzs)['sigma'].reshape(-1).detach() # assign tmp_grid[cas, indices] = sigmas # ema update valid_mask = self.density_grid >= 0 self.density_grid[valid_mask] = torch.maximum(self.density_grid[valid_mask] * decay, tmp_grid[valid_mask]) self.mean_density = torch.mean(self.density_grid[valid_mask]).item() self.iter_density += 1 # convert to bitfield density_thresh = min(self.mean_density, self.density_thresh) self.density_bitfield = raymarching.packbits(self.density_grid, density_thresh, self.density_bitfield) ### update step counter total_step = min(16, self.local_step) if total_step > 0: self.mean_count = int(self.step_counter[:total_step, 0].sum().item() / total_step) self.local_step = 0 # print(f'[density grid] min={self.density_grid.min().item():.4f}, max={self.density_grid.max().item():.4f}, mean={self.mean_density:.4f}, occ_rate={(self.density_grid > density_thresh).sum() / (128**3 * self.cascade):.3f} | [step counter] mean={self.mean_count}') def render(self, rays_o, rays_d, depth_scale=None, staged=False, max_ray_batch=4096, **kwargs): # rays_o, rays_d: [B, N, 3], assumes B == 1 # return: pred_rgb: [B, N, 3] if self.cuda_ray: _run = self.run_cuda else: _run = self.run B, N = rays_o.shape[:2] device = rays_o.device # never stage when cuda_ray if staged and not self.cuda_ray: depth = torch.empty((B, N, 1), device=device) image = torch.empty((B, N, 3), device=device) weights_sum = torch.empty((B, N), device=device) for b in range(B): head = 0 while head < N: tail = min(head + max_ray_batch, N) results_ = _run(rays_o[b:b+1, head:tail], rays_d[b:b+1, head:tail], **kwargs)
depth[b:b+1, head:tail] = results_['depth']
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: TaoHuang13/diffusion_reward # Path: diffusion_reward/models/video_models/vqdiffusion/distributed/distributed.py def get_rank(): if not dist.is_available(): return 0 if not dist.is_initialized(): return 0 return dist.get_rank() # Path: diffusion_reward/models/video_models/vqdiffusion/distributed/distributed.py def is_primary(): return get_rank() == 0 # Path: diffusion_reward/models/video_models/vqdiffusion/distributed/distributed.py def reduce_dict(input_dict, average=True): world_size = get_world_size() if world_size < 2: return input_dict with torch.no_grad(): keys = [] values = [] for k in sorted(input_dict.keys()): keys.append(k) values.append(input_dict[k]) values = torch.stack(values, 0) dist.reduce(values, dst=0) if dist.get_rank() == 0 and average: values /= world_size reduced_dict = {k: v for k, v in zip(keys, values)} return reduced_dict # Path: diffusion_reward/models/video_models/vqdiffusion/engine/ema.py class EMA(object): def __init__(self, model, decay=0.99, update_interval=1, device=torch.device('cpu')): self.decay = decay self.update_iterval = update_interval self.device = device self.model = model with torch.no_grad(): if hasattr(model, 'get_ema_model') and callable(model.get_ema_model): self.ema_model = copy.deepcopy(model.get_ema_model()) self.cur_state_dict = model.get_ema_model().state_dict() else: self.ema_model = copy.deepcopy(model) self.cur_state_dict = model.state_dict() self.ema_model.to(self.device) self.cur_state_dict = {k: v.clone().to(self.device) for k, v in self.cur_state_dict.items()} def update(self, iteration): if (iteration + 1) % self.update_iterval == 0: # print('{} Update ema'.format(iteration)) if hasattr(self.model, 'get_ema_model') and callable(self.model.get_ema_model): cur_state_dict = self.model.get_ema_model().state_dict() else: cur_state_dict = self.model.state_dict() ema_state_dict = self.ema_model.state_dict() for k in ema_state_dict.keys(): ema_state_dict[k] = ema_state_dict[k] * self.decay + cur_state_dict[k].clone().to(self.device) * (1-self.decay) self.ema_model.load_state_dict(ema_state_dict) def state_dict(self): return self.ema_model.state_dict() def load_state_dict(self, state_dict, strict=True): state_dict_ = {k: v.clone().to(self.device) for k, v in state_dict.items()} self.ema_model.load_state_dict(state_dict_, strict=strict) def modify_to_inference(self): # get current model if hasattr(self.model, 'get_ema_model') and callable(self.model.get_ema_model): self.cur_state_dict = self.model.get_ema_model().state_dict() else: self.cur_state_dict = self.model.state_dict() self.cur_state_dict = {k: v.clone().to(self.device) for k, v in self.cur_state_dict.items()} ema_state_dict = self.ema_model.state_dict() ema_state_dict = {k: v.to(self.model.device) for k, v in ema_state_dict.items()} if hasattr(self.model, 'get_ema_model') and callable(self.model.get_ema_model): self.model.get_ema_model().load_state_dict(ema_state_dict) else: self.model.load_state_dict(ema_state_dict) def modify_to_train(self): self.cur_state_dict = {k: v.clone().to(self.model.device) for k, v in self.cur_state_dict.items()} if hasattr(self.model, 'get_ema_model') and callable(self.model.get_ema_model): self.model.get_ema_model().load_state_dict(self.cur_state_dict) else: self.model.load_state_dict(self.cur_state_dict) # Path: diffusion_reward/models/video_models/vqdiffusion/engine/lr_scheduler.py class ReduceLROnPlateauWithWarmup(object): """Reduce learning rate when a metric has stopped improving. Models often benefit from reducing the learning rate by a factor of 2-10 once learning stagnates. This scheduler reads a metrics quantity and if no improvement is seen for a 'patience' number of epochs, the learning rate is reduced. Args: optimizer (Optimizer): Wrapped optimizer. mode (str): One of `min`, `max`. In `min` mode, lr will be reduced when the quantity monitored has stopped decreasing; in `max` mode it will be reduced when the quantity monitored has stopped increasing. Default: 'min'. factor (float): Factor by which the learning rate will be reduced. new_lr = lr * factor. Default: 0.1. patience (int): Number of epochs with no improvement after which learning rate will be reduced. For example, if `patience = 2`, then we will ignore the first 2 epochs with no improvement, and will only decrease the LR after the 3rd epoch if the loss still hasn't improved then. Default: 10. threshold (float): Threshold for measuring the new optimum, to only focus on significant changes. Default: 1e-4. threshold_mode (str): One of `rel`, `abs`. In `rel` mode, dynamic_threshold = best * ( 1 + threshold ) in 'max' mode or best * ( 1 - threshold ) in `min` mode. In `abs` mode, dynamic_threshold = best + threshold in `max` mode or best - threshold in `min` mode. Default: 'rel'. cooldown (int): Number of epochs to wait before resuming normal operation after lr has been reduced. Default: 0. min_lr (float or list): A scalar or a list of scalars. A lower bound on the learning rate of all param groups or each group respectively. Default: 0. eps (float): Minimal decay applied to lr. If the difference between new and old lr is smaller than eps, the update is ignored. Default: 1e-8. verbose (bool): If ``True``, prints a message to stdout for each update. Default: ``False``. warmup_lr: float or None, the learning rate to be touched after warmup warmup: int, the number of steps to warmup """ def __init__(self, optimizer, mode='min', factor=0.1, patience=10, threshold=1e-4, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-8, verbose=False, warmup_lr=None, warmup=0): if factor >= 1.0: raise ValueError('Factor should be < 1.0.') self.factor = factor # Attach optimizer if not isinstance(optimizer, Optimizer): raise TypeError('{} is not an Optimizer'.format( type(optimizer).__name__)) self.optimizer = optimizer if isinstance(min_lr, list) or isinstance(min_lr, tuple): if len(min_lr) != len(optimizer.param_groups): raise ValueError("expected {} min_lrs, got {}".format( len(optimizer.param_groups), len(min_lr))) self.min_lrs = list(min_lr) else: self.min_lrs = [min_lr] * len(optimizer.param_groups) self.patience = patience self.verbose = verbose self.cooldown = cooldown self.cooldown_counter = 0 self.mode = mode self.threshold = threshold self.threshold_mode = threshold_mode self.warmup_lr = warmup_lr self.warmup = warmup self.best = None self.num_bad_epochs = None self.mode_worse = None # the worse value for the chosen mode self.eps = eps self.last_epoch = 0 self._init_is_better(mode=mode, threshold=threshold, threshold_mode=threshold_mode) self._reset() def _prepare_for_warmup(self): if self.warmup_lr is not None: if isinstance(self.warmup_lr, (list, tuple)): if len(self.warmup_lr) != len(self.optimizer.param_groups): raise ValueError("expected {} warmup_lrs, got {}".format( len(self.optimizer.param_groups), len(self.warmup_lr))) self.warmup_lrs = list(self.warmup_lr) else: self.warmup_lrs = [self.warmup_lr] * len(self.optimizer.param_groups) else: self.warmup_lrs = None if self.warmup > self.last_epoch: curr_lrs = [group['lr'] for group in self.optimizer.param_groups] self.warmup_lr_steps = [max(0, (self.warmup_lrs[i] - curr_lrs[i])/float(self.warmup)) for i in range(len(curr_lrs))] else: self.warmup_lr_steps = None def _reset(self): """Resets num_bad_epochs counter and cooldown counter.""" self.best = self.mode_worse self.cooldown_counter = 0 self.num_bad_epochs = 0 def step(self, metrics): # convert `metrics` to float, in case it's a zero-dim Tensor current = float(metrics) epoch = self.last_epoch + 1 self.last_epoch = epoch if epoch <= self.warmup: self._increase_lr(epoch) else: if self.is_better(current, self.best): self.best = current self.num_bad_epochs = 0 else: self.num_bad_epochs += 1 if self.in_cooldown: self.cooldown_counter -= 1 self.num_bad_epochs = 0 # ignore any bad epochs in cooldown if self.num_bad_epochs > self.patience: self._reduce_lr(epoch) self.cooldown_counter = self.cooldown self.num_bad_epochs = 0 self._last_lr = [group['lr'] for group in self.optimizer.param_groups] def _reduce_lr(self, epoch): for i, param_group in enumerate(self.optimizer.param_groups): old_lr = float(param_group['lr']) new_lr = max(old_lr * self.factor, self.min_lrs[i]) if old_lr - new_lr > self.eps: param_group['lr'] = new_lr if self.verbose: print('Epoch {:5d}: reducing learning rate' ' of group {} to {:.4e}.'.format(epoch, i, new_lr)) def _increase_lr(self, epoch): # used for warmup for i, param_group in enumerate(self.optimizer.param_groups): old_lr = float(param_group['lr']) new_lr = max(old_lr + self.warmup_lr_steps[i], self.min_lrs[i]) param_group['lr'] = new_lr if self.verbose: print('Epoch {:5d}: increasing learning rate' ' of group {} to {:.4e}.'.format(epoch, i, new_lr)) @property def in_cooldown(self): return self.cooldown_counter > 0 def is_better(self, a, best): if self.mode == 'min' and self.threshold_mode == 'rel': rel_epsilon = 1. - self.threshold return a < best * rel_epsilon elif self.mode == 'min' and self.threshold_mode == 'abs': return a < best - self.threshold elif self.mode == 'max' and self.threshold_mode == 'rel': rel_epsilon = self.threshold + 1. return a > best * rel_epsilon else: # mode == 'max' and epsilon_mode == 'abs': return a > best + self.threshold def _init_is_better(self, mode, threshold, threshold_mode): if mode not in {'min', 'max'}: raise ValueError('mode ' + mode + ' is unknown!') if threshold_mode not in {'rel', 'abs'}: raise ValueError('threshold mode ' + threshold_mode + ' is unknown!') if mode == 'min': self.mode_worse = np.inf else: # mode == 'max': self.mode_worse = -np.inf self.mode = mode self.threshold = threshold self.threshold_mode = threshold_mode self._prepare_for_warmup() def state_dict(self): return {key: value for key, value in self.__dict__.items() if key != 'optimizer'} def load_state_dict(self, state_dict): self.__dict__.update(state_dict) self._init_is_better(mode=self.mode, threshold=self.threshold, threshold_mode=self.threshold_mode) # Path: diffusion_reward/models/video_models/vqdiffusion/utils/misc.py def format_seconds(seconds): h = int(seconds // 3600) m = int(seconds // 60 - h * 60) s = int(seconds % 60) d = int(h // 24) h = h - d * 24 if d == 0: if h == 0: if m == 0: ft = '{:02d}s'.format(s) else: ft = '{:02d}m:{:02d}s'.format(m, s) else: ft = '{:02d}h:{:02d}m:{:02d}s'.format(h, m, s) else: ft = '{:d}d:{:02d}h:{:02d}m:{:02d}s'.format(d, h, m, s) return ft # Path: diffusion_reward/models/video_models/vqdiffusion/utils/misc.py def get_model_parameters_info(model): # for mn, m in model.named_modules(): parameters = {'overall': {'trainable': 0, 'non_trainable': 0, 'total': 0}} for child_name, child_module in model.named_children(): parameters[child_name] = {'trainable': 0, 'non_trainable': 0} for pn, p in child_module.named_parameters(): if p.requires_grad: parameters[child_name]['trainable'] += p.numel() else: parameters[child_name]['non_trainable'] += p.numel() parameters[child_name]['total'] = parameters[child_name]['trainable'] + parameters[child_name]['non_trainable'] parameters['overall']['trainable'] += parameters[child_name]['trainable'] parameters['overall']['non_trainable'] += parameters[child_name]['non_trainable'] parameters['overall']['total'] += parameters[child_name]['total'] # format the numbers def format_number(num): K = 2**10 M = 2**20 G = 2**30 if num > G: # K uint = 'G' num = round(float(num)/G, 2) elif num > M: uint = 'M' num = round(float(num)/M, 2) elif num > K: uint = 'K' num = round(float(num)/K, 2) else: uint = '' return '{}{}'.format(num, uint) def format_dict(d): for k, v in d.items(): if isinstance(v, dict): format_dict(v) else: d[k] = format_number(v) format_dict(parameters) return parameters # Path: diffusion_reward/models/video_models/vqdiffusion/utils/misc.py def instantiate_from_config(config): if config is None: return None if not "target" in config: raise KeyError("Expected key `target` to instantiate.") module, cls = config["target"].rsplit(".", 1) cls = getattr(importlib.import_module(module, package=None), cls) return cls(**config.get("params", dict())) # Path: diffusion_reward/models/video_models/vqdiffusion/engine/solver.py import copy import math import os import time import torch import torchvision import matplotlib import matplotlib.pyplot as plt from omegaconf import OmegaConf from PIL import Image from torch.optim.lr_scheduler import ReduceLROnPlateau from ..distributed.distributed import get_rank, is_primary, reduce_dict from ..engine.ema import EMA from ..engine.lr_scheduler import ReduceLROnPlateauWithWarmup from ..utils.misc import (format_seconds, get_model_parameters_info, instantiate_from_config) from torch.cuda.amp import GradScaler, autocast try: self.ema.load_state_dict(state_dict['ema']) except: model_dict = self.ema.state_dict() temp_state_dict = {k:v for k,v in state_dict['ema'].items() if k in model_dict.keys()} model_dict.update(temp_state_dict) self.ema.load_state_dict(model_dict) if 'clip_grad_norm' in state_dict and self.clip_grad_norm is not None: self.clip_grad_norm.load_state_dict(state_dict['clip_grad_norm']) # handle optimizer and scheduler for op_sc_n, op_sc in state_dict['optimizer_and_scheduler'].items(): for k in op_sc: if k in ['optimizer', 'scheduler']: for kk in op_sc[k]: if kk == 'module' and load_optimizer_and_scheduler: self.optimizer_and_scheduler[op_sc_n][k][kk].load_state_dict(op_sc[k][kk]) elif load_others: # such as step_iteration, ... self.optimizer_and_scheduler[op_sc_n][k][kk] = op_sc[k][kk] elif load_others: # such as start_epoch, end_epoch, .... self.optimizer_and_scheduler[op_sc_n][k] = op_sc[k] self.logger.log_info('Resume from {}'.format(path)) def train_epoch(self): self.model.train() self.last_epoch += 1 if self.args.distributed: self.dataloader['train_loader'].sampler.set_epoch(self.last_epoch) epoch_start = time.time() itr_start = time.time() itr = -1 for itr, batch in enumerate(self.dataloader['train_loader']): if itr == 0: print("time2 is " + str(time.time())) data_time = time.time() - itr_start step_start = time.time() self.last_iter += 1 loss = self.step(batch, phase='train') # logging info if self.logger is not None and self.last_iter % self.args.log_frequency == 0: info = '{}: train'.format(self.args.exp_name) info = info + ': Epoch {}/{} iter {}/{}'.format(self.last_epoch, self.max_epochs, self.last_iter%self.dataloader['train_iterations'], self.dataloader['train_iterations']) for loss_n, loss_dict in loss.items(): info += ' ||' loss_dict = reduce_dict(loss_dict) info += '' if loss_n == 'none' else ' {}'.format(loss_n) # info = info + ': Epoch {}/{} iter {}/{}'.format(self.last_epoch, self.max_epochs, self.last_iter%self.dataloader['train_iterations'], self.dataloader['train_iterations']) for k in loss_dict: info += ' | {}: {:.4f}'.format(k, float(loss_dict[k])) self.logger.add_scalar(tag='train/{}/{}'.format(loss_n, k), scalar_value=float(loss_dict[k]), global_step=self.last_iter) # log lr lrs = self._get_lr(return_type='dict') for k in lrs.keys(): lr = lrs[k] self.logger.add_scalar(tag='train/{}_lr'.format(k), scalar_value=lrs[k], global_step=self.last_iter) # add lr to info info += ' || {}'.format(self._get_lr()) # add time consumption to info spend_time = time.time() - self.start_train_time itr_time_avg = spend_time / (self.last_iter + 1) info += ' || data_time: {dt}s | fbward_time: {fbt}s | iter_time: {it}s | iter_avg_time: {ita}s | epoch_time: {et} | spend_time: {st} | left_time: {lt}'.format( dt=round(data_time, 1), it=round(time.time() - itr_start, 1), fbt=round(time.time() - step_start, 1), ita=round(itr_time_avg, 1), et=format_seconds(time.time() - epoch_start), st=format_seconds(spend_time), lt=format_seconds(itr_time_avg*self.max_epochs*self.dataloader['train_iterations']-spend_time) ) self.logger.log_info(info) itr_start = time.time() # modify here to make sure dataloader['train_iterations'] is correct assert itr >= 0, "The data is too less to form one iteration!" self.dataloader['train_iterations'] = itr + 1 def validate_epoch(self): if 'validation_loader' not in self.dataloader: val = False else: if isinstance(self.validation_epochs, int): val = (self.last_epoch + 1) % self.validation_epochs == 0 else: val = (self.last_epoch + 1) in self.validation_epochs is_best = False if val: if self.args.distributed: self.dataloader['validation_loader'].sampler.set_epoch(self.last_epoch) self.model.eval() overall_loss = None epoch_start = time.time() itr_start = time.time() itr = -1 for itr, batch in enumerate(self.dataloader['validation_loader']): data_time = time.time() - itr_start step_start = time.time() loss = self.step(batch, phase='val') for loss_n, loss_dict in loss.items(): loss[loss_n] = reduce_dict(loss_dict) if overall_loss is None: overall_loss = loss else: for loss_n, loss_dict in loss.items(): for k, v in loss_dict.items(): overall_loss[loss_n][k] = (overall_loss[loss_n][k] * itr + loss[loss_n][k]) / (itr + 1) if self.logger is not None and (itr+1) % self.args.log_frequency == 0: info = '{}: val'.format(self.args.exp_name) info = info + ': Epoch {}/{} | iter {}/{}'.format(self.last_epoch, self.max_epochs, itr, self.dataloader['validation_iterations'])
for loss_n, loss_dict in loss.items():
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: mmathew23/improved_edm # Path: pipeline.py class KarrasPipeline(DiffusionPipeline): model_cpu_offload_seq = "unet" def __init__(self, unet, scheduler, method='euler'): super().__init__() # we ignore this, just having a scheduler for HF compatibility scheduler = DDIMScheduler.from_config(scheduler.config) self.register_modules(unet=unet, scheduler=scheduler) self.trained_image_size = unet.config.sample_size self.method = method # Adjust noise levels based on what's supported by the network. self.sigma_min = 0.002 self.sigma_max = 80 self.rho = 7 def step(self, x, t, num_inference_steps=50): if self.method == 'euler': return self.step_euler(x, t, num_inference_steps=num_inference_steps) elif self.method == 'rk': return self.step_rk(x, t, num_inference_steps=num_inference_steps) else: raise NotImplementedError() @torch.no_grad() def __call__( self, batch_size: int = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, eta: float = 0.0, num_inference_steps: int = 50, use_clipped_model_output: Optional[bool] = None, output_type: Optional[str] = "pil", return_dict: bool = True, S_churn: float = 0.0, S_min: float = 0.0, S_max: float = float("inf"), S_noise: float = 1.0, to_device: Optional[torch.device] = None, second_order: bool = True, class_labels: Optional[torch.Tensor] = None, ) -> Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size, int): image_shape = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: image_shape = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) image = randn_tensor(image_shape, generator=generator, device=self._execution_device, dtype=self.unet.dtype) # image += 0.1 * torch.randn( # (image.shape[0], image.shape[1], 1, 1), device=image.device) # set step values self.scheduler.set_timesteps(num_inference_steps) # Time step discretization. step_indices = torch.arange(num_inference_steps, dtype=torch.float64, device=image.device) t_steps = (self.sigma_max ** (1 / self.rho) + step_indices / (num_inference_steps - 1) * (self.sigma_min ** (1 / self.rho) - self.sigma_max ** (1 / self.rho))) ** self.rho t_steps = torch.cat([torch.as_tensor(t_steps), torch.zeros_like(t_steps[:1])]).to(dtype=torch.float16) t_steps[-1] = 1e-6 image = image * t_steps[0] for t in self.progress_bar(range(num_inference_steps)): t_cur = t_steps[t] t_next = t_steps[t + 1] gamma = min(S_churn / num_inference_steps, math.sqrt(2) - 1) if S_min <= t_cur <= S_max else 0 t_hat = torch.as_tensor(t_cur + gamma * t_cur) x_hat = image + (t_hat ** 2 - t_cur ** 2).sqrt() * S_noise * torch.randn_like(image) denoised = self.unet(x_hat, t_hat, class_labels=class_labels).sample d_cur = (x_hat - denoised) / t_hat image = x_hat + (t_next - t_hat) * d_cur if second_order and t < num_inference_steps - 1: denoised = self.unet(image, t_next, class_labels=class_labels).sample d_prime = (image - denoised) / t_next image = x_hat + (t_next - t_hat) * (0.5 * d_cur + 0.5 * d_prime) image = (image / 2 + 0.5).clamp(0, 1) if output_type == "pil": image = image.cpu() image = self.numpy_to_pil(image.permute(0, 2, 3, 1).numpy()) elif output_type == "numpy": image = image.cpu() image = image.permute(0, 2, 3, 1).numpy() else: if to_device is not None: image = image.to(to_device) if not return_dict: return (image,) return ImagePipelineOutput(images=image) # Path: model.py class UNet2DModel(ModelMixin, ConfigMixin): r""" A 2D UNet model that takes a noisy sample and a timestep and returns a sample shaped output. This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented for all models (such as downloading or saving). Parameters: sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): Height and width of input/output sample. Dimensions must be a multiple of `2 ** (len(block_out_channels) - 1)`. in_channels (`int`, *optional*, defaults to 3): Number of channels in the input sample. out_channels (`int`, *optional*, defaults to 3): Number of channels in the output. center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample. time_embedding_type (`str`, *optional*, defaults to `"positional"`): Type of time embedding to use. freq_shift (`int`, *optional*, defaults to 0): Frequency shift for Fourier time embedding. flip_sin_to_cos (`bool`, *optional*, defaults to `True`): Whether to flip sin to cos for Fourier time embedding. down_block_types (`Tuple[str]`, *optional*, defaults to `("DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D")`): Tuple of downsample block types. mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2D"`): Block type for middle of UNet, it can be either `UNetMidBlock2D` or `UnCLIPUNetMidBlock2D`. up_block_types (`Tuple[str]`, *optional*, defaults to `("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D")`): Tuple of upsample block types. block_out_channels (`Tuple[int]`, *optional*, defaults to `(224, 448, 672, 896)`): Tuple of block output channels. layers_per_block (`int`, *optional*, defaults to `2`): The number of layers per block. mid_block_scale_factor (`float`, *optional*, defaults to `1`): The scale factor for the mid block. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. attention_head_dim (`int`, *optional*, defaults to `8`): The attention head dimension. norm_eps (`float`, *optional*, defaults to `1e-5`): The epsilon for normalization. num_class_embeds (`int`, *optional*, defaults to `None`): Input dimension of the learnable embedding matrix to be projected to `time_embed_dim` when performing class conditioning with `class_embed_type` equal to `None`. """ @register_to_config def __init__( self, sample_size: Optional[Union[int, Tuple[int, int]]] = None, in_channels: int = 3, out_channels: int = 3, center_input_sample: bool = False, down_block_types: Tuple[str] = ("DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D"), up_block_types: Tuple[str] = ("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D"), block_out_channels: Tuple[int] = (224, 448, 672, 896), layers_per_block: int = 2, mid_block_scale_factor: float = 1, dropout: float = 0.0, attention_head_dim: Optional[int] = 8, norm_eps: float = 1e-4, add_attention: bool = True, num_class_embeds: Optional[int] = None, ): super().__init__() self.sample_size = sample_size time_embed_dim = block_out_channels[0] * 4 # Check inputs if len(down_block_types) != len(up_block_types): raise ValueError( f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." ) if len(block_out_channels) != len(down_block_types): raise ValueError( f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." ) # input in_channels+1 due to concating of one's to mitigate removing bias self.conv_in = Conv2d(in_channels+1, block_out_channels[0], kernel_size=3, padding=(1, 1), bias=False) # time self.time_proj = GaussianFourierProjection(embedding_size=block_out_channels[0], scale=0.25) timestep_input_dim = block_out_channels[0] self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) # loss weighting self.loss_mlp = nn.Sequential(GaussianFourierProjection(embedding_size=block_out_channels[0], scale=0.25), Linear(timestep_input_dim, 1, bias=False)) # class embedding if num_class_embeds is not None: self.class_embedding = ClassEmbedding(num_classes=num_class_embeds, embedding_size=time_embed_dim) else: self.class_embedding = None self.down_blocks = nn.ModuleList([]) self.mid_block = None self.up_blocks = nn.ModuleList([]) # down resnet_out_scale_factor = 1.0 output_channel = block_out_channels[0] for i, down_block_type in enumerate(down_block_types): input_channel = output_channel output_channel = block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 down_block = get_down_block( down_block_type, num_layers=layers_per_block, in_channels=input_channel, out_channels=output_channel, temb_channels=time_embed_dim, add_downsample=not is_final_block, resnet_eps=norm_eps, resnet_out_scale_factor=resnet_out_scale_factor, attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel, dropout=dropout, ) self.down_blocks.append(down_block) # mid self.mid_block = nn.ModuleList() self.add_attention = add_attention if add_attention: self.mid_block.append( AttnDownBlock2D( in_channels=block_out_channels[-1], out_channels=block_out_channels[-1], temb_channels=time_embed_dim, dropout=dropout, num_layers=1, resnet_eps=norm_eps, output_scale_factor=resnet_out_scale_factor, attention_head_dim=attention_head_dim, add_downsample=False ) ) self.mid_block.append( DownBlock2D( in_channels=block_out_channels[-1], out_channels=block_out_channels[-1], temb_channels=time_embed_dim, dropout=dropout, num_layers=1, resnet_eps=norm_eps, output_scale_factor=resnet_out_scale_factor, add_downsample=False ) ) # up reversed_block_out_channels = list(reversed(block_out_channels)) output_channel = reversed_block_out_channels[0] for i, up_block_type in enumerate(up_block_types): prev_output_channel = output_channel output_channel = reversed_block_out_channels[i] input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] is_final_block = i == len(block_out_channels) - 1 up_block = get_up_block( up_block_type, num_layers=layers_per_block + 1, in_channels=input_channel, out_channels=output_channel, prev_output_channel=prev_output_channel, temb_channels=time_embed_dim, add_upsample=not is_final_block, resnet_eps=norm_eps, attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel, dropout=dropout, resnet_out_scale_factor=resnet_out_scale_factor, ) self.up_blocks.append(up_block) prev_output_channel = output_channel # out self.conv_out = Conv2d(block_out_channels[0], out_channels, kernel_size=3, padding=1, bias=False) # init weights to normal since weight normalization recursive_normal_init(self) self.gain = nn.Parameter(torch.ones(1, 1, 1, 1)) def get_loss_module_weight(self, timestep): return self.loss_mlp(timestep) def forward( self, sample: torch.FloatTensor, timestep: Union[torch.Tensor, float, int], class_labels: Optional[torch.Tensor] = None, return_dict: bool = True, return_loss_mlp: bool = False, ) -> Union[UNet2DOutput, Tuple]: r""" The [`UNet2DModel`] forward method. Args: sample (`torch.FloatTensor`): The noisy input tensor with the following shape `(batch, channel, height, width)`. timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. class_labels (`torch.FloatTensor`, *optional*, defaults to `None`): Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.unet_2d.UNet2DOutput`] instead of a plain tuple. Returns: [`~models.unet_2d.UNet2DOutput`] or `tuple`: If `return_dict` is True, an [`~models.unet_2d.UNet2DOutput`] is returned, otherwise a `tuple` is returned where the first element is the sample tensor. """ # 0. center input if necessary if self.config.center_input_sample: sample = 2 * sample - 1.0 # 1. time timesteps = timestep if not torch.is_tensor(timesteps): timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device) elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0: timesteps = timesteps[None].to(sample.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timesteps = timesteps * torch.ones(sample.shape[0], dtype=timesteps.dtype, device=timesteps.device) t_emb = self.time_proj(timesteps) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might actually be running in fp16. so we need to cast here. # there might be better ways to encapsulate this. t_emb = t_emb.to(dtype=self.dtype) emb = self.time_embedding(t_emb) if self.class_embedding is not None: if class_labels is None: raise ValueError("class_labels should be provided when doing class conditioning") class_emb = self.class_embedding(class_labels, sample.device, self.dtype).to(dtype=self.dtype) emb = emb + class_emb elif self.class_embedding is None and class_labels is not None: raise ValueError("class_embedding needs to be initialized in order to use class conditioning") # 2. pre-process skip_sample = sample # Create a tensor of ones with the same dtype and device b, c, h, w = sample.shape ones_tensor = torch.ones(b, 1, h, w, dtype=sample.dtype, device=sample.device) # Concatenate along the channel dimension c_in = 1 / torch.sqrt(0.25+timesteps**2) sample = torch.cat((sample*c_in[:, None, None, None], ones_tensor), dim=1) sample = self.conv_in(sample) # 3. down down_block_res_samples = (sample,) for downsample_block in self.down_blocks: if hasattr(downsample_block, "skip_conv"): sample, res_samples, skip_sample = downsample_block( hidden_states=sample, temb=emb, skip_sample=skip_sample ) else: sample, res_samples = downsample_block(hidden_states=sample, temb=emb) down_block_res_samples += res_samples # 4. mid for i, block in enumerate(self.mid_block): if i == 0 and self.add_attention and isinstance(block, Attention): sample = block(sample) if isinstance(sample, tuple): sample = sample[0] else: sample = block(sample, emb) if isinstance(sample, tuple): sample = sample[0] # 5. up for upsample_block in self.up_blocks: res_samples = down_block_res_samples[-len(upsample_block.resnets) :] down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] if hasattr(upsample_block, "skip_conv"): sample, skip_sample = upsample_block(sample, res_samples, emb, skip_sample) else: sample = upsample_block(sample, res_samples, emb) # 6. post-process c_out = (timesteps*0.5) / torch.sqrt(timesteps**2 + 0.25) sample = self.conv_out(sample) * c_out[:, None, None, None] if skip_sample is not None: c_skip = 0.25 / (0.25+timesteps**2) sample += skip_sample * c_skip[:, None, None, None] if return_loss_mlp: loss_w = self.get_loss_module_weight(timesteps) if not return_dict: return (sample,), loss_w return UNet2DOutput(sample=sample), loss_w if not return_dict: return (sample,) return UNet2DOutput(sample=sample) # Path: train.py import torch import torch.nn.functional as F import hydra import os import shutil import math import numpy as np import re from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from diffusers.utils import make_image_grid from torchvision.transforms import Compose, ToTensor, Normalize, RandomHorizontalFlip from omegaconf import DictConfig from hydra.core.hydra_config import HydraConfig from diffusers.optimization import get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup from diffusers import EMAModel from pipeline import KarrasPipeline from accelerate import Accelerator, DistributedDataParallelKwargs from accelerate.utils import LoggerType from tqdm import tqdm from datasets import load_dataset from model import UNet2DModel model.load_state_dict(torch_dict['model']) latest_checkpoint = torch_dict['latest_checkpoint'] start_step = torch_dict['step'] if config.use_ema: parent_dir = os.path.dirname(config.resume) parent_dir_children = os.listdir(parent_dir) numbers = [int(re.match(r"ema_checkpoints_(\d+)", f).group(1)) for f in parent_dir_children if re.match(r"ema_checkpoints_(\d+)", f)] num = max(numbers) print(f"Using EMA checkpoint {num}") ema.from_pretrained(os.path.join(parent_dir, f'ema_checkpoints_{num}'), model_cls=UNet2DModel) if accelerator.is_main_process: # Create output directory if needed, and asserted for not None in train os.makedirs(config.output_dir, exist_ok=True) hydra_dir = os.path.join(HydraConfig.get().runtime.output_dir, '.hydra') print(f'copying from hydra dir {hydra_dir}') f_name = 'config.yaml' shutil.copy2(os.path.join(hydra_dir, f_name), os.path.join(config.output_dir, f_name)) f_name = 'hydra.yaml' shutil.copy2(os.path.join(hydra_dir, f_name), os.path.join(config.output_dir, f_name)) f_name = 'overrides.yaml' shutil.copy2(os.path.join(hydra_dir, f_name), os.path.join(config.output_dir, f_name)) accelerator.init_trackers( config.model_name, config={ 'resume': config.resume if 'resume' in config else '', 'batch_size': config.train_batch_size, 'num_train_kimg': config.num_train_kimg, 'lr': config.learning_rate, 'dataset': config.data.dataset.path, }, ) # Prepare everything # There is no specific order to remember, you just need to unpack the # objects in the same order you gave them to the prepare method. model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, lr_scheduler ) if config.use_ema: ema.to(accelerator.device) P_mean, P_std, sigma_data = config.training.P_mean, config.training.P_std, config.training.sigma_data total_steps = get_total_steps(config) progress_bar = tqdm(total=total_steps-start_step, disable=not accelerator.is_local_main_process) progress_bar.set_description("Train") train_iter = iter(train_dataloader) loss_type = config.loss_type if hasattr(config, 'loss_type') else 'mlp' assert loss_type in ['mlp', 'scaled'], 'loss type not supported' for step in range(start_step, total_steps): batch = next(train_iter) images = batch["images"] label = None if "label" in batch: label = batch["label"] noise = torch.randn_like(images) # Add noise to the clean images according to the noise magnitude at each timestep sigma = get_sigma(images.shape[0], P_mean, P_std, images.device) noisy_images = add_noise(images, noise, sigma) loss_w = get_sigma_weight(sigma, sigma_data) with accelerator.accumulate(model): # Predict the noise pred, u_sigma = model(noisy_images, sigma[:, 0, 0, 0], class_labels=label, return_dict=False, return_loss_mlp=True) loss = F.mse_loss(pred[0], images, reduction="none") loss = loss.mean(dim=(1,2,3)) scaled_loss = loss_w[:, 0, 0, 0] * loss u_sigma = u_sigma[:, 0] scaled_loss_mlp = (scaled_loss / u_sigma.exp() + u_sigma) if loss_type == 'scaled': accelerator.backward(scaled_loss.mean()) elif loss_type == 'mlp': accelerator.backward(scaled_loss_mlp.mean()) else: raise NotImplementedError(f'loss_type {loss_type} not supported') replace_grad_nans(model) optimizer.step() lr_scheduler.step() optimizer.zero_grad() if accelerator.sync_gradients: if config.use_ema: ema.step(model.parameters()) progress_bar.update(config.gradient_accumulation_steps) loss = accelerator.gather(loss).detach() scaled_loss = accelerator.gather(scaled_loss).detach() scaled_loss_mlp = accelerator.gather(scaled_loss_mlp).detach() logs = { "loss": loss.mean().item(), "scaled_loss": scaled_loss.mean().item(), "scaled_loss_std": scaled_loss.std().item(), "mlp_loss": scaled_loss_mlp.mean().item(), "lr": lr_scheduler.get_last_lr()[0], "step": step+1 } p_logs = { "loss": f'{logs["loss"]:7.5f}', "scaled_loss": f'{logs["scaled_loss"]:6.4f}', "mlp_loss": f'{logs["mlp_loss"]:7.4f}', "lr": f'{logs["lr"]:.6f}', "step": step+1 } progress_bar.set_postfix(**p_logs) accelerator.log(logs, step=step+1) if accelerator.is_main_process: save_image = (step + 1) % (config.save_image_steps*config.gradient_accumulation_steps) == 0 or step == total_steps - 1 save_model = (step + 1) % (config.save_model_steps*config.gradient_accumulation_steps) == 0 or step == total_steps - 1 if save_image or save_model: if is_distributed: pipeline = KarrasPipeline(unet=accelerator.unwrap_model(model.module), scheduler=noise_scheduler) else: pipeline = KarrasPipeline(unet=accelerator.unwrap_model(model), scheduler=noise_scheduler) if save_image: if config.use_ema: ema.store(model.parameters())
ema.copy_to(model.parameters())
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: youngskkim/CRN # Path: callbacks/ema.py class EMACallback(Callback): def __init__(self, len_updates) -> None: super().__init__() self.len_updates = len_updates def on_fit_start(self, trainer, pl_module): # Todo (@[email protected]): delete manually specified device from torch.nn.modules.batchnorm import SyncBatchNorm bn_model_list = list() bn_model_dist_group_list = list() for model_ref in trainer.model.modules(): if isinstance(model_ref, SyncBatchNorm): bn_model_list.append(model_ref) bn_model_dist_group_list.append(model_ref.process_group) model_ref.process_group = None trainer.ema_model = ModelEMA(trainer.model.module.module.model.cuda(), 0.9990) for bn_model, dist_group in zip(bn_model_list, bn_model_dist_group_list): bn_model.process_group = dist_group trainer.ema_model.updates = self.len_updates def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, unused=0): trainer.ema_model.update(trainer, trainer.model.module.module.model) def on_train_epoch_end(self, trainer, pl_module) -> None: state_dict = trainer.ema_model.ema.state_dict() state_dict_keys = list(state_dict.keys()) # TODO: Change to more elegant way. for state_dict_key in state_dict_keys: new_key = 'model.' + state_dict_key state_dict[new_key] = state_dict.pop(state_dict_key) checkpoint = { # the epoch and global step are saved for # compatibility but they are not relevant for restoration 'epoch': trainer.current_epoch, 'global_step': trainer.global_step, 'state_dict': state_dict } torch.save( checkpoint, os.path.join(trainer.log_dir, f'{trainer.current_epoch}.pth')) # Path: utils/torch_dist.py def all_gather_object(obj): world_size = get_world_size() if world_size < 2: return [obj] output = [None for _ in range(world_size)] dist.all_gather_object(output, obj) return output # Path: utils/torch_dist.py def synchronize(): """Helper function to synchronize (barrier) among all processes when using distributed training""" if not dist.is_available(): return if not dist.is_initialized(): return current_world_size = dist.get_world_size() if current_world_size == 1: return dist.barrier() # Path: exps/base_exp.py class BEVDepthLightningModel(LightningModule): MODEL_NAMES = sorted(name for name in models.__dict__ if name.islower() and not name.startswith('__') and callable(models.__dict__[name])) def __init__(self, gpus: int = 1, data_root='data/nuScenes', eval_interval=1, batch_size_per_device=8, class_names=CLASSES, backbone_img_conf=backbone_img_conf, head_conf=head_conf, ida_aug_conf=ida_aug_conf, bda_aug_conf=bda_aug_conf, rda_aug_conf=rda_aug_conf, default_root_dir='./outputs/', **kwargs): super().__init__() self.save_hyperparameters() self.gpus = gpus self.optimizer_config = optimizer_config self.pretrain_config = pretrain_config self.eval_interval = eval_interval self.batch_size_per_device = batch_size_per_device self.data_root = data_root self.class_names = class_names self.backbone_img_conf = backbone_img_conf self.head_conf = head_conf self.ida_aug_conf = ida_aug_conf self.bda_aug_conf = bda_aug_conf self.rda_aug_conf = rda_aug_conf mmcv.mkdir_or_exist(default_root_dir) self.default_root_dir = default_root_dir self.evaluator = DetNuscEvaluator(class_names=self.class_names, output_dir=self.default_root_dir) self.model = BaseBEVDepth(self.backbone_img_conf, self.head_conf) self.mode = 'valid' self.img_conf = img_conf self.data_use_cbgs = False self.load_interval = 1 self.num_sweeps = 1 self.sweep_idxes = list() self.key_idxes = list() self.data_return_depth = True self.downsample_factor = self.backbone_img_conf['downsample_factor'] self.dbound = self.backbone_img_conf['d_bound'] self.depth_channels = int( (self.dbound[1] - self.dbound[0]) / self.dbound[2]) self.use_fusion = False self.train_info_paths = 'data/nuScenes/nuscenes_infos_train.pkl' self.val_info_paths = 'data/nuScenes/nuscenes_infos_val.pkl' self.predict_info_paths = 'data/nuScenes/nuscenes_infos_test.pkl' self.return_image = True self.return_depth = True self.return_radar_pv = False self.remove_z_axis = True def forward(self, sweep_imgs, mats, is_train=False, **inputs): return self.model(sweep_imgs, mats, is_train=is_train) def training_step(self, batch): if self.global_rank == 0: for pg in self.trainer.optimizers[0].param_groups: self.log('learning_rate', pg["lr"]) (sweep_imgs, mats, _, gt_boxes_3d, gt_labels_3d, _, depth_labels, pts_pv) = batch if torch.cuda.is_available(): if self.return_image: sweep_imgs = sweep_imgs.cuda() for key, value in mats.items(): mats[key] = value.cuda() if self.return_radar_pv: pts_pv = pts_pv.cuda() gt_boxes_3d = [gt_box.cuda() for gt_box in gt_boxes_3d] gt_labels_3d = [gt_label.cuda() for gt_label in gt_labels_3d] preds, depth_preds = self(sweep_imgs, mats, pts_pv=pts_pv, is_train=True) targets = self.model.get_targets(gt_boxes_3d, gt_labels_3d) loss_detection, loss_heatmap, loss_bbox = self.model.loss(targets, preds) if len(depth_labels.shape) == 5: # only key-frame will calculate depth loss depth_labels = depth_labels[:, 0, ...].contiguous() loss_depth = self.get_depth_loss(depth_labels.cuda(), depth_preds) self.log('train/detection', loss_detection) self.log('train/heatmap', loss_heatmap) self.log('train/bbox', loss_bbox) self.log('train/depth', loss_depth) return loss_detection + loss_depth def get_depth_loss(self, depth_labels, depth_preds, weight=3.): depth_labels = self.get_downsampled_gt_depth(depth_labels) depth_preds = depth_preds.permute(0, 2, 3, 1).contiguous().view( -1, self.depth_channels) fg_mask = torch.max(depth_labels, dim=1).values > 0.0 with autocast(enabled=False): loss_depth = (F.binary_cross_entropy( depth_preds[fg_mask], depth_labels[fg_mask], reduction='none', ).sum() / max(1.0, fg_mask.sum())) return weight * loss_depth def get_downsampled_gt_depth(self, gt_depths): """ Input: gt_depths: [B, N, H, W] Output: gt_depths: [B*N*h*w, d] """ B, N, H, W = gt_depths.shape gt_depths = gt_depths.view( B * N, H // self.downsample_factor, self.downsample_factor, W // self.downsample_factor, self.downsample_factor, 1, ) gt_depths = gt_depths.permute(0, 1, 3, 5, 2, 4).contiguous() gt_depths = gt_depths.view( -1, self.downsample_factor * self.downsample_factor) gt_depths_tmp = torch.where(gt_depths == 0.0, 1e5 * torch.ones_like(gt_depths), gt_depths) gt_depths = torch.min(gt_depths_tmp, dim=-1).values gt_depths = gt_depths.view(B * N, H // self.downsample_factor, W // self.downsample_factor) gt_depths = (gt_depths - (self.dbound[0] - self.dbound[2])) / self.dbound[2] gt_depths = torch.where( (gt_depths < self.depth_channels + 1) & (gt_depths > 0.), gt_depths, torch.zeros_like(gt_depths)) gt_depths = F.one_hot(gt_depths.long(), num_classes=self.depth_channels + 1).view( -1, self.depth_channels + 1)[:, 1:] return gt_depths.float() def eval_step(self, batch, batch_idx, prefix: str): (sweep_imgs, mats, img_metas, _, _, _, _, pts_pv) = batch if torch.cuda.is_available(): if self.return_image: sweep_imgs = sweep_imgs.cuda() for key, value in mats.items(): mats[key] = value.cuda() if self.return_radar_pv: pts_pv = pts_pv.cuda() preds = self(sweep_imgs, mats, pts_pv=pts_pv, is_train=False) if isinstance(self.model, torch.nn.parallel.DistributedDataParallel): results = self.model.module.get_bboxes(preds, img_metas) else: results = self.model.get_bboxes(preds, img_metas) for i in range(len(results)): results[i][0] = results[i][0].tensor.detach().cpu().numpy() results[i][1] = results[i][1].detach().cpu().numpy() results[i][2] = results[i][2].detach().cpu().numpy() results[i].append(img_metas[i]) return results def validation_epoch_end(self, validation_step_outputs): detection_losses = list() heatmap_losses = list() bbox_losses = list() depth_losses = list() for validation_step_output in validation_step_outputs: detection_losses.append(validation_step_output[0]) heatmap_losses.append(validation_step_output[1]) bbox_losses.append(validation_step_output[2]) depth_losses.append(validation_step_output[3]) synchronize() self.log('val/detection', torch.mean(torch.stack(detection_losses)), on_epoch=True) self.log('val/heatmap', torch.mean(torch.stack(heatmap_losses)), on_epoch=True) self.log('val/bbox', torch.mean(torch.stack(bbox_losses)), on_epoch=True) self.log('val/depth', torch.mean(torch.stack(depth_losses)), on_epoch=True) def validation_step(self, batch, batch_idx): (sweep_imgs, mats, _, gt_boxes_3d, gt_labels_3d, _, depth_labels, pts_pv) = batch if torch.cuda.is_available(): if self.return_image: sweep_imgs = sweep_imgs.cuda() for key, value in mats.items(): mats[key] = value.cuda() if self.return_radar_pv: pts_pv = pts_pv.cuda() gt_boxes_3d = [gt_box.cuda() for gt_box in gt_boxes_3d] gt_labels_3d = [gt_label.cuda() for gt_label in gt_labels_3d] with torch.no_grad(): preds, depth_preds = self(sweep_imgs, mats, pts_pv=pts_pv, is_train=True) targets = self.model.get_targets(gt_boxes_3d, gt_labels_3d) loss_detection, loss_heatmap, loss_bbox = self.model.loss(targets, preds) if len(depth_labels.shape) == 5: # only key-frame will calculate depth loss depth_labels = depth_labels[:, 0, ...].contiguous() loss_depth = self.get_depth_loss(depth_labels.cuda(), depth_preds, weight=3.) return loss_detection, loss_heatmap, loss_bbox, loss_depth def test_epoch_end(self, test_step_outputs): all_pred_results = list() all_img_metas = list() for test_step_output in test_step_outputs: for i in range(len(test_step_output)): all_pred_results.append(test_step_output[i][:3]) all_img_metas.append(test_step_output[i][3]) synchronize() # TODO: Change another way. dataset_length = len(self.val_dataloader().dataset) all_pred_results = sum( map(list, zip(*all_gather_object(all_pred_results))), [])[:dataset_length] all_img_metas = sum(map(list, zip(*all_gather_object(all_img_metas))), [])[:dataset_length] if self.global_rank == 0: self.evaluator.evaluate(all_pred_results, all_img_metas) def configure_optimizers(self): optimizer = build_optimizer(self.model, self.optimizer_config) scheduler = MultiStepLR(optimizer, [19, 23]) return [[optimizer], [scheduler]] def train_dataloader(self): train_dataset = NuscDatasetRadarDet( ida_aug_conf=self.ida_aug_conf, bda_aug_conf=self.bda_aug_conf, rda_aug_conf=self.rda_aug_conf, img_backbone_conf=self.backbone_img_conf, classes=self.class_names, data_root=self.data_root, info_paths=self.train_info_paths, is_train=True, use_cbgs=self.data_use_cbgs, img_conf=self.img_conf, load_interval=self.load_interval, num_sweeps=self.num_sweeps, sweep_idxes=self.sweep_idxes, key_idxes=self.key_idxes, return_image=self.return_image, return_depth=self.return_depth, return_radar_pv=self.return_radar_pv, remove_z_axis=self.remove_z_axis, depth_path='depth_gt', radar_pv_path='radar_pv_filter' ) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=self.batch_size_per_device, num_workers=4, drop_last=True, shuffle=False, collate_fn=partial(collate_fn, is_return_image=self.return_image, is_return_depth=self.return_depth, is_return_radar_pv=self.return_radar_pv), sampler=None, ) return train_loader def val_dataloader(self): val_dataset = NuscDatasetRadarDet( ida_aug_conf=self.ida_aug_conf, bda_aug_conf=self.bda_aug_conf, rda_aug_conf=self.rda_aug_conf, img_backbone_conf=self.backbone_img_conf, classes=self.class_names, data_root=self.data_root, info_paths=self.val_info_paths, is_train=False, img_conf=self.img_conf, load_interval=self.load_interval, num_sweeps=self.num_sweeps, sweep_idxes=self.sweep_idxes, key_idxes=self.key_idxes, return_image=self.return_image, return_depth=self.return_depth, return_radar_pv=self.return_radar_pv, remove_z_axis=self.remove_z_axis, radar_pv_path='radar_pv_filter', ) val_loader = torch.utils.data.DataLoader( val_dataset, batch_size=self.batch_size_per_device, num_workers=4, shuffle=False, collate_fn=partial(collate_fn, is_return_image=self.return_image, is_return_depth=self.return_depth, is_return_radar_pv=self.return_radar_pv), sampler=None, ) return val_loader def test_dataloader(self): return self.val_dataloader() def predict_dataloader(self): predict_dataset = NuscDatasetRadarDet( ida_aug_conf=self.ida_aug_conf, bda_aug_conf=self.bda_aug_conf, rda_aug_conf=self.rda_aug_conf, img_backbone_conf=self.backbone_img_conf, classes=self.class_names, data_root=self.data_root, info_paths=self.val_info_paths, is_train=False, img_conf=self.img_conf, load_interval=self.load_interval, num_sweeps=self.num_sweeps, sweep_idxes=self.sweep_idxes, key_idxes=self.key_idxes, return_image=self.return_image, return_depth=self.return_depth, return_radar_pv=self.return_radar_pv, remove_z_axis=self.remove_z_axis, radar_pv_path='radar_pv_filter', ) predict_loader = torch.utils.data.DataLoader( predict_dataset, batch_size=self.batch_size_per_device, num_workers=4, shuffle=False, collate_fn=partial(collate_fn, is_return_image=self.return_image, is_return_depth=self.return_depth, is_return_radar_pv=self.return_radar_pv), sampler=None, ) return predict_loader def test_step(self, batch, batch_idx): return self.eval_step(batch, batch_idx, 'test') def predict_step(self, batch, batch_idx): return self.eval_step(batch, batch_idx, 'predict') @staticmethod def add_model_specific_args(parent_parser): # pragma: no-cover return parent_parser # Path: exps/base_cli.py import os import pytorch_lightning as pl from argparse import ArgumentParser from pytorch_lightning.callbacks.model_summary import ModelSummary from callbacks.ema import EMACallback from utils.torch_dist import all_gather_object, synchronize from .base_exp import BEVDepthLightningModel # Copyright (c) Megvii Inc. All rights reserved. def run_cli(model_class=BEVDepthLightningModel, exp_name='base_exp', use_ema=False, ckpt_path=None): parent_parser = ArgumentParser(add_help=False) parent_parser = pl.Trainer.add_argparse_args(parent_parser) parent_parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set') parent_parser.add_argument('-p', '--predict', dest='predict', action='store_true', help='predict model on testing set') parent_parser.add_argument('-b', '--batch_size_per_device', type=int) parent_parser.add_argument('--seed', type=int, default=0, help='seed for initializing training.') parent_parser.add_argument('--ckpt_path', type=str) parser = BEVDepthLightningModel.add_model_specific_args(parent_parser) parser.set_defaults(profiler='simple', deterministic=False, max_epochs=24, strategy='ddp', # strategy='ddp_find_unused_parameters_false', num_sanity_val_steps=0, check_val_every_n_epoch=1, gradient_clip_val=5, limit_val_batches=0.25, log_every_n_steps=50, enable_checkpointing=True, precision=16, default_root_dir=os.path.join('./outputs/', exp_name)) args = parser.parse_args()
if args.seed is not None:
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: KAIST-VICLab/From_Ground_To_Objects # Path: networks/layers.py class BackprojectDepth(nn.Module): """Layer to transform a depth image into a point cloud """ def __init__(self, batch_size, height, width): super(BackprojectDepth, self).__init__() self.batch_size = batch_size self.height = height self.width = width meshgrid = np.meshgrid(range(self.width), range(self.height), indexing='xy') self.id_coords = np.stack(meshgrid, axis=0).astype(np.float32) self.id_coords = nn.Parameter(torch.from_numpy(self.id_coords), requires_grad=False) self.ones = nn.Parameter(torch.ones(self.batch_size, 1, self.height * self.width), requires_grad=False) self.pix_coords = torch.unsqueeze(torch.stack( [self.id_coords[0].view(-1), self.id_coords[1].view(-1)], 0), 0) self.pix_coords = self.pix_coords.repeat(batch_size, 1, 1) self.pix_coords = nn.Parameter(torch.cat([self.pix_coords, self.ones], 1), requires_grad=False) def forward(self, depth, inv_K): b = depth.size(0) cam_points = torch.matmul(inv_K[:, :3, :3], self.pix_coords[:b]) cam_points = depth.view(b, 1, -1) * cam_points cam_points = torch.cat([cam_points, self.ones[:b]], 1) return cam_points # Path: networks/layers.py class Project3D(nn.Module): """Layer which projects 3D points into a camera with intrinsics K and at position T """ def __init__(self, batch_size, height, width, eps=1e-7): super(Project3D, self).__init__() self.batch_size = batch_size self.height = height self.width = width self.eps = eps def forward(self, points, K, T): b = points.size(0) P = torch.matmul(K, T)[:, :3, :] cam_points = torch.matmul(P[:b], points) pix_coords = cam_points[:, :2, :] / (cam_points[:, 2, :].unsqueeze(1) + self.eps) pix_coords = pix_coords.view(b, 2, self.height, self.width) pix_coords = pix_coords.permute(0, 2, 3, 1) pix_coords[..., 0] /= self.width - 1 pix_coords[..., 1] /= self.height - 1 pix_coords = (pix_coords - 0.5) * 2 return pix_coords # Path: networks/resnet_encoder.py import os import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torchvision.models as models import torch.utils.model_zoo as model_zoo from .layers import BackprojectDepth, Project3D from .transformer import feature_add_position, FeatureTransformer from .asp_oc_block import ASP_OC_Module encoder = resnets[num_layers](pretrained) self.con_layer0 = nn.Sequential(encoder.conv1, encoder.bn1, encoder.relu) self.con_layer1 = nn.Sequential(encoder.maxpool, encoder.layer1) if num_layers > 34: self.num_ch_enc[1:] *= 4 self.backprojector = BackprojectDepth(batch_size=self.num_depth_bins, height=self.matching_height, width=self.matching_width) self.projector = Project3D(batch_size=self.num_depth_bins, height=self.matching_height, width=self.matching_width) self.compute_depth_bins(min_depth_bin, max_depth_bin) self.prematching_conv = nn.Sequential(nn.Conv2d(64, out_channels=16, kernel_size=1, stride=1, padding=0), nn.ReLU(inplace=True) ) self.reduce_conv = nn.Sequential(nn.Conv2d(self.num_ch_enc[1] + self.num_depth_bins, out_channels=self.num_ch_enc[1], kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True) ) def compute_depth_bins(self, min_depth_bin, max_depth_bin): """Compute the depths bins used to build the cost volume. Bins will depend upon self.depth_binning, to either be linear in depth (linear) or linear in inverse depth (inverse)""" if self.depth_binning == 'inverse': self.depth_bins = 1 / np.linspace(1 / max_depth_bin, 1 / min_depth_bin, self.num_depth_bins)[::-1] # maintain depth order elif self.depth_binning == 'linear': self.depth_bins = np.linspace(min_depth_bin, max_depth_bin, self.num_depth_bins) else: raise NotImplementedError self.depth_bins = torch.from_numpy(self.depth_bins).float() self.warp_depths = [] for depth in self.depth_bins: depth = torch.ones((1, self.matching_height, self.matching_width)) * depth self.warp_depths.append(depth) self.warp_depths = torch.stack(self.warp_depths, 0).float() if self.is_cuda: self.warp_depths = self.warp_depths.cuda() def match_features(self, current_feats, lookup_feats, relative_poses, K, invK): """Compute a cost volume based on L1 difference between current_feats and lookup_feats. We backwards warp the lookup_feats into the current frame using the estimated relative pose, known intrinsics and using hypothesised depths self.warp_depths (which are either linear in depth or linear in inverse depth). If relative_pose == 0 then this indicates that the lookup frame is missing (i.e. we are at the start of a sequence), and so we skip it""" batch_cost_volume = [] # store all cost volumes of the batch cost_volume_masks = [] # store locations of '0's in cost volume for confidence for batch_idx in range(len(current_feats)): volume_shape = (self.num_depth_bins, self.matching_height, self.matching_width) cost_volume = torch.zeros(volume_shape, dtype=torch.float, device=current_feats.device) counts = torch.zeros(volume_shape, dtype=torch.float, device=current_feats.device) # select an item from batch of ref feats _lookup_feats = lookup_feats[batch_idx:batch_idx + 1] _lookup_poses = relative_poses[batch_idx:batch_idx + 1] _K = K[batch_idx:batch_idx + 1] _invK = invK[batch_idx:batch_idx + 1] world_points = self.backprojector(self.warp_depths, _invK) # loop through ref images adding to the current cost volume for lookup_idx in range(_lookup_feats.shape[1]): lookup_feat = _lookup_feats[:, lookup_idx] # 1 x C x H x W lookup_pose = _lookup_poses[:, lookup_idx] # ignore missing images if lookup_pose.sum() == 0: continue lookup_feat = lookup_feat.repeat([self.num_depth_bins, 1, 1, 1]) pix_locs = self.projector(world_points, _K, lookup_pose) warped = F.grid_sample(lookup_feat, pix_locs, padding_mode='zeros', mode='bilinear', align_corners=True) # mask values landing outside the image (and near the border) # we want to ignore edge pixels of the lookup images and the current image # because of zero padding in ResNet # Masking of ref image border x_vals = (pix_locs[..., 0].detach() / 2 + 0.5) * ( self.matching_width - 1) # convert from (-1, 1) to pixel values y_vals = (pix_locs[..., 1].detach() / 2 + 0.5) * (self.matching_height - 1) edge_mask = (x_vals >= 2.0) * (x_vals <= self.matching_width - 2) * \ (y_vals >= 2.0) * (y_vals <= self.matching_height - 2) edge_mask = edge_mask.float() # masking of current image current_mask = torch.zeros_like(edge_mask) current_mask[:, 2:-2, 2:-2] = 1.0 edge_mask = edge_mask * current_mask diffs = torch.abs(warped - current_feats[batch_idx:batch_idx + 1]).mean( 1) * edge_mask # integrate into cost volume cost_volume = cost_volume + diffs counts = counts + (diffs > 0).float() # average over lookup images cost_volume = cost_volume / (counts + 1e-7) # if some missing values for a pixel location (i.e. some depths landed outside) then # set to max of existing values
missing_val_mask = (cost_volume == 0).float()
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: jinxixiang/magic_animate_unofficial # Path: animatediff/magic_animate/unet_3d_blocks.py class CrossAttnDownBlock3D(nn.Module): def __init__( self, in_channels: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, attn_num_head_channels=1, cross_attention_dim=1280, output_scale_factor=1.0, downsample_padding=1, add_downsample=True, dual_cross_attention=False, use_linear_projection=False, only_cross_attention=False, upcast_attention=False, unet_use_cross_frame_attention=None, unet_use_temporal_attention=None, use_motion_module=None, motion_module_type=None, motion_module_kwargs=None, ): super().__init__() resnets = [] attentions = [] motion_modules = [] self.has_cross_attention = True self.attn_num_head_channels = attn_num_head_channels for i in range(num_layers): in_channels = in_channels if i == 0 else out_channels resnets.append( ResnetBlock3D( in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) if dual_cross_attention: raise NotImplementedError attentions.append( Transformer3DModel( attn_num_head_channels, out_channels // attn_num_head_channels, in_channels=out_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, unet_use_cross_frame_attention=unet_use_cross_frame_attention, unet_use_temporal_attention=unet_use_temporal_attention, ) ) motion_modules.append( get_motion_module( in_channels=out_channels, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) if use_motion_module else None ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) self.motion_modules = nn.ModuleList(motion_modules) if add_downsample: self.downsamplers = nn.ModuleList( [ Downsample3D( out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" ) ] ) else: self.downsamplers = None self.gradient_checkpointing = False def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None): output_states = () for resnet, attn, motion_module in zip(self.resnets, self.attentions, self.motion_modules): if self.training and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states, )[0] if motion_module is not None: hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states) else: hidden_states = resnet(hidden_states, temb) hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample # add motion module hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states output_states += (hidden_states,) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) output_states += (hidden_states,) return hidden_states, output_states # Path: animatediff/magic_animate/unet_3d_blocks.py class CrossAttnUpBlock3D(nn.Module): def __init__( self, in_channels: int, out_channels: int, prev_output_channel: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, attn_num_head_channels=1, cross_attention_dim=1280, output_scale_factor=1.0, add_upsample=True, dual_cross_attention=False, use_linear_projection=False, only_cross_attention=False, upcast_attention=False, unet_use_cross_frame_attention=None, unet_use_temporal_attention=None, use_motion_module=None, motion_module_type=None, motion_module_kwargs=None, ): super().__init__() resnets = [] attentions = [] motion_modules = [] self.has_cross_attention = True self.attn_num_head_channels = attn_num_head_channels for i in range(num_layers): res_skip_channels = in_channels if (i == num_layers - 1) else out_channels resnet_in_channels = prev_output_channel if i == 0 else out_channels resnets.append( ResnetBlock3D( in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) if dual_cross_attention: raise NotImplementedError attentions.append( Transformer3DModel( attn_num_head_channels, out_channels // attn_num_head_channels, in_channels=out_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, unet_use_cross_frame_attention=unet_use_cross_frame_attention, unet_use_temporal_attention=unet_use_temporal_attention, ) ) motion_modules.append( get_motion_module( in_channels=out_channels, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) if use_motion_module else None ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) self.motion_modules = nn.ModuleList(motion_modules) if add_upsample: self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]) else: self.upsamplers = None self.gradient_checkpointing = False def forward( self, hidden_states, res_hidden_states_tuple, temb=None, encoder_hidden_states=None, upsample_size=None, attention_mask=None, ): for resnet, attn, motion_module in zip(self.resnets, self.attentions, self.motion_modules): # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) if self.training and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states, )[0] if motion_module is not None: hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states) else: hidden_states = resnet(hidden_states, temb) hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample # add motion module hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states, upsample_size) return hidden_states # Path: animatediff/magic_animate/unet_3d_blocks.py class DownBlock3D(nn.Module): def __init__( self, in_channels: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, output_scale_factor=1.0, add_downsample=True, downsample_padding=1, use_motion_module=None, motion_module_type=None, motion_module_kwargs=None, ): super().__init__() resnets = [] motion_modules = [] for i in range(num_layers): in_channels = in_channels if i == 0 else out_channels resnets.append( ResnetBlock3D( in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) motion_modules.append( get_motion_module( in_channels=out_channels, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) if use_motion_module else None ) self.resnets = nn.ModuleList(resnets) self.motion_modules = nn.ModuleList(motion_modules) if add_downsample: self.downsamplers = nn.ModuleList( [ Downsample3D( out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" ) ] ) else: self.downsamplers = None self.gradient_checkpointing = False def forward(self, hidden_states, temb=None, encoder_hidden_states=None): output_states = () for resnet, motion_module in zip(self.resnets, self.motion_modules): if self.training and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) if motion_module is not None: hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states) else: hidden_states = resnet(hidden_states, temb) # add motion module hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states output_states += (hidden_states,) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) output_states += (hidden_states,) return hidden_states, output_states # Path: animatediff/magic_animate/unet_3d_blocks.py class UNetMidBlock3DCrossAttn(nn.Module): def __init__( self, in_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, attn_num_head_channels=1, output_scale_factor=1.0, cross_attention_dim=1280, dual_cross_attention=False, use_linear_projection=False, upcast_attention=False, unet_use_cross_frame_attention=None, unet_use_temporal_attention=None, use_motion_module=None, motion_module_type=None, motion_module_kwargs=None, ): super().__init__() self.has_cross_attention = True self.attn_num_head_channels = attn_num_head_channels resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) # there is always at least one resnet resnets = [ ResnetBlock3D( in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ] attentions = [] motion_modules = [] for _ in range(num_layers): if dual_cross_attention: raise NotImplementedError attentions.append( Transformer3DModel( attn_num_head_channels, in_channels // attn_num_head_channels, in_channels=in_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention, unet_use_cross_frame_attention=unet_use_cross_frame_attention, unet_use_temporal_attention=unet_use_temporal_attention, ) ) motion_modules.append( get_motion_module( in_channels=in_channels, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) if use_motion_module else None ) resnets.append( ResnetBlock3D( in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) self.motion_modules = nn.ModuleList(motion_modules) def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None): hidden_states = self.resnets[0](hidden_states, temb) for attn, resnet, motion_module in zip(self.attentions, self.resnets[1:], self.motion_modules): hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states hidden_states = resnet(hidden_states, temb) return hidden_states # Path: animatediff/magic_animate/unet_3d_blocks.py class UpBlock3D(nn.Module): def __init__( self, in_channels: int, prev_output_channel: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, output_scale_factor=1.0, add_upsample=True, use_motion_module=None, motion_module_type=None, motion_module_kwargs=None, ): super().__init__() resnets = [] motion_modules = [] for i in range(num_layers): res_skip_channels = in_channels if (i == num_layers - 1) else out_channels resnet_in_channels = prev_output_channel if i == 0 else out_channels resnets.append( ResnetBlock3D( in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) motion_modules.append( get_motion_module( in_channels=out_channels, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) if use_motion_module else None ) self.resnets = nn.ModuleList(resnets) self.motion_modules = nn.ModuleList(motion_modules) if add_upsample: self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]) else: self.upsamplers = None self.gradient_checkpointing = False def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, encoder_hidden_states=None,): for resnet, motion_module in zip(self.resnets, self.motion_modules): # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) if self.training and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) if motion_module is not None: hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states) else: hidden_states = resnet(hidden_states, temb) hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states, upsample_size) return hidden_states # Path: animatediff/magic_animate/unet_3d_blocks.py def get_down_block( down_block_type, num_layers, in_channels, out_channels, temb_channels, add_downsample, resnet_eps, resnet_act_fn, attn_num_head_channels, resnet_groups=None, cross_attention_dim=None, downsample_padding=None, dual_cross_attention=False, use_linear_projection=False, only_cross_attention=False, upcast_attention=False, resnet_time_scale_shift="default", unet_use_cross_frame_attention=None, unet_use_temporal_attention=None, use_motion_module=None, motion_module_type=None, motion_module_kwargs=None, ): down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type if down_block_type == "DownBlock3D": return DownBlock3D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, downsample_padding=downsample_padding, resnet_time_scale_shift=resnet_time_scale_shift, use_motion_module=use_motion_module, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) elif down_block_type == "CrossAttnDownBlock3D": if cross_attention_dim is None: raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D") return CrossAttnDownBlock3D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, downsample_padding=downsample_padding, cross_attention_dim=cross_attention_dim, attn_num_head_channels=attn_num_head_channels, dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift, unet_use_cross_frame_attention=unet_use_cross_frame_attention, unet_use_temporal_attention=unet_use_temporal_attention, use_motion_module=use_motion_module, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) raise ValueError(f"{down_block_type} does not exist.") # Path: animatediff/magic_animate/unet_3d_blocks.py def get_up_block( up_block_type, num_layers, in_channels, out_channels, prev_output_channel, temb_channels, add_upsample, resnet_eps, resnet_act_fn, attn_num_head_channels, resnet_groups=None, cross_attention_dim=None, dual_cross_attention=False, use_linear_projection=False, only_cross_attention=False, upcast_attention=False, resnet_time_scale_shift="default", unet_use_cross_frame_attention=None, unet_use_temporal_attention=None, use_motion_module=None, motion_module_type=None, motion_module_kwargs=None, ): up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type if up_block_type == "UpBlock3D": return UpBlock3D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, resnet_time_scale_shift=resnet_time_scale_shift, use_motion_module=use_motion_module, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) elif up_block_type == "CrossAttnUpBlock3D": if cross_attention_dim is None: raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D") return CrossAttnUpBlock3D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, cross_attention_dim=cross_attention_dim, attn_num_head_channels=attn_num_head_channels, dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift, unet_use_cross_frame_attention=unet_use_cross_frame_attention, unet_use_temporal_attention=unet_use_temporal_attention, use_motion_module=use_motion_module, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) raise ValueError(f"{up_block_type} does not exist.") # Path: animatediff/magic_animate/resnet.py class InflatedConv3d(nn.Conv2d): def forward(self, x): video_length = x.shape[2] x = rearrange(x, "b c f h w -> (b f) c h w") x = super().forward(x) x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length) return x # Path: animatediff/magic_animate/unet.py from dataclasses import dataclass from typing import List, Optional, Tuple, Union from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.models.modeling_utils import ModelMixin from diffusers.utils import BaseOutput, logging from diffusers.models.embeddings import TimestepEmbedding, Timesteps from .unet_3d_blocks import ( CrossAttnDownBlock3D, CrossAttnUpBlock3D, DownBlock3D, UNetMidBlock3DCrossAttn, UpBlock3D, get_down_block, get_up_block, ) from .resnet import InflatedConv3d from diffusers.utils import WEIGHTS_NAME import os import json import pdb import torch import torch.nn as nn import torch.utils.checkpoint # ************************************************************************* # This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo- # difications”). All Bytedance Inc.'s Modifications are Copyright (2023) B- # ytedance Inc.. # ************************************************************************* # Adapted from https://github.com/guoyww/AnimateDiff # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. logger = logging.get_logger(__name__) # pylint: disable=invalid-name @dataclass class UNet3DConditionOutput(BaseOutput): sample: torch.FloatTensor class UNet3DConditionModel(ModelMixin, ConfigMixin): _supports_gradient_checkpointing = True @register_to_config def __init__( self, sample_size: Optional[int] = None, in_channels: int = 4, out_channels: int = 4, center_input_sample: bool = False,
flip_sin_to_cos: bool = True,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Chat-3D/Chat-3D-v2 # Path: models/modeling_llama.py class LlamaForCausalLM(LlamaPreTrainedModel): def __init__(self, config): super().__init__(config) self.model = LlamaModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, query_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from transformers import AutoTokenizer, LlamaForCausalLM >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) >>> prompt = "Hey, are you consciours? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, query_embeds=query_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] if self.lm_head.weight.dtype == torch.float32: hidden_states = hidden_states.float() logits = self.lm_head(hidden_states) loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, query_embeds=None, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs ): if past_key_values: input_ids = input_ids[:, -1:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -1].unsqueeze(-1) query_embeds = None # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "position_ids": position_ids, "query_embeds": query_embeds, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, } ) return model_inputs @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) return reordered_past # Path: models/transformer_vanilla/transformer_block.py class TransformerEncoder(nn.Module): def __init__(self, dim, num_layers=1, heads=32, dim_head=None, dropout=0.1): super().__init__() self.block_list = [BasicTransformerBlock(dim, heads, dim_head, dropout) for _ in range(num_layers)] self.layers = nn.ModuleList(self.block_list) self.output_norm = nn.LayerNorm(dim) self.apply(self._init_weights) def forward(self, x, mask=None, dist_attn=None): for layer in self.layers: x = layer(x, mask=mask, dist_attn=dist_attn) # x = self.output_norm(x) return x def _init_weights(self, module): if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=0.02) if module.bias is not None: module.bias.data.zero_() # Path: models/transformer_vanilla/transformer_block.py class CMT(nn.Module): def __init__(self, hidden_size, num_layers=1): super().__init__() decoder_layer = TransformerSpatialDecoderLayer( d_model=hidden_size, nhead=8, dim_head=64, dim_feedforward=4096, dropout=0.1 ) self.layers = _get_clones(decoder_layer, num_layers) loc_layer = nn.Sequential( nn.Linear(6, hidden_size), nn.ReLU(), nn.LayerNorm(hidden_size) ) self.loc_layers = _get_clones(loc_layer, 1) self.apply(self._init_weights) def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=0.01) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=0.02) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def calc_pairwise_locs(self, obj_centers, eps=1e-10, pairwise_rel_type='center'): pairwise_locs = einops.repeat(obj_centers, 'b l d -> b l 1 d') \ - einops.repeat(obj_centers, 'b l d -> b 1 l d') pairwise_dists = torch.sqrt(torch.sum(pairwise_locs ** 2, 3) + eps) # (b, l, l) # max_dists = torch.max(pairwise_dists.view(pairwise_dists.size(0), -1), dim=1)[0] norm_pairwise_dists = pairwise_dists #/ einops.repeat(max_dists, 'b -> b 1 1') pairwise_dists_2d = torch.sqrt(torch.sum(pairwise_locs[..., :2] ** 2, 3) + eps) pairwise_locs = torch.stack( [norm_pairwise_dists, pairwise_locs[..., 2] / pairwise_dists, pairwise_dists_2d / pairwise_dists, pairwise_locs[..., 1] / pairwise_dists_2d, pairwise_locs[..., 0] / pairwise_dists_2d], dim=3 ) return pairwise_locs def forward( self, obj_embeds, obj_locs, obj_masks ): pairwise_locs = self.calc_pairwise_locs( obj_locs[:, :, :3] ) out_embeds = obj_embeds for i, layer in enumerate(self.layers): # query_pos = self.loc_layers[0](obj_locs) # out_embeds = out_embeds + query_pos out_embeds = layer( out_embeds, pairwise_locs, tgt_key_padding_mask=obj_masks.logical_not(), ) return out_embeds # Path: models/helpers.py class GenericMLP(nn.Module): def __init__( self, input_dim, hidden_dims, output_dim, norm_fn_name=None, activation="silu", use_conv=False, dropout=None, hidden_use_bias=False, output_use_bias=True, output_use_activation=False, output_use_norm=False, weight_init_name=None, weight_init_std=0.02 ): super().__init__() activation = ACTIVATION_DICT[activation] norm = None if norm_fn_name is not None: norm = NORM_DICT[norm_fn_name] if norm_fn_name == "ln" and use_conv: norm = lambda x: nn.GroupNorm(1, x) # easier way to use LayerNorm if dropout is not None: if not isinstance(dropout, list): dropout = [dropout for _ in range(len(hidden_dims))] layers = [] prev_dim = input_dim for idx, x in enumerate(hidden_dims): if use_conv: layer = nn.Conv1d(prev_dim, x, 1, bias=hidden_use_bias) else: layer = nn.Linear(prev_dim, x, bias=hidden_use_bias) layers.append(layer) if norm: layers.append(norm(x)) layers.append(activation()) if dropout is not None: layers.append(nn.Dropout(p=dropout[idx])) prev_dim = x if use_conv: layer = nn.Conv1d(prev_dim, output_dim, 1, bias=output_use_bias) else: layer = nn.Linear(prev_dim, output_dim, bias=output_use_bias) layers.append(layer) if output_use_norm: layers.append(norm(output_dim)) if output_use_activation: layers.append(activation()) self.layers = nn.Sequential(*layers) # self.weight_init_std = weight_init_std # self.apply(self._init_weights) def _init_weights(self, module): std = self.weight_init_std if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() # if weight_init_name is not None: # self.do_weight_init(weight_init_name) # # def do_weight_init(self, weight_init_name): # func = WEIGHT_INIT_DICT[weight_init_name] # for (_, param) in self.named_parameters(): # if param.dim() > 1: # skips batchnorm/layernorm # func(param) def forward(self, x): output = self.layers(x) return output # Path: models/position_embedding.py class PositionEmbeddingCoordsSine(nn.Module): def __init__( self, temperature=10000, normalize=False, scale=None, pos_type="fourier", d_pos=None, d_in=3, gauss_scale=1.0, ): super().__init__() self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi assert pos_type in ["sine", "fourier"] self.pos_type = pos_type self.scale = scale if pos_type == "fourier": assert d_pos is not None assert d_pos % 2 == 0 # define a gaussian matrix input_ch -> output_ch B = torch.empty((d_in, d_pos // 2)).normal_() B *= gauss_scale self.register_buffer("gauss_B", B) self.d_pos = d_pos def get_sine_embeddings(self, xyz, num_channels, input_range): # clone coords so that shift/scale operations do not affect original tensor orig_xyz = xyz xyz = orig_xyz.clone() ncoords = xyz.shape[1] # if self.normalize: # xyz = shift_scale_points(xyz, src_range=input_range) ndim = num_channels // xyz.shape[2] if ndim % 2 != 0: ndim -= 1 # automatically handle remainder by assiging it to the first dim rems = num_channels - (ndim * xyz.shape[2]) assert ( ndim % 2 == 0 ), f"Cannot handle odd sized ndim={ndim} where num_channels={num_channels} and xyz={xyz.shape}" final_embeds = [] prev_dim = 0 for d in range(xyz.shape[2]): cdim = ndim if rems > 0: # add remainder in increments of two to maintain even size cdim += 2 rems -= 2 if cdim != prev_dim: dim_t = torch.arange(cdim, dtype=torch.float32, device=xyz.device) dim_t = self.temperature ** (2 * (dim_t // 2) / cdim) # create batch x cdim x nccords embedding raw_pos = xyz[:, :, d] if self.scale: raw_pos *= self.scale pos = raw_pos[:, :, None] / dim_t pos = torch.stack( (pos[:, :, 0::2].sin(), pos[:, :, 1::2].cos()), dim=3 ).flatten(2) final_embeds.append(pos) prev_dim = cdim final_embeds = torch.cat(final_embeds, dim=2).permute(0, 2, 1) return final_embeds def get_fourier_embeddings(self, xyz, num_channels=None, input_range=None): # Follows - https://people.eecs.berkeley.edu/~bmild/fourfeat/index.html if num_channels is None: num_channels = self.gauss_B.shape[1] * 2 bsize, npoints = xyz.shape[0], xyz.shape[1] assert num_channels > 0 and num_channels % 2 == 0 d_in, max_d_out = self.gauss_B.shape[0], self.gauss_B.shape[1] d_out = num_channels // 2 assert d_out <= max_d_out assert d_in == xyz.shape[-1] # clone coords so that shift/scale operations do not affect original tensor orig_xyz = xyz xyz = orig_xyz.clone() ncoords = xyz.shape[1] # if self.normalize: # xyz = shift_scale_points(xyz, src_range=input_range) xyz *= 2 * np.pi xyz_proj = torch.mm(xyz.view(-1, d_in), self.gauss_B[:, :d_out]).view( bsize, npoints, d_out ) final_embeds = [xyz_proj.sin(), xyz_proj.cos()] # return batch x d_pos x npoints embedding final_embeds = torch.cat(final_embeds, dim=2).permute(0, 2, 1) return final_embeds def forward(self, xyz, num_channels=None, input_range=None): assert isinstance(xyz, torch.Tensor) assert xyz.ndim == 3 # xyz is batch x npoints x 3 if self.pos_type == "sine": with torch.no_grad(): return self.get_sine_embeddings(xyz, num_channels, input_range) elif self.pos_type == "fourier": with torch.no_grad(): return self.get_fourier_embeddings(xyz, num_channels, input_range) else: raise ValueError(f"Unknown {self.pos_type}") def extra_repr(self): st = f"type={self.pos_type}, scale={self.scale}, normalize={self.normalize}" if hasattr(self, "gauss_B"): st += ( f", gaussB={self.gauss_B.shape}, gaussBsum={self.gauss_B.sum().item()}" ) return st # Path: models/position_embedding.py class PositionalEmbedding(nn.Module): def __init__(self, sigma=1, dim=4096): super().__init__() self.sigma = sigma self.dim = dim // 2 self.w = torch.randn((self.dim, 3)) * sigma self.w = nn.Parameter(self.w, requires_grad=True) def forward(self, x): bs, obj_num, _ = x.shape x = x.reshape(-1, 3) v = torch.cat([torch.sin(self.w.detach() @ x.T), torch.cos(self.w.detach() @ x.T)]) v = v.T.reshape(bs, obj_num, -1) v_norm = v / v.norm(dim=-1).unsqueeze(-1) return v_norm # Path: models/chat3d.py import random import logging import torch import torch.nn as nn import torch.nn.functional as F import contextlib from abc import ABC from torch.cuda.amp import autocast as autocast from .modeling_llama import LlamaForCausalLM from transformers import LlamaTokenizer, LlamaConfig from models.transformer_vanilla import TransformerEncoder, CMT from models.helpers import GenericMLP from models.position_embedding import PositionEmbeddingCoordsSine, PositionalEmbedding from transformers import StoppingCriteria, StoppingCriteriaList logger = logging.getLogger(__name__) class StoppingCriteriaSub(StoppingCriteria): def __init__(self, stops=[], encounters=1): super().__init__() self.stops = stops def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
for stop in self.stops:
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: SqueezeBits/owlite # Path: owlite/calib/percentile_calibrator.py class PercentileCalibrator(_HistogramCalibrator): """Percentile Calibrator Class Attributes: quantizer (FakeQuantizer): The `FakeQuantizer` module to be calibrated. percentile (float): The desired percentile value, ranging from 0 to 100. """ def __init__(self, quantizer, percentile: float): """Initializes the percentile calibrator. Args: quantizer (FakeQuantizer): The `FakeQuantizer` module to be calibrated. percentile(float): The desired percentile value, ranging from 0 to 100. Raises: ValueError: If the percentile is outside the valid range [0, 100]. """ super().__init__(quantizer) if percentile < 0 or percentile > 100: raise ValueError("percentile must be in range [0,100]") self.percentile = percentile def update(self): # update step_size using "percentile" # cumsum_cuda_kernel does not have a deterministic implementation _deterministic_enable = torch.are_deterministic_algorithms_enabled() if _deterministic_enable: torch.use_deterministic_algorithms(False) for chn, _ in enumerate(self.quantizer.histc_bins): total = self.quantizer.histogram[chn].data.sum() cdf = torch.cumsum(self.quantizer.histogram[chn].data / total, 0) idx = torch.searchsorted(cdf, self.percentile / 100) per_max = self.quantizer.bin_edges[chn].data[idx] self.quantizer.step_size.data[chn] = ( (per_max / self.quantizer.maxabs_bound) .detach() .to(self.quantizer.step_size.device) ) # allocate to original state if _deterministic_enable: torch.use_deterministic_algorithms(True) # delete "histogram" attritbution from quantizer for key in self.set_attr_list: delattr(self.quantizer, key) # remove registered forward_hook.item()) self.hook_handler.remove() # Path: owlite/enums/ptq_calibration_type.py class PTQCalibrationType(Enum): """The enum for specifying available Calibrator classes""" absmax = 0 percentile = 1 mse = 2 minmax = 3 @property def calibrator_class(self) -> type: """The Calibrator class corresponding to this enum value""" return { "absmax": AbsmaxCalibrator, "percentile": PercentileCalibrator, "mse": MSECalibrator, "minmax": MinmaxCalibrator, }[self.name] def __repr__(self) -> str: return self.name def __str__(self) -> str: return self.name # Path: owlite/enums/qat_backward_type.py class QATBackwardType(Enum): """The enum for specifying available QAT backward functions""" ste = 0 clq = 1 clq_plus = 2 @property def function(self) -> Callable: """The apply method of the `torch.autograd.Function` class corresponding to this enum value""" return { "clq": clq_function, "clq_plus": clq_plus_function, "ste": ste_function, }[self.name] def __repr__(self) -> str: return self.name def __str__(self) -> str: return self.name # Path: owlite/logger.py class Logger(logging.Logger): class _WarningFilterContext: class WarningFilter(logging.Filter): ENV_VAR = "OWLITE_LOG_LEVEL" DEBUG_WARNING = 15 ULTRA_VERBOSE = -10 def ignore_warnings(self): def __init__(self, logger) -> None: def __enter__(self): def filter(self, record): def __exit__(self, exc_type, exc_val, exc_tb): def debug_warning(self, msg, *args, **kwargs): def level(self) -> int: def level(self, value): def suppress_owlite_warnings(cls): def new_init(self, *args, **kwargs): # Path: owlite/nn/functions/fake_quantize.py def fake_quantize( inputs: Union[Tensor, float], step_size: torch.Tensor, zero_point: torch.Tensor, quant_min: Union[IntTensor, int], quant_max: Union[IntTensor, int], per_channel: Union[torch.BoolTensor, bool], axis: int = 0, ) -> torch.Tensor: # Path: owlite/options/fake_quantizer_options.py class FakeQuantizerOptions(OptionsMixin): """Options required for setting up a quantizer""" qat_backward: QATBackwardType = QATBackwardType.ste ptq_calibration: PTQCalibrationType = PTQCalibrationType.absmax precision: int = 8 per_channel: bool = False symmetric: bool = True learn_zero_point: bool = False unsigned: bool = False grad_scale: float = 1.000 percentile: Optional[float] = None @staticmethod def ste_per_channel(**kwargs: Any) -> "FakeQuantizerOptions": """A convenience wrapper for creating options with "ste" backward and per channel quantization""" return FakeQuantizerOptions(qat_backward=QATBackwardType.ste, per_channel=True, **kwargs) @staticmethod def ste_per_tensor(**kwargs: Any) -> "FakeQuantizerOptions": """A convenience wrapper for creating options with "ste" backward and per tensor quantization""" return FakeQuantizerOptions(qat_backward=QATBackwardType.ste, per_channel=False, **kwargs) @staticmethod def clq_per_channel(**kwargs: Any) -> "FakeQuantizerOptions": """A convenience wrapper for creating options with "clq" backward and per channel quantization""" return FakeQuantizerOptions(qat_backward=QATBackwardType.clq, per_channel=True, **kwargs) @staticmethod def clq_per_tensor(**kwargs: Any) -> "FakeQuantizerOptions": """A convenience wrapper for creating options with "clq" backward and per tensor quantization""" return FakeQuantizerOptions(qat_backward=QATBackwardType.clq, per_channel=False, **kwargs) def check_precision(self, precision: int) -> bool: """precision must be one of 4, 8 or 16""" return precision in (4, 8, 16) def check_percentile(self, percentile: Optional[float]) -> bool: """ if `ptq_calibration="percentile"`, `percentile` value must be provided and it must be between 0 and 100 (exclusive). Otherwise, its value is ignored. """ if self.ptq_calibration == PTQCalibrationType.percentile: return percentile is not None and 0 < percentile < 100 if percentile is not None: log.warning( '`percentile` is used only when `ptq_calibration="percentile"`.' f"The given percentile value {percentile} will be ignored", stacklevel=2, ) return True def check_grad_scale(self, grad_scale: float) -> bool: """grad_scale value must be between 0 and 1 (inclusive)""" return 0 <= grad_scale <= 1 def check_learn_zero_point(self, learn_zero_point: bool) -> bool: """`learn_zero_point` must be False if `symmetric=True`""" return not (self.symmetric and learn_zero_point) def check_per_channel(self, per_channel: bool) -> bool: """`per_channel=True` is not compatible with `symmetric=False`""" return self.symmetric or not per_channel def check_symmetric(self, symmetric: bool) -> bool: """ * `learn_zero_point` must be False if `symmetric=True` * `ptq_calibration="absmax"` is not compatible with `symmetric=False` * `symmetric=False` is not compatible with `per_channel=True` """ if not symmetric and self.per_channel: log.warning( "asymmetric per channel quantization is not supported.", stacklevel=2, ) return False if symmetric and self.learn_zero_point: log.warning( "`learn_zero_point` will be automatically set to False as `symmetric` is being set to True", stacklevel=2, ) self.learn_zero_point = False if not symmetric and self.ptq_calibration == PTQCalibrationType.absmax: log.warning( "`ptq_calibration` will be automatically set to `minmax` as `symmetric` is being set to False", stacklevel=2, ) self.ptq_calibration = PTQCalibrationType.minmax return True def check_ptq_calibration(self, ptq_calibration: PTQCalibrationType) -> bool: """ * if `symmetric=False`, `ptq_calibration` must not be 'absmax' * if `ptq_calibration="percentile"` and `percentile` is None, it will be automatically set to 99.99 """ if not self.symmetric and ptq_calibration == PTQCalibrationType.absmax: return False if ptq_calibration == PTQCalibrationType.percentile and self.percentile is None: log.warning( '`ptq_calibration="percentile"` requires a `percentile` value.' "Will set `percentile` to 99.99 automatically.", stacklevel=2, ) with log.ignore_warnings(): self.percentile = 99.99 if ptq_calibration != PTQCalibrationType.percentile and self.percentile is not None: log.warning( '`percentile` is used only when `ptq_calibration="percentile"`.' f"The percentile value {self.percentile} will be ignored.", stacklevel=2, ) return True # Path: owlite/nn/fake_quantizer.py from collections import OrderedDict from typing import Any, Optional, Union from ..calib import PercentileCalibrator from ..enums import PTQCalibrationType, QATBackwardType from ..logger import log from ..nn.functions.fake_quantize import FakeQuantFunc from ..options.fake_quantizer_options import FakeQuantizerOptions import torch """An implementation of fake quantization (a.k.a. quantization simulation) Attributes: step_size (torch.Tensor): The quantization scale, determining the magnitude of each quantization interval. zero_point (torch.Tensor): The quantization zero_point. It may be expressed as a float in the context of asymmetric quantization, while for symmetric quantization, it is fixed at zero tensor. precision (torch.IntTensor): The number of bits used for quantization. symmetric (torch.BoolTensor): Whether symmetric quantization is applied. unsigned (torch.BoolTensor): Whether unsigned quantization is applied per_channel (torch.BoolTensor): Whether per-channel quantization or per-tensor quantization is applied learn_zero_point (torch.BoolTensor): whether the zero point is learnable. grad_scale (torch.FloatTensor): The gradient scaling factor of quantization parameters. _narrow_range (torch.BoolTensor): Whether a narrow range is used in quantization. """ precision: torch.IntTensor symmetric: torch.BoolTensor unsigned: torch.BoolTensor per_channel: torch.BoolTensor learn_zero_point: torch.BoolTensor grad_scale: torch.FloatTensor _narrow_range: torch.BoolTensor @classmethod def create( cls, options: Optional[FakeQuantizerOptions], channel_size: Optional[int] = None, enable: bool = True, narrow_range: bool = False, ) -> Optional["FakeQuantizer"]: """Creates a `FakeQuantizer` instance if options is not `None`, otherwise returns `None` Args: options (Optional[FakeQuantizerOptions]): Options for fake quantizer to return. If `None`, dose notcreate fake quantizer. channel_size (Optional[int], optional): Channel size of per-channel quantization. Not used in per-tensor quantization. If `None`, no channel size is set. Defaults to `None`. enable (bool, optional): If true, returns the enabled quantzier. If false, returns the quantizer that was disabled. Defaults to `True` narrow_range (bool, optional): If true, returns the quantzier with a narrow range. If false, it does not have a narrow range. Defaults to `False` Returns: Optional[FakeQuantizer]: If the `options` is valid for quantization returns created fake quantizer. Otherwise return `None`. """ if options is None or options.precision > 8: return None return FakeQuantizer(options, channel_size, enable, narrow_range) def __init__( self, options: FakeQuantizerOptions, channel_size: Optional[int] = None, enable: bool = True, narrow_range: bool = False, ): """Initializes a FakeQuantizer instance. Args: options (QuantizerOptions): options channel_size (Optional[int], optional): The channel size for per-channel quantization. Defaults to None. This value is required only when `options.per_channel` is `True`, otherwise has no effect. It can be set after the instantiation of the object, must be set before calling its `forward` method. enable (bool, optional): whether to enable this quantizer object as soon as it is initialized. Defaults to True. narrow_range (bool, optional): Use symmetric integer range for signed quantization eg) [-127,127] instead of [-128,127] for num_bits=8. Default False. Raises: ValueError: if `options.ptq_calibration` is "percentile" but `options.percentile` is `None`. """ super().__init__() self.register_buffer("precision", torch.tensor(options.precision)) self.register_buffer("symmetric", torch.tensor(options.symmetric)) self.register_buffer("unsigned", torch.tensor(options.unsigned)) self.register_buffer("per_channel", torch.tensor(options.per_channel)) if not self.symmetric.item() and self.per_channel.item(): raise RuntimeError("asymmetric per_channel quantization is not available") self.register_buffer("learn_zero_point", torch.tensor(options.learn_zero_point)) self.register_buffer("grad_scale", torch.tensor(options.grad_scale)) if narrow_range and not (self.symmetric.item() and not self.unsigned.item()): log.warning( "narrow_range should only be used with symmetric signed quantization.\n" "(narrow_range, symmetric, unsigned) = " f"({narrow_range}, {self.symmetric.item()}, {self.unsigned.item()})" ) self.register_buffer("_narrow_range", torch.tensor(narrow_range)) if self.per_channel: if channel_size is not None: self.channel_size = channel_size else: self.step_size = torch.nn.Parameter(torch.ones(1)) self.zero_point = torch.nn.Parameter( torch.zeros(1), requires_grad=bool(not self.symmetric.item() and self.learn_zero_point.item()), ) self._is_enabled = enable self.is_zero_point_folded = False self.qat_backward_type = options.qat_backward self.ptq_calibration = options.ptq_calibration calibrator_class = options.ptq_calibration.calibrator_class if options.ptq_calibration == PTQCalibrationType.percentile: if options.percentile is None: raise ValueError("percentile value is required for percentile PTQ calibrator") self.calibrator = calibrator_class(self, options.percentile) else: self.calibrator = calibrator_class(self) @property def qat_function( self, ) -> FakeQuantFunc: """The autograd function providing forward and backward methods of this fake quantizer for the quantization-aware training""" return self.qat_backward_type.function @property
def channel_size(self) -> Optional[int]:
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: ximinng/PyTorch-SVGRender # Path: pytorch_svgrender/diffvg_warp/diffvg_state.py class DiffVGState(torch.nn.Module): def __init__(self, device: torch.device, use_gpu: bool = torch.cuda.is_available(), print_timing: bool = False, canvas_width: int = None, canvas_height: int = None): super(DiffVGState, self).__init__() # pydiffvg device setting self.device = device init_pydiffvg(device, use_gpu, print_timing) # canvas size self.canvas_width = canvas_width self.canvas_height = canvas_height # record all paths self.shapes = [] self.shape_groups = [] # record the current optimized path self.cur_shapes = [] self.cur_shape_groups = [] # learnable SVG params self.point_vars = [] self.color_vars = [] self.width_vars = [] def clip_curve_shape(self, *args, **kwargs): raise NotImplementedError def render_warp(self, seed=0): self.clip_curve_shape() scene_args = pydiffvg.RenderFunction.serialize_scene( self.canvas_width, self.canvas_height, self.shapes, self.shape_groups ) _render = pydiffvg.RenderFunction.apply img = _render(self.canvas_width, # width self.canvas_height, # height 2, # num_samples_x 2, # num_samples_y seed, # seed None, *scene_args) return img @staticmethod def load_svg(path_svg): canvas_width, canvas_height, shapes, shape_groups = pydiffvg.svg_to_scene(path_svg) return canvas_width, canvas_height, shapes, shape_groups def save_svg(self, filename: Union[AnyStr, pathlib.Path], width: int = None, height: int = None, shapes: List = None, shape_groups: List = None, use_gamma: bool = False, background: str = None): """ Save an SVG file with specified parameters and shapes. Noting: New version of SVG saving function that is an adaptation of pydiffvg.save_svg. The original version saved words resulting in incomplete glyphs. Args: filename (str): The path to save the SVG file. width (int): The width of the SVG canvas. height (int): The height of the SVG canvas. shapes (list): A list of shapes to be included in the SVG. shape_groups (list): A list of shape groups. use_gamma (bool): Flag indicating whether to apply gamma correction. background (str, optional): The background color of the SVG. Returns: None """ root = etree.Element('svg') root.set('version', '1.1') root.set('xmlns', 'http://www.w3.org/2000/svg') root.set('width', str(width)) root.set('height', str(height)) if background is not None: print(f"setting background to {background}") root.set('style', str(background)) defs = etree.SubElement(root, 'defs') g = etree.SubElement(root, 'g') if use_gamma: f = etree.SubElement(defs, 'filter') f.set('id', 'gamma') f.set('x', '0') f.set('y', '0') f.set('width', '100%') f.set('height', '100%') gamma = etree.SubElement(f, 'feComponentTransfer') gamma.set('color-interpolation-filters', 'sRGB') feFuncR = etree.SubElement(gamma, 'feFuncR') feFuncR.set('type', 'gamma') feFuncR.set('amplitude', str(1)) feFuncR.set('exponent', str(1 / 2.2)) feFuncG = etree.SubElement(gamma, 'feFuncG') feFuncG.set('type', 'gamma') feFuncG.set('amplitude', str(1)) feFuncG.set('exponent', str(1 / 2.2)) feFuncB = etree.SubElement(gamma, 'feFuncB') feFuncB.set('type', 'gamma') feFuncB.set('amplitude', str(1)) feFuncB.set('exponent', str(1 / 2.2)) feFuncA = etree.SubElement(gamma, 'feFuncA') feFuncA.set('type', 'gamma') feFuncA.set('amplitude', str(1)) feFuncA.set('exponent', str(1 / 2.2)) g.set('style', 'filter:url(#gamma)') # Store color for i, shape_group in enumerate(shape_groups): def add_color(shape_color, name): if isinstance(shape_color, pydiffvg.LinearGradient): lg = shape_color color = etree.SubElement(defs, 'linearGradient') color.set('id', name) color.set('x1', str(lg.begin[0].item())) color.set('y1', str(lg.begin[1].item())) color.set('x2', str(lg.end[0].item())) color.set('y2', str(lg.end[1].item())) offsets = lg.offsets.data.cpu().numpy() stop_colors = lg.stop_colors.data.cpu().numpy() for j in range(offsets.shape[0]): stop = etree.SubElement(color, 'stop') stop.set('offset', str(offsets[j])) c = lg.stop_colors[j, :] stop.set('stop-color', 'rgb({}, {}, {})'.format( int(255 * c[0]), int(255 * c[1]), int(255 * c[2]) )) stop.set('stop-opacity', '{}'.format(c[3])) if isinstance(shape_color, pydiffvg.RadialGradient): lg = shape_color color = etree.SubElement(defs, 'radialGradient') color.set('id', name) color.set('cx', str(lg.center[0].item() / width)) color.set('cy', str(lg.center[1].item() / height)) # this only support width=height color.set('r', str(lg.radius[0].item() / width)) offsets = lg.offsets.data.cpu().numpy() stop_colors = lg.stop_colors.data.cpu().numpy() for j in range(offsets.shape[0]): stop = etree.SubElement(color, 'stop') stop.set('offset', str(offsets[j])) c = lg.stop_colors[j, :] stop.set('stop-color', 'rgb({}, {}, {})'.format( int(255 * c[0]), int(255 * c[1]), int(255 * c[2]) )) stop.set('stop-opacity', '{}'.format(c[3])) if shape_group.fill_color is not None: add_color(shape_group.fill_color, 'shape_{}_fill'.format(i)) if shape_group.stroke_color is not None: add_color(shape_group.stroke_color, 'shape_{}_stroke'.format(i)) for i, shape_group in enumerate(shape_groups): shape = shapes[shape_group.shape_ids[0]] if isinstance(shape, pydiffvg.Circle): shape_node = etree.SubElement(g, 'circle') shape_node.set('r', str(shape.radius.item())) shape_node.set('cx', str(shape.center[0].item())) shape_node.set('cy', str(shape.center[1].item())) elif isinstance(shape, pydiffvg.Polygon): shape_node = etree.SubElement(g, 'polygon') points = shape.points.data.cpu().numpy() path_str = '' for j in range(0, shape.points.shape[0]): path_str += '{} {}'.format(points[j, 0], points[j, 1]) if j != shape.points.shape[0] - 1: path_str += ' ' shape_node.set('points', path_str) elif isinstance(shape, pydiffvg.Path): for j, id in enumerate(shape_group.shape_ids): shape = shapes[id] if isinstance(shape, pydiffvg.Path): if j == 0: shape_node = etree.SubElement(g, 'path') node_id = shape_node.get('id') path_str = '' num_segments = shape.num_control_points.shape[0] num_control_points = shape.num_control_points.data.cpu().numpy() points = shape.points.data.cpu().numpy() num_points = shape.points.shape[0] path_str += 'M {} {}'.format(points[0, 0], points[0, 1]) point_id = 1 for j in range(0, num_segments): if num_control_points[j] == 0: p = point_id % num_points path_str += ' L {} {}'.format( points[p, 0], points[p, 1]) point_id += 1 elif num_control_points[j] == 1: p1 = (point_id + 1) % num_points path_str += ' Q {} {} {} {}'.format( points[point_id, 0], points[point_id, 1], points[p1, 0], points[p1, 1]) point_id += 2 elif num_control_points[j] == 2: p2 = (point_id + 2) % num_points path_str += ' C {} {} {} {} {} {}'.format( points[point_id, 0], points[point_id, 1], points[point_id + 1, 0], points[point_id + 1, 1], points[p2, 0], points[p2, 1]) point_id += 3 if node_id is not None: shape_node.set('id', node_id) # add id to Path shape_node.set('d', path_str) elif isinstance(shape, pydiffvg.Rect): shape_node = etree.SubElement(g, 'rect') shape_node.set('x', str(shape.p_min[0].item())) shape_node.set('y', str(shape.p_min[1].item())) shape_node.set('width', str(shape.p_max[0].item() - shape.p_min[0].item())) shape_node.set('height', str(shape.p_max[1].item() - shape.p_min[1].item())) elif isinstance(shape, pydiffvg.Ellipse): shape_node = etree.SubElement(g, 'ellipse') shape_node.set('cx', str(shape.center[0].item())) shape_node.set('cy', str(shape.center[1].item())) shape_node.set('rx', str(shape.radius[0].item())) shape_node.set('ry', str(shape.radius[1].item())) else: raise NotImplementedError(f'shape type: {type(shape)} is not involved in pydiffvg.') shape_node.set('stroke-width', str(2 * shape.stroke_width.data.cpu().item())) if shape_group.fill_color is not None: if isinstance(shape_group.fill_color, pydiffvg.LinearGradient): shape_node.set('fill', 'url(#shape_{}_fill)'.format(i)) else: c = shape_group.fill_color.data.cpu().numpy() shape_node.set('fill', 'rgb({}, {}, {})'.format( int(255 * c[0]), int(255 * c[1]), int(255 * c[2]))) shape_node.set('opacity', str(c[3])) else: shape_node.set('fill', 'none') if shape_group.stroke_color is not None: if isinstance(shape_group.stroke_color, pydiffvg.LinearGradient): shape_node.set('stroke', 'url(#shape_{}_stroke)'.format(i)) else: c = shape_group.stroke_color.data.cpu().numpy() shape_node.set('stroke', 'rgb({}, {}, {})'.format( int(255 * c[0]), int(255 * c[1]), int(255 * c[2]))) shape_node.set('stroke-opacity', str(c[3])) shape_node.set('stroke-linecap', 'round') shape_node.set('stroke-linejoin', 'round') with open(filename, "w") as f: f.write(pydiffvg.prettify(root)) @staticmethod def save_image(img, filename, gamma=1): if torch.is_tensor(img) and torch.device != 'cpu': img = img.detach().cpu() pydiffvg.imwrite(img, filename, gamma=gamma) # Path: pytorch_svgrender/painter/wordasimage/ttf.py def font_string_to_beziers(font, txt, size=30, spacing=1.0, merge=True, target_control=None): """ Load a font and convert the outlines for a given string to cubic bezier curves, if merge is True, simply return a list of all bezier curves, otherwise return a list of lists with the bezier curves for each glyph """ face = ft.Face(font) face.set_char_size(64 * size) slot = face.glyph x = 0 beziers = [] previous = 0 for c in txt: face.load_char(c, ft.FT_LOAD_DEFAULT | ft.FT_LOAD_NO_BITMAP) bez = glyph_to_cubics(face, x) # Check number of control points if desired if target_control is not None: if c in target_control.keys(): nctrl = np.sum([len(C) for C in bez]) while nctrl < target_control[c]: longest = np.max( sum([[bezier.approx_arc_length(b) for b in bezier.chain_to_beziers(C)] for C in bez], [])) thresh = longest * 0.5 bez = [bezier.subdivide_bezier_chain(C, thresh) for C in bez] nctrl = np.sum([len(C) for C in bez]) print("nctrl: ", nctrl) if merge: beziers += bez else: beziers.append(bez) kerning = face.get_kerning(previous, c) x += (slot.advance.x + kerning.x) * spacing previous = c return beziers # Path: pytorch_svgrender/painter/wordasimage/ttf.py def write_letter_svg(c, header, fontname, beziers, subdivision_thresh, dest_path): cmds = '' svg = header path = '<g><path d="' for C in beziers: if subdivision_thresh is not None: print('subd') C = bezier.subdivide_bezier_chain(C, subdivision_thresh) cmds += bezier_chain_to_commands(C, True) path += cmds + '"/>\n' svg += path + '</g></svg>\n' fname = f"{dest_path}/{fontname}_{c}.svg" fname = fname.replace(" ", "_") with open(fname, 'w') as f: f.write(svg) return fname, path # Path: pytorch_svgrender/painter/wordasimage/painter_params.py import os import pathlib import numpy as np import pydiffvg import torch from torch.optim.lr_scheduler import LambdaLR from pytorch_svgrender.diffvg_warp import DiffVGState from .ttf import font_string_to_beziers, write_letter_svg size = rb - lt sizestr = 'width="%.1f" height="%.1f"' % (size[0], size[1]) boxstr = ' viewBox="%.1f %.1f %.1f %.1f"' % (lt[0], lt[1], size[0], size[1]) header = '''<?xml version="1.0" encoding="utf-8"?> <svg xmlns="http://www.w3.org/2000/svg" xmlns:ev="http://www.w3.org/2001/xml-events" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" baseProfile="full" ''' header += sizestr header += boxstr header += '>\n<defs/>\n' svg_all = header for i, (c, beziers) in enumerate(zip(txt, glyph_beziers)): fname, path = write_letter_svg(c, header, fontname, beziers, subdivision_thresh, dest_path) num_cp = self.count_cp(fname) print(f"Total control point: {num_cp} -- {c}") # Add to global svg svg_all += path + '</g>\n' # Save global svg svg_all += '</svg>\n' fname = f"{dest_path}/{fontname}_{txt}.svg" fname = fname.replace(" ", "_") with open(fname, 'w') as f: f.write(svg_all) def count_cp(self, file_name): canvas_width, canvas_height, shapes, shape_groups = pydiffvg.svg_to_scene(file_name) p_counter = 0 for path in shapes: p_counter += path.points.shape[0] return p_counter def normalize_letter_size(self, dest_path, font, txt): fontname = os.path.splitext(os.path.basename(font))[0] for i, c in enumerate(txt): fname = f"{dest_path}/{fontname}_{c}.svg" fname = fname.replace(" ", "_") self.fix_single_svg(fname) fname = f"{dest_path}/{fontname}_{txt}.svg" fname = fname.replace(" ", "_") self.fix_single_svg(fname, all_word=True) def fix_single_svg(self, svg_path, all_word=False): target_h_letter = 360 target_canvas_width, target_canvas_height = 600, 600 canvas_width, canvas_height, shapes, shape_groups = pydiffvg.svg_to_scene(svg_path) letter_h = canvas_height letter_w = canvas_width if all_word: if letter_w > letter_h: scale_canvas_w = target_h_letter / letter_w hsize = int(letter_h * scale_canvas_w) scale_canvas_h = hsize / letter_h else: scale_canvas_h = target_h_letter / letter_h wsize = int(letter_w * scale_canvas_h) scale_canvas_w = wsize / letter_w else: scale_canvas_h = target_h_letter / letter_h wsize = int(letter_w * scale_canvas_h) scale_canvas_w = wsize / letter_w for num, p in enumerate(shapes): p.points[:, 0] = p.points[:, 0] * scale_canvas_w p.points[:, 1] = p.points[:, 1] * scale_canvas_h + target_h_letter w_min = min([torch.min(p.points[:, 0]) for p in shapes]) w_max = max([torch.max(p.points[:, 0]) for p in shapes]) h_min = min([torch.min(p.points[:, 1]) for p in shapes]) h_max = max([torch.max(p.points[:, 1]) for p in shapes]) for num, p in enumerate(shapes): p.points[:, 0] = p.points[:, 0] + (target_canvas_width / 2) - int(w_min + (w_max - w_min) / 2) p.points[:, 1] = p.points[:, 1] + (target_canvas_height / 2) - int(h_min + (h_max - h_min) / 2) output_path = f"{svg_path[:-4]}_scaled.svg" print("output_path: ", output_path) self.save_svg(output_path, target_canvas_width, target_canvas_height, shapes, shape_groups) def combine_word(self, word, letter, font, results_dir): word_svg_scaled = results_dir / f"{font}_{word}_scaled.svg" canvas_width_word, canvas_height_word, shapes_word, shape_groups_word = pydiffvg.svg_to_scene(word_svg_scaled) letter_ids = [] for l in letter: letter_ids += self.get_letter_ids(l, word, shape_groups_word) w_min, w_max = min([torch.min(shapes_word[ids].points[:, 0]) for ids in letter_ids]), max( [torch.max(shapes_word[ids].points[:, 0]) for ids in letter_ids]) h_min, h_max = min([torch.min(shapes_word[ids].points[:, 1]) for ids in letter_ids]), max( [torch.max(shapes_word[ids].points[:, 1]) for ids in letter_ids]) c_w = (-w_min + w_max) / 2 c_h = (-h_min + h_max) / 2 svg_result = results_dir / "final_letter.svg" canvas_width, canvas_height, shapes, shape_groups = pydiffvg.svg_to_scene(svg_result) out_w_min, out_w_max = min([torch.min(p.points[:, 0]) for p in shapes]), max( [torch.max(p.points[:, 0]) for p in shapes]) out_h_min, out_h_max = min([torch.min(p.points[:, 1]) for p in shapes]), max( [torch.max(p.points[:, 1]) for p in shapes]) out_c_w = (-out_w_min + out_w_max) / 2 out_c_h = (-out_h_min + out_h_max) / 2 scale_canvas_w = (w_max - w_min) / (out_w_max - out_w_min) scale_canvas_h = (h_max - h_min) / (out_h_max - out_h_min) if scale_canvas_h > scale_canvas_w: wsize = int((out_w_max - out_w_min) * scale_canvas_h) scale_canvas_w = wsize / (out_w_max - out_w_min) shift_w = -out_c_w * scale_canvas_w + c_w else: hsize = int((out_h_max - out_h_min) * scale_canvas_w)
scale_canvas_h = hsize / (out_h_max - out_h_min)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: lyhisme/DeST # Path: libs/class_id_map.py def get_id2class_map(dataset: str, dataset_dir: str = "./dataset") -> Dict[int, str]: class2id_map = get_class2id_map(dataset, dataset_dir) return {val: key for key, val in class2id_map.items()} # Path: libs/metric.py class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self, name: str, fmt: str = ":f") -> None: self.name = name self.fmt = fmt self.reset() def reset(self) -> None: self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val: float, n: int = 1) -> None: self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self) -> str: fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})" return fmtstr.format(**self.__dict__) # Path: libs/metric.py class BoundaryScoreMeter(object): def __init__(self, tolerance=5, boundary_threshold=0.7): # max distance of the frame which can be regarded as correct self.tolerance = tolerance # threshold of the boundary value which can be regarded as action boundary self.boundary_threshold = boundary_threshold self.tp = 0.0 # true positive self.fp = 0.0 # false positive self.fn = 0.0 # false negative self.n_correct = 0.0 self.n_frames = 0.0 def update(self, preds, gts, masks): """ Args: preds: np.array. the model output(N, T) gts: np.array. boudnary ground truth array (N, T) masks: np.array. np.bool. valid length for each video (N, T) Return: Accuracy Boundary F1 Score """ for pred, gt, mask in zip(preds, gts, masks): # ignore invalid frames pred = pred[mask] gt = gt[mask] pred_idx = argrelmax(pred, threshold=self.boundary_threshold) gt_idx = argrelmax(gt, threshold=self.boundary_threshold) n_frames = pred.shape[0] tp = 0.0 fp = 0.0 fn = 0.0 hits = np.zeros(len(gt_idx)) # calculate true positive, false negative, false postive, true negative for i in range(len(pred_idx)): dist = np.abs(np.array(gt_idx) - pred_idx[i]) min_dist = np.min(dist) idx = np.argmin(dist) if min_dist <= self.tolerance and hits[idx] == 0: tp += 1 hits[idx] = 1 else: fp += 1 fn = len(gt_idx) - sum(hits) tn = n_frames - tp - fp - fn self.tp += tp self.fp += fp self.fn += fn self.n_frames += n_frames self.n_correct += tp + tn def get_scores(self): """ Return: Accuracy Boundary F1 Score """ # accuracy acc = 100 * self.n_correct / self.n_frames # Boudnary F1 Score precision = self.tp / float(self.tp + self.fp) recall = self.tp / float(self.tp + self.fn) f1s = 2.0 * (precision * recall) / (precision + recall + 1e-7) f1s = np.nan_to_num(f1s) * 100 # Accuracy, Edit Distance, F1 Score return acc, precision * 100, recall * 100, f1s def save_scores(self, save_path: str) -> None: acc, precision, recall, f1s = self.get_scores() # save log columns = ["bound_acc", "precision", "recall", "bound_f1s"] data_dict = { "bound_acc": [acc], "precision": [precision], "recall": [recall], "bound_f1s": [f1s], } df = pd.DataFrame(data_dict, columns=columns) df.to_csv(save_path, index=False) def reset(self): self.tp = 0.0 # true positive self.fp = 0.0 # false positive self.fn = 0.0 # false negative self.n_correct = 0.0 self.n_frames = 0.0 # Path: libs/metric.py class ScoreMeter(object): def __init__( self, id2class_map: Dict[int, str], iou_thresholds: Tuple[float] = (0.1, 0.25, 0.5), ignore_index: int = 255, ) -> None: self.iou_thresholds = iou_thresholds # threshold for f score self.ignore_index = ignore_index self.id2class_map = id2class_map self.edit_score = 0 self.tp = [0 for _ in range(len(iou_thresholds))] # true positive self.fp = [0 for _ in range(len(iou_thresholds))] # false positive self.fn = [0 for _ in range(len(iou_thresholds))] # false negative self.n_correct = 0 self.n_frames = 0 self.n_videos = 0 self.n_classes = len(self.id2class_map) self.confusion_matrix = np.zeros((self.n_classes, self.n_classes)) def _fast_hist(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray: mask = (gt >= 0) & (gt < self.n_classes) hist = np.bincount( self.n_classes * gt[mask].astype(int) + pred[mask], minlength=self.n_classes ** 2, ).reshape(self.n_classes, self.n_classes) return hist def update( self, outputs: np.ndarray, gts: np.ndarray, boundaries: Optional[np.ndarray] = None, masks: Optional[np.ndarray] = None, ) -> None: """ Args: outputs: np.array. shape(N, C, T) the model output for boundary prediciton gt: np.array. shape(N, T) Ground Truth for boundary """ if len(outputs.shape) == 3: preds = outputs.argmax(axis=1) elif len(outputs.shape) == 2: preds = copy.copy(outputs) for pred, gt in zip(preds, gts): pred = pred[gt != self.ignore_index] gt = gt[gt != self.ignore_index] for lt, lp in zip(pred, gt): self.confusion_matrix += self._fast_hist(lt.flatten(), lp.flatten()) self.n_videos += 1 # count the correct frame self.n_frames += len(pred) for i in range(len(pred)): if pred[i] == gt[i]: self.n_correct += 1 # calculate the edit distance p_label, p_start, p_end = get_segments(pred, self.id2class_map) g_label, g_start, g_end = get_segments(gt, self.id2class_map) self.edit_score += levenshtein(p_label, g_label, norm=True) for i, th in enumerate(self.iou_thresholds): tp, fp, fn = get_n_samples( p_label, p_start, p_end, g_label, g_start, g_end, th ) self.tp[i] += tp self.fp[i] += fp self.fn[i] += fn def get_scores(self) -> Tuple[float, float, float]: """ Return: Accuracy Normlized Edit Distance F1 Score of Each Threshold """ # accuracy acc = 100 * float(self.n_correct) / self.n_frames # edit distance edit_score = float(self.edit_score) / self.n_videos # F1 Score f1s = [] for i in range(len(self.iou_thresholds)): precision = self.tp[i] / float(self.tp[i] + self.fp[i]) recall = self.tp[i] / float(self.tp[i] + self.fn[i]) f1 = 2.0 * (precision * recall) / (precision + recall + 1e-7) f1 = np.nan_to_num(f1) * 100 f1s.append(f1) # Accuracy, Edit Distance, F1 Score return acc, edit_score, f1s def return_confusion_matrix(self) -> np.ndarray: return self.confusion_matrix def save_scores(self, save_path: str) -> None: acc, edit_score, segment_f1s = self.get_scores() # save log columns = ["cls_acc", "edit"] data_dict = { "cls_acc": [acc], "edit": [edit_score], } for i in range(len(self.iou_thresholds)): key = "segment f1s@{}".format(self.iou_thresholds[i]) columns.append(key) data_dict[key] = [segment_f1s[i]] df = pd.DataFrame(data_dict, columns=columns) df.to_csv(save_path, index=False) def save_confusion_matrix(self, save_path: str) -> None: with open(save_path, "w") as file: writer = csv.writer(file, lineterminator="\n") writer.writerows(self.confusion_matrix) def reset(self) -> None: self.edit_score = 0 self.tp = [0 for _ in range(len(self.iou_thresholds))] # true positive self.fp = [0 for _ in range(len(self.iou_thresholds))] # false positive self.fn = [0 for _ in range(len(self.iou_thresholds))] # false negative self.n_correct = 0 self.n_frames = 0 self.n_videos = 0 self.confusion_matrix = np.zeros((self.n_classes, self.n_classes)) # Path: libs/postprocess.py class PostProcessor(object): def __init__( self, name: str, boundary_th: int = 0.7, theta_t: int = 15, kernel_size: int = 15, ) -> None: self.func = { "refinement_with_boundary": self._refinement_with_boundary, "relabeling": self._relabeling, "smoothing": self._smoothing, } assert name in self.func self.name = name self.boundary_th = boundary_th self.theta_t = theta_t self.kernel_size = kernel_size if name == "smoothing": self.filter = GaussianSmoothing(self.kernel_size) def _is_probability(self, x: np.ndarray) -> bool: assert x.ndim == 3 if x.shape[1] == 1: # sigmoid if x.min() >= 0 and x.max() <= 1: return True else: return False else: # softmax _sum = np.sum(x, axis=1).astype(np.float32) _ones = np.ones_like(_sum, dtype=np.float32) return np.allclose(_sum, _ones) def _convert2probability(self, x: np.ndarray) -> np.ndarray: """ Args: x (N, C, T) """ assert x.ndim == 3 if self._is_probability(x): return x else: if x.shape[1] == 1: # sigmoid prob = 1 / (1 + np.exp(-x)) else: # softmax prob = np.exp(x) / np.sum(np.exp(x), axis=1) return prob.astype(np.float32) def _convert2label(self, x: np.ndarray) -> np.ndarray: assert x.ndim == 2 or x.ndim == 3 if x.ndim == 2: return x.astype(np.int64) else: if not self._is_probability(x): x = self._convert2probability(x) label = np.argmax(x, axis=1) return label.astype(np.int64) def _refinement_with_boundary( self, outputs: np.array, boundaries: np.ndarray, masks: np.ndarray, ) -> np.ndarray: """ Get segments which is defined as the span b/w two boundaries, and decide their classes by majority vote. Args: outputs: numpy array. shape (N, C, T) the model output for frame-level class prediction. boundaries: numpy array. shape (N, 1, T) boundary prediction. masks: np.array. np.bool. shape (N, 1, T) valid length for each video Return: preds: np.array. shape (N, T) final class prediction considering boundaries. """ preds = self._convert2label(outputs) boundaries = self._convert2probability(boundaries) for i, (output, pred, boundary, mask) in enumerate( zip(outputs, preds, boundaries, masks) ): boundary = boundary[mask] idx = argrelmax(boundary, threshold=self.boundary_th) # add the index of the last action ending T = pred.shape[0] idx.append(T) # majority vote for j in range(len(idx) - 1): count = np.bincount(pred[idx[j] : idx[j + 1]]) modes = np.where(count == count.max())[0] if len(modes) == 1: mode = modes else: if outputs.ndim == 3: # if more than one majority class exist prob_sum_max = 0 for m in modes: prob_sum = output[m, idx[j] : idx[j + 1]].sum() if prob_sum_max < prob_sum: mode = m prob_sum_max = prob_sum else: # decide first mode when more than one majority class # have the same number during oracle experiment mode = modes[0] preds[i, idx[j] : idx[j + 1]] = mode return preds def _relabeling(self, outputs: np.ndarray, **kwargs: np.ndarray) -> np.ndarray: """ Relabeling small action segments with their previous action segment Args: output: the results of action segmentation. (N, T) or (N, C, T) theta_t: the threshold of the size of action segments. Return: relabeled output. (N, T) """ preds = self._convert2label(outputs) for i in range(preds.shape[0]): # shape (T,) last = preds[i][0] cnt = 1 for j in range(1, preds.shape[1]): if last == preds[i][j]: cnt += 1 else: if cnt > self.theta_t: cnt = 1 last = preds[i][j] else: preds[i][j - cnt : j] = preds[i][j - cnt - 1] cnt = 1 last = preds[i][j] if cnt <= self.theta_t: preds[i][j - cnt : j] = preds[i][j - cnt - 1] return preds def _smoothing(self, outputs: np.ndarray, **kwargs: np.ndarray) -> np.ndarray: """ Smoothing action probabilities with gaussian filter. Args: outputs: frame-wise action probabilities. (N, C, T) Return: predictions: final prediction. (N, T) """ outputs = self._convert2probability(outputs) outputs = self.filter(torch.Tensor(outputs)).numpy() preds = self._convert2label(outputs) return preds def __call__(self, outputs, **kwargs: np.ndarray) -> np.ndarray: preds = self.func[self.name](outputs, **kwargs) return preds # Path: libs/helper.py import os import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from typing import Optional, Tuple from torch.utils.data import DataLoader from libs.class_id_map import get_id2class_map from libs.metric import AverageMeter, BoundaryScoreMeter, ScoreMeter from libs.postprocess import PostProcessor # compute output and loss output_cls, output_bound = model(x, mask) loss = 0.0 if isinstance(output_cls, list): n = len(output_cls) for out in output_cls: loss += criterion_cls(out, t, x) / n else: loss += criterion_cls(output_cls, t, x) if isinstance(output_bound, list): n = len(output_bound) for out in output_bound: loss += lambda_bound_loss * criterion_bound(out, b, mask) / n else: loss += lambda_bound_loss * criterion_bound(output_bound, b, mask) # record loss losses.update(loss.item(), batch_size) optimizer.zero_grad() loss.backward() optimizer.step() return losses.avg def validate( val_loader: DataLoader, model: nn.Module, criterion_cls: nn.Module, criterion_bound: nn.Module, lambda_bound_loss: float, device: str, dataset: str, dataset_dir: str, iou_thresholds: Tuple[float], boundary_th: float, tolerance: int, refinement_method: Optional[str] = None ) -> Tuple[float, float, float, float, float, float, float, float, str]: losses = AverageMeter("Loss", ":.4e") postprocessor = PostProcessor(refinement_method, boundary_th) scores_cls = ScoreMeter( id2class_map=get_id2class_map(dataset, dataset_dir=dataset_dir), iou_thresholds=iou_thresholds, ) scores_bound = BoundaryScoreMeter( tolerance=tolerance, boundary_threshold=boundary_th ) scores_after_refinement = ScoreMeter( id2class_map=get_id2class_map(dataset, dataset_dir=dataset_dir), iou_thresholds=iou_thresholds, ) # switch to evaluate mode model.eval() with torch.no_grad(): for sample in val_loader: x = sample["feature"] t = sample["label"] b = sample["boundary"] mask = sample["mask"] x = x.to(device) t = t.to(device) b = b.to(device) mask = mask.to(device) batch_size = x.shape[0] # compute output and loss output_cls, output_bound = model(x, mask) loss = 0.0 loss += criterion_cls(output_cls, t, x) loss += lambda_bound_loss * criterion_bound(output_bound, b, mask) # measure accuracy and record loss losses.update(loss.item(), batch_size) # calcualte accuracy and f1 score output_cls = output_cls.to("cpu").data.numpy() output_bound = output_bound.to("cpu").data.numpy() t = t.to("cpu").data.numpy() b = b.to("cpu").data.numpy() mask = mask.to("cpu").data.numpy() refined_output_cls = postprocessor( output_cls, boundaries=output_bound, masks=mask ) # update score scores_cls.update(output_cls, t, output_bound, mask) scores_bound.update(output_bound, b, mask) scores_after_refinement.update(refined_output_cls, t) cls_acc, edit_score, segment_f1s = scores_after_refinement.get_scores() bound_acc, precision, recall, bound_f1s = scores_bound.get_scores() return ( losses.avg, cls_acc, edit_score, segment_f1s, bound_acc, precision, recall, bound_f1s, ) def evaluate( val_loader: DataLoader, model: nn.Module, device: str, boundary_th: float,
dataset: str,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: bolna-ai/bolna # Path: bolna/agent_manager/base_manager.py class BaseManager: def __init__(self): self.agent = "bolna-agent" # Path: bolna/helpers/utils.py def create_ws_data_packet(data, meta_info=None, is_md5_hash=False, llm_generated=False): metadata = copy.deepcopy(meta_info) if meta_info is not None: #It'll be none in case we connect through dashboard playground metadata["is_md5_hash"] = is_md5_hash metadata["llm_generated"] = llm_generated return { 'data': data, 'meta_info': metadata } # Path: bolna/helpers/utils.py def is_valid_md5(hash_string): return bool(re.fullmatch(r"[0-9a-f]{32}", hash_string)) # Path: bolna/helpers/utils.py async def get_raw_audio_bytes_from_base64(agent_name, b64_string, audio_format='mp3', user_id = None, assistant_id=None, local = False): # we are already storing pcm formatted audio in the filler config. No need to encode/decode them further audio_data = None if local: file_name = f"{PREPROCESS_DIR}/{agent_name}/{audio_format}/{b64_string}.{audio_format}" with open(file_name, 'rb') as file: # Read the entire file content into a variable audio_data = file.read() else: object_key = f"{user_id}/{assistant_id}/audio/{b64_string}.{audio_format}" audio_data = await get_s3_file(BUCKET_NAME, object_key) return audio_data # Path: bolna/helpers/utils.py def get_required_input_types(task): input_types = dict() for i, chain in enumerate(task['toolchain']['pipelines']): first_model = chain[0] if chain[0] == "transcriber": input_types["audio"] = i elif chain[0] == "synthesizer" or chain[0] == "llm": input_types["text"] = i return input_types # Path: bolna/helpers/utils.py def format_messages(messages): formatted_string = "" for message in messages: role = message['role'] content = message['content'] if role == 'assistant': formatted_string += "assistant: " + content + "\n" elif role == 'user': formatted_string += "user: " + content + "\n" return formatted_string # Path: bolna/helpers/utils.py async def get_prompt_responses(agent_name, local=False, user_id=None, assistant_id = None): filepath = f"{PREPROCESS_DIR}/{agent_name}/conversation_details.json" data = "" if local: logger.info("Loading up the conversation details from the local file") try: with open(filepath, "r") as json_file: data = json.load(json_file) except Exception as e: logger.error("Could not load up the dataset") else: key = f"{user_id}/{assistant_id}/conversation_details.json" logger.info(f"Loading up the conversation details from the s3 file BUCKET_NAME {BUCKET_NAME} {key}") try: response = await get_s3_file(BUCKET_NAME, key) file_content = response.decode('utf-8') json_content = json.loads(file_content) return json_content except Exception as e: traceback.print_exc() print(f"An error occurred: {e}") return None return data # Path: bolna/helpers/utils.py def update_prompt_with_context(prompt, context_data): if not isinstance(context_data.get('recipient_data'), dict): return prompt return prompt.format(**context_data.get('recipient_data', {})) # Path: bolna/helpers/utils.py def get_md5_hash(text): return hashlib.md5(text.encode()).hexdigest() # Path: bolna/helpers/utils.py def clean_json_string(json_str): if json_str.startswith("```json") and json_str.endswith("```"): json_str = json_str[7:-3].strip() return json_str # Path: bolna/helpers/utils.py def yield_chunks_from_memory(audio_bytes, chunk_size=512): total_length = len(file_in_memory) for i in range(0, total_length, chunk_size): yield file_in_memory[i:i + chunk_size] # Path: bolna/helpers/logger_config.py def configure_logger(file_name, enabled=True, logging_level='INFO'): if logging_level not in VALID_LOGGING_LEVELS: logging_level = "INFO" logging.basicConfig( level=logging_level, format="%(asctime)s.%(msecs)03d %(levelname)s {%(module)s} [%(funcName)s] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", ) logger = logging.getLogger(file_name) if not enabled: logger.disabled = True return logger # Path: bolna/agent_manager/task_manager.py import asyncio import traceback import time import json from .base_manager import BaseManager from bolna.agent_types import * from bolna.providers import * from bolna.helpers.utils import create_ws_data_packet, is_valid_md5, get_raw_audio_bytes_from_base64, \ get_required_input_types, format_messages, get_prompt_responses, update_prompt_with_context, get_md5_hash, clean_json_string, yield_chunks_from_memory from bolna.helpers.logger_config import configure_logger self.conversation_ended = True self.ended_by_assistant = True await self.tools["input"].stop_handler() logger.info("Stopped input handler") if "transcriber" in self.tools and not self.connected_through_dashboard: logger.info("Stopping transcriber") await self.tools["transcriber"].toggle_connection() await asyncio.sleep(5) # Making sure whatever message was passed is over return self.llm_processed_request_ids.add(self.current_request_id) llm_response = "" def _extract_sequence_and_meta(self, message): sequence, meta_info = None, None if isinstance(message, dict) and "meta_info" in message: self._set_call_details(message) sequence = message["meta_info"]["sequence"] meta_info = message["meta_info"] return sequence, meta_info def _is_extraction_task(self): return self.task_config["task_type"] == "extraction" def _is_summarization_task(self): return self.task_config["task_type"] == "summarization" def _is_conversation_task(self): return self.task_config["task_type"] == "conversation" def _is_preprocessed_flow(self): return self.task_config["tools_config"]["llm_agent"]['agent_flow_type'] == "preprocessed" def _is_formulaic_flow(self): return self.task_config["tools_config"]["llm_agent"]['agent_flow_type'] == "formulaic" # This is used only in the case it's a text based chatbot async def _listen_llm_input_queue(self): logger.info( f"Starting listening to LLM queue as either Connected to dashboard = {self.connected_through_dashboard} or it's a textual chat agent {self.textual_chat_agent}") while True: try: ws_data_packet = await self.queues["llm"].get() logger.info(f"ws_data_packet {ws_data_packet}") bos_packet = create_ws_data_packet("<beginning_of_stream>", ws_data_packet['meta_info']) await self.tools["output"].handle(bos_packet) await self._run_llm_task( ws_data_packet) # In case s3 is down and it's an audio processing job, this might produce blank message on the frontend of playground. eos_packet = create_ws_data_packet("<end_of_stream>", ws_data_packet['meta_info']) await self.tools["output"].handle(eos_packet) except Exception as e: traceback.print_exc() logger.error(f"Something went wrong with LLM queue {e}") break async def _run_llm_task(self, message): logger.info("running llm based agent") sequence, meta_info = self._extract_sequence_and_meta(message) try: if self._is_extraction_task() or self._is_summarization_task(): await self._process_followup_task(message, sequence, meta_info) elif self._is_conversation_task(): if self._is_preprocessed_flow(): await self._process_conversation_preprocessed_task(message, sequence, meta_info) elif self._is_formulaic_flow(): await self._process_conversation_formulaic_task(message, sequence, meta_info) else: await self._process_conversation_task(message, sequence, meta_info) else: logger.error("unsupported task type: {}".format(self.task_config["task_type"])) self.llm_task = None except Exception as e: traceback.print_exc() logger.error(f"Something went wrong in llm: {e}") async def process_transcriber_request(self, meta_info): if not self.current_request_id or self.current_request_id != meta_info["request_id"]: self.previous_request_id, self.current_request_id = self.current_request_id, meta_info["request_id"] sequence = meta_info["sequence"] # check if previous request id is not in transmitted request id if self.previous_request_id is None: is_first_message = True elif self.previous_request_id not in self.llm_processed_request_ids: self.llm_rejected_request_ids.add(self.previous_request_id) else: skip_append_to_data = False return sequence async def process_interruption(self): await self.tools["output"].handle_interruption() self.sequence_ids = set() #Remove all the sequence ids so subsequent won't be processed if self.llm_task is not None: self.llm_task.cancel() self.llm_task = None self.was_long_pause = True # if len(self.synthesizer_tasks) > 0: # for synth_task in self.synthesizer_tasks: # synth_task.cancel() # self.synthesizer_tasks = [] ######################## # Transcriber task ######################## async def _handle_transcriber_output(self, next_task, transcriber_message, meta_info): if next_task == "llm": meta_info["origin"] = "transcriber" self.llm_task = asyncio.create_task( self._run_llm_task(create_ws_data_packet(transcriber_message, meta_info))) elif next_task == "synthesizer": self.synthesizer_tasks.append(asyncio.create_task( self._synthesize(create_ws_data_packet(transcriber_message, meta_info))))
else:
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: relari-ai/continuous-eval # Path: continuous_eval/metrics/generation_deterministic_metrics.py class DeterministicAnswerCorrectness(Metric): def calculate(self, answer, ground_truths, **kwargs): # calculate the max score across all ground truth answers token_scores = [TokenOverlap().calculate(answer, gt_answer) for gt_answer in ground_truths] rouge_scores = [RougeScore().calculate(answer, gt_answer) for gt_answer in ground_truths] bleu_scores = [BleuScore().calculate(answer, gt_answer) for gt_answer in ground_truths] return { metric: max(score.get(metric, 0) for score in token_scores + rouge_scores + bleu_scores) for metric in ["rouge_l_recall", "rouge_l_precision", "rouge_l_f1", "token_overlap_recall", "token_overlap_precision", "token_overlap_f1", "bleu_score"] } # Path: continuous_eval/metrics/generation_deterministic_metrics.py class DeterministicFaithfulness(Metric): ROUGE_PRECISION_THRESHOLD = 0.5 TOKEN_OVERLAP_PRECISION_THRESHOLD = 0.5 BLEU_SCORE_THRESHOLD = 0.5 def __init__(self): _download_punkt() super().__init__() def calculate(self, answer, retrieved_contexts, **kwargs): context = "\n".join(retrieved_contexts) sentences = nltk.sent_tokenize(answer) rouge_scores = [RougeScore().calculate(sentence, context)["rouge_l_precision"] for sentence in sentences] token_overlap_scores = [ TokenOverlap().calculate(sentence, context)["token_overlap_precision"] for sentence in sentences ] bleu_scores = [BleuScore().calculate(sentence, context)["bleu_score"] for sentence in sentences] rouge_faithfulness = sum(score > self.ROUGE_PRECISION_THRESHOLD for score in rouge_scores) / len(sentences) token_overlap_faithfulness = sum( score > self.TOKEN_OVERLAP_PRECISION_THRESHOLD for score in token_overlap_scores ) / len(sentences) bleu_faithfulness = sum(score for score in bleu_scores) / len(sentences) return { "rouge_faithfulness": rouge_faithfulness, "token_overlap_faithfulness": token_overlap_faithfulness, "bleu_faithfulness": bleu_faithfulness, "rouge_p_by_sentence": rouge_scores, "token_overlap_p_by_sentence": token_overlap_scores, "blue_score_by_sentence": bleu_scores, } # Path: continuous_eval/metrics/generation_LLM_based_metrics.py class LLMBasedAnswerCorrectness(LLMBasedMetric): """ The LLM based answer correctness metric. Measures whether the generated answer is correct compared to the ground truths. """ def __init__(self, model: LLMInterface = DefaultLLM, use_few_shot: bool = True): super().__init__(model) self.use_few_shot = use_few_shot def __str__(self): return f"LLMBasedAnswerCorrectness(model={self.model}, use_few_shot={self.use_few_shot})" def calculate(self, question, answer, ground_truths, **kwargs): """ Calculate the faithfulness score for the given datapoint. """ gt_answers = "\n".join(ground_truths) if self.use_few_shot: few_shot_prompt = """Example Response: 3.5 The answer is relevant to the question and similar to the ground truth answer but misses some information. """ else: few_shot_prompt = "" prompt = { "system_prompt": ( """ You are an expert evaluator system for a question answering system. You need to evaluate the quality of the generated answer based on the question and reference ground truth answer. Output a score and the reasoning for your score in a new line. Use the following guidelines for evaluation: * You should output a single score between 1 to 5. * 1 means that the answer is completely irrelevant to the question. * 2 means that the answer is relevant to the question but contains major errors. * 3 means that the answer is relevant to the question and is partially correct. * 4 means that the answer is relevant to the question and is correct. * 5 means that the answer is relevant to the question and is correct and complete. """ + few_shot_prompt ), "user_prompt": ( "Question: " + question + "\nAnswer: " + answer + r"\Ground truth reference answer(s): " + gt_answers ), } response = self._llm.run(prompt) score_txt, reasoning = response.split("\n", 1) score = float(score_txt.split(":")[-1].strip()) return { "LLM_based_answer_correctness": score, "LLM_based_answer_correctness_reasoning": reasoning, } # Path: continuous_eval/metrics/generation_LLM_based_metrics.py class LLMBasedFaithfulness(LLMBasedMetric): """ The LLM based faithfulness metric. Measures whether the generated answer is faithful to the retrieved context. """ def __init__( self, model: LLMInterface = DefaultLLM, use_few_shot: bool = True, classify_by_statement: bool = False, ): super().__init__(model) self.use_few_shot = use_few_shot self.classify_by_statement = classify_by_statement def __str__(self): return f"LLMBasedFaithfulness(model={self.model}, use_few_shot={self.use_few_shot}, classify_by_statement={self.classify_by_statement})" def calculate(self, question, retrieved_contexts, answer, **kwargs): """ Calculate the faithfulness score for the given datapoint. """ if self.classify_by_statement: # Context coverage uses the same prompt as faithfulness because it calculates how what proportion statements in the answer can be attributed to the context. # The difference is that faithfulness uses the generated answer, while context coverage uses ground truth answer (to evaluate context). context_coverage = LLMBasedContextCoverage(use_few_shot=self.use_few_shot) results = context_coverage.calculate(question, retrieved_contexts, answer) score = results["LLM_based_context_coverage"] reasoning = results["LLM_based_context_statements"] else: context = "\n".join(retrieved_contexts) if self.use_few_shot: few_shot_prompt = """ Example 1: Context: The Eiffel Tower, a wrought-iron lattice tower on the Champ de Mars in Paris, France, is one of the most famous landmarks in the world. It was designed by Gustave Eiffel and completed in 1889. Statement: The Eiffel Tower can be found in the center of London, near the Thames River. Response: No The statement contradicts with the context, which states that Eiffel Tower is in Paris, as opposed to the center of London. Example 2: Context: Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organisms' activities. This chemical energy is stored in carbohydrate molecules, such as sugars, which are synthesized from carbon dioxide and water. Statement: Photosynthesis in plants primarily involves the conversion of light energy into chemical energy stored in forms such as sugar. Response: Yes The statement is supported by the context, which states that photosynthesis converts light energy into chemical energy and that the chemical energy is stored in carbohydrate molecules, such as sugars. """ else: few_shot_prompt = "" prompt = { "system_prompt": ( "You are tasked to evaluate whether the statement is fully supported by the context. Respond with either Yes or No, followed by your reasoning in a new line.\n" + few_shot_prompt ), "user_prompt": ("Context: " + context + r"\Statement: " + answer), } response = self._llm.run(prompt) score_txt, reasoning = response.split("\n", 1) score = bool("yes" in score_txt.lower()) return { "LLM_based_faithfulness": score, "LLM_based_faithfulness_reasoning": reasoning, } # Path: tests/helpers/example_datum.py CAPITAL_OF_FRANCE = { "question": "What is the capital of France?", "retrieved_contexts": [ "Paris is the largest city in France.", "Lyon is a major city in France.", ], "ground_truth_contexts": ["Paris is the capital of France."], "answer": "Paris", "ground_truths": ["Paris"], } ROMEO_AND_JULIET = { "question": "Who wrote Romeo and Juliet?", "retrieved_contexts": [ "Shakespeare was a playwright.", "Romeo and Juliet is a play by Shakespeare.", ], "ground_truth_contexts": [ "Shakespeare was a playwright.", "Romeo and Juliet is a play by William Shakespeare.", ], "answer": "William Shakespeare", "ground_truths": ["William Shakespeare"], } IMPLICATIONS_GLOBAL_WARMING = { "question": "What are the implications of global warming?", "retrieved_contexts": [ ( "Global warming refers to the long-term rise in the average temperature of the Earth's climate system. " "It is a major aspect of climate change, and has been demonstrated by direct temperature measurements " "and by measurements of various effects of the warming. The terms are commonly used interchangeably, " "though global warming is more specifically about rising surface temperatures, while climate change includes " "global warming as well as everything else that increasing greenhouse gas amounts will affect. " "A 2016 report stated that the Arctic is warming at a rate double that of the global average. " "The effects of global warming include rising sea levels, regional changes in precipitation, more frequent " "extreme weather events such as heat waves, and expansion of deserts. Surface temperature increases are " "greatest in the Arctic, which has contributed to the retreat of glaciers, permafrost, and sea ice. " "Overall, higher temperatures bring more rain and snowfall, but for some regions, droughts and wildfires " "increase instead. Climate change threatens to diminish the supply of fresh water. A warming atmosphere " "can hold, and more frequently does hold, larger quantities of water vapor, which can lead to more intense " "rainstorms, causing destructive erosion. Warming also creates conditions that can lead to more powerful " "hurricanes. Rising temperatures also have the potential to change the nature of global rainfall, snow, " "and river flows. Effects significant to humans include the threat to food security from decreasing crop " "yields and the abandonment of populated areas due to rising sea levels. Because the climate system has " "a large inertia and greenhouse gases will remain in the atmosphere for a long time, climatic changes and " "their effects will continue for many centuries even if greenhouse gas emissions are stopped." ), ( "Environmental impacts of climate change might include harsher hurricanes and storms, the death of reefs " "and forests, more frequent and severe droughts, increased heat waves, and stronger, more intense wildfires. " "Such changes will have significant implications for human societies and the natural world. The extent of these " "effects will depend largely on the degree of future global warming and the strategies adopted for mitigation " "and adaptation. Some effects of climate change, such as record high temperatures and melting glaciers, are " "already being observed. The world community has taken some steps towards addressing climate change. The " "2015 Paris Agreement, for instance, set the goal of limiting global warming to well below 2.0 degrees Celsius " "relative to pre-industrial levels; and to limit the increase to 1.5 degrees Celsius, recognizing that this would " "substantially reduce the risks and impacts of climate change. This agreement is meant to signal the beginning " "of the end of over two centuries of predominance of fossil fuels. Some experts have called for a coordinated " "economic transition to rapid decarbonization, climate finance and 'climate justice'. The overall conclusion of " "the Intergovernmental Panel on Climate Change (IPCC), the peak scientific body on climate change, is that it " "is 'extremely likely' that the majority of global warming since 1950 has been caused by human activities." ), ], "ground_truth_contexts": [ ( "Climate change threatens to diminish the supply of fresh water. A warming atmosphere " "can hold, and more frequently does hold, larger quantities of water vapor, which can lead to more intense " "rainstorms, causing destructive erosion. To mitigate these impacts, " "strategies such as reducing greenhouse gas emissions and enhancing sustainability practices are vital. " "The Paris Agreement of 2015 marks a global effort to limit warming and reduce the risks associated with " "climate change, aiming to transition away from fossil fuels towards cleaner, renewable sources of energy." ) ], "answer": "Reducing greenhouse gas emissions, transitioning to renewable energy", "ground_truths": [ "Reducing greenhouse gas emissions", "Transitioning to renewable energy", ], } FARGO = { "question": "Did Fargo win the golden globe nominations for both seasons?", "retrieved_contexts": [ "Fargo is an American black comedy crime drama television series created and primarily written by Noah Hawley. The show is inspired by the 1996 film of the same name, which was written and directed by the Coen brothers, and takes place within the same fictional universe. The Coens were impressed by Hawley's script and agreed to be named as executive producers.[3] The series premiered on April 15, 2014, on FX,[3] and follows an anthology format, with each season set in a different era and location, with a different story and mostly new characters and cast, although there is minor overlap. Each season is heavily influenced by various Coen brothers films, with each containing numerous references to them.[4]", "The first season, set primarily in Minnesota and North Dakota from January 2006 to February 2007 and starring Billy Bob Thornton, Allison Tolman, Colin Hanks, and Martin Freeman, received wide acclaim from critics.[5] It won the Primetime Emmy Awards for Outstanding Miniseries, Outstanding Directing, and Outstanding Casting, and received 15 additional nominations including Outstanding Writing, another Outstanding Directing nomination, and acting nominations for all four leads. It also won the Golden Globe Awards for Best Miniseries or Television Film and Best Actor – Miniseries or Television Film for Thornton.", "The second season, set in Minnesota, North Dakota, and South Dakota in March 1979 and starring Kirsten Dunst, Patrick Wilson, Jesse Plemons, Jean Smart, Allison Tolman, and Ted Danson, received widespread critical acclaim.[6] It received three Golden Globe nominations, along with several Emmy nominations including Outstanding Miniseries, and acting nominations for Dunst, Plemons, Smart, and Bokeem Woodbine.", ], "ground_truth_contexts": [ "The first season, set primarily in Minnesota and North Dakota from January 2006 to February 2007 and starring Billy Bob Thornton, Allison Tolman, Colin Hanks, and Martin Freeman, received wide acclaim from critics.[5] It won the Primetime Emmy Awards for Outstanding Miniseries, Outstanding Directing, and Outstanding Casting, and received 15 additional nominations including Outstanding Writing, another Outstanding Directing nomination, and acting nominations for all four leads. It also won the Golden Globe Awards for Best Miniseries or Television Film and Best Actor – Miniseries or Television Film for Thornton.", "The second season, set in Minnesota, North Dakota, and South Dakota in March 1979 and starring Kirsten Dunst, Patrick Wilson, Jesse Plemons, Jean Smart, Allison Tolman, and Ted Danson, received widespread critical acclaim.[6] It received three Golden Globe nominations, along with several Emmy nominations including Outstanding Miniseries, and acting nominations for Dunst, Plemons, Smart, and Bokeem Woodbine.", ], "answer": "Berlin", "ground_truths": [ "Yes, they did get a nomination in season 1 and 2.", "Not really, they didn't win for season three.", ], } # Path: tests/helpers/utils.py def all_close( datum_1: Dict[str, Union[Number, List[Number]]], datum_2: Dict[str, Union[Number, List[Number]]], rel_tol: float = 1e-8, abs_tol: float = 1e-4, ): if set(datum_1.keys()) != set(datum_2.keys()): return False for key, value1 in datum_1.items(): if isinstance(value1, list): if not all(math.isclose(v1, v2, rel_tol=rel_tol, abs_tol=abs_tol) for v1, v2 in zip(value1, datum_2[key])): return False else: if not math.isclose(value1, datum_2[key], rel_tol=rel_tol, abs_tol=abs_tol): return False return True # Path: tests/generation_metrics_test.py import pytest from continuous_eval.metrics import ( DeterministicAnswerCorrectness, DeterministicFaithfulness, LLMBasedAnswerCorrectness, LLMBasedFaithfulness, ) from tests.helpers import example_datum from tests.helpers.utils import all_close def test_deterministic_answer_relevance(): data = [example_datum.ROMEO_AND_JULIET, example_datum.IMPLICATIONS_GLOBAL_WARMING] expected_results = [ { 'rouge_l_recall': 1.0, 'rouge_l_precision': 1.0, 'rouge_l_f1': 0.999999995, 'token_overlap_recall': 1.0, 'token_overlap_precision': 1.0, 'token_overlap_f1': 1.0, 'bleu_score': 1.0 }, { 'rouge_l_recall': 0.75, 'rouge_l_precision': 0.375, 'rouge_l_f1': 0.49999999555555563,
'token_overlap_recall': 1.0,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Seunggu0305/VLCounter # Path: tools/models/ViT_Encoder.py class VPTCLIPVisionTransformer(nn.Module): def __init__(self, input_resolution=384, patch_size=16, width=768, layers=12, heads=12, output_dim=512, drop_path_rate=0.1, out_indices=[6,7,8,11], pretrained=None, get_embeddings=True, num_tokens=10, prompt_dim=768, total_d_layer=11, **kwargs): super().__init__() self.pretrained = pretrained self.input_resolution = input_resolution self.output_dim = output_dim self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) self.spatial_size = input_resolution // patch_size self.ln_pre = LayerNorm(width) self.get_embeddings = get_embeddings self.num_layers = layers self.transformer = Transformer(width, layers, heads, drop_path_rate=drop_path_rate) self.out_indices = out_indices if get_embeddings: self.ln_post = LayerNorm(width) self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) ## Setting of visual prompt tuning self.num_tokens = num_tokens self.prompt_dim = prompt_dim self.total_d_layer = total_d_layer ## Add the prompt parameters # exclude_key=prompt: self._init_prompt(patch_size, self.num_tokens, self.prompt_dim, self.total_d_layer) self.embed_dim = width self.num_heads = heads self.patch_size = patch_size def _init_prompt(self, patch, num_tokens, prompt_dim, total_d_layer): patch_size = [] patch_size.append(patch) patch_size.append(patch) val = math.sqrt(6. / float(3 * reduce(mul, patch_size, 1) + prompt_dim)) # noqa if total_d_layer >= 0: self.prompt_embeddings = nn.Parameter(torch.zeros(1, num_tokens, prompt_dim)) # xavier_uniform initialization nn.init.uniform_(self.prompt_embeddings.data, -val, val) if total_d_layer > 0: # noqa self.deep_prompt_embeddings = nn.Parameter(torch.zeros(total_d_layer, num_tokens, prompt_dim)) # xavier_uniform initialization nn.init.uniform_(self.deep_prompt_embeddings.data, -val, val) self.prompt_proj = nn.Linear(prompt_dim, prompt_dim) nn.init.kaiming_normal_(self.prompt_proj.weight, a=0, mode='fan_out') self.prompt_norm = LayerNorm(prompt_dim, eps=1e-6) self.prompt_dropout = Dropout(0.1) else: # total_d_layer < 0 self.deep_prompt_embeddings = nn.Parameter(torch.zeros(abs(total_d_layer), num_tokens, prompt_dim)) nn.init.uniform_(self.deep_prompt_embeddings.data, -val, val) self.prompt_proj = nn.Linear(prompt_dim, prompt_dim) nn.init.kaiming_normal_(self.prompt_proj.weight, a=0, mode='fan_out') self.prompt_norm = LayerNorm(prompt_dim, eps=1e-6) self.prompt_dropout = Dropout(0.1) def init_weights(self, pretrained=None): pretrained = pretrained or self.pretrained if isinstance(pretrained, str): checkpoint = torch.jit.load(pretrained, map_location='cpu').float().state_dict() state_dict = {} for k in checkpoint.keys(): if k.startswith('visual.'): new_k = k.replace('visual.', '') state_dict[new_k] = checkpoint[k] if 'positional_embedding' in state_dict.keys(): if self.positional_embedding.shape != state_dict['positional_embedding'].shape: # (1025, 768) (197, 768) print(f'Resize the pos_embed shape from {state_dict["positional_embedding"].shape} to {self.positional_embedding.shape}') cls_pos = state_dict["positional_embedding"][0:1, :] spatial_pos = F.interpolate(state_dict["positional_embedding"][1:,].reshape(1, 14, 14, 768).permute(0, 3, 1, 2), size=(self.spatial_size, self.spatial_size), mode='bilinear') spatial_pos = spatial_pos.reshape(768, self.spatial_size*self.spatial_size).permute(1, 0) positional_embedding = torch.cat([cls_pos, spatial_pos], dim=0) state_dict['positional_embedding'] = positional_embedding assert self.positional_embedding.shape == state_dict['positional_embedding'].shape u, w = self.load_state_dict(state_dict, False) print(u, w, 'are misaligned params in vision transformer') self.attn = None if self.attn == None: for i in range(1,2): # surgery 7, maskclip 2 self.attn = Attention(self.embed_dim, self.embed_dim, self.num_heads, True) self.attn.qkv.weight.data = self.transformer.resblocks[-i].attn.in_proj_weight.clone() self.attn.qkv.bias.data = self.transformer.resblocks[-i].attn.in_proj_bias.clone() self.attn.proj.weight.data = self.transformer.resblocks[-i].attn.out_proj.weight.clone() self.attn.proj.bias.data = self.transformer.resblocks[-i].attn.out_proj.bias.clone() self.transformer.resblocks[-i].attn = self.attn def forward(self, x: torch.Tensor): x = self.conv1(x) B, C, H, W = x.shape x = x.reshape(x.shape[0], x.shape[1], -1) x = x.permute(0, 2, 1) x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) pos = self.positional_embedding.to(x.dtype) cls_pos = pos[0,:] + self.class_embedding.to(x.dtype) spatial_pos = F.interpolate(pos[1:,].reshape(1, self.spatial_size, self.spatial_size, C).permute(0, 3, 1, 2), size=(H, W), mode='bilinear') spatial_pos = spatial_pos.reshape(1, C, H*W).permute(0, 2, 1) pos = torch.cat([cls_pos.reshape(1, 1, C), spatial_pos], dim=1) x = x + pos x = self.ln_pre(x) if self.total_d_layer >=0: # concat prompt x = torch.cat(( x[:, :1, :], self.prompt_dropout(self.prompt_proj(self.prompt_embeddings).expand(B, -1, -1)), x[:, 1:, :] ), dim=1) x = x.permute(1, 0, 2) features = [] outs = [] x, features = self.forward_deep_prompt(x, features, H, W) if self.get_embeddings: x = x.permute(1, 0, 2) x = self.ln_post(x) x = x @ self.proj global_embedding = x[:, 0] visual_embedding = x[:, -(H*W):].reshape(B, H, W, -1).permute(0, 3, 1, 2) visual_embedding = visual_embedding / visual_embedding.norm(dim=1, keepdim=True) features.append(visual_embedding) outs.append(tuple(features)) global_embedding = global_embedding / global_embedding.norm(dim=1, keepdim=True) outs.append(global_embedding) return outs[0] def forward_deep_prompt(self, embedding_output, features, H, W, out_last=False): B = embedding_output.shape[1] for i in range(self.num_layers): if i == 0: hidden_states = self.transformer.resblocks[i](embedding_output) elif i <= self.deep_prompt_embeddings.shape[0]: deep_prompt_emb = self.prompt_dropout(self.prompt_proj(self.deep_prompt_embeddings[i-1]).expand(B, -1, -1)).permute(1, 0, 2) hidden_states = torch.cat(( hidden_states[:1, :, :], deep_prompt_emb, hidden_states[(1+self.num_tokens):, :, :] ), dim=0) hidden_states = self.transformer.resblocks[i](hidden_states) if len(self.out_indices) > 1: if i in self.out_indices[:-1]: xp = hidden_states.permute(1, 0, 2)[:, -(H*W):, :].permute(0, 2, 1).reshape(B, -1, H, W) features.append(xp.contiguous() / xp.norm(dim=1,keepdim=True)) encoded = self.prompt_norm(hidden_states) return encoded, features # Path: tools/models/ViT_Encoder_add.py class SPTCLIPVisionTransformer(nn.Module): def __init__(self, input_resolution=384, patch_size=16, width=768, layers=12, heads=12, output_dim=512, drop_path_rate=0.1, out_indices=[5,6,7,8,11], pretrained=None, get_embeddings=True, num_tokens=10, prompt_dim=768, total_d_layer=11, **kwargs): super().__init__() self.pretrained = pretrained self.input_resolution = input_resolution self.output_dim = output_dim self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) self.spatial_size = input_resolution // patch_size self.ln_pre = LayerNorm(width) self.get_embeddings = get_embeddings self.num_layers = layers self.transformer = Transformer(width, layers, heads, drop_path_rate=drop_path_rate) self.out_indices = out_indices if get_embeddings: self.ln_post = LayerNorm(width) self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) self.text_proj = nn.Linear(512, width) nn.init.kaiming_normal_(self.text_proj.weight, a=0, mode='fan_out') self.text_dropout = nn.Dropout(0.1) ## Setting of visual prompt tuning self.num_tokens = num_tokens self.prompt_dim = prompt_dim self.total_d_layer = total_d_layer ## Add the prompt parameters # exclude_key=prompt: self._init_prompt(patch_size, self.num_tokens, self.prompt_dim, self.total_d_layer) self.embed_dim = width self.num_heads = heads self.patch_size = patch_size def _init_prompt(self, patch, num_tokens, prompt_dim, total_d_layer): patch_size = [] patch_size.append(patch) patch_size.append(patch) val = math.sqrt(6. / float(3 * reduce(mul, patch_size, 1) + prompt_dim)) # noqa if total_d_layer >= 0: self.prompt_embeddings = nn.Parameter(torch.zeros(1, num_tokens, prompt_dim)) # xavier_uniform initialization nn.init.uniform_(self.prompt_embeddings.data, -val, val) if total_d_layer > 0: # noqa self.deep_prompt_embeddings = nn.Parameter(torch.zeros(total_d_layer, num_tokens, prompt_dim)) # xavier_uniform initialization nn.init.uniform_(self.deep_prompt_embeddings.data, -val, val) self.prompt_proj = nn.Linear(prompt_dim, prompt_dim) nn.init.kaiming_normal_(self.prompt_proj.weight, a=0, mode='fan_out') self.prompt_norm = LayerNorm(prompt_dim, eps=1e-6) self.prompt_dropout = Dropout(0.1) else: # total_d_layer < 0 self.deep_prompt_embeddings = nn.Parameter(torch.zeros(abs(total_d_layer), num_tokens, prompt_dim)) nn.init.uniform_(self.deep_prompt_embeddings.data, -val, val) self.prompt_proj = nn.Linear(prompt_dim, prompt_dim) nn.init.kaiming_normal_(self.prompt_proj.weight, a=0, mode='fan_out') self.prompt_norm = LayerNorm(prompt_dim, eps=1e-6) self.prompt_dropout = Dropout(0.1) def init_weights(self, pretrained=None): pretrained = pretrained or self.pretrained if isinstance(pretrained, str): checkpoint = torch.jit.load(pretrained, map_location='cpu').float().state_dict() # checkpoint = torch.load(pretrained)['model'] state_dict = {} for k in checkpoint.keys(): if k.startswith('visual.'): new_k = k.replace('visual.', '') # if k.startswith('module.visual.'): # new_k = k.replace('module.visual.', '') state_dict[new_k] = checkpoint[k].float() if 'positional_embedding' in state_dict.keys(): if self.positional_embedding.shape != state_dict['positional_embedding'].shape: # (1025, 768) (197, 768) print(f'Resize the pos_embed shape from {state_dict["positional_embedding"].shape} to {self.positional_embedding.shape}') cls_pos = state_dict["positional_embedding"][0:1, :] if self.patch_size == 16: spatial_pos = F.interpolate(state_dict["positional_embedding"][1:,].reshape(1, 14, 14, 768).permute(0, 3, 1, 2), size=(self.spatial_size, self.spatial_size), mode='bilinear') elif self.patch_size == 32: spatial_pos = F.interpolate(state_dict["positional_embedding"][1:,].reshape(1, 7, 7, 768).permute(0, 3, 1, 2), size=(self.spatial_size, self.spatial_size), mode='bilinear') else: assert AttributeError('Patch Size should be 16 or 32') spatial_pos = spatial_pos.reshape(768, self.spatial_size*self.spatial_size).permute(1, 0) positional_embedding = torch.cat([cls_pos, spatial_pos], dim=0) state_dict['positional_embedding'] = positional_embedding assert self.positional_embedding.shape == state_dict['positional_embedding'].shape # del state_dict['conv1.weight'] u, w = self.load_state_dict(state_dict, False) print(u, w, 'are misaligned params in vision transformer') self.attn = None if self.attn == None: for i in range(1,2): # surgery 7, maskclip 2 self.attn = Attention(self.embed_dim, self.embed_dim, self.num_heads, True) self.attn.qkv.weight.data = self.transformer.resblocks[-i].attn.in_proj_weight.clone() self.attn.qkv.bias.data = self.transformer.resblocks[-i].attn.in_proj_bias.clone() self.attn.proj.weight.data = self.transformer.resblocks[-i].attn.out_proj.weight.clone() self.attn.proj.bias.data = self.transformer.resblocks[-i].attn.out_proj.bias.clone() self.transformer.resblocks[-i].attn = self.attn def forward(self, x: torch.Tensor, _t: torch.Tensor): x = self.conv1(x) B, C, H, W = x.shape x = x.reshape(x.shape[0], x.shape[1], -1) x = x.permute(0, 2, 1) x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) pos = self.positional_embedding.to(x.dtype) cls_pos = pos[0,:] + self.class_embedding.to(x.dtype) spatial_pos = F.interpolate(pos[1:,].reshape(1, self.spatial_size, self.spatial_size, C).permute(0, 3, 1, 2), size=(H, W), mode='bilinear') spatial_pos = spatial_pos.reshape(1, C, H*W).permute(0, 2, 1) pos = torch.cat([cls_pos.reshape(1, 1, C), spatial_pos], dim=1) x = x + pos x = self.ln_pre(x) if self.total_d_layer >=0: # concat prompt x = torch.cat(( x[:, :1, :], self.prompt_dropout(self.prompt_proj(self.prompt_embeddings).expand(B, -1, -1)) + self.text_dropout(self.text_proj(_t).expand(-1, self.num_tokens, -1)), x[:, 1:, :] ), dim=1) x = x.permute(1, 0, 2) features = [] outs = [] x, features = self.forward_deep_prompt(x, features, H, W, _t) if self.get_embeddings: x = x.permute(1, 0, 2) x = self.ln_post(x) x = x @ self.proj global_embedding = x[:, 0] visual_embedding = x[:, -(H*W):].reshape(B, H, W, -1).permute(0, 3, 1, 2) visual_embedding = visual_embedding / visual_embedding.norm(dim=1, keepdim=True) features.append(visual_embedding) outs.append(tuple(features)) global_embedding = global_embedding / global_embedding.norm(dim=1, keepdim=True) outs.append(global_embedding) return outs[0] def forward_deep_prompt(self, embedding_output, features, H, W, _t, out_last=False): B = embedding_output.shape[1] for i in range(self.num_layers): if i == 0: hidden_states = self.transformer.resblocks[i](embedding_output) elif i <= self.deep_prompt_embeddings.shape[0]: deep_prompt_emb = self.prompt_dropout(self.prompt_proj(self.deep_prompt_embeddings[i-1]).expand(B, -1, -1)).permute(1, 0, 2) deep_text = self.text_dropout(self.text_proj(_t).expand(-1,self.num_tokens,-1)).permute(1,0,2) hidden_states = torch.cat(( hidden_states[:1, :, :], deep_prompt_emb + deep_text, hidden_states[(1+self.num_tokens):, :, :] ), dim=0) hidden_states = self.transformer.resblocks[i](hidden_states) else: hidden_states = self.transformer.resblocks[i](hidden_states) if len(self.out_indices) > 1: if i in self.out_indices[:-1]: xp = hidden_states.permute(1, 0, 2)[:, -(H*W):, :].permute(0, 2, 1).reshape(B, -1, H, W) features.append(xp.contiguous() / xp.norm(dim=1,keepdim=True)) encoded = self.prompt_norm(hidden_states) return encoded, features # Path: tools/models/Text_Encoder.py class CLIPTextEncoder(nn.Module): def __init__(self, context_length=77, vocab_size=49408, # vocab_size=49408+1, transformer_width=512, transformer_heads=8, transformer_layers=12, embed_dim=512, out_dim=256, pretrained=None, **kwargs): super().__init__() self.pretrained = pretrained self.context_length = context_length self.transformer = Transformer( width=transformer_width, layers=transformer_layers, heads=transformer_heads, attn_mask=self.build_attention_mask() ) self.vocab_size = vocab_size self.token_embedding = nn.Embedding(vocab_size, transformer_width) self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width)) self.ln_final = LayerNorm(transformer_width) self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) # self.text_projection = nn.Linear(transformer_width, embed_dim) def init_weights(self, pretrained=None): pretrained = pretrained or self.pretrained if isinstance(pretrained, str): checkpoint = torch.jit.load(pretrained, map_location='cpu').float().state_dict() # checkpoint = torch.load(pretrained)['model'] state_dict = {} for k in checkpoint.keys(): if k.startswith('transformer.'): # if k.startswith('module.encode_text.transformer.'): # new_k = k.replace('module.encode_text.', '') # state_dict[new_k] = checkpoint[k].float() state_dict[k] = checkpoint[k].float() if k == 'positional_embedding' or k == 'text_projection' or k.startswith('token_embedding') or k.startswith('ln_final'): # if k == 'module.encode_text.positional_embedding' or k.startswith('module.encode_text.text_projection') or k.startswith('module.encode_text.token_embedding') or k.startswith('module.encode_text.ln_final'): # new_k = k.replace('module.encode_text.', '') # if new_k == 'positional_embedding' and checkpoint[k].size(0) > self.context_length: if k == 'positional_embedding' and checkpoint[k].size(0) > self.context_length: checkpoint[k] = checkpoint[k][:self.context_length] print('positional_embedding is tuncated from 77 to', self.context_length) # state_dict[new_k] = checkpoint[k] state_dict[k] = checkpoint[k] u, w = self.load_state_dict(state_dict, False) if u != [] or w != [] : print(u, w, 'are misaligned params in text encoder') def build_attention_mask(self): # lazily create causal attention mask, with full attention between the vision tokens # pytorch uses additive attention mask; fill with -inf mask = torch.empty(self.context_length, self.context_length) mask.fill_(float("-inf")) mask.triu_(1) # zero out the lower diagonal return mask def forward(self, text): x = self.token_embedding(text) x = x + self.positional_embedding x = x.permute(1, 0, 2) x = self.transformer(x) x = x.permute(1, 0, 2) x = self.ln_final(x) x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection # x = self.text_projection(x[torch.arange(x.shape[0]), text.argmax(dim=-1)]) return x # Path: tools/models/VLCounter.py import math import pickle import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from .ViT_Encoder import VPTCLIPVisionTransformer as vpt from .ViT_Encoder_add import SPTCLIPVisionTransformer as spt from .Text_Encoder import CLIPTextEncoder from timm.models.layers import trunc_normal_ def trunc_normal_init(module: nn.Module, mean: float = 0, std: float = 1,
a: float = -2,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Chris10M/Ev2Hands # Path: src/Ev2Hands/model/pointnet2_utils.py class PointNetSetAbstractionMsg(nn.Module): def __init__(self, npoint, radius_list, nsample_list, in_channel, mlp_list): super(PointNetSetAbstractionMsg, self).__init__() self.npoint = npoint self.radius_list = radius_list self.nsample_list = nsample_list self.conv_blocks = nn.ModuleList() self.bn_blocks = nn.ModuleList() for i in range(len(mlp_list)): convs = nn.ModuleList() bns = nn.ModuleList() last_channel = in_channel + 3 for out_channel in mlp_list[i]: convs.append(nn.Conv2d(last_channel, out_channel, 1)) bns.append(nn.BatchNorm2d(out_channel)) last_channel = out_channel self.conv_blocks.append(convs) self.bn_blocks.append(bns) def forward(self, xyz, points): """ Input: xyz: input points position data, [B, C, N] points: input points data, [B, D, N] Return: new_xyz: sampled points position data, [B, C, S] new_points_concat: sample points feature data, [B, D', S] """ xyz = xyz.permute(0, 2, 1).contiguous() if points is not None: points = points.permute(0, 2, 1).contiguous() B, N, C = xyz.shape S = self.npoint new_xyz = index_points(xyz, farthest_point_sample(xyz, S)) new_points_list = [] for i, radius in enumerate(self.radius_list): K = self.nsample_list[i] group_idx = query_ball_point(radius, K, xyz, new_xyz) grouped_xyz = index_points(xyz, group_idx) grouped_xyz -= new_xyz.view(B, S, 1, C) if points is not None: grouped_points = index_points(points, group_idx) grouped_points = torch.cat([grouped_points, grouped_xyz], dim=-1) else: grouped_points = grouped_xyz grouped_points = grouped_points.permute(0, 3, 2, 1).contiguous() # [B, D, K, S] for j in range(len(self.conv_blocks[i])): conv = self.conv_blocks[i][j] bn = self.bn_blocks[i][j] grouped_points = F.relu(bn(conv(grouped_points))) new_points = torch.max(grouped_points, 2)[0] # [B, D', S] new_points_list.append(new_points) new_xyz = new_xyz.permute(0, 2, 1).contiguous() new_points_concat = torch.cat(new_points_list, dim=1) return new_xyz, new_points_concat # Path: src/Ev2Hands/model/pointnet2_utils.py class PointNetSetAbstraction(nn.Module): def __init__(self, npoint, radius, nsample, in_channel, mlp, group_all): super(PointNetSetAbstraction, self).__init__() self.npoint = npoint self.radius = radius self.nsample = nsample self.mlp_convs = nn.ModuleList() self.mlp_bns = nn.ModuleList() last_channel = in_channel for out_channel in mlp: self.mlp_convs.append(nn.Conv2d(last_channel, out_channel, 1)) self.mlp_bns.append(nn.BatchNorm2d(out_channel)) last_channel = out_channel self.group_all = group_all def forward(self, xyz, points): """ Input: xyz: input points position data, [B, C, N] points: input points data, [B, D, N] Return: new_xyz: sampled points position data, [B, C, S] new_points_concat: sample points feature data, [B, D', S] """ xyz = xyz.permute(0, 2, 1).contiguous() if points is not None: points = points.permute(0, 2, 1).contiguous() if self.group_all: new_xyz, new_points = sample_and_group_all(xyz, points) else: new_xyz, new_points = sample_and_group(self.npoint, self.radius, self.nsample, xyz, points) # new_xyz: sampled points position data, [B, npoint, C] # new_points: sampled points data, [B, npoint, nsample, C+D] new_points = new_points.permute(0, 3, 2, 1).contiguous() # [B, C+D, nsample,npoint] for i, conv in enumerate(self.mlp_convs): bn = self.mlp_bns[i] new_points = F.relu(bn(conv(new_points))) new_points = torch.max(new_points, 2)[0] new_xyz = new_xyz.permute(0, 2, 1).contiguous() return new_xyz, new_points # Path: src/Ev2Hands/model/pointnet2_utils.py class PointNetFeaturePropagation(nn.Module): def __init__(self, in_channel, mlp): super(PointNetFeaturePropagation, self).__init__() self.mlp_convs = nn.ModuleList() self.mlp_bns = nn.ModuleList() last_channel = in_channel for out_channel in mlp: self.mlp_convs.append(nn.Conv1d(last_channel, out_channel, 1)) self.mlp_bns.append(nn.BatchNorm1d(out_channel)) last_channel = out_channel def forward(self, xyz1, xyz2, points1, points2): """ Input: xyz1: input points position data, [B, C, N] xyz2: sampled input points position data, [B, C, S] points1: input points data, [B, D, N] points2: input points data, [B, D, S] Return: new_points: upsampled points data, [B, D', N] """ xyz1 = xyz1.permute(0, 2, 1).contiguous() xyz2 = xyz2.permute(0, 2, 1).contiguous() points2 = points2.permute(0, 2, 1).contiguous() B, N, C = xyz1.shape _, S, _ = xyz2.shape if S == 1: interpolated_points = points2.repeat(1, N, 1) else: dists = square_distance(xyz1, xyz2) dists, idx = dists.sort(dim=-1) dists, idx = dists[:, :, :3], idx[:, :, :3] # [B, N, 3] dist_recip = 1.0 / (dists + 1e-8) norm = torch.sum(dist_recip, dim=2, keepdim=True) weight = dist_recip / norm interpolated_points = torch.sum(index_points(points2, idx) * weight.view(B, N, 3, 1), dim=2) if points1 is not None: points1 = points1.permute(0, 2, 1).contiguous() new_points = torch.cat([points1, interpolated_points], dim=-1) else: new_points = interpolated_points new_points = new_points.permute(0, 2, 1).contiguous() for i, conv in enumerate(self.mlp_convs): bn = self.mlp_bns[i] new_points = F.relu(bn(conv(new_points))) return new_points # Path: src/Ev2Hands/model/TEHNet.py import numpy as np import torch.nn as nn import torch import os import torch.nn.functional as F from .pointnet2_utils import PointNetSetAbstractionMsg, PointNetSetAbstraction, PointNetFeaturePropagation previous_rot_trans_params = torch.zeros(6).unsqueeze(0).expand(batch_size, -1).to(device) mano_params = self.mano_regressor(l2_points) global_orient = mano_params[:, :3] hand_pose = mano_params[:, 3:3+self.n_pose_params] betas = mano_params[:, 3+self.n_pose_params:-3] transl = mano_params[:, -3:] device = mano_hand.shapedirs.device mano_args = { 'global_orient': global_orient.to(device), 'hand_pose' : hand_pose.to(device), 'betas' : betas.to(device), 'transl' : transl.to(device), } mano_outs = dict() output = mano_hand(**mano_args) mano_outs['vertices'] = output.vertices mano_outs['j3d'] = output.joints mano_outs.update(mano_args) if not self.training: mano_outs['faces'] = np.tile(mano_hand.faces, (batch_size, 1, 1)) return mano_outs class TEHNet(nn.Module): def __init__(self, n_pose_params, num_classes=4): super(TEHNet, self).__init__() normal_channel = True if normal_channel: additional_channel = 1 + int(os.getenv('ERPC', 0)) else: additional_channel = 0 self.normal_channel = normal_channel self.sa1 = PointNetSetAbstractionMsg(512, [0.1, 0.2, 0.4], [32, 64, 128], 3+additional_channel, [[32, 32, 64], [64, 64, 128], [64, 96, 128]]) self.sa2 = PointNetSetAbstractionMsg(128, [0.4,0.8], [64, 128], 128+128+64, [[128, 128, 256], [128, 196, 256]]) self.sa3 = PointNetSetAbstraction(npoint=None, radius=None, nsample=None, in_channel=512 + 3, mlp=[256, 512, 1024], group_all=True) self.fp3 = PointNetFeaturePropagation(in_channel=1536, mlp=[256, 256]) self.fp2 = PointNetFeaturePropagation(in_channel=576, mlp=[256, 128]) self.fp1 = PointNetFeaturePropagation(128, [128, 128, 256]) self.classifier = nn.Sequential( nn.Conv1d(256, 256, 1), nn.ReLU(), nn.BatchNorm1d(256), nn.Dropout(0.3), nn.Conv1d(256, num_classes, 1) ) self.attention_block = AttentionBlock() self.left_mano_regressor = MANORegressor(n_pose_params=n_pose_params) self.right_mano_regressor = MANORegressor(n_pose_params=n_pose_params) self.mhlnes = int(os.getenv('MHLNES', 0)) self.left_query_conv = nn.Sequential( nn.Conv1d(256, 256, 3, 1, 3//2), nn.ReLU(), nn.BatchNorm1d(256), nn.Dropout(0.1), nn.Conv1d(256, 256, 3, 1, 3//2), nn.BatchNorm1d(256), ) self.right_query_conv = nn.Sequential( nn.Conv1d(256, 256, 3, 1, 3//2), nn.ReLU(), nn.BatchNorm1d(256), nn.Dropout(0.1), nn.Conv1d(256, 256, 3, 1, 3//2), nn.BatchNorm1d(256), ) def forward(self, xyz, mano_hands): device = xyz.device # Set Abstraction layers l0_points = xyz l0_xyz = xyz[:, :3, :] if self.mhlnes: l0_xyz[:, -1, :] = xyz[:, 3:, :].mean(1) l1_xyz, l1_points = self.sa1(l0_xyz, l0_points) l2_xyz, l2_points = self.sa2(l1_xyz, l1_points) l3_xyz, l3_points = self.sa3(l2_xyz, l2_points) # Feature Propagation layers l2_points = self.fp3(l2_xyz, l3_xyz, l2_points, l3_points) l1_points = self.fp2(l1_xyz, l2_xyz, l1_points, l2_points) l0_points = self.fp1(l0_xyz, l1_xyz, None, l1_points) seg_out = self.classifier(l0_points) feat_fuse = l0_points left_hand_features = self.attention_block(seg_out, feat_fuse, self.left_query_conv(feat_fuse)) right_hand_features = self.attention_block(seg_out, feat_fuse, self.right_query_conv(feat_fuse)) left = self.left_mano_regressor(l0_xyz, left_hand_features, mano_hands['left']) right = self.right_mano_regressor(l0_xyz, right_hand_features, mano_hands['right']) return {'class_logits': seg_out, 'left': left, 'right': right} def main(): net = TEHNet(n_pose_params=6)
points = torch.rand(4, 4, 128)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: abing7k/redroid-script # Path: stuffs/gapps.py class Gapps(General): dl_links = { "x86_64": ["https://cfhcable.dl.sourceforge.net/project/opengapps/x86_64/20220503/open_gapps-x86_64-10.0-pico-20220503.zip", "5fb186bfb7bed8925290f79247bec4cf"], "x86": ["https://cfhcable.dl.sourceforge.net/project/opengapps/x86/20220503/open_gapps-x86-10.0-pico-20220503.zip", "7fc75ec9bdca8def07bad306345ce877"], "arm64-v8a": ["https://cfhcable.dl.sourceforge.net/project/opengapps/arm64/20220503/open_gapps-arm64-10.0-pico-20220503.zip", "2feaf25d03530892c6146687ffa08bc2"], "armeabi-v7a": ["https://cfhcable.dl.sourceforge.net/project/opengapps/arm/20220215/open_gapps-arm-10.0-pico-20220215.zip", "1d00ffa4594734d477b10f2e0ee19c0b"] } arch = host() print("arch: "+str(arch)) download_loc = get_download_dir() dl_link = dl_links[arch[0]][0] dl_file_name = os.path.join(download_loc, "open_gapps.zip") act_md5 = dl_links[arch[0]][1] copy_dir = "./gapps" extract_to = "/tmp/ogapps/extract" non_apks = [ "vending-common.tar.lz", "defaultetc-common.tar.lz", "defaultframework-common.tar.lz", "googlepixelconfig-common.tar.lz" ] if arch == ('arm64-v8a', 64): skip_1 = 'setupwizarddefault-x86_64.tar.lz' skip_2 = "setupwizardtablet-x86_64.tar.lz" if arch == ('x86_64', 64): skip_1 = 'setupwizarddefault-arm64.tar.lz' skip_2 = "setupwizardtablet-arm64.tar.lz" skip = [ skip_1, skip_2 ] def download(self): print_color("Downloading OpenGapps now .....", bcolors.GREEN) super().download() def copy(self): if os.path.exists(self.copy_dir): shutil.rmtree(self.copy_dir) if not os.path.exists(self.extract_to): os.makedirs(self.extract_to) if not os.path.exists(os.path.join(self.extract_to, "appunpack")): os.makedirs(os.path.join(self.extract_to, "appunpack")) for lz_file in os.listdir(os.path.join(self.extract_to, "Core")): for d in os.listdir(os.path.join(self.extract_to, "appunpack")): shutil.rmtree(os.path.join(self.extract_to, "appunpack", d)) if lz_file not in self.skip: if lz_file not in self.non_apks: print(" Processing app package : "+os.path.join(self.extract_to, "Core", lz_file)) run(["tar", "--lzip", "-xvf", os.path.join(self.extract_to, "Core", lz_file), "-C", os.path.join(self.extract_to, "appunpack")]) app_name = os.listdir(os.path.join(self.extract_to, "appunpack"))[0] xx_dpi = os.listdir(os.path.join(self.extract_to, "appunpack", app_name))[0] app_priv = os.listdir(os.path.join(self.extract_to, "appunpack", app_name, "nodpi"))[0] app_src_dir = os.path.join(self.extract_to, "appunpack", app_name, xx_dpi, app_priv) for app in os.listdir(app_src_dir): shutil.copytree(os.path.join(app_src_dir, app), os.path.join(self.copy_dir, "system", "priv-app", app), dirs_exist_ok=True) else: print(" Processing extra package : "+os.path.join(self.extract_to, "Core", lz_file)) run(["tar", "--lzip", "-xvf", os.path.join(self.extract_to, "Core", lz_file), "-C", os.path.join(self.extract_to, "appunpack")]) app_name = os.listdir(os.path.join(self.extract_to, "appunpack"))[0] common_content_dirs = os.listdir(os.path.join(self.extract_to, "appunpack", app_name, "common")) for ccdir in common_content_dirs: shutil.copytree(os.path.join(self.extract_to, "appunpack", app_name, "common", ccdir), os.path.join(self.copy_dir, "system", ccdir), dirs_exist_ok=True) # Path: stuffs/magisk.py class Magisk(General): download_loc = get_download_dir() dl_link = "https://mgb1.androidfilehost.com/dl/_E1ugpo3KLudP2K-WauRfQ/1702724403/10620683726822077179/Magisk+Delta+25206+canary+%284dbd8358%29.apk" dl_file_name = os.path.join(download_loc, "magisk.apk") extract_to = "/tmp/magisk_unpack" copy_dir = "./magisk" magisk_dir = os.path.join(copy_dir, "system", "etc", "init", "magisk") machine = host() oringinal_bootanim = """ service bootanim /system/bin/bootanimation class core animation user graphics group graphics audio disabled oneshot ioprio rt 0 task_profiles MaxPerformance """ bootanim_component = """ on post-fs-data start logd exec u:r:su:s0 root root -- /system/etc/init/magisk/magisk{arch} --auto-selinux --setup-sbin /system/etc/init/magisk exec u:r:su:s0 root root -- /system/etc/init/magisk/magiskpolicy --live --magisk "allow * magisk_file lnk_file *" mkdir /sbin/.magisk 700 mkdir /sbin/.magisk/mirror 700 mkdir /sbin/.magisk/block 700 copy /system/etc/init/magisk/config /sbin/.magisk/config rm /dev/.magisk_unblock exec u:r:su:s0 root root -- /sbin/magisk --auto-selinux --post-fs-data wait /dev/.magisk_unblock 40 rm /dev/.magisk_unblock on zygote-start exec u:r:su:s0 root root -- /sbin/magisk --auto-selinux --service on property:sys.boot_completed=1 mkdir /data/adb/magisk 755 exec u:r:su:s0 root root -- /sbin/magisk --auto-selinux --boot-complete exec -- /system/bin/sh -c "if [ ! -e /data/data/io.github.huskydg.magisk ] ; then pm install /system/etc/init/magisk/magisk.apk ; fi" on property:init.svc.zygote=restarting exec u:r:su:s0 root root -- /sbin/magisk --auto-selinux --zygote-restart on property:init.svc.zygote=stopped exec u:r:su:s0 root root -- /sbin/magisk --auto-selinux --zygote-restart """.format(arch=machine[1]) def download(self): if os.path.isfile(self.dl_file_name): os.remove(self.dl_file_name) print_color("Downloading latest Magisk-Delta now .....", bcolors.GREEN) download_file(self.dl_link, self.dl_file_name) def copy(self): if os.path.exists(self.copy_dir): shutil.rmtree(self.copy_dir) if not os.path.exists(self.magisk_dir): os.makedirs(self.magisk_dir, exist_ok=True) if not os.path.exists(os.path.join(self.copy_dir, "sbin")): os.makedirs(os.path.join(self.copy_dir, "sbin"), exist_ok=True) print_color("Copying magisk libs now ...", bcolors.GREEN) lib_dir = os.path.join(self.extract_to, "lib", self.machine[0]) for parent, dirnames, filenames in os.walk(lib_dir): for filename in filenames: o_path = os.path.join(lib_dir, filename) filename = re.search('lib(.*)\.so', filename) n_path = os.path.join(self.magisk_dir, filename.group(1)) shutil.copyfile(o_path, n_path) run(["chmod", "+x", n_path]) shutil.copyfile(self.dl_file_name, os.path.join(self.magisk_dir,"magisk.apk") ) # Updating Magisk from Magisk manager will modify bootanim.rc, # So it is necessary to backup the original bootanim.rc. bootanim_path = os.path.join(self.copy_dir, "system", "etc", "init", "bootanim.rc") gz_filename = os.path.join(bootanim_path)+".gz" with gzip.open(gz_filename,'wb') as f_gz: f_gz.write(self.oringinal_bootanim.encode('utf-8')) with open(bootanim_path, "w") as initfile: initfile.write(self.oringinal_bootanim+self.bootanim_component) os.chmod(bootanim_path, 0o644) # Path: stuffs/ndk.py class Ndk(General): download_loc = get_download_dir() copy_dir = "./ndk" dl_link = "https://github.com/supremegamers/vendor_google_proprietary_ndk_translation-prebuilt/archive/181d9290a69309511185c4417ba3d890b3caaaa8.zip" dl_file_name = os.path.join(download_loc, "libndktranslation.zip") extract_to = "/tmp/libndkunpack" act_md5 = "0beff55f312492f24d539569d84f5bfb" # init_rc_component = """ # # Enable native bridge for target executables # on early-init # mount binfmt_misc binfmt_misc /proc/sys/fs/binfmt_misc # on property:ro.enable.native.bridge.exec=1 # copy /system/etc/binfmt_misc/arm_exe /proc/sys/fs/binfmt_misc/register # copy /system/etc/binfmt_misc/arm_dyn /proc/sys/fs/binfmt_misc/register # copy /system/etc/binfmt_misc/arm64_exe /proc/sys/fs/binfmt_misc/register # copy /system/etc/binfmt_misc/arm64_dyn /proc/sys/fs/binfmt_misc/register # """ def download(self): print_color("Downloading libndk now .....", bcolors.GREEN) super().download() def copy(self): if os.path.exists(self.copy_dir): shutil.rmtree(self.copy_dir) run(["chmod", "+x", self.extract_to, "-R"]) print_color("Copying libndk library files ...", bcolors.GREEN) shutil.copytree(os.path.join(self.extract_to, "vendor_google_proprietary_ndk_translation-prebuilt-181d9290a69309511185c4417ba3d890b3caaaa8", "prebuilts"), os.path.join(self.copy_dir, "system"), dirs_exist_ok=True) init_path = os.path.join(self.copy_dir, "system", "etc", "init", "ndk_translation.rc") os.chmod(init_path, 0o644) # if not os.path.isfile(init_path): # os.makedirs(os.path.dirname(init_path), exist_ok=True) # with open(init_path, "w") as initfile: # initfile.write(self.init_rc_component) # Path: stuffs/widevine.py class Widevine(General): def __init__(self, android_version) -> None: super().__init__() self.android_version = android_version self.dl_link = self.dl_links[self.machine[0]][android_version][0] self.act_md5 = self.dl_links[self.machine[0]][android_version][1] download_loc = get_download_dir() machine = host() copy_dir = "./widevine" dl_links = { # "x86": { # "11.0.0": ["https://github.com/supremegamers/vendor_google_proprietary_widevine-prebuilt/archive/48d1076a570837be6cdce8252d5d143363e37cc1.zip", # "f587b8859f9071da4bca6cea1b9bed6a"] # }, "x86_64": { "11.0.0": ["https://github.com/supremegamers/vendor_google_proprietary_widevine-prebuilt/archive/48d1076a570837be6cdce8252d5d143363e37cc1.zip", "f587b8859f9071da4bca6cea1b9bed6a"], "12.0.0": ["https://github.com/supremegamers/vendor_google_proprietary_widevine-prebuilt/archive/3bba8b6e9dd5ffad5b861310433f7e397e9366e8.zip", "3e147bdeeb7691db4513d93cfa6beb23"], "13.0.0": ["https://github.com/supremegamers/vendor_google_proprietary_widevine-prebuilt/archive/a8524d608431573ef1c9313822d271f78728f9a6.zip", "5c55df61da5c012b4e43746547ab730f"] }, # "armeabi-v7a": # { # "11.0.0": ["https://github.com/supremegamers/vendor_google_proprietary_widevine-prebuilt/archive/7b6e37ef0b63408f7d0232e67192020ba0aa402b.zip", # "3c3a136dc926ae5fc07826359720dbab"] # }, "arm64-v8a": { "11.0.0": ["https://github.com/supremegamers/vendor_google_proprietary_widevine-prebuilt/archive/a1a19361d36311bee042da8cf4ced798d2c76d98.zip", "fed6898b5cfd2a908cb134df97802554"] } } dl_file_name = os.path.join(download_loc, "widevine.zip") extract_to = "/tmp/widevineunpack" def download(self): print_color("Downloading widevine now .....", bcolors.GREEN) super().download() def copy(self): if os.path.exists(self.copy_dir): shutil.rmtree(self.copy_dir) run(["chmod", "+x", self.extract_to, "-R"]) print_color("Copying widevine library files ...", bcolors.GREEN) name = re.findall("([a-zA-Z0-9]+)\.zip", self.dl_link)[0] shutil.copytree(os.path.join(self.extract_to, "vendor_google_proprietary_widevine-prebuilt-"+name, "prebuilts"), os.path.join(self.copy_dir, "vendor"), dirs_exist_ok=True) if "x86" in self.machine[0] and self.android_version == "11.0.0": os.symlink("./libprotobuf-cpp-lite-3.9.1.so", os.path.join(self.copy_dir, "vendor", "lib", "libprotobuf-cpp-lite.so")) os.symlink("./libprotobuf-cpp-lite-3.9.1.so", os.path.join(self.copy_dir, "vendor", "lib64", "libprotobuf-cpp-lite.so")) for file in os.listdir(os.path.join(self.copy_dir, "vendor", "etc", "init")): if file.endswith('.rc'): os.chmod(os.path.join(self.copy_dir, "vendor", "etc", "init", file), 0o644) # Path: redroid.py import argparse import tools.helper as helper import subprocess from stuffs.gapps import Gapps from stuffs.magisk import Magisk from stuffs.ndk import Ndk from stuffs.widevine import Widevine #!/usr/bin/env python3 def main(): dockerfile = "" tags = [] parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('-a', '--android-version', dest='android', help='Specify the Android version to build', default='11.0.0', choices=['13.0.0', '12.0.0', '12.0.0_64only', '11.0.0', '10.0.0', '9.0.0', '8.1.0'])
parser.add_argument('-g', '--install-gapps',
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: zvict/papr # Path: models/utils.py def normalize_vector(x, eps=0.): # assert(x.shape[-1] == 3) return x / (torch.norm(x, dim=-1, keepdim=True) + eps) # Path: models/utils.py def create_learning_rate_fn(optimizer, max_steps, args, debug=False): """Create learning rate schedule.""" if args.type == "none": return None if args.warmup > 0: warmup_start_factor = 1e-16 else: warmup_start_factor = 1.0 warmup_fn = lr_scheduler.LinearLR(optimizer, start_factor=warmup_start_factor, end_factor=1.0, total_iters=args.warmup, verbose=debug) if args.type == "linear": decay_fn = lr_scheduler.LinearLR(optimizer, start_factor=1.0, end_factor=0., total_iters=max_steps - args.warmup, verbose=debug) schedulers = [warmup_fn, decay_fn] milestones = [args.warmup] elif args.type == "cosine": cosine_steps = max(max_steps - args.warmup, 1) decay_fn = lr_scheduler.CosineAnnealingLR(optimizer, T_max=cosine_steps, verbose=debug) schedulers = [warmup_fn, decay_fn] milestones = [args.warmup] elif args.type == "cosine-hlfperiod": cosine_steps = max(max_steps - args.warmup, 1) * 2 decay_fn = lr_scheduler.CosineAnnealingLR(optimizer, T_max=cosine_steps, verbose=debug) schedulers = [warmup_fn, decay_fn] milestones = [args.warmup] elif args.type == "exp": decay_fn = lr_scheduler.ExponentialLR(optimizer, gamma=args.gamma, verbose=debug) schedulers = [warmup_fn, decay_fn] milestones = [args.warmup] elif args.type == "stop": decay_fn = lr_scheduler.StepLR( optimizer, step_size=1, gamma=0.0, verbose=debug) schedulers = [warmup_fn, decay_fn] milestones = [args.warmup] else: raise NotImplementedError schedule_fn = lr_scheduler.SequentialLR(optimizer, schedulers=schedulers, milestones=milestones, verbose=debug) return schedule_fn # Path: models/utils.py def add_points_knn(coords, influ_scores, add_num, k, comb_type="mean", sample_type="random", sample_k=10, point_features=None): """ Add points to the point cloud by kNN """ pc = KDTree(coords) N = coords.shape[0] # Step 1: Determine where to add points if N <= add_num and "random" in comb_type: inds = np.random.choice(N, add_num, replace=True) query_coords = coords[inds, :] elif N <= add_num: query_coords = coords inds = list(range(N)) else: if sample_type == "random": inds = np.random.choice(N, add_num, replace=False) query_coords = coords[inds, :] elif sample_type == "top-knn-std": assert k >= 2 nns_dists, nns_inds = pc.query(coords, k=sample_k) inds = np.argsort(nns_dists.std(axis=-1))[-add_num:] query_coords = coords[inds, :] elif sample_type == "top-knn-mean": assert k >= 2 nns_dists, nns_inds = pc.query(coords, k=sample_k) inds = np.argsort(nns_dists.mean(axis=-1))[-add_num:] query_coords = coords[inds, :] elif sample_type == "top-knn-max": assert k >= 2 nns_dists, nns_inds = pc.query(coords, k=sample_k) inds = np.argsort(nns_dists.max(axis=-1))[-add_num:] query_coords = coords[inds, :] elif sample_type == "top-knn-min": assert k >= 2 nns_dists, nns_inds = pc.query(coords, k=sample_k) inds = np.argsort(nns_dists.min(axis=-1))[-add_num:] query_coords = coords[inds, :] elif sample_type == "influ-scores-max": inds = np.argsort(influ_scores.squeeze())[-add_num:] query_coords = coords[inds, :] elif sample_type == "influ-scores-min": inds = np.argsort(influ_scores.squeeze())[:add_num] query_coords = coords[inds, :] else: raise NotImplementedError # Step 2: Add points by kNN new_features = None if comb_type == "duplicate": noise = np.random.randn(3).astype(np.float32) noise = noise / np.linalg.norm(noise) noise *= k new_coords = (query_coords + noise) new_influ_scores = influ_scores[inds, :] if point_features is not None: new_features = point_features[inds, :] else: nns_dists, nns_inds = pc.query(query_coords, k=k+1) nns_dists = nns_dists.astype(np.float32) nns_dists = nns_dists[:, 1:] nns_inds = nns_inds[:, 1:] if comb_type == "mean": new_coords = coords[nns_inds, :].mean( axis=-2) # (Nq, k, 3) -> (Nq, 3) new_influ_scores = influ_scores[nns_inds, :].mean(axis=-2) if point_features is not None: new_features = point_features[nns_inds, :].mean(axis=-2) elif comb_type == "random": rnd_w = np.random.uniform( 0, 1, (query_coords.shape[0], k)).astype(np.float32) rnd_w /= rnd_w.sum(axis=-1, keepdims=True) new_coords = (coords[nns_inds, :] * rnd_w.reshape(-1, k, 1)).sum(axis=-2) new_influ_scores = ( influ_scores[nns_inds, :] * rnd_w.reshape(-1, k, 1)).sum(axis=-2) if point_features is not None: new_features = ( point_features[nns_inds, :] * rnd_w.reshape(-1, k, 1)).sum(axis=-2) elif comb_type == "random-softmax": rnd_w = np.random.randn( query_coords.shape[0], k).astype(np.float32) rnd_w = scipy.special.softmax(rnd_w, axis=-1) new_coords = (coords[nns_inds, :] * rnd_w.reshape(-1, k, 1)).sum(axis=-2) new_influ_scores = ( influ_scores[nns_inds, :] * rnd_w.reshape(-1, k, 1)).sum(axis=-2) if point_features is not None: new_features = ( point_features[nns_inds, :] * rnd_w.reshape(-1, k, 1)).sum(axis=-2) elif comb_type == "weighted": new_coords = (coords[nns_inds, :] * (1 / (nns_dists + 1e-6)).reshape(-1, k, 1)).sum( axis=-2) / (1 / (nns_dists + 1e-6)).sum(axis=-1, keepdims=True) new_influ_scores = (influ_scores[nns_inds, :] * (1 / (nns_dists + 1e-6)).reshape(-1, k, 1)).sum( axis=-2) / (1 / (nns_dists + 1e-6)).sum(axis=-1, keepdims=True) if point_features is not None: new_features = (point_features[nns_inds, :] * (1 / (nns_dists + 1e-6)).reshape(-1, k, 1)).sum( axis=-2) / (1 / (nns_dists + 1e-6)).sum(axis=-1, keepdims=True) else: raise NotImplementedError return new_coords, len(new_coords), new_influ_scores, new_features # Path: models/utils.py def activation_func(act_type='leakyrelu', neg_slope=0.2, inplace=True, num_channels=128, a=1., b=1., trainable=False): act_type = act_type.lower() if act_type == 'none': layer = nn.Identity() elif act_type == 'leakyrelu': layer = nn.LeakyReLU(neg_slope, inplace) elif act_type == 'prelu': layer = nn.PReLU(num_channels) elif act_type == 'relu': layer = nn.ReLU(inplace) elif act_type == '+1': layer = PlusOneActivation() elif act_type == 'relu+1': layer = nn.Sequential(nn.ReLU(inplace), PlusOneActivation()) elif act_type == 'tanh': layer = nn.Tanh() elif act_type == 'shifted_tanh': layer = ShiftedTanh() elif act_type == 'sigmoid': layer = nn.Sigmoid() elif act_type == 'gelu': layer = nn.GELU() elif act_type == 'gaussian': layer = GaussianActivation(a, trainable) elif act_type == 'quadratic': layer = QuadraticActivation(a, trainable) elif act_type == 'multi-quadratic': layer = MultiQuadraticActivation(a, trainable) elif act_type == 'laplacian': layer = LaplacianActivation(a, trainable) elif act_type == 'super-gaussian': layer = SuperGaussianActivation(a, b, trainable) elif act_type == 'expsin': layer = ExpSinActivation(a, trainable) elif act_type == 'clamp': layer = Clamp(0, 1) elif 'sine' in act_type: layer = Sine(factor=a) elif 'softplus' in act_type: a, b, c = [float(i) for i in act_type.split('_')[1:]] print( 'Softplus activation: a={:.2f}, b={:.2f}, c={:.2f}'.format(a, b, c)) layer = SoftplusActivation(a, b, c) else: raise NotImplementedError( 'activation layer [{:s}] is not found'.format(act_type)) return layer # Path: models/mlp.py def get_mapping_mlp(args, use_amp=False, amp_dtype=torch.float16): return MappingMLP(args.mapping_mlp, inp_dim=args.shading_code_dim, out_dim=args.mapping_mlp.out_dim, use_amp=use_amp, amp_dtype=amp_dtype) # Path: models/tx.py def get_transformer(args, seq_len, v_extra_dim=0, k_extra_dim=0, q_extra_dim=0, eps=1e-6, use_amp=False, amp_dtype=torch.float16): k_dim_map = { 1: [3, 3, 3], } k_dim = k_dim_map[args.k_type] q_dim_map = { 1: [3], } q_dim = q_dim_map[args.q_type] v_dim_map = { 1: [3, 3], } v_dim = v_dim_map[args.v_type] return Transformer(d_k=k_dim, d_q=q_dim, d_v=v_dim, d_model=args.d_model, d_out=args.d_out, seq_len=seq_len, embed_args=args.embed, block_args=args.block, d_ko=k_extra_dim, d_qo=q_extra_dim, d_vo=v_extra_dim, eps=eps, use_amp=use_amp, amp_dtype=amp_dtype) # Path: models/renderer.py def get_generator(args, in_c, out_c, use_amp=False, amp_dtype=torch.float16): if args.type == "small-unet": opt = args.small_unet return SmallUNet(in_c, out_c, bilinear=opt.bilinear, single=opt.single, norm=opt.norm, last_act=opt.last_act, use_amp=use_amp, amp_dtype=amp_dtype, affine_layer=opt.affine_layer) elif args.type == "mlp": opt = args.mlp return MLPGenerator(inp_dim=in_c, num_layers=opt.num_layers, num_channels=opt.num_channels, out_dim=out_c, act_type=opt.act_type, last_act_type=opt.last_act_type, use_wn=opt.use_wn, a=opt.act_a, b=opt.act_b, trainable=opt.act_trainable, skip_layers=opt.skip_layers, bias=opt.bias, half_layers=opt.half_layers, residual_layers=opt.residual_layers, residual_dims=opt.residual_dims) else: raise NotImplementedError( 'generator type [{:d}] is not supported'.format(args.type)) # Path: models/model.py import torch import torch.nn as nn import torch.nn.functional as F import math import os import numpy as np from .utils import normalize_vector, create_learning_rate_fn, add_points_knn, activation_func from .mlp import get_mapping_mlp from .tx import get_transformer from .renderer import get_generator def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) class PAPR(nn.Module): def __init__(self, args, device='cuda'): super(PAPR, self).__init__() self.args = args self.eps = args.eps self.device = device self.use_amp = args.use_amp self.amp_dtype = torch.float16 if args.amp_dtype == 'float16' else torch.bfloat16 self.scaler = torch.cuda.amp.GradScaler(enabled=self.use_amp) point_opt = args.geoms.points pc_feat_opt = args.geoms.point_feats bkg_feat_opt = args.geoms.background self.register_buffer('select_k', torch.tensor( point_opt.select_k, device=device, dtype=torch.int32)) self.coord_scale = args.dataset.coord_scale if point_opt.load_path: if point_opt.load_path.endswith('.pth') or point_opt.load_path.endswith('.pt'): points = torch.load(point_opt.load_path, map_location='cpu') points = np.asarray(points).astype(np.float32) np.random.shuffle(points) points = points[:args.max_num_pts, :] points = torch.from_numpy(points).float() print("Loaded points from {}, shape: {}, dtype {}".format(point_opt.load_path, points.shape, points.dtype)) print("Loaded points scale: ", points[:, 0].min(), points[:, 0].max(), points[:, 1].min(), points[:, 1].max(), points[:, 2].min(), points[:, 2].max()) else: # Initialize point positions pt_init_center = [i * self.coord_scale for i in point_opt.init_center] pt_init_scale = [i * self.coord_scale for i in point_opt.init_scale] if point_opt.init_type == 'sphere': # initial points on a sphere points = self._sphere_pc(pt_init_center, point_opt.num, pt_init_scale) elif point_opt.init_type == 'cube': # initial points in a cube points = self._cube_normal_pc(pt_init_center, point_opt.num, pt_init_scale) else: raise NotImplementedError("Point init type [{:s}] is not found".format(point_opt.init_type)) print("Scratch points scale: ", points[:, 0].min(), points[:, 0].max(), points[:, 1].min(), points[:, 1].max(), points[:, 2].min(), points[:, 2].max()) self.points = torch.nn.Parameter(points, requires_grad=True) # Initialize point influence scores self.points_influ_scores = torch.nn.Parameter(torch.ones( points.shape[0], 1, device=device) * point_opt.influ_init_val, requires_grad=True) # Initialize mapping MLP, only if fine-tuning with IMLE for the exposure control self.mapping_mlp = None if args.models.mapping_mlp.use: self.mapping_mlp = get_mapping_mlp( args.models, use_amp=self.use_amp, amp_dtype=self.amp_dtype) # Initialize UNet if args.models.use_renderer: tx_opt = args.models.transformer feat_dim = tx_opt.embed.d_ff_out if tx_opt.embed.share_embed else tx_opt.embed.value.d_ff_out self.renderer = get_generator(args.models.renderer.generator, in_c=feat_dim, out_c=3, use_amp=self.use_amp, amp_dtype=self.amp_dtype) print("Renderer: ", count_parameters(self.renderer)) else: assert (args.models.transformer.embed.share_embed and args.models.transformer.embed.d_ff_out == 3) or \ (not args.models.transformer.embed.share_embed and args.models.transformer.embed.value.d_ff_out == 3), \ "Value embedding MLP should have output dim 3 if not using renderer" # Initialize background score and features if bkg_feat_opt.init_type == 'random':
bkg_feat_init_func = torch.rand
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: AdaCheng/EgoThink # Path: models/minigpt4_legacy/common/dist_utils.py def setup_for_distributed(is_master): def print(*args, **kwargs): def is_dist_avail_and_initialized(): def get_world_size(): def get_rank(): def is_main_process(): def init_distributed_mode(args): def get_dist_info(): def main_process(func): def wrapper(*args, **kwargs): def download_cached_file(url, check_hash=True, progress=False): def get_cached_file_path(): # Path: models/minigpt4_legacy/common/dist_utils.py def download_cached_file(url, check_hash=True, progress=False): """ Download a file from a URL and cache it locally. If the file already exists, it is not downloaded again. If distributed, only the main process downloads the file, and the other processes wait for the file to be downloaded. """ def get_cached_file_path(): # a hack to sync the file path across processes parts = torch.hub.urlparse(url) filename = os.path.basename(parts.path) cached_file = os.path.join(timm_hub.get_cache_dir(), filename) return cached_file if is_main_process(): timm_hub.download_cached_file(url, check_hash, progress) if is_dist_avail_and_initialized(): dist.barrier() return get_cached_file_path() # Path: models/minigpt4_legacy/common/utils.py def is_url(url_or_filename): parsed = urlparse(url_or_filename) return parsed.scheme in ("http", "https") # Path: models/minigpt4_legacy/common/logger.py class MetricLogger(object): def __init__(self, delimiter="\t"): self.meters = defaultdict(SmoothedValue) self.delimiter = delimiter def update(self, **kwargs): for k, v in kwargs.items(): if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.meters[k].update(v) def __getattr__(self, attr): if attr in self.meters: return self.meters[attr] if attr in self.__dict__: return self.__dict__[attr] raise AttributeError( "'{}' object has no attribute '{}'".format(type(self).__name__, attr) ) def __str__(self): loss_str = [] for name, meter in self.meters.items(): loss_str.append("{}: {}".format(name, str(meter))) return self.delimiter.join(loss_str) def global_avg(self): loss_str = [] for name, meter in self.meters.items(): loss_str.append("{}: {:.4f}".format(name, meter.global_avg)) return self.delimiter.join(loss_str) def synchronize_between_processes(self): for meter in self.meters.values(): meter.synchronize_between_processes() def add_meter(self, name, meter): self.meters[name] = meter def log_every(self, iterable, print_freq, header=None): i = 0 if not header: header = "" start_time = time.time() end = time.time() iter_time = SmoothedValue(fmt="{avg:.4f}") data_time = SmoothedValue(fmt="{avg:.4f}") space_fmt = ":" + str(len(str(len(iterable)))) + "d" log_msg = [ header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}", ] if torch.cuda.is_available(): log_msg.append("max mem: {memory:.0f}") log_msg = self.delimiter.join(log_msg) MB = 1024.0 * 1024.0 for obj in iterable: data_time.update(time.time() - end) yield obj iter_time.update(time.time() - end) if i % print_freq == 0 or i == len(iterable) - 1: eta_seconds = iter_time.global_avg * (len(iterable) - i) eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) if torch.cuda.is_available(): print( log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), memory=torch.cuda.max_memory_allocated() / MB, ) ) else: print( log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), ) ) i += 1 end = time.time() total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print( "{} Total time: {} ({:.4f} s / it)".format( header, total_time_str, total_time / len(iterable) ) ) # Path: models/minigpt4_legacy/models/base_model.py class BaseModel(nn.Module): """Base class for models.""" def __init__(self): super().__init__() @property def device(self): return list(self.parameters())[0].device def load_checkpoint(self, url_or_filename): """ Load from a finetuned checkpoint. This should expect no mismatch in the model keys and the checkpoint keys. """ if is_url(url_or_filename): cached_file = download_cached_file( url_or_filename, check_hash=False, progress=True ) checkpoint = torch.load(cached_file, map_location="cpu") elif os.path.isfile(url_or_filename): checkpoint = torch.load(url_or_filename, map_location="cpu") else: raise RuntimeError("checkpoint url or path is invalid") if "model" in checkpoint.keys(): state_dict = checkpoint["model"] else: state_dict = checkpoint msg = self.load_state_dict(state_dict, strict=False) logging.info("Missing keys {}".format(msg.missing_keys)) logging.info("load checkpoint from %s" % url_or_filename) return msg @classmethod def from_pretrained(cls, model_type): """ Build a pretrained model from default configuration file, specified by model_type. Args: - model_type (str): model type, specifying architecture and checkpoints. Returns: - model (nn.Module): pretrained or finetuned model, depending on the configuration. """ model_cfg = OmegaConf.load(cls.default_config_path(model_type)).model model = cls.from_config(model_cfg) return model @classmethod def default_config_path(cls, model_type): assert ( model_type in cls.PRETRAINED_MODEL_CONFIG_DICT ), "Unknown model type {}".format(model_type) return get_abs_path(cls.PRETRAINED_MODEL_CONFIG_DICT[model_type]) def load_checkpoint_from_config(self, cfg, **kwargs): """ Load checkpoint as specified in the config file. If load_finetuned is True, load the finetuned model; otherwise, load the pretrained model. When loading the pretrained model, each task-specific architecture may define their own load_from_pretrained() method. """ load_finetuned = cfg.get("load_finetuned", True) if load_finetuned: finetune_path = cfg.get("finetuned", None) assert ( finetune_path is not None ), "Found load_finetuned is True, but finetune_path is None." self.load_checkpoint(url_or_filename=finetune_path) else: # load pre-trained weights pretrain_path = cfg.get("pretrained", None) assert "Found load_finetuned is False, but pretrain_path is None." self.load_from_pretrained(url_or_filename=pretrain_path, **kwargs) def before_evaluation(self, **kwargs): pass def show_n_params(self, return_str=True): tot = 0 for p in self.parameters(): w = 1 for x in p.shape: w *= x tot += w if return_str: if tot >= 1e6: return "{:.1f}M".format(tot / 1e6) else: return "{:.1f}K".format(tot / 1e3) else: return tot # Path: models/minigpt4_legacy/models/Qformer.py class BertEmbeddings(nn.Module): class BertSelfAttention(nn.Module): class BertSelfOutput(nn.Module): class BertAttention(nn.Module): class BertIntermediate(nn.Module): class BertOutput(nn.Module): class BertLayer(nn.Module): class BertEncoder(nn.Module): class BertPooler(nn.Module): class BertPredictionHeadTransform(nn.Module): class BertLMPredictionHead(nn.Module): class BertOnlyMLMHead(nn.Module): class BertPreTrainedModel(PreTrainedModel): class BertModel(BertPreTrainedModel): class BertLMHeadModel(BertPreTrainedModel): class BertForMaskedLM(BertPreTrainedModel): def __init__(self, config): def forward( self, input_ids=None, position_ids=None, query_embeds=None, past_key_values_length=0, ): def __init__(self, config, is_cross_attention): def save_attn_gradients(self, attn_gradients): def get_attn_gradients(self): def save_attention_map(self, attention_map): def get_attention_map(self): def transpose_for_scores(self, x): def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): def __init__(self, config): def forward(self, hidden_states, input_tensor): def __init__(self, config, is_cross_attention=False): def prune_heads(self, heads): def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): def __init__(self, config): def forward(self, hidden_states): def __init__(self, config): def forward(self, hidden_states, input_tensor): def __init__(self, config, layer_num): def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, query_length=0, ): def feed_forward_chunk(self, attention_output): def feed_forward_chunk_query(self, attention_output): def __init__(self, config): def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=False, output_hidden_states=False, return_dict=True, query_length=0, ): def create_custom_forward(module): def custom_forward(*inputs): def __init__(self, config): def forward(self, hidden_states): def __init__(self, config): def forward(self, hidden_states): def __init__(self, config): def forward(self, hidden_states): def __init__(self, config): def forward(self, sequence_output): def _init_weights(self, module): def __init__(self, config, add_pooling_layer=False): def get_input_embeddings(self): def set_input_embeddings(self, value): def _prune_heads(self, heads_to_prune): def get_extended_attention_mask( self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool, has_query: bool = False, ) -> Tensor: def forward( self, input_ids=None, attention_mask=None, position_ids=None, head_mask=None, query_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, is_decoder=False, ): def __init__(self, config): def get_output_embeddings(self): def set_output_embeddings(self, new_embeddings): def forward( self, input_ids=None, attention_mask=None, position_ids=None, head_mask=None, query_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, past_key_values=None, use_cache=True, output_attentions=None, output_hidden_states=None, return_dict=None, return_logits=False, is_decoder=True, reduction="mean", ): def prepare_inputs_for_generation( self, input_ids, query_embeds, past=None, attention_mask=None, **model_kwargs ): def _reorder_cache(self, past, beam_idx): def __init__(self, config): def get_output_embeddings(self): def set_output_embeddings(self, new_embeddings): def forward( self, input_ids=None, attention_mask=None, position_ids=None, head_mask=None, query_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, return_logits=False, is_decoder=False, ): # Path: models/minigpt4_legacy/models/eva_vit.py def create_eva_vit_g(img_size=224,drop_path_rate=0.4,use_checkpoint=False,precision="fp32"): model = VisionTransformer( img_size=img_size, patch_size=14, use_mean_pooling=False, embed_dim=1408, depth=39, num_heads=1408//88, mlp_ratio=4.3637, qkv_bias=True, drop_path_rate=drop_path_rate, norm_layer=partial(nn.LayerNorm, eps=1e-6), use_checkpoint=use_checkpoint, ) url = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/eva_vit_g.pth" cached_file = download_cached_file( url, check_hash=False, progress=True ) state_dict = torch.load(cached_file, map_location="cpu") interpolate_pos_embed(model,state_dict) incompatible_keys = model.load_state_dict(state_dict, strict=False) # print(incompatible_keys) if precision == "fp16": # model.to("cuda") convert_weights_to_fp16(model) return model # Path: models/minigpt4_legacy/models/blip2.py import contextlib import logging import os import time import datetime import torch import torch.nn as nn import torch.distributed as dist import torch.nn.functional as F from ..common import dist_utils as dist_utils from ..common.dist_utils import download_cached_file from ..common.utils import is_url from ..common.logger import MetricLogger from ..models.base_model import BaseModel from ..models.Qformer import BertConfig, BertLMHeadModel from ..models.eva_vit import create_eva_vit_g from transformers import BertTokenizer """ Copyright (c) 2023, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ class Blip2Base(BaseModel): @classmethod def init_tokenizer(cls): tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") tokenizer.add_special_tokens({"bos_token": "[DEC]"}) return tokenizer def maybe_autocast(self, dtype=torch.float16): # if on cpu, don't use autocast # if on gpu, use autocast with dtype if provided, otherwise use torch.float16 enable_autocast = self.device != torch.device("cpu") if enable_autocast: return torch.cuda.amp.autocast(dtype=dtype) else: return contextlib.nullcontext() @classmethod def init_Qformer(cls, num_query_token, vision_width, cross_attention_freq=2): encoder_config = BertConfig.from_pretrained("bert-base-uncased") encoder_config.encoder_width = vision_width # insert cross-attention layer every other block encoder_config.add_cross_attention = True encoder_config.cross_attention_freq = cross_attention_freq encoder_config.query_length = num_query_token Qformer = BertLMHeadModel(config=encoder_config) query_tokens = nn.Parameter( torch.zeros(1, num_query_token, encoder_config.hidden_size) ) query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range) return Qformer, query_tokens @classmethod def init_vision_encoder( cls, model_name, img_size, drop_path_rate, use_grad_checkpoint, precision ): assert model_name == "eva_clip_g", "vit model must be eva_clip_g for current version of MiniGPT-4" visual_encoder = create_eva_vit_g( img_size, drop_path_rate, use_grad_checkpoint, precision ) ln_vision = LayerNorm(visual_encoder.num_features) return visual_encoder, ln_vision def load_from_pretrained(self, url_or_filename): # import pdb; pdb.set_trace() if is_url(url_or_filename): cached_file = download_cached_file( url_or_filename, check_hash=False, progress=True ) checkpoint = torch.load(cached_file, map_location="cpu") elif os.path.isfile(url_or_filename): checkpoint = torch.load(url_or_filename, map_location="cpu") else: raise RuntimeError("checkpoint url or path is invalid") state_dict = checkpoint["model"] msg = self.load_state_dict(state_dict, strict=False) # logging.info("Missing keys {}".format(msg.missing_keys)) logging.info("load checkpoint from %s" % url_or_filename) return msg def disabled_train(self, mode=True): """Overwrite model.train with this function to make sure train/eval mode does not change anymore."""
return self
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: 3dlg-hcvc/cage # Path: utils/savermixins.py class SaverMixin(): def set_save_dir(self, stage): self.hparams.save_dir = os.path.join(self.logger.log_dir, 'images', stage) os.makedirs(self.hparams.save_dir, exist_ok=True) @property def save_dir(self): return self.hparams.save_dir def convert_format(self, data): if isinstance(data, np.ndarray): return data elif isinstance(data, torch.Tensor): return data.cpu().numpy() elif isinstance(data, list): return [self.convert_data(d) for d in data] elif isinstance(data, dict): return {k: self.convert_data(v) for k, v in data.items()} else: raise TypeError('Data must be in type numpy.ndarray, torch.Tensor, list or dict, getting', type(data)) def get_save_path(self, filename): save_path = os.path.join(self.save_dir, filename) os.makedirs(os.path.dirname(save_path), exist_ok=True) return save_path def save_rgb_image(self, filename, img): imageio.imwrite(self.get_save_path(filename), img) def save_rgb_video(self, filename, stage='fit', filter=None): img_dir = os.path.join(self.logger.log_dir, 'images', stage) writer_graph = imageio.get_writer(os.path.join(img_dir, filename), fps=1) for file in sorted(os.listdir(img_dir)): if file.endswith('.png') and 'gt' not in file: if filter is not None: if filter in file: writer_graph.append_data(imageio.imread(os.path.join(img_dir, file))) else: writer_graph.append_data(imageio.imread(os.path.join(img_dir, file))) writer_graph.close() def save_json(self, filename, data): save_path = self.get_save_path(filename) with open(save_path, 'w') as f: json.dump(data, f) # Path: utils/refs.py # Path: utils/plot.py def viz_graph(info_dict, res=256): ''' Function to plot the directed graph Args: - info_dict (dict): output json containing the graph information - res (int): resolution of the image Returns: - img_arr (np.array): image array ''' # build tree tree = info_dict['diffuse_tree'] edges = [] for node in tree: edges += [(node['id'], child) for child in node['children']] G = nx.DiGraph() G.add_edges_from(edges) # plot tree plt.figure(figsize=(res/100, res/100)) colors = get_color(graph_color_ref, len(tree)) pos = nx.nx_agraph.graphviz_layout(G, prog="twopi", args="") node_order = sorted(G.nodes()) nx.draw(G, pos, node_color=colors, nodelist=node_order, edge_color='k', with_labels=False) buf = BytesIO() plt.savefig(buf, format="png", dpi=100) buf.seek(0) img = Image.open(buf) img_arr = np.asarray(img) buf.close() plt.clf() plt.close() return img_arr[:, :, :3] # Path: utils/plot.py def make_grid(images, cols=5): """ Arrange list of images into a N x cols grid. Args: - images (list): List of Numpy arrays representing the images. - cols (int): Number of columns for the grid. Returns: - grid (numpy array): Numpy array representing the image grid. """ # Determine the dimensions of each image img_h, img_w, _ = images[0].shape rows = len(images) // cols # Initialize a blank canvas grid = np.zeros((rows * img_h, cols * img_w, 3), dtype=images[0].dtype) # Place each image onto the grid for idx, img in enumerate(images): y = (idx // cols) * img_h x = (idx % cols) * img_w grid[y: y + img_h, x: x + img_w] = img return grid # Path: utils/plot.py def add_text(text, imgarr): ''' Function to add text to image Args: - text (str): text to add - imgarr (np.array): image array Returns: - img (np.array): image array with text ''' img = Image.fromarray(imgarr) I = ImageDraw.Draw(img) I.text((10, 10), text, fill='black') return np.asarray(img) # Path: utils/render.py def rescale_axis(jtype, axis_d, axis_o, box_center): ''' Function to rescale the axis for rendering Args: - jtype (int): joint type - axis_d (np.array): axis direction - axis_o (np.array): axis origin - box_center (np.array): bounding box center Returns: - center (np.array): rescaled axis origin - axis_d (np.array): rescaled axis direction ''' if jtype == 0 or jtype == 1: return [0., 0., 0.], [0., 0., 0.] if jtype == 3 or jtype == 4: center = box_center else: center = axis_o + np.dot(axis_d, box_center-axis_o) * axis_d return center.tolist(), axis_d.tolist() # Path: utils/render.py def draw_boxes_axiss_anim(aabbs_0, aabbs_1, axiss, mode='graph', resolution=256, types=None): ''' Function to draw the 3D bounding boxes and axes of the two frames Args: aabbs_0: list of trimesh objects for the bounding box of each part in the resting state aabbs_1: list of trimesh objects for the bounding box of each part in the open state axiss: list of trimesh objects for the axis of each part mode: 'graph' using palette corresponding to graph node, 'jtype' using palette corresponding to joint type, 'semantic' using palette corresponding to semantic label resolution: resolution of the rendered image types: ids corresponding to each joint type or semantic label, if mode is 'jtype' or 'semantic' ''' n_parts = len(aabbs_0) ren_aabbs_0 = [] ren_aabbs_1 = [] ren_axiss = [] if mode == 'graph': palette = graph_color_ref # Add meshes to the scene for i in range(n_parts): color = get_color_from_palette(palette, i) aabb_0 = pyrender.Mesh.from_trimesh(aabbs_0[i], smooth=False) aabb_0.primitives[0].color_0 = color.repeat(aabb_0.primitives[0].positions.shape[0], axis=0) ren_aabbs_0.append(aabb_0) aabb_1 = pyrender.Mesh.from_trimesh(aabbs_1[i], smooth=False) aabb_1.primitives[0].color_0 = color.repeat(aabb_1.primitives[0].positions.shape[0], axis=0) ren_aabbs_1.append(aabb_1) if axiss[i] is not None: axis = pyrender.Mesh.from_trimesh(axiss[i], smooth=False) axis.primitives[0].color_0 = color.repeat(axis.primitives[0].positions.shape[0], axis=0) ren_axiss.append(axis) else: ren_axiss.append(None) elif mode == 'jtype' or mode == 'semantic': assert types is not None palette = joint_color_ref if mode == 'jtype' else semantic_color_ref # Add meshes to the scene for i in range(n_parts): color = get_color_from_palette(palette, types[i]) aabb_0 = pyrender.Mesh.from_trimesh(aabbs_0[i], smooth=False) aabb_0.primitives[0].color_0 = color.repeat(aabb_0.primitives[0].positions.shape[0], axis=0) ren_aabbs_0.append(aabb_0) aabb_1 = pyrender.Mesh.from_trimesh(aabbs_1[i], smooth=False) aabb_1.primitives[0].color_0 = color.repeat(aabb_1.primitives[0].positions.shape[0], axis=0) ren_aabbs_1.append(aabb_1) if axiss[i] is not None: axis = pyrender.Mesh.from_trimesh(axiss[i], smooth=False) ren_axiss.append(axis) else: ren_axiss.append(None) else: raise ValueError('mode must be either graph or type') img0 = render_anim_parts(ren_aabbs_0, ren_axiss, resolution=resolution) img1 = render_anim_parts(ren_aabbs_1, ren_axiss, resolution=resolution) return np.concatenate([img0, img1], axis=1) # Path: utils/render.py def get_bbox_mesh_pair(center, size, radius=0.01, jtype=None, jrange=None, axis_d=None, axis_o=None): ''' Function to get the bounding box mesh pair Args: - center (np.array): bounding box center - size (np.array): bounding box size - radius (float): radius of the cylinder - jtype (int): joint type - jrange (list): joint range - axis_d (np.array): axis direction - axis_o (np.array): axis origin Returns: - trimesh_box (trimesh object): trimesh object for the bbox at resting state - trimesh_box_anim (trimesh object): trimesh object for the bbox at opening state ''' size = np.clip(size, a_max=3, a_min=0.005) center = np.clip(center, a_max=3, a_min=-3) line_box = o3d.geometry.TriangleMesh() z_cylinder = o3d.geometry.TriangleMesh.create_cylinder(radius=radius, height=size[2]) y_cylinder = o3d.geometry.TriangleMesh.create_cylinder(radius=radius, height=size[1]) R_y = get_rotation_axis_angle(np.array([1., 0., 0.]), np.pi / 2) y_cylinder.rotate(R_y, center=(0, 0, 0)) x_cylinder = o3d.geometry.TriangleMesh.create_cylinder(radius=radius, height=size[0]) R_x = get_rotation_axis_angle(np.array([0., 1., 0.]), np.pi / 2) x_cylinder.rotate(R_x, center=(0, 0, 0)) z1 = deepcopy(z_cylinder) z1.translate(np.array([-size[0] / 2, size[1] / 2, 0.])) line_box += z1.translate(center[:3]) z2 = deepcopy(z_cylinder) z2.translate(np.array([size[0] / 2, size[1] / 2, 0.])) line_box += z2.translate(center[:3]) z3 = deepcopy(z_cylinder) z3.translate(np.array([-size[0] / 2, -size[1] / 2, 0.])) line_box += z3.translate(center[:3]) z4 = deepcopy(z_cylinder) z4.translate(np.array([size[0] / 2, -size[1] / 2, 0.])) line_box += z4.translate(center[:3]) y1 = deepcopy(y_cylinder) y1.translate(np.array([-size[0] / 2, 0., size[2] / 2])) line_box += y1.translate(center[:3]) y2 = deepcopy(y_cylinder) y2.translate(np.array([size[0] / 2, 0., size[2] / 2])) line_box += y2.translate(center[:3]) y3 = deepcopy(y_cylinder) y3.translate(np.array([-size[0] / 2, 0., -size[2] / 2])) line_box += y3.translate(center[:3]) y4 = deepcopy(y_cylinder) y4.translate(np.array([size[0] / 2, 0., -size[2] / 2])) line_box += y4.translate(center[:3]) x1 = deepcopy(x_cylinder) x1.translate(np.array([0., -size[1] / 2, size[2] / 2])) line_box += x1.translate(center[:3]) x2 = deepcopy(x_cylinder) x2.translate(np.array([0., size[1] / 2, size[2] / 2])) line_box += x2.translate(center[:3]) x3 = deepcopy(x_cylinder) x3.translate(np.array([0., -size[1] / 2, -size[2] / 2])) line_box += x3.translate(center[:3]) x4 = deepcopy(x_cylinder) x4.translate(np.array([0., size[1] / 2, -size[2] / 2])) line_box += x4.translate(center[:3]) # transform line_box_anim = deepcopy(line_box) if jtype == 2: # revolute theta = np.deg2rad(jrange[0]) line_box_anim.translate(-axis_o) R = get_rotation_axis_angle(axis_d, theta) line_box_anim.rotate(R, center=(0, 0, 0)) line_box_anim.translate(axis_o) elif jtype == 3: # prismatic dist = np.array(jrange[1]) line_box_anim.translate(axis_d * dist) elif jtype == 4: # screw dist = np.array(jrange[1]) theta = 0.25 * np.pi R = get_rotation_axis_angle(axis_d, theta) line_box_anim.translate(-axis_o) line_box_anim.rotate(R, center=(0, 0, 0)) line_box_anim.translate(axis_o) line_box_anim.translate(axis_d * dist) elif jtype == 5: # continuous theta = 0.25 * np.pi R = get_rotation_axis_angle(axis_d, theta) line_box_anim.translate(-axis_o) line_box_anim.rotate(R, center=(0, 0, 0)) line_box_anim.translate(axis_o) vertices = np.asarray(line_box.vertices) faces = np.asarray(line_box.triangles) trimesh_box = trimesh.Trimesh(vertices=vertices, faces=faces) trimesh_box.visual.vertex_colors = np.array([0.0, 1.0, 1.0, 1.0]) vertices_anim = np.asarray(line_box_anim.vertices) faces_anim = np.asarray(line_box_anim.triangles) trimesh_box_anim = trimesh.Trimesh(vertices=vertices_anim, faces=faces_anim) trimesh_box_anim.visual.vertex_colors = np.array([0.0, 1.0, 1.0, 1.0]) return trimesh_box, trimesh_box_anim # Path: utils/render.py def get_axis_mesh(k, axis_o, bbox_center, joint_type): ''' Function to get the axis mesh Args: - k (np.array): axis direction - center (np.array): axis origin - bbox_center (np.array): bounding box center - joint_type (int): joint type ''' if joint_type == 0 or joint_type == 1 or np.linalg.norm(k) == 0. : return None k = k / np.linalg.norm(k) if joint_type == 3 or joint_type == 4: # prismatic or screw axis_o = bbox_center else: # revolute or continuous axis_o = axis_o + np.dot(k, bbox_center-axis_o) * k axis = o3d.geometry.TriangleMesh.create_arrow(cylinder_radius=0.015, cone_radius=0.03, cylinder_height=1.0, cone_height=0.08) arrow = np.array([0., 0., 1.], dtype=np.float32) n = np.cross(arrow, k) rad = np.arccos(np.dot(arrow, k)) R_arrow = get_rotation_axis_angle(n, rad) axis.rotate(R_arrow, center=(0, 0, 0)) axis.translate(axis_o[:3]) axis.compute_vertex_normals() vertices = np.asarray(axis.vertices) faces = np.asarray(axis.triangles) trimesh_axis = trimesh.Trimesh(vertices=vertices, faces=faces) trimesh_axis.visual.vertex_colors = np.array([0.5, 0.5, 0.5, 1.0]) return trimesh_axis # Path: systems/base.py import torch import models import numpy as np import lightning.pytorch as pl from diffusers import DDPMScheduler from utils.savermixins import SaverMixin from utils.refs import label_ref, joint_ref from utils.plot import viz_graph, make_grid, add_text from utils.render import rescale_axis, draw_boxes_axiss_anim, get_bbox_mesh_pair, get_axis_mesh class BaseSystem(pl.LightningModule, SaverMixin): def __init__(self, hparams): super().__init__() self.hparams.update(hparams) self.model = models.make(hparams.model.name, hparams.model) self.scheduler = DDPMScheduler(**self.hparams.scheduler.config) self.save_hyperparameters() def setup(self, stage: str): self.set_save_dir(stage) # config the logger dir for images def configure_optimizers(self): raise NotImplementedError def training_step(self, batch, batch_idx): raise NotImplementedError def validation_step(self, batch, batch_idx): raise NotImplementedError def predict_step(self, batch, batch_idx, dataloader_idx=None): raise NotImplementedError # ------------------------------- data converters ------------------------------- # def convert_data_range(self, x): x = x.reshape(-1, 30) # (K, 30) aabb_max = self.convert_format(x[:, 0:3]) aabb_min = self.convert_format(x[:, 3:6]) center = (aabb_max + aabb_min) / 2. size = (aabb_max - aabb_min).clip(min=1e-3) j_type = torch.mean(x[:, 6:12], dim=1) j_type = self.convert_format((j_type+0.5) * 5).clip(min=1., max=5.).round() axis_d = self.convert_format(x[:, 12:15]) axis_d = axis_d / (np.linalg.norm(axis_d, axis=1, keepdims=True) + np.finfo(float).eps) axis_o = self.convert_format(x[:, 15:18]) j_range = (x[:, 18:20] + x[:, 20:22] + x[:, 22:24]) / 3 j_range = self.convert_format(j_range).clip(min=-1., max=1.) j_range[:, 0] = j_range[:, 0] * 360
j_range[:, 1] = j_range[:, 1]
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: duxiaodan/intrinsic-lora # Path: diode/diode.py def plot_depth_map(dm, validity_mask): validity_mask = validity_mask > 0 MIN_DEPTH = 0.5 MAX_DEPTH = min(300, np.percentile(dm, 99)) dm = np.clip(dm, MIN_DEPTH, MAX_DEPTH) dm = (dm - np.min(dm)) / np.ptp(dm) dm = 1-dm dm = np.stack([dm]*3,axis=-1) dm[np.where(validity_mask == False)] = 0 dm = Image.fromarray(np.uint8(dm[:,:,:3]*255)).convert('RGB') mask = Image.fromarray(np.uint8(validity_mask*255)) return dm, mask # Path: diode/diode.py def check_and_tuplize_tokens(tokens, valid_tokens): if not isinstance(tokens, (tuple, list)): tokens = (tokens, ) for split in tokens: assert split in valid_tokens return tokens # Path: diode/diode.py def enumerate_paths(src): '''flatten out a nested dictionary into an iterable DIODE metadata is a nested dictionary; One could easily query a particular scene and scan, but sequentially enumerating files in a nested dictionary is troublesome. This function recursively traces out and aggregates the leaves of a tree. ''' if isinstance(src, list): return src elif isinstance(src, dict): acc = [] for k, v in src.items(): _sub_paths = enumerate_paths(v) _sub_paths = list(map(lambda x: osp.join(k, x), _sub_paths)) acc.append(_sub_paths) return list(chain.from_iterable(acc)) else: raise ValueError('do not accept data type {}'.format(type(src))) # Path: diode/diode.py _VALID_SPLITS = ('train', 'val', 'test') # Path: diode/diode.py _VALID_SCENE_TYPES = ('indoors', 'outdoor') # Path: rescale_cfg_pipeline_forward.py @torch.no_grad() def new_call( self, prompt: Union[str, List[str]] = None, image: Union[ torch.FloatTensor, PIL.Image.Image, np.ndarray, List[torch.FloatTensor], List[PIL.Image.Image], List[np.ndarray], ] = None, num_inference_steps: int = 100, guidance_scale: float = 7.5, image_guidance_scale: float = 1.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: int = 1, guidance_rescale: float = 0.0, ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. image (`torch.FloatTensor` `np.ndarray`, `PIL.Image.Image`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): `Image` or tensor representing an image batch to be repainted according to `prompt`. Can also accept image latents as `image`, but if passing latents directly it is not encoded again. num_inference_steps (`int`, *optional*, defaults to 100): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. image_guidance_scale (`float`, *optional*, defaults to 1.5): Push the generated image towards the inital `image`. Image guidance scale is enabled by setting `image_guidance_scale > 1`. Higher image guidance scale encourages generated images that are closely linked to the source `image`, usually at the expense of lower image quality. This pipeline requires a value of at least `1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. Examples: ```py >>> import PIL >>> import requests >>> import torch >>> from io import BytesIO >>> from diffusers import StableDiffusionInstructPix2PixPipeline >>> def download_image(url): ... response = requests.get(url) ... return PIL.Image.open(BytesIO(response.content)).convert("RGB") >>> img_url = "https://huggingface.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png" >>> image = download_image(img_url).resize((512, 512)) >>> pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained( ... "timbrooks/instruct-pix2pix", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> prompt = "make the mountains snowy" >>> image = pipe(prompt=prompt, image=image).images[0] ``` Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ # 0. Check inputs self.check_inputs(prompt, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) if image is None: raise ValueError("`image` input cannot be undefined.") # 1. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 and image_guidance_scale >= 1.0 # check if scheduler is in sigmas space scheduler_is_in_sigma_space = hasattr(self.scheduler, "sigmas") # 2. Encode input prompt prompt_embeds = self._encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, ) # 3. Preprocess image image = self.image_processor.preprocess(image) # 4. set timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare Image latents image_latents = self.prepare_image_latents( image, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, do_classifier_free_guidance, generator, ) height, width = image_latents.shape[-2:] height = height * self.vae_scale_factor width = width * self.vae_scale_factor # 6. Prepare latent variables num_channels_latents = self.vae.config.latent_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 7. Check that shapes of latents and image match the UNet channels num_channels_image = image_latents.shape[1] if num_channels_latents + num_channels_image != self.unet.config.in_channels: raise ValueError( f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" f" `num_channels_image`: {num_channels_image} " f" = {num_channels_latents+num_channels_image}. Please verify the config of" " `pipeline.unet` or your `image` input." ) # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 9. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # Expand the latents if we are doing classifier free guidance. # The latents are expanded 3 times because for pix2pix the guidance\ # is applied for both the text and the input image. latent_model_input = torch.cat([latents] * 3) if do_classifier_free_guidance else latents # concat latents, image_latents in the channel dimension scaled_latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) scaled_latent_model_input = torch.cat([scaled_latent_model_input, image_latents], dim=1) # predict the noise residual noise_pred = self.unet( scaled_latent_model_input, t, encoder_hidden_states=prompt_embeds, return_dict=False )[0] # Hack: # For karras style schedulers the model does classifer free guidance using the # predicted_original_sample instead of the noise_pred. So we need to compute the # predicted_original_sample here if we are using a karras style scheduler. if scheduler_is_in_sigma_space: step_index = (self.scheduler.timesteps == t).nonzero()[0].item() sigma = self.scheduler.sigmas[step_index] noise_pred = latent_model_input - sigma * noise_pred # perform guidance if do_classifier_free_guidance: noise_pred_text, noise_pred_image, noise_pred_uncond = noise_pred.chunk(3) noise_pred = ( noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_image) + image_guidance_scale * (noise_pred_image - noise_pred_uncond) ) if do_classifier_free_guidance and guidance_rescale > 0.0: # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf # print('Doing guidance rescale!') noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) # Hack: # For karras style schedulers the model does classifer free guidance using the # predicted_original_sample instead of the noise_pred. But the scheduler.step function # expects the noise_pred and computes the predicted_original_sample internally. So we # need to overwrite the noise_pred here such that the value of the computed # predicted_original_sample is correct. if scheduler_is_in_sigma_space: noise_pred = (noise_pred - latents) / (-sigma) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: callback(i, t, latents) if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) else: image = latents has_nsfw_concept = None if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) # Offload last model to CPU if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) # Path: augunet_diode_pseudo_depth.py import argparse import logging import math import os import os.path as osp import random import shutil import wandb import numpy as np import torch import torch.nn.functional as F import torchvision.transforms.functional as TF import torch.utils.checkpoint import transformers import diffusers import copy import json import datetime import matplotlib import wandb import xformers import bitsandbytes as bnb from pathlib import Path from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed from torch.utils.data import Dataset from huggingface_hub import create_repo, upload_folder from packaging import version from torchvision import transforms from tqdm.auto import tqdm from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DiffusionPipeline, UNet2DConditionModel, DPMSolverMultistepScheduler from diffusers.loaders import AttnProcsLayers from diffusers.models.attention_processor import LoRAAttnProcessor from diffusers.optimization import get_scheduler from diffusers.utils import is_wandb_available from diffusers.utils.import_utils import is_xformers_available from PIL import Image from PIL.ImageOps import exif_transpose from diode.diode import ( plot_depth_map, check_and_tuplize_tokens, enumerate_paths, _VALID_SPLITS, _VALID_SCENE_TYPES ) from torchvision.transforms.functional import pil_to_tensor from torchvision.transforms.functional import to_pil_image from rescale_cfg_pipeline_forward import new_call # coding=utf-8 # Intrinsic-LoRA """Intrinsic-LoRA AugUNet model for depth training""" #Xiaodan: according to https://arxiv.org/pdf/2305.08891.pdf logger = get_logger(__name__, log_level="INFO") def save_model_card(repo_id: str, images=None, base_model=str, dataset_name=str, repo_folder=None): img_str = "" for i, image in enumerate(images): image.save(os.path.join(repo_folder, f"image_{i}.png")) img_str += f"![img_{i}](./image_{i}.png)\n" yaml = f""" --- license: creativeml-openrail-m base_model: {base_model}
tags:
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: AsuradaYuci/TF-CLIP # Path: utils/meter.py class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count # Path: utils/metrics.py class R1_mAP_eval(): def __init__(self, num_query, max_rank=50, feat_norm=True, reranking=False): super(R1_mAP_eval, self).__init__() self.num_query = num_query self.max_rank = max_rank self.feat_norm = feat_norm self.reranking = reranking def reset(self): self.feats = [] self.pids = [] self.camids = [] def update(self, output): # called once for each batch feat, pid, camid = output self.feats.append(feat.cpu()) self.pids.extend(np.asarray(pid)) self.camids.extend(np.asarray(camid)) def compute(self): # called after each epoch feats = torch.cat(self.feats, dim=0) if self.feat_norm: print("The test feature is normalized") feats = torch.nn.functional.normalize(feats, dim=1, p=2) # along channel # query qf = feats[:self.num_query] q_pids = np.asarray(self.pids[:self.num_query]) q_camids = np.asarray(self.camids[:self.num_query]) # gallery gf = feats[0:] g_pids = np.asarray(self.pids[0:]) g_camids = np.asarray(self.camids[0:]) if self.reranking: print('=> Enter reranking') # distmat = re_ranking(qf, gf, k1=20, k2=6, lambda_value=0.3) distmat = re_ranking(qf, gf, k1=50, k2=15, lambda_value=0.3) else: print('=> Computing DistMat with euclidean_distance') distmat = euclidean_distance(qf, gf) cmc, mAP = eval_func(distmat, q_pids, g_pids, q_camids, g_camids) return cmc, mAP, distmat, self.pids, self.camids, qf, gf # Path: utils/iotools.py def save_checkpoint(state, is_best, fpath='checkpoint.pth.tar'): mkdir_if_missing(osp.dirname(fpath)) torch.save(state, fpath) if is_best: shutil.copy(fpath, osp.join(osp.dirname(fpath), 'best_model.pth.tar')) # Path: loss/supcontrast.py class SupConLoss(nn.Module): def __init__(self, device): super(SupConLoss, self).__init__() self.device = device self.temperature = 1.0 def forward(self, text_features, image_features, t_label, i_targets): batch_size = text_features.shape[0] batch_size_N = image_features.shape[0] mask = torch.eq(t_label.unsqueeze(1).expand(batch_size, batch_size_N), \ i_targets.unsqueeze(0).expand(batch_size,batch_size_N)).float().to(self.device) logits = torch.div(torch.matmul(text_features, image_features.T),self.temperature) # print(logits.size()) # for numerical stability logits_max, _ = torch.max(logits, dim=1, keepdim=True) logits = logits - logits_max.detach() exp_logits = torch.exp(logits) log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True)) mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1) loss = - mean_log_prob_pos.mean() return loss # Path: loss/softmax_loss.py class CrossEntropyLabelSmooth(nn.Module): """Cross entropy loss with label smoothing regularizer. Reference: Szegedy et al. Rethinking the Inception Architecture for Computer Vision. CVPR 2016. Equation: y = (1 - epsilon) * y + epsilon / K. Args: num_classes (int): number of classes. epsilon (float): weight. """ def __init__(self, num_classes, epsilon=0.1, use_gpu=True): super(CrossEntropyLabelSmooth, self).__init__() self.num_classes = num_classes self.epsilon = epsilon self.use_gpu = use_gpu self.logsoftmax = nn.LogSoftmax(dim=1) def forward(self, inputs, targets): """ Args: inputs: prediction matrix (before softmax) with shape (batch_size, num_classes) targets: ground truth labels with shape (num_classes) """ log_probs = self.logsoftmax(inputs) targets = torch.zeros(log_probs.size()).scatter_(1, targets.unsqueeze(1).data.cpu(), 1) if self.use_gpu: targets = targets.cuda() targets = (1 - self.epsilon) * targets + self.epsilon / self.num_classes loss = (- targets * log_probs).mean(0).sum() return loss # Path: processor/processor_clipreid_stage2.py import logging import os import time import torch import torch.nn as nn import torch.distributed as dist import collections import time from utils.meter import AverageMeter from utils.metrics import R1_mAP_eval from utils.iotools import save_checkpoint from torch.cuda import amp from torch.nn import functional as F from loss.supcontrast import SupConLoss from loss.softmax_loss import CrossEntropyLabelSmooth from datetime import timedelta img = img.to(device) if cfg.MODEL.SIE_CAMERA: camids = camids.to(device) else: camids = None if cfg.MODEL.SIE_VIEW: target_view = target_view.to(device) else: target_view = None feat = model(img, cam_label=camids, view_label=target_view) evaluator.update((feat, vid, camid)) cmc, mAP, _, _, _, _, _ = evaluator.compute() logger.info("Validation Results - Epoch: {}".format(epoch)) logger.info("mAP: {:.1%}".format(mAP)) for r in [1, 5, 10, 20]: logger.info("CMC curve, Rank-{:<3}:{:.1%}".format(r, cmc[r - 1])) torch.cuda.empty_cache() else: model.eval() for n_iter, (img, vid, camid, camids, target_view, _) in enumerate(val_loader): with torch.no_grad(): img = img.to(device) if cfg.MODEL.SIE_CAMERA: camids = camids.to(device) else: camids = None if cfg.MODEL.SIE_VIEW: target_view = target_view.to(device) else: target_view = None feat = model(img, cam_label=camids, view_label=target_view) evaluator.update((feat, vid, camid)) cmc, mAP, _, _, _, _, _ = evaluator.compute() logger.info("Validation Results - Epoch: {}".format(epoch)) logger.info("mAP: {:.1%}".format(mAP)) for r in [1, 5, 10, 20]: logger.info("CMC curve, Rank-{:<3}:{:.1%}".format(r, cmc[r - 1])) torch.cuda.empty_cache() prec1 = cmc[0] + mAP is_best = prec1 > best_performance best_performance = max(prec1, best_performance) if is_best: best_epoch = epoch save_checkpoint(model.state_dict(), is_best, os.path.join(cfg.OUTPUT_DIR, 'checkpoint_ep.pth.tar')) logger.info("==> Best Perform {:.1%}, achieved at epoch {}".format(best_performance, best_epoch)) all_end_time = time.monotonic() total_time = timedelta(seconds=all_end_time - all_start_time) logger.info("Total running time: {}".format(total_time)) print(cfg.OUTPUT_DIR) def do_inference_dense(cfg, model, val_loader, num_query): device = "cuda" logger = logging.getLogger("TFCLIP.test") logger.info("Enter inferencing") evaluator = R1_mAP_eval(num_query, max_rank=50, feat_norm=cfg.TEST.FEAT_NORM) evaluator.reset() if device: if torch.cuda.device_count() > 1: print('Using {} GPUs for inference'.format(torch.cuda.device_count())) model = nn.DataParallel(model) model.to(device) model.eval() img_path_list = [] for n_iter, (img, pid, camid, camids, target_view, imgpath) in enumerate(val_loader): img = img.to(device) # torch.Size([64, 4, 3, 256, 128]) if len(img.size()) == 6: # method = 'dense' b, n, s, c, h, w = img.size() assert (b == 1) img = img.view(b * n, s, c, h, w) # torch.Size([5, 8, 3, 256, 128]) with torch.no_grad(): img = img.to(device) if cfg.MODEL.SIE_CAMERA: camids = camids.to(device) else: camids = None if cfg.MODEL.SIE_VIEW: target_view = target_view.to(device) else: target_view = None feat = model(img, cam_label=camids, view_label=target_view) feat = feat.view(-1, feat.size(1)) feat = torch.mean(feat, 0, keepdim=True) # 1,512 evaluator.update((feat, pid, camid)) img_path_list.extend(imgpath) cmc, mAP, _, _, _, _, _ = evaluator.compute() logger.info("Validation Results ") logger.info("mAP: {:.1%}".format(mAP)) for r in [1, 5, 10, 20]: logger.info("CMC curve, Rank-{:<3}:{:.1%}".format(r, cmc[r - 1])) return cmc[0], cmc[4] def do_inference_rrs(cfg, model, val_loader, num_query): device = "cuda" logger = logging.getLogger("transreid.test") logger.info("Enter inferencing") evaluator = R1_mAP_eval(num_query, max_rank=50, feat_norm=cfg.TEST.FEAT_NORM) evaluator.reset() if device: if torch.cuda.device_count() > 1:
print('Using {} GPUs for inference'.format(torch.cuda.device_count()))
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: nexB/dejacode # Path: dje/api.py class CreateRetrieveUpdateListViewSet( mixins.CreateModelMixin, mixins.RetrieveModelMixin, mixins.UpdateModelMixin, mixins.ListModelMixin, viewsets.GenericViewSet, ): """Provide default `create`, `retrieve`, `update`, `partial_update`, and `list` actions.""" email_notification_on = [] allow_reference_access = False def get_queryset(self): """ Allow to access the reference data if the `self.allow_reference_access` is True. The `REFERENCE_VAR` needs to be provided as a GET parameter `?reference=1` in the URL. The special value `combine` can be provided as value for the `reference` parameter, `?reference=combine`, to return records from both the user dataspace and the reference one. The special `merge` value value will include the reference records excluding the objects `uuid` already present in the user dataspace. The reference data access is only available on `SAFE_METHODS` ('GET', 'HEAD', 'OPTIONS'). """ user_dataspace = self.request.user.dataspace base_qs = super().get_queryset() user_qs = base_qs.scope(user_dataspace) reference_params_value = self.request.GET.get(REFERENCE_VAR) reference_access = all( [ self.allow_reference_access, reference_params_value, self.request.method in SAFE_METHODS, ] ) if not reference_access: return user_qs reference_dataspace = Dataspace.objects.get_reference() if not reference_dataspace: return user_qs if reference_params_value not in ["combine", "merge"]: reference_qs = base_qs.scope(reference_dataspace) return reference_qs combined_qs = base_qs.scope(user_dataspace, include_reference=True) if reference_params_value == "merge": return combined_qs.exclude( uuid__in=models.Subquery(user_qs.values("uuid")), dataspace=reference_dataspace, ) return combined_qs @action(detail=True, methods=["post"]) def copy_to_my_dataspace(self, request, uuid): reference_dataspace = Dataspace.objects.get_reference() permission_error = {"error": "You do not have rights to execute this action."} reference_access = all( [ self.allow_reference_access, reference_dataspace, ] ) if not reference_access: return Response(permission_error, status=status.HTTP_400_BAD_REQUEST) queryset = self.queryset.scope(reference_dataspace) reference_object = get_object_or_404(queryset, uuid=uuid) user = request.user target_dataspace = user.dataspace model_class = reference_object.__class__ if not has_permission(reference_object, user, "add"): return Response(permission_error, status=status.HTTP_400_BAD_REQUEST) if target_dataspace.is_reference: data = {"error": "Target dataspace cannot be the reference one."} return Response(data, status=status.HTTP_400_BAD_REQUEST) object_exists_in_target_dataspace = ( model_class._default_manager.scope(target_dataspace) .filter(uuid=reference_object.uuid) .exists() ) if object_exists_in_target_dataspace: data = {"error": "The object already exists in your local Dataspace."} return Response(data, status=status.HTTP_400_BAD_REQUEST) copied_object = copy_object(reference_object, target_dataspace, user) if not copied_object: data = {"error": "The object could not be copied."} return Response(data, status=status.HTTP_400_BAD_REQUEST) serializer = self.get_serializer(copied_object) return Response(serializer.data) def perform_create(self, serializer): """Add the Addition History.""" user = self.request.user fields_name = [field.name for field in serializer.Meta.model._meta.get_fields()] kwargs = {} if "created_by" in fields_name: kwargs["created_by"] = user if "last_modified_by" in fields_name: kwargs["last_modified_by"] = user serializer.save(**kwargs) History.log_addition(user, serializer.instance) if History.ADDITION in self.email_notification_on: send_notification_email(user, serializer.instance, History.ADDITION) def perform_update(self, serializer): """Add the CHANGE History.""" changed_data = [] changes_details = [] user = self.request.user for field_name, new_value in serializer.validated_data.items(): original_value = getattr(serializer.instance, field_name, None) if new_value != original_value: changed_data.append(field_name) changes_details.append((field_name, original_value, new_value)) fields_name = [field.name for field in serializer.Meta.model._meta.get_fields()] kwargs = {} if "last_modified_by" in fields_name: kwargs["last_modified_by"] = user serialized_data = None with suppress(AttributeError): serialized_data = serializer.instance.as_json() serializer.save(**kwargs) if changed_data: change_message = [_("Changed {}.").format(get_text_list(changed_data, _("and")))] change_message = " ".join(change_message) else: change_message = _("No fields changed.") History.log_change(user, serializer.instance, change_message, serialized_data) if History.CHANGE in self.email_notification_on: change_message += construct_changes_details_message( {serializer.instance: changes_details} ) send_notification_email(user, serializer.instance, History.CHANGE, change_message) # Path: dje/api.py class DataspacedAPIFilterSet(FilterSet): """ Override default filters. This duplicates the purpose of `Meta.filter_overrides` but works better for inheritance. """ @classmethod def filter_for_lookup(cls, f, lookup_type): if isinstance(f, models.BooleanField): params = { "help_text": 'Supported values: "yes", "no"', "widget": ExtendedNullBooleanSelect, } return django_filters.BooleanFilter, params return super().filter_for_lookup(f, lookup_type) # Path: dje/api.py class DataspacedSerializer(serializers.HyperlinkedModelSerializer): def __init__(self, *args, **kwargs): """ Add the `dataspace` attribute from the request User Dataspace. Required at save time and for validation. """ super().__init__(*args, **kwargs) request = self.context.get("request", None) self.dataspace = request.user.dataspace if request else None def save(self, **kwargs): """ Add the current user dataspace in the object data and Wrap the IntegrityError with proper DRFValidationError. Starts by popping the m2m data before the actual save() then set the m2m relations post save(). """ # Pops the m2m data from the validated_data dict before save() m2m_data = { f: self._validated_data.pop(f.name) for f in self.Meta.model._meta.get_fields() if f.many_to_many and not f.auto_created and f.name in self._validated_data } if "uuid" in self.validated_data and not self.validated_data.get("uuid"): kwargs.update({"uuid": uuid.uuid4()}) # Update the uuid in the view kwargs to allow a proper `get_object()` post update updated_uuid = self.validated_data.get("uuid") if updated_uuid: self.context["view"].kwargs["uuid"] = updated_uuid kwargs.update({"dataspace": self.dataspace}) try: instance = super().save(**kwargs) except (IntegrityError, DjangoValidationError) as e: raise DRFValidationError(str(e)) for field, data in m2m_data.items(): set_intermediate_explicit_m2m(instance, field, data) return instance def validate(self, attrs): """Add the uniqueness validation calling the logic from Model.clean().""" # Make a copy of the attrs and Remove the m2m values, # since those cannot be part of the clean() attrs_copy = attrs.copy() for f in self.Meta.model._meta.get_fields(): if f.many_to_many and not f.auto_created: attrs_copy.pop(f.name, None) if isinstance(f, models.ManyToOneRel): attrs_copy.pop(f.get_accessor_name(), None) for field_name in getattr(self.Meta, "exclude_from_validate", []): attrs_copy.pop(field_name, None) instance = self.Meta.model(**attrs_copy) instance.dataspace = self.dataspace # Set the id from the `instance` to handle create vs. edit in Model.`clean()` with suppress(AttributeError): instance.id = self.instance.id instance.clean(from_api=True) return attrs def get_fields(self): """Enable to override the UUID field. Also enabled the field level permissions.""" fields = super().get_fields() if "uuid" in fields: fields["uuid"].read_only = False fields["uuid"].allow_null = True request = self.context.get("request", None) if request: fields = self.apply_tabs_permission(fields, request.user) protected_fields = get_protected_fields(self.Meta.model, request.user) for field_name in protected_fields: if field_name in fields: fields[field_name].read_only = True # Add the object dataspace name as a read-only field. fields["dataspace"] = serializers.StringRelatedField() return fields def get_absolute_url(self, obj): """ Return a fully qualified URL (includes the schema and domains) of the object. Combining the settings site URL and the get_absolute_url() method of the object. Usage: absolute_url = serializers.SerializerMethodField() """ site = settings.SITE_URL.rstrip("/") return f"{site}{obj.get_absolute_url()}" def apply_tabs_permission(self, fields, user): model_tabset = get_tabset_for_model(self.Meta.model) if not model_tabset: return fields authorized_fields = {"api_url", "absolute_url", "uuid"} authorized_tabs = get_authorized_tabs(self.Meta.model, user) if authorized_tabs: for tab in authorized_tabs: authorized_fields.update(model_tabset.get(tab, {}).get("fields", [])) fields = { field_name: field for field_name, field in fields.items() if field_name in authorized_fields } return fields # Path: dje/api.py class ExternalReferenceSerializer(DataspacedSerializer): external_source = DataspacedSlugRelatedField(slug_field="label") content_type = serializers.StringRelatedField(source="content_type.model") content_object = GenericForeignKeyHyperlinkedField(lookup_field="uuid") content_object_display_name = serializers.StringRelatedField(source="content_object") class Meta: model = ExternalReference fields = ( "api_url", "uuid", "content_type", "content_object", "content_object_display_name", "external_source", "external_id", "external_url", "created_date", "last_modified_date", ) extra_kwargs = { "api_url": { "view_name": "api_v2:externalreference-detail", "lookup_field": "uuid", }, } # Path: dje/filters.py class LastModifiedDateFilter(django_filters.DateTimeFilter): help_text = ( "Limits to records created or updated since that date. " 'Supports both "YYYY-MM-DD" date and "YYYY-MM-DD HH:MM" datetime.' ) def __init__(self, *args, **kwargs): kwargs.setdefault("help_text", self.help_text) kwargs["lookup_expr"] = "gte" super().__init__(*args, **kwargs) # Path: dje/filters.py class MultipleCharFilter(django_filters.MultipleChoiceFilter): """Filter on multiple values for a CharField type using `?field=a&field=b` URL syntax.""" field_class = MultipleCharField # Path: dje/filters.py class MultipleUUIDFilter(django_filters.MultipleChoiceFilter): """Filter on multiple values for an `UUIDField` type using `?field=a&field=b` URL syntax.""" help_text = "Exact UUID. Multi-value supported." field_class = MultipleUUIDField def __init__(self, *args, **kwargs): kwargs.setdefault("help_text", self.help_text) super().__init__(*args, **kwargs) # Path: dje/models.py DATASPACE_FIELD_HELP_TEXT = _( "A Dataspace is an independent, exclusive set of DejaCode data, which can be" " either nexB master reference data or installation-specific data." ) LIMITED_TO_MODELS = [ "Owner", "License", "LicenseCategory", "LicenseProfile", "LicenseStatus", "LicenseStyle", "LicenseTag", "Component", "ComponentKeyword", "ComponentStatus", "ComponentType", "Package", ] ADDITION = ADDITION CHANGE = CHANGE DELETION = DELETION ACTION_FLAG_CHOICES = ( (ADDITION, _("Addition")), (CHANGE, _("Change")), (DELETION, _("Deletion")), ) CT_LIMIT = ( models.Q(app_label="organization", model="owner") | models.Q(app_label="license_library", model="license") | models.Q(app_label="component_catalog", model="component") | models.Q(app_label="component_catalog", model="package") ) def is_dataspace_related(model_class): def is_content_type_related(model_class): def get_by_natural_key(self, name): def get_reference(self): def __str__(self): def get_admin_url(self): def natural_key(self): def is_reference(self): def get_configuration(self, field_name=None): def has_configuration(self): def tab_permissions_enabled(self): def __str__(self): def get_by_natural_key(self, dataspace_name, uuid): def scope(self, dataspace, include_reference=False): def scope_by_name(self, dataspace_name): def scope_by_id(self, dataspace_id): def scope_for_user(self, user): def scope_for_user_in_admin(self, user): def get_or_none(self, *args, **kwargs): def group_by(self, field_name): def get_queryset(self): def is_secured(manager): def get_unsecured_manager(model_class): def secure_queryset_relational_fields(queryset, user): def get_dataspace(self): def natural_key(self): def check(cls, **kwargs): def save(self, *args, **kwargs): def model_fields(cls): def create_from_data(cls, user, data, validate=False): def update_from_data(self, user, data, override=False): def as_json(self): def get_verbose_name(self): def get_url(self, name, params): def get_admin_url(self): def get_change_url(self): def get_admin_action_url(self, name): def get_copy_url(self): def get_api_copy_to_my_dataspace_url(self): def get_compare_url(self): def get_html_link(self, href, **attrs): def get_admin_link(self, **attrs): def get_absolute_link(self, **attrs): def urn_link(self): def _get_local_foreign_fields(self): def get_identifier_fields(cls): def get_exclude_candidates_fields(self): def get_exclude_choices(cls): def unique_filters_for(self, target): def get_extra_relational_fields(): def clean(self, from_api=False): def validate_case_insensitive_unique_on(self): def validate_against_reference_data(self, from_api=False): def clean_extra_spaces_in_identifier_fields(self): def mark_all_notifications_as_read(self, user): def get_parents(self): def get_children(self): def is_parent_of(self, obj): def is_child_of(self, obj): def get_ancestors(self): def get_descendants(self, set_direct_parent=False): def get_ancestor_ids(self): def get_descendant_ids(self): def get_related_ancestors(self): def get_related_descendants(self): def is_ancestor_of(self, obj): def is_descendant_of(self, obj): def has_parent_or_child(self): def __str__(self): def clean(self, from_api=False): def colored_icon_mixin_factory(verbose_name, icon_blank): def get_color_code(self): def get_icon_as_html(self): def actives(self): def standards(self): def admins(self): def create_user(self, username, email, password, dataspace, **extra_fields): def create_superuser(self, username, email, password, dataspace=None, **extra_fields): def create_inactive_user(self, username, email, password, dataspace, **extra_fields): def get_data_update_recipients(self, dataspace): def save(self, *args, **kwargs): def last_active(self): def get_group_names(self): def get_homepage_layout(self): def email_user(self, subject, message, from_email=None, **kwargs): def regenerate_api_key(self): def serialize_user_data(self): def serialize_hook(self, hook): def create_auth_token(sender, instance=None, created=False, **kwargs): def get_queryset(self): def get_for_object(self, obj, **kwargs): def log_action(self, user, obj, action_flag, message="", serialized_data=None): def log_addition(cls, user, obj, message=None): def log_change(cls, user, obj, message, serialized_data=None): def log_deletion(cls, user, obj): def __str__(self): def get_queryset(self): def get_content_object(self, external_source, external_id): def get_for_content_object(self, content_object): def create_for_content_object(self, content_object, external_source, external_id): def __str__(self): def save(self, *args, **kwargs): class DataspaceManager(models.Manager): class Dataspace(models.Model): class Meta: class DataspaceConfiguration(models.Model): class DataspacedQuerySet(models.QuerySet): class DataspacedManager(models.Manager.from_queryset(DataspacedQuerySet)): class DataspacedModel(models.Model): class Meta: class HistoryDateFieldsMixin(models.Model): class Meta: class HistoryUserFieldsMixin(models.Model): class Meta: class HistoryFieldsMixin(HistoryUserFieldsMixin, HistoryDateFieldsMixin): class Meta: class ParentChildModelMixin: class ParentChildRelationshipModel(DataspacedModel): class Meta: class ColoredIconMixin(models.Model): class Meta: class DejacodeUserQuerySet(DataspacedQuerySet): class DejacodeUserManager(BaseUserManager, DataspacedManager.from_queryset(DejacodeUserQuerySet)): class DejacodeUser(AbstractUser): class Meta: class HistoryManager(DataspacedManager): class History(models.Model): class Meta: class ExternalSource(DataspacedModel): class Meta: class ExternalReferenceManager(DataspacedManager): class ExternalReference(HistoryFieldsMixin, DataspacedModel): class Meta: class ExternalReferenceMixin(models.Model): class Meta: class ReferenceNotesMixin(models.Model): class Meta: # Path: organization/admin.py class OwnerAdmin(ChangelistPopupPermissionMixin, DataspacedAdmin): list_display = ( get_hierarchy_link, "changelist_view_on_site", AsNaturalTime("last_modified_date", short_description="Last modified"), "name", "alias", AsURL("homepage_url", short_description="Homepage URL", html_class="word-break"), AsURL("contact_info", short_description="Contact information", html_class="word-break"), "get_license_links", "get_components_links", "type_label", "get_dataspace", ) list_display_links = ("name",) search_fields = ("name", "alias") ordering = ("-last_modified_date",) fieldsets = ( ( "", { "fields": ( "name", "alias", "type", "homepage_url", "contact_info", "notes", ) }, ), ( "Related objects", { "fields": ( "get_license_links", "get_components_links", ) }, ), ("", {"classes": ("placeholder related_children-group",), "fields": ()}), ( "", { "classes": ("placeholder dje-externalreference-content_type-object_id-group",), "fields": (), }, ), get_additional_information_fieldset(pre_fields=("urn_link",)), ) readonly_fields = DataspacedAdmin.readonly_fields + ( "urn_link", "get_license_links", "get_components_links", ) list_filter = DataspacedAdmin.list_filter + ( ReportingQueryListFilter, "type", ("license", IsNullFieldListFilter), ("component", IsNullFieldListFilter), MissingInFilter, ) inlines = [ SubownerChildInline, ExternalReferenceInline, ] importer_class = OwnerImporter view_on_site = DataspacedAdmin.changeform_view_on_site navigation_buttons = True actions = [ "copy_to", "compare_with", "check_updates_in_reference", ] short_description = """An Owner is an entity that is the author, custodian, or provider of one or more software objects (licenses, components, products).""" long_description = """An Owner can be an organization, person, project team, or a foundation. An Owner may create and publish software components, or it may simply be a standards organization. Any Owner can belong to (be the child of) any other Owners.""" def get_queryset(self, request): return ( super() .get_queryset(request) .prefetch_related( "license_set", "related_parents", "related_children", "component_set", ) ) @admin.display( ordering="type", description="Type", ) def type_label(self, obj): return obj.type @admin.display(description=_("Licenses")) def get_license_links(self, obj): return AsLinkList("license_set", "owner", qs_limit=5)(obj) @admin.display(description=_("Components")) def get_components_links(self, obj): return AsLinkList("component_set", "owner", qs_limit=5)(obj) # Path: organization/models.py class Owner( ExternalReferenceMixin, HistoryFieldsMixin, ParentChildModelMixin, DataspacedModel, ): name = models.CharField( db_index=True, max_length=70, help_text=_( "The unique user-maintained name of the author, custodian, or provider of " "one or more software objects (licenses, components, products)." ), ) homepage_url = models.URLField( _("Homepage URL"), max_length=1024, blank=True, help_text=_("The homepage URL of the owner."), ) contact_info = models.CharField( _("contact information"), max_length=500, blank=True, help_text=_( "Information, frequently a dedicated email address, about " "contacting an owner for license clarifications and permissions." ), ) notes = models.TextField(blank=True, help_text=_("Extended notes about an owner.")) alias = models.CharField( db_index=True, max_length=500, blank=True, help_text=_("Alternative spellings of the name of the owner as a comma-separated list."), ) OWNER_TYPE_CHOICES = ( ( "Organization", _("Organization: an ongoing entity that provides software or promotes standards."), ), ("Person", _("Person: an individual that provides software or promotes standards.")), ("Project", _("Project: a dynamic collection of contributors to a software project.")), ) type = models.CharField( max_length=20, default="Organization", choices=OWNER_TYPE_CHOICES, db_index=True, help_text=_( "An owner type differentiates individuals, ongoing businesses, and " "dynamic organizations (such as software projects). " "An owner of any type can be associated with a license, component, or " "product. An owner can also be the parent of any other owner." ), ) # Use choices database values instead of the `get_FIELD_display`, in reporting. type.report_with_db_value = True # This reference all the Owners associated with self through a # Subowner relation where self is the parents. # Only the children are copied on ParentChild relation type. children = models.ManyToManyField( to="self", through="Subowner", symmetrical=False, ) class Meta: unique_together = ( ("dataspace", "name"), ("dataspace", "uuid"), ) ordering = ["name"] def __str__(self): return self.name @property def urn(self): return urn.build("owner", name=self.name) def get_url(self, name, params=None): if not params: params = [self.dataspace.name, quote_plus(self.name)] return super().get_url(name, params) def get_absolute_url(self): return self.get_url("details") @property def details_url(self): return self.get_absolute_url() def get_change_url(self): return self.get_url("change") def get_delete_url(self): return self.get_url("delete") @staticmethod def get_extra_relational_fields(): return ["external_references"] @property def case_insensitive_unique_on(self): return ["name"] def get_alias_list(self): return self.alias.replace(", ", ",").split(",") def as_spdx(self): spdx_type = "Person" if self.type == "Person" else "Organization" return f"{spdx_type}: {self.name}" # Path: organization/api.py import django_filters from rest_framework import serializers from dje.api import CreateRetrieveUpdateListViewSet from dje.api import DataspacedAPIFilterSet from dje.api import DataspacedSerializer from dje.api import ExternalReferenceSerializer from dje.filters import LastModifiedDateFilter from dje.filters import MultipleCharFilter from dje.filters import MultipleUUIDFilter from dje.models import external_references_prefetch from organization.admin import OwnerAdmin from organization.models import Owner # # Copyright (c) nexB Inc. and others. All rights reserved. # DejaCode is a trademark of nexB Inc. # SPDX-License-Identifier: AGPL-3.0-only # See https://github.com/nexB/dejacode for support or download. # See https://aboutcode.org for more information about AboutCode FOSS projects. # class OwnerSerializer(DataspacedSerializer): absolute_url = serializers.SerializerMethodField() licenses = serializers.HyperlinkedRelatedField( source="license_set", many=True, read_only=True, view_name="api_v2:license-detail", lookup_field="uuid", ) components = serializers.HyperlinkedRelatedField( source="component_set", many=True, read_only=True, view_name="api_v2:component-detail", lookup_field="uuid", ) external_references = ExternalReferenceSerializer( many=True, read_only=True, ) class Meta: model = Owner fields = ( "api_url", "absolute_url", "uuid", "name", "homepage_url", "contact_info", "notes", "alias", "type", "licenses", "components", "external_references", "urn", "created_date", "last_modified_date", ) extra_kwargs = { "api_url": { "view_name": "api_v2:owner-detail", "lookup_field": "uuid", }, } class OwnerEmbeddedSerializer(OwnerSerializer): class Meta(OwnerSerializer.Meta): fields = ( "api_url", "absolute_url", "uuid", "name", "homepage_url", "contact_info", "notes", "alias", "type", "urn", "created_date", "last_modified_date", ) class OwnerFilterSet(DataspacedAPIFilterSet): uuid = MultipleUUIDFilter() name = MultipleCharFilter( help_text="Exact name. Multi-value supported.", ) type = django_filters.ChoiceFilter( choices=Owner.OWNER_TYPE_CHOICES, help_text=f"Exact owner type. Supported values: " f'{", ".join(type[0] for type in Owner.OWNER_TYPE_CHOICES)}', ) last_modified_date = LastModifiedDateFilter() class Meta: model = Owner fields = ( "uuid", "name", "type", "last_modified_date", ) class OwnerViewSet(CreateRetrieveUpdateListViewSet): queryset = Owner.objects.all() serializer_class = OwnerSerializer lookup_field = "uuid" filterset_class = OwnerFilterSet search_fields = ( "name", "alias", "notes", ) search_fields_autocomplete = ("name",) ordering_fields = ( "name", "alias", "created_date", "last_modified_date", ) email_notification_on = OwnerAdmin.email_notification_on allow_reference_access = True
def get_queryset(self):
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: kylemcdonald/i2i-realtime # Path: settings.py class Settings(BaseSettings): # config, cannot be changed mode: str = Field(default="video") worker_id: int = Field(default=0) output_fast: bool = Field(default=True) zmq_video_port: int = Field(default=5554) job_start_port: int = Field(default=5555) settings_port: int = Field(default=5556) job_finish_port: int = Field(default=5557) output_port: int = Field(default=5558) osc_port: int = Field(default=8000) primary_hostname: str = Field(default='localhost') translation: bool = Field(default=False) safety: bool = Field(default=False) local_files_only: bool = Field(default=False) warmup: str = Field(default=None) threaded: bool = Field(default=False) # parameters for inference prompt: str = Field(default='A psychedelic landscape.') num_inference_steps: int = Field(default=2) fixed_seed: bool = Field(default=True) seed: int = Field(default=0) batch_size: int = Field(default=4) strength: float = Field(default=0.7) passthrough: bool = Field(default=False) compel: bool = Field(default=True) # can be changed dynamically opacity: float = Field(default=1.0) mirror: bool = Field(default=False) debug: bool = Field(default=False) pad: bool = Field(default=False) fps: int = Field(default=30) directory: str = Field(default='data/frames') class Config: env_file = ".env" env_file_encoding = 'utf-8' # Path: settings_api.py class SettingsAPI: def __init__(self, settings): self.shutdown = False self.settings = settings port = settings.settings_port self.thread = threading.Thread(target=self.run, args=(port,)) def start(self): if not self.thread.is_alive(): self.thread.start() def run(self, port): if self.settings.translation: translate = Translate() if self.settings.safety: safety_checker = SafetyChecker() app = FastAPI() # Add CORS middleware app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_methods=["*"], allow_headers=["*"], ) @app.get("/prompt/{msg}") async def prompt(msg: str): if self.settings.translation: prompt = translate.translate_to_en(msg) if prompt != msg: print("Translating from:", msg) else: prompt = msg override = "-f" in prompt if override: prompt = prompt.replace("-f", "").strip() if self.settings.safety and not override: safety = safety_checker(prompt) if safety != "safe": print(f"Ignoring prompt ({safety}):", prompt) return {"safety": "unsafe"} self.settings.prompt = prompt print("Updated prompt:", prompt) return {"safety": "safe"} @app.get("/directory/{status}") async def directory(status: str): self.settings.directory = "data/" + status print("Updated directory status:", self.settings.directory) return {"status": "updated"} @app.get("/debug/{status}") async def debug(status: bool): self.settings.debug = status print("Updated debug status:", status) return {"status": "updated"} @app.get("/compel/{status}") async def compel(status: bool): self.settings.compel = status print("Updated compel status:", status) return {"status": "updated"} @app.get("/passthrough/{status}") async def passthrough(status: bool): self.settings.passthrough = status print("Updated passthrough status:", self.settings.passthrough) return {"status": "updated"} @app.get("/fixed_seed/{status}") async def fixed_seed(status: bool): self.settings.fixed_seed = status print("Updated fixed_seed status:", self.settings.fixed_seed) return {"status": "updated"} @app.get("/mirror/{status}") async def mirror(status: bool): self.settings.mirror = status print("Updated mirror status:", status) return {"status": "updated"} @app.get("/batch_size/{value}") async def batch_size(value: int): self.settings.batch_size = value print("Updated batch_size:", self.settings.batch_size) return {"status": "updated"} @app.get("/seed/{value}") async def seed(value: int): self.settings.seed = value print("Updated seed:", self.settings.seed) return {"status": "updated"} @app.get("/steps/{value}") async def steps(value: int): self.settings.num_inference_steps = value print("Updated num_inference_steps:", self.settings.num_inference_steps) return {"status": "updated"} @app.get("/strength/{value}") async def strength(value: float): self.settings.strength = value print("Updated strength:", self.settings.strength) return {"status": "updated"} @app.get("/opacity/{value}") async def opacity(value: float): value = min(max(value, 0), 1) self.settings.opacity = value print("Updated opacity:", self.settings.opacity) return {"status": "updated"} config = uvicorn.Config(app, host="0.0.0.0", port=port, log_level="info") self.server = uvicorn.Server(config=config) try: self.server.run() except KeyboardInterrupt: pass def close(self): print("SettingsAPI closing") if hasattr(self, "server"): self.server.should_exit = True self.thread.join() # Path: threaded_sequence.py class ThreadedSequence(ThreadedWorker): def __init__(self, settings): super().__init__(has_input=False) self.settings = settings self.fns = natsorted(os.listdir(settings.directory)) self.playing = threading.Event() self.scrub_queue = queue.Queue() def setup(self): self.start_time = time.time() self.frame_number = 0 def read_scrub(self): while not self.scrub_queue.empty(): self.frame_number = self.scrub_queue.get() timestamp = self.frame_number / self.settings.fps self.start_time = time.time() - timestamp def work(self): self.playing.wait() if self.should_exit: return self.read_scrub() timestamp = time.time() index = self.frame_number next_frame_time = self.start_time + (index + 1) / self.settings.fps sleep_time = next_frame_time - time.time() if sleep_time > 0: time.sleep(sleep_time) fn = os.path.join(self.settings.directory, self.fns[index]) with open(fn, "rb") as f: encoded = f.read() self.frame_number += 1 if self.frame_number == len(self.fns): self.frame_number = 0 self.start_time = time.time() return timestamp, index, encoded def close(self): self.should_exit = True self.playing.set() super().close() def play(self): print("playing") if self.playing.is_set(): return self.read_scrub() self.scrub(self.frame_number / len(self.fns)) self.playing.set() def pause(self): print("pausing") self.playing.clear() def scrub(self, pct): frame = int(pct * len(self.fns)) self.scrub_queue.put(frame) # Path: threaded_camera.py class ThreadedCamera(ThreadedWorker): def __init__(self): super().__init__(has_input=False) self.jpeg = TurboJPEG() self.cap = cv2.VideoCapture(-1, cv2.CAP_V4L2) self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1920) self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080) self.cap.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G')) self.cap.set(cv2.CAP_PROP_FPS, 30) def setup(self): self.start_time = time.time() self.frame_number = 0 def work(self): timestamp = time.time() self.frame_number += 1 # if self.frame_number % 30 == 0: # duration = time.time() - self.start_time # fps = self.frame_number / duration # print(f"fps {fps:.2f}") ret, frame = self.cap.read() # crop to the center 1024x1024 frame = frame[28:1052, 448:1472] # print(frame.shape) encoded = self.jpeg.encode(frame) return timestamp, self.frame_number, encoded def cleanup(self): self.cap.release() # Path: threaded_zmq_video.py class ThreadedZmqVideo(ThreadedWorker): def __init__(self, settings): super().__init__(has_input=False) self.context = zmq.Context() self.sock = self.context.socket(zmq.SUB) self.sock.setsockopt(zmq.RCVTIMEO, 100) self.sock.setsockopt(zmq.RCVHWM, 1) self.sock.setsockopt(zmq.LINGER, 0) address = f"tcp://10.0.0.24:{settings.zmq_video_port}" print(self.name, "binding to", address) self.sock.connect(address) self.sock.setsockopt(zmq.SUBSCRIBE, b"") def work(self): while not self.should_exit: try: msg = self.sock.recv(flags=zmq.NOBLOCK, copy=False).bytes except zmq.Again: continue timestamp, index, encoded = msgpack.unpackb(msg) # print(self.name, "zmq received", index) return timestamp, index, encoded def cleanup(self): self.sock.close() self.context.term() # Path: batching_worker.py class BatchingWorker(ThreadedWorker): def __init__(self, settings): super().__init__() self.settings = settings def setup(self): self.batch = [] def work(self, input): self.batch.append(input) n = self.settings.batch_size if len(self.batch) >= n: batch = self.batch[:n] self.batch = self.batch[n:] return batch # Path: zmq_sender.py class ZmqSender(ThreadedWorker): def __init__(self, settings): super().__init__(has_output=False) self.context = zmq.Context() self.sock = self.context.socket(zmq.PUSH) self.sock.setsockopt(zmq.SNDHWM, 1) self.sock.setsockopt(zmq.LINGER, 0) self.sock.bind(f"tcp://0.0.0.0:{settings.job_start_port}") self.settings = settings def work(self, batch): frame_timestamps, indices, frames = zip(*batch) settings = self.settings job_timestamp = time.time() packed = msgpack.packb( { "job_timestamp": job_timestamp, "frame_timestamps": frame_timestamps, "indices": indices, "frames": frames, "debug": settings.debug, "parameters": { "prompt": settings.prompt, "num_inference_steps": settings.num_inference_steps, "strength": settings.strength, "seed": settings.seed, "passthrough": settings.passthrough, "fixed_seed": settings.fixed_seed, "use_compel": settings.compel }, } ) # frame = zmq.Frame(packed) self.sock.send(packed) # print(int(time.time()*1000)%1000, "sending") # print("outgoing length", len(packed)) # print("sending", indices) def cleanup(self): self.sock.close() self.context.term() # Path: osc_video_controller.py class OscVideoController(ThreadedWorker): def __init__(self, video, settings): super().__init__(has_input=False, has_output=False) self.osc = OscSocket("0.0.0.0", settings.osc_port) self.video = video def work(self): msg = self.osc.recv() if msg is None: return if msg.address == "/scene": if msg.params[0] == 1: self.video.scrub(0) self.video.play() else: self.video.pause() # elif msg.address == "/progress": # pct = msg.params[0] # self.video.scrub(pct) def cleanup(self): self.osc.close() # Path: osc_settings_controller.py class OscSettingsController(ThreadedWorker): def __init__(self, settings): super().__init__(has_input=False, has_output=False) address = f"0.0.0.0:{settings.osc_port}" print(self.name, f"connecting to OSC on {address}") self.osc = OscSocket("0.0.0.0", settings.osc_port) self.settings = settings self.prompt_0 = "" self.prompt_1 = "" self.blend = 0.5 def update_blend(self): if self.blend == 0: self.settings.prompt = self.prompt_0 elif self.blend == 1: self.settings.prompt = self.prompt_1 else: a = self.prompt_0 b = self.prompt_1 t = self.blend self.settings.prompt = f'("{a}", "{b}").blend({1-t:.2f}, {t:.2f})' def work(self): try: msg = self.osc.recv() if msg is None: return if msg.address == "/prompt": prompt = ' '.join(msg.params) # print("OSC prompt:", prompt) self.settings.prompt = prompt elif msg.address == "/blend": a, b, t = msg.params self.prompt_0 = a self.prompt_1 = b self.blend = t self.update_blend() elif msg.address == "/prompt/0": self.prompt_0 = ' '.join(msg.params) self.update_blend() elif msg.address == "/prompt/1": self.prompt_1 = ' '.join(msg.params) self.update_blend() elif msg.address == "/blend_t": self.blend = float(msg.params[0]) self.update_blend() elif msg.address == "/seed": seed = msg.params[0] # print("OSC seed:", seed) self.settings.seed = seed elif msg.address == "/opacity": opacity = float(msg.params[0]) opacity = min(max(opacity, 0), 1) self.settings.opacity = opacity elif msg.address == "/mode": mode = msg.params[0] if mode == "soft": self.settings.num_inference_steps = 3 self.settings.strength = 0.5 elif mode == "hard": self.settings.num_inference_steps = 2 self.settings.strength = 0.7 # else: # print("unknown osc", msg.address, msg.params) except TypeError: print("osc TypeError") except osc_packet.ParseError: print("osc ParseError") except Exception as e: print("osc error", e) def cleanup(self): self.osc.close() # Path: output_smooth.py class OutputSmooth(ThreadedWorker): def __init__(self, port, min_size=1, max_size=5, max_delay=200): super().__init__(has_output=False) self.context = zmq.Context() self.sock = self.context.socket(zmq.PUB) self.sock.bind(f"tcp://0.0.0.0:{port}") self.sock.setsockopt(zmq.SNDHWM, 1) self.sock.setsockopt(zmq.LINGER, 0) self.max_delay = max_delay self.min_size = min_size self.max_size = max_size self.delay = 33 self.jump = 0.1 def work(self, unpacked): start_time = time.time() job_timestamp = unpacked["job_timestamp"] index = unpacked["index"] jpg = unpacked["jpg"] # worker_id = unpacked["worker_id"] # latency = time.time() - timestamp # print("\033[K", end="", flush=True) # clear entire line # print( # f"outgoing: {index} #{worker_id} {int(1000*latency)}ms, {self.queue.qsize()}q {self.delay:.01f}ms" # ) packed = msgpack.packb([job_timestamp, index, jpg]) self.sock.send(packed) # doing this with smaller amounts for smaller offsets # would help staibilize the framerate if self.input_queue.qsize() > self.max_size: # need to speed up self.delay -= self.jump if self.input_queue.qsize() < self.min_size: # need to slow down self.delay += self.jump self.delay = max(0, self.delay) self.delay = min(self.max_delay, self.delay) next_time = start_time + (self.delay / 1000) wait_time = next_time - time.time() if wait_time > 0: time.sleep(wait_time) def cleanup(self): self.sock.close() self.context.term() # Path: output_fast.py class OutputFast(ThreadedWorker): def __init__(self, port): super().__init__(has_output=False) self.context = zmq.Context() self.sock = self.context.socket(zmq.PUB) self.sock.bind(f"tcp://0.0.0.0:{port}") self.sock.setsockopt(zmq.SNDHWM, 1) self.sock.setsockopt(zmq.LINGER, 0) def work(self, unpacked): timestamp = unpacked["frame_timestamp"] index = unpacked["index"] jpg = unpacked["jpg"] packed = msgpack.packb([timestamp, index, jpg]) self.sock.send(packed) # duration = time.time() - unpacked["frame_timestamp"] # if index % 31 == 0: # print(f"full loop {int(duration*1000)}ms", flush=True) def cleanup(self): self.sock.close() self.context.term() # Path: reordering_receiver.py class ReorderingReceiver(ThreadedWorker): def __init__(self, port): super().__init__(has_input=False) self.context = zmq.Context() self.sock = self.context.socket(zmq.PULL) self.sock.setsockopt(zmq.RCVTIMEO, 100) self.sock.setsockopt(zmq.RCVHWM, 1) self.sock.setsockopt(zmq.LINGER, 0) self.sock.bind(f"tcp://0.0.0.0:{port}") self.reset_buffer() def reset_buffer(self): self.msg_buffer = FixedSizeDict(100) self.next_index = None def work(self): try: msg = self.sock.recv(flags=zmq.NOBLOCK, copy=False).bytes # print(int(time.time()*1000)%1000, "receiving") except zmq.Again: return receive_time = time.time() unpacked = msgpack.unpackb(msg) buffer_size = 30 index = unpacked["index"] # print(self.name, "received index", index) if index == 0: print(self.name, "resetting buffer due to index == 0") self.reset_buffer() elif self.next_index and index < self.next_index - buffer_size: print(self.name, f"resetting buffer due to {index} < {self.next_index} - {buffer_size}") self.reset_buffer() self.msg_buffer[index] = unpacked # start by adding to buffer if unpacked["index"] % 31 == 0: # close to 30, but prime (for logs) round_trip = receive_time - unpacked["job_timestamp"] worker_id = unpacked["worker_id"] print(self.name, f"worker {worker_id} round trip: {int(1000*round_trip)}ms") index = unpacked["index"] worker_id = unpacked["worker_id"] jpg = unpacked["jpg"] if self.next_index is None: # if next_index is None, let's start with this one self.next_index = index diff = abs(index - self.next_index) if diff > 10: # if we got a big jump, let's just jump to it # this also works for resetting to 0 self.next_index = index # packed = msgpack.packb([timestamp, index, jpg]) # publisher.send(packed) # echo mode # ordered mode while self.next_index in self.msg_buffer: unpacked = self.msg_buffer[self.next_index] self.output_queue.put(unpacked) del self.msg_buffer[self.next_index] self.next_index += 1 def cleanup(self): self.sock.close() self.context.term() # Path: show_stream.py class ShowStream(ThreadedWorker): def __init__(self, port, settings): super().__init__(has_input=False, has_output=False) self.port = port self.fullscreen = True self.settings = settings def setup(self): self.jpeg = TurboJPEG() self.context = zmq.Context() self.sock = self.context.socket(zmq.SUB) self.sock.setsockopt(zmq.RCVTIMEO, 100) self.sock.setsockopt(zmq.RCVHWM, 1) self.sock.setsockopt(zmq.LINGER, 0) address = f"tcp://localhost:{self.port}" print(f"Connecting to {address}") self.sock.connect(address) self.sock.setsockopt(zmq.SUBSCRIBE, b"") self.window_name = f"Port {self.port}" cv2.namedWindow(self.window_name, cv2.WINDOW_GUI_NORMAL) if self.fullscreen: cv2.setWindowProperty(self.window_name, cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN) def show_msg(self, msg): timestamp, index, jpg = msgpack.unpackb(msg) img = self.jpeg.decode(jpg, pixel_format=TJPF_RGB) input_h, input_w = img.shape[:2] if self.settings.mirror: img = img[:,::-1,:] if self.settings.pad: canvas = np.zeros((1024, 1280, 3), dtype=np.uint8) canvas[:, :1024] = img img = canvas if self.settings.debug: latency = time.time() - timestamp text = f"{input_w}x{input_h} @ {int(1000*latency)} ms" cv2.putText( img, text, (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 0), 2, cv2.LINE_AA, ) cv2.imshow(self.window_name, img[:, :, ::-1]) def work(self): try: msg = self.sock.recv(flags=zmq.NOBLOCK, copy=False).bytes self.show_msg(msg) except zmq.Again: pass key = cv2.waitKey(1) # toggle fullscreen when user presses 'f' key if key == ord("f") or key == ord("F"): self.fullscreen = not self.fullscreen if self.fullscreen: cv2.setWindowProperty( self.window_name, cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN ) else: cv2.setWindowProperty( self.window_name, cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_KEEPRATIO ) def cleanup(self): self.sock.close() self.context.term() cv2.destroyAllWindows() # Path: server_app.py import os import psutil from settings import Settings from settings_api import SettingsAPI from threaded_sequence import ThreadedSequence from threaded_camera import ThreadedCamera from threaded_zmq_video import ThreadedZmqVideo from batching_worker import BatchingWorker from zmq_sender import ZmqSender from osc_video_controller import OscVideoController from osc_settings_controller import OscSettingsController from output_smooth import OutputSmooth from output_fast import OutputFast from reordering_receiver import ReorderingReceiver from show_stream import ShowStream # load up settings settings = Settings() # create endpoint settings_api = SettingsAPI(settings) # create sending end if settings.mode == "video": video = ThreadedSequence(settings) controller = OscVideoController(video, settings) elif settings.mode == "camera": video = ThreadedCamera() controller = OscSettingsController(settings) elif settings.mode == "zmq": video = ThreadedZmqVideo(settings) controller = OscSettingsController(settings) batcher = BatchingWorker(settings).feed(video) sender = ZmqSender(settings).feed(batcher) # create receiving end reordering_receiver = ReorderingReceiver(settings.job_finish_port) if settings.output_fast: output = OutputFast(settings.output_port).feed(reordering_receiver) else: output = OutputSmooth(settings.output_port).feed(reordering_receiver) # create display end show_stream = ShowStream(settings.output_port, settings) # start from the end of the chain to the beginning # start display show_stream.start() # start receiving end settings_api.start() reordering_receiver.start() output.start() # start sending end controller.start() sender.start() batcher.start() video.start() if settings.mode == "video": video.play() try: process = psutil.Process(os.getpid()) while True: memory_usage_bytes = process.memory_info().rss memory_usage_gb = memory_usage_bytes / (1024**3)
if memory_usage_gb > 10:
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: wusize/CLIM # Path: src/open_clip/eva_clip/constants.py OPENAI_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073) # Path: src/open_clip/eva_clip/constants.py OPENAI_DATASET_STD = (0.26862954, 0.26130258, 0.27577711) # Path: src/open_clip/eva_clip/model.py class CLIP(nn.Module): def __init__( self, embed_dim: int, vision_cfg: CLIPVisionCfg, text_cfg: CLIPTextCfg, quick_gelu: bool = False, cast_dtype: Optional[torch.dtype] = None, ): super().__init__() self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype) text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype) self.transformer = text.transformer self.embed_dim = embed_dim self.vocab_size = text.vocab_size self.token_embedding = text.token_embedding self.positional_embedding = text.positional_embedding self.ln_final = text.ln_final self.text_projection = text.text_projection self.register_buffer('attn_mask', text.attn_mask, persistent=False) self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False): # lock image tower as per LiT - https://arxiv.org/abs/2111.07991 self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.visual.set_grad_checkpointing(enable) self.transformer.grad_checkpointing = enable @torch.jit.ignore def no_weight_decay(self): return {'logit_scale'} def encode_image(self, image, normalize: bool = False): features = self.visual(image) return F.normalize(features, dim=-1) if normalize else features def encode_text(self, text, normalize: bool = False): cast_dtype = self.transformer.get_cast_dtype() x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model] x = x + self.positional_embedding.to(cast_dtype) x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x, attn_mask=self.attn_mask) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_final(x) # [batch_size, n_ctx, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection return F.normalize(x, dim=-1) if normalize else x def forward(self, image, text): image_features = self.encode_image(image, normalize=True) text_features = self.encode_text(text, normalize=True) return image_features, text_features, self.logit_scale.exp() # Path: src/open_clip/eva_clip/model.py class CustomCLIP(nn.Module): def __init__( self, embed_dim: int, vision_cfg: CLIPVisionCfg, text_cfg: CLIPTextCfg, quick_gelu: bool = False, cast_dtype: Optional[torch.dtype] = None, itm_task: bool = False, ): super().__init__() self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype) self.text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype) self.embed_dim = embed_dim print(f'Freeze text encoder parameters', flush=True) for param in self.text.parameters(): param.requires_grad = False self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) def train(self, mode=True): super().train(mode) self.text.train(mode=False) return self def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False, **kwargs): # lock image tower as per LiT - https://arxiv.org/abs/2111.07991 self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats) def lock_text_tower(self, unlocked_layers:int=0, freeze_layer_norm:bool=True): self.text.lock(unlocked_layers, freeze_layer_norm) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.visual.set_grad_checkpointing(enable) self.text.set_grad_checkpointing(enable) @torch.jit.ignore def no_weight_decay(self): return {'logit_scale'} def encode_image(self, image, normalize: bool = False): features = self.visual(image) return F.normalize(features, dim=-1) if normalize else features def encode_text(self, text, normalize: bool = False): features = self.text(text) return F.normalize(features, dim=-1) if normalize else features def forward(self, image, text): image_features = self.encode_image(image, normalize=True) text_features = self.encode_text(text, normalize=True) return image_features, text_features, self.logit_scale.exp() def encode_dense(self, image, normalize: bool = False, keep_shape=False): features = self.visual.encode_dense(image, keep_shape=keep_shape) if normalize: if keep_shape: features = F.normalize(features, dim=1) else: features = F.normalize(features, dim=-1) return features def encode_pseudo_boxes(self, image, normed_boxes, normalize: bool = False, extract_type='v1'): features = self.visual.extract_roi_features(image, normed_boxes, extract_type=extract_type) if normalize: features = F.normalize(features, dim=-1) return features def encode_masks(self, image, masks, normalize=True, mask_attn=False): mask_pooled = self.visual.mask_pool(image, masks) if normalize: mask_pooled = F.normalize(mask_pooled, dim=-1) return mask_pooled # Path: src/open_clip/eva_clip/model.py def convert_weights_to_lp(model: nn.Module, dtype=torch.float16): """Convert applicable model parameters to low-precision (bf16 or fp16)""" def _convert_weights(l): if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): l.weight.data = l.weight.data.to(dtype) if l.bias is not None: l.bias.data = l.bias.data.to(dtype) if isinstance(l, (nn.MultiheadAttention, Attention)): for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: tensor = getattr(l, attr, None) if tensor is not None: tensor.data = tensor.data.to(dtype) if isinstance(l, nn.Parameter): l.data = l.data.to(dtype) for name in ["text_projection", "proj"]: if hasattr(l, name) and isinstance(l, nn.Parameter): attr = getattr(l, name, None) if attr is not None: attr.data = attr.data.to(dtype) model.apply(_convert_weights) # Path: src/open_clip/eva_clip/model.py def convert_to_custom_text_state_dict(state_dict: dict): if 'text_projection' in state_dict: # old format state_dict, move text tower -> .text new_state_dict = {} for k, v in state_dict.items(): if any(k.startswith(p) for p in ( 'text_projection', 'positional_embedding', 'token_embedding', 'transformer', 'ln_final', 'logit_scale' )): k = 'text.' + k new_state_dict[k] = v return new_state_dict return state_dict # Path: src/open_clip/eva_clip/model.py def get_cast_dtype(precision: str): cast_dtype = None if precision == 'bf16': cast_dtype = torch.bfloat16 elif precision == 'fp16': cast_dtype = torch.float16 return cast_dtype # Path: src/open_clip/eva_clip/openai.py def load_openai_model( name: str, precision: Optional[str] = None, device: Optional[Union[str, torch.device]] = None, jit: bool = True, cache_dir: Optional[str] = None, ): """Load a CLIP model Parameters ---------- name : str A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict precision: str Model precision, if None defaults to 'fp32' if device == 'cpu' else 'fp16'. device : Union[str, torch.device] The device to put the loaded model jit : bool Whether to load the optimized JIT model (default) or more hackable non-JIT model. cache_dir : Optional[str] The directory to cache the downloaded model weights Returns ------- model : torch.nn.Module The CLIP model preprocess : Callable[[PIL.Image], torch.Tensor] A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input """ if device is None: device = "cuda" if torch.cuda.is_available() else "cpu" if precision is None: precision = 'fp32' if device == 'cpu' else 'fp16' if get_pretrained_url(name, 'openai'): model_path = download_pretrained_from_url(get_pretrained_url(name, 'openai'), cache_dir=cache_dir) elif os.path.isfile(name): model_path = name else: raise RuntimeError(f"Model {name} not found; available models = {list_openai_models()}") try: # loading JIT archive model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval() state_dict = None except RuntimeError: # loading saved state dict if jit: warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead") jit = False state_dict = torch.load(model_path, map_location="cpu") if not jit: # Build a non-jit model from the OpenAI jitted model state dict cast_dtype = get_cast_dtype(precision) try: model = build_model_from_openai_state_dict(state_dict or model.state_dict(), cast_dtype=cast_dtype) except KeyError: sd = {k[7:]: v for k, v in state_dict["state_dict"].items()} model = build_model_from_openai_state_dict(sd, cast_dtype=cast_dtype) # model from OpenAI state dict is in manually cast fp16 mode, must be converted for AMP/fp32/bf16 use model = model.to(device) if precision.startswith('amp') or precision == 'fp32': model.float() elif precision == 'bf16': convert_weights_to_lp(model, dtype=torch.bfloat16) return model # patch the device names device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]) device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1] def patch_device(module): try: graphs = [module.graph] if hasattr(module, "graph") else [] except RuntimeError: graphs = [] if hasattr(module, "forward1"): graphs.append(module.forward1.graph) for graph in graphs: for node in graph.findAllNodes("prim::Constant"): if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"): node.copyAttributes(device_node) model.apply(patch_device) patch_device(model.encode_image) patch_device(model.encode_text) # patch dtype to float32 (typically for CPU) if precision == 'fp32': float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[]) float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] float_node = float_input.node() def patch_float(module): try: graphs = [module.graph] if hasattr(module, "graph") else [] except RuntimeError: graphs = [] if hasattr(module, "forward1"): graphs.append(module.forward1.graph) for graph in graphs: for node in graph.findAllNodes("aten::to"): inputs = list(node.inputs()) for i in [1, 2]: # dtype can be the second or third argument to aten::to() if inputs[i].node()["value"] == 5: inputs[i].node().copyAttributes(float_node) model.apply(patch_float) patch_float(model.encode_image) patch_float(model.encode_text) model.float() # ensure image_size attr available at consistent location for both jit and non-jit model.visual.image_size = model.input_resolution.item() return model # Path: src/open_clip/eva_clip/pretrained.py def is_pretrained_cfg(model: str, tag: str): if model not in _PRETRAINED: return False return _clean_tag(tag) in _PRETRAINED[model] # Path: src/open_clip/eva_clip/pretrained.py def get_pretrained_cfg(model: str, tag: str): if model not in _PRETRAINED: return {} model_pretrained = _PRETRAINED[model] return model_pretrained.get(_clean_tag(tag), {}) # Path: src/open_clip/eva_clip/pretrained.py def download_pretrained( cfg: Dict, force_hf_hub: bool = False, cache_dir: Union[str, None] = None, ): target = '' if not cfg: return target download_url = cfg.get('url', '') download_hf_hub = cfg.get('hf_hub', '') if download_hf_hub and force_hf_hub: # use HF hub even if url exists download_url = '' if download_url: target = download_pretrained_from_url(download_url, cache_dir=cache_dir) elif download_hf_hub: has_hf_hub(True) # we assume the hf_hub entries in pretrained config combine model_id + filename in # 'org/model_name/filename.pt' form. To specify just the model id w/o filename and # use 'open_clip_pytorch_model.bin' default, there must be a trailing slash 'org/model_name/'. model_id, filename = os.path.split(download_hf_hub) if filename: target = download_pretrained_from_hf(model_id, filename=filename, cache_dir=cache_dir) else: target = download_pretrained_from_hf(model_id, cache_dir=cache_dir) return target # Path: src/open_clip/eva_clip/pretrained.py def list_pretrained_tags_by_model(model: str): """ return all pretrain tags for the specified model architecture """ tags = [] if model in _PRETRAINED: tags.extend(_PRETRAINED[model].keys()) return tags # Path: src/open_clip/eva_clip/transform.py def image_transform( image_size: int, is_train: bool, mean: Optional[Tuple[float, ...]] = None, std: Optional[Tuple[float, ...]] = None, resize_longest_max: bool = False, fill_color: int = 0, ): mean = mean or OPENAI_DATASET_MEAN if not isinstance(mean, (list, tuple)): mean = (mean,) * 3 std = std or OPENAI_DATASET_STD if not isinstance(std, (list, tuple)): std = (std,) * 3 if isinstance(image_size, (list, tuple)) and image_size[0] == image_size[1]: # for square size, pass size as int so that Resize() uses aspect preserving shortest edge image_size = image_size[0] normalize = Normalize(mean=mean, std=std) if is_train: return Compose([ RandomResizedCrop(image_size, scale=(0.9, 1.0), interpolation=InterpolationMode.BICUBIC), _convert_to_rgb, ToTensor(), normalize, ]) else: if resize_longest_max: transforms = [ ResizeMaxSize(image_size, fill=fill_color) ] else: transforms = [ Resize(image_size, interpolation=InterpolationMode.BICUBIC), CenterCrop(image_size), ] transforms.extend([ _convert_to_rgb, ToTensor(), normalize, ]) return Compose(transforms) # Path: src/open_clip/eva_clip/tokenizer.py class HFTokenizer: "HuggingFace tokenizer wrapper" def __init__(self, tokenizer_name:str): from transformers import AutoTokenizer self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) def __call__(self, texts:Union[str, List[str]], context_length:int=77) -> torch.Tensor: # same cleaning as for default tokenizer, except lowercasing # adding lower (for case-sensitive tokenizers) will make it more robust but less sensitive to nuance if isinstance(texts, str): texts = [texts] texts = [whitespace_clean(basic_clean(text)) for text in texts] input_ids = self.tokenizer(texts, return_tensors='pt', max_length=context_length, padding='max_length', truncation=True).input_ids return input_ids # Path: src/open_clip/eva_clip/tokenizer.py def tokenize(texts: Union[str, List[str]], context_length: int = 77) -> torch.LongTensor: """ Returns the tokenized representation of given input string(s) Parameters ---------- texts : Union[str, List[str]] An input string or a list of input strings to tokenize context_length : int The context length to use; all CLIP models use 77 as the context length Returns ------- A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length] """ if isinstance(texts, str): texts = [texts] sot_token = _tokenizer.encoder["<start_of_text>"] eot_token = _tokenizer.encoder["<end_of_text>"] all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts] result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) for i, tokens in enumerate(all_tokens): if len(tokens) > context_length: tokens = tokens[:context_length] # Truncate tokens[-1] = eot_token result[i, :len(tokens)] = torch.tensor(tokens) return result # Path: src/open_clip/eva_clip/utils.py def resize_clip_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1): # Rescale the grid of position embeddings when loading from state_dict old_pos_embed = state_dict.get('visual.positional_embedding', None) if old_pos_embed is None or not hasattr(model.visual, 'grid_size'): return grid_size = to_2tuple(model.visual.grid_size) extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more) new_seq_len = grid_size[0] * grid_size[1] + extra_tokens if new_seq_len == old_pos_embed.shape[0]: return if extra_tokens: pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:] else: pos_emb_tok, pos_emb_img = None, old_pos_embed old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img)))) logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size) pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2) pos_emb_img = F.interpolate( pos_emb_img, size=grid_size, mode=interpolation, align_corners=True, ) pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0] if pos_emb_tok is not None: new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0) else: new_pos_embed = pos_emb_img state_dict['visual.positional_embedding'] = new_pos_embed # Path: src/open_clip/eva_clip/utils.py def resize_evaclip_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1): all_keys = list(state_dict.keys()) # interpolate position embedding if 'visual.pos_embed' in state_dict: pos_embed_checkpoint = state_dict['visual.pos_embed'] embedding_size = pos_embed_checkpoint.shape[-1] num_patches = model.visual.patch_embed.num_patches num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches # height (== width) for the checkpoint position embedding orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) # height (== width) for the new position embedding new_size = int(num_patches ** 0.5) # class_token and dist_token are kept unchanged if orig_size != new_size: print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) state_dict['visual.pos_embed'] = new_pos_embed patch_embed_proj = state_dict['visual.patch_embed.proj.weight'] patch_size = model.visual.patch_embed.patch_size state_dict['visual.patch_embed.proj.weight'] = torch.nn.functional.interpolate( patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False) # Path: src/open_clip/eva_clip/utils.py def resize_visual_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1): # Rescale the grid of position embeddings when loading from state_dict old_pos_embed = state_dict.get('positional_embedding', None) if old_pos_embed is None or not hasattr(model.visual, 'grid_size'): return grid_size = to_2tuple(model.visual.grid_size) extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more) new_seq_len = grid_size[0] * grid_size[1] + extra_tokens if new_seq_len == old_pos_embed.shape[0]: return if extra_tokens: pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:] else: pos_emb_tok, pos_emb_img = None, old_pos_embed old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img)))) logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size) pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2) pos_emb_img = F.interpolate( pos_emb_img, size=grid_size, mode=interpolation, align_corners=True, ) pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0] if pos_emb_tok is not None: new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0) else: new_pos_embed = pos_emb_img state_dict['positional_embedding'] = new_pos_embed # Path: src/open_clip/eva_clip/utils.py def resize_eva_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1): all_keys = list(state_dict.keys()) # interpolate position embedding if 'pos_embed' in state_dict: pos_embed_checkpoint = state_dict['pos_embed'] embedding_size = pos_embed_checkpoint.shape[-1] num_patches = model.visual.patch_embed.num_patches num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches # height (== width) for the checkpoint position embedding orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) # height (== width) for the new position embedding new_size = int(num_patches ** 0.5) # class_token and dist_token are kept unchanged if orig_size != new_size: print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) state_dict['pos_embed'] = new_pos_embed patch_embed_proj = state_dict['patch_embed.proj.weight'] patch_size = model.visual.patch_embed.patch_size state_dict['patch_embed.proj.weight'] = torch.nn.functional.interpolate( patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False) # Path: src/open_clip/eva_clip/factory.py import json import logging import os import pathlib import re import torch from copy import deepcopy from pathlib import Path from typing import Optional, Tuple, Union, Dict, Any from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD from .model import CLIP, CustomCLIP, convert_weights_to_lp, convert_to_custom_text_state_dict,\ get_cast_dtype from .openai import load_openai_model from .pretrained import is_pretrained_cfg, get_pretrained_cfg, download_pretrained, list_pretrained_tags_by_model from .transform import image_transform from .tokenizer import HFTokenizer, tokenize from .utils import resize_clip_pos_embed, resize_evaclip_pos_embed, resize_visual_pos_embed, resize_eva_pos_embed _MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"] _MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs def _natural_key(string_): return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())] def _rescan_model_configs(): global _MODEL_CONFIGS config_ext = ('.json',) config_files = [] for config_path in _MODEL_CONFIG_PATHS: if config_path.is_file() and config_path.suffix in config_ext: config_files.append(config_path) elif config_path.is_dir(): for ext in config_ext: config_files.extend(config_path.glob(f'*{ext}')) for cf in config_files: with open(cf, "r", encoding="utf8") as f:
model_cfg = json.load(f)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: LkPrtctrd/BSL-V53 # Path: Heart/Record/ByteStreamHelper.py class ByteStreamHelper: def readDataReference(self): result = [] result.append(self.readVInt()) if not result[0]: return None result.append(self.readVInt()) return result def writeDataReference(self, high=0, low=-1): self.writeVInt(high) if high != 0: self.writeVInt(low) def compress(self, data): compressedText = zlib.compress(data) self.writeInt(len(compressedText) + 4) self.writeIntLittleEndian(len(data)) self.buffer += compressedText def decompress(self): data_length = self.readInt() self.readIntLittleEndian() return zlib.decompress(self.readBytes(data_length - 4)) def decodeIntList(self): length = self.readVInt() intList = [] for i in range(length): intList.append(self.readVInt()) return intList def decodeLogicLong(self, logicLong=None): if logicLong is None: logicLong = LogicLong(0, 0) high = self.readVInt() logicLong.high = high low = self.readVInt() logicLong.low = low def decodeLogicLongList(self): length = self.readVInt() logicLongList = [] for i in range(length): logicLongList.append(LogicLong(self.readVInt(), self.readVInt())) return logicLongList def encodeIntList(self, intList): length = len(intList) self.writeVInt(length) for i in intList: self.writeVInt(i) def encodeLogicLong(self, logicLong): if logicLong is None: logicLong = LogicLong(0, 0) self.writeVInt(logicLong.getHigherInt(self)) self.writeVInt(logicLong.getLowerInt(self)) def encodeLogicLongList(self, logicLongList): length = len(logicLongList) self.writeVInt(self, length) for logicLong in logicLongList: self.writeVInt(logicLong.getHigherInt(self)) self.writeVInt(logicLong.getLowerInt(self)) # Path: Heart/Record/ChecksumEncoder.py class ChecksumEncoder: def __init__(self): self.checksum = 0 self.checksum2 = 0 self.checksumEnabled = True def destruct(self): self.checksum = 0 self.checksum2 = 0 self.checksumEnabled = True def enableCheckSum(self, state): if not self.checksumEnabled or state: if not self.checksumEnabled and state: self.checksum = self.checksum2 self.checksumEnabled = state else: self.checksum2 = self.checksum self.checksumEnabled = False def equals(self, checksum_instance): if not checksum_instance: return False if not checksum_instance.checksumEnabled: checksum = checksum_instance.checksum else: checksum2 = checksum_instance.checksum2 if not self.checksumEnabled: checksum = self.checksum else: checksum2 = self.checksum2 return checksum == checksum2 def getCheckSum(self): if not self.checksumEnabled: checksum = self.checksum2 else: checksum = self.checksum return checksum @staticmethod def hashCode(): Debugger.error("ChecksumEncoder hashCode not designed") return 42 @staticmethod def isByteStream(): return False def isCheckSumEnabled(self): return self.checksumEnabled @staticmethod def isCheckSumOnlyMode(): return True def resetCheckSum(self): self.checksum = 0 def writeBoolean(self, value): if value: integer = 13 else: integer = 7 self.checksum = integer + CPPDefs.__ROR4__(self.checksum, 31) def writeByte(self, value): self.checksum = CPPDefs.__ROR4__(self.checksum, 31) + value + 11 def writeBytes(self, value, length): if value: integer = length + 38 else: integer = 37 self.checksum = CPPDefs.__ROR4__(self.checksum, 31) def writeInt8(self, value): if value + 0x80 >= 0x100: Debugger.error("") self.checksum = CPPDefs.__ROR4__(self.checksum, 31) + value + 11 def writeInt16(self, value): if value + 0x8000 >= 0x10000: Debugger.error("") self.checksum = CPPDefs.__ROR4__(self.checksum, 31) + value + 19 def writeInt24(self, value): if value + 0x800000 >= 0x1000000: Debugger.error("") self.checksum = (value & 0xFFFFFF) + CPPDefs.__ROR4__(self.checksum, 31) + value + 21 def writeInt(self, value): self.checksum = CPPDefs.__ROR4__(self.checksum, 31) + value + 9 @staticmethod def writeLong(bytestream, logicLong): logicLong.encode(bytestream) def writeLongLong(self, logicLong): self.checksum = logicLong.getLowerInt() + CPPDefs.__ROR4__(logicLong.getHigherInt() + CPPDefs.__ROR4__(self.checksum, 31) + 67, 31) + 91 def writeShort(self, value): self.checksum = CPPDefs.__ROR4__(self.checksum, 31) + value + 19 def writeString(self, value): checksum = CPPDefs.__ROR4__(self.checksum, 31) if value: self.checksum = checksum + len(value) + 28 else: self.checksum = checksum + 27 def writeStringReference(self, value): self.checksum = len(value) + CPPDefs.__ROR4__(self.checksum, 31) + 38 def writeVInt(self, value): self.checksum = value + CPPDefs.__ROR4__(self.checksum, 31) + 33 def writeVLong(self, high, low): self.checksum = low + CPPDefs.__ROR4__(high + CPPDefs.__ROR4__(self.checksum, 31) + 65, 31) + 88 # Path: Heart/Logic/LogicStringUtil.py class LogicStringUtil: @staticmethod def getBytes(string): return string.encode() @staticmethod def getByteLength(string): return len(string) # Path: Heart/Record/Debugger.py class Debugger: @staticmethod def error(message): print("[ERROR]", message) @staticmethod def warning(message): print("[WARNING]", message) # Path: Heart/Logic/LogicLong.py class LogicLong: def __init__(self): self.high = 0 self.low = 0 def __init__(self, high, low): self.high = high self.low = low @staticmethod def clone(logicLong): return LogicLong(logicLong.high, logicLong.low) def decode(self, bytestream): self.high = bytestream.readInt() self.low = bytestream.readInt() def encode(self, bytestream): bytestream.writeInt(self.high) bytestream.writeInt(self.low) def equals(self, logicLong): if logicLong: if self.low == logicLong.low: return self.high == logicLong.high return False @staticmethod def getHigherInt(longlong): return longlong >> 32 @overload def getHigherInt(self): return self.high @staticmethod def getLowerInt(longlong): result = longlong & 0x7FFFFFFF if longlong < 0: return longlong | 0x80000000 return result @overload def getLowerInt(self): return self.low def getLong(self): result = self.low if result >> 31 == -1: return result | 0x80000000 return result def greaterThan(self, logicLong): result = False if logicLong: result = True if self.high <= logicLong.high: result = False if self.high == logicLong.high: return self.low > logicLong.low return result def hashCode(self): return 31 * self.high + self.low def isZero(self): if not self.low: return self.high == 0 else: return False def set(self, low, high): lowerInt = low & 0x7FFFFFFF if low < 0: lowerInt = low | 0x80000000 self.high = high >> 32 self.low = lowerInt def toLong(high, low): lowerInt = low & 0x7FFFFFFF if low < 0: lowerInt = low | 0x80000000 return lowerInt | high << 32 def toString(text, logiclong): print(text, f"LogicLong({logiclong.high},{logiclong.low})") # Path: Heart/Record/ByteStream.py import zlib from Heart.Record.ByteStreamHelper import ByteStreamHelper from Heart.Record.ChecksumEncoder import ChecksumEncoder from Heart.Logic.LogicStringUtil import LogicStringUtil from Heart.Record.Debugger import Debugger from Heart.Logic.LogicLong import LogicLong tempBuf.append(value & 0xFF) self.messagePayload = bytes(tempBuf) self.offset += 1 def writeInt16(self, value): ChecksumEncoder.writeInt(self, value) self.bitoffset = 0 tempBuf = list(self.messagePayload) tempBuf.append(value >> 8 & 0xFF) tempBuf.append(value & 0xFF) self.messagePayload = bytes(tempBuf) self.offset += 2 def writeInt24(self, value): ChecksumEncoder.writeInt(self, value) self.bitoffset = 0 tempBuf = list(self.messagePayload) tempBuf.append(value >> 16 & 0xFF) tempBuf.append(value >> 8 & 0xFF) tempBuf.append(value & 0xFF) self.messagePayload = bytes(tempBuf) self.offset += 3 def writeInt(self, value): ChecksumEncoder.writeInt(self, value) ByteStream.writeIntToByteArray(self, value) def writeIntLittleEndian(self, value): self.bitoffset = 0 tempBuf = list(self.messagePayload) tempBuf.append(value & 0xFF) tempBuf.append(value >> 8 & 0xFF) tempBuf.append(value >> 16 & 0xFF) tempBuf.append(value >> 24 & 0xFF) self.messagePayload = bytes(tempBuf) self.offset += 4 def writeIntToByteArray(self, value): self.bitoffset = 0 tempBuf = list(self.messagePayload) tempBuf.append(value >> 24 & 0xFF) tempBuf.append(value >> 16 & 0xFF) tempBuf.append(value >> 8 & 0xFF) tempBuf.append(value & 0xFF) self.messagePayload = bytes(tempBuf) self.offset += 4 def writeLongLong(self, longlong): ChecksumEncoder.writeLongLong(self, longlong) self.bitoffset = 0 high = LogicLong.getHigherInt(longlong) ByteStream.writeIntToByteArray(self, high) low = LogicLong.getLowerInt(longlong) ByteStream.writeIntToByteArray(self, low) def writeLong(self, high, low): self.writeIntToByteArray(high) self.writeIntToByteArray(low) def writeShort(self, value): ChecksumEncoder.writeShort(self, value) self.bitoffset = 0 tempBuf = list(self.messagePayload) tempBuf.append(value >> 8 & 0xFF) tempBuf.append(value & 0xFF) self.messagePayload = bytes(tempBuf) self.offset += 2 def writeString(self, value=None): ChecksumEncoder.writeString(self, value) self.bitoffset = 0 if value != None: str_bytes = LogicStringUtil.getBytes(value) str_length = LogicStringUtil.getByteLength(str_bytes) if str_length < 900001: ByteStream.writeIntToByteArray(self, str_length) self.messagePayload += str_bytes self.offset += str_length else: Debugger.warning(f"ByteStream::writeString invalid string length {str_length}") ByteStream.writeIntToByteArray(self, -1) else: ByteStream.writeIntToByteArray(self, -1) def writeStringReference(self, value): ChecksumEncoder.writeStringReference(self, value) self.bitoffset = 0 str_bytes = LogicStringUtil.getBytes(value) str_length = LogicStringUtil.getByteLength(str_bytes) if str_length < 900001: ByteStream.writeIntToByteArray(self, str_length) self.messagePayload += str_bytes self.offset += str_length else: Debugger.warning(f"ByteStream::writeString invalid string length {str_length}") ByteStream.writeIntToByteArray(self, -1) def writeVInt(self, data): self.bitoffset = 0 if type(data) == str: data = int(data) final = b'' if (data & 2147483648) != 0: if data >= -63: final += (data & 0x3F | 0x40).to_bytes(1, 'big', signed=False) self.offset += 1 elif data >= -8191: final += (data & 0x3F | 0xC0).to_bytes(1, 'big', signed=False) final += ((data >> 6) & 0x7F).to_bytes(1, 'big', signed=False) self.offset += 2 elif data >= -1048575: final += (data & 0x3F | 0xC0).to_bytes(1, 'big', signed=False) final += ((data >> 6) & 0x7F | 0x80).to_bytes(1, 'big', signed=False) final += ((data >> 13) & 0x7F).to_bytes(1, 'big', signed=False) self.offset += 3 elif data >= -134217727: final += (data & 0x3F | 0xC0).to_bytes(1, 'big', signed=False) final += ((data >> 6) & 0x7F | 0x80).to_bytes(1, 'big', signed=False) final += ((data >> 13) & 0x7F | 0x80).to_bytes(1, 'big', signed=False) final += ((data >> 20) & 0x7F).to_bytes(1, 'big', signed=False)
self.offset += 4
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: DavidBellamy/labrador # Path: lab_transformers/data/tokenize_tabular_data.py class mimic4_eCDFer: def __init__(self, ecdf_data: np.lib.npyio.NpzFile) -> None: """ Maps an iterable of lab codes and and an iterable of corresponding lab values to their probabilities on the corresponding eCDF. Parameters: ecdf_data: a NumPy .npz data archive containing named arrays: {itemid}_x and {itemid}_y for all itemid's in MIMIC-IV. {itemid}_x contains the *unique* values of the random variable (e.g. lab values). {itemid}_y contains the probabilities corresponding to P(X <= x) for that itemid. Note: {itemid}_x, {itemid}_y are index-aligned such that: ecdf_data[f"{itemid}_y"][i] = P(X <= ecdf_data[f"{itemid}_x"][i]) for all i. """ self.ecdf_data = ecdf_data self.itemids = list(set([int(itemid[:-2]) for itemid in ecdf_data.files])) def __call__( self, itemids: Union[Iterable[int], NDArray[np.int_]], lab_values: Union[Iterable[float], NDArray[np.float_]], null_token: Union[int, np.nan] = np.nan, ) -> NDArray[np.float_]: """ Returns Pr(X <= x) for all x in lab_values. i.e. maps all values in lab_values to their probabilities on the eCDF of the corresponding itemid itemids: an iterable of integer lab codes (called itemid's in MIMIC-IV). Missing values are not allowed because they are used to index into the eCDF database. lab_values: an iterable of float lab values. Missing values are allowed and will be mapped to null_token. null_token: the token to use for missing values. Default is np.nan. Returns an array of probabilities corresponding to the input lab_values. """ assert len(itemids) == len( lab_values ), "itemids and lab_values must be the same length" # Find the indices of the nearest values in the compressed eCDF cut-off points ixs = [ self.find_nearest_ecdf_cutoff(itemid, labval) for itemid, labval in zip(itemids, lab_values) ] # Return the corresponding eCDF probabilities return np.array( [ self.ecdf_data[f"{itemid}_y"][ix].item() if ix is not None else null_token for itemid, ix in zip(itemids, ixs) ] ) def find_nearest_ecdf_cutoff( self, itemid: int, lab_value: float ) -> Union[int, None]: """ Finds the nearest value to `lab_value` in the eCDF for `itemid`. Returns the index of this nearest value or None if the lab_value is missing. """ if np.isnan(lab_value): idx = None else: lab_value = np.array(lab_value) idx = ( np.abs(self.ecdf_data[f"{itemid}_x"] - lab_value.reshape(-1, 1)) ).argmin(axis=1) return idx def __len__(self): return len(self.itemids) # Path: lab_transformers/utils.py class NpEncoder(json.JSONEncoder): """A JSONEncoder subclass to handle Numpy integers, floats and arrays when writing JSON lines to disk. Usage: json.dumps(data, cls=NpEncoder) This function overwrites the default() method of JSONEncoder to handle additional types; specifically Numpy integers, floats and arrays. For all other types, the standard default() method is used for encoding. """ def default( self, obj: Union[np.integer, np.floating, np.ndarray, Any] ) -> Union[int, float, List[Any], Any]: if isinstance(obj, np.integer): return int(obj) elif isinstance(obj, np.floating): return float(obj) elif isinstance(obj, np.ndarray): return obj.tolist() else: return super(NpEncoder, self).default(obj) # Path: scripts/preprocessing/pretraining_raw_data_to_bert_jsonl.py import json import os import os.path as op import sqlite3 import sys import numpy as np import pandas as pd from itertools import groupby from typing import Dict, Tuple, Union from numpy.typing import NDArray from statsmodels.distributions import ECDF from tqdm import tqdm from lab_transformers.data.tokenize_tabular_data import mimic4_eCDFer from lab_transformers.utils import NpEncoder codebook.columns = ["itemid", "frequency_rank"] d_labitems = os.path.join(self.data_path, "d_labitems.csv") labitem_descriptions = pd.read_csv( d_labitems ) # load descriptions of each lab code codebook = codebook.merge( labitem_descriptions, on="itemid" ) # merge the descriptions with the codebook filename = os.path.join(self.output_path, "labcode_codebook_labrador.csv") codebook.to_csv(filename, index=False) # save the codebook return frequency_ranks def compute_time_delta(self, df: pd.DataFrame) -> pd.DataFrame: # Convert charttime Pandas datetime (for computing time deltas later) df["charttime"] = pd.to_datetime(df["charttime"]) # Sort by subject_id and charttime (ascending) df = df.sort_values(["subject_id", "charttime"], inplace=False) # calculate time deltas (next time minus previous time) df["time_delta"] = df.charttime - df.charttime.shift(1) # correct rows at border between 2 patients (replace with 0) df.loc[(df.subject_id != df.subject_id.shift(1)), "time_delta"] = pd.Timedelta( "0 days" ) # Convert time_delta's to decimal days (e.g. 5.35 days) df["time_delta"] = df["time_delta"].dt.total_seconds() / (60 * 60 * 24) return df def split_data( self, df: pd.DataFrame ) -> Tuple[Dict[str, NDArray[np.integer]], Dict[str, pd.DataFrame]]: # Sort patients into train/validation/test sets patient_list = df.subject_id.unique() # Shuffle the order of patients self.rng.shuffle(patient_list) train_size = int(np.floor(self.train_pct * len(patient_list))) val_size = int(np.ceil(self.val_pct * len(patient_list))) test_size = int(len(patient_list) - train_size - val_size) train_patients = patient_list[:train_size] val_patients = patient_list[train_size : train_size + val_size] test_patients = patient_list[train_size + val_size :] # Split out the training data train_df = df[df.subject_id.isin(train_patients)] # Extract the unique itemid's from the training data partition train_itemids = train_df.itemid.unique() # Split out the val/test sets if the itemid also exists in the training data val_df = df[ (df.subject_id.isin(val_patients)) & (df.itemid.isin(train_itemids)) ] test_df = df[ (df.subject_id.isin(test_patients)) & (df.itemid.isin(train_itemids)) ] return { "train_patients": train_patients, "val_patients": val_patients, "test_patients": test_patients, }, {"train_df": train_df, "val_df": val_df, "test_df": test_df} def probability_transform_values( self, splits: Dict[str, pd.DataFrame] ) -> Dict[str, pd.DataFrame]: train_df = splits["train_df"] val_df = splits["val_df"] test_df = splits["test_df"] unique_itemids = train_df.itemid.unique() compressed_ecdf_data = {} for itemid in tqdm(unique_itemids, desc="Computing eCDFs"): lab_values = train_df[ ~np.isnan(train_df.valuenum) & (train_df.itemid == itemid) ]["valuenum"].values if len(lab_values) == 0: continue # Calculate the empirical CDF for the current lab test ecdf = ECDF(lab_values) # Compress the eCDF to just the unique lab values (and their probabilities) unique_ixs = [] cum_lengths = 0 for _, g in groupby(ecdf.x): group = list(g) cum_lengths += len(group) unique_ix = cum_lengths - 1 unique_ixs.append(unique_ix) # Store the resulting compressed eCDF data compressed_ecdf_data[f"{itemid}_x"] = ecdf.x[unique_ixs] compressed_ecdf_data[f"{itemid}_y"] = ecdf.y[unique_ixs] # Save the compressed eCDF values and probabilities np.savez(op.join(self.output_path, "mimic4_ecdfs.npz"), **compressed_ecdf_data) # Load the result back and use it to probability transform the validation and test data splits ecdf_data = np.load(op.join(self.output_path, "mimic4_ecdfs.npz")) eCDFer = mimic4_eCDFer(ecdf_data) # filter rows to just itemid's in the eCDF Numpy zip archive (npz) train_df[train_df.itemid.isin(eCDFer.itemids)] = train_df[ train_df.itemid.isin(eCDFer.itemids) ].apply(eCDFer, axis=1) val_df = val_df[val_df.itemid.isin(eCDFer.itemids)] test_df = test_df[test_df.itemid.isin(eCDFer.itemids)] train_df.apply(
eCDFer, axis=1
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: NLP-Core-Team/RealCode_eval # Path: lm_eval/generators.py class InfillGenerator: def __init__(self, model_path: str, num_samples: int, prefix_tokens: tp.Union[str, tp.List[int]] = [], middle_tokens: tp.Union[str, tp.List[int]] = [], suffix_tokens: tp.Union[str, tp.List[int]] = [], max_context_length: int = None, left_context_ratio: int = 1, dtype = torch.bfloat16, eos_sequences: tp.List[str] = ["\sclass\s", "\sdef\s", "\s@", "<|endoftext|>", "<extra_id_0>"], model_kwargs: tp.Dict = {}, generation_params: tp.Dict[str, tp.Any] = {}, context_parser: BaseParser = TrivialContextParser(), add_extra_spaces_to_generation=0, ): """ Class to generate code in fill-in-the-middle mode params: model_path: str - which model to use for generation, anything that can be passed to AutoModelForCausalLM.from_pretrained num_samples: int - number of samples to generate per task, values > 1 should be paired with generation_params prefix_tokens: tp.Union[str, tp.List[int]] = [] - tokens to insert before the left context. Can be either str or list of int tokens middle_tokens: tp.Union[str, tp.List[int]] = [] - tokens to insert before the right context (see Fill-In-the-Middle). Can be either str or list of int tokens suffix_tokens: tp.Union[str, tp.List[int]] = [] - tokens to insert after the right context (see Fill-In-the-Middle). Can be either str or list of int tokens max_context_length: int = None - truncation length for prompt, measured in tokens (len(left_context) + len(right_context) < max_context_length) left_context_ratio: int = 1 - proportion of max_context_length given to left_context. 1 means 1:1 split between left and right, 3 means 3:1 split in favor of left context dtype=torch.bfloat16 - torch dtype to use for inference eos_sequences: tp.List[str] = ["\sclass\s", "\sdef\s", "\s@", "<|endoftext|>", "<extra_id_0>"] - regular expressions that determine end of geneartion model_kwargs: tp.Dict = {} - kwargs to be passed to AutoModelForCausalLM.from_pretrained generation_params: tp.Dict[str, tp.Any] = {} - kwargs to be passed to AutoModelForCausalLM.generate context_parser: BaseParser = TrivialContextParser() - parser for left and right contexts add_extra_spaces_to_generation=0 - number of added extra spaces add the begining of generation to fix indentation. May be required due to bugs in some tokenizers (e.g. Codellama) """ self.device = torch.device("cuda") # self.device = torch.device("cpu") logger.info(f"Loading model from {model_path} with kwargs f{model_kwargs}") self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) self.model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map="auto", trust_remote_code=True, **model_kwargs ).eval() logger.info(f"Loaded model from {model_path} with kwargs f{model_kwargs}") logger.info(f"Device map: \n{self.model.hf_device_map}") self.num_samples = num_samples self.prefix_tokens = self.tokenize_special_tokens(prefix_tokens) self.middle_tokens = self.tokenize_special_tokens(middle_tokens) self.suffix_tokens = self.tokenize_special_tokens(suffix_tokens) logger.debug(f"prefix_tokens: {self.prefix_tokens}, middle_tokens: {self.middle_tokens}, suffix_tokens: {self.suffix_tokens}") self.eos_sequences = eos_sequences[:] #context truncation parameters self.max_context_length = max_context_length self.left_context_truncate_at = left_context_ratio / (left_context_ratio + 1) self.right_context_truncate_at = 1 / (left_context_ratio + 1) self.generation_params = generation_params self.generation_params['num_return_sequences'] = self.num_samples self.context_parser = context_parser # Number of tokens before and after truncating to max_context_length self.count_inferenced_tokens = [] self.count_possible_tokens = [] self.add_extra_spaces_to_generation = add_extra_spaces_to_generation def tokenize_special_tokens(self, str_or_list: tp.Union[str, tp.List[int]]) -> torch.Tensor: if type(str_or_list) == str: return self.tokenizer.encode(str_or_list, return_tensors="pt", add_special_tokens=False).to(self.device) # ['input_ids'] else: return torch.as_tensor(str_or_list).unsqueeze(0).to(self.device) def _prepare_tokens(self, task: Task) -> torch.Tensor: left_context_str, right_context_str = self.context_parser.get_left_and_right_context(task) logger.info("\n" + "\n".join(left_context_str.split('\n')[-20:])) left_tokens = self.tokenizer.encode( left_context_str, return_tensors="pt", add_special_tokens=False).to(self.device) # ['input_ids'] right_tokens = self.tokenizer.encode( right_context_str, return_tensors="pt", add_special_tokens=False).to(self.device) # ['input_ids'] self.count_possible_tokens.append(left_tokens.shape[1] + right_tokens.shape[1]) if self.max_context_length and left_tokens.shape[1] + right_tokens.shape[1] > self.max_context_length: logger.debug("Truncating context") left_tokens = left_tokens[:, -min(int(self.max_context_length * self.left_context_truncate_at), left_tokens.shape[1]) + 1:] right_tokens = right_tokens[:, :min(int(self.max_context_length * self.right_context_truncate_at), right_tokens.shape[1]) - 1] tokens = torch.cat([self.prefix_tokens, left_tokens, self.middle_tokens, right_tokens, self.suffix_tokens], dim=-1).type(torch.long) return tokens def _postprocess(self, generation: str): new_gen = [] for i, line in enumerate(generation.split('\n')): if i == 0 and self.add_extra_spaces_to_generation: # ugly hack for codellama, weirdly removing space for skip_special_tokens=True line = ' '*self.add_extra_spaces_to_generation + line for eos in self.eos_sequences: if re.search(eos, line): return "\n".join(new_gen).rstrip() + '\n\n' new_gen.append(line) return "\n".join(new_gen).rstrip() + '\n\n' @torch.no_grad() def generate(self, tasks: tp.List[Task]) -> tp.List[tp.List[str]]: res = [] for i, task in tqdm(enumerate(tasks)): tokens = self._prepare_tokens(task) if i == 0: logger.debug(f"\nTokens: {tokens[:, :5]} ... {tokens[:, -5:]}\n") generated_tokens = self.model.generate(tokens, **self.generation_params) generations = self.tokenizer.batch_decode(generated_tokens[:, tokens.shape[1]:], skip_special_tokens=True) if i % 1 == 0: logger.debug(f"Generation for task {i}:\n{self._postprocess(generations[0])}") res.append([self._postprocess(t) for t in generations]) self.count_inferenced_tokens.append([len(t) for t in tokens]) return res # Path: lm_eval/generators.py class LMGenerator(InfillGenerator): def __init__(self, lm_prefix_tokens: tp.Union[str, tp.List[int]] = [], lm_suffix_tokens: tp.Union[str, tp.List[int]] = [], **kwargs ): """ Class to generate code in causal LM mode, uses only left context params: lm_prefix_tokens: tp.Union[str, tp.List[int]] = [] - tokens to insert before the context. Can be either str or list of int tokens lm_suffix_tokens: tp.Union[str, tp.List[int]] = [] - tokens to insert after the context. Can be either str or list of int tokens """ super().__init__(**kwargs) self.lm_prefix_tokens = super().tokenize_special_tokens(lm_prefix_tokens) self.lm_suffix_tokens = super().tokenize_special_tokens(lm_suffix_tokens) logger.debug(f"lm_prefix_tokens: {self.lm_prefix_tokens}, lm_suffix_tokens: {self.lm_suffix_tokens}") def _prepare_tokens(self, task: Task) -> torch.Tensor: left_context_str, _ = self.context_parser.get_left_and_right_context(task) logger.info("\n" + "\n".join(left_context_str.split('\n')[-20:])) left_tokens = self.tokenizer.encode( left_context_str, return_tensors="pt", add_special_tokens=False).to(self.device) # ['input_ids'] self.count_possible_tokens.append(left_tokens.shape[1]) if self.max_context_length and left_tokens.shape[1] > self.max_context_length: left_tokens = left_tokens[:, -self.max_context_length:] tokens = torch.cat([self.lm_prefix_tokens, left_tokens, self.lm_suffix_tokens], dim=-1).type(torch.long) return tokens # Path: lm_eval/evaluator.py class Evaluator: def __init__(self, dataset_root: os.PathLike, num_samples: int, pass_k_list: tp.List[int] = [1], njobs: int = 1, working_dir: tp.Optional[os.PathLike] = None, metric_aggregations: tp.Dict[str, tp.Callable[[Task], int]] = METRIC_AGGREGATIONS ): self.metrics = [] for pass_k in pass_k_list: if num_samples < pass_k: raise ValueError(f"num_samples {num_samples} must be greater than or equal to PassK={pass_k}") self.metrics.append(PassK(pass_k, num_samples)) self.dataset_root = dataset_root self.num_samples = num_samples self.njobs = njobs self.working_dir = working_dir self.metric_aggregations = metric_aggregations def evaluate(self, tasks: tp.List[Task], generations: tp.List[tp.List[str]], ) -> tp.Dict[tp.Literal["aggregated", "detailed"], tp.Any]: logger.info(f"Evaluating {len(tasks)} tasks with {self.num_samples} samples on {self.njobs} CPUs") # Run test evaluation if self.njobs == 1: results = [ [evaluate_override( self.dataset_root, task, gen, os.path.join(self.working_dir) ) for gen in generations[i]] for i, task in enumerate(tasks) ] else: with Manager() as manager: cache = manager.dict() with manager.Pool(processes=self.njobs) as pool: results = [[None for _2 in range(self.num_samples)] for _ in tasks] async_result = pool.starmap_async( evaluate_override_wrapped, [ ( self.dataset_root, task, gen, os.path.join(self.working_dir, f"{j}_{i}"), j, i, cache ) for j, task in enumerate(tasks) for i, gen in enumerate(generations[j]) ] ) res = async_result.get() for task_n, gen_n, result in res: results[task_n][gen_n] = result if task_n % 25 == 0 and gen_n == 0: logger.debug(result['output']) # Calculate metrics per task all_metric_names = ['compilation_error_rate', 'exact_match'] + [t.name() for t in self.metrics] metrics = [] agg_metrics = {level: {metric_name: defaultdict(list) for metric_name in all_metric_names} for level in self.metric_aggregations} for task, task_results, task_generations in zip(tasks, results, generations): if len(task_results) != self.num_samples: raise ValueError(f"Task {task} has {len(task_results)} samples, expected {self.num_samples}") correct = sum([int(t['passed'] == task.total_tests) for t in task_results]) not_compiles = mean([int(t['passed'] + t['failed'] == 0) for t in task_results]) exact_match = mean([int(re.sub(r'\W+', '', task.gt) == re.sub(r'\W+', '', gen)) for gen in task_generations]) task_metrics = {'compilation_error_rate': not_compiles, 'exact_match': exact_match} for metric in self.metrics: task_metrics[metric.name()] = metric(correct) task_metrics['evaluations'] = [t['output'] for t in task_results] metrics.append(task_metrics) for level, level_func in self.metric_aggregations.items(): for metric in all_metric_names: agg_metrics[level][metric][level_func(task)].append(task_metrics[metric]) for level in self.metric_aggregations: for metric_name in all_metric_names: means = {val: mean(agg_metrics[level][metric_name][val]) for val in agg_metrics[level][metric_name]} agg_metrics[level][metric_name] = means # Save metics metrics = agg_metrics | { "detailed": [asdict(task) | task_metric for task, task_metric in zip(tasks, metrics)] } return metrics # Path: lm_eval/context_parser.py class TrivialContextParser(BaseParser): def get_left_and_right_context(self, task: Task) -> tp.Tuple[str, str]: """ returns left and right context without processing """ return task.left_context, task.right_context # Path: lm_eval/utils.py def load_dataset(root_path: os.PathLike, meta_file: str = 'dataset.json', limit: int = 10_000) -> List[Task]: with open(Path(root_path) / meta_file, 'r') as f: dataset = [Task(**t) for t in json.load(f)][:limit] return dataset # Path: main.py import hydra import torch import numpy as np import random import json import os import logging from lm_eval.generators import InfillGenerator, LMGenerator from lm_eval.evaluator import Evaluator from lm_eval.context_parser import TrivialContextParser from lm_eval.utils import load_dataset from omegaconf import DictConfig, OmegaConf logger = logging.getLogger("RealCode") logger.setLevel(logging.DEBUG) def seed_all(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) @hydra.main(config_path="config", config_name="config") def main(cfg: DictConfig) -> None: seed_all(cfg.seed) print(cfg) dataset = load_dataset(cfg.dataset_root, cfg.dataset_meta_file, cfg.limit) logger.info(f"loaded {cfg.dataset_root} {cfg.dataset_meta_file}") if 'context_parser' in cfg: parser = hydra.utils.instantiate(cfg.context_parser) else: parser = TrivialContextParser() dtype_map = {'fp16': torch.float16, 'fp32': torch.float, 'bf16': torch.bfloat16} if cfg.generator_mode == 'infill': generator = InfillGenerator( add_extra_spaces_to_begin=0, model_path=cfg.model_path, dtype=dtype_map[cfg.dtype], num_samples=cfg.num_samples, prefix_tokens=cfg.prefix_tokens, middle_tokens=cfg.middle_tokens, suffix_tokens=cfg.suffix_tokens, max_context_length=cfg.max_context_length, generation_params=dict(cfg.generation_params), eos_sequences=cfg.eos_sequences, model_kwargs=cfg.model_kwargs if 'model_kwargs' in cfg else {}, context_parser=parser, left_context_ratio=cfg.left_context_ratio, add_extra_spaces_to_generation=cfg.tokenizer_fix ) elif cfg.generator_mode == 'lm': generator = LMGenerator( model_path=cfg.model_path, dtype=dtype_map[cfg.dtype], num_samples=cfg.num_samples, lm_prefix_tokens=cfg.lm_prefix_tokens if 'lm_prefix_tokens' in cfg else [], lm_suffix_tokens=cfg.lm_suffix_tokens if 'lm_suffix_tokens' in cfg else [], max_context_length=cfg.max_context_length, generation_params=dict(cfg.generation_params), eos_sequences=cfg.eos_sequences, model_kwargs=cfg.model_kwargs if 'model_kwargs' in cfg else {}, context_parser=parser, add_extra_spaces_to_generation=cfg.tokenizer_fix ) else: raise ValueError(f"generator_mode can be either 'lm' or 'infill', found {cfg.generator_mode}") evaluator = Evaluator( dataset_root=cfg.dataset_root, num_samples=cfg.num_samples,
pass_k_list=cfg.pass_k_list,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: ENDEVSOLS/Long-Trainer # Path: longtrainer/loaders.py class DocumentLoader: def load_csv(self, path): """ Load data from a CSV file at the specified path. Args: path (str): The file path to the CSV file. Returns: The loaded CSV data. Exceptions: Prints an error message if the CSV loading fails. """ try: loader = CSVLoader(file_path=path) data = loader.load() return data except Exception as e: print(f"Error loading CSV: {e}") def wikipedia_query(self, search_query): """ Query Wikipedia using a given search term and return the results. Args: search_query (str): The search term to query on Wikipedia. Returns: The query results. Exceptions: Prints an error message if the Wikipedia query fails. """ try: data = WikipediaLoader(query=search_query, load_max_docs=2).load() return data except Exception as e: print(f"Error querying Wikipedia: {e}") def load_urls(self, urls): """ Load and parse content from a list of URLs. Args: urls (list): A list of URLs to load. Returns: The loaded data from the URLs. Exceptions: Prints an error message if loading URLs fails. """ try: loader = UnstructuredURLLoader(urls=urls) data = loader.load() return data except Exception as e: print(f"Error loading URLs: {e}") def load_YouTubeVideo(self, urls): """ Load YouTube video information from provided URLs. Args: urls (list): A list of YouTube video URLs. Returns: The loaded documents from the YouTube URLs. Exceptions: Prints an error message if loading YouTube videos fails. """ try: loader = YoutubeLoader.from_youtube_url( urls, add_video_info=True, language=["en", "pt", "zh-Hans", "es", "ur", "hi"], translation="en") documents = loader.load() return documents except Exception as e: print(f"Error loading YouTube video: {e}") def load_pdf(self, path): """ Load data from a PDF file at the specified path. Args: path (str): The file path to the PDF file. Returns: The loaded and split PDF pages. Exceptions: Prints an error message if the PDF loading fails. """ try: loader = PyPDFLoader(path) pages = loader.load_and_split() return pages except Exception as e: print(f"Error loading PDF: {e}") def load_text_from_html(self, path): """ Load and parse text content from an HTML file at the specified path. Args: path (str): The file path to the HTML file. Returns: The loaded HTML data. Exceptions: Prints an error message if loading text from HTML fails. """ try: loader = BSHTMLLoader(path) data = loader.load() return data except Exception as e: print(f"Error loading text from HTML: {e}") def load_markdown(self, path): """ Load data from a Markdown file at the specified path. Args: path (str): The file path to the Markdown file. Returns: The loaded Markdown data. Exceptions: Prints an error message if loading Markdown fails. """ try: loader = UnstructuredMarkdownLoader(path) data = loader.load() return data except Exception as e: print(f"Error loading Markdown: {e}") def load_doc(self, path): """ Load data from a DOCX file at the specified path. Args: path (str): The file path to the DOCX file. Returns: The loaded DOCX data. Exceptions: Prints an error message if loading DOCX fails. """ try: loader = Docx2txtLoader(path) data = loader.load() return data except Exception as e: print(f"Error loading DOCX: {e}") # Path: longtrainer/loaders.py class TextSplitter: def __init__(self, chunk_size=1024, chunk_overlap=100): """ Initialize the TextSplitter with a specific chunk size and overlap. Args: chunk_size (int): The size of each text chunk. chunk_overlap (int): The overlap size between chunks. """ self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) def split_documents(self, documents): """ Split the provided documents into chunks based on the chunk size and overlap. Args: documents (list): A list of documents to be split. Returns: A list of split documents. Exceptions: Prints an error message if splitting documents fails. """ try: return self.text_splitter.split_documents(documents) except Exception as e: print(f"Error splitting documents: {e}") # Path: longtrainer/retrieval.py class DocRetriever: """ Advanced Document Retriever integrates retrieval techniques to efficiently retrieve documents based on provided queries. """ def __init__(self, documents, embedding_model, existing_faiss_index=None, num_k=3): """ Initializes the AdvancedDocumentRetriever with a set of documents and an embedding model. Args: documents (list): A list of documents to be indexed and retrieved. embedding_model (OpenAIEmbeddings): The embedding model used for document vectorization. """ try: self.embedding_model = embedding_model self.document_collection = documents self.faiss_index = existing_faiss_index if not documents: raise ValueError("Document collection is empty.") if not self.faiss_index: # Index documents using FAISS self._index_documents() # Initialize BM25 and FAISS retrievers self.bm25_retriever = BM25Retriever.from_documents(documents) if self.faiss_index: self.faiss_retriever = self.faiss_index.as_retriever(search_kwargs={"k": num_k}) else: self.faiss_retriever = None # Create an Ensemble Retriever combining BM25 and FAISS self.ensemble_retriever = EnsembleRetriever( retrievers=[self.bm25_retriever, self.faiss_retriever], weights=[0.5, 0.5] ) except Exception as e: print(f"Initialization error in AdvancedDocumentRetriever: {e}") def _index_documents(self): """ Indexes the provided documents into the FAISS index for efficient retrieval. Handles large document collections by segmenting them into smaller batches. """ if self.faiss_index is None: # Only index if there's no existing FAISS index try: if len(self.document_collection) < 2000: self.faiss_index = FAISS.from_documents(self.document_collection, self.embedding_model) else: self.faiss_index = FAISS.from_documents(self.document_collection[:2000], self.embedding_model) for i in range(2000, len(self.document_collection), 2000): end_index = min(i + 2000, len(self.document_collection)) additional_index = FAISS.from_documents(self.document_collection[i:end_index], self.embedding_model) self.faiss_index.merge_from(additional_index) except Exception as e: print(f"Error indexing documents: {e}") def save_index(self, file_path): """ Saves the FAISS index to a specified file path. Args: file_path (str): Path where the FAISS index will be saved. """ try: self.faiss_index.save_local(file_path) except Exception as e: print(f"Error saving FAISS index: {e}") def update_index(self, new_documents): """ Updates the FAISS index with new documents. Args: new_documents (list): A list of new documents to add to the index. """ # Add this method to handle updates to the existing index if not self.faiss_index: raise ValueError("FAISS index not initialized.") if len(new_documents) < 2000: new_index = FAISS.from_documents(new_documents, self.embedding_model) else: # self.faiss_index = FAISS.from_documents(self.document_collection[:2000], self.embedding_model) new_index = FAISS.from_documents(new_documents[:2000], self.embedding_model) for i in range(2000, len(new_documents), 2000): end_index = min(i + 2000, len(new_documents)) additional_index = FAISS.from_documents(self.new_documents[i:end_index], self.embedding_model) new_index.merge_from(additional_index) new_index = FAISS.from_documents(new_documents, self.embedding_model) self.faiss_index.merge_from(new_index) def delete_index(self, file_path): """ Deletes the FAISS index directory from the specified path. Args: file_path (str): Path of the FAISS index directory to be deleted. """ try: if os.path.exists(file_path): if os.path.isdir(file_path): shutil.rmtree(file_path) else: os.remove(file_path) else: print("FAISS index path does not exist.") except Exception as e: print(f"Error deleting FAISS index path: {e}") def retrieve_documents(self): """ Retrieves relevant documents based on the provided query using the Ensemble Retriever. Args: query (str): Query string for retrieving relevant documents. Returns: A list of documents relevant to the query. """ try: return self.ensemble_retriever except Exception as e: print(f"Error retrieving documents: {e}") # Path: longtrainer/bot.py class ChainBot: def __init__(self, retriever, llm, prompt, token_limit): """ Initialize the ChainBot with a retriever, language model (llm), prompt, and an optional maximum token limit. Args: retriever: The document retriever object. llm: Language learning model for generating responses. prompt (str): The initial prompt to start the conversation. max_token_limit (int, optional): Maximum token limit for the conversation buffer. Defaults to 200. """ try: # Memory and chain setup with dynamic max token limit self.memory = ConversationTokenBufferMemory( llm=llm, max_token_limit=token_limit, memory_key="chat_history", return_messages=True, output_key='answer' ) self.chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=retriever, return_source_documents=True, chain_type='stuff', # Modify as needed combine_docs_chain_kwargs={"prompt": prompt}, memory=self.memory, verbose=False, ) except Exception as e: # Handle any exceptions that occur during initialization print(f"Error initializing ChainBot: {e}") def get_chain(self): """ Retrieve the conversational retrieval chain. Returns: The ConversationalRetrievalChain instance. """ return self.chain # Path: longtrainer/vision_bot.py class VisionMemory: def __init__(self, token_limit, ensemble_retriever=None): model_name='gpt-4-1106-preview' self.llm = ChatOpenAI(model_name=model_name) self.memory = ConversationTokenBufferMemory( llm=self.llm, max_token_limit=token_limit, memory_key="chat_history", return_messages=True, output_key='answer' ) self.chat_history = [] self.prompt_template = ''' Act as Intelligent assistant {context} Your task is to answer the query with accurate answer using the chat history context. If the answer is unknown, admitting ignorance is preferred over fabricating a response. Dont need to add irrelevant text explanation in response. Chat History: {chat_history} Question: {question} Answer ''' self.ensemble_retriever = ensemble_retriever def save_chat_history(self, query, answer): self.chat_history.append([query, answer]) self.memory.save_context({"input": query}, {"answer": answer}) def generate_prompt(self, query, additional_context): memory_history = self.memory.load_memory_variables({}) return self.prompt_template.format(context=f"you will answer the query from provided context: {additional_context}", chat_history=memory_history, question=query) def get_answer(self, query): docs = self.ensemble_retriever.get_relevant_documents(query) prompt = self.generate_prompt(query, docs) return prompt # Path: longtrainer/vision_bot.py class VisionBot: def __init__(self, prompt_template, max_tokens=1024): model_name = "gpt-4-vision-preview" self.vision_chain = ChatOpenAI(model=model_name, max_tokens=max_tokens) self.prompt_template = prompt_template # Save prompt template to instance variable self.human_message_content = [] # Initialize as an empty list def encode_image(self, image_path): with open(image_path, "rb") as image_file: return base64.b64encode(image_file.read()).decode('utf-8') def create_vision_bot(self, image_files): for file in image_files: encoded_image = self.encode_image(file) # Use the encode_image function image_snippet = { "type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{encoded_image}"} # Corrected key to "url" } self.human_message_content.append(image_snippet) def get_response(self, query): # Create a message with the current query self.human_message_content.insert(0, {"type": "text", "text": query}) # Uncomment and modify the invoke call msg = self.vision_chain.invoke( [AIMessage( content=self.prompt_template # Use self.prompt_template ), HumanMessage(content=self.human_message_content) ] ) return msg.content # Path: longtrainer/trainer.py from longtrainer.loaders import DocumentLoader, TextSplitter from longtrainer.retrieval import DocRetriever from longtrainer.bot import ChainBot from longtrainer.vision_bot import VisionMemory, VisionBot from langchain.embeddings import OpenAIEmbeddings from langchain.chat_models import ChatOpenAI from langchain.prompts import PromptTemplate from pymongo import MongoClient import uuid class LongTrainer: def __init__(self, mongo_endpoint='mongodb://localhost:27017/', llm=None, embedding_model=None, prompt_template=None, max_token_limit=32000): """ Initialize the LongTrainer with optional language learning model, embedding model, prompt template, maximum token limit, and MongoDB endpoint. Args: mongo_endpoint (str): MongoDB connection string. llm: Language learning model, defaults to ChatOpenAI with GPT-4. embedding_model: Embedding model for document vectorization, defaults to OpenAIEmbeddings. prompt_template: Template for generating prompts, defaults to a predefined template. max_token_limit (int): Maximum token limit for the conversational buffer. """ self.llm = llm if llm is not None else ChatOpenAI(model_name='gpt-4-1106-preview') self.embedding_model = embedding_model if embedding_model is not None else OpenAIEmbeddings() self.prompt_template = prompt_template if prompt_template is not None else self._default_prompt_template() self.prompt = PromptTemplate(template=self.prompt_template, input_variables=["context", "chat_history", "question"]) self.max_token_limit = max_token_limit self.document_loader = DocumentLoader() self.text_splitter = TextSplitter(chunk_size=1024, chunk_overlap=100) self.bot_data = {} # MongoDB setup self.client = MongoClient(mongo_endpoint) self.db = self.client['longtrainer_db'] self.bots = self.db['bots'] self.chats = self.db['chats'] self.vision_chats = self.db['vision_chats'] def initialize_bot_id(self): """ Initializes a new bot with a unique identifier and initial data structure. This method generates a unique bot_id, sets up the initial structure for the bot data, and stores this data in Redis. Additionally, it inserts a record into the bots table in the database. Returns: str: The unique identifier (bot_id) for the newly initialized bot. The bot data initialized with this method includes empty structures for documents, chains, assistants, and other fields necessary for the bot's operation. """ bot_id = 'bot-' + str(uuid.uuid4()) self.bot_data[bot_id] = { 'documents': [], 'chains': {}, 'assistants': {}, 'retriever': None, 'ensemble_retriever': None, 'conversational_chain': None, 'faiss_path': f'faiss_index_{bot_id}', 'assistant': None } # Insert data into the bots table self.bots.insert_one({"bot_id": bot_id, "faiss_path": self.bot_data[bot_id]['faiss_path']}) return bot_id def _default_prompt_template(self): """ Returns the default prompt template for the assistant. """ return """ Act as an Intelligent Assistant: {context} Use the following pieces of information to answer the user's question. If the answer is unknown, admitting ignorance is preferred over fabricating a response. Dont need to add irrelevant text explanation in response. Answers should be direct, professional, and to the point without any irrelevant details. Assistant must focus solely on the provided question, considering the chat history for context. Chat History: {chat_history} Question: {question}
Answer:
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: pan-x-c/EE-LLM # Path: megatron/data/indexed_dataset.py class MMapIndexedDataset(torch.utils.data.Dataset): def __init__(self, path: str, skip_warmup: bool = False, multimodal: bool = False) -> None: super().__init__() self._path = None self._index = None self._bin_buffer = None self._multimodal = multimodal self._do_init(path, skip_warmup, multimodal) def __getstate__(self) -> str: return self._path def __setstate__(self, path: str) -> None: self._do_init(path, skip_warmup=True, multimodal=False) def __del__(self) -> None: self._bin_buffer_mmap._mmap.close() del self._bin_buffer_mmap del self._index def __len__(self) -> int: return len(self._index) def __getitem__(self, idx: Union[int, np.integer, slice]) -> np.ndarray: if isinstance(idx, (int, np.integer)): sequence_pointer, sequence_length, sequence_mode = self._index[idx] sequence = np.frombuffer( self._bin_buffer, dtype=self._index.dtype, count=sequence_length, offset=sequence_pointer, ) return (sequence, sequence_mode) if sequence_mode is not None else sequence elif isinstance(idx, slice): start, stop, step = idx.indices(len(self)) if step != 1: raise ValueError("Slices into indexed_dataset must be contiguous") sequence_lengths = self._index._sequence_lengths[idx] sequence_modes = self._index._sequence_modes[idx] if self._multimodal else None sequence_offsets = list(accumulate(sequence_lengths)) sequences = np.split( np.frombuffer( self._bin_buffer, dtype=self._index.dtype, count=sum(sequence_lengths), offset=self._index._sequence_pointers[start], ), sequence_offsets[:-1], ) return (sequences, sequence_modes) if sequence_modes is not None else sequences else: raise TypeError("Unexpected type received for idx: {}".format(type(idx))) def _do_init(self, path: str, skip_warmup: bool, multimodal: bool) -> None: self._path = path if not skip_warmup: print_rank_0(" warming up index mmap file...") self.warmup_mmap_file(get_idx_path(self._path)) self._index = _IndexReader(get_idx_path(self._path), multimodal) if not skip_warmup: print_rank_0(" warming up data mmap file...") self.warmup_mmap_file(get_bin_path(self._path)) print_rank_0(" creating np buffer of mmap...") self._bin_buffer_mmap = np.memmap(get_bin_path(self._path), mode="r", order="C") print_rank_0(" creating memory view of np buffer...") self._bin_buffer = memoryview(self._bin_buffer_mmap) def get(self, idx: int, offset: int = 0, length: Optional[int] = None) -> np.ndarray: """Retrieves a single item from the dataset with the option to only return a portion of the item. get(idx) is the same as [idx] but get() does not support slicing. """ sequence_pointer, sequence_length, sequence_mode = self._index[idx] if length is None: length = sequence_length - offset sequence_pointer += offset * DType.size(self._index.dtype) sequence = np.frombuffer( self._bin_buffer, dtype=self._index.dtype, count=length, offset=sequence_pointer ) return (sequence, sequence_mode) if sequence_mode is not None else sequence @property def sizes(self) -> np.ndarray: return self._index.sizes @property def doc_idx(self) -> np.ndarray: return self._index._document_indices def get_doc_idx(self) -> np.ndarray: return self._index._document_indices def set_doc_idx(self, doc_idx: np.ndarray) -> None: self._index._document_indices = doc_idx def modes(self) -> np.ndarray: return self._index.modes @property def supports_prefetch(self) -> bool: return False @staticmethod def exists(path_prefix: str) -> bool: return os.path.exists(get_idx_path(path_prefix)) and os.path.exists( get_bin_path(path_prefix) ) @staticmethod def warmup_mmap_file(path: str) -> None: with open(path, "rb") as stream: while stream.read(100 * 1024 * 1024): pass # Path: megatron/tokenizer/gpt2_tokenization.py PRETRAINED_MERGES_ARCHIVE_MAP = { 'gpt2': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt", } # Path: megatron/tokenizer/gpt2_tokenization.py PRETRAINED_VOCAB_ARCHIVE_MAP = { 'gpt2': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json", } # Path: tools/merge_datasets.py def main(): args = get_args() prefixes = set() for basename in os.listdir(args.input): prefix, ext = os.path.splitext(basename) if prefix in prefixes: continue if not os.path.isfile(os.path.join(args.input, basename)): continue ext_pair = ".bin" if ext == ".idx" else ".idx" assert os.path.isfile( os.path.join(args.input, prefix) + ext_pair ), f"ERROR: {ext_pair} file not provided for {os.path.join(args.input, prefix)}" prefixes.add(prefix) builder = None for prefix in sorted(prefixes): if builder is None: dataset = MMapIndexedDataset(os.path.join(args.input, prefix)) builder = MMapIndexedDatasetBuilder( get_bin_path(args.output_prefix), dtype=dataset._index.dtype ) del dataset builder.merge_file_(os.path.join(args.input, prefix)) builder.finalize(get_idx_path(args.output_prefix)) # Path: tools/preprocess_data.py class Encoder(object): def __init__(self, args): self.args = args def initializer(self): # Use Encoder class as a container for global data Encoder.tokenizer = build_tokenizer(self.args) if self.args.split_sentences: if not nltk_available: print("NLTK is not available to split sentences.") exit() if os.environ.get("NLTK_DATA"): library = os.path.join(os.environ.get("NLTK_DATA"), "tokenizers", "punkt", f"{self.args.lang}.pickle") url = f"file:{library}" else: library = os.path.join("tokenizers", "punkt", f"{self.args.lang}.pickle") url = f"nltk:{library}" splitter = nltk.load(url) if self.args.keep_newlines: # this prevents punkt from eating newlines after sentences Encoder.splitter = nltk.tokenize.punkt.PunktSentenceTokenizer( train_text = splitter._params, lang_vars = CustomLanguageVars()) else: Encoder.splitter = splitter else: Encoder.splitter = IdentitySplitter() def split(self, json_line): data = json.loads(json_line) output = {} for key in self.args.json_keys: text = data[key] max_len = 1000000 tokens_list = [Encoder.splitter.tokenize(text[i:i+max_len]) for i in range(0, len(text), max_len)] output[key] = [tokens for partial in tokens_list for tokens in partial] return json.dumps(output), len(json_line) def encode(self, json_line): data = json.loads(json_line) ids = {} lens = {} for key in self.args.json_keys: text = data[key] if isinstance(text, list): sentences = text else: sentences = [text] doc_ids = [] sentence_lens = [] for sentence in sentences: sentence_ids = Encoder.tokenizer.tokenize(sentence) if len(sentence_ids) > 0: doc_ids.extend(sentence_ids) sentence_lens.append(len(sentence_ids)) if len(doc_ids) > 0 and self.args.append_eod: doc_ids.append(Encoder.tokenizer.eod) sentence_lens[-1] += 1 ids[key] = doc_ids lens[key] = sentence_lens return ids, lens, len(json_line) # Path: tools/preprocess_data.py def get_args(): parser = argparse.ArgumentParser() group = parser.add_argument_group(title='input data') group.add_argument('--input', type=str, required=True, help='Path to input JSON') group.add_argument('--json-keys', nargs='+', default=['text'], help='space separate listed of keys to extract from json') group.add_argument('--split-sentences', action='store_true', help='Split documents into sentences.') group.add_argument('--keep-newlines', action='store_true', help='Keep newlines between sentences when splitting.') group = parser.add_argument_group(title='tokenizer') group.add_argument('--tokenizer-type', type=str, required=True, choices=['BertWordPieceLowerCase','BertWordPieceCase', 'GPT2BPETokenizer', 'SentencePieceTokenizer', 'GPTSentencePieceTokenizer', 'NullTokenizer'], help='What type of tokenizer to use.') group.add_argument('--tokenizer-model', type=str, default=None, help='YTTM tokenizer model.') group.add_argument('--vocab-file', type=str, default=None, help='Path to the vocab file') group.add_argument('--vocab-size', default=786, help='size of vocab for use with NullTokenizer') group.add_argument('--merge-file', type=str, default=None, help='Path to the BPE merge file (if necessary).') group.add_argument('--append-eod', action='store_true', help='Append an <eod> token to the end of a document.') group.add_argument('--lang', type=str, default='english', help='Language to use for NLTK-powered sentence splitting.') group = parser.add_argument_group(title='output data') group.add_argument('--output-prefix', type=str, required=True, help='Path to binary output file without suffix') group = parser.add_argument_group(title='runtime') group.add_argument('--workers', type=int, required=True, help=('Number of worker processes to launch.' 'A good default for fast pre-processing ' 'is: (workers * partitions) = available CPU cores.')) group.add_argument('--partitions', type=int, default=1, help='Number of file partitions') group.add_argument('--log-interval', type=int, default=1000, help='Interval between progress updates') group.add_argument('--keep-sequential-samples', action='store_true', help='Ensure ordering of samples in .jsonl files is ' 'preserved when using partitions>1.') args = parser.parse_args() args.keep_empty = False if args.tokenizer_type.lower().startswith('bert') and not args.split_sentences: print("Are you sure you don't want to split sentences?") # some default/dummy values for the tokenizer args.rank = 1 args.make_vocab_size_divisible_by = 128 args.tensor_model_parallel_size = 1 args.vocab_extra_ids = 0 return args # Path: tools/preprocess_data.py def main(): args = get_args() if args.split_sentences: if nltk_available: nltk.download("punkt", quiet=True, download_dir=os.environ.get("NLTK_DATA")) else: raise Exception( "nltk library required for sentence splitting is not available.") in_ss_out_names = [] if args.partitions == 1: file_name, extension = os.path.splitext(args.input) sentence_split_file = file_name + "_ss" + extension file_names = { 'partition': args.input, 'sentence_split': sentence_split_file, 'output_prefix': args.output_prefix} in_ss_out_names.append(file_names) else: in_file_names = glob.glob(args.input) # Count total number of lines across .jsonl files if args.keep_sequential_samples: total_sample_count = 0 for filename in in_file_names: with open(filename, "r") as fin: for fc, _ in enumerate(fin): pass total_sample_count += (fc + 1) partition_size = math.ceil(total_sample_count / args.partitions) # create .jsonl parition files for idx in range(args.partitions): in_ss_out_name = get_file_name(args, idx) in_ss_out_names.append(in_ss_out_name) # check to see if paritions were already created partitions_present = check_files_exist(in_ss_out_names, 'partition', args.partitions) # check to see if paritions with split sentences already created split_sentences_present = check_files_exist(in_ss_out_names, 'sentence_split', args.partitions) if not partitions_present and not split_sentences_present: # populate .jsonl partition files from parent files partitioned_input_files = [] for idx in range(args.partitions): partitioned_input_file = open(in_ss_out_names[idx]['partition'], 'w') partitioned_input_files.append(partitioned_input_file) index = 0 if args.keep_sequential_samples: line_count = 0 for in_file_name in in_file_names: # support for gzip files if in_file_name.endswith(".gz"): fin = gzip.open(in_file_name, 'rt') else: fin = open(in_file_name, 'r', encoding='utf-8') for line in fin: partitioned_input_files[index].write(line) if args.keep_sequential_samples: line_count += 1 if line_count % partition_size == 0: index += 1 else: index = (index + 1)%args.partitions fin.close() for idx in range(args.partitions): partitioned_input_files[idx].close() assert args.workers % args.partitions == 0 partition = Partition(args, args.workers//args.partitions) # check to see if paritions with split sentences already created split_sentences_present = check_files_exist(in_ss_out_names, 'sentence_split', args.partitions) # split sentences in partition files if args.split_sentences and not split_sentences_present: processes = [] for name in in_ss_out_names: p = multiprocessing.Process(target=partition.split_sentences, args=((name['partition'], name['sentence_split']),)) p.start() processes.append(p) for p in processes: p.join() if args.partitions == 1: return # encode partition files in parallel processes = [] input_key = 'sentence_split' if args.split_sentences else 'partition' for name in in_ss_out_names: p = multiprocessing.Process(target=partition.process_json_file, args=((name[input_key], name['output_prefix']),)) p.start() processes.append(p) for p in processes: p.join() if args.partitions == 1: return # merge bin/idx partitions level = "document" if args.split_sentences: level = "sentence" output_bin_files = {} output_idx_files = {} builders = {} tokenizer = build_tokenizer(args) for key in args.json_keys: output_bin_files[key] = "{}_{}_{}.bin".format(args.output_prefix, key, level) output_idx_files[key] = "{}_{}_{}.idx".format(args.output_prefix, key, level) builders[key] = indexed_dataset.MMapIndexedDatasetBuilder( output_bin_files[key], dtype=indexed_dataset.DType.optimal_dtype(tokenizer.vocab_size), ) for name in in_ss_out_names: parition_output_prefix = name['output_prefix'] full_partition_output_prefix = "{}_{}_{}".format(parition_output_prefix, key, level) builders[key].merge_file_(full_partition_output_prefix) builders[key].finalize(output_idx_files[key]) # Path: tests/unit_tests/data/test_preprocess_data.py import json import os import sys import tempfile import nltk import requests from megatron.data.indexed_dataset import MMapIndexedDataset from megatron.tokenizer.gpt2_tokenization import ( PRETRAINED_MERGES_ARCHIVE_MAP, PRETRAINED_VOCAB_ARCHIVE_MAP, ) from tools.merge_datasets import main as merge_main from tools.preprocess_data import Encoder from tools.preprocess_data import get_args as build_args from tools.preprocess_data import main as build_main # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. __HUGGINGFACE_BERT_BASE_UNCASED_VOCAB = ( "https://huggingface.co/bert-base-uncased/raw/main/vocab.txt" ) def dummy_jsonl(odir): # numbers list_numbers = [json.dumps({"text": str(i + 1)}) + "\n" for i in range(100)] with open(os.path.join(odir, "numbers.jsonl"), "w") as writer: writer.writelines(list_numbers) # numbers ascending list_numbers_ascending = [ json.dumps({"text": " ".join([str(j + 1) for j in range(i + 1)])}) + "\n" for i in range(100) ] with open(os.path.join(odir, "numbers_ascending.jsonl"), "w") as writer: writer.writelines(list_numbers_ascending) # test list_test = [] with open(__file__) as reader: for line in reader: list_test.append(json.dumps({"text": line}) + "\n") with open(os.path.join(odir, "test.jsonl"), "w") as writer: writer.writelines(list_test) def build_datasets(idir, odir, extra_args=[]): for name in os.listdir(idir): sys.argv = [ sys.argv[0], "--input", os.path.join(idir, name), "--output-prefix", os.path.join(odir, os.path.splitext(name)[0]), ] + extra_args build_main()
def merge_datasets(idir):
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: mitrefireline/simharness # Path: simharness2/agents/agent.py class ReactiveAgent: """A simple agent that reacts to its environment. FIXME: update docstring style, using llama2 suggestion for now. Parameters ---------- agent_id : int The unique ID of this agent. sim_id : int The unique ID of the simulation this agent belongs to. initial_position : tuple[int, int] The (x,y) starting position of the agent, where (0,0) is the top-left corner of the map and (max_x, max_y) is the bottom-right corner of the map. Properties ---------- x : int The current X coordinate of the agent. y : int The current Y coordinate of the agent. row : int The current row number where the agent resides. col : int The current column number where the agent resides. latest_movement : str or None The last movement made by the agent, if applicable. latest_interaction : str or None The last interaction had by the agent, if applicable. mitigation_placed : bool Whether the agent has placed any mitigations recently. moved_off_map : bool Whether the agent has moved off the map recently. """ # NOTE: `agent_speed` ommitted, only used within `_do_one_simulation_step` # Attrs that should be specified on initialization agent_id: Any # ex: "agent_0", "dozer_0", "handcrew_0", "ff_0", etc. sim_id: int # should be contained within sim.agents.keys() initial_position: Tuple[int, int] # Attributes with default values latest_movement: int = None latest_interaction: int = None mitigation_placed: bool = False moved_off_map: bool = False def __post_init__(self): self._current_position = self.initial_position self.x, self.y = self.initial_position self.row, self.col = self.y, self.x @property def current_position(self) -> Tuple[int, int]: return self._current_position @current_position.setter def current_position(self, value: Tuple[int, int]): self._current_position = value self.x, self.y = value self.row, self.col = self.y, self.x @property def x(self) -> int: return self._current_position[0] @x.setter def x(self, value: int): self._current_position = (value, self.y) @property def y(self) -> int: return self._current_position[1] @y.setter def y(self, value: int): self._current_position = (self.x, value) @property def row(self) -> int: return self._current_position[1] @row.setter def row(self, value: int): self._current_position = (self.x, value) @property def col(self) -> int: return self._current_position[0] @col.setter def col(self, value: int): self._current_position = (value, self.y) def reset(self): self.latest_movement = None self.latest_interaction = None self.mitigation_placed = False self.moved_off_map = False self.__post_init__() # self.current_position = self.initial_position # self.reward = 0 # def move(self, env: np.ndarray, direction: int) -> bool: # """Moves the agent in the given direction if possible.""" # current_x, current_y = self.current_position # dx, dy = self.actions[direction] # next_x, next_y = current_x + dx, current_y + dy # if env[next_y][next_x] == "_": # self.current_position = (next_x, next_y) # return True # else: # return False # Path: simharness2/environments/harness.py class Harness(gym.Env, ABC, Generic[AnySimulation]): def __init__( self, *, sim: AnySimulation, attributes: List[str], normalized_attributes: List[str], in_evaluation: bool = False, ): self.sim = sim self.attributes = attributes # TODO: Maybe use `attributes_to_normalize` over `normalized_attributes`? self.normalized_attributes = normalized_attributes if not set(self.normalized_attributes).issubset(self.attributes): raise AssertionError( f"All normalized attributes ({str(self.normalized_attributes)}) must be " f"in attributes ({str(self.attributes)})!" ) self.sim_attributes, self.nonsim_attributes = self._separate_sim_nonsim() # Count total timesteps that have occurred within an episode. self.timesteps = 0 # Evaluation specific attributes. self.in_evaluation = in_evaluation self._num_eval_iters = 0 @abstractmethod def create_agents(self): """Create agents for the simulation.""" raise NotImplementedError @abstractmethod def get_nonsim_attribute_data(self) -> OrderedDict[str, np.ndarray]: """Get data that does not come from the simulation.""" raise NotImplementedError @abstractmethod def get_nonsim_attribute_bounds(self) -> OrderedDict[str, Dict[str, int]]: """Get bounds for data that does not come from the simulation.""" raise NotImplementedError @abstractmethod def get_harness_to_sim_action_map(self) -> Dict[int, int]: """Get the mapping from harness actions to sim actions.""" raise NotImplementedError @property def trial_logdir(self) -> str: """The path to the directory where (tune) trial results will be stored.""" return self._trial_logdir @trial_logdir.setter def trial_logdir(self, path: str): if not os.path.isdir(path): raise ValueError(f"{path} is not a valid directory.") self._trial_logdir = path def _separate_sim_nonsim(self) -> Tuple[List[str], List[str]]: """Separate attributes based on if they are supported by the Simulation or not.""" sim_attributes = self.sim.get_attribute_data() sim_attributes_list = [] nonsim_attributes_list = [] for attribute in self.attributes: if attribute not in sim_attributes.keys(): nonsim_attributes_list.append(attribute) else: sim_attributes_list.append(attribute) return sim_attributes_list, nonsim_attributes_list def _normalize_obs( self, observations: Dict[str, np.ndarray] ) -> Dict[str, np.ndarray]: """Convert an observation to the [0,1] range based on known min and max.""" def normalize(data, min_max): # FIXME: Explain purpose/intention behind using a nested class here. return (data - min_max["min"]) / (min_max["max"] - min_max["min"]) for attribute in self.normalized_attributes: observations[attribute] = normalize( observations[attribute], self.min_maxes[attribute] ) return observations # FIXME: Does not use any instance or class attributes, make staticmethod? def _select_from_dict( self, dictionary: OrderedDict[str, Any], selections: List[str] ) -> OrderedDict[str, Any]: """Create an ordered subset with only specific keys from the input `dictionary`. Arguments: dictionary: A dictionary used to extract values from. selections: A list containing the desired keys to keep from `dictionary`. Returns: An ordered dictionary containing a subset of the input `dictionary`. """ return_dict = OrderedDict() for selection in selections: return_dict[selection] = dictionary[selection] return return_dict # FIXME: Update name and make property? def _increment_evaluation_iterations(self) -> None: """Increment the number of calls to `Algorithm.evaluate()` (rllib).""" self._num_eval_iters += 1 def _log_env_reset(self): """Log information about the environment that is being reset.""" # if not self._debug_mode or self._episodes_debugged > self._debug_duration: # return # TODO: What log level should we use here? # for idx, feat in enumerate(self.attributes): # low, high = self._low[..., idx].min(), self._high[..., idx].max() # obs_min = round(self.state[..., idx].min(), 2) # obs_max = round(self.state[..., idx].max(), 2) # Log lower bound of the (obs space) and max returned obs for each attribute. # logger.info(f"{feat} LB: {low}, obs min: {obs_min}") # # Log upper (lower) bounds of the returned observations for each attribute. # logger.info(f"{feat} UB: {high}, obs max: {obs_max}") pass def _log_env_init(self): """Log information about the environment that is being initialized.""" # if self._is_eval_env: # i, j = self.worker_idx, self.vector_idx # logger.warning( # f"Object {hex(id(self))}: index (i+1)*(j+1) == {(i+1)*(j+1)}" # ) # if not self._debug_mode: # return # # TODO: What log level should we use here? # logger.info(f"Object {hex(id(self))}: worker_index: {self.worker_idx}") # logger.info(f"Object {hex(id(self))}: vector_index: {self.vector_idx}") # logger.info(f"Object {hex(id(self))}: num_workers: {self.num_workers}") # logger.info(f"Object {hex(id(self))}: is_remote: {self.is_remote}") pass def _set_debug_options(self) -> None: """Set debug options for the simulation.""" # self._debug_mode = config.get("debug_mode", False) # # unit == episodes # self._debug_duration = config.get("debug_duration", 1) # self._episodes_debugged = 0 # logger.debug(f"Initializing environment {hex(id(self))}") pass # Path: simharness2/environments/fire_harness.py import copy import logging import os import numpy as np from abc import abstractmethod from collections import OrderedDict as ordered_dict from functools import partial from typing import ( Any, Callable, Dict, List, Optional, OrderedDict, SupportsFloat, Tuple, TypeVar, ) from gymnasium import spaces from simfire.enums import BurnStatus from simfire.sim.simulation import FireSimulation from simfire.utils.config import Config from simharness2.agents.agent import ReactiveAgent from simharness2.environments.harness import Harness logger = logging.getLogger(__name__) AnyFireSimulation = TypeVar("AnyFireSimulation", bound=FireSimulation) class FireHarness(Harness[AnyFireSimulation]): def __init__( self, *, sim: AnyFireSimulation, attributes: List[str], normalized_attributes: List[str], movements: List[str], interactions: List[str], action_space_cls: Callable, in_evaluation: bool = False, benchmark_sim: Optional[AnyFireSimulation] = None, harness_analytics_partial: Optional[partial] = None, reward_cls_partial: Optional[partial] = None, num_agents: int = 1, agent_speed: int = 1, agent_initialization_method: str = "automatic", initial_agent_positions: Optional[List[Tuple[int, int]]] = None, ): super().__init__( sim=sim, attributes=attributes, normalized_attributes=normalized_attributes, in_evaluation=in_evaluation, ) # TODO: Define `benchmark_sim` in `DamageAwareReactiveHarness`. # Define attributes that are specific to the FireHarness. self.benchmark_sim = benchmark_sim # TODO: use more apt name, ex: `available_movements`, `possible_movements`. self.movements = copy.deepcopy(movements) # FIXME: is deepcopy necessary? # TODO: use more apt name, ex: `available_interactions`, `possible_interactions`. self.interactions = copy.deepcopy(interactions) # FIXME: is deepcopy necessary? self.harness_to_sim = self.get_harness_to_sim_action_map() # Verify that all interactions are supported by the simulator. sim_actions = self.sim.get_actions() interaction_types = [x for x in self.interactions if x != "none"] if not set(interaction_types).issubset(list(sim_actions.keys())): raise AssertionError( f"All interactions ({str(interaction_types)}) must be " f"in the simulator's actions ({str(list(sim_actions.keys()))})!" ) self.agent_speed = agent_speed self.num_agents = num_agents # Each sim_agent_id is used to "encode" the agent position within the `fire_map` # dimension of the returned observation of the environment. The intention is to # help the model learn/use the location of the respective agent on the fire_map. # NOTE: Assume that every simulator will support 3 base scenarios: # 1. Untouched (Ex: simfire.enums.BurnStatus.UNBURNED) # 2. Currently Being Affected (Ex: simfire.enums.BurnStatus.BURNING) # 3. Affected (Ex: simfire.enums.BurnStatus.BURNED) # The max value is +1 of the max mitigation value available (wrt the sim). self._agent_id_start = max(self.harness_to_sim.values()) + 1 self._agent_id_stop = self._agent_id_start + self.num_agents self._sim_agent_ids = np.arange(self._agent_id_start, self._agent_id_stop) # FIXME: Usage of "agent_{}" doesn't allow us to delineate agents groups. self._agent_ids = {f"agent_{i}" for i in self._sim_agent_ids} self.default_agent_id = f"agent_{self._agent_id_start}" # Spawn the agent (s) that will interact with the simulation logger.debug(f"Creating {self.num_agents} agent (s)...") input_kwargs = {} if agent_initialization_method == "manual": if initial_agent_positions is None: raise ValueError( "Must provide 'initial_agent_positions' when using 'manual' agent " "initialization method." ) input_kwargs.update({"method": "manual", "pos_list": initial_agent_positions}) elif agent_initialization_method == "automatic": input_kwargs.update({"method": "random"}) else: raise ValueError( "Invalid agent initialization method. Must be either 'automatic' or " "'manual'." ) self.agents = self.create_agents(**input_kwargs) self.min_maxes = self._get_min_maxes() self.observation_space = self.get_observation_space() self.action_space = self.get_action_space(action_space_cls) # FIXME: Update method naming and return value for below methods. # TODO: Update type anns on harness_analytics and reward_cls # If provided, construct the class used to monitor this `ReactiveHarness` object.
self._setup_harness_analytics(harness_analytics_partial)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: racinette/querky # Path: querky/result_shape.py def one_(typename: str | None, *, optional: bool = True) -> typing.Callable[[Query], ResultShape]: def late_binding(query: Query) -> One: return One(query, typename, optional=optional) return late_binding # Path: querky/result_shape.py def all_(typename: str | None) -> typing.Callable[[Query], ResultShape]: def late_binding(query: Query) -> All: return All(query, typename) return late_binding # Path: querky/result_shape.py def value_(annotation: str | TypeMetaData | None = None, *, optional: bool = False) -> typing.Callable[[Query], ResultShape]: def late_binding(query: Query) -> Value: return Value(query, annotation, optional=optional) return late_binding # Path: querky/result_shape.py def status_() -> typing.Callable[[Query], ResultShape]: def late_binding(query: Query) -> Status: return Status(query) return late_binding # Path: querky/result_shape.py def column_(annotation: str | TypeMetaData | None = None, *, elem_optional: bool = False) -> typing.Callable[[Query], ResultShape]: def late_binding(query: Query) -> Value: return Column(query, annotation, elem_optional=elem_optional) return late_binding # Path: querky/result_shape.py class One(ResultShape): def __init__(self, query: Query, typename: str | None, *, optional: bool = True): super().__init__(query) if self.query.parent_query is None: if self.querky.type_factory is not None: self.ctor = self.querky.type_factory(self.query, typename) else: self.ctor = None else: # забираем конструктор типа из базового запроса parent_shape = self.query.parent_query.shape if not isinstance(parent_shape, (All, One)): raise ValueError("Invalid shape, must be a row shape") self.ctor = parent_shape.ctor # копируем название типа из отеческого запроса typename = parent_shape.ctor.typename if self.ctor.shape is None: self.ctor.shape = self self.optional = optional if self.ctor is not None: type_meta = TypeMetaData(typename) else: type_meta = self.query.contract.get_default_record_type_metadata() self.return_type = TypeKnowledge( metadata=type_meta, is_optional=self.optional, is_array=False, elem_is_optional=None ) self.annotate() def annotate(self): self.query.annotation_generator.annotate(self.return_type, context='result_type') def set_attributes(self, attrs: typing.Tuple[ResultAttribute, ...]): for attribute in self.query.query_signature.attributes: try: if attr_hint := self.query.attr_hints.get(attribute.name, None): attribute.consume_attr(attr_hint) self.query.annotation_generator.annotate(attribute.type_knowledge, 'attribute') except Exception as ex: raise QueryInitializationError(self.query, f"attribute `{attribute.name}`") from ex if self.ctor is not None: if self.ctor.attributes is None: self.ctor.set_attributes(attrs) elif self.ctor.attributes != attrs: raise QueryInitializationError( self.query, "Expected the same return type signature, but the attributes are not equal:\n" f"Expected: {self.ctor.attributes}\n" f"Got: {attrs}" ) def generate_type_code(self) -> typing.List[str] | None: if self.ctor is not None and not self.ctor.type_code_generated: return self.ctor.generate_type_code() else: return None def get_imports(self) -> set[str]: s = super().get_imports() if self.ctor is not None: return s.union(self.ctor.get_imports()) return s async def fetch(self, conn, params): contract = self.query.module.querky.contract row = await contract.fetch_one(conn, self.query, params) if self.ctor.row_factory and row is not None: row = self.ctor.row_factory(row) return row def fetch_sync(self, conn, params): contract = self.query.module.querky.contract row = contract.fetch_one_sync(conn, self.query, params) if self.ctor.row_factory: row = self.ctor.row_factory(row) return row def get_exports(self) -> typing.Sequence[str]: if self.ctor is not None: return [self.ctor.get_exported_name()] else: return [] # Path: querky/result_shape.py class All(One): def __init__(self, query: Query, typename: str | None,): super().__init__(query, typename, optional=False) self.return_type.is_optional = False self.return_type.is_array = True self.return_type.elem_is_optional = False self.query.annotation_generator.annotate(self.return_type, context='result_type') def annotate(self): pass async def fetch(self, conn, params): contract = self.query.module.querky.contract rows = await contract.fetch_all(conn, self.query, params) if self.ctor.row_factory: rows = [ self.ctor.row_factory(row) for row in rows ] return rows def fetch_sync(self, conn, params): contract = self.query.module.querky.contract rows = contract.fetch_all_sync(conn, self.query, params) if self.ctor.row_factory: rows = [ self.ctor.row_factory(row) for row in rows ] return rows # Path: querky/result_shape.py class ResultShape(ABC, GetImportsMixin): def __init__(self, query: Query) -> None: self.query: Query = query self.return_type: TypeKnowledge | None = None @property def querky(self): return self.query.querky def get_imports(self) -> set[str]: return self.return_type.get_imports() @abstractmethod def set_attributes(self, attrs: typing.Tuple[ResultAttribute, ...]): ... @abstractmethod def generate_type_code(self) -> typing.List[str] | None: ... def get_annotation(self) -> str: return self.return_type.typehint @abstractmethod async def fetch(self, conn, bound_params): ... @abstractmethod async def fetch_sync(self, conn, bound_params): ... @abstractmethod def get_exports(self) -> typing.Sequence[str]: ... # Path: querky/conn_param_config.py class ConnParamConfig: name: str def create_parameter( self, query: Query, parameters: typing.Sequence[Parameter], type_metadata: TypeMetaData ) -> tuple[Parameter, TypeKnowledge, int]: ... # Path: querky/conn_param_config.py class First(ConnParamConfig): positional: bool = False def create_parameter( self, _query: Query, parameters: typing.Sequence[Parameter], type_metadata: TypeMetaData ) -> tuple[Parameter, TypeKnowledge, int]: if self.positional: kind = Parameter.POSITIONAL_ONLY else: if parameters and parameters[0].kind == Parameter.POSITIONAL_ONLY: kind = Parameter.POSITIONAL_ONLY else: kind = Parameter.POSITIONAL_OR_KEYWORD p = Parameter(self.name, kind) return p, TypeKnowledge(type_metadata, False, False, False), 0 # Path: querky/annotation_generator.py class AnnotationGenerator(ABC): @abstractmethod def generate(self, knowledge: TypeKnowledge, context: str) -> str: ... def annotate(self, knowledge: TypeKnowledge, context: str, force: bool = False) -> None: if knowledge.typehint is None or force: knowledge.typehint = self.generate(knowledge, context) # Path: querky/type_constructor.py class TypeConstructor(typing.Generic[T], GetImportsMixin): def __init__( self, query: Query, typename: str, required_imports: typing.Set[str], row_factory: typing.Callable[[typing.Any], T] | None ): self.query = query self.type_code_generated = False self.typename = typename self.required_imports = required_imports self.shape: typing.Optional[ResultShape] = None self.attributes: typing.Optional[typing.Tuple[ResultAttribute, ...]] = None self.row_factory = row_factory self.type_code_generated: bool = False self.attributes_collected: bool = False def set_attributes(self, attrs: typing.Tuple[ResultAttribute, ...]): self.attributes = attrs def get_imports(self) -> set[str]: s = set(self.required_imports) for attr in self.attributes: s.update(attr.get_imports()) return s def get_exported_name(self) -> str: return self.typename def indent(self, i: int) -> str: return self.shape.query.querky.get_indent(i) # Path: querky/module_constructor.py class ModuleConstructor: def __init__( self, querky: Querky, module: types.ModuleType, fullpath: str, module_path: str, filedir: str ): self.module = module self.querky = querky self.imports = set(querky.imports) self.exports = set() self.fullpath = fullpath self.module_path = module_path self.filedir = filedir self.queries_list = [] def indent(self, i: int) -> str: return self.querky.get_indent(i) def _post_init(self): # Generate module code code = [] for query in self.queries_list: query_code = query.generate_code() if not query_code: continue code.append('') code.append('') code.extend(query_code) code.append('') # Collect imports for query in self.queries_list: self.imports.update(query.get_imports()) # Collect exports for query in self.queries_list: self.exports.update(query.get_exports()) # Create import lines imports = [ *getattr(self.module, '__imports__', []), *self.imports ] for query in self.queries_list: imports.append( f"from {self.module.__name__} import {query.query.__name__} as {query.local_name}" ) # Imports + Code code = [ *imports, *code, ] # If there are exports, create them at the end of the file (__all__) if self.exports: code.append('') code.append('__all__ = [') for export in self.exports: code.append(f'{self.indent(1)}"{export}",') code.append(']') code.append('') self.querky.sign_file_contents(code) code = '\n'.join(code) # checking, if file already exists file_exists = path.isfile(self.fullpath) if file_exists: # check, if we can overwrite the contents self.querky.check_file_is_mine(self.fullpath) if self.querky.subdir: os.makedirs(self.filedir, exist_ok=True) with open(self.fullpath, encoding='utf-8', mode='w') as f: f.write(code) async def generate_module(self, db): for query in self.queries_list: await query.fetch_types(db) self._post_init() def generate_module_sync(self, db): for query in self.queries_list: query.fetch_types_sync(db) self._post_init() # Path: querky/base_types.py class TypeMetaData(GetImportsMixin): counterpart: str required_imports: set[str] | None = None def get_imports(self) -> set[str]: if self.required_imports is None: return set() return set(self.required_imports) @classmethod def from_type(cls, t: typing.Type) -> TypeMetaData: type_name = t.__name__ module_path = t.__module__ return TypeMetaData( counterpart=type_name, required_imports={f"from {module_path} import {type_name}"} ) # Path: querky/query.py class Query(typing.Generic[RS]): defaults: dict[str, typing.Any] def __init__( self, func: typing.Callable, shape: typing.Callable[[Query], RS], module: ModuleConstructor, conn_param_config: ConnParamConfig, explicit_name: typing.Optional[str], parent_query: typing.Optional[Query[One | All]], kwargs: typing.Optional[typing.Dict[str, typing.Any]] ) -> None: self.parent_query: Query[One | All] | None = parent_query self.imports = set() self.kwargs = kwargs or dict() self.query = func self.name = explicit_name or func.__name__ self.conn_param_config = conn_param_config self.sig = inspect.signature(func) self.template_signature = None self.module = module self.module.queries_list.append(self) self.param_mapper: ParamMapper = self.contract.create_param_mapper(self) self.sql = self.param_mapper.parametrize_query() self.default = DictGetAttr(self.param_mapper.defaults) # side effect: attr gets populated, so we flush it self.attr_hints: dict[str, Attr] = { a.name: a for a in _attr_.__getattrs__() } module_filename = self.module.module.__file__ common = path.commonprefix([module.querky.basedir, module_filename]) self.relative_path = module_filename[len(common):] self.unique_name = f"{self.relative_path}:{self.query.__name__}" self.local_name = self.get_local_name() self.query_signature: QuerySignature | None = None self.conn_type_knowledge: TypeKnowledge | None = None self.bound_type = None self.shape: ResultShape = shape(self) if not isinstance(self.shape, (One, All)) and parent_query: raise ValueError("Only One and All queries can have a parent query.") if parent_query and not isinstance(parent_query.shape, (One, All)): raise ValueError("Parent query must be of either One or All shape.") logger.debug( "Query: %s\nSQL: %s", self.unique_name, self.sql ) @property def annotation_generator(self): return self.querky.annotation_generator @property def contract(self): return self.module.querky.contract @property def querky(self): return self.module.querky def bind_type(self, t) -> None: self.bound_type = t async def execute(self, conn, *args, **kwargs): params = self.param_mapper.map_params(*args, **kwargs) return await self.shape.fetch(conn, params) def execute_sync(self, conn, *args, **kwargs): params = self.param_mapper.map_params(*args, **kwargs) return self.shape.fetch_sync(conn, params) def _after_types_fetched(self): # типы параметров передадим мапперу self.param_mapper.assign_type_knowledge(self.query_signature.parameters) # а типы аттрибутов - результату self.shape.set_attributes(self.query_signature.attributes) async def fetch_types(self, db) -> None: try: self.query_signature = await self.contract.get_query_signature(db, self) self._after_types_fetched() except QueryInitializationError: raise except Exception as ex: raise QueryInitializationError(self, additional_hint="fetching types") from ex def fetch_types_sync(self, db) -> None: try: self.query_signature = self.contract.get_query_signature_sync(db, self) self._after_types_fetched() except QueryInitializationError: raise except Exception as ex: raise QueryInitializationError(self, additional_hint="fetching types") from ex def string_signature(self): return f"{self.relative_path}: {self.query.__name__}{self.sig}" def get_local_name(self) -> str: return f"_q{self.module.queries_list.index(self)}" def _generate_proxy_function_code(self): try: new_params = [] for param in self.param_mapper.params: name = param.name old_param = param.param if old_param.default is not inspect._empty: default = ReprHelper(f"{self.local_name}.default.{name}") else: default = inspect._empty typehint = param.type_knowledge.typehint if typehint is None: raise QueryInitializationError( self, f"{param.name}: parameter type annotation is missing" ) new_params.append( Parameter( name, old_param.kind, annotation=ReprHelper(typehint), default=default ) ) conn_param, type_knowledge, index = self.conn_param_config.create_parameter( self, new_params, self.contract.get_connection_type_metadata() ) self.conn_type_knowledge = type_knowledge self.annotation_generator.annotate(type_knowledge, context='conn_param') if type_knowledge.typehint is not None: conn_param = conn_param.replace(annotation=ReprHelper(type_knowledge.typehint)) new_params.insert(index, conn_param) return_annotation = self.shape.get_annotation() if return_annotation is None: raise QueryInitializationError( self, f"return type annotation is missing" ) return_annotation_repr = ReprHelper(return_annotation) self.new_signature = self.sig.replace( parameters=new_params, return_annotation=return_annotation_repr ) is_async = self.contract.is_async() async_ = 'async ' if is_async else '' await_ = 'await ' if is_async else '' _sync = "_sync" if not is_async else '' conn_str = self.conn_param_config.name arg_remap_string = self.param_mapper.mirror_arguments() arg_string = f"{conn_str}, {arg_remap_string}" try: code = [ f"{async_}def {self.name}{self.new_signature}:", f"{self.querky.get_indent(1)}return {await_}{self.local_name}.execute{_sync}({arg_string})" ] except Exception as _ex: # for debugging raise logger.debug('[OK] - %s', self.unique_name) return code except Exception as ex: logger.exception('[BAD] - %s', self.unique_name) raise ex def get_type_bind_ident(self) -> typing.Optional[str]: if isinstance(self.shape, (Value, Column, Status)): return None elif isinstance(self.shape, (One, All)): if self.shape.ctor: return self.shape.ctor.typename return None def get_exports(self): exports = { self.name, *self.shape.get_exports() } if parent := self.parent_query: parent_shape = parent.shape if not isinstance(parent_shape, (One, All)): raise ValueError("parent shape must be ether One or All") shape: typing.Union[One, All] = parent_shape exports.add(shape.ctor.typename) return exports def get_imports(self): imports = set(self.imports) for elem in self.param_mapper.params: imports.update(elem.get_imports()) if self.conn_type_knowledge is not None: imports.update(self.conn_type_knowledge.get_imports()) if (parent := self.parent_query) and parent.module is not self.module: parent_shape = parent.shape if isinstance(parent_shape, (One, All)): imports.add( f"from {parent.module.module_path} import {parent_shape.ctor.typename}" ) else: raise ValueError("you can only use return types from 'one' and 'many' queries") else: # we're gonna create the type from scratch, so we need the imports imports.update(self.shape.get_imports()) return imports def generate_code(self): lines = [] # data type code if type_code := self.shape.generate_type_code(): if cb := self.module.querky.on_before_type_code_emit: type_code = cb(type_code, self) lines.extend(type_code) lines.append('') lines.append('') # proxy function code, which simply accepts annotated arguments and proxies the call to this query func_code = self._generate_proxy_function_code() if cb := self.module.querky.on_before_func_code_emit: func_code = cb(func_code, self) lines.extend(func_code) if bound_type_ident := self.get_type_bind_ident(): # binding return type to the underlying query lines.append('') lines.append(f'{self.local_name}.bind_type({bound_type_ident})') return lines def __call__(self, conn, *args, **kwargs): if self.contract.is_async(): return self.execute(conn, *args, **kwargs) else: return self.execute_sync(conn, *args, **kwargs) # Path: querky/contract.py class Contract(ABC): @abstractmethod def create_param_mapper(self, query: Query) -> ParamMapper: ... @abstractmethod def get_default_record_type_metadata(self) -> TypeMetaData: ... @abstractmethod def get_connection_type_metadata(self) -> TypeMetaData: ... @abstractmethod async def get_query_signature(self, db, query: Query) -> QuerySignature: ... @abstractmethod def get_query_signature_sync(self, db, query: Query) -> QuerySignature: ... @abstractmethod def is_async(self) -> bool: ... @abstractmethod async def fetch_value(self, conn, query: Query, bound_params): ... @abstractmethod async def fetch_one(self, conn, query: Query, bound_params): ... @abstractmethod async def fetch_all(self, conn, query: Query, bound_params): ... @abstractmethod async def fetch_column(self, conn, query: Query, bound_params): ... @abstractmethod async def fetch_status(self, conn, query: Query, bound_params): ... @abstractmethod async def raw_execute(self, conn, sql: str, params): ... @abstractmethod async def raw_fetchval(self, conn, sql: str, params): ... @abstractmethod async def raw_fetchone(self, conn, sql: str, params): ... @abstractmethod async def raw_fetch(self, conn, sql: str, params): ... @abstractmethod def fetch_value_sync(self, conn, query: Query, bound_params): ... @abstractmethod def fetch_one_sync(self, conn, query: Query, bound_params): ... @abstractmethod def fetch_all_sync(self, conn, query: Query, bound_params): ... @abstractmethod def fetch_column_sync(self, conn, query: Query, bound_params): ... @abstractmethod def fetch_status_sync(self, conn, query: Query, bound_params): ... @abstractmethod async def raw_execute_sync(self, conn, sql: str, params): ... @abstractmethod async def raw_fetchval_sync(self, conn, sql: str, params): ... @abstractmethod def raw_fetchone_sync(self, conn, sql: str, params): ... @abstractmethod def raw_fetch_sync(self, conn, sql: str, params): ... # Path: querky/querky.py import importlib import types import typing import inspect import os import logging from types import ModuleType from os import path from querky.result_shape import one_, all_, value_, status_, column_, One, All, ResultShape from querky.conn_param_config import ConnParamConfig, First from querky.annotation_generator import AnnotationGenerator from querky.type_constructor import TypeConstructor from querky.module_constructor import ModuleConstructor from querky.base_types import TypeMetaData from querky.query import Query from querky.contract import Contract class Querky: def __init__( self, basedir: str | None = None, annotation_generator: AnnotationGenerator | None = None, contract: Contract | None = None, conn_param_config: ConnParamConfig | None = None, type_factory: typing.Callable[[Query, str], TypeConstructor] | None = None, subdir: str | None = "queries", on_before_func_code_emit: typing.Optional[typing.Callable[[typing.List[str], Query], typing.List[str]]] = None, on_before_type_code_emit: typing.Optional[typing.Callable[[typing.List[str], Query], typing.List[str]]] = None, imports: typing.Optional[typing.Set[str]] = None, indent: str = ' ', query_class: typing.Type[Query] = Query ): self.basedir = basedir self.on_before_func_code_emit = on_before_func_code_emit self.on_before_type_code_emit = on_before_type_code_emit self.query_class = query_class self.imports = imports or set() self.indent = indent self.annotation_generator = annotation_generator self.module_ctors: dict[types.ModuleType, ModuleConstructor] = dict() self.type_factory = type_factory if conn_param_config is None: conn_param_config = First(name='__conn', positional=True) self.conn_param_config = conn_param_config self.contract = contract self.subdir = subdir if self.subdir and not str.isidentifier(self.subdir): raise ValueError("subdir must be a valid python identifier") self.file_signature = "# ~ AUTOGENERATED BY QUERKY ~ #" def get_indent(self, i: int): return self.indent * i def create_query( self, fn: typing.Callable[[...], str], shape: typing.Callable[[Query], ResultShape], conn_param_config: ConnParamConfig | None, explicit_name: str | None, parent_query: typing.Optional[Query], kwargs: typing.Optional[typing.Dict[str, typing.Any]] ) -> Query: module = inspect.getmodule(fn) if module in self.module_ctors: module_ctor = self.module_ctors[module] else: filename = self.generate_filename(module) if not str.isidentifier(filename): raise ValueError(f"Generated a filename which is not a valid python identifier: {filename}") filedir = path.dirname(module.__file__) new_module_name = module.__name__.rsplit('.', maxsplit=1)[0] if self.subdir: filedir = path.join(filedir, self.subdir) new_module_name = f"{new_module_name}.{self.subdir}" fullpath = path.join(filedir, f'{filename}.py') new_module_name = f"{new_module_name}.{filename}" module_ctor = ModuleConstructor(self, module, fullpath, new_module_name, filedir) self.module_ctors[module] = module_ctor return self.query_class( fn, shape, module_ctor, self.conn_param_config or conn_param_config, explicit_name, parent_query, kwargs ) def query( self, arg: str | TypeMetaData | Query | typing.Callable[[...], str] | None = None, *, shape: ShapeStringRepr = 'status', optional: bool | None = None, **kwargs ) -> QueryDef | Query: def wrapper(fn: typing.Callable[[...], str]) -> Query: nonlocal optional if shape in ['many', 'one']: if isinstance(arg, TypeMetaData): raise ValueError( "TypeMetaData is not supported for `many` or `one` constructors. " "Use it only for `one` and `column` constructors." ) if not isinstance(arg, Query): if arg is None: # if we don't have a name provided for us, we're gonna create it out of the function name type_name = to_camel_case(fn.__name__) else: type_name = arg if not type_name.isidentifier(): raise ValueError(f"Name type should be a valid python identifier. You provided: {type_name}") else: type_name = None type_name: str | None if shape == 'many': if optional is not None: raise TypeError( 'ALL constructor does not accept `optional` flag -- '
'at least an empty set will always be returned'
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: javrtg/C2P # Path: nonmin_pose/models/c2p.py class C2P(NonMinRelPoseBase): SDP_COMPUTES_POSE = True DEFAULT_PARAMS = { "E": Parameter("E", 1, list(range(1, 10))), "t": Parameter("t", 1, list(range(10, 13))), "q": Parameter("q", 1, list(range(13, 16))), "h": Parameter("h", 1, [16]), "sct": Parameter("sct", 2, [1]), "scr": Parameter("scr", 3, [1]), # "scr2": Parameter("scr2", 4, [1]), } DEFAULT_CONSTRAINTS = { "manif_def_left": [0], "manif_def_right": [0], "norm_t": None, "norm_q": None, "homogenization": None, "adjoint": None, "norm_e": None, "cheirality_translation_v2": None, "cheirality_rotation": None, # "right_null_space": None, # "left_null_space": None, # "cheirality_rotation_q": None, } def _get_params_and_manager(self, params=None, constraints=None): params = self.DEFAULT_PARAMS if params is None else {p.name: p for p in params} constraints = self.DEFAULT_CONSTRAINTS if constraints is None else constraints params_list = list(params.values()) manager = ConstraintManager(params_list, constraints, self.cfg["use_top_k"]) return params, manager def retrieve_solution(self) -> Dict[str, Union[np.ndarray, bool]]: X = self.npt_problem.getResultYMat(self.params["h"].block) _, svals, Vt = np.linalg.svd(X) idx = 0 E01 = Vt[idx, :9].reshape(3, 3) t01 = Vt[idx, 9:12].reshape(3, 1) q = Vt[idx, 12:15].reshape(3, 1) h = Vt[idx, 15] E01, t01, q = (E01, t01, q) if h > 0 else (-E01, -t01, -q) sct = self.npt_problem.getResultYMat(2)[0, 0] is_pure_rot = sct < self.cfg["th_pure_rot_sdp"] if sct < self.cfg["th_pure_rot_noisefree_sdp"]: # improve numerical conditioning. _, _, Vt = np.linalg.svd(X[:15, :15]) E01_ = Vt[idx, :9].reshape(3, 3) t01_ = Vt[idx, 9:12].reshape(3, 1) q_ = Vt[idx, 12:15].reshape(3, 1) # correct sign. id_mx = np.abs(t01).argmax() E01, t01, q = ( (E01_, t01_, q_) if t01[id_mx, 0] * t01_[id_mx, 0] > 0 else (-E01_, -t01_, -q_) ) # manifold projections. Ue, _, Vte = np.linalg.svd(E01) E01 = Ue[:, :2] @ Vte[:2] t01 = t01 / np.linalg.norm(t01) q = q / np.linalg.norm(q) R01 = rot_given_Etq(E01, t01, q) # check optimality. eps = self.cfg["th_rank_optimality"] is_optimal = (svals > eps).sum() <= 3 return { "R01": R01, "t01": t01, "E01": E01, "is_optimal": is_optimal, "is_pure_rot": is_pure_rot, } # Path: nonmin_pose/models/c2p.py class C2PFast(NonMinRelPoseBase): SDP_COMPUTES_POSE = True PARAMS = { "E": Parameter("E", 1, list(range(1, 10))), "t": Parameter("t", 1, list(range(10, 13))), "q": Parameter("q", 1, list(range(13, 16))), "h": Parameter("h", 1, [16]), "sct": Parameter("sct", 2, [1]), "scr": Parameter("scr", 3, [1]), } CONSTRAINTS = { "norm_t": None, "norm_q": None, "homogenization": None, "adjoint": None, "norm_e": None, "cheirality_translation_v2": None, "cheirality_rotation": None, } def _get_params_and_manager(self, *args, **kwargs): params_list = list(self.PARAMS.values()) manager = ConstraintManager(params_list, self.CONSTRAINTS) return self.PARAMS, manager def retrieve_solution(self) -> Dict[str, Union[np.ndarray, bool]]: X = self.npt_problem.getResultYMat(self.params["h"].block) _, svals, Vt = np.linalg.svd(X) idx = 0 E01 = Vt[idx, :9].reshape(3, 3) t01 = Vt[idx, 9:12].reshape(3, 1) q = Vt[idx, 12:15].reshape(3, 1) h = Vt[idx, 15] E01, t01, q = (E01, t01, q) if h > 0 else (-E01, -t01, -q) sct = self.npt_problem.getResultYMat(2)[0, 0] is_pure_rot = sct < self.cfg["th_pure_rot_sdp"] if sct < self.cfg["th_pure_rot_noisefree_sdp"]: # improve numerical conditioning. _, _, Vt = np.linalg.svd(X[:15, :15]) E01_ = Vt[idx, :9].reshape(3, 3) t01_ = Vt[idx, 9:12].reshape(3, 1) q_ = Vt[idx, 12:15].reshape(3, 1) # correct sign. id_mx = np.abs(t01).argmax() E01, t01, q = ( (E01_, t01_, q_) if t01[id_mx, 0] * t01_[id_mx, 0] > 0 else (-E01_, -t01_, -q_) ) # manifold projections. Ue, _, Vte = np.linalg.svd(E01) E01 = Ue[:, :2] @ Vte[:2] t01 = t01 / np.linalg.norm(t01) q = q / np.linalg.norm(q) R01 = rot_given_Etq(E01, t01, q) # check optimality. eps = self.cfg["th_rank_optimality"] is_optimal = (svals > eps).sum() <= 3 return { "R01": R01, "t01": t01, "E01": E01, "is_optimal": is_optimal, "is_pure_rot": is_pure_rot, } # Path: nonmin_pose/models/essential_mat_gsalguero.py class EssentialGSalguero(NonMinRelPoseBase): """Essential matrix solver using García-Salguero's ADJ (adjugate) method [1]. [1] A Tighter Relaxation for the Relative Pose Problem Between Cameras, M. Garcia-Salguero, J. Briales and J. Gonzalez-Jimenez. """ SDP_COMPUTES_POSE = False PARAMS = { "E": Parameter("E", 1, list(range(1, 10))), "t": Parameter("t", 2, list(range(1, 4))), "q": Parameter("q", 2, list(range(4, 7))), } CONSTRAINTS = { "manif_def_left": [0], "manif_def_right": [0], "norm_t": None, "norm_q": None, "adjoint": None, "norm_e": None, } def _get_params_and_manager(self, *args, **kwargs): params_list = list(self.PARAMS.values()) manager = ConstraintManager(params_list, self.CONSTRAINTS) return self.PARAMS, manager def retrieve_solution(self) -> Dict[str, Union[np.ndarray, bool]]: E, t, q = self.params["E"], self.params["t"], self.params["q"] Eb, tb, qb = E.block, t.block, q.block assert Eb != tb == qb # get X = xx^\top. Xe = self.npt_problem.getResultYMat(Eb) Xtq = self.npt_problem.getResultYMat(tb) # check optimality. eps = self.cfg["th_rank_optimality"] _, svals_e, Vt_e = np.linalg.svd(Xe) svals_tq = np.linalg.svd(Xtq, compute_uv=False) is_optimal = (svals_e > eps).sum() == 1 == (svals_tq > eps).sum() E01 = Vt_e[0].reshape(3, 3) return {"E01": E01, "is_optimal": is_optimal} # Path: nonmin_pose/models/essential_mat_zhao.py class EssentialZhao(NonMinRelPoseBase): """Essential matrix estimation using Zhao's method [1]. [1] An efficient solution to non-minimal case essential matrix estimation, J. Zhao. """ SDP_COMPUTES_POSE = False PARAMS = { "E": Parameter("E", 1, list(range(1, 10))), "t": Parameter("t", 1, list(range(10, 13))), } CONSTRAINTS = {"manif_def_left": None, "norm_t": None} def _get_params_and_manager(self, *args, **kwargs): params_list = list(self.PARAMS.values()) manager = ConstraintManager(params_list, self.CONSTRAINTS) return self.PARAMS, manager def retrieve_solution(self) -> Dict[str, Union[np.ndarray, bool]]: """Get the essential matrix and check its optimality.""" E, t = self.params["E"], self.params["t"] Eb, tb = E.block, t.block assert Eb == tb # get X = xx^\top. X = self.npt_problem.getResultYMat(Eb) Xe, Xt = X[:9, :9], X[9:, 9:] # check optimality. eps = self.cfg["th_rank_optimality"] _, svals_e, Vt_e = np.linalg.svd(Xe) _, svals_t, _ = np.linalg.svd(Xt) is_optimal = (svals_e > eps).sum() == 1 == (svals_t > eps).sum() E01 = Vt_e[0].reshape(3, 3) return {"E01": E01, "is_optimal": is_optimal} # Path: nonmin_pose/utils.py def compute_data_matrix_C( f0: np.ndarray, f1: np.ndarray, w: Optional[np.ndarray] = None ) -> np.ndarray: """Compute the data matrix C from the bearing vectors. Args: f0: (3, n) bearing vectors in camera 0. f1: (3, n) bearing vectors in camera 1. w: (n,) array of weights for each epipolar residual. (default: None) Returns: C: (9, 9) data matrix. """ assert w is None or w.ndim == 1, "w must be a 1D array." n = f0.shape[1] f0_kron_f1 = (n**-0.5) * (f0[:, None] * f1).reshape(9, n) if w is None: return f0_kron_f1 @ f0_kron_f1.T return w * f0_kron_f1 @ f0_kron_f1.T # Path: nonmin_pose/utils.py def decompose_essmat( U: np.ndarray, Vt: np.ndarray, f0: np.ndarray, f1: np.ndarray, th_pure_rotation: float = 1 - 1e-8, ) -> Tuple[np.ndarray, np.ndarray, bool]: """Decompose the essential matrix into relative rotation and (normalized) translation. The extraction of the 4 possible relative pose factorizations given an essential matrix, follows the approach explained in [1, Sec. 9.6.2]. To select the best pose candidate, we check the sign of the factor that multiplies each bearing vector. This factor must be positive since a bearing vector is equivalent to $f_i := X_i / ||X_i||$, where $X_i$ is the corresponding 3D point. Thus, to recover the 3D point, we multiply $f$ with an estimated scalar factor that *must* be positive. This constraint is independent of the camera model used (pinhole, fisheye, omnidirectional etc.), thus the camera model is not a limiting factor for this approach. To compute the scalar factor (the norm of X_i), we use the classic midpoint method (see e.g. [2]). However, instead of explicitly computing (triangulating) the 3D points, we just compute the sign of the scalar factors (lambdas). As a result, we save some computation. Specifically, we avoid computing: 1) the term (sin angle(f0, R01@f1))^2 = || f0 x R01@f1 ||^2, for each point, and 2) the XY coordinates of each 3D point. [1]: Multiple View Geometry in Computer Vision, Hartley and Zisserman, 2003. [2]: Triangulation: why optimize?, Lee and Civera, 2019. Args: U: (3, 3) left singular vectors of the essential matrix. Vt: (3, 3) right singular vectors of the essential matrix. f0: (3, n) bearing vectors in camera 0. f1: (3, n) bearing vectors in camera 1. th_pure_rotation: threshold for checking if the motion is a pure rotation. Returns: R: (3, 3) rotation matrix. t: (3, 1) translation vector. is_pure_rotation: True if a (near-)pure rotation is detected. """ # avoid reflection (ensure rotation) when decomposing the essential matrix. Vt[2] = -Vt[2] if np.linalg.det(U) * np.linalg.det(Vt) < 0 else Vt[2] Ra, Rb = U @ _W @ Vt # (2, 3, 3) ta, tb = U[:, 2:], -U[:, 2:] # check if it is a pure rotation. is_pure_rotation, choice = check_pure_rotation( f0, np.stack((Ra, Rb)) @ f1, th_pure_rotation ) # (Ra, ta) Raf1 = Ra @ f1 lambda0_rhs = ( np.cross((Raf1).T, f0.T)[:, None] @ np.cross((Raf1).T, ta.T)[..., None] ) lambda1_rhs = np.cross((Raf1).T, f0.T)[:, None] @ np.cross(f0.T, ta.T)[..., None] npos_aa = ((lambda0_rhs > 0) & (lambda1_rhs > 0)).sum() # (Rb, ta) Rbf1 = Rb @ f1 lambda0_rhs = ( np.cross((Rbf1).T, f0.T)[:, None] @ np.cross((Rbf1).T, ta.T)[..., None] ) lambda1_rhs = np.cross((Rbf1).T, f0.T)[:, None] @ np.cross(f0.T, ta.T)[..., None] npos_ba = ((lambda0_rhs > 0) & (lambda1_rhs > 0)).sum() # (Ra, tb) lambda0_rhs = ( np.cross((Raf1).T, f0.T)[:, None] @ np.cross((Raf1).T, tb.T)[..., None] ) lambda1_rhs = np.cross((Raf1).T, f0.T)[:, None] @ np.cross(f0.T, tb.T)[..., None] npos_ab = ((lambda0_rhs > 0) & (lambda1_rhs > 0)).sum() # (Rb, tb) lambda0_rhs = ( np.cross((Rbf1).T, f0.T)[:, None] @ np.cross((Rbf1).T, tb.T)[..., None] ) lambda1_rhs = np.cross((Rbf1).T, f0.T)[:, None] @ np.cross(f0.T, tb.T)[..., None] npos_bb = ((lambda0_rhs > 0) & (lambda1_rhs > 0)).sum() npos_tpos = np.r_[npos_aa, npos_ba] npos_tneg = np.r_[npos_ab, npos_bb] if is_pure_rotation and (npos_tpos[choice] == npos_tneg[choice] == 0): # Pure rotation with perfect bearings alignment by just rotating them. R01 = Ra if choice == 0 else Rb return R01, ta, is_pure_rotation if is_pure_rotation: # Pure rotation with imperfect bearings alignment. Choose the translation # candidate that satisfies the most the positive-norm bearings' constraint. t01 = ta if npos_tpos[choice] >= npos_tneg[choice] else tb R01 = Ra if choice == 0 else Rb return R01, t01, is_pure_rotation # Otherwise, select the candidate that satisfies the most the positive-norm # bearings' constraint. choice, npos = max( enumerate((npos_tpos[0], npos_tpos[1], npos_tneg[0], npos_tneg[1])), key=lambda x: x[1], ) t01 = ta if choice < 2 else tb R01 = Rb if choice % 2 else Ra return R01, t01, is_pure_rotation # Path: experiments/runtimes.py from pathlib import Path from exp_utils import SyntheticData from nonmin_pose import C2P, C2PFast, EssentialGSalguero, EssentialZhao from nonmin_pose.utils import compute_data_matrix_C, decompose_essmat import cv2 import numpy as np import perfplot def zhao_midpoint(f0, f1): return ess_zhao(f0, f1, do_disambiguation=True, use_opencv=False) # type: ignore def zhao_triangulation(f0, f1): return ess_zhao(f0, f1, do_disambiguation=True, use_opencv=True) # type: ignore def salguero_midpoint(f0, f1): return ess_salguero(f0, f1, do_disambiguation=True, use_opencv=False) # type: ignore def salguero_triangulation(f0, f1): return ess_salguero(f0, f1, do_disambiguation=True, use_opencv=True) # type: ignore def c2p(f0, f1): return nonmin_relpose(f0, f1) def c2p_fast(f0, f1): return nonmin_relpose_fast(f0, f1) def sample_data(n): data = dataset.generate_data(max_npoints=n, noise_level=0.0) return data def monkeypatch_call( self, f0, f1, do_disambiguation=True, already_normalized=False, use_opencv=False ): """function for monkey-patching the __call__ method of the base class to include OpenCV's recoverPose() disambiguation, which triangulates the correspondences.""" sh0, sh1 = f0.shape, f1.shape assert sh0 == sh1 and len(sh0) == 2 and sh0[0] == 3 and sh0[1] >= 5 if not already_normalized: f0 = f0 / np.linalg.norm(f0, axis=0) f1 = f1 / np.linalg.norm(f1, axis=0) C = compute_data_matrix_C(f0, f1) self.solveSDP(C, f0, f1) sol = self.retrieve_solution() if not self.SDP_COMPUTES_POSE: U, _, Vt = np.linalg.svd(sol["E01"]) sol["E01"] = U[:, :2] @ Vt[:2]
if do_disambiguation and not use_opencv:
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Jack24658735/FedLGT # Path: dataloaders/voc2007_20.py class Voc07Dataset(torch.utils.data.Dataset): def __init__(self, img_dir='./data/VOCdevkit/VOC2007/JPEGImages', anno_path='./data/VOCdevkit/VOC2007/Main/trainval.txt', image_transform=None, labels_path='./data/VOCdevkit/VOC2007/Annotations',known_labels=0,testing=False,use_difficult=False): self.img_names = [] with open(anno_path, 'r') as f: self.img_names = f.readlines() self.img_dir = img_dir self.num_labels = 20 self.known_labels = known_labels self.testing=testing self.labels = [] for name in self.img_names: label_file = os.path.join(labels_path,name[:-1]+'.xml') label_vector = np.zeros(self.num_labels) DOMTree = xml.dom.minidom.parse(label_file) root = DOMTree.documentElement objects = root.getElementsByTagName('object') for obj in objects: if (not use_difficult) and (obj.getElementsByTagName('difficult')[0].firstChild.data) == '1': continue tag = obj.getElementsByTagName('name')[0].firstChild.data.lower() label_vector[int(category_info[tag])] = 1.0 self.labels.append(label_vector) # self.labels = np.array(self.labels).astype(np.float32) self.labels = np.array(self.labels).astype(int) self.image_transform = image_transform self.epoch = 1 def __getitem__(self, index): name = self.img_names[index][:-1]+'.jpg' image = Image.open(os.path.join(self.img_dir, name)).convert('RGB') if self.image_transform: image = self.image_transform(image) labels = torch.Tensor(self.labels[index]) unk_mask_indices = get_unk_mask_indices(image,self.testing,self.num_labels,self.known_labels,self.epoch) mask = labels.clone() mask.scatter_(0,torch.Tensor(unk_mask_indices).long() , -1) sample = {} sample['image'] = image sample['labels'] = labels sample['mask'] = mask sample['imageIDs'] = str(name) return sample def __len__(self): return len(self.img_names) # Path: dataloaders/vg500_dataset.py class VGDataset(torch.utils.data.Dataset): def __init__(self, img_dir, img_list, image_transform,label_path,known_labels=40,testing=False): with open(img_list, 'r') as f: self.img_names = f.readlines() with open(label_path, 'r') as f: self.labels = json.load(f) self.image_transform = image_transform self.img_dir = img_dir self.num_labels= 500 self.known_labels = known_labels self.testing=testing self.epoch = 1 def __getitem__(self, index): name = self.img_names[index][:-1] img_path = os.path.join(self.img_dir, name) image = image_loader(img_path,self.image_transform) label = np.zeros(self.num_labels).astype(np.float32) label[self.labels[name]] = 1.0 label = torch.Tensor(label) unk_mask_indices = get_unk_mask_indices(image,self.testing,self.num_labels,self.known_labels) mask = label.clone() mask.scatter_(0,torch.Tensor(unk_mask_indices).long() , -1) sample = {} sample['image'] = image sample['labels'] = label sample['mask'] = mask sample['imageIDs'] = name return sample def __len__(self): return len(self.img_names) # Path: dataloaders/coco80_dataset.py class Coco80Dataset(Dataset): def __init__(self, split,num_labels,data_file,img_root,annotation_dir,max_samples=-1,transform=None,known_labels=0,testing=False,analyze=False): self.split=split self.split_data = pickle.load(open(data_file,'rb')) if max_samples != -1: self.split_data = self.split_data[0:max_samples] self.img_root = img_root self.transform = transform self.num_labels = num_labels self.known_labels = known_labels self.testing=testing self.epoch = 1 def __len__(self): return len(self.split_data) def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() image_ID = self.split_data[idx]['file_name'] img_name = os.path.join(self.img_root,image_ID) image = image_loader(img_name,self.transform) labels = self.split_data[idx]['objects'] labels = torch.Tensor(labels) unk_mask_indices = get_unk_mask_indices(image,self.testing,self.num_labels,self.known_labels) mask = labels.clone() mask.scatter_(0,torch.Tensor(unk_mask_indices).long() , -1) sample = {} sample['image'] = image sample['labels'] = labels sample['mask'] = mask sample['imageIDs'] = image_ID return sample # Path: dataloaders/news500_dataset.py class NewsDataset(torch.utils.data.Dataset): def __init__(self, ann_dir,split='train',transform=None,known_labels=0,testing=False): # Load training data. self.ann_dir = ann_dir # the path you save train_split.p and caption_test_space.npy self.split = split self.transform = transform self.num_labels = 500 self.known_labels = known_labels self.testing=testing # Load annotations. print(('Loading %s Label annotations...') % self.split) self.annData = pickle.load(open(os.path.join(ann_dir, '%s_split.p' % self.split),'rb')) self.targets = torch.Tensor(np.load(open(os.path.join(ann_dir, 'caption_%s_space.npy' % self.split),'rb'))) self.epoch = 1 def __getitem__(self, index): sample = self.annData[index] img_path = sample['file_path'] image_id = sample['image_id'] img_path = img_path.replace('/localtmp/data/data/',self.ann_dir) image = image_loader(img_path,self.transform) labels = self.targets[index, :] mask = labels.clone() unk_mask_indices = get_unk_mask_indices(image,self.testing,self.num_labels,self.known_labels) mask.scatter_(0,torch.Tensor(unk_mask_indices).long() , -1) sample = {} sample['image'] = image sample['labels'] = labels sample['mask'] = mask sample['imageIDs'] = str(image_id) return sample def __len__(self): return len(self.annData) # Path: dataloaders/coco1000_dataset.py class Coco1000Dataset(torch.utils.data.Dataset): def __init__(self, annotation_dir,image_dir,split='train',transform = None,known_labels=0,testing=False): # Load training data. self.split = split self.image_dir = image_dir self.transform = transform self.testing=testing self.num_labels = 1000#num_labels self.epoch = 1 self.known_labels = known_labels # Load annotations. print(('\nLoading %s object annotations...') % self.split) self.objData = json.load(open(os.path.join(annotation_dir, 'captions_' + self.split + '2014.json'))) self.imageIds = [entry['id'] for entry in self.objData['images']] self.imageNames = [entry['file_name'] for entry in self.objData['images']] self.imageId2index = {image_id: idx for (idx, image_id) in enumerate(self.imageIds)} if os.path.exists("data/coco/coco_words_vocabulary.p"): self.vocabulary = pickle.load(open('data/coco/coco_words_vocabulary.p', 'rb')) else: self.vocabulary = get_vocab(self.objData) label_file_path = os.path.join(annotation_dir, '1000_labels_' + self.split + '2014.npy') if os.path.exists(label_file_path): print('Loading labels') self.labels = np.load(label_file_path) else: print('Preparing label space') lem = WordNetLemmatizer() self.labels = np.zeros((len(self.objData['images']), len(self.vocabulary[0]))) for (i, entry) in enumerate(self.objData['annotations']): # if i % 10000 == 0: print('.'), image_id = entry['image_id'] caption = entry['caption'] for word in word_tokenize(caption.lower()): word = lem.lemmatize(word) if word in self.vocabulary[1].keys(): self.labels[self.imageId2index[image_id], self.word2id(word)] = 1 np.save(label_file_path, self.labels) def getLabelWeights(self): return (self.labels == 0).sum(axis = 0) / self.labels.sum(axis = 0) def decodeCategories(self, labelVector): return [self.id2word(idx) for idx in np.nonzero(labelVector)[0]] def id2word(self, idx): return self.vocabulary[0][idx] def word2id(self, word): return self.vocabulary[1][word] def imageName(self, index): return self.split + '2014/' + self.imageNames[index] def __getitem__(self, index): split_str = self.split if (self.split != 'test') else 'val' imageName_ = split_str + '2014/' + self.imageNames[index] image = pil_loader(os.path.join(self.image_dir, imageName_)) if self.transform is not None: image = self.transform(image) sample = {'image': image,'labels':torch.Tensor(self.labels[index, :])} mask = sample['labels'].clone() unk_mask_indices = get_unk_mask_indices(image,self.testing,self.num_labels,self.known_labels) mask.scatter_(0,torch.Tensor(unk_mask_indices).long() , -1) sample['mask'] = mask sample['imageIDs'] = imageName_ return sample def __len__(self): return len(self.imageIds) def numCategories(self): return len(self.vocabulary[0]) # Path: dataloaders/cub312_dataset.py class CUBDataset(Dataset): def __init__(self, img_dir, img_list, image_transform,known_labels=0,attr_group_dict=None,testing=False,n_groups=1): with open(img_list, "rb" ) as f: self.labels = pickle.load(f) self.image_transform = image_transform self.img_dir = img_dir self.num_concepts= 112 self.num_labels= 200 # np.random.seed() self.attr_group_dict = attr_group_dict known_indices = [] for group in np.random.choice(28, n_groups, replace=False): known_indices += attr_group_dict[group] self.group_unk_mask = np.ones(self.num_concepts) self.group_unk_mask[known_indices] = 0 self.known_labels = known_labels self.testing=testing self.epoch = 1 def __getitem__(self, index): name = self.labels[index]['img_path'] name = name.replace('/juice/scr/scr102/scr/thaonguyen/CUB_supervision/datasets/CUB_200_2011/images/','') img_path = os.path.join(self.img_dir, name) image = image_loader(img_path,self.image_transform) concept = torch.Tensor(self.labels[index]['attribute_label']) class_label = torch.Tensor([self.labels[index]['class_label']]) concept_certainty = torch.Tensor(self.labels[index]['attribute_certainty']) unk_mask_indices = get_unk_mask_indices_cub(image,self.testing,self.num_concepts,self.known_labels,np.copy(self.group_unk_mask),self.attr_group_dict,concept_certainty) mask = concept.clone() mask.scatter_(0,torch.Tensor(unk_mask_indices).long() , -1) class_mask = torch.Tensor(self.num_labels).fill_(-1) mask = torch.cat((mask,class_mask),0) sample = {} sample['image'] = image sample['labels'] = concept sample['class_label'] = class_label sample['concept_certainty'] = concept_certainty sample['mask'] = mask sample['imageIDs'] = name return sample def __len__(self): return len(self.labels) # Path: dataloaders/flair_dataset.py class FlairDataset(Dataset): def __init__(self, split, num_labels, data_file, img_root,max_samples=-1,transform=None,known_labels=0,testing=False, label_mapping=None, fine_grained_label_mapping=None): super(FlairDataset, self).__init__() # print(data_file) #self.split_data = h5py.File('/home/liujack/multi_label/C-Tran/data/flair/cent_data.hdf5', 'r') self.split_data = h5py.File('/media/liujack/flair_hdf5/cent_data.hdf5', 'r') self.split = split self.fine_grained_label_mapping = fine_grained_label_mapping self.label_mapping = label_mapping if max_samples != -1: self.split_data = self.split_data[0:max_samples] self.img_root = img_root self.transform = transform self.num_labels = num_labels self.known_labels = known_labels self.testing = testing self.image_id_list = list(self.split_data[self.split].keys()) def __len__(self): return len(self.image_id_list) def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() # take a sample image_ID = self.image_id_list[idx] img = np.array(self.split_data[self.split][image_ID]['image']) image = self.transform(img) user_id = np.array(self.split_data[self.split][image_ID]['user_id']) if self.fine_grained_label_mapping != None: # fine grained labels are used labels_str = np.array(self.split_data[self.split][image_ID]['fine_grained_labels']) else: # coarse grained labels are used labels_str = np.array(self.split_data[self.split][image_ID]['labels']) assert self.label_mapping != None # fg_labels = np.array(self.split_data[self.split][image_ID]['fine_grained_labels']) # image_ID = self.split_data[idx]['file_name'] # img_name = os.path.join(self.img_root,image_ID + '.jpg') # image = image_loader(img_name,self.transform) labels_str = labels_str.tolist() labels_str = str(labels_str)[2:-1].split('|') tran_labels = [0] * self.num_labels if self.fine_grained_label_mapping != None: for label in labels_str: tran_labels = list(map(lambda x, y: x | y, tran_labels, self.fine_grained_label_mapping[label])) else: for label in labels_str: tran_labels = list(map(lambda x, y: x | y, tran_labels, self.label_mapping[label])) assert tran_labels.count(1) == len(labels_str) labels = torch.Tensor(tran_labels) unk_mask_indices = get_unk_mask_indices(image,self.testing,self.num_labels,self.known_labels) mask = labels.clone() # perform the random masking 25% mask.scatter_(0,torch.Tensor(unk_mask_indices).long() , -1) sample = {} sample['image'] = image sample['labels'] = labels sample['mask'] = mask sample['imageIDs'] = image_ID return sample # Path: dataloaders/flair_dataset_fed.py class FlairFedDataset(Dataset): def __init__(self, inp_data, split, num_labels, data_file, img_root, curr_user=None, max_samples=-1,transform=None,known_labels=0,testing=False, label_mapping=None, fine_grained_label_mapping=None): super(FlairFedDataset, self).__init__() # print(data_file) #self.split_data = h5py.File('/home/liujack/multi_label/C-Tran/data/flair/cent_data.hdf5', 'r') self.split_data = inp_data self.split = split self.fine_grained_label_mapping = fine_grained_label_mapping self.label_mapping = label_mapping if max_samples != -1: self.split_data = self.split_data[0:max_samples] self.img_root = img_root self.transform = transform self.num_labels = num_labels self.known_labels = known_labels self.testing = testing self.curr_user = curr_user self.image_id_list = list(self.split_data[self.split][self.curr_user]['image_ids']) self.image_list = list(self.split_data[self.split][self.curr_user]['images']) self.label_list = list(self.split_data[self.split][self.curr_user]['labels']) self.fg_label_list = list(self.split_data[self.split][self.curr_user]['fine_grained_labels']) def __len__(self): return len(self.image_id_list) def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() # take a sample image_ID = self.image_id_list[idx] # img = np.array(self.split_data[self.split][self.curr_user][image_ID]['image']) img = self.image_list[idx] image = self.transform(img) if self.fine_grained_label_mapping != None: # fine grained labels are used # labels_str = np.array(self.split_data[self.split][image_ID]['fine_grained_labels']) labels_str = self.fg_label_list[idx] else: # coarse grained labels are used # labels_str = np.array(self.split_data[self.split][image_ID]['labels']) labels_str = self.label_list[idx] assert self.label_mapping != None # fg_labels = np.array(self.split_data[self.split][image_ID]['fine_grained_labels']) # image_ID = self.split_data[idx]['file_name'] # img_name = os.path.join(self.img_root,image_ID + '.jpg') # image = image_loader(img_name,self.transform) labels_str = labels_str.tolist() labels_str = str(labels_str)[2:-1].split('|') tran_labels = [0] * self.num_labels if self.fine_grained_label_mapping != None: for label in labels_str: tran_labels = list(map(lambda x, y: x | y, tran_labels, self.fine_grained_label_mapping[label])) else: for label in labels_str: tran_labels = list(map(lambda x, y: x | y, tran_labels, self.label_mapping[label])) assert tran_labels.count(1) == len(labels_str) labels = torch.Tensor(tran_labels) unk_mask_indices = get_unk_mask_indices(image,self.testing,self.num_labels,self.known_labels) mask = labels.clone() # perform the random masking 25% mask.scatter_(0,torch.Tensor(unk_mask_indices).long() , -1) sample = {} sample['image'] = image sample['labels'] = labels sample['mask'] = mask sample['imageIDs'] = image_ID return sample # Path: load_data.py import torch import numpy as np import os, random import json import h5py import warnings from skimage import io, transform from torch.utils.data import Dataset, DataLoader from torchvision import transforms from dataloaders.voc2007_20 import Voc07Dataset from dataloaders.vg500_dataset import VGDataset from dataloaders.coco80_dataset import Coco80Dataset from dataloaders.news500_dataset import NewsDataset from dataloaders.coco1000_dataset import Coco1000Dataset from dataloaders.cub312_dataset import CUBDataset from dataloaders.flair_dataset import FlairDataset from dataloaders.flair_dataset_fed import FlairFedDataset warnings.filterwarnings("ignore") def get_data(args, curr_user=None): dataset = args.dataset data_root = args.dataroot batch_size = args.batch_size rescale = args.scale_size random_crop = args.crop_size attr_group_dict = args.attr_group_dict workers = args.workers n_groups = args.n_groups normTransform = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) scale_size = rescale crop_size = random_crop if args.test_batch_size == -1: args.test_batch_size = batch_size trainTransform = transforms.Compose([ transforms.Resize((scale_size, scale_size)), transforms.Resize((crop_size, crop_size)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normTransform]) testTransform = transforms.Compose([ transforms.Resize((scale_size, scale_size)), transforms.CenterCrop(crop_size), transforms.ToTensor(), normTransform]) test_dataset = None test_loader = None drop_last = False if dataset == 'coco': coco_root = os.path.join(data_root,'coco') ann_dir = os.path.join(coco_root,'annotations_pytorch') train_img_root = os.path.join(coco_root,'train2014') test_img_root = os.path.join(coco_root,'val2014') train_data_name = 'train.data' val_data_name = 'val_test.data' # Note: the val_test means the validation set and test set are combined # 20000 + 20504 = 40504 images train_dataset = Coco80Dataset( split='train', num_labels=args.num_labels, data_file=os.path.join(coco_root,train_data_name), img_root=train_img_root, annotation_dir=ann_dir, max_samples=args.max_samples, transform=trainTransform, known_labels=args.train_known_labels, testing=False) valid_dataset = None valid_loader = None test_dataset = Coco80Dataset(split='val', num_labels=args.num_labels, data_file=os.path.join(coco_root,val_data_name), img_root=test_img_root, annotation_dir=ann_dir, max_samples=args.max_samples, transform=testTransform, known_labels=args.test_known_labels, testing=True) elif dataset == 'coco1000': ann_dir = os.path.join(data_root,'coco','annotations_pytorch') data_dir = os.path.join(data_root,'coco') train_img_root = os.path.join(data_dir,'train2014')
test_img_root = os.path.join(data_dir,'val2014')
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: AgriCodeHub/dairy-django-backend # Path: core/choices.py class CowBreedChoices(models.TextChoices): """ Enumeration of choices for representing different cow breeds. Choices: - `FRIESIAN`: Represents the Friesian cow breed. - `SAHIWAL`: Represents the Sahiwal cow breed. - `JERSEY`: Represents the Jersey cow breed. - `GUERNSEY`: Represents the Guernsey cow breed. - `CROSSBREED`: Represents a crossbreed of cows. - `AYRSHIRE`: Represents the Ayrshire cow breed. Usage: This enumeration provides predefined choices for the cow breed field in the CowBreed model. Use these choices when defining or querying CowBreed instances to represent specific cow breeds. Example: ``` class CowBreed(models.Model): name = models.CharField(max_length=50, choices=CowBreedChoices.choices) ``` """ FRIESIAN = "Friesian" SAHIWAL = "Sahiwal" JERSEY = "Jersey" GUERNSEY = "Guernsey" CROSSBREED = "Crossbreed" AYRSHIRE = "Ayrshire" # Path: core/choices.py class CowAvailabilityChoices(models.TextChoices): """ Choices for the availability status of a cow. Choices: - `ALIVE`: Cow is alive and active. - `SOLD`: Cow has been sold. - `DEAD`: Cow has died. Usage: These choices represent the availability status of a cow in the Cow model. Use these choices when defining or querying Cow instances to represent the current status of a cow. Example: ``` class Cow(models.Model): availability_status = models.CharField(max_length=50, choices=CowAvailabilityChoices.choices) ``` """ ALIVE = "Alive" SOLD = "Sold" DEAD = "Dead" # Path: core/choices.py class CowPregnancyChoices(models.TextChoices): """ Choices for the pregnancy status of a cow. Choices: - `OPEN`: Cow is not pregnant. - `PREGNANT`: Cow is pregnant. - `CALVED`: Cow has calved. - `UNAVAILABLE`: Cow cannot have pregnancy status. Usage: These choices represent the pregnancy status of a cow in the Cow model. Use these choices when defining or querying Cow instances to represent the current pregnancy status of a cow. Example: ``` class Cow(models.Model): current_pregnancy_status = models.CharField(max_length=15, choices=CowPregnancyChoices.choices) ``` """ OPEN = "Open" PREGNANT = "Pregnant" CALVED = "Calved" UNAVAILABLE = "Unavailable" # Path: core/choices.py class CowCategoryChoices(models.TextChoices): """ Choices for the category of a cow. Choices: - `CALF`: Represents a calf. - `WEANER`: Represents a weaner. - `HEIFER`: Represents a heifer. - `BULL`: Represents a bull. - `MILKING_COW`: Represents a milking cow. Usage: These choices represent the category of a cow in the Cow model. Use these choices when defining or querying Cow instances to represent the category of a cow. Example: ``` class Cow(models.Model): category = models.CharField(max_length=15, choices=CowCategoryChoices.choices) ``` """ CALF = "Calf" WEANER = "Weaner" HEIFER = "Heifer" BULL = "Bull" MILKING_COW = "Milking Cow" # Path: core/choices.py class CowProductionStatusChoices(models.TextChoices): """ Choices for the production status of a cow. Choices: - `OPEN`: Cow is open (not pregnant or lactating). - `PREGNANT_NOT_LACTATING`: Cow is pregnant but not lactating. - `PREGNANT_AND_LACTATING`: Cow is pregnant and lactating. - `DRY`: Cow is dry (not lactating). - `CULLED`: Cow has been culled. - `QUARANTINED`: Cow is quarantined. - `BULL`: Represents a bull. - `YOUNG_BULL`: Represents a young bull. - `YOUNG_HEIFER`: Represents a young heifer. - `MATURE_BULL`: Represents a mature bull. - `CALF`: Represents a calf. - `WEANER`: Represents a weaner. Usage: These choices represent the production status of a cow in the Cow model. Use these choices when defining or querying Cow instances to represent the current production status of a cow. Example: ``` class Cow(models.Model): current_production_status = models.CharField(max_length=15, choices=CowProductionStatusChoices.choices) ``` """ OPEN = "Open" PREGNANT_NOT_LACTATING = "Pregnant not Lactating" PREGNANT_AND_LACTATING = "Pregnant and Lactating" DRY = "Dry" CULLED = "Culled" QUARANTINED = "Quarantined" BULL = "Bull" YOUNG_BULL = "Young Bull" YOUNG_HEIFER = "Young Heifer" MATURE_BULL = "Mature Bull" CALF = "Calf" WEANER = "Weaner" # Path: core/models.py class Cow(models.Model): """ Represents an individual cow in the dairy farm. Attributes: - `name` (str): The name of the cow. - `breed` (CowBreed): The breed of the cow. - `date_of_birth` (date): The birthdate of the cow. - `gender` (str): The gender of the cow. - `availability_status` (str): The availability status of the cow. - `sire` (Cow or None): The sire (father) of the cow. - `dam` (Cow or None): The dam (mother) of the cow. - `current_pregnancy_status` (str): The current pregnancy status of the cow. - `category` (str): The category of the cow. - `current_production_status` (str): The current production status of the cow. - `date_introduced_in_farm` (date): The date the cow was introduced to the farm. - `is_bought` (bool): Indicates whether the cow was bought or not. - `date_of_death` (date or None): The date of death of the cow, if applicable. """ name = models.CharField(max_length=35) breed = models.ForeignKey(CowBreed, on_delete=models.PROTECT, related_name="cows") date_of_birth = models.DateField() gender = models.CharField(max_length=6, choices=SexChoices.choices) availability_status = models.CharField( choices=CowAvailabilityChoices.choices, default=CowAvailabilityChoices.ALIVE, max_length=5, ) current_pregnancy_status = models.CharField( choices=CowPregnancyChoices.choices, default=CowPregnancyChoices.UNAVAILABLE, max_length=12, ) category = models.CharField( choices=CowCategoryChoices.choices, default=CowCategoryChoices.CALF, max_length=11, ) current_production_status = models.CharField( choices=CowProductionStatusChoices.choices, max_length=22, default=CowProductionStatusChoices.CALF, ) is_bought = models.BooleanField(default=False) sire = models.ForeignKey( "self", on_delete=models.SET_NULL, null=True, related_name="offspring" ) dam = models.ForeignKey( "self", on_delete=models.SET_NULL, null=True, related_name="calves" ) date_introduced_in_farm = models.DateField(auto_now=True) date_of_death = models.DateField(null=True) objects = CowManager() @property def tag_number(self): """ Returns the tag number of the cow. """ return Cow.objects.get_tag_number(self) @property def age(self): """ Calculates and returns the age of the cow in days. """ return Cow.objects.calculate_age(self) @property def age_in_farm(self): """ Calculates and returns the age of the cow in days since introduction to the farm. """ return Cow.objects.calculate_age_in_farm(self) @property def parity(self): """ Calculates and returns the parity of the cow. """ return Cow.objects.calculate_parity(self) @property def calf_records(self): return Cow.objects.get_calf_records(self) def clean(self): """ Performs validation checks before saving the cow. Raises: - `ValidationError`: If cow validation fails. """ if self.pk: CowValidator.validate_production_status_2( self.current_production_status, self.gender, self.category, self.age, self.calf_records, self.is_bought, self, ) CowValidator.validate_age_category( self.age, self.category, self.gender, self.calf_records, self.is_bought, self, ) else: CowValidator.validate_pregnancy_status( self, self.age, self.current_pregnancy_status, self.availability_status, self.gender, ) CowValidator.validate_uniqueness(self.name) CowValidator.validate_cow_age(self.age, self.date_of_birth) CowValidator.validate_gender_update(self.pk, self.gender) CowValidator.validate_sire_dam_relationship(self.sire, self.dam) CowValidator.validate_production_status_1( self.current_production_status, self.gender, self.age, ) CowValidator.validate_pregnancy_status( self, self.age, self.current_pregnancy_status, self.availability_status, self.gender, ) CowValidator.validate_date_of_death( self.availability_status, self.date_of_death ) def __str__(self): """ Returns a string representation of the cow. """ return self.tag_number def save(self, *args, **kwargs): """ Overrides the save method to ensure validation before saving. """ self.clean() super().save(*args, **kwargs) # Path: core/serializers.py class CowSerializer(serializers.ModelSerializer): """ Serializer for the Cow model. Fields: - `breed`: A nested serializer field representing the cow breed, using CowBreedSerializer. - `tag_number`: A read-only field representing the cow's tag number. - `parity`: A read-only field representing the cow's parity. - `age`: A read-only field representing the cow's age in days. - `age_in_farm`: A read-only field representing the cow's age in days since introduction to the farm. - And more... Meta: - `model`: The Cow model for which the serializer is defined. - `fields`: The fields to include in the serialized representation. Usage: Use this serializer to convert Cow model instances to JSON representations and vice versa. It includes nested serialization for the 'breed' field and read-only fields for additional information such as tag number and age. Methods: - `create(validated_data)`: Overrides the default create method to handle nested serialization for the 'breed' field. - `update(instance, validated_data)`: Overrides the default update method to exclude certain fields from updating. Example: ``` class Cow(models.Model): breed = models.ForeignKey(CowBreed, on_delete=models.CASCADE) tag_number = models.CharField(max_length=20) parity = models.IntegerField() age = models.IntegerField() age_in_farm = models.IntegerField() class CowSerializer(serializers.ModelSerializer): breed = CowBreedSerializer() tag_number = serializers.ReadOnlyField() parity = serializers.ReadOnlyField() age = serializers.ReadOnlyField() age_in_farm = serializers.ReadOnlyField() class Meta: model = Cow fields = "__all__" ``` """ breed = CowBreedSerializer() tag_number = serializers.ReadOnlyField() parity = serializers.ReadOnlyField() age = serializers.ReadOnlyField() age_in_farm = serializers.ReadOnlyField() class Meta: model = Cow fields = "__all__" def create(self, validated_data): breed_data = validated_data.pop("breed") breed, _ = CowBreed.objects.get_or_create(**breed_data) cow = Cow.objects.create(breed=breed, **validated_data) return cow def update(self, instance, validated_data): fields_to_exclude = [ "breed", "gender", "sire", "dam", "is_bought", "date_introduced_in_farm", ] for field in fields_to_exclude: validated_data.pop(field, None) return super().update(instance, validated_data) # Path: core/utils.py # Path: reproduction/choices.py class PregnancyOutcomeChoices(models.TextChoices): """ Choices for the outcome of a cow's pregnancy. Choices: - `LIVE`: Live birth. - `STILLBORN`: Stillborn birth. - `MISCARRIAGE`: Miscarriage. Usage: These choices represent the outcome of a cow's pregnancy in the Pregnancy model. Use these choices when defining or querying Pregnancy instances to represent the outcome of a cow's pregnancy. Example: ``` class Pregnancy(models.Model): pregnancy_outcome = models.CharField( max_length=11, choices=PregnancyOutcomeChoices.choices, null=True ) ``` """ LIVE = "Live" STILLBORN = "Stillborn" MISCARRIAGE = "Miscarriage" # Path: reproduction/choices.py class PregnancyStatusChoices(models.TextChoices): """ Choices for the pregnancy status of a cow. Choices: - `CONFIRMED`: Pregnancy is confirmed. - `UNCONFIRMED`: Pregnancy is unconfirmed. - `FAILED`: Pregnancy has failed. Usage: These choices represent the pregnancy status in the Pregnancy model. Use these choices when defining or querying Pregnancy instances to represent the status of a cow's pregnancy. Example: ``` class Pregnancy(models.Model): pregnancy_status = models.CharField( max_length=11, choices=PregnancyStatusChoices.choices, default=PregnancyStatusChoices.UNCONFIRMED, ) ``` """ CONFIRMED = "Confirmed" UNCONFIRMED = "Unconfirmed" FAILED = "Failed" # Path: reproduction/serializers.py class PregnancySerializer(serializers.ModelSerializer): """ Serializer for the Pregnancy model. Fields: - `id`: A read-only field representing the unique identifier of the pregnancy. - `cow`: A nested serializer field representing the cow associated with the pregnancy. - `start_date`: A date field representing the start date of the pregnancy. - `date_of_calving`: A date field representing the date of calving. - `pregnancy_status`: A choice field representing the status of the pregnancy. - `pregnancy_notes`: A text field representing notes related to the pregnancy. - `calving_notes`: A text field representing notes related to calving. - `pregnancy_scan_date`: A date field representing the date of pregnancy scanning. - `pregnancy_failed_date`: A date field representing the date when the pregnancy failed. - `pregnancy_outcome`: A choice field representing the outcome of the pregnancy. Meta: - `model`: The Pregnancy model for which the serializer is defined. - `fields`: The fields to include in the serialized representation. Usage: Use this serializer to convert Pregnancy model instances to JSON representations and vice versa. It includes read-only fields for additional information such as pregnancy duration and due date. Example: ``` class Pregnancy(models.Model): cow = models.ForeignKey(Cow, on_delete=models.CASCADE) start_date = models.DateField() date_of_calving = models.DateField() pregnancy_status = models.CharField(max_length=50, choices=PregnancyStatusChoices.choices) pregnancy_notes = models.TextField() calving_notes = models.TextField() pregnancy_scan_date = models.DateField() pregnancy_failed_date = models.DateField() pregnancy_outcome = models.CharField(max_length=50, choices=PregnancyOutcomeChoices.choices) class PregnancySerializer(serializers.ModelSerializer): due_date = serializers.ReadOnlyField() pregnancy_duration = serializers.ReadOnlyField() class Meta: model = Pregnancy fields = ("id", "cow", "start_date", "date_of_calving", "pregnancy_status", "pregnancy_notes", "calving_notes", "pregnancy_scan_date", "pregnancy_failed_date", "pregnancy_outcome", "pregnancy_duration", "due_date") ``` """ class Meta: model = Pregnancy fields = ( "id", "cow", "start_date", "date_of_calving", "pregnancy_status", "pregnancy_notes", "calving_notes", "pregnancy_scan_date", "pregnancy_failed_date", "pregnancy_outcome", "pregnancy_duration", "due_date", ) # Path: users/choices.py class SexChoices(models.TextChoices): MALE = "Male" FEMALE = "Female" # Path: tests/production/tests/conftest.py from datetime import timedelta from django.urls import reverse from rest_framework import status from rest_framework.test import APIClient from core.choices import ( CowBreedChoices, CowAvailabilityChoices, CowPregnancyChoices, CowCategoryChoices, CowProductionStatusChoices, ) from core.models import Cow from core.serializers import CowSerializer from core.utils import todays_date from reproduction.choices import PregnancyOutcomeChoices, PregnancyStatusChoices from reproduction.serializers import PregnancySerializer from users.choices import SexChoices import pytest @pytest.fixture() @pytest.mark.django_db def setup_users(): client = APIClient() # Create farm owner user farm_owner_data = { "username": "[email protected]", "email": "[email protected]", "password": "testpassword", "first_name": "Farm", "last_name": "Owner", "phone_number": "+254787654321", "sex": SexChoices.MALE, "is_farm_owner": True, } farm_owner_login_data = { "username": "[email protected]", "password": "testpassword", } response = client.post("/auth/users/", farm_owner_data) # Retrieve the token after login response = client.post(reverse("users:login"), farm_owner_login_data) farm_owner_token = response.data["auth_token"] # Create farm manager user farm_manager_data = { "username": "[email protected]", "email": "[email protected]", "password": "testpassword", "first_name": "Farm", "last_name": "Manager", "phone_number": "+254755555555", "sex": SexChoices.MALE, "is_farm_manager": True, } farm_manager_login_data = { "username": "[email protected]", "password": "testpassword", } response = client.post("/auth/users/", farm_manager_data) # Retrieve the token after login response = client.post(reverse("users:login"), farm_manager_login_data) farm_manager_token = response.data["auth_token"] # Create assistant farm manager user
asst_farm_manager_data = {
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: facebookresearch/chat2map-official # Path: chat2map/mapping/mapping_models/visual_cnn.py class VisualEnc(nn.Module): """Visual encoder""" def __init__(self, cfg=None): """Takes in RGB images and 90 degree FoV local egocentric map inputs and encodes them""" super().__init__() passive_mapping_cfg = cfg.PassiveMapping sim_cfg = cfg.TASK_CONFIG.SIMULATOR assert "RGB_SENSOR" in cfg.SENSORS self._n_inputMap_channels = sim_cfg.EGO_LOCAL_OCC_MAP.NUM_CHANNELS self._num_out_channels = passive_mapping_cfg.VisualEnc.num_out_channels assert passive_mapping_cfg.MemoryNet.Transformer.input_size == 2 * self._num_out_channels cnn_layers = [ conv_block(self._n_inputMap_channels, 64, norm_layer=nn.BatchNorm2d), conv_block(64, 64, norm_layer= nn.BatchNorm2d), conv_block(64, 128, padding=(2, 2), norm_layer=nn.BatchNorm2d), conv_block(128, 256, (3, 3), padding=(1, 1), stride=(1, 1), norm_layer=nn.BatchNorm2d), conv_block(256, self._num_out_channels, (3, 3), padding=(1, 1), stride=(1, 1), norm_layer=nn.BatchNorm2d) ] self.cnn = nn.Sequential(*cnn_layers) for module in self.cnn: for layer in module: if isinstance(layer, (nn.Conv2d, nn.ConvTranspose2d, nn.Linear)): nn.init.kaiming_normal_( layer.weight, nn.init.calculate_gain("leaky_relu", 0.2) ) if layer.bias is not None: nn.init.constant_(layer.bias, val=0) elif isinstance(layer, (nn.BatchNorm1d, nn.BatchNorm2d)): if layer.affine: layer.weight.data.fill_(1) layer.bias.data.zero_() rgb_cnn_layers = [ conv_block(3, 64, norm_layer=nn.BatchNorm2d), conv_block(64, 64, norm_layer=nn.BatchNorm2d), conv_block(64, 128, norm_layer=nn.BatchNorm2d), conv_block(128, 256, norm_layer=nn.BatchNorm2d), conv_block(256, self._num_out_channels, norm_layer=nn.BatchNorm2d), ] self.rgb_cnn = nn.Sequential(*rgb_cnn_layers) for module in self.rgb_cnn: for layer in module: if isinstance(layer, (nn.Conv2d, nn.ConvTranspose2d, nn.Linear)): nn.init.kaiming_normal_( layer.weight, nn.init.calculate_gain("leaky_relu", 0.2) ) if layer.bias is not None: nn.init.constant_(layer.bias, val=0) elif isinstance(layer, (nn.BatchNorm1d, nn.BatchNorm2d)): if layer.affine: layer.weight.data.fill_(1) layer.bias.data.zero_() @property def is_blind(self): return False @property def n_out_feats(self): return 16 * 512 def _preprocess_rgb(self, rgb_observations): return rgb_observations def forward(self, observations,): """Given RGB imags and 90 degree FoV egocentric local occupancy maps, produces visual features""" assert "occ_map" in observations occMap_observations = observations["occ_map"] occMap_observations = occMap_observations.permute(0, 3, 1, 2) occMap_out = self.cnn(occMap_observations) assert "rgb" in observations rgb_observations = observations["rgb"] # permute tensor to dimension [BATCH x CHANNEL x HEIGHT X WIDTH] rgb_observations = rgb_observations.permute(0, 3, 1, 2) rgb_observations = rgb_observations.float() / 255.0 # normalize RGB rgb_observations = self._preprocess_rgb(rgb_observations) rgb_out = self.rgb_cnn(rgb_observations) out = torch.cat([occMap_out, rgb_out], dim=1) return out # Path: chat2map/mapping/mapping_models/visual_cnn.py class OccMapDec(nn.Module): """Occupancy map decoder""" def __init__(self, passive_mapping_cfg, sim_cfg,): """Takes in feature outputs of the transformer decoder and predicts estimates of 360 degree FoV local egocentric occupancy map targets""" super().__init__() self._passive_mapping_cfg = passive_mapping_cfg self._glob_can_occ_map_ego_crop_cfg = sim_cfg.GT_GLOBAL_CANONICAL_OCC_MAP_EGO_CROP assert self._glob_can_occ_map_ego_crop_cfg.SIZE in [64, 80, 96, 128] assert passive_mapping_cfg.MemoryNet.type == "transformer" assert passive_mapping_cfg.MemoryNet.Transformer.decoder_out_size == 1024 self._n_inputMapFeat_channels = 1024 self._inputFeat_h = 4 self._inputFeat_w = 4 self._input_feat_size = self._n_inputMapFeat_channels * self._inputFeat_h * self._inputFeat_w if self._glob_can_occ_map_ego_crop_cfg.SIZE == 64: self.dec_cnn = nn.Sequential( convT_block(1024, 64 * 8, norm_layer=nn.BatchNorm2d), convT_block(64 * 8, 64 * 4, norm_layer=nn.BatchNorm2d), convT_block(64 * 4, 64 * 2, norm_layer=nn.BatchNorm2d), convT_block(64 * 2, 64 * 1, norm_layer=nn.BatchNorm2d), convT_block(64 * 1, self._glob_can_occ_map_ego_crop_cfg.NUM_CHANNELS, (3, 3), stride=(1, 1), padding=(1, 1), outermost=True, use_sigmoid=True,), ) elif self._glob_can_occ_map_ego_crop_cfg.SIZE == 80: self.dec_cnn = nn.Sequential( conv_block(1024, 64 * 8, kernel_size=(2, 2), padding=(1, 1), stride=(1, 1), norm_layer=nn.BatchNorm2d), convT_block(64 * 8, 64 * 8, norm_layer=nn.BatchNorm2d), convT_block(64 * 8, 64 * 4, norm_layer=nn.BatchNorm2d), convT_block(64 * 4, 64 * 2, norm_layer=nn.BatchNorm2d), convT_block(64 * 2, 64 * 1, norm_layer=nn.BatchNorm2d), convT_block(64 * 1, self._glob_can_occ_map_ego_crop_cfg.NUM_CHANNELS, (3, 3), stride=(1, 1), padding=(1, 1), outermost=True, use_sigmoid=True,), ) elif self._glob_can_occ_map_ego_crop_cfg.SIZE == 96: self.dec_cnn = nn.Sequential( conv_block(1024, 64 * 8, kernel_size=(1, 1), padding=(1, 1), stride=(1, 1), norm_layer=nn.BatchNorm2d), convT_block(64 * 8, 64 * 8, norm_layer=nn.BatchNorm2d), convT_block(64 * 8, 64 * 4, norm_layer=nn.BatchNorm2d), convT_block(64 * 4, 64 * 2, norm_layer=nn.BatchNorm2d), convT_block(64 * 2, 64 * 1, norm_layer=nn.BatchNorm2d), convT_block(64 * 1, self._glob_can_occ_map_ego_crop_cfg.NUM_CHANNELS, (3, 3), stride=(1, 1), padding=(1, 1), outermost=True, use_sigmoid=True,), ) elif self._glob_can_occ_map_ego_crop_cfg.SIZE == 128: self.dec_cnn = nn.Sequential( convT_block(1024, 64 * 8, norm_layer=nn.BatchNorm2d), convT_block(64 * 8, 64 * 4, norm_layer=nn.BatchNorm2d), convT_block(64 * 4, 64 * 2, norm_layer=nn.BatchNorm2d), convT_block(64 * 2, 64 * 1, norm_layer=nn.BatchNorm2d), convT_block(64 * 1, self._glob_can_occ_map_ego_crop_cfg.NUM_CHANNELS, outermost=True, use_sigmoid=True,), ) else: raise NotImplementedError self.layer_init() def layer_init(self): for module in self.dec_cnn: for layer in module: if isinstance(layer, (nn.Conv2d, nn.ConvTranspose2d, nn.Linear)): nn.init.kaiming_normal_( layer.weight, nn.init.calculate_gain("relu") ) if layer.bias is not None: nn.init.constant_(layer.bias, val=0) elif isinstance(layer, (nn.BatchNorm1d, nn.BatchNorm2d)): if layer.affine: layer.weight.data.fill_(1) layer.bias.data.zero_() def forward(self, observations,): """Given feature outputs of the transformer memory decoder, computes estimates of the 360 degree FoV local egocentric target occupancy maps""" assert "memory_outFeats" in observations memory_outFeats = observations["memory_outFeats"] assert len(memory_outFeats.size()) == 2 assert memory_outFeats.size(1) == self._input_feat_size memory_outFeats =\ memory_outFeats.reshape((memory_outFeats.size(0), self._inputFeat_h, self._inputFeat_w, -1)) memory_outFeats = memory_outFeats.permute((0, 3, 1, 2)) out = self.dec_cnn(memory_outFeats) assert len(out.size()) == 4 # permute tensor to dimension [BATCH x HEIGHT x WIDTH x CHANNEL] out = out.permute(0, 2, 3, 1) return out # Path: chat2map/mapping/mapping_models/audio_cnn.py class AudioEnc(nn.Module): """Audio encoder""" def __init__(self, cfg,): """Transforms the spatial audio into spectrograms and computes their features""" super().__init__() self._passive_mapping_cfg = cfg.PassiveMapping self._task_cfg = cfg.TASK_CONFIG self._env_cfg = self._task_cfg.ENVIRONMENT self._sim_cfg = self._task_cfg.SIMULATOR self._audio_cfg = self._sim_cfg.AUDIO audioEnc_cfg = self._passive_mapping_cfg.AudioEnc self._n_input_channels = audioEnc_cfg.num_input_channels self.stft_model = torchaudio.transforms.Spectrogram( n_fft=self._audio_cfg.N_FFT, win_length=self._audio_cfg.WIN_LENGTH, hop_length=self._audio_cfg.HOP_LENGTH, power=2, ) self.model = nn.Sequential( conv_block(self._n_input_channels, 64, norm_layer=nn.BatchNorm2d), conv_block(64, 64, (8, 8), stride=(4, 4), padding=(2, 2), norm_layer=nn.BatchNorm2d), conv_block(64, 128, norm_layer=nn.BatchNorm2d), conv_block(128, 256, norm_layer=nn.BatchNorm2d), conv_block(256, self._passive_mapping_cfg.MemoryNet.Transformer.input_size, norm_layer=nn.BatchNorm2d), ) for module in self.model: for layer in module: if isinstance(layer, (nn.Conv2d, nn.ConvTranspose2d, nn.Linear)): nn.init.kaiming_normal_( layer.weight, nn.init.calculate_gain("leaky_relu", 0.2) ) if layer.bias is not None: nn.init.constant_(layer.bias, val=0) elif isinstance(layer, (nn.BatchNorm1d, nn.BatchNorm2d)): if layer.affine: layer.weight.data.fill_(1) layer.bias.data.zero_() @property def n_out_feats(self): return 1024 def forward(self, observations): """Given the audio waveforms, transforms them into spectrograms and computes their features""" assert "audio" in observations audio_wavs = observations["audio"] audio_wavs = audio_wavs.permute(0, 2, 1) B = audio_wavs.size(0) n_channels = audio_wavs.size(1) audio_mag_spects = self.stft_model(audio_wavs.reshape(audio_wavs.size(0) * audio_wavs.size(1), -1)).pow(0.5) audio_mag_spects = audio_mag_spects.reshape(B, n_channels, *audio_mag_spects.size()[1:]) out = self.model(audio_mag_spects) assert out.size(2) == self._passive_mapping_cfg.PositionalNet.patch_hwCh[0] assert out.size(3) == self._passive_mapping_cfg.PositionalNet.patch_hwCh[1] return out # Path: chat2map/mapping/mapping_models/modality_tag_type_net.py class ModalityTagTypeNet(nn.Module): """Takes the modality type tag for a certain modality and produces its embeddings""" def __init__(self, n_modality_tag_types, passive_mapping_cfg,): """ Creates an instance of the class that takes the modality type tag for a certain modality and produces its embeddings :param n_modality_tag_types: number of modality tag types :param passive_mapping_cfg: passive mapping config """ super().__init__() self._positional_net_cfg = passive_mapping_cfg.PositionalNet self._out_h = self._positional_net_cfg.patch_hwCh[0] self._out_w = self._positional_net_cfg.patch_hwCh[1] self._n_out_ch = self._positional_net_cfg.patch_hwCh[2] assert self._n_out_ch == passive_mapping_cfg.modality_tag_type_encoding_size, print(self._n_out_ch, passive_mapping_cfg.modality_tag_type_encoding_size) self.modality_tag_type_lookup_dict = nn.Embedding(n_modality_tag_types, passive_mapping_cfg.modality_tag_type_encoding_size,) def forward(self, x): """Given the modality type tag, computes the modality embeddings""" out = self.modality_tag_type_lookup_dict(x) out = out.unsqueeze(-1).unsqueeze(-1) out = out.repeat((1, 1, self._out_h, self._out_w)) return out # Path: chat2map/mapping/mapping_models/positional_net.py class PositionalNet(nn.Module): """ Takes in positional attributes and produces and produces their embeddings """ def __init__(self, passive_mapping_cfg,): """ Creates an instance of the class to take in positional attributes and produces and produces their embeddings :param passive_mapping_cfg: passive mapping config """ super().__init__() self._passive_mapping_cfg = passive_mapping_cfg self._positional_net_cfg = passive_mapping_cfg.PositionalNet self._n_positional_obs = 5 # source: 1. https://github.com/jalammar/jalammar.github.io/blob/master/notebookes/transformer/transformer_positional_encoding_graph.ipynb # 2. https://towardsdatascience.com/master-positional-encoding-part-i-63c05d90a0c3 self._freqs = MIN_FREQ ** (2 * (torch.arange(self._positional_net_cfg.num_freqs_for_sinusoidal, dtype=torch.float32) // 2) / self._positional_net_cfg.num_freqs_for_sinusoidal) assert passive_mapping_cfg.MemoryNet.Transformer.input_size == self._positional_net_cfg.patch_hwCh[2] self._n_out_feats = self._positional_net_cfg.patch_hwCh[2] self._positional_linear = nn.Sequential( nn.Linear(self._positional_net_cfg.num_freqs_for_sinusoidal * self._n_positional_obs, self._n_out_feats, bias=False), ) @property def n_out_feats(self): return self._n_out_feats def forward(self, observations): """given the positional observations, computes the positional embeddings""" positional_obs = observations["positional_obs"] assert len(positional_obs.size()) == 2 assert positional_obs.size(-1) == self._n_positional_obs freqs = self._freqs.unsqueeze(0).repeat((positional_obs.size(0), 1)).to(positional_obs.device) positional_net_out = [] for positional_obs_idx in range(self._n_positional_obs): positional_obs_thisIdx = positional_obs[:, positional_obs_idx].unsqueeze(-1) positional_obs_thisIdx = positional_obs_thisIdx * freqs positional_obs_thisIdxClone = positional_obs_thisIdx.clone() positional_obs_thisIdxClone[..., ::2] = torch.cos(positional_obs_thisIdx[..., ::2]) positional_obs_thisIdxClone[..., 1::2] = torch.sin(positional_obs_thisIdx[..., 1::2]) positional_net_out.append(positional_obs_thisIdxClone) positional_net_out = torch.cat(positional_net_out, dim=-1) assert len(positional_net_out.size()) == 2 assert positional_net_out.size(0) == positional_obs.size(0) assert positional_net_out.size(1) == (self._freqs.size(0) * self._n_positional_obs) positional_net_out = self._positional_linear(positional_net_out) positional_net_out = positional_net_out.unsqueeze(-1).unsqueeze(-1) positional_net_out = positional_net_out.repeat( (1, 1, self._positional_net_cfg.patch_hwCh[0], self._positional_net_cfg.patch_hwCh[1]) ) return positional_net_out # Path: chat2map/mapping/mapping_models/positional_net.py class PatchPositionalNet(nn.Module): """Takes in the positions of the feats corresponding to contiguous patches in an image or an audio spectrogram in the rasterized order and produces their embeddings""" def __init__(self, passive_mapping_cfg,): """ Creates an instance of the class that takes in the positions of the feats corresponding to contiguous patches in an image or an audio spectrogram in the rasterized order and produces their embeddings :param passive_mapping_cfg: passive mapping config """ super().__init__() self._passive_mapping_cfg = passive_mapping_cfg self._positional_net_cfg = passive_mapping_cfg.PositionalNet self._n_positional_obs = 1 self._n_out_feats = self._positional_net_cfg.patch_hwCh[2] # source: 1. https://github.com/jalammar/jalammar.github.io/blob/master/notebookes/transformer/transformer_positional_encoding_graph.ipynb # 2. https://towardsdatascience.com/master-positional-encoding-part-i-63c05d90a0c3 self._freqs = MIN_FREQ ** (2 * (torch.arange(self._positional_net_cfg.num_freqs_for_sinusoidal, dtype=torch.float32) // 2) / self._positional_net_cfg.num_freqs_for_sinusoidal) self._patch_positional_conv = nn.Sequential( nn.Conv2d(self._positional_net_cfg.num_freqs_for_sinusoidal *self._n_positional_obs, self._n_out_feats, kernel_size=1, bias=False), ) positional_net_out = [] for i in range(self._positional_net_cfg.patch_hwCh[0]): positional_net_out_thisRow = [] for j in range(self._positional_net_cfg.patch_hwCh[1]): raster_idx = i * self._positional_net_cfg.patch_hwCh[1] + j positional_obs_thisIdx = raster_idx * self._freqs positional_obs_thisIdxClone = positional_obs_thisIdx.clone() positional_obs_thisIdxClone[..., ::2] = torch.cos(positional_obs_thisIdxClone[..., ::2]) positional_obs_thisIdxClone[..., 1::2] = torch.sin(positional_obs_thisIdxClone[..., 1::2]) positional_net_out_thisRow.append(positional_obs_thisIdxClone) positional_net_out.append(torch.stack(positional_net_out_thisRow, dim=0)) positional_net_out = torch.stack(positional_net_out, dim=0).permute((2, 0, 1)) self._positional_net_out = positional_net_out assert self._n_out_feats == passive_mapping_cfg.MemoryNet.Transformer.input_size @property def n_out_feats(self): return self._n_out_feats def forward(self, observations): positional_obs = observations["positional_obs"] positional_net_out = self._positional_net_out.unsqueeze(0).repeat((positional_obs.size(0), 1, 1, 1))\ .to(positional_obs.device) positional_net_out = self._patch_positional_conv(positional_net_out) return positional_net_out # Path: chat2map/mapping/mapping_models/fusion_net.py class FusionNet(nn.Module): """Network to fuse modality features, positional embeddings and modality type tag embeddings""" def __init__(self,): super().__init__() def forward(self, observations): """fuses given different features""" for observation_idx, observation in enumerate(observations): if observation_idx == 0: out = observation else: out = out + observation return out # Path: chat2map/mapping/mapping_models/memory_net.py class TransformerMemory(nn.Module): """Transformer memory""" def __init__(self, cfg): """Creates an instance of the transformer memory""" super().__init__() self._cfg = cfg self._passive_mapping_cfg = cfg.PassiveMapping self._transformer_cfg = self._passive_mapping_cfg.MemoryNet.Transformer self._task_cfg = cfg.TASK_CONFIG self._env_cfg = self._task_cfg.ENVIRONMENT self._sim_cfg = self._task_cfg.SIMULATOR self.transformer = TransformerWoSelfAttnInDecoder( d_model=self._transformer_cfg.input_size, nhead=self._transformer_cfg.nhead, num_encoder_layers=self._transformer_cfg.num_encoder_layers, num_decoder_layers=self._transformer_cfg.num_decoder_layers, dim_feedforward=self._transformer_cfg.hidden_size, dropout=self._transformer_cfg.dropout, activation=self._transformer_cfg.activation, d_model_out=self._transformer_cfg.decoder_out_size, ) context_length_multiplier = 3 context_length_multiplier *= self._sim_cfg.ALL_AGENTS.NUM context_length_multiplier *= (self._passive_mapping_cfg.PositionalNet.patch_hwCh[0] *\ self._passive_mapping_cfg.PositionalNet.patch_hwCh[1]) query_length_multiplier = self._passive_mapping_cfg.PositionalNet.patch_hwCh[0] *\ self._passive_mapping_cfg.PositionalNet.patch_hwCh[1] self._src_mask = self._convert_attn_masks_to_transformer_format( torch.ones((self._env_cfg.MAX_CONTEXT_LENGTH * context_length_multiplier, self._env_cfg.MAX_CONTEXT_LENGTH * context_length_multiplier,)) ) self._mem_mask = self._convert_attn_masks_to_transformer_format( torch.ones((self._env_cfg.MAX_QUERY_LENGTH * query_length_multiplier, self._env_cfg.MAX_CONTEXT_LENGTH * context_length_multiplier,)) ) self._tgt_mask = self._convert_attn_masks_to_transformer_format( torch.eye(self._env_cfg.MAX_QUERY_LENGTH * query_length_multiplier) ) def _convert_key_padding_masks_to_transformer_format(self, key_padding_masks): r"""The key_padding_masks is a FloatTensor with - 0 for invalid locations, and - 1 for valid locations. The required format is a BoolTensor with - True for invalid locations, and - False for valid locations source: - https://pytorch.org/docs/1.4.0/_modules/torch/nn/modules/transformer.html#TransformerDecoder - https://discuss.pytorch.org/t/how-to-add-padding-mask-to-nn-transformerencoder-module/63390/3 """ return (1 - key_padding_masks) > 0 def _convert_attn_masks_to_transformer_format(self, attn_masks): r"""The attn_masks is a FloatTensor with - 0 for invalid locations, and - 1 for valid locations. The required format is a FloatTensor with - float('-inf') for invalid locations, and - 0. for valid locations source: - https://pytorch.org/docs/1.4.0/_modules/torch/nn/modules/transformer.html#TransformerDecoder - https://discuss.pytorch.org/t/how-to-add-padding-mask-to-nn-transformerencoder-module/63390/3 """ return attn_masks.float().masked_fill(attn_masks == 0, float('-inf')).masked_fill(attn_masks == 1, float(0.0)) def forward(self, observations): """computes transformer memory features given observations""" assert "src_feats" in observations src_feats = observations["src_feats"] assert "tgt_feats" in observations tgt_feats = observations["tgt_feats"] """how masks works -- source: https://github.com/pytorch/pytorch/blob/7f73f1d591afba823daa4a99a939217fb54d7688/torch/nn/functional.py#L3360""" assert "src_key_padding_mask" in observations src_key_padding_mask = self._convert_key_padding_masks_to_transformer_format(observations["src_key_padding_mask"]) assert "tgt_key_padding_mask" in observations tgt_key_padding_mask = self._convert_key_padding_masks_to_transformer_format(observations["tgt_key_padding_mask"]) assert "memory_key_padding_mask" in observations memory_key_padding_mask = self._convert_key_padding_masks_to_transformer_format(observations["memory_key_padding_mask"]) self._src_mask = self._src_mask.to(src_feats.device) self._mem_mask = self._mem_mask.to(memory_key_padding_mask.device) self._tgt_mask = self._tgt_mask.to(tgt_feats.device) out = self.transformer( src_feats, tgt_feats, src_mask=self._src_mask, tgt_mask=self._tgt_mask, memory_mask=self._mem_mask, src_key_padding_mask=src_key_padding_mask, tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask, ) return out # Path: chat2map/mapping/passive_mapping/policy.py import os import pickle import math import numpy as np import torch import torch.nn as nn from torchsummary import summary from chat2map.mapping.mapping_models.visual_cnn import VisualEnc, OccMapDec from chat2map.mapping.mapping_models.audio_cnn import AudioEnc from chat2map.mapping.mapping_models.modality_tag_type_net import ModalityTagTypeNet from chat2map.mapping.mapping_models.positional_net import PositionalNet, PatchPositionalNet from chat2map.mapping.mapping_models.fusion_net import FusionNet from chat2map.mapping.mapping_models.memory_net import TransformerMemory # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. class Policy(nn.Module): """ Parent class of model for passive mapping """ def __init__(self, context_views_enc, context_audio_enc, pose_net, patchPose_net, modality_tag_type_lookup_dict, fusion_net, memory_net, query_occMap_dec, cfg ): """Given the audio streams and sampled frames during a conversation, the model predicts estimates of target occupancy maps""" super().__init__() self.context_views_enc = context_views_enc self.context_audio_enc = context_audio_enc self.pose_net = pose_net
self.patchPose_net = patchPose_net
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: wrongbad/badcad # Path: badcad/utils.py def display(thing, vscode_fix=True, wireframe=False, color='#aaaa22', smoothing_threshold=-1, width=640, height=640, ): if vscode_fix: fix_vscode_style() if isinstance(thing, (tuple, list)): verts, tris = thing elif hasattr(thing, 'to_mesh'): m = thing.to_mesh() verts = m.vert_properties[...,:3].astype(np.float32) tris = m.tri_verts.astype(np.uint32) else: raise ValueError(f'unsupported thing: {type(thing)}') box0 = np.min(verts, axis=0) box1 = np.max(verts, axis=0) sz = np.linalg.norm(box1-box0) mid = (box0+box1)/2 verts = verts - mid tnormals = triangle_normals(verts, tris) vnormals = smooth_normals(tris, tnormals, smoothing_threshold) verts = verts[tris] index = np.arange(tris.size, dtype=np.uint32) geometry = pythreejs.BufferGeometry( attributes = dict( position = pythreejs.BufferAttribute(verts), normal = pythreejs.BufferAttribute(vnormals), ), index = pythreejs.BufferAttribute(index) ) material = pythreejs.MeshPhysicalMaterial( color = color, reflectivity = 0.2, clearCoat = 0.6, clearCoatRoughness = 0.7, wireframe = wireframe, ); threemesh = pythreejs.Mesh(geometry, material) lights = [ pythreejs.DirectionalLight( color='white', position=l[:3], intensity=l[3], ) for l in [ (-40, 5, 40, 0.5), (0, 0, 40, 0.2), (20, 5, -20, 0.1), ] ] camera = pythreejs.PerspectiveCamera( position=[0, 0, sz*1.3], up=[0, 1, 0], children=lights, ) controls = pythreejs.OrbitControls( controlling=camera, rotateSpeed=1.0, zoomSpeed=0.5, enableZoom=False, # avoid notbook scroll conflict ) scene = pythreejs.Scene( children=[ threemesh, camera, pythreejs.AmbientLight(color='#aaf') ], background=None, ) return pythreejs.Renderer( camera=camera, scene=scene, alpha=True, clearOpacity=0.2, controls=[controls], width=width, height=height, ) # Path: badcad/utils.py def triangle_normals(verts, tris): a = verts[tris[:,1]] - verts[tris[:,0]] b = verts[tris[:,2]] - verts[tris[:,1]] tnormals = np.cross(a, b) tnormals /= np.linalg.norm(tnormals, axis=-1, keepdims=True) return tnormals # Path: badcad/utils.py def polygon_nearest_alignment(va, vb): dist = lambda x: np.sum(x ** 2, axis=-1) j0 = np.argmin(dist(vb - va[0])) i, j = 0, j0 na, nb = len(va), len(vb) out = [] while True: ip1, jp1 = (i+1)%na, (j+1)%nb d0 = dist(va[ip1] - vb[j]) d1 = dist(va[i] - vb[jp1]) if d0 < d1: out += [[ip1, j]] i = ip1 else: out += [[i, jp1]] j = jp1 if (i,j) == (0, j0): break return out # Path: badcad/utils.py def svg2polygons(svg, fn=8): import svgelements # this lib handles transforms and `use` tags svg = svgelements.SVG.parse(BytesIO(svg)) polys = [] for e in svg.elements(): if isinstance(e, svgelements.Path): # TODO policy for unclosed paths p = PolyPath(fn=fn) for s in e.segments(): if isinstance(s, svgelements.Move): p.move(s.end) elif isinstance(s, svgelements.Line): p.line(s.end) elif isinstance(s, svgelements.QuadraticBezier): p.bez([s.control1, s.end]) elif isinstance(s, svgelements.CubicBezier): p.bez([s.control1, s.control2, s.end]) elif isinstance(s, svgelements.Close): p.close() else: raise ValueError(f'unsupported segment: {type(s)}') polys += p.polys return polys # Path: badcad/utils.py def text2svg(text, size=10, font="Helvetica"): import cairo memfile = BytesIO() with cairo.SVGSurface(memfile, size, size) as surface: ctx = cairo.Context(surface) ctx.set_font_size(size) ctx.select_font_face(font, cairo.FONT_SLANT_NORMAL, cairo.FONT_WEIGHT_NORMAL) ctx.show_text(text) return memfile.getvalue() # Path: badcad/utils.py class PolyPath: def __init__(self, fn=32): self.polys = [] self.poly = [] self.pos = (0,0) self.fn = fn def move(self, p): self.pos = p return self def line(self, p): if len(self.poly) == 0: self.poly += [self.pos] self.poly += [p] self.pos = p return self def bez(self, pts, fn=0): if len(self.poly) == 0: self.poly += [self.pos] fn = fn or self.fn vs = [p[0]+p[1]*1j for p in [self.pos, *pts]] for i in range(1, fn): n = len(vs) - 1 t = i / fn u = 1 - t c = u ** n v = 0 for j in range(len(vs)): v += c * vs[j] c *= t * (n-j) / (u * (1+j)) self.poly += [(v.real, v.imag)] self.poly += [pts[-1]] self.pos = pts[-1] return self def close(self): self.polys += [self.poly] self.poly = [] # Path: badcad/badcad.py import manifold3d import numpy as np from manifold3d import Manifold, CrossSection from .utils import ( display, triangle_normals, polygon_nearest_alignment, svg2polygons, text2svg, PolyPath ) with open(fname, 'wb') as f: f.write(binary) return self else: return binary class Shape: def __init__(self, cross_section = CrossSection()): self.cross_section = cross_section def _repr_mimebundle_(self, **kwargs): # called by jupyter to figure out how to display this object # we create a scene on the fly with ability to customize # controls and lights, etc. return self.extrude(1e-9)._repr_mimebundle_(**kwargs) def __add__(self, other): return Shape(self.cross_section + other.cross_section) def __sub__(self, other): return Shape(self.cross_section - other.cross_section) def __and__(self, other): # manifold3d XOR is actually AND return Shape(self.cross_section ^ other.cross_section) def area(self): return self.cross_section.area() def bounds(self): return self.cross_section.bounds() def align(self, xmin=None, x=None, xmax=None, ymin=None, y=None, ymax=None): x0, y0, x1, y1 = self.bounds() dx, dy = 0, 0 if xmin is not None: dx = xmin-x0 if x is not None: dx = x-(x0+x1)/2 if xmax is not None: dx = xmax-x1 if ymin is not None: dy = ymin-y0 if y is not None: dy = y-(y0+y1)/2 if ymax is not None: dy = ymax-y1 return self.move(dx, dy) def decompose(self): return [Shape(p) for p in self.cross_section.decompose()] def extrude(self, height, fn=0, twist=0, scale_top=(1,1), center=False): s = Solid(self.cross_section.extrude( height, n_divisions=fn, twist_degrees=twist, scale_top=scale_top, )) return s.move(z=-height/2) if center else s def extrude_to(self, other, height, center=False): polys1 = self.to_polygons() assert len(polys1) == 1, 'extrude_to only supports simple polygons' verts1 = np.pad(polys1[0], [[0,0],[0,1]], constant_values=0) N1 = verts1.shape[0] polys2 = other.to_polygons() assert len(polys2) == 1, 'extrude_to only supports simple polygons' verts2 = np.pad(polys2[0], [[0,0],[0,1]], constant_values=height) # flip the bottom over tris1 = manifold3d.triangulate(polys1) tmp = tris1[:, 1].copy() tris1[:, 1] = tris1[:, 2] tris1[:, 2] = tmp # offset top vertex indices tris2 = manifold3d.triangulate(polys2) tris2 += N1 alignment = polygon_nearest_alignment(verts1, verts2) alignment = [(a, b+N1) for a, b in alignment] # build the skirt faces tris3 = [] for s in range(len(alignment)): i, j = alignment[s] pi, pj = alignment[s-1] if i != pi: tris3 += [[pi, i, pj]] if j != pj: tris3 += [[i, j, pj]] tris3 = np.array(tris3) verts = np.concatenate((verts1, verts2)) tris = np.concatenate((tris1, tris2, tris3)) mesh = manifold3d.Mesh(verts, tris) s = Solid(Manifold(mesh)) return s.move(z=-height/2) if center else s def hull(self, *others): return Shape(CrossSection.batch_hull([self.cross_section, *[o.cross_section for o in others]])) def is_empty(self): return self.cross_section.is_empty() def mirror(self, x=0, y=0): return Shape(self.cross_section.mirror((x, y))) def num_contour(self): return self.cross_section.num_contour() def num_vert(self): return self.cross_section.num_vert() def offset(self, delta, join_type='miter', miter_limit=2, circular_segments=0): if join_type == 'round': join_type = manifold3d.JoinType.Round elif join_type == 'miter': join_type = manifold3d.JoinType.Miter
elif join_type == 'square':
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: PeriniM/Rotary-Pendulum-RL # Path: control/reinforcement_learning/Environments/RealPendulumEnv.py class RealPendulumEnv(gym.Env): """ Real rotary pendulum with ESP32 """ metadata = {"render_modes": ["human"]} def __init__(self, port, baudrate, render_mode="human"): super(RealPendulumEnv, self).__init__() """ Initialize the environment. Args: port (str): The serial port to connect to. baudrate (int): The baudrate to use for the serial connection. render_mode (str, optional): The render mode. Defaults to "human". Returns: None """ self.ser = serial.Serial( port=port, baudrate=baudrate, parity=serial.PARITY_NONE, stopbits=serial.STOPBITS_ONE, bytesize=serial.EIGHTBITS, timeout=1 ) self.reader = SerialReader(self.ser, simulation=False) self.reader.start() self.render_mode = render_mode self.name = "RealPendulum" self.nbJoint = 1 self.num_state = 2 self.action = 0.0 self.motorAngle = 0.0 self.terminated = False self.truncated = False self.iterCount = 0 self.maxIter = 1000 self.omega_max = 10.0 self.range_actions = np.array([-1.0, 1.0]) self.range_observation = np.array([-1.0, 1.0]) self.observation_space = spaces.Box(low=self.range_observation[0], high=self.range_observation[1], shape=(self.num_state,), dtype=np.float32) self.action_space = spaces.Box(low=self.range_actions[0], high=self.range_actions[1], shape=(1,), dtype=np.float32) # variable to store angles of one episode self.episode_angles = [] def reset(self, seed=None, options=None): """ Reset the environment to the initial state. Args: None Returns: state (np.array): [bar angle, bar angular velocity] info (dict): Episode information """ super().reset(seed=seed, options=options) # Reset the episode angles self.episode_angles = [] # Send command to pendulum to go to home position. self.send_serial("0,1") # Wait for the pendulum to report it has finished resetting. while (1): self.observation_space, self.motorAngle, self.terminated = self.reader.get_state() if not self.terminated: break # Reset iteration count self.iterCount = 0 self.info = {"episode": {"r": 0.0, "l": self.iterCount}} return self.observation_space.astype(np.float32), self.info def step(self, action): """ Take a step in the environment Args: action (float): Motor speed percentage [-100, 100] Returns: state (np.array): [bar angle, bar angular velocity] reward (float): Reward for the current state terminated (bool): Whether the episode is done or not truncated (bool): Whether the episode is truncated or not info (dict): Episode information """ # Send action to pendulum over serial self.send_serial(f"{action*100},0") self.action = action # Read state and episode done flag from serial self.observation_space, self.motorAngle, self.terminated = self.reader.get_state() # Store the angles of the episode for reward penalty self.episode_angles.append(self.state[0]) # Calculate reward reward = self.calculate_reward(self.observation_space) self.episode_reward += reward self.iterCount += 1 self.reset_policy(self.maxIter) self.info = {"episode": {"r": self.episode_reward, "l": self.iterCount}} return self.observation_space.astype(np.float32), reward, self.terminated, self.truncated, self.info def send_serial(self, command): """ Send a command to the pendulum over serial Args: command (str): [motor speed percentage, reset flag] Returns: None """ self.ser.write(f"{command}\n".encode()) # time.sleep(0.1) def reset_policy(self, reset_count=200): """ Policy to reset the environment Args: reset_count (int, optional): Number of iterations to wait before resetting the system. Defaults to 200. Returns: None """ if self.iterCount > reset_count: self.terminated = True def calculate_reward(self, state): """ Calculate the reward for the current state Args: state (np.array): [bar angle, bar angular velocity] Returns: reward (float): Reward for the current state """ # Constants to scale the angle and velocity penalties ANGLE_WEIGHT = 1.0 VELOCITY_WEIGHT = 0.1 MOTOR_ANGLE_WEIGHT = 1.0 ACTION_WEIGHT = 0.01 # Penalize the angle to be minimized angle_penalty = ANGLE_WEIGHT * (state[0] ** 2) # Penalize the angular velocity to be minimized velocity_penalty = VELOCITY_WEIGHT * (state[1] ** 2) # Penalize the motor angle to be minimized motor_angle = self.motorAngle / 180.0 motor_angle_penalty = MOTOR_ANGLE_WEIGHT * (motor_angle ** 2) # Penalize the action to be minimized action_penalty = ACTION_WEIGHT * (self.action ** 2) # Reward is higher when penalties are lower reward = -(angle_penalty + velocity_penalty + motor_angle_penalty + action_penalty) # Penalize the reward if the average angle of the episode is close to pi # after 3/4 of the maximum iterations if self.iterCount > self.maxIter*3/4: if np.abs(np.mean(self.episode_angles)) < (np.pi-0.8): reward-=100.0 # if self.terminated: # if self.iterCount < self.maxIter*1/10: # reward-=100.0 return reward def render(self, camera=False): """ Render the state (optional), e.g. display the video stream """ if camera: print("Connect the camera to the pendulum and display the video stream.") def close(self): """ Close the serial connection Args: None Returns: None """ self.ser.close() # Path: control/reinforcement_learning/Environments/PyBulletPendulumEnv.py class PyBulletPendulumEnv(gym.Env): """ PyBullet Rotary Pendulum """ metadata = {"render_modes": ["human"]} def __init__(self, render_mode="human"): super(PyBulletPendulumEnv, self).__init__() """ Initialize the PyBullet Rotary Pendulum environment Args: render (bool, optional): Whether to render the environment. Defaults to True. Returns: None """ self.render_mode = render_mode # Initialize PyBullet if render_mode == "human": self.physicsClient = p.connect(p.GUI) else: self.physicsClient = p.connect(p.DIRECT) p.setAdditionalSearchPath(pybullet_data.getDataPath()) p.setGravity(0, 0, -9.806) # move camera to focus on the robot p.resetDebugVisualizerCamera(cameraDistance=0.4, cameraYaw=0, cameraPitch=-30, cameraTargetPosition=[0,0,0.1]) # Load the plane and pendulum URDF self.planeId = p.loadURDF("plane.urdf") self.load_pendulum_urdf() # Define other environment parameters self.name = "PyBulletPendulum" self.nbJoint = 1 self.num_state = 2 self.action = 0.0 self.n_actions = 101 self.range_actions = np.array([-1.0, 1.0]) self.range_observation = np.array([-1.0, 1.0]) self.observation_space = spaces.Box(low=self.range_observation[0], high=self.range_observation[1], shape=(self.num_state,), dtype=np.float32) self.action_space = spaces.Box(low=self.range_actions[0], high=self.range_actions[1], shape=(1,), dtype=np.float32) self.motorAngle = 0.0 self.terminated = False self.truncated = False self.info = {} self.iterCount = 0 self.maxIter = 1500 self.omega_max = 10.0 self.episode_reward = 0.0 # variable to store angles of one episode self.episode_angles = [] def load_pendulum_urdf(self): """ Load the pendulum URDF into the environment. Args: None Returns: None """ cubeStartPos = [0, 0, 0] cubeStartOrientation = p.getQuaternionFromEuler([np.pi / 2, 0, 0]) curr_dir = os.path.abspath(os.path.dirname(__file__)) robot_urdf = 'Rotary_Pendulum_URDF.urdf' # Construct the path to the URDF file urdf_path = os.path.join(curr_dir, '..', '..', '..', 'simulation', 'urdf', robot_urdf) self.robotId = p.loadURDF(urdf_path, cubeStartPos, cubeStartOrientation, # flags=p.URDF_USE_INERTIA_FROM_FILE, useFixedBase=True ) # Define joint indices as per your URDF structure self.motor_joint_idx = [p.getJointInfo(self.robotId, i)[1] for i in range(p.getNumJoints(self.robotId))].index(b'Revolute_3') self.bar_joint_idx = [p.getJointInfo(self.robotId, i)[1] for i in range(p.getNumJoints(self.robotId))].index(b'Revolute_5') # Define real robot parameters self.steps_per_rev = 3200 self.max_speed_steps_per_sec = 4000.0 # Calculate radians per step self.radians_per_step = (2 * np.pi) / self.steps_per_rev # Calculate max speed in radians per second [rad/s] self.max_motor_speed = self.max_speed_steps_per_sec * self.radians_per_step # Admissible motor angle range [deg] self.motor_angle_range = [-150, 150] self.out_of_range = False # Compensation angles for the URDF self.motor_compensation_angle = 0.400 self.bar_compensation_angle = -0.264 def reset(self, seed=None, options=None): """ Reset the environment to a random state Args: None Returns: state (np.array): [bar_angle, bar_angular_velocity] """ super().reset(seed=seed, options=options) # Reset the episode angles self.episode_angles = [] self.episode_reward = 0.0 self.terminated = False # Send command to pendulum to reset to random position self.send_fake_serial([0, 1]) # get the state from the pendulum self.observation_space, self.motorAngle, self.terminated = self.get_state() # Reset iteration count self.iterCount = 0 self.info = {"episode": {"r": 0.0, "l": self.iterCount}} return self.observation_space.astype(np.float32), self.info def step(self, action): """ Take a step in the environment Args: action (float): Motor speed percentage [-100, 100] Returns: state (np.array): [bar angle, bar angular velocity] """ # multiply the action by 100 to get the percentage self.action = action*100.0 # Send action to pendulum over serial self.send_fake_serial([self.action, 0]) # Read state and episode done flag from serial self.observation_space, self.motorAngle, self.terminated = self.get_state() # Store the angles of the episode for reward penalty self.episode_angles.append(self.observation_space[0]) # Calculate reward reward = self.calculate_reward(self.observation_space) self.episode_reward += reward self.iterCount += 1 self.reset_policy(self.maxIter) self.info = {"episode": {"r": self.episode_reward, "l": self.iterCount}} # return normalized_state, reward, self.done return self.observation_space.astype(np.float32), reward, self.terminated, self.truncated, self.info def calculate_reward(self, state): """ Calculate the reward for the current state Args: state (np.array): [bar angle, bar angular velocity] Returns: reward (float): Reward for the current state """ # Constants to scale the bar and motor angle penalties ANGLE_WEIGHT = 1.0 VELOCITY_WEIGHT = 0.1 MOTOR_ANGLE_WEIGHT = 0.001 ACTION_WEIGHT = 0.001 # Calculate the angle penalty angle_penalty = ANGLE_WEIGHT * (state[0]) ** 2 # Calculate the velocity penalty velocity_penalty = VELOCITY_WEIGHT * (state[1]) ** 2 # Calculate the motor angle penalty # motor_angle_penalty = MOTOR_ANGLE_WEIGHT * (self.motorAngle/self.motor_angle_range[1]) ** 2 # Calculate the action penalty action_penalty = ACTION_WEIGHT * (self.action/100) ** 2 # Calculate the reward reward = - (angle_penalty + velocity_penalty) # NEW REWARD FUNCTION # reward range [-1, 0] # angle_target = 0.0 # angular_velocity_target = 0.0 # motor_angle_target = 0.0 # reward = -1/2 * (np.abs(state[0] - angle_target)/np.pi + np.abs(self.motorAngle - motor_angle_target)/self.motor_angle_range[1]) # reward = - 1/2 * (np.abs(state[0] - angle_target) + np.abs(state[1] - angular_velocity_target)) # if the episode is done with enough iterations # if self.iterCount > int(self.maxIter/2) and self.done: # # if the average of the bar angles is less than 90 degrees # if np.abs(np.mean(self.episode_angles)) < np.deg2rad(90): # reward += 100.0 # if the episode is done with not enough iterations # if self.iterCount < int(self.maxIter/10) and self.terminated: # # if the motor angle is out of range # if self.out_of_range: # reward -= 2000.0 return reward def reset_policy(self, reset_count=200): """ Policy to reset the environment Args: reset_count (int, optional): Number of iterations to wait before resetting the system. Defaults to 200. Returns: None """ if self.iterCount >= reset_count: self.terminated = True def send_fake_serial(self, command): """ Send a command to the pendulum, simulating a fake serial connection Args: command (list): [motor speed percentage, episode done flag] Returns: None """ motor_speed_percentage = command[0] episode_done = command[1] if episode_done: self.terminated = True self.reset_robot(mode="random") else: self.terminated = False # Calculate the motor speed in steps per second motor_speed = motor_speed_percentage * self.max_motor_speed / 100.0 # set the motor velocity p.setJointMotorControl2(bodyUniqueId=self.robotId, jointIndex=self.motor_joint_idx, controlMode=p.VELOCITY_CONTROL, targetVelocity=motor_speed, ) # time.sleep(0.1) def get_state(self): """ Read the state from the pendulum, simulating a fake serial connection Args: None Returns: state (np.array): [bar angle, bar angular velocity] motor_angle (float): Motor angle in degrees done (bool): Episode done flag """ # Get the bar angle bar_angle = p.getJointState(self.robotId, self.bar_joint_idx)[0] + self.bar_compensation_angle # Get bar angular velocity bar_angular_velocity = p.getJointState(self.robotId, self.bar_joint_idx)[1] # Get the motor angle motor_angle = np.rad2deg(p.getJointState(self.robotId, self.motor_joint_idx)[0] + self.motor_compensation_angle) # Map the motor angle to the correct range if motor_angle > self.motor_angle_range[1] or motor_angle < self.motor_angle_range[0]: self.out_of_range = True else: self.out_of_range = False # Adjusting the bar angle to map correctly bar_angle = bar_angle % (2 * np.pi) # Normalize the angle to be within 0 to 2π if bar_angle > np.pi: bar_angle -= 2 * np.pi # Adjust angles greater than π to be between -π to π if bar_angle > 0: bar_angle = np.pi - bar_angle elif bar_angle < 0: bar_angle = -np.pi - bar_angle # round the states to 4 decimal places bar_angle = round(bar_angle/np.pi, 4) bar_angular_velocity = round(bar_angular_velocity/self.omega_max, 4) motor_angle = round(motor_angle, 4) return np.array([bar_angle, bar_angular_velocity]), motor_angle, self.out_of_range def reset_robot(self, mode="random"): """ Reset the robot state Args: mode (str, optional): Mode to reset the robot. Defaults to "random". Returns: state (np.array): [bar angle, bar angular velocity] """ if mode == "random": # Reset the robot to a random position bar_angle = np.random.uniform(-np.pi, np.pi) bar_angular_velocity = np.random.uniform(-self.omega_max, self.omega_max) motor_angle = np.deg2rad(np.random.uniform(self.motor_angle_range[0], self.motor_angle_range[1])) # Set the robot to the random position p.resetJointState(self.robotId, self.bar_joint_idx, targetValue=bar_angle) # p.resetJointState(self.robotId, self.motor_joint_idx, targetValue=motor_angle) p.resetJointState(self.robotId, self.motor_joint_idx, targetValue=-self.motor_compensation_angle) # set bar velocity with no force p.setJointMotorControl2(bodyUniqueId=self.robotId, jointIndex=self.bar_joint_idx, controlMode=p.VELOCITY_CONTROL, targetVelocity=bar_angular_velocity, force=0 ) elif mode == "home": # Reset the robot to the home position p.resetJointState(self.robotId, self.bar_joint_idx, targetValue=-self.bar_compensation_angle) p.resetJointState(self.robotId, self.motor_joint_idx, targetValue=-self.motor_compensation_angle) # set bar velocity with no force p.setJointMotorControl2(bodyUniqueId=self.robotId, jointIndex=self.bar_joint_idx, controlMode=p.VELOCITY_CONTROL, targetVelocity=0, force=0 ) return self.get_state()[0] def render(self, fps=240.0): """ Render the pendulum in PyBullet Args: fps (float, optional): Number of frames per second. Defaults to 240.0. Returns: None """ p.stepSimulation() if self.render_mode == "human": time.sleep(1./fps) def close(self): """ Close the PyBullet connection Args: None Returns: None """ p.disconnect() # Path: control/pid/classes/PIDController.py class PIDController: """ PID Controller class """ def __init__(self, Kp, Ki, Kd): """ Initialize PID controller gains Args: Kp (float): Proportional gain Ki (float): Integral gain Kd (float): Derivative gain """ self.Kp = Kp self.Ki = Ki self.Kd = Kd self.prev_error = 0 self.integral = 0 def compute(self, error): """ Compute PID control signal Args: error (float): Error signal Returns: control_input (float): PID control signal """ self.integral += error derivative = error - self.prev_error control_input = self.Kp * error + self.Ki * self.integral + self.Kd * derivative self.prev_error = error return control_input def reset(self): """ Reset PID controller """ self.prev_error = 0 self.integral = 0 # Path: control/pid/src/main.py from ...reinforcement_learning.Environments import RealPendulumEnv as real from ...reinforcement_learning.Environments import PyBulletPendulumEnv as pybullet from ..classes.PIDController import PIDController import numpy as np real_pendulum = False # Example usage pid = PIDController(Kp=18, Ki=0.01, Kd=0.001) K_motor = 0.0 desired_bar_angle = 0 desired_bar_velocity = 0 desired_motor_angle = 0 if real_pendulum: # initialize RealPendulum environment env = real.RealPendulumEnv("COM3", 115200) else: # initialize PyBulletPendulum environment env = pybullet.PyBulletPendulumEnv(render_mode='human') env.maxIter = 1_000_000 # reset environment to home position env.reset() # get initial observation observation, reward, done, _, _ = env.step(0) while True: # compute error and control signal error = (desired_bar_angle - observation[0]) + (desired_bar_velocity - observation[1]) # + K_motor * (desired_motor_angle - env.motorAngle)
control_signal = pid.compute(error)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: JayYik/GAN_implementations # Path: models/DCGAN.py class DCGAN(nn.Module): def __init__(self, args): super(DCGAN, self).__init__() self.G=DCGAN_G(args.hw,args.z_dim,args.in_channels) self.D=DCGAN_D(args.hw,args.in_channels) # self.G.weight_init() # self.D.weight_init() self.args=args self.batch_size=args.batch_size self.z_dim=args.z_dim self.bce_loss = nn.BCELoss() self.optim_g = optim.Adam(self.G.parameters(), lr=args.lr_g,betas=args.betas) self.optim_d = optim.Adam(self.D.parameters(), lr=args.lr_d,betas=args.betas) self.scheduler_optim_g=optim.lr_scheduler.MultiStepLR(self.optim_g, milestones=[100,150], gamma=0.9) self.scheduler_optim_d=optim.lr_scheduler.LambdaLR(self.optim_d, lr_lambda=self.warm_up) # Recording program start time for log directory naming program_begin_time = t.strftime('%Y-%m-%d %H:%M', t.localtime()) # Logging information self.information=f'DCGAN-{program_begin_time}' # TensorBoard SummaryWriter for logging self.writer=SummaryWriter(os.path.join(self.args.log_dir,self.information)) def warm_up(self,epoch): """ Learning rate warm-up function for the Adam optimizer. Args: epoch (int): Current epoch number. Returns: float: Adjusted learning rate based on the warm-up strategy. """ top_epoch = int(self.args.num_epochs*0.3) if epoch<top_epoch: #In the first 30% of epochs, slowly increase the LR to the preset LR return (epoch+1) / top_epoch else: #Drop the LR to half of the preset return (1 -( 0.5 / (self.args.num_epochs - top_epoch) * (epoch - top_epoch) ) ) def save_model(self,epoch): save_path=f'./save/{self.information}' if not os.path.exists(save_path): os.makedirs(save_path) torch.save(self.G.state_dict(), f'{save_path}/generator_{epoch}epochs.pth') torch.save(self.D.state_dict(), f'{save_path}/discriminator_{epoch}epochs.pth') self.save_args(save_path) print(f'Models save to {save_path}/generator_{epoch}epochs.pth & {save_path}/discriminator_{epoch}epochs.pth ') def save_args(self,save_path): argsDict = self.args.__dict__ with open(f'{save_path}/setting.txt', 'w') as f: f.writelines('------------------ start ------------------' + '\n') for eachArg, value in argsDict.items(): f.writelines(eachArg + ' : ' + str(value) + '\n') f.writelines('------------------- end -------------------') def train(self,train_loader,device): """ Training function for the DCGAN model. Args: train_loader (DataLoader): DataLoader for training data. device (torch.device): The device (CPU or GPU) to perform training. Returns: None """ # Move the model and loss to the specified device self.G.to(device) self.D.to(device) self.bce_loss.to(device) generator_iter = 0 descriminator_iter = 0 # Training loop for epoch in range(self.args.num_epochs): self.t_begin = t.time() pbar=tqdm(enumerate(train_loader),total=len(train_loader),ncols=100) for i, (images, _) in pbar: if i == train_loader.dataset.__len__() // self.batch_size: break # Generate random noise and labels z = torch.randn((self.batch_size, self.z_dim, 1, 1)) real_labels = torch.ones(self.batch_size) fake_labels = torch.zeros(self.batch_size) # Move data to the specified device images=images.to(device) z=z.to(device) real_labels=real_labels.to(device) fake_labels=fake_labels.to(device) # Train Discriminator real_output = self.D(images) #print('real_output:',real_output) fake_images = self.G(z) fake_output = self.D(fake_images) d_real_loss = self.bce_loss(real_output.flatten(), real_labels) d_fake_loss = self.bce_loss(fake_output.flatten(), fake_labels) #print('real_loss:',d_real_loss.item(),' fake_loss:',d_fake_loss.item()) d_loss = d_real_loss + d_fake_loss self.D.zero_grad() d_loss.backward() self.writer.add_scalar('D_loss', d_loss.item(), descriminator_iter) self.optim_d.step() descriminator_iter+=1 # Train Generator if i % self.args.des_iter == 0: #print("i:",i) self.D.zero_grad() self.G.zero_grad() z = torch.randn((self.batch_size, self.z_dim, 1, 1)) z = z.to(device) fake_images = self.G(z) fake_output = self.D(fake_images) fake_score = fake_output.squeeze().mean() #print('fake_output:',fake_output) g_loss = self.bce_loss(fake_output.flatten(), real_labels) g_loss.backward() pbar.set_postfix({'G_loss': g_loss.item(),'D_loss': d_loss.item(),'fake_socre':fake_score.item()}) #print('g_loss:',g_loss.item()) self.optim_g.step() self.writer.add_scalar('G_loss', g_loss.item(), generator_iter) generator_iter+=1 # Save generated images if generator_iter % 500 == 0: if not os.path.exists(f'./training_result_{self.args.dataset}-{self.information}/'): os.makedirs(f'./training_result_{self.args.dataset}-{self.information}/') z = torch.randn((self.batch_size,self.args.z_dim, 1, 1)) z=z.to(device) samples = self.G(z) samples = samples.mul(0.5).add(0.5) samples = samples.data.cpu()[:25] grid = torchvision.utils.make_grid(samples,nrow=5) torchvision.utils.save_image(grid, './training_result_{}/img_generatori_iter_{}.png'.format(self.args.dataset+'-'+self.information,str(generator_iter).zfill(3))) # Learning rate scheduling self.scheduler_optim_d.step() self.scheduler_optim_g.step() # Print and log training information print(self.optim_d.state_dict()['param_groups'][0]['lr']) print(self.optim_g.state_dict()['param_groups'][0]['lr']) self.t_end = t.time() print( "[Epoch %d/%d] [D loss: %f] [G loss: %f] [training time: %.3fseconds]" % (epoch, self.args.num_epochs, d_loss.item(), g_loss.item() , (self.t_end - self.t_begin)) ) # Save the trained parameters if epoch % (self.args.num_epochs // 5) == 0 and epoch !=0: self.save_model(epoch) # Path: models/GAN.py class GAN(nn.Module): def __init__(self, args): super(GAN, self).__init__() self.G=GAN_G(args.hw,args.z_dim,args.in_channels) self.D=GAN_D(args.hw,args.in_channels) self.args=args self.batch_size=args.batch_size self.z_dim=args.z_dim self.bce_loss = nn.BCELoss() self.optim_g = optim.Adam(self.G.parameters(), lr=args.lr_g,betas=args.betas) self.optim_d = optim.Adam(self.D.parameters(), lr=args.lr_d,betas=args.betas) # Recording program start time for log directory naming program_begin_time = t.strftime('%Y-%m-%d %H:%M', t.localtime()) # Logging information self.information=f'GAN-{program_begin_time}' # TensorBoard SummaryWriter for logging self.writer=SummaryWriter(os.path.join(self.args.log_dir,self.information)) def save_model(self,epoch): save_path=f'./save/{self.information}' if not os.path.exists(save_path): os.makedirs(save_path) torch.save(self.G.state_dict(), f'{save_path}/generator_{epoch}epochs.pth') torch.save(self.D.state_dict(), f'{save_path}/discriminator_{epoch}epochs.pth') self.save_args(save_path) print(f'Models save to {save_path}/generator_{epoch}epochs.pth & {save_path}/discriminator_{epoch}epochs.pth ') def save_args(self,save_path): argsDict = self.args.__dict__ with open(f'{save_path}/setting.txt', 'w') as f: f.writelines('------------------ start ------------------' + '\n') for eachArg, value in argsDict.items(): f.writelines(eachArg + ' : ' + str(value) + '\n') f.writelines('------------------- end -------------------') def train(self,train_loader,device): """ Training function for the GAN model. Args: train_loader (DataLoader): DataLoader for training data. device (torch.device): The device (CPU or GPU) to perform training. Returns: None """ # Move the model and loss to the specified device self.G.to(device) self.D.to(device) self.bce_loss.to(device) generator_iter = 0 descriminator_iter = 0 # Training loop for epoch in range(self.args.num_epochs): self.t_begin = t.time() pbar=tqdm(enumerate(train_loader),total=len(train_loader),ncols=100) for i, (images, _) in pbar: if i == train_loader.dataset.__len__() // self.batch_size: break # Generate random noise and labels z = torch.randn((self.batch_size, self.z_dim)) real_labels = torch.ones(self.batch_size) fake_labels = torch.zeros(self.batch_size) # Move data to the specified device images=images.to(device) z=z.to(device) real_labels=real_labels.to(device) fake_labels=fake_labels.to(device) # Train Discriminator real_output = self.D(images) #print('real_output:',real_output) fake_images = self.G(z) fake_output = self.D(fake_images) d_real_loss = self.bce_loss(real_output.flatten(), real_labels) d_fake_loss = self.bce_loss(fake_output.flatten(), fake_labels) #print('real_loss:',d_real_loss.item(),' fake_loss:',d_fake_loss.item()) d_loss = d_real_loss + d_fake_loss self.D.zero_grad() d_loss.backward() self.writer.add_scalar('D_loss', d_loss.item(), descriminator_iter) self.optim_d.step() descriminator_iter+=1 # Train Generator if i % self.args.des_iter == 0: #print("i:",i) self.D.zero_grad() self.G.zero_grad() z = torch.randn((self.batch_size, self.z_dim)) z = z.to(device) fake_images = self.G(z) fake_output = self.D(fake_images) fake_score = fake_output.squeeze().mean() #print('fake_output:',fake_output) g_loss = self.bce_loss(fake_output.flatten(), real_labels) g_loss.backward() pbar.set_postfix({'G_loss': g_loss.item(),'D_loss': d_loss.item(),'fake_socre':fake_score.item()}) #print('g_loss:',g_loss.item()) self.optim_g.step() self.writer.add_scalar('G_loss', g_loss.item(), generator_iter) generator_iter+=1 # Save generated images if generator_iter % 500 == 0: if not os.path.exists(f'./training_result_{self.args.dataset}-{self.information}/'): os.makedirs(f'./training_result_{self.args.dataset}-{self.information}/') z = torch.randn((self.batch_size,self.args.z_dim)) z=z.to(device) samples = self.G(z) samples = samples.mul(0.5).add(0.5) samples = samples.data.cpu()[:25] grid = torchvision.utils.make_grid(samples,nrow=5) torchvision.utils.save_image(grid, './training_result_{}/img_generatori_iter_{}.png'.format(self.args.dataset+'-'+self.information,str(generator_iter).zfill(3))) # Print and log training information print(self.optim_d.state_dict()['param_groups'][0]['lr']) print(self.optim_g.state_dict()['param_groups'][0]['lr']) self.t_end = t.time() print( "[Epoch %d/%d] [D loss: %f] [G loss: %f] [training time: %.3fseconds]" % (epoch, self.args.num_epochs, d_loss.item(), g_loss.item() , (self.t_end - self.t_begin)) ) # Save the trained parameters if epoch % (self.args.num_epochs // 5) == 0 and epoch !=0: self.save_model(epoch) # Path: models/WGAN.py class WGAN_CP(nn.Module): def __init__(self, args): super(WGAN_CP, self).__init__() self.G=WGANCP_G(args.hw,args.z_dim,args.in_channels) self.D=WGANCP_D(args.hw,args.in_channels) # self.G.weight_init() # self.D.weight_init() self.args=args self.batch_size=args.batch_size self.z_dim=args.z_dim # Attention!!! WGAN use RMSprop optimizer instead of Adam self.optim_g = optim.RMSprop(self.G.parameters(), lr=args.lr_g) self.optim_d = optim.RMSprop(self.D.parameters(), lr=args.lr_d) self.scheduler_optim_g=optim.lr_scheduler.MultiStepLR(self.optim_g, milestones=[100,150], gamma=0.9) self.scheduler_optim_d=optim.lr_scheduler.LambdaLR(self.optim_d, lr_lambda=self.warm_up) # Recording program start time for log directory naming program_begin_time = t.strftime('%Y-%m-%d %H:%M', t.localtime()) # Logging information self.information=f'WGAN-{program_begin_time}' # TensorBoard SummaryWriter for logging self.writer=SummaryWriter(os.path.join(self.args.log_dir,self.information)) def warm_up(self,epoch): """ Learning rate warm-up function for the RMSprop optimizer. Args: epoch (int): Current epoch number. Returns: float: Adjusted learning rate based on the warm-up strategy. """ top_epoch = int(self.args.num_epochs*0.3) if epoch<top_epoch: #In the first 30% of epochs, slowly increase the LR to the preset LR return (epoch+1) / top_epoch else: #Drop the LR to half of the preset return (1 -( 0.5 / (self.args.num_epochs - top_epoch) * (epoch - top_epoch) ) ) def save_model(self,epoch): save_path=f'./save/{self.information}' if not os.path.exists(save_path): os.makedirs(save_path) torch.save(self.G.state_dict(), f'{save_path}/generator_{epoch}epochs.pth') torch.save(self.D.state_dict(), f'{save_path}/discriminator_{epoch}epochs.pth') self.save_args(save_path) print(f'Models save to {save_path}/generator_{epoch}epochs.pth & {save_path}/discriminator_{epoch}epochs.pth ') def save_args(self,save_path): argsDict = self.args.__dict__ with open(f'{save_path}/setting.txt', 'w') as f: f.writelines('------------------ start ------------------' + '\n') for eachArg, value in argsDict.items(): f.writelines(eachArg + ' : ' + str(value) + '\n') f.writelines('------------------- end -------------------') def train(self,train_loader,device): """ Training function for the WGAN model. Args: train_loader (DataLoader): DataLoader for training data. device (torch.device): The device (CPU or GPU) to perform training. Returns: None """ # Move the model and loss to the specified device self.G.to(device) self.D.to(device) generator_iter = 0 descriminator_iter = 0 # Training loop for epoch in range(self.args.num_epochs): self.t_begin = t.time() pbar=tqdm(enumerate(train_loader),total=len(train_loader),ncols=100) for i, (images, _) in pbar: if i == train_loader.dataset.__len__() // self.batch_size: break # Generate random noise and labels z = torch.randn((self.batch_size, self.z_dim, 1, 1)) real_labels = torch.ones(self.batch_size) fake_labels = torch.zeros(self.batch_size) # Move data to the specified device images=images.to(device) z=z.to(device) real_labels=real_labels.to(device) fake_labels=fake_labels.to(device) # Train Discriminator for p in self.D.parameters(): p.data.clamp_(-self.args.wc, self.args.wc) d_loss_real = self.D(images) d_loss_real = d_loss_real.mean(0).view(1) fake_images = self.G(z) d_loss_fake = self.D(fake_images) d_loss_fake = d_loss_fake.mean(0).view(1) d_loss = d_loss_fake - d_loss_real Wasserstein_D = d_loss_real - d_loss_fake self.D.zero_grad() d_loss.backward() self.writer.add_scalar('D_loss', d_loss.item(), descriminator_iter) self.writer.add_scalar('Wasserstein_D', Wasserstein_D.item(), descriminator_iter) self.optim_d.step() descriminator_iter+=1 # Train Generator if i % self.args.des_iter == 0: #print("i:",i) self.D.zero_grad() self.G.zero_grad() z = torch.randn((self.batch_size, self.z_dim, 1, 1)) z = z.to(device) fake_images = self.G(z) #print('fake_output:',fake_output) g_loss = self.D(fake_images) g_loss = g_loss.mean(0).view(1).mul(-1) g_loss.backward() pbar.set_postfix({'G_loss': g_loss.item(),'D_loss': d_loss.item()}) #print('g_loss:',g_loss.item()) self.optim_g.step() self.writer.add_scalar('G_loss', g_loss.item(), generator_iter) generator_iter+=1 # Save generated images if generator_iter % 500 == 0: if not os.path.exists(f'./training_result_{self.args.dataset}-{self.information}/'): os.makedirs(f'./training_result_{self.args.dataset}-{self.information}/') z = torch.randn((self.batch_size,self.args.z_dim, 1, 1)) z=z.to(device) samples = self.G(z) samples = samples.mul(0.5).add(0.5) samples = samples.data.cpu()[:25] grid = torchvision.utils.make_grid(samples,nrow=5) torchvision.utils.save_image(grid, './training_result_{}/img_generatori_iter_{}.png'.format(self.args.dataset+'-'+self.information,str(generator_iter).zfill(3))) # Learning rate scheduling self.scheduler_optim_d.step() self.scheduler_optim_g.step() # Print and log training information print(self.optim_d.state_dict()['param_groups'][0]['lr']) print(self.optim_g.state_dict()['param_groups'][0]['lr']) self.t_end = t.time() print( "[Epoch %d/%d] [D loss: %f] [G loss: %f] [training time: %.3fseconds]" % (epoch, self.args.num_epochs, d_loss.item(), g_loss.item() , (self.t_end - self.t_begin)) ) # Save the trained parameters if epoch % (self.args.num_epochs // 5) == 0 and epoch !=0: self.save_model(epoch) # Path: models/WGAN_GP.py class WGAN_GP(nn.Module): def __init__(self, args): super(WGAN_GP, self).__init__() self.G=WGANGP_G(args.hw,args.z_dim,args.in_channels) self.D=WGANGP_D(args.hw,args.in_channels) # self.G.weight_init() # self.D.weight_init() self.args=args self.batch_size=args.batch_size self.z_dim=args.z_dim self.gp_lambda=args.gp_lambda self.optim_g = optim.Adam(self.G.parameters(), lr=args.lr_g, betas=args.betas) self.optim_d = optim.Adam(self.D.parameters(), lr=args.lr_d, betas=args.betas) self.scheduler_optim_g=optim.lr_scheduler.MultiStepLR(self.optim_g, milestones=[100,150], gamma=0.95) self.scheduler_optim_d=optim.lr_scheduler.LambdaLR(self.optim_d, lr_lambda=self.warm_up) # Recording program start time for log directory naming program_begin_time = t.strftime('%Y-%m-%d %H:%M', t.localtime()) # Logging information self.information=f'WGAN_GP-{program_begin_time}' # TensorBoard SummaryWriter for logging self.writer=SummaryWriter(os.path.join(self.args.log_dir,self.information)) def warm_up(self,epoch): """ Learning rate warm-up function for the Adam optimizer. Args: epoch (int): Current epoch number. Returns: float: Adjusted learning rate based on the warm-up strategy. """ top_epoch = int(self.args.num_epochs*0.3) if epoch<top_epoch: #In the first 30% of epochs, slowly increase the LR to the preset LR return (epoch+1) / top_epoch else: #Drop the LR to half of the preset return (1 -( 0.5 / (self.args.num_epochs - top_epoch) * (epoch - top_epoch) ) ) def save_model(self,epoch): save_path=f'./save/{self.information}' if not os.path.exists(save_path): os.makedirs(save_path) torch.save(self.G.state_dict(), f'{save_path}/generator_{epoch}epochs.pth') torch.save(self.D.state_dict(), f'{save_path}/discriminator_{epoch}epochs.pth') self.save_args(save_path) print(f'Models save to {save_path}/generator_{epoch}epochs.pth & {save_path}/discriminator_{epoch}epochs.pth ') def save_args(self,save_path): argsDict = self.args.__dict__ with open(f'{save_path}/setting.txt', 'w') as f: f.writelines('------------------ start ------------------' + '\n') for eachArg, value in argsDict.items(): f.writelines(eachArg + ' : ' + str(value) + '\n') f.writelines('------------------- end -------------------') def train(self,train_loader,device): """ Training function for the WGAN-GP model. Args: train_loader (DataLoader): DataLoader for training data. device (torch.device): The device (CPU or GPU) to perform training. Returns: None """ # Move the model and loss to the specified device self.G.to(device) self.D.to(device) generator_iter = 0 descriminator_iter = 0 # Training loop for epoch in range(self.args.num_epochs): self.t_begin = t.time() pbar=tqdm(enumerate(train_loader),total=len(train_loader),ncols=100) for i, (images, _) in pbar: if i == train_loader.dataset.__len__() // self.batch_size: break for p in self.D.parameters(): p.requires_grad = True # Generate random noise and labels z = torch.randn((self.batch_size, self.z_dim, 1, 1)) real_labels = torch.ones(self.batch_size) fake_labels = torch.zeros(self.batch_size) # Move data to the specified device images=images.to(device) z=z.to(device) real_labels=real_labels.to(device) fake_labels=fake_labels.to(device) # Train Discriminator d_loss_real = self.D(images) d_loss_real = d_loss_real.mean(0).view(1) fake_images = self.G(z) d_loss_fake = self.D(fake_images) d_loss_fake = d_loss_fake.mean(0).view(1) gradient_penalty = self.calculate_gradient_penalty(images.data, fake_images.data,device) d_loss = d_loss_fake - d_loss_real + gradient_penalty Wasserstein_D = d_loss_real - d_loss_fake self.D.zero_grad() d_loss.backward() self.writer.add_scalar('D_loss', d_loss.item(), descriminator_iter) self.writer.add_scalar('Wasserstein_D', Wasserstein_D.item(), descriminator_iter) self.optim_d.step() descriminator_iter+=1 # Train Generator if i % self.args.des_iter == 0: for p in self.D.parameters(): p.requires_grad = False # to avoid computation #print("i:",i) self.D.zero_grad() self.G.zero_grad() z = torch.randn((self.batch_size, self.z_dim, 1, 1)) z = z.to(device) fake_images = self.G(z) #print('fake_output:',fake_output) g_loss = self.D(fake_images) g_loss = g_loss.mean(0).view(1).mul(-1) g_loss.backward() pbar.set_postfix({'G_loss': g_loss.item(),'D_loss': d_loss.item()}) #print('g_loss:',g_loss.item()) self.optim_g.step() self.writer.add_scalar('G_loss', g_loss.item(), generator_iter) generator_iter+=1 # Save generated images if generator_iter % 500 == 0: if not os.path.exists(f'./training_result_{self.args.dataset}-{self.information}/'): os.makedirs(f'./training_result_{self.args.dataset}-{self.information}/') z = torch.randn((self.batch_size,self.args.z_dim, 1, 1)) z=z.to(device) samples = self.G(z) samples = samples.mul(0.5).add(0.5) samples = samples.data.cpu()[:25] grid = torchvision.utils.make_grid(samples,nrow=5) torchvision.utils.save_image(grid, './training_result_{}/img_generatori_iter_{}.png'.format(self.args.dataset+'-'+self.information,str(generator_iter).zfill(3))) # Learning rate scheduling self.scheduler_optim_d.step() self.scheduler_optim_g.step() # Print and log training information print(self.optim_d.state_dict()['param_groups'][0]['lr']) print(self.optim_g.state_dict()['param_groups'][0]['lr']) self.t_end = t.time() print( "[Epoch %d/%d] [D loss: %f] [G loss: %f] [training time: %.3fseconds]" % (epoch, self.args.num_epochs, d_loss.item(), g_loss.item() , (self.t_end - self.t_begin)) ) # Save the trained parameters if epoch % (self.args.num_epochs // 5) == 0 and epoch !=0: self.save_model(epoch) def calculate_gradient_penalty(self, real_images, fake_images, device): eta = torch.FloatTensor(self.batch_size,1,1,1).uniform_(0,1) eta = eta.expand(self.batch_size, real_images.size(1), real_images.size(2), real_images.size(3)) eta=eta.to(device) interpolated = eta * real_images + ((1 - eta) * fake_images) interpolated.requires_grad_(True) # calculate probability of interpolated examples prob_interpolated = self.D(interpolated) grad_outputs=torch.ones(prob_interpolated.size()).to(device) grad_outputs.requires_grad_(True) # calculate gradients of probabilities with respect to examples gradients = autograd.grad(outputs=prob_interpolated, inputs=interpolated, grad_outputs=grad_outputs, create_graph=True, retain_graph=True)[0] grad_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * self.gp_lambda return grad_penalty # Path: utils/get_model.py import torch from models.DCGAN import DCGAN from models.GAN import GAN from models.WGAN import WGAN_CP from models.WGAN_GP import WGAN_GP def get_model(args): if args.model == 'DCGAN': net=DCGAN(args)
elif args.model == 'GAN':
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: anyquest/pyaq # Path: aq/jobs/manager.py class JobManager: app_jobs: Dict[str, AppJob] activity_jobs: Dict[str, Dict[str, List[ActivityJob]]] def __init__(self): self.app_jobs = {} self.activity_jobs = {} self._logger = logging.getLogger(self.__class__.__name__) def create_app_job(self, app: App) -> AppJob: app_job = AppJob(app) self.app_jobs[app_job.id] = app_job self.activity_jobs[app_job.id] = {} return app_job def create_activity_job(self, app_job: AppJob, activity_name: str) -> ActivityJob: app = app_job.app if activity_name not in app.activities: raise AppJobError(f"Activity {activity_name} not found") activity_job = ActivityJob(activity_name, app_job) self.activity_jobs[app_job.id].setdefault(activity_name, []).append(activity_job) return activity_job def get_next_activities(self, activity_job: ActivityJob) -> List[str]: app = activity_job.app_job.app rv = [] for activity_name in app.activities: activity = app.activities[activity_name] for activity_input in activity.inputs or []: if (activity_input.activity == activity_job.activity_name and not self.is_waiting_for_jobs(activity_job.app_job, activity)): rv.append(activity_name) return rv def is_waiting_for_jobs(self, app_job: AppJob, activity: Activity): for activity_input in activity.inputs or []: jobs = self.activity_jobs[app_job.id].get(activity_input.activity, None) if not jobs or any(not job.finished for job in jobs): return True return False def get_inputs_for_activity(self, app_job: AppJob, activity: Activity) -> List[Dict[str, Any]]: inputs_for_activity = {} if activity.inputs: for activity_input in activity.inputs: job_outputs = [job.output for job in self.activity_jobs[app_job.id].get(activity_input.activity, [])] inputs_for_activity[activity_input.activity] = job_outputs if len(job_outputs) > 1 else job_outputs[0] for activity_input in activity.inputs: if activity_input.map: try: expr = parse(activity_input.map) val = inputs_for_activity[activity_input.activity] inputs = [] for match in expr.find(json.loads(val)): if isinstance(match.value, list): for input_value in match.value: inputs.append({**inputs_for_activity, activity_input.activity: input_value}) return inputs except Exception as e: self._logger.error(f"Failed to parse a map expression {e}") return [] return [inputs_for_activity] def get_outputs(self, app_job: AppJob) -> Dict[str, Any]: app = app_job.app # Terminal activities have inputs and do not have any other activities that take their outputs terminal_activities = [ activity_name for activity_name, activity in app.activities.items() if activity.inputs and not any( activity_input.activity == activity_name for some_other_activity in app.activities.values() for activity_input in some_other_activity.inputs or [] ) ] # Collect outputs from terminal activities outputs = { activity_name: [job.output for job in self.activity_jobs[app_job.id].get(activity_name, [])] for activity_name in terminal_activities } # Remove empty values and return return {key: value for key, value in outputs.items() if value} # Path: aq/jobs/manager.py class AppJobError(Exception): pass # Path: aq/activities/read.py class ReadActivity(BaseActivity): def __init__(self, pdf_reader: PdfReader, file_reader: FileReader, image_reader: ImageReader): self._logger = logging.getLogger(self.__class__.__name__) self._handlers = { "application/pdf": pdf_reader, "application/json": file_reader, "text/plain": file_reader, "text/markdown": file_reader, "image/jpeg": image_reader, "image/jpg": image_reader, "image/png": image_reader } async def perform(self, activity_job: ActivityJob, inputs: Dict[str, Any]) -> None: try: file_path = inputs.get("file_path") if not file_path or not os.path.exists(file_path): raise ActivityError(f"Invalid file path: {file_path}") content_type = mimetypes.guess_type(file_path)[0] handler = self._handlers.get(content_type) if handler: content = await handler.read(file_path) else: raise ActivityError(f"Cannot read content of type: {content_type}") # Add the file path to the app context app_job = activity_job.app_job app_job.context["file_path"] = file_path activity_job.state = JobState.SUCCESS activity_job.output = content activity_job.output_type = "text/plain" except Exception as e: activity_job.state = JobState.ERROR activity_job.output = str(e) self._logger.error(f"Encountered an error {e}") # Path: aq/activities/write.py class WriteActivity(BaseActivity): HTML_TEMPLATE = """<html> <head> <meta http-equiv="content-type" content="text/html; charset=UTF-8"> <style> .content { width: 80%%; margin: auto; line-height: 1.4rem; font-family: Helvetica, Arial, sans-serif; font-size: 0.9rem; } </style> </head> <body> <div class="content"> %s </div> </body> </html>""" def __init__(self): self._logger = logging.getLogger(self.__class__.__name__) async def perform(self, activity_job: ActivityJob, inputs: Dict[str, Any]) -> None: try: app = activity_job.app_job.app activity = app.activities[activity_job.activity_name] # Collate the inputs output_format = activity.parameters.get("format", "md") template = activity.parameters.get("template", None) if template: text = self.render(template, inputs) elif output_format == "json": text = self.merge_inputs_json(inputs, indent=2) else: text = self.merge_inputs(inputs) # Compute the file prefix based on the original file name original_file_path = activity_job.app_job.context.get("file_path", None) if original_file_path: base_name = os.path.basename(original_file_path) file_prefix, _ = os.path.splitext(base_name) else: file_prefix = "out" # Apply formatting if output_format == "html": text = self.HTML_TEMPLATE % markdown.markdown(text, tab_length=2) # Write content to file file_name = self.generate_temp_filename(file_prefix, output_format) # Create the out directory path = "./out" if not os.path.exists(path): os.makedirs(path) file_path = os.path.join(path, file_name) async with aiofiles.open(file_path, mode='w', encoding='utf-8') as file: await file.write(text) activity_job.state = JobState.SUCCESS activity_job.output = file_path except Exception as e: self._logger.error(e) activity_job.state = JobState.ERROR activity_job.output = str(e) # Path: aq/activities/generate.py class GenerateActivity(BaseActivity): TOOL_NAME_DELIMITER = "__" def __init__(self, provider_manager: ProviderManager, tool_manager: ToolManager): self._logger = logging.getLogger(self.__class__.__name__) self._provider_manager = provider_manager self._tool_manager = tool_manager async def perform(self, activity_job: ActivityJob, inputs: Dict[str, Any]) -> None: try: app = activity_job.app_job.app activity = app.activities[activity_job.activity_name] if len(activity.models) < 1: raise ActivityError(f"A model is required") model = app.models[activity.models[0]] temperature = float(activity.parameters.get("temperature", model.parameters.get("temperature", 0.5))) max_tokens = int(activity.parameters.get("max_words", model.parameters.get("max_words", 500))*4/3) messages = [] profile = app.info.profile if profile: messages.append(ChatCompletionMessage(role="system", content=profile)) json_format = activity.parameters.get("format", None) == "json" if json_format: messages.append(ChatCompletionMessage( role="system", content="Provide your response as a JSON object.")) else: messages.append(ChatCompletionMessage( role="system", content="Use the tab length of two spaces when formatting nested lists in markdown.")) tools = await self.get_tools(app, activity) if tools: messages.append(ChatCompletionMessage( role="system", content="Think step-by-step. Perform as many iterations as necessary " "to accomplish your goal using the tools provided.")) prompt_template = activity.parameters["prompt"] prompt = self.render_prompt(prompt_template, inputs) messages.append(ChatCompletionMessage(role="user", content=prompt)) parts = [] start_time = time.perf_counter() provider = self._provider_manager.get_provider(model.provider) for x in range(self.MAX_ITERATIONS): request = ChatCompletionRequest( model=model.model, messages=messages, temperature=temperature, max_tokens=max_tokens, tools=tools if tools else None, tool_choice="auto" if tools else None, response_format=ResponseFormat(type="json_object") if json_format else None ) response = await provider.create_completion(request) choice: Choice = response.choices[0] message: ChatCompletionMessage = choice.message messages.append(message) if choice.finish_reason == "tool_calls": for tool_call in message.tool_calls: tool_result = await self.process_tool_call(tool_call, app) messages.append(tool_result) else: if message.content: parts.append(message.content) if choice.finish_reason: self._logger.debug(f"Finished with reason {choice.finish_reason} " f"in {int(time.perf_counter()-start_time)} sec.") break activity_job.state = JobState.SUCCESS activity_job.output = "\n\n".join(parts) activity_job.output_type = "text/markdown" except Exception as e: self._logger.error(e) activity_job.state = JobState.ERROR activity_job.output = str(e) async def get_tools(self, app: App, activity: Activity) -> List[Tool]: tools = [] if activity.tools: for tool_name in activity.tools: tool_def = app.tools[tool_name] tool_obj = self._tool_manager.get_tool(tool_def.type) metadata = await tool_obj.get_metadata(tool_def) for tool in metadata: func = tool.function func.name = f"{tool_name}{self.TOOL_NAME_DELIMITER}{func.name}" tools.append(tool) return tools async def process_tool_call(self, tool_call: ToolCall, app: App) -> ChatCompletionMessage: self._logger.debug(f"Calling {tool_call.function.name}") names = tool_call.function.name.split(self.TOOL_NAME_DELIMITER) if len(names) < 2: raise ActivityError(f"Invalid tool name {tool_call.function.name}") if names[0] not in app.tools: raise ActivityError(f"{names[0]} is not a valid tool name") tool_def = app.tools[names[0]] tool_obj = self._tool_manager.get_tool(tool_def.type) arguments = json.loads(tool_call.function.arguments) response = await tool_obj.invoke(names[1], arguments, tool_def) return ChatCompletionMessage( role="tool", tool_call_id=tool_call.id, name=tool_call.function.name, content=response ) # Path: aq/activities/summarize.py class SummarizeActivity(BaseActivity): def __init__(self, provider_manager: ProviderManager): self._logger = logging.getLogger(self.__class__.__name__) self._provider_manager = provider_manager async def perform(self, activity_job: ActivityJob, inputs: Dict[str, Any]) -> None: try: app = activity_job.app_job.app activity = app.activities[activity_job.activity_name] # Get the text for summarization text = self.merge_inputs(inputs) if not text: raise ActivityError(f"Text is required") # Get the model if len(activity.models) < 1: raise ActivityError(f"A model is required") model = app.models[activity.models[0]] # Get the model parameters sentences = int(activity.parameters.get("sentences", model.parameters.get("sentences", 10))) temperature = float(activity.parameters.get("temperature", model.parameters.get("temperature", 0.5))) summary = await self.summarize(app.info.profile, text, model.provider, model.model, sentences, temperature) activity_job.output = summary activity_job.state = JobState.SUCCESS activity_job.output_type = "text/markdown" except Exception as e: activity_job.state = JobState.ERROR activity_job.output = str(e) self._logger.error(f"Encountered an error {e}") async def summarize(self, context: str, text: str, provider_type: ModelProvider, model: str, sentences: int, temperature: float) -> str: messages = [] if context: messages.append(ChatCompletionMessage(role="system", content=context)) prompt = """ Summarize a block of text provided inside triple back ticks. Your summary must be readable. Your summary must include about %(sentences)d sentences. ```%(text)s``` """ prompt = prompt % {"text": text, "sentences": sentences} messages.append(ChatCompletionMessage(role="user", content=prompt)) request = ChatCompletionRequest( model=model, messages=messages, temperature=temperature ) provider = self._provider_manager.get_provider(provider_type) start_time = time.perf_counter() response = await provider.create_completion(request) choice: Choice = response.choices[0] message: ChatCompletionMessage = choice.message self._logger.debug(f"Finished with reason {choice.finish_reason} " f"in {int(time.perf_counter()-start_time)} sec.") return message.content # Path: aq/activities/extract.py class ExtractActivity(BaseActivity): def __init__(self, provider_manager: ProviderManager): self._logger = logging.getLogger(self.__class__.__name__) self._provider_manager = provider_manager async def perform(self, activity_job: ActivityJob, inputs: Dict[str, Any]) -> None: try: app = activity_job.app_job.app activity = app.activities[activity_job.activity_name] if len(activity.models) < 1: raise ActivityError("A model is required") model = app.models[activity.models[0]] schema = activity.parameters.get("schema", None) if not schema: raise ActivityError("A schema is required") if not isinstance(schema, list): raise ActivityError("A schema must be a list of types") tools = [] for schema_def in schema: func_def = Function(**schema_def) tools.append(Tool(function=func_def)) messages = [] profile = app.info.profile if profile: messages.append(ChatCompletionMessage(role="system", content=profile)) messages.append(ChatCompletionMessage(role="system", content=""" Use the tools provided with information extracted from the user prompt. Use the entire prompt as the source of information. Do not exclude or omit anything. """)) messages.append(ChatCompletionMessage(role="user", content=self.merge_inputs(inputs))) values: Dict[str, List[Any]] = {} provider = self._provider_manager.get_provider(model.provider) for x in range(self.MAX_ITERATIONS): request = ChatCompletionRequest( model=model.model, messages=messages, temperature=0.0, tools=tools, tool_choice="auto" ) response = await provider.create_completion(request) choice: Choice = response.choices[0] message: ChatCompletionMessage = choice.message messages.append(message) if choice.finish_reason == "tool_calls": for tool_call in message.tool_calls: function_call = tool_call.function values_for_type = values.get(function_call.name, None) if not values_for_type: values_for_type = [] values[function_call.name] = values_for_type values_for_type.append(json.loads(function_call.arguments)) messages.append(ChatCompletionMessage( role="tool", tool_call_id=tool_call.id, name=function_call.name, content="Success" )) elif choice.finish_reason: break activity_job.state = JobState.SUCCESS activity_job.output = json.dumps(values) activity_job.output_type = "application/json" except Exception as e: self._logger.error(e) activity_job.state = JobState.ERROR activity_job.output = str(e) # Path: aq/activities/store.py class StoreActivity(BaseActivity): def __init__(self, memory_manager: MemoryManager): self._logger = logging.getLogger(self.__class__.__name__) self._memory_manager = memory_manager async def perform(self, activity_job: ActivityJob, inputs: Dict[str, Any]) -> None: try: app = activity_job.app_job.app if not app.memory: raise ActivityError("A memory repository is required for this app") activity = app.activities[activity_job.activity_name] if not activity.memory: raise ActivityError("A memory repository is required for this activity") memory_def = app.memory[activity.memory[0]] memory_repository = self._memory_manager.get_repository(memory_def.type) file_id = activity_job.app_job.context.get("file_path", str(uuid.uuid4())) chunk_size = activity.parameters.get("chunk_size", memory_def.parameters.get("chunk_size", 2000)) text = self.merge_inputs(inputs) chunks = memory_repository.store(memory_def, app.info.id, file_id, text, chunk_size) activity_job.state = JobState.SUCCESS activity_job.output = str(chunks) activity_job.output_type = "text/plain" except Exception as e: activity_job.state = JobState.ERROR activity_job.output = str(e) self._logger.error(f"Encountered an error {e}") # Path: aq/activities/retrieve.py class RetrieveActivity(BaseActivity): def __init__(self, memory_manager: MemoryManager): self._logger = logging.getLogger(self.__class__.__name__) self._memory_manager = memory_manager async def perform(self, activity_job: ActivityJob, inputs: Dict[str, Any]) -> None: try: app = activity_job.app_job.app if not app.memory: raise ActivityError("A memory repository is required for this app") activity = app.activities[activity_job.activity_name] if not activity.memory: raise ActivityError("A memory repository is required for this activity") memory_def = app.memory[activity.memory[0]] memory_repository = self._memory_manager.get_repository(memory_def.type) n_results = activity.parameters.get("n_results", 3) chunks = memory_repository.retrieve(memory_def, app.info.id, self.merge_inputs(inputs), n_results) activity_job.state = JobState.SUCCESS activity_job.output = "\n\n".join(chunks) activity_job.output_type = "text/plain" except Exception as e: activity_job.state = JobState.ERROR activity_job.output = str(e) self._logger.error(f"Encountered an error {e}") # Path: aq/activities/function.py class FunctionActivity(BaseActivity): def __init__(self): self._logger = logging.getLogger(self.__class__.__name__) async def perform(self, activity_job: ActivityJob, inputs: Dict[str, Any]) -> None: activity_job.state = JobState.SUCCESS activity_job.output = self.merge_inputs(inputs) activity_job.output_type = "text/plain" # Path: aq/activities/function.py class ReturnActivity(BaseActivity): def __init__(self): self._logger = logging.getLogger(self.__class__.__name__) async def perform(self, activity_job: ActivityJob, inputs: Dict[str, Any]) -> None: try: activity_job.state = JobState.SUCCESS activity_job.output = self.merge_inputs_json(inputs) activity_job.output_type = "application/json" except Exception as e: activity_job.state = JobState.ERROR activity_job.output = str(e) self._logger.error(f"Encountered an error {e}") # Path: aq/types/app.py class ActivityType(Enum): ANY = "any" READ = "read" WRITE = "write" STORE = "store" RETRIEVE = "retrieve" SUMMARIZE = "summarize" EXTRACT = "extract" GENERATE = "generate" FUNCTION = "function" CALL = "call" RETURN = "return" # Path: aq/types/job.py class ActivityJob: id: str activity_name: str app_job: AppJob state: JobState output: str output_type: str = "text/plain" def __init__(self, activity_name: str, app_job: AppJob): self.id = str(uuid.uuid4()) self.activity_name = activity_name self.app_job = app_job self.state = JobState.CREATED self.output = "" @property def finished(self) -> bool: return self.state == JobState.SUCCESS or self.state == JobState.ERROR # Path: aq/types/job.py class JobState(Enum): ANY = 0, CREATED = 1, RUNNING = 2, SUCCESS = 3 ERROR = 4 # Path: aq/jobs/scheduler.py import asyncio import logging import time from typing import Dict, Any from .manager import JobManager, AppJobError from ..activities import ( ReadActivity, WriteActivity, SummarizeActivity, GenerateActivity, ExtractActivity, StoreActivity, RetrieveActivity, FunctionActivity, ReturnActivity ) from ..types import ActivityType, ActivityJob, JobState class WorkItem: job: ActivityJob inputs: Dict[str, Any] def __init__(self, job: ActivityJob, inputs: Dict[str, Any]) -> None: self.job = job self.inputs = inputs class JobScheduler: def __init__(self, config: Dict[str, Any], job_manager: JobManager, read_activity: ReadActivity, write_activity: WriteActivity, summarize_activity: SummarizeActivity, generate_activity: GenerateActivity, extract_activity: ExtractActivity, store_activity: StoreActivity, retrieve_activity: RetrieveActivity, function_activity: FunctionActivity, return_activity: ReturnActivity): self._config = config self._logger = logging.getLogger(self.__class__.__name__) logging.getLogger('asyncio').setLevel(logging.ERROR) self._queue = asyncio.Queue() self._workers = [] self._job_manager = job_manager self._activity_handlers = { ActivityType.READ: read_activity, ActivityType.WRITE: write_activity, ActivityType.SUMMARIZE: summarize_activity, ActivityType.GENERATE: generate_activity, ActivityType.EXTRACT: extract_activity, ActivityType.STORE: store_activity, ActivityType.RETRIEVE: retrieve_activity, ActivityType.FUNCTION: function_activity, ActivityType.RETURN: return_activity } async def start_workers(self): num_workers = self._config.get("workers", 3) self._workers = [asyncio.create_task(self.consume(n)) for n in range(num_workers)] async def schedule(self, activity_job: ActivityJob, inputs: Dict[str, Any]) -> None: item = WorkItem(activity_job, inputs) await self._queue.put(item) async def consume(self, name: int) -> None: while True: item = await self._queue.get() self._logger.debug(f"Worker {name} performing {item.job.activity_name}") start_time = time.perf_counter() await self.perform(item) self._logger.debug(f"Finished {item.job.activity_name} in {int(time.perf_counter()-start_time)} sec.") self._queue.task_done() async def perform(self, item: WorkItem) -> None: item.job.state = JobState.RUNNING app = item.job.app_job.app app_job = item.job.app_job
activity = app.activities[item.job.activity_name]
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: multimodallearning/DG-TTA # Path: dg_tta/utils.py def disable_internal_augmentation(): os.environ["DG_TTA_INTERNAL_AUGMENTATION"] = "false" # Path: dg_tta/gin.py def gin_aug(input): cfg = dict( IN_CHANNELS=1, N_LAYER=4, INTERM_CHANNELS=2, ) gin_group_conv = GINGroupConv(cfg) input = gin_group_conv(input) return input # Path: dg_tta/tta/torch_utils.py def get_batch(tensor_list, batch_idx, patch_size, fixed_patch_idx=None, device="cpu"): assert ( fixed_patch_idx in range(8) or fixed_patch_idx == None or fixed_patch_idx == "center" ) device = torch.device(device) B = len(batch_idx) b_img = [] b_label = [] with torch.no_grad(): for b in range(B): # Get patches data = tensor_list[batch_idx[b]] if fixed_patch_idx is None: rand_patch_d = torch.randint( max(data.shape[1] - patch_size[0], 0), (1,) ) rand_patch_h = torch.randint( max(data.shape[2] - patch_size[1], 0), (1,) ) rand_patch_w = torch.randint( max(data.shape[3] - patch_size[2], 0), (1,) ) elif fixed_patch_idx == "center": rand_patch_d = max((data.shape[1] - patch_size[0]) // 2, 0) rand_patch_h = max((data.shape[2] - patch_size[1]) // 2, 0) rand_patch_w = max((data.shape[3] - patch_size[2]) // 2, 0) else: p_idxs = f"{fixed_patch_idx:03b}" p_idxs = [int(idx) for idx in [*p_idxs]] rand_patch_d = p_idxs[0] * patch_size[0] rand_patch_h = p_idxs[1] * patch_size[1] rand_patch_w = p_idxs[2] * patch_size[2] # print(rand_patch_d, rand_patch_h, rand_patch_w) out_shape = ( 1, 1, max(data.shape[1], patch_size[0]), max(data.shape[2], patch_size[1]), max(data.shape[3], patch_size[2]), ) grid = F.affine_grid( torch.eye(3, 4).unsqueeze(0).to(device), out_shape, align_corners=False ) patch_grid = grid[ :, rand_patch_d : rand_patch_d + patch_size[0], rand_patch_h : rand_patch_h + patch_size[1], rand_patch_w : rand_patch_w + patch_size[2], ] # Grid sample based patching (only useful if patch is augmented here) # b_img.append(F.grid_sample( # data[0:1].unsqueeze(0).to(device), patch_grid, align_corners=False # )) # Cut based patching b_img.append( data[0:1].unsqueeze(0)[ :, :, rand_patch_d : rand_patch_d + patch_size[0], rand_patch_h : rand_patch_h + patch_size[1], rand_patch_w : rand_patch_w + patch_size[2] ].to(device) ) if data[1:].numel() == 0: # No GT label is available for this sample b_label.append(None) else: # Grid sample based patching (only useful if patch is augmented here) # b_label.append( # get_argmaxed_segs( # F.grid_sample( # data[1:].to(torch.float16).unsqueeze(0).to(device), # patch_grid.to(torch.float16), # align_corners=False, # mode="nearest", # ) # ) # ) # Cut based patching b_label.append( get_argmaxed_segs( data[1:].unsqueeze(0)[ :, :, rand_patch_d : rand_patch_d + patch_size[0], rand_patch_h : rand_patch_h + patch_size[1], rand_patch_w : rand_patch_w + patch_size[2] ].to(device) ) ) return b_img, b_label # Path: dg_tta/tta/torch_utils.py def map_label(label, map_idxs, input_format): assert input_format in ["logits", "argmaxed"] if input_format == "logits": # We have a non argmaxed map, suppose that C dimension is label dimension mapped_label = label # Swap B,C and subselect mapped_label = mapped_label.transpose(0, 1)[map_idxs].transpose(0, 1) else: mapped_label = torch.zeros_like(label) for lbl_idx, map_idx in enumerate(map_idxs): mapped_label[label == map_idx] = lbl_idx return mapped_label # Path: dg_tta/tta/torch_utils.py def dice_coeff(outputs, labels, max_label): dice = torch.FloatTensor(max_label - 1).fill_(0) for label_num in range(1, max_label): iflat = (outputs == label_num).view(-1).float() tflat = (labels == label_num).view(-1).float() intersection = torch.mean(iflat * tflat) dice[label_num - 1] = (2.0 * intersection) / ( 1e-8 + torch.mean(iflat) + torch.mean(tflat) ) return dice # Path: dg_tta/tta/torch_utils.py def soft_dice_loss(smp_a, smp_b): B, _, D, H, W = smp_a.shape d = 2 nominator = (2.0 * smp_a * smp_b).reshape(B, -1, D * H * W).mean(2) denominator = 1 / d * ((smp_a + smp_b) ** d).reshape(B, -1, D * H * W).mean(2) if denominator.sum() == 0.0: dice = (nominator * 0.0) + 1.0 else: dice = ( nominator / denominator ) # Do not add an eps here, it disturbs the consistency return dice # Path: dg_tta/tta/torch_utils.py def fix_all(m): for p in m.parameters(): p.requires_grad_(False) # Path: dg_tta/tta/torch_utils.py def release_all(m): for p in m.parameters(): p.requires_grad_(True) # Path: dg_tta/tta/torch_utils.py def release_norms(m): if ( "instancenorm" in m.__class__.__name__.lower() or "batchnorm" in m.__class__.__name__.lower() ): print("Released", m.__class__.__name__) for p in m.parameters(): p.requires_grad_(True) # Path: dg_tta/tta/torch_utils.py def get_map_idxs(label_mapping: dict, optimized_labels: list, input_type): assert input_type in ["pretrain_labels", "tta_labels"] assert optimized_labels[0] == "background" # Generate idxs from label_mapping dict map_idxs_list = [] for reduced_idx, eval_label in enumerate(optimized_labels): src_idx, target_idx = label_mapping[eval_label] # map_idxs_list = [tts_dict[k] for k,v in amos_bcv_dict.items()] append_idx = src_idx if input_type == "pretrain_labels" else target_idx map_idxs_list.append(append_idx) map_idxs = torch.as_tensor(map_idxs_list) return map_idxs # Path: dg_tta/tta/torch_utils.py def get_imgs(tta_sample): imgs = tta_sample[:, 0:1] return imgs # Path: dg_tta/tta/augmentation_utils.py def get_disp_field( batch_num, size_3d, factor=0.1, interpolation_factor=5, device="cpu" ): field = get_rf_field( batch_num, size_3d, alternating_fields=False, num_fields=3, interpolation_factor=interpolation_factor, device=device, ) STEPS = 5 disp_field, inverse_disp_field = calc_consistent_diffeomorphic_field( field * factor, torch.zeros_like(field), STEPS, ensure_inverse_consistency=True ) return disp_field.permute(0, 2, 3, 4, 1), inverse_disp_field.permute(0, 2, 3, 4, 1) # Path: dg_tta/tta/augmentation_utils.py def get_rand_affine(batch_size, strength=0.05, flip=False): affine = torch.cat( ( torch.randn(batch_size, 3, 4) * strength + torch.eye(3, 4).unsqueeze(0), torch.tensor([0, 0, 0, 1]).view(1, 1, 4).repeat(batch_size, 1, 1), ), 1, ) if flip: flip_affine = torch.diag( torch.cat([(2 * (torch.rand(3) > 0.5).float() - 1), torch.tensor([1.0])]) ) affine = affine @ flip_affine return affine[:, :3], affine.inverse()[:, :3] # Path: dg_tta/tta/config_log_utils.py def get_global_idx(list_of_tuple_idx_max): # Get global index e.g. 2250 for ensemble_idx=2, epoch_idx=250 @ max_epochs<1000 global_idx = 0 next_multiplier = 1 # Smallest identifier tuple last! for idx, max_of_idx in reversed(list_of_tuple_idx_max): global_idx = global_idx + next_multiplier * idx next_multiplier = next_multiplier * 10 ** len(str(int(max_of_idx))) return global_idx # Path: dg_tta/tta/config_log_utils.py def wandb_run_is_available(): return ( importlib.util.find_spec("wandb") is not None and wandb.run is not None and not wandb.run.disabled ) # Path: dg_tta/tta/config_log_utils.py def plot_run_results(save_path, sample_id, ensemble_idx, tta_losses, eval_dices): fig, ax_one = plt.subplots() ax_two = ax_one.twinx() cmap = get_dgtta_colormap() c1, c2 = cmap(0.0), cmap(0.8) ax_one.plot(tta_losses, label="loss", c=c1) ax_one.set_yticks([tta_losses.min(), tta_losses.max()]) ax_one.set_xlim(0, len(tta_losses) - 1) ax_one.set_ylabel("Soft-Dice Loss", c=c1) ax_one.tick_params(axis="y", colors=c1) ax_one.set_xlabel("TTA Epoch") ax_one.grid(axis="y", linestyle="--", linewidth=0.5) ax_one.yaxis.set_major_formatter(matplotlib.ticker.FormatStrFormatter("%.3f")) ax_two.plot(eval_dices * 100, label="eval_dices", c=c2) ax_two.set_yticks([eval_dices.min() * 100, eval_dices.max() * 100]) ax_two.set_ylabel("Pseudo-Dice in %", c=c2) ax_two.tick_params(axis="y", colors=c2) ax_two.yaxis.set_major_formatter(matplotlib.ticker.FormatStrFormatter("%.1f")) fig.suptitle(f"{sample_id} (ensemble_idx={ensemble_idx})") split_sample_id = sample_id.split('/')[-1] tta_plot_save_path = ( save_path / f"{split_sample_id}__ensemble_idx_{ensemble_idx}_tta_results.png" ) fig.savefig(tta_plot_save_path) fig.tight_layout() plt.close(fig) # Path: dg_tta/tta/config_log_utils.py def get_parameters_save_path(save_path, sample_id, ensemble_idx): sample_id = sample_id.split('/')[-1] tta_parameters_save_path = ( save_path / f"{sample_id}__ensemble_idx_{ensemble_idx}_tta_parameters.pt" ) return tta_parameters_save_path # Path: dg_tta/tta/model_utils.py def get_model_from_network(network, modifier_fn_module, parameters=None): model = deepcopy(network) if parameters is not None: if not isinstance(model, OptimizedModule): model.load_state_dict(parameters[0]) else: model._orig_mod.load_state_dict(parameters[0]) # Register hook that modifies the input prior to custom augmentation modify_tta_input_fn = modifier_fn_module.ModifierFunctions.modify_tta_input_fn register_forward_pre_hook_at_beginning( model, hookify(modify_tta_input_fn, "forward_pre_hook") ) # Register hook that modifies the output of the model modfify_tta_model_output_fn = ( modifier_fn_module.ModifierFunctions.modfify_tta_model_output_fn ) register_forward_hook_at_beginning( model, hookify(modfify_tta_model_output_fn, "forward_hook") ) return model # Path: dg_tta/tta/model_utils.py def buffer_running_stats(m): _id = id(m) if ( hasattr(m, "running_mean") and hasattr(m, "running_var") and not _id in running_stats_buffer ): if m.running_mean is not None and m.running_var is not None: running_stats_buffer[_id] = [m.running_mean.data, m.running_var.data] # Path: dg_tta/tta/model_utils.py def apply_running_stats(m): _id = id(m) if ( hasattr(m, "running_mean") and hasattr(m, "running_var") and _id in running_stats_buffer ): m.running_mean.data.copy_(other=running_stats_buffer[_id][0]) m.running_var.data.copy_( other=running_stats_buffer[_id][1] ) # Copy into .data to prevent backprop errors del running_stats_buffer[_id] # Path: dg_tta/tta/nnunet_utils.py def run_inference(tta_sample, model, predictor, all_tta_parameter_paths): save_probabilities = False tta_parameters = [] for _path in all_tta_parameter_paths: tta_parameters.extend(torch.load(_path)) predictor.network = deepcopy(model) predictor.list_of_parameters = tta_parameters return predict_from_data_iterator(predictor, tta_sample, save_probabilities) # Path: dg_tta/tta/nnunet_utils.py def load_network(weights_file, device): pretrained_weights_filepath = Path(*Path(weights_file).parts[:-2]) fold = Path(weights_file).parts[-2].replace("fold_", "") use_folds = [int(fold)] if fold.isnumeric() else fold checkpoint_name = Path(weights_file).parts[-1] configuration = Path(weights_file).parts[-3].split("__")[-1] perform_everything_on_gpu = True verbose = False predictor = nnUNetPredictor( perform_everything_on_gpu=perform_everything_on_gpu, device=device, verbose_preprocessing=verbose, ) predictor.initialize_from_trained_model_folder( pretrained_weights_filepath, use_folds, checkpoint_name ) parameters = predictor.list_of_parameters plans_manager = predictor.plans_manager network = predictor.network patch_size = plans_manager.get_configuration(configuration).patch_size return predictor, patch_size, network, parameters # Path: dg_tta/tta/nnunet_utils.py def load_tta_data(config, dataset_raw_path, predictor, tta_across_all_samples=False): with suppress_stdout(): ts_iterator, ts_data_len = get_data_iterator( config, predictor, config["tta_data_filepaths"], dataset_raw_path, "imagesTs", ) tr_iterator, tr_data_len = get_data_iterator( config, predictor, config["tta_data_filepaths"], dataset_raw_path, "imagesTr", ) if tta_across_all_samples: data = list(ts_iterator) + list(tr_iterator), ts_data_len + tr_data_len else: data = chain(ts_iterator, tr_iterator), ts_data_len + tr_data_len return data # Path: dg_tta/tta/tta.py import re import importlib import shutil import json import json import torch import torch.nn.functional as F import wandb from itertools import tee from pathlib import Path from contextlib import nullcontext from tqdm import trange, tqdm from nnunetv2.evaluation.evaluate_predictions import compute_metrics_on_folder_simple from nnunetv2.imageio.simpleitk_reader_writer import SimpleITKIO from dg_tta.utils import disable_internal_augmentation from dg_tta.gin import gin_aug from dg_tta.tta.torch_utils import ( get_batch, map_label, dice_coeff, soft_dice_loss, fix_all, release_all, release_norms, get_map_idxs, get_imgs, ) from dg_tta.tta.augmentation_utils import get_disp_field, get_rand_affine from dg_tta.tta.config_log_utils import ( get_global_idx, wandb_run_is_available, plot_run_results, get_parameters_save_path, ) from dg_tta.tta.model_utils import ( get_model_from_network, buffer_running_stats, apply_running_stats, ) from dg_tta.tta.nnunet_utils import ( run_inference, load_network, load_tta_data, ) for epoch in tbar: model.train() global_idx = get_global_idx( [ (smp_idx, num_samples), (ensemble_idx, ensemble_count), (epoch, num_epochs), ] ) if wandb_run_is_available(): wandb.log({"ref_epoch_idx": epoch}, global_idx) step_losses = [] if epoch == start_tta_at_epoch: model.apply(fix_all) if config["params_with_grad"] == "all": model.apply(release_all) elif config["params_with_grad"] == "norms": model.apply(release_norms) elif config["params_with_grad"] == "encoder": model.encoder.apply(release_all) else: raise ValueError() grad_params = { id(p): p.numel() for p in model.parameters() if p.requires_grad } tqdm.write( f"Released #{sum(list(grad_params.values()))/1e6:.2f} million trainable params" ) for _ in range(patches_to_be_accumulated): with torch.no_grad(): imgs, _ = get_batch( tta_tens_list, torch.randperm(len(tta_tens_list))[:B], patch_size, fixed_patch_idx=None, device=device, ) imgs = torch.cat(imgs, dim=0) target_a = calc_branch( "branch_a", config, model, intensity_aug_func, identity_grid, patch_size, B, label_mapping, optimized_labels, modifier_fn_module, imgs, device, ) target_b = calc_branch( "branch_b", config, model, intensity_aug_func, identity_grid, patch_size, B, label_mapping, optimized_labels, modifier_fn_module, imgs, device, ) # Apply consistency loss common_content_mask = ( target_a.sum(1, keepdim=True) > 0.0 ).float() * (target_b.sum(1, keepdim=True) > 0.0).float() sm_a = target_a.softmax(1) * common_content_mask sm_b = target_b.softmax(1) * common_content_mask loss = 1 - soft_dice_loss(sm_a, sm_b)[:, START_CLASS:].mean() loss_accum = loss / patches_to_be_accumulated step_losses.append(loss.detach().cpu()) if epoch >= start_tta_at_epoch: loss_accum.backward() if epoch >= start_tta_at_epoch: optimizer.step() optimizer.zero_grad() tta_losses[epoch] = torch.stack(step_losses).mean().item() with torch.inference_mode(): model.eval() for _ in range(tta_eval_patches): imgs, labels = get_batch( tta_tens_list, torch.randperm(len(tta_tens_list))[:B], patch_size, fixed_patch_idx="center", # This is just for evaluation purposes device=device, ) imgs = torch.cat(imgs, dim=0) none_labels = [l is None for l in labels] filtered_imgs = imgs[~torch.as_tensor(none_labels)] filtered_labels = [ l for flag, l in zip(none_labels, labels) if not flag ] if len(filtered_imgs) == 0: eval_dices[epoch] = float("nan") continue else: filtered_labels = torch.cat(filtered_labels, dim=0) output_eval = model(filtered_imgs) if isinstance(output_eval, tuple):
output_eval = output_eval[0]
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: tommy-xq/SA2VP # Path: vpt_main/src/models/vit_prompt/vit.py class PromptedVisionTransformer(VisionTransformer): def __init__( self, prompt_cfg, model_type, img_size=224, num_classes=21843, vis=False ): assert prompt_cfg.VIT_POOL_TYPE == "original" super(PromptedVisionTransformer, self).__init__( model_type, img_size, num_classes, vis) if prompt_cfg is None: raise ValueError("prompt_cfg cannot be None if using PromptedVisionTransformer") self.prompt_cfg = prompt_cfg vit_cfg = CONFIGS[model_type] self.transformer = PromptedTransformer( prompt_cfg, vit_cfg, img_size, vis) def forward(self, x, vis=False): x, attn_weights = self.transformer(x) x = x[:, 0] logits = self.head(x) if not vis: return logits return logits, attn_weights # Path: vpt_main/src/models/vit_prompt/swin_transformer.py class PromptedSwinTransformer(SwinTransformer): def __init__( self, prompt_config, img_size=224, patch_size=4, in_chans=3, num_classes=1000, embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, use_checkpoint=False, **kwargs ): if prompt_config.LOCATION == "pad": img_size += 2 * prompt_config.NUM_TOKENS super(PromptedSwinTransformer, self).__init__( img_size, patch_size, in_chans, num_classes, embed_dim, depths, num_heads, window_size, mlp_ratio, qkv_bias, qk_scale, drop_rate, attn_drop_rate, drop_path_rate, norm_layer, ape, patch_norm, use_checkpoint, **kwargs ) self.prompt_config = prompt_config img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) if self.prompt_config.LOCATION == "add": num_tokens = self.embeddings.position_embeddings.shape[1] elif self.prompt_config.LOCATION == "add-1": num_tokens = 1 else: num_tokens = self.prompt_config.NUM_TOKENS self.prompt_dropout = Dropout(self.prompt_config.DROPOUT) # if project the prompt embeddings if self.prompt_config.PROJECT > -1: # only for prepend / add prompt_dim = self.prompt_config.PROJECT self.prompt_proj = nn.Linear( prompt_dim, embed_dim) nn.init.kaiming_normal_( self.prompt_proj.weight, a=0, mode='fan_out') else: self.prompt_proj = nn.Identity() # build layers # stochastic depth dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule self.layers = nn.ModuleList() for i_layer in range(self.num_layers): layer = BasicLayer( dim=int(embed_dim * 2 ** i_layer), input_resolution=( self.patches_resolution[0] // (2 ** i_layer), self.patches_resolution[1] // (2 ** i_layer) ), depth=depths[i_layer], num_heads=num_heads[i_layer], window_size=window_size, mlp_ratio=self.mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], norm_layer=norm_layer, block_module=PromptedSwinTransformerBlock, downsample=PromptedPatchMerging if (i_layer < self.num_layers - 1) else None, use_checkpoint=use_checkpoint, num_prompts=num_tokens, prompt_location=self.prompt_config.LOCATION, deep_prompt=self.prompt_config.DEEP ) self.layers.append(layer) if self.prompt_config.INITIATION == "random": val = math.sqrt(6. / float(3 * reduce(mul, patch_size, 1) + embed_dim)) # noqa if self.prompt_config.LOCATION == "below": self.patch_embed.proj = Conv2d( in_channels=num_tokens+3, out_channels=embed_dim, kernel_size=patch_size, stride=patch_size ) # add xavier_uniform initialization nn.init.uniform_(self.patch_embed.proj.weight, -val, val) nn.init.zeros_(self.patch_embed.proj.bias) self.prompt_embeddings = nn.Parameter(torch.zeros( 1, num_tokens, img_size[0], img_size[1])) nn.init.uniform_(self.prompt_embeddings.data, -val, val) elif self.prompt_config.LOCATION == "pad": self.prompt_embeddings_tb = nn.Parameter(torch.zeros( 1, 3, 2 * num_tokens, img_size[0] )) self.prompt_embeddings_lr = nn.Parameter(torch.zeros( 1, 3, img_size[0] - 2 * num_tokens, 2 * num_tokens )) nn.init.uniform_(self.prompt_embeddings_tb.data, 0.0, 1.0) nn.init.uniform_(self.prompt_embeddings_lr.data, 0.0, 1.0) self.prompt_norm = tv.transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], ) else: # for "prepend" self.prompt_embeddings = nn.Parameter(torch.zeros( 1, num_tokens, embed_dim)) nn.init.uniform_(self.prompt_embeddings.data, -val, val) if self.prompt_config.DEEP: # NOTE: only for 4 layers, need to be more flexible self.deep_prompt_embeddings_0 = nn.Parameter( torch.zeros( depths[0] - 1, num_tokens, embed_dim )) nn.init.uniform_( self.deep_prompt_embeddings_0.data, -val, val) self.deep_prompt_embeddings_1 = nn.Parameter( torch.zeros( depths[1], num_tokens, embed_dim * 2 )) nn.init.uniform_( self.deep_prompt_embeddings_1.data, -val, val) self.deep_prompt_embeddings_2 = nn.Parameter( torch.zeros( depths[2], num_tokens, embed_dim * 4 )) nn.init.uniform_( self.deep_prompt_embeddings_2.data, -val, val) self.deep_prompt_embeddings_3 = nn.Parameter( torch.zeros( depths[3], num_tokens, embed_dim * 8 )) nn.init.uniform_( self.deep_prompt_embeddings_3.data, -val, val) else: raise ValueError("Other initiation scheme is not supported") def incorporate_prompt(self, x): # combine prompt embeddings with image-patch embeddings B = x.shape[0] if self.prompt_config.LOCATION == "prepend": # after CLS token, all before image patches x = self.get_patch_embeddings(x) # (batch_size, n_patches, hidden_dim) prompt_embd = self.prompt_dropout( self.prompt_embeddings.expand(B, -1, -1)) x = torch.cat(( prompt_embd, x ), dim=1) # (batch_size, n_prompt + n_patches, hidden_dim) elif self.prompt_config.LOCATION == "add": # add to the input patches + CLS # assert self.prompt_config.NUM_TOKENS == x.shape[1] x = self.get_patch_embeddings(x) # (batch_size, 1 + n_patches, hidden_dim) x = x + self.prompt_dropout( self.prompt_embeddings.expand(B, -1, -1)) # (batch_size, n_patches, hidden_dim) elif self.prompt_config.LOCATION == "add-1": x = self.get_patch_embeddings(x) # (batch_size, 1 + n_patches, hidden_dim) L = x.shape[1] prompt_emb = self.prompt_dropout( self.prompt_embeddings.expand(B, -1, -1)) x = x + prompt_emb.expand(-1, L, -1) # (batch_size, cls_token + n_patches, hidden_dim) elif self.prompt_config.LOCATION == "pad": prompt_emb_lr = self.prompt_norm( self.prompt_embeddings_lr).expand(B, -1, -1, -1) prompt_emb_tb = self.prompt_norm( self.prompt_embeddings_tb).expand(B, -1, -1, -1) x = torch.cat(( prompt_emb_lr[:, :, :, :self.num_tokens], x, prompt_emb_lr[:, :, :, self.num_tokens:] ), dim=-1) x = torch.cat(( prompt_emb_tb[:, :, :self.num_tokens, :], x, prompt_emb_tb[:, :, self.num_tokens:, :] ), dim=-2) x = self.get_patch_embeddings(x) # (batch_size, n_patches, hidden_dim) elif self.prompt_config.LOCATION == "below": # (batch, 3, height, width) x = torch.cat(( x, self.prompt_norm( self.prompt_embeddings).expand(B, -1, -1, -1), ), dim=1) x = self.get_patch_embeddings(x) # (batch_size, n_patches, hidden_dim) else: raise ValueError("Other prompt locations are not supported") return x def get_patch_embeddings(self, x): x = self.patch_embed(x) if self.ape: x = x + self.absolute_pos_embed x = self.pos_drop(x) return x def train(self, mode=True): # set train status for this class: disable all but the prompt-related modules if mode: # training: # first set all to eval and set the prompt to train later for module in self.children(): module.train(False) self.prompt_proj.train() self.prompt_dropout.train() else: # eval: for module in self.children(): module.train(mode) def forward_features(self, x): x = self.incorporate_prompt(x) if self.prompt_config.LOCATION == "prepend" and self.prompt_config.DEEP: for layer, deep_prompt_embd in zip( self.layers, [ self.deep_prompt_embeddings_0, self.deep_prompt_embeddings_1, self.deep_prompt_embeddings_2, self.deep_prompt_embeddings_3 ] ): deep_prompt_embd = self.prompt_dropout(deep_prompt_embd) x = layer(x, deep_prompt_embd) else: for layer in self.layers: x = layer(x) x = self.norm(x) # B L C x = self.avgpool(x.transpose(1, 2)) # B C 1 x = torch.flatten(x, 1) return x def load_state_dict(self, state_dict, strict): if self.prompt_config.LOCATION == "below": # modify state_dict first [768, 4, 16, 16] conv_weight = state_dict["patch_embed.proj.weight"] conv_weight = torch.cat( (conv_weight, self.patch_embed.proj.weight[:, 3:, :, :]), dim=1 ) state_dict["patch_embed.proj.weight"] = conv_weight super(PromptedSwinTransformer, self).load_state_dict(state_dict, strict) # Path: vpt_main/src/models/vit_prompt/vit_moco.py def vit_base(prompt_cfg, **kwargs): model = PromptedVisionTransformerMoCo( prompt_cfg, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model # Path: vpt_main/src/models/vit_prompt/vit_mae.py def build_model(model_type, prompt_cfg): if "vitb" in model_type: return vit_base_patch16(prompt_cfg) elif "vitl" in model_type: return vit_large_patch16(prompt_cfg) elif "vith" in model_type: return vit_huge_patch14(prompt_cfg) # Path: vpt_main/src/models/vit_adapter/vit_mae.py def build_model(model_type, adapter_cfg): if "vitb" in model_type: return vit_base_patch16(adapter_cfg) elif "vitl" in model_type: return vit_large_patch16(adapter_cfg) elif "vith" in model_type: return vit_huge_patch14(adapter_cfg) # Path: vpt_main/src/models/vit_adapter/vit_moco.py def vit_base(adapter_cfg, **kwargs): model = ADPT_VisionTransformerMoCo( adapter_cfg, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model # Path: vpt_main/src/models/vit_adapter/vit.py class ADPT_VisionTransformer(nn.Module): def __init__( self, model_type, img_size=224, num_classes=21843, vis=False, adapter_cfg=None ): super(ADPT_VisionTransformer, self).__init__() config = CONFIGS[model_type] self.num_classes = num_classes self.classifier = config.classifier self.transformer = ADPT_Transformer(config, img_size, vis, adapter_cfg) self.head = Linear(config.hidden_size, num_classes) if num_classes > 0 else nn.Identity() def forward(self, x, vis=False): x, attn_weights = self.transformer(x) logits = self.head(x[:, 0]) if not vis: return logits return logits, attn_weights def load_from(self, weights): with torch.no_grad(): self.transformer.embeddings.patch_embeddings.weight.copy_(np2th(weights["embedding/kernel"], conv=True)) self.transformer.embeddings.patch_embeddings.bias.copy_(np2th(weights["embedding/bias"])) self.transformer.embeddings.cls_token.copy_(np2th(weights["cls"])) self.transformer.encoder.encoder_norm.weight.copy_(np2th(weights["Transformer/encoder_norm/scale"])) self.transformer.encoder.encoder_norm.bias.copy_(np2th(weights["Transformer/encoder_norm/bias"])) posemb = np2th(weights["Transformer/posembed_input/pos_embedding"]) posemb_new = self.transformer.embeddings.position_embeddings if posemb.size() == posemb_new.size(): self.transformer.embeddings.position_embeddings.copy_(posemb) else: logger.info("load_pretrained: resized variant: %s to %s" % (posemb.size(), posemb_new.size())) ntok_new = posemb_new.size(1) if self.classifier == "token": posemb_tok, posemb_grid = posemb[:, :1], posemb[0, 1:] ntok_new -= 1 else: posemb_tok, posemb_grid = posemb[:, :0], posemb[0] gs_old = int(np.sqrt(len(posemb_grid))) gs_new = int(np.sqrt(ntok_new)) print('load_pretrained: grid-size from %s to %s' % (gs_old, gs_new)) posemb_grid = posemb_grid.reshape(gs_old, gs_old, -1) zoom = (gs_new / gs_old, gs_new / gs_old, 1) posemb_grid = ndimage.zoom(posemb_grid, zoom, order=1) posemb_grid = posemb_grid.reshape(1, gs_new * gs_new, -1) posemb = np.concatenate([posemb_tok, posemb_grid], axis=1) self.transformer.embeddings.position_embeddings.copy_(np2th(posemb)) for bname, block in self.transformer.encoder.named_children(): for uname, unit in block.named_children(): unit.load_from(weights, n_block=uname) if self.transformer.embeddings.hybrid: self.transformer.embeddings.hybrid_model.root.conv.weight.copy_(np2th(weights["conv_root/kernel"], conv=True)) gn_weight = np2th(weights["gn_root/scale"]).view(-1) gn_bias = np2th(weights["gn_root/bias"]).view(-1) self.transformer.embeddings.hybrid_model.root.gn.weight.copy_(gn_weight) self.transformer.embeddings.hybrid_model.root.gn.bias.copy_(gn_bias) for bname, block in self.transformer.embeddings.hybrid_model.body.named_children(): for uname, unit in block.named_children(): unit.load_from(weights, n_block=bname, n_unit=uname) # Path: vpt_main/src/models/build_vit_backbone.py import numpy as np import torch import os from .vit_backbones.swin_transformer_conv import SwinTransformer from .vit_backbones.vit import VisionTransformer from .vit_backbones.vit_moco import vit_base from .vit_backbones.vit_mae import build_model as mae_vit_model from .vit_prompt.vit import PromptedVisionTransformer from .vit_prompt.swin_transformer import PromptedSwinTransformer from .vit_prompt.vit_moco import vit_base as prompt_vit_base from .vit_prompt.vit_mae import build_model as prompt_mae_vit_model from .vit_adapter.vit_mae import build_model as adapter_mae_vit_model from .vit_adapter.vit_moco import vit_base as adapter_vit_base from .vit_adapter.vit import ADPT_VisionTransformer embed_dim = 96 num_layers = 4 elif model_type == "swins_imagenet": model = SwinTransformer( img_size=crop_size, embed_dim=96, depths=[2, 2, 18, 2], num_heads=[3, 6, 12, 24], window_size=7, drop_path_rate=0.3, num_classes=-1, ) embed_dim = 96 num_layers = 4 elif model_type == "swinb_imagenet_224": model = SwinTransformer( img_size=crop_size, embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=7, drop_path_rate=0.5, num_classes=-1, ) embed_dim = 128 num_layers = 4 elif model_type == "swinb_imagenet_384": model = SwinTransformer( img_size=384, embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12, drop_path_rate=0.5, num_classes=-1, ) embed_dim = 128 num_layers = 4 elif model_type == "swinb_imagenet22k_224": model = SwinTransformer( img_size=crop_size, embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=7, drop_path_rate=0.2, # try to from 0.5 -> 0, 0.1 is best on cifar. num_classes=-1, ) embed_dim = 128 num_layers = 4 elif model_type == "swinb_imagenet22k_384": model = SwinTransformer( img_size=384, embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12, drop_path_rate=0.5, num_classes=-1, ) embed_dim = 128 num_layers = 4 elif model_type == "swinl_imagenet22k_224": model = SwinTransformer( img_size=crop_size, embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=7, drop_path_rate=0.5, num_classes=-1, ) embed_dim = 192 num_layers = 4 feat_dim = int(embed_dim * 2 ** (num_layers - 1)) # load checkpoint model_w = os.path.join(model_root, MODEL_ZOO[model_type]) checkpoint = torch.load(model_w, map_location='cpu') state_dict = checkpoint['model'] if crop_size == 448: for k in list(state_dict.keys()): if "attn_mask" not in k: # remove prefix state_dict[k] = state_dict[k] # delete renamed or unused k else: del state_dict[k] # rename some keys for ssl models if model_type.endswith("ssl"): # rename moco pre-trained keys for k in list(state_dict.keys()): # retain only encoder_q up to before the embedding layer if k.startswith('encoder.'): # remove prefix state_dict[k[len("encoder."):]] = state_dict[k] # delete renamed or unused k del state_dict[k] model.load_state_dict(state_dict, strict=False) return model, feat_dim def build_vit_sup_models( model_type, crop_size, prompt_cfg=None, model_root=None, adapter_cfg=None, load_pretrain=True, vis=False ): # image size is the size of actual image m2featdim = { "sup_vitb16_224": 768, "sup_vitb16": 768, "sup_vitl16_224": 1024, "sup_vitl16": 1024, "sup_vitb8_imagenet21k": 768, "sup_vitb16_imagenet21k": 768, "sup_vitb32_imagenet21k": 768,
"sup_vitl16_imagenet21k": 1024,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: crashdev226/freelancer-create-account-bot # Path: FreelancerBot.py class FreelancerBot: # Constructor def __init__(self): pass def create(self): profile = None with open("./profile.json", "r+") as file: profile = json.load(file)["freelancer"] print(profile["skills"]) pag.FAILSAFE = False if pag.confirm("Are you ready? Please go to browser.") != "OK": exit() pag.hotkey("ctrl", "t") pag.typewrite("freelancer.com\n") time.sleep(3) pag.click(1348, 107) pag.hotkey("ctrl", "t") pag.typewrite("yopmail.com\n") time.sleep(3) pag.click(523, 552) time.sleep(2) pag.click(831, 572) time.sleep(1) pag.click(1289, 710) time.sleep(1) pag.click(1073, 570) time.sleep(0.5) pag.hotkey("ctrl", "shift", "tab") time.sleep(0.5) pag.click(870, 396) pag.hotkey("ctrl", "v") pag.click(859, 477) pag.typewrite("pwd1234!@#$") time.sleep(0.5) pag.click(807, 544) time.sleep(0.5) pag.click(807, 544) time.sleep(0.5) pag.click(959, 611) # Page 2 time.sleep(1.5) pag.click(912, 395) time.sleep(1) pag.click(939, 484) time.sleep(1) pag.click(963, 336) if pag.confirm("Continue?") != "OK": exit() time.sleep(5) # pag.click(557, 450) # time.sleep(4) # pag.click(557, 450) # skill input for loop for skill in profile["skills"]: time.sleep(0.5) pag.click(472, 295, 3) pag.typewrite(skill) time.sleep(1) pag.click(853, 444) if pag.confirm("Continue?") != "OK": exit() pag.click(1466, 968) # Page 3 time.sleep(2) pag.click(1093, 742) # Page 4 time.sleep(2) pag.click(784, 614) pag.typewrite(profile["firstName"]) # time.sleep(0.5) pag.click(775, 712) pag.typewrite(profile["lastName"]) # time.sleep(2) pag.click(1189, 848) # Page 5 time.sleep(0.5) pag.click(1187, 856) # Page 5-2 time.sleep(0.5) pag.click(725, 549) pyperclip.copy(profile["heading"]) pag.hotkey("ctrl", "v") # time.sleep(2) pag.click(795, 677) pyperclip.copy(profile["description"]) pag.hotkey("ctrl", "v") time.sleep(0.5) pag.click(1189, 848) # Page 6 time.sleep(2.5) pag.click(739, 667) pag.typewrite(profile["birth"]) time.sleep(0.5) pag.click(1185, 611) time.sleep(0.5) pag.click(1185, 811) # Page 7 if pag.confirm("Continue?") != "OK": exit() time.sleep(0.8) pag.click(1189, 924) # Page 8 time.sleep(0.5) pag.hotkey("ctrl", "tab") time.sleep(4) pag.click(525, 211) time.sleep(3) pag.click(653, 454) # Emali Verify time.sleep(4) pag.hotkey("ctrl", "w") time.sleep(0.5) pag.hotkey("ctrl", "w") time.sleep(0.5) pag.click(1185, 666) # Page 9 time.sleep(1) pag.click(1432, 894) # Page 10 time.sleep(1) pag.click(1452, 1015) # Page 11 time.sleep(5) pag.click(816, 544) time.sleep(5) pag.click(1480, 358) # showcase pag.alert("Done") # while True: # print(pag.position()) # Path: UpworkBot.py class UpworkBot: # Constructor def __init__(self): pass def create(self): profile = None with open("./profile.json", "r+") as file: profile = json.load(file)["upwork"] print(profile["skills"]) pag.FAILSAFE = False if pag.confirm("Are you ready? Please go to browser.") != "OK": exit() pag.hotkey("ctrl", "t") pag.typewrite("upwork.com\n") time.sleep(1) pag.click(1770,53) time.sleep(1) pag.click(1750,260) time.sleep(5) pag.click(1285,739) time.sleep(1) pag.click(1675,110) time.sleep(1) pag.click(1100,380) time.sleep(1) pag.click(952,514) pag.hotkey("ctrl", "t") pag.typewrite("addy.io\n") time.sleep(1) pag.click(1438,122) time.sleep(1) pag.click(52,272) time.sleep(1) pag.click(1674,195) time.sleep(1) pag.click(891,469) time.sleep(1) pag.click(833,631) time.sleep(1) pag.click(773,724) time.sleep(0.5) pag.typewrite("louis") time.sleep(0.5) pag.click(830,760) time.sleep(1) pag.click(787,797) time.sleep(1) pag.click(648,401) time.sleep(0.5) pag.hotkey("ctrl", "w") time.sleep(0.5) pag.click(718,513) pag.hotkey("ctrl", "v") pag.click(708,453) pag.typewrite("Louis") pag.click(1085,450) pag.typewrite("Winkler") pag.click(830,569) pag.typewrite("pwd1234!@#$") time.sleep(0.5) pag.click(661,690) time.sleep(0.5) pag.click(665,735) time.sleep(0.5) pag.click(969,808) if pag.confirm("Verify email and click Next") != "OK": exit() pag.click(383,704) time.sleep(1) pag.click(1393,587) time.sleep(1) pag.click(1860,1000) time.sleep(1) pag.click(800,600) time.sleep(1) pag.click(1860,1000) time.sleep(1) pag.click(512,541) time.sleep(1) pag.click(343,745) time.sleep(1) pag.click(1860,1000) time.sleep(1) pag.click(572,545) time.sleep(1) pag.click(412,483) pag.typewrite(profile["heading"]) pag.click(1860,1000) time.sleep(1) #Experience - 1 pag.click(570,600) time.sleep(1) pag.click(722,265) pag.typewrite("web") time.sleep(1) pag.click(674,358) time.sleep(0.5) pag.click(660,362) pag.typewrite(profile["experience"][0]["title"]) pag.click(690,457) pag.typewrite(profile["experience"][0]["city"]) # if isinstance(profile["experience"][0]["country"], str): pag.click(1075,458) time.sleep(0.5) pag.click(1080,520) pag.typewrite(profile["experience"][0]["country"])#end if time.sleep(1) pag.click(1039,565) time.sleep(0.5) pag.click(626,497) time.sleep(0.5) pag.click(730,584) time.sleep(0.5) pag.click(680,637) time.sleep(0.5) pag.click(878,583) time.sleep(0.5) pag.click(840,690) time.sleep(0.5) pag.click(705,714) pag.typewrite(profile["experience"][0]["description"]) time.sleep(0.5) pag.click(1257,937) #Experience - 2 time.sleep(0.5) pag.click(337,605) time.sleep(1) pag.click(737,270) time.sleep(0.5) pag.click(715,357) time.sleep(0.5) pag.click(697,365) pag.typewrite(profile["experience"][1]["title"]) pag.click(668,455) pag.typewrite(profile["experience"][1]["city"]) time.sleep(0.5) pag.click(684,600) time.sleep(0.5) pag.click(684,645) time.sleep(0.5) pag.click(865,603) time.sleep(0.5) pag.click(845,809) time.sleep(0.5) pag.click(1024,604) time.sleep(0.5) pag.click(1012,646) time.sleep(0.5) pag.click(1189,597) time.sleep(0.5) pag.click(1183,711) time.sleep(0.5) pag.click(822,719) pag.typewrite(profile["experience"][1]["description"]) time.sleep(0.5) pag.click(1264,935) time.sleep(1) pag.click(1778,1002)#Next Pgae time.sleep(1) pag.click(544,548) time.sleep(1) pag.click(772,293) pyperclip.copy(profile["education"]["university"]) pag.hotkey("ctrl", "v") time.sleep(1.5) pag.click(711,352) time.sleep(0.5) pag.click(688,388) time.sleep(0.5) pag.typewrite(profile["education"]["degree"]) pag.click(721,423) time.sleep(0.5) pag.click(716,480) time.sleep(0.5) pag.typewrite(profile["education"]["field"]) time.sleep(1) pag.click(752,529) time.sleep(0.5) pag.click(735,571) time.sleep(0.5) pag.typewrite(profile["education"]["start"]) time.sleep(0.5) pag.click(685,685) time.sleep(0.5) pag.click(1092,576) time.sleep(0.5) pag.typewrite(profile["education"]["end"]) time.sleep(0.5) pag.click(1054,691) time.sleep(0.5) pag.click(826,716) pag.typewrite(profile["education"]["description"]) time.sleep(0.5) pag.click(1263,905) time.sleep(0.5) pag.click(1820,999) time.sleep(0.5) pag.click(1039,541) time.sleep(0.5) pag.click(1054,712) time.sleep(0.5) pag.click(1818,1004)#Next Page time.sleep(1) pag.click(478,509) time.sleep(0.5) for i in range(0,profile["skills"].len()): pag.typewrite(profile["skills"][i]) time.sleep(0.5) pag.press('down') time.sleep(0.5) pag.typewrite('\n') time.sleep(0.5) pag.click(1800,1003)#Next Page time.sleep(0.5) pag.click(534,543) pyperclip.copy(profile["description"]) pag.hotkey("ctrl", "v") time.sleep(0.5) pag.click(1793,1001) time.sleep(0.5) pag.click(394,537) time.sleep(0.5) pag.click(1800,1000)#Next Page time.sleep(0.5) pag.click(1509,445) time.sleep(0.5) pag.click(1800,1000)#Next Page time.sleep(0.5) pag.click(682,599) pag.typewrite(profile["address"]) time.sleep(0.5) pag.click(633,687) time.sleep(0.5) pag.typewrite(profile["city"]) time.sleep(1) pag.click(637,748) time.sleep(0.5) pag.click(1310,686) pag.typewrite(profile["zip"]) pag.click(781,775) pag.typewrite(profile["phone"]) time.sleep(0.5) pag.click(424,507) time.sleep(0.5) pag.click(773,477) time.sleep(3.5) pag.click(897,170,2)#here time.sleep(1.5) pag.click(1226,830) time.sleep(1.5) pag.click(1800,1000)#Next Page time.sleep(1) pag.click(471,408) time.sleep(1) pag.click(900,550) time.sleep(5) for j in range(profile["portfolio"].len()): pag.click(1582,315)#blank void time.sleep(0.5) for i in range(25): pag.hotkey("tab") time.sleep(0.2) pag.typewrite("\n") time.sleep(1) pag.click(867,318) pag.typewrite(profile["portfolio"][j]["title"]) pag.click(791,516) pag.typewrite(profile["portfolio"][j]["date"]) time.sleep(0.5) pag.click(1296,641) time.sleep(2.5) pag.click(837,445) time.sleep(0.5) pag.click(1339,776) time.sleep(2) pag.click(827,982) pag.typewrite(profile["portfolio"][j]["heading"]) pag.click(825,871) pag.typewrite(profile["portfolio"][j]["url"]) pag.click(1290,697) time.sleep(0.5) pag.click(967,731) time.sleep(0.5) pag.click(865,766) time.sleep(0.5) pag.click(865,766) #repeat? time.sleep(0.5) pag.click(872,799) time.sleep(0.5) pag.click(907,331) #browse click time.sleep(2.5) pag.click(362,472) pag.typewrite(profile["portfolio"][j]["file"]) time.sleep(0.5) pag.click(791,508) if pag.confirm("Continue?") != "OK":#7~20s exit() pag.hotkey("end") time.sleep(0.5) pag.click(1333,551) time.sleep(2) pag.hotkey("end") time.sleep(0.5) pag.click(1360,548) time.sleep(6) for i in range(profile["certificate"].len()): pag.hotkey("end") time.sleep(0.5) pag.hotkey("pageup") time.sleep(0.5) pag.click(839,486) time.sleep(2) pag.hotkey("f5") time.sleep(6) pag.click(787,489) time.sleep(1) pag.typewrite(profile["certificate"][i]) pag.click(788,582) time.sleep(0.5) pag.click(708,629) pag.typewrite(profile["certificate"][i]) time.sleep(0.5) pag.click(1240,728) time.sleep(7) pag.hotkey("end") time.sleep(0.5) pag.click(979,554) time.sleep(2) pag.click(897,409) pag.typewrite(profile["other_exp"]["title"]) pag.click(776,524) pag.typewrite(profile["other_exp"]["description"]) time.sleep(0.5) pag.click(1249,823) time.sleep(3) pag.alert("Done") # while True: # print(pag.position()) # Path: bot_create.py import argparse from FreelancerBot import FreelancerBot from UpworkBot import UpworkBot parser = argparse.ArgumentParser() parser.add_argument("-t", "--type", help="Specify whether freelancer or upwork.") args = parser.parse_args()
account_type=args.type
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: ChatClue/ChatClue # Path: utils/os/helpers.py class OSHelper: """ Provides utility methods for operating system level operations, particularly file management. This class includes static methods for performing various file system tasks such as cleaning up orphaned files and retrieving files. """ @staticmethod def find_closest_image(directory, target_time): """ Finds the closest image file in a directory based on the target time. This function searches through all JPG files in the specified directory and selects the one whose creation time is closest to, but not earlier than, the target time. Args: directory (str): The directory path where the image files are stored. target_time (float): The target time (in seconds since epoch) to compare the file creation times against. Returns: str: The path of the closest image file. Returns None if no suitable file is found. """ closest_file = None closest_time_diff = None # Iterate over each file in the specified directory for filename in os.listdir(directory): if filename.lower().endswith(".jpg"): # Check if the file is a JPG image filepath = os.path.join(directory, filename) filetime = os.path.getmtime(filepath) # Get the modification time of the file # Check if the file's time is later than the target time and if it's the closest so far if filetime > target_time: logging.info(f"File is close: {filepath} - Time: {filetime}") time_diff = filetime - target_time if closest_time_diff is None or time_diff < closest_time_diff: closest_file = filepath closest_time_diff = time_diff return closest_file @staticmethod def convert_image_to_base64(filepath): """ Converts an image file to a Base64 encoded string. This function reads the image file from the given filepath, encodes it in Base64, and then decodes it to a UTF-8 string, which can be easily used for data transfer or embedding in web pages. Args: filepath (str): The path of the image file to be converted. Returns: str: The Base64 encoded string of the image. """ with open(filepath, "rb") as image_file: # Read the file and encode it in Base64 return base64.b64encode(image_file.read()).decode("utf-8") @staticmethod def clear_orphaned_audio_files(): """ Removes all audio files in a specific directory. This method is used to clear out any leftover audio files in the 'tmp/audio' directory. It iterates through all files in the specified directory and deletes them. """ # Specify the directory path for audio files directory_path = 'tmp/audio' # Iterate through and remove each file in the directory for filename in os.listdir(directory_path): file_path = os.path.join(directory_path, filename) try: os.remove(file_path) logging.info(f"Removed file: {file_path}") except OSError as e: logging.info(f"Error removing file {file_path}: {e}") @staticmethod def clear_orphaned_video_files(): """ Removes all video files in a specific directory. This method is used to clear out any leftover video files in the 'tmp/video' directory. It iterates through all files in the specified directory and deletes them. """ # Specify the directory path for video files directory_path = 'tmp/video' # Iterate through and remove each file in the directory for filename in os.listdir(directory_path): file_path = os.path.join(directory_path, filename) try: os.remove(file_path) logging.info(f"Removed file: {file_path}") except OSError as e: logging.info(f"Error removing file {file_path}: {e}") @staticmethod def system_file_cleanup(): """ Performs a general cleanup of system files. Currently, this method focuses on clearing orphaned audio files but can be expanded to include other cleanup tasks. """ # Clear orphaned audio files OSHelper.clear_orphaned_audio_files() OSHelper.clear_orphaned_video_files() @staticmethod def configure_tmp_directories(): """ Ensures that the required directories (tmp/audio and tmp/video) exist. Creates them if they do not exist. """ directories = ['tmp/audio', 'tmp/video'] for directory in directories: os.makedirs(directory, exist_ok=True) logging.info(f"Checked and ensured directory exists: {directory}") # Path: celery_config.py def get_celery_app(): return celery_app # Path: database/setup.py class DatabaseSetup: """ This class is responsible for database setup tasks, particularly for ensuring that all defined tables in SQLAlchemy models are created in the database. """ @staticmethod def initial_setup(): """ Creates tables in the database based on the SQLAlchemy models. This method uses the SQLAlchemy engine to connect to the database and creates any tables that haven't been created yet as defined in the SQLAlchemy model classes. It's intended to be run during the initial setup phase of the application. """ # Obtain the SQLAlchemy engine engine = get_engine() # Ensure vector extension is enabled. with engine.begin() as connection: # Create extension 'pgvector' if it is not created yet # Remember, you may need to install pgvector on your system before this will work properly. # https://github.com/pgvector/pgvector.git for instructions. connection.execute(text("CREATE EXTENSION IF NOT EXISTS vector")) # Create all tables in the database defined in the SQLAlchemy models # This will have no effect on existing tables that match the model definitions Base.metadata.create_all(engine) # Path: broadcast/broadcaster.py class Broadcaster: def __init__(self): def send_message(self, message): def start(self): def shutdown(self): # Path: audio/audio_processor.py class AudioProcessor: """ A class to handle audio processing, including capturing audio input, processing it with Vosk for speech recognition, and responding using OpenAI's GPT model. Attributes: model (Vosk.Model): Vosk speech recognition model. samplerate (int): The sample rate for audio capture. device (str): The name of the audio input device. blocksize (int): The block size for audio processing. dump_filename (str): Filename to dump the audio input, if provided. """ def __init__(self): self.model = Model(lang=AUDIO_SETTINGS.get('VOSK_MODEL', "en-us")) self.samplerate = AUDIO_SETTINGS.get('SOUND_DEVICE_SAMPLERATE') self.device = AUDIO_SETTINGS.get('SOUND_DEVICE_DEVICE') self.blocksize = AUDIO_SETTINGS.get('SOUND_DEVICE_BLOCK_SIZE', 28000) self.dump_filename = AUDIO_SETTINGS.get('AUDIO_IN_DUMP_FILENAME') self.audio_queue = queue.Queue() self.openai_client = OpenAIClient() self.openai_conversation_builder = OpenAIConversationBuilder() self.tool_processor = ToolProcessor() self.broadcaster = broadcaster self.audio_out = get_audio_out() self.audio_out_response_buffer = '' self.full_assistant_response = '' self.last_wake_time = 0 self.last_response_end_time = 0 self.processing_openai_request = False self.shutdown_event = threading.Event() def open_dump_file(self): """Opens the file to dump audio input if a filename is provided.""" if self.dump_filename is not None: self.dump_filename = open(self.dump_filename, "wb") def close_dump_file(self): """Closes the audio dump file if it was opened.""" if self.dump_filename is not None: self.dump_filename.close() def should_process(self, result, current_time): """ Determines whether the robot should process the input based on wake phrases or elapsed time. Args: result (str): The recognized text from the audio input. current_time (float): The current time in seconds. Returns: bool: True if the input should be processed, False otherwise. """ return (not contains_quiet_please_phrase(result) and contains_wake_phrase(result)) or \ (not contains_quiet_please_phrase(result) and (current_time - self.last_wake_time <= 10) or (current_time - self.last_response_end_time <= 10) and not self.audio_out.is_playing) \ def update_wake_time(self): """Updates the time when a wake phrase was last heard.""" self.last_wake_time = time.time() self.save_system_state() def update_response_end_time(self): """Updates the time when the robot's last response ended.""" self.last_response_end_time = time.time() def callback(self, indata, frames, time, status): """ Callback function for audio input stream. Args: indata: The buffer containing the incoming sound. frames: The number of frames. time: Current stream time. status: Status of the stream. """ if status: logging.warning(status) self.audio_queue.put(bytes(indata)) def process_stream(self): """ Processes the audio stream by recognizing speech and generating responses. Continuously captures audio, performs speech recognition, and generates responses using OpenAI. """ self.open_dump_file() try: with sd.RawInputStream(samplerate=self.samplerate, blocksize=self.blocksize, device=self.device, dtype="int16", channels=1, callback=self.callback): rec = KaldiRecognizer(self.model, self.samplerate) openai_stream_thread = None while not self.shutdown_event.is_set(): data, current_time = self.get_audio_data() result = self.process_recognition(data, rec) if result: openai_stream_thread = self.handle_speech(result, openai_stream_thread, current_time) self.handle_partial_results(rec) self.write_to_dump_file(data) self.process_openai_response() # except Exception as e: # logging.error(f"An error occurred: {e}") finally: self.close_dump_file() def get_audio_data(self): """ Retrieves audio data from the queue. Returns: tuple: A tuple containing the audio data and the current time. """ data = self.audio_queue.get() current_time = time.time() return data, current_time def process_recognition(self, data, rec): """ Processes the recognition of speech from audio data. Args: data: The audio data to be processed. rec (KaldiRecognizer): The Vosk recognizer instance. Returns: str or None: Recognized text or None if no significant speech is recognized. """ if rec.AcceptWaveform(data): result = json.loads(rec.Result())["text"] if result not in ['', 'huh']: self.broadcaster.send_message(result) logging.info("ROBOT HEARD: " + result) return result return None def handle_speech(self, result, openai_stream_thread, current_time): """ Processes the recognized speech and determines the appropriate response. Args: result (str): Recognized speech text. openai_stream_thread (threading.Thread): The current OpenAI stream thread. current_time (float): Current time in seconds. Returns: threading.Thread: Updated or new OpenAI stream thread. """ try: if self.should_process(result, current_time) and not self.processing_openai_request: self.update_wake_time() self.processing_openai_request = True if not openai_stream_thread or not openai_stream_thread.is_alive(): self.openai_client.stop_signal.clear() is_tool_request, conversation = self.determine_tool_request(result) if is_tool_request: self.handle_tool_request(result, conversation) else: self.continue_conversation(result, conversation) else: logging.info("ROBOT THOUGHT: Ignoring Conversation, it doesn't appear to be relevant.") finally: self.processing_openai_request = False return openai_stream_thread def determine_tool_request(self, result): """ Determines whether the given input text is a tool request. Args: result (str): The recognized text to evaluate. Returns: Tuple[bool, list]: A tuple containing a boolean indicating whether it's a tool request, and the conversation array for further processing. """ call_type_messages = self.openai_conversation_builder.create_check_if_tool_call_messages(result) openai_is_tool_response = self.openai_client.create_completion(call_type_messages, False, {"type": "json_object"}, openai_functions, True) is_tool_request = False conversation = self.openai_conversation_builder.create_recent_conversation_messages_array(result) try: if openai_is_tool_response and openai_is_tool_response.choices: is_tool_request = json.loads(openai_is_tool_response.choices[0].message.content).get("is_tool", False) except (TypeError, AttributeError, json.JSONDecodeError): print("Error parsing OpenAI response or response not in expected format.") return is_tool_request, conversation def handle_tool_request(self, result, conversation): """ Handles the processing of a tool request. Args: result (str): The recognized text. conversation (list): The conversation array built up to this point. """ tool_response = self.openai_client.create_completion(conversation, False, None, openai_functions) tool_response_message = tool_response.choices[0].message tool_calls = tool_response_message.tool_calls if tool_calls: self.process_tool_calls(tool_calls, result, conversation, tool_response_message) else: self.continue_conversation(result, conversation) def process_tool_calls(self, tool_calls, result, conversation, tool_response_message): """ Processes the tool calls received from OpenAI. Args: tool_calls (list): List of tool calls from OpenAI response. result (str): The recognized text. conversation (list): The conversation array. tool_response_message (Message): The tool response message from OpenAI. """ tool_call = tool_calls[0] tool_processor_response = self.tool_processor.process_tool_request(tool_call) if tool_processor_response["success"]: self.handle_successful_tool_response(tool_processor_response, result, conversation, tool_response_message) else: self.audio_out.add_to_queue(get_tool_not_found_phrase()) def handle_successful_tool_response(self, tool_processor_response, result, conversation, tool_response_message): """ Handles a successful tool response. Args: tool_processor_response (dict): The response from the tool processor. result (str): The recognized text. conversation (list): The conversation array. tool_response_message (Message): The tool response message from OpenAI. """ if tool_processor_response["is_conversational"]: conversation.append(tool_response_message) tool_call_response_message = self.openai_conversation_builder.create_tool_call_response_message(tool_processor_response) conversation.append(tool_call_response_message) openai_stream_thread = threading.Thread(target=self.openai_client.stream_response, args=(conversation,)) openai_stream_thread.start() else: self.store_conversation(speaker_type=CONVERSATIONS_CONFIG["user"], response=result) def continue_conversation(self, result, conversation): """ Continues the conversation with OpenAI based on the given result. Args: result (str): The recognized text to continue the conversation with. conversation (list): The existing conversation array. """ self.openai_client.stop_processing_request() conversation = self.openai_conversation_builder.create_recent_conversation_messages_array(result) openai_stream_thread = threading.Thread(target=self.openai_client.stream_response, args=(conversation,)) openai_stream_thread.start() logging.info("ROBOT ACTION: Committing user input to memory.") self.store_conversation(speaker_type=CONVERSATIONS_CONFIG["user"], response=result) def handle_partial_results(self, rec): """ Handles partial results from speech recognition. Args: rec (KaldiRecognizer): The Vosk recognizer instance. """ partial_result_json = json.loads(rec.PartialResult()) if 'partial' in partial_result_json and contains_quiet_please_phrase(partial_result_json['partial']): self.stop_conversation_and_audio() def stop_conversation_and_audio(self): """ Stops the conversation and any ongoing audio processing. """ logging.info("ROBOT THOUGHT: Request to stop talking recognized. Stopping stream.") self.stop_all_audio() if self.full_assistant_response: logging.info("ROBOT ACTION: Committing my partial response to memory") self.store_full_assistant_response() def stop_all_audio(self): self.audio_out_response_buffer = '' self.openai_client.stop_processing_request() self.audio_out.stop_all_audio() def write_to_dump_file(self, data): """ Writes audio data to the dump file if it's open. Args: data: The audio data to be written to the file. """ if self.dump_filename is not None: self.dump_filename.write(data) def process_openai_response(self): """ Processes responses from OpenAI's GPT model. Retrieves and handles the responses generated by OpenAI. """ while not self.openai_client.response_queue.empty(): chunk = self.openai_client.response_queue.get() if chunk.choices[0].delta.content is not None: response_text = chunk.choices[0].delta.content print(response_text, end='', flush=True) self.update_response_end_time() self.audio_out_response_buffer += response_text if self.audio_out_response_buffer.endswith(('.', '?', '!', ';')): self.audio_out.add_to_queue(self.audio_out_response_buffer) self.audio_out_response_buffer = "" self.full_assistant_response += response_text if self.full_assistant_response and self.openai_client.streaming_complete: logging.info("ROBOT ACTION: Committing my full response to memory") self.store_full_assistant_response() def store_full_assistant_response(self): """ Stores the full assistant response in the database. """ self.store_conversation(speaker_type=CONVERSATIONS_CONFIG["assistant"], response=self.full_assistant_response) self.full_assistant_response = '' def store_conversation(self, speaker_type, response): """ Stores the conversation part in the database asynchronously using a Celery task. Args: speakerType (str): "user" or "assistant", indicating who is speaking. response (str): The text of the response. """ get_celery_app().send_task('background.memory.tasks.store_conversation_task', args=[speaker_type, response]) logging.info("Store conversation task submitted to background") def save_system_state(self): """ Saves the system state in the database asynchronously using a Celery task. """ get_celery_app().send_task('background.memory.tasks.update_system_state_task', args=[self.last_wake_time]) logging.info("Update system state task submitted to background") def shutdown(self): self.shutdown_event.set() # Path: video/video_processor.py class VideoProcessor: """ A class to handle video processing, including capturing video input and processing it with MediaPipe for pose estimation. """ def __init__(self): # MediaPipe Pose solution initialization self.mp_pose = mp.solutions.pose self.pose = self.mp_pose.Pose() self.cap = None # Video capture settings self.frame_rate = VIDEO_SETTINGS.get('FRAME_RATE', 30) self.device = VIDEO_SETTINGS.get('VIDEO_DEVICE', 0) self.capture_interval = VIDEO_SETTINGS.get('CAPTURE_INTERVAL', 1) self.frame_counter = 0 self.last_capture_time = time.time() self.frame_queue = queue.Queue() # Check and create tmp directory for storing frames self.tmp_folder = 'tmp/video' if not os.path.exists(self.tmp_folder): os.makedirs(self.tmp_folder) self.shutdown_event = threading.Event() def process_stream(self): """ Captures and processes the video stream. """ if VIDEO_SETTINGS.get('CAPTURE_VIDEO', False): self.cap = cv2.VideoCapture(self.device) while not self.shutdown_event.is_set(): ret, frame = self.cap.read() if not ret: continue # Process the frame #self.process_frame(frame) # Capture frames at a set interval for saving if time.time() - self.last_capture_time > self.capture_interval: frame_name = os.path.join(self.tmp_folder, f"frame_{self.frame_counter}.jpg") cv2.imwrite(frame_name, frame) logging.debug(f"Frame saved as {frame_name}") self.frame_counter += 1 self.last_capture_time = time.time() self.clean_up() def clean_up(self): """ Releases resources and closes windows. """ if self.cap: self.cap.release() cv2.destroyAllWindows() OSHelper.clear_orphaned_video_files() def process_frame(self, frame): """ Processes a single video frame. """ self.frame_queue.put(frame) frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) results = self.pose.process(frame_rgb) if results.pose_landmarks: # Draw pose landmarks mp.solutions.drawing_utils.draw_landmarks(frame, results.pose_landmarks, self.mp_pose.POSE_CONNECTIONS) # Additional processing can be added here def shutdown(self): """ Signals the thread to terminate. """ self.shutdown_event.set() # Path: audio/audio_out.py def get_audio_out(): """ Returns the instance of AudioOutput for use. Returns: AudioOutput: The instance of the AudioOutput class. """ return audio_out # Path: utils/os/helpers.py class OSHelper: """ Provides utility methods for operating system level operations, particularly file management. This class includes static methods for performing various file system tasks such as cleaning up orphaned files and retrieving files. """ @staticmethod def find_closest_image(directory, target_time): """ Finds the closest image file in a directory based on the target time. This function searches through all JPG files in the specified directory and selects the one whose creation time is closest to, but not earlier than, the target time. Args: directory (str): The directory path where the image files are stored. target_time (float): The target time (in seconds since epoch) to compare the file creation times against. Returns: str: The path of the closest image file. Returns None if no suitable file is found. """ closest_file = None closest_time_diff = None # Iterate over each file in the specified directory for filename in os.listdir(directory): if filename.lower().endswith(".jpg"): # Check if the file is a JPG image filepath = os.path.join(directory, filename) filetime = os.path.getmtime(filepath) # Get the modification time of the file # Check if the file's time is later than the target time and if it's the closest so far if filetime > target_time: logging.info(f"File is close: {filepath} - Time: {filetime}") time_diff = filetime - target_time if closest_time_diff is None or time_diff < closest_time_diff: closest_file = filepath closest_time_diff = time_diff return closest_file @staticmethod def convert_image_to_base64(filepath): """ Converts an image file to a Base64 encoded string. This function reads the image file from the given filepath, encodes it in Base64, and then decodes it to a UTF-8 string, which can be easily used for data transfer or embedding in web pages. Args: filepath (str): The path of the image file to be converted. Returns: str: The Base64 encoded string of the image. """ with open(filepath, "rb") as image_file: # Read the file and encode it in Base64 return base64.b64encode(image_file.read()).decode("utf-8") @staticmethod def clear_orphaned_audio_files(): """ Removes all audio files in a specific directory. This method is used to clear out any leftover audio files in the 'tmp/audio' directory. It iterates through all files in the specified directory and deletes them. """ # Specify the directory path for audio files directory_path = 'tmp/audio' # Iterate through and remove each file in the directory for filename in os.listdir(directory_path): file_path = os.path.join(directory_path, filename) try: os.remove(file_path) logging.info(f"Removed file: {file_path}") except OSError as e: logging.info(f"Error removing file {file_path}: {e}") @staticmethod def clear_orphaned_video_files(): """ Removes all video files in a specific directory. This method is used to clear out any leftover video files in the 'tmp/video' directory. It iterates through all files in the specified directory and deletes them. """ # Specify the directory path for video files directory_path = 'tmp/video' # Iterate through and remove each file in the directory for filename in os.listdir(directory_path): file_path = os.path.join(directory_path, filename) try: os.remove(file_path) logging.info(f"Removed file: {file_path}") except OSError as e: logging.info(f"Error removing file {file_path}: {e}") @staticmethod def system_file_cleanup(): """ Performs a general cleanup of system files. Currently, this method focuses on clearing orphaned audio files but can be expanded to include other cleanup tasks. """ # Clear orphaned audio files OSHelper.clear_orphaned_audio_files() OSHelper.clear_orphaned_video_files() @staticmethod def configure_tmp_directories(): """ Ensures that the required directories (tmp/audio and tmp/video) exist. Creates them if they do not exist. """ directories = ['tmp/audio', 'tmp/video'] for directory in directories: os.makedirs(directory, exist_ok=True) logging.info(f"Checked and ensured directory exists: {directory}") # Path: utils/text/welcome.py def welcome_message(): print(""" ChatClue: Osiris /\_/\ ( o.o ) > ^ < Optimized System for Integrated Real-Time Interaction and Sensing """) # Path: utils/logging/colors.py class ColorFormatter(logging.Formatter): def format(self, record): levelname = record.levelname message = logging.Formatter.format(self, record) return COLORS.get(levelname, '') + message + COLORS['ENDC'] # Path: osiris.py from config import CELERY_CONFIG, LOG_LEVEL, VIDEO_SETTINGS from utils.os.helpers import OSHelper from celery import Celery from celery_config import get_celery_app from database.setup import DatabaseSetup from broadcast.broadcaster import broadcaster from audio.audio_processor import AudioProcessor from video.video_processor import VideoProcessor from audio.audio_out import get_audio_out from utils.os.helpers import OSHelper from utils.text.welcome import welcome_message from utils.logging.colors import ColorFormatter from background.memory.tasks import * from tools import * # Import all openai tool functions import logging import subprocess import atexit import sys import threading import time import cv2 import queue # Configure basic logging for the application logging.basicConfig(level=LOG_LEVEL) root_logger = logging.getLogger() for handler in root_logger.handlers: handler.setFormatter(ColorFormatter('%(asctime)s - %(levelname)s - %(message)s')) # Ensure the necessary tmp/ directories exist OSHelper.configure_tmp_directories() # Configure background processor / subconcious systems celery_app = get_celery_app() # Configure audio output audio_out = get_audio_out()
def start_celery_worker():
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: GXNU-ZhongLab/ODTrack # Path: lib/models/odtrack/odtrack.py def build_odtrack(cfg, training=True): current_dir = os.path.dirname(os.path.abspath(__file__)) # This is your Project Root pretrained_path = os.path.join(current_dir, '../../../pretrained_networks') if cfg.MODEL.PRETRAIN_FILE and ('OSTrack' not in cfg.MODEL.PRETRAIN_FILE) and training: pretrained = os.path.join(pretrained_path, cfg.MODEL.PRETRAIN_FILE) else: pretrained = '' if cfg.MODEL.BACKBONE.TYPE == 'vit_base_patch16_224': backbone = vit_base_patch16_224(pretrained, drop_path_rate=cfg.TRAIN.DROP_PATH_RATE, add_cls_token=cfg.MODEL.BACKBONE.ADD_CLS_TOKEN, attn_type=cfg.MODEL.BACKBONE.ATTN_TYPE,) elif cfg.MODEL.BACKBONE.TYPE == 'vit_large_patch16_224': backbone = vit_large_patch16_224(pretrained, drop_path_rate=cfg.TRAIN.DROP_PATH_RATE, add_cls_token=cfg.MODEL.BACKBONE.ADD_CLS_TOKEN, attn_type=cfg.MODEL.BACKBONE.ATTN_TYPE, ) elif cfg.MODEL.BACKBONE.TYPE == 'vit_base_patch16_224_ce': backbone = vit_base_patch16_224_ce(pretrained, drop_path_rate=cfg.TRAIN.DROP_PATH_RATE, ce_loc=cfg.MODEL.BACKBONE.CE_LOC, ce_keep_ratio=cfg.MODEL.BACKBONE.CE_KEEP_RATIO, add_cls_token=cfg.MODEL.BACKBONE.ADD_CLS_TOKEN, ) elif cfg.MODEL.BACKBONE.TYPE == 'vit_large_patch16_224_ce': backbone = vit_large_patch16_224_ce(pretrained, drop_path_rate=cfg.TRAIN.DROP_PATH_RATE, ce_loc=cfg.MODEL.BACKBONE.CE_LOC, ce_keep_ratio=cfg.MODEL.BACKBONE.CE_KEEP_RATIO, add_cls_token=cfg.MODEL.BACKBONE.ADD_CLS_TOKEN, ) else: raise NotImplementedError hidden_dim = backbone.embed_dim patch_start_index = 1 backbone.finetune_track(cfg=cfg, patch_start_index=patch_start_index) box_head = build_box_head(cfg, hidden_dim) model = ODTrack( backbone, box_head, aux_loss=False, head_type=cfg.MODEL.HEAD.TYPE, token_len=cfg.MODEL.BACKBONE.TOKEN_LEN, ) return model # Path: lib/test/tracker/basetracker.py class BaseTracker: """Base class for all trackers.""" def __init__(self, params): self.params = params self.visdom = None def predicts_segmentation_mask(self): return False def initialize(self, image, info: dict) -> dict: """Overload this function in your tracker. This should initialize the model.""" raise NotImplementedError def track(self, image, info: dict = None) -> dict: """Overload this function in your tracker. This should track in the frame and update the model.""" raise NotImplementedError def visdom_draw_tracking(self, image, box, segmentation=None): if isinstance(box, OrderedDict): box = [v for k, v in box.items()] else: box = (box,) if segmentation is None: self.visdom.register((image, *box), 'Tracking', 1, 'Tracking') else: self.visdom.register((image, *box, segmentation), 'Tracking', 1, 'Tracking') def transform_bbox_to_crop(self, box_in, resize_factor, device, box_extract=None, crop_type='template'): # box_in: list [x1, y1, w, h], not normalized # box_extract: same as box_in # out bbox: Torch.tensor [1, 1, 4], x1y1wh, normalized if crop_type == 'template': crop_sz = torch.Tensor([self.params.template_size, self.params.template_size]) elif crop_type == 'search': crop_sz = torch.Tensor([self.params.search_size, self.params.search_size]) else: raise NotImplementedError box_in = torch.tensor(box_in) if box_extract is None: box_extract = box_in else: box_extract = torch.tensor(box_extract) template_bbox = transform_image_to_crop(box_in, box_extract, resize_factor, crop_sz, normalize=True) template_bbox = template_bbox.view(1, 1, 4).to(device) return template_bbox def _init_visdom(self, visdom_info, debug): visdom_info = {} if visdom_info is None else visdom_info self.pause_mode = False self.step = False self.next_seq = False if debug > 0 and visdom_info.get('use_visdom', True): try: self.visdom = Visdom(debug, {'handler': self._visdom_ui_handler, 'win_id': 'Tracking'}, visdom_info=visdom_info) # # Show help # help_text = 'You can pause/unpause the tracker by pressing ''space'' with the ''Tracking'' window ' \ # 'selected. During paused mode, you can track for one frame by pressing the right arrow key.' \ # 'To enable/disable plotting of a data block, tick/untick the corresponding entry in ' \ # 'block list.' # self.visdom.register(help_text, 'text', 1, 'Help') except: time.sleep(0.5) print('!!! WARNING: Visdom could not start, so using matplotlib visualization instead !!!\n' '!!! Start Visdom in a separate terminal window by typing \'visdom\' !!!') def _visdom_ui_handler(self, data): if data['event_type'] == 'KeyPress': if data['key'] == ' ': self.pause_mode = not self.pause_mode elif data['key'] == 'ArrowRight' and self.pause_mode: self.step = True elif data['key'] == 'n': self.next_seq = True # Path: lib/test/tracker/vis_utils.py def gen_visualization(image, mask_indices, patch_size=16): # image [224, 224, 3] # mask_indices, list of masked token indices # mask mask_indices need to cat # mask_indices = mask_indices[::-1] num_stages = len(mask_indices) for i in range(1, num_stages): mask_indices[i] = np.concatenate([mask_indices[i-1], mask_indices[i]], axis=1) # keep_indices = get_keep_indices(decisions) image = np.asarray(image) H, W, C = image.shape Hp, Wp = H // patch_size, W // patch_size image_tokens = image.reshape(Hp, patch_size, Wp, patch_size, 3).swapaxes(1, 2).reshape(Hp * Wp, patch_size, patch_size, 3) stages = [ recover_image(gen_masked_tokens(image_tokens, mask_indices[i]), H, W, Hp, Wp, patch_size) for i in range(num_stages) ] imgs = [image] + stages imgs = [pad_img(img) for img in imgs] viz = np.concatenate(imgs, axis=1) return viz # Path: lib/test/utils/hann.py def hann2d(sz: torch.Tensor, centered = True) -> torch.Tensor: """2D cosine window.""" return hann1d(sz[0].item(), centered).reshape(1, 1, -1, 1) * hann1d(sz[1].item(), centered).reshape(1, 1, 1, -1) # Path: lib/train/data/processing_utils.py def sample_target(im, target_bb, search_area_factor, output_sz=None, mask=None): """ Extracts a square crop centered at target_bb box, of area search_area_factor^2 times target_bb area args: im - cv image target_bb - target box [x, y, w, h] search_area_factor - Ratio of crop size to target size output_sz - (float) Size to which the extracted crop is resized (always square). If None, no resizing is done. returns: cv image - extracted crop float - the factor by which the crop has been resized to make the crop size equal output_size """ if not isinstance(target_bb, list): x, y, w, h = target_bb.tolist() else: x, y, w, h = target_bb # Crop image crop_sz = math.ceil(math.sqrt(w * h) * search_area_factor) if crop_sz < 1: raise Exception('Too small bounding box.') # x1, y1, x2, y2 of crop image x1 = round(x + 0.5 * w - crop_sz * 0.5) x2 = x1 + crop_sz y1 = round(y + 0.5 * h - crop_sz * 0.5) y2 = y1 + crop_sz x1_pad = max(0, -x1) x2_pad = max(x2 - im.shape[1] + 1, 0) y1_pad = max(0, -y1) y2_pad = max(y2 - im.shape[0] + 1, 0) # Crop target im_crop = im[y1 + y1_pad:y2 - y2_pad, x1 + x1_pad:x2 - x2_pad, :] if mask is not None: mask_crop = mask[y1 + y1_pad:y2 - y2_pad, x1 + x1_pad:x2 - x2_pad] # Pad im_crop_padded = cv.copyMakeBorder(im_crop, y1_pad, y2_pad, x1_pad, x2_pad, cv.BORDER_CONSTANT) # deal with attention mask H, W, _ = im_crop_padded.shape att_mask = np.ones((H,W)) end_x, end_y = -x2_pad, -y2_pad if y2_pad == 0: end_y = None if x2_pad == 0: end_x = None att_mask[y1_pad:end_y, x1_pad:end_x] = 0 # mask is 0 for non-padding areas (image content) if mask is not None: mask_crop_padded = F.pad(mask_crop, pad=(x1_pad, x2_pad, y1_pad, y2_pad), mode='constant', value=0) if output_sz is not None: resize_factor = output_sz / crop_sz im_crop_padded = cv.resize(im_crop_padded, (output_sz, output_sz)) att_mask = cv.resize(att_mask, (output_sz, output_sz)).astype(np.bool_) if mask is None: return im_crop_padded, resize_factor, att_mask mask_crop_padded = \ F.interpolate(mask_crop_padded[None, None], (output_sz, output_sz), mode='bilinear', align_corners=False)[0, 0] return im_crop_padded, resize_factor, att_mask, mask_crop_padded else: if mask is None: return im_crop_padded, att_mask.astype(np.bool_), 1.0 return im_crop_padded, 1.0, att_mask.astype(np.bool_), mask_crop_padded # Path: lib/test/tracker/data_utils.py class Preprocessor(object): def __init__(self): self.mean = torch.tensor([0.485, 0.456, 0.406]).view((1, 3, 1, 1)).cuda() self.std = torch.tensor([0.229, 0.224, 0.225]).view((1, 3, 1, 1)).cuda() def process(self, img_arr: np.ndarray, amask_arr: np.ndarray): # Deal with the image patch img_tensor = torch.tensor(img_arr).cuda().float().permute((2,0,1)).unsqueeze(dim=0) img_tensor_norm = ((img_tensor / 255.0) - self.mean) / self.std # (1,3,H,W) # Deal with the attention mask amask_tensor = torch.from_numpy(amask_arr).to(torch.bool).cuda().unsqueeze(dim=0) # (1,H,W) return NestedTensor(img_tensor_norm, amask_tensor) # Path: lib/utils/box_ops.py def clip_box(box: list, H, W, margin=0): x1, y1, w, h = box x2, y2 = x1 + w, y1 + h x1 = min(max(0, x1), W-margin) x2 = min(max(margin, x2), W) y1 = min(max(0, y1), H-margin) y2 = min(max(margin, y2), H) w = max(margin, x2-x1) h = max(margin, y2-y1) return [x1, y1, w, h] # Path: lib/utils/ce_utils.py def generate_mask_cond(cfg, bs, device, gt_bbox): template_size = cfg.DATA.TEMPLATE.SIZE stride = cfg.MODEL.BACKBONE.STRIDE template_feat_size = template_size // stride if cfg.MODEL.BACKBONE.CE_TEMPLATE_RANGE == 'ALL': box_mask_z = None elif cfg.MODEL.BACKBONE.CE_TEMPLATE_RANGE == 'CTR_POINT': if template_feat_size == 8: index = slice(3, 4) elif template_feat_size == 12: index = slice(5, 6) elif template_feat_size == 16: index = slice(7, 8) elif template_feat_size == 24: index = slice(11, 12) elif template_feat_size == 7: index = slice(3, 4) elif template_feat_size == 14: index = slice(6, 7) else: raise NotImplementedError box_mask_z = torch.zeros([bs, template_feat_size, template_feat_size], device=device) box_mask_z[:, index, index] = 1 box_mask_z = box_mask_z.flatten(1).to(torch.bool) elif cfg.MODEL.BACKBONE.CE_TEMPLATE_RANGE == 'CTR_REC': # use fixed 4x4 region, 3:5 for 8x8 # use fixed 4x4 region 5:6 for 12x12 if template_feat_size == 8: index = slice(3, 5) elif template_feat_size == 12: index = slice(5, 7) elif template_feat_size == 7: index = slice(3, 4) else: raise NotImplementedError box_mask_z = torch.zeros([bs, template_feat_size, template_feat_size], device=device) box_mask_z[:, index, index] = 1 box_mask_z = box_mask_z.flatten(1).to(torch.bool) elif cfg.MODEL.BACKBONE.CE_TEMPLATE_RANGE == 'GT_BOX': box_mask_z = torch.zeros([bs, template_size, template_size], device=device) # box_mask_z_ori = data['template_seg'][0].view(-1, 1, *data['template_seg'].shape[2:]) # (batch, 1, 128, 128) box_mask_z = generate_bbox_mask(box_mask_z, gt_bbox * template_size).unsqueeze(1).to( torch.float) # (batch, 1, 128, 128) # box_mask_z_vis = box_mask_z.cpu().numpy() box_mask_z = F.interpolate(box_mask_z, scale_factor=1. / cfg.MODEL.BACKBONE.STRIDE, mode='bilinear', align_corners=False) box_mask_z = box_mask_z.flatten(1).to(torch.bool) # box_mask_z_vis = box_mask_z[:, 0, ...].cpu().numpy() # gaussian_maps_vis = generate_heatmap(data['template_anno'], self.cfg.DATA.TEMPLATE.SIZE, self.cfg.MODEL.STRIDE)[0].cpu().numpy() else: raise NotImplementedError return box_mask_z # Path: lib/test/tracker/odtrack.py import math import numpy as np import torch import cv2 import os from lib.models.odtrack import build_odtrack from lib.test.tracker.basetracker import BaseTracker from lib.test.tracker.vis_utils import gen_visualization from lib.test.utils.hann import hann2d from lib.train.data.processing_utils import sample_target from lib.test.tracker.data_utils import Preprocessor from lib.utils.box_ops import clip_box from lib.utils.ce_utils import generate_mask_cond # for debug class ODTrack(BaseTracker): def __init__(self, params): super(ODTrack, self).__init__(params) network = build_odtrack(params.cfg, training=False) network.load_state_dict(torch.load(self.params.checkpoint, map_location='cpu')['net'], strict=True) self.cfg = params.cfg self.network = network.cuda() self.network.eval() self.preprocessor = Preprocessor() self.state = None self.feat_sz = self.cfg.TEST.SEARCH_SIZE // self.cfg.MODEL.BACKBONE.STRIDE # motion constrain self.output_window = hann2d(torch.tensor([self.feat_sz, self.feat_sz]).long(), centered=True).cuda() # for debug self.debug = params.debug self.use_visdom = params.debug self.frame_id = 0 if self.debug: if not self.use_visdom: self.save_dir = "debug" if not os.path.exists(self.save_dir): os.makedirs(self.save_dir) else: # self.add_hook() self._init_visdom(None, 1) # for save boxes from all queries self.save_all_boxes = params.save_all_boxes self.z_dict1 = {} def initialize(self, image, info: dict): # forward the template once z_patch_arr, resize_factor, z_amask_arr = sample_target(image, info['init_bbox'], self.params.template_factor, output_sz=self.params.template_size) self.z_patch_arr = z_patch_arr template = self.preprocessor.process(z_patch_arr, z_amask_arr) with torch.no_grad(): # self.z_dict1 = template self.memory_frames = [template.tensors] self.memory_masks = [] if self.cfg.MODEL.BACKBONE.CE_LOC: # use CE module template_bbox = self.transform_bbox_to_crop(info['init_bbox'], resize_factor, template.tensors.device).squeeze(1) self.memory_masks.append(generate_mask_cond(self.cfg, 1, template.tensors.device, template_bbox)) # save states
self.state = info['init_bbox']
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Tlntin/booking_simulator # Path: modelscope_agent/llm/base.py class LLM: name = '' def __init__(self, cfg): self.cfg = cfg self.agent_type = None self.model = None self.model_id = self.model def set_agent_type(self, agent_type): self.agent_type = agent_type @abstractmethod def generate(self, prompt: str, functions: list = [], **kwargs) -> str: """each llm should implement this function to generate response Args: prompt (str): prompt functions (list): list of functions object including: name, description, parameters Returns: str: response """ raise NotImplementedError @abstractmethod def stream_generate(self, prompt: str, functions: list = [], **kwargs) -> str: """stream generate response, which yields a generator of response in each step Args: prompt (str): prompt functions (list): list of functions object including: name, description, parameters Yields: Iterator[str]: iterator of step response """ raise NotImplementedError def tokenize(self, input_text: str) -> List[int]: """tokenize is used to calculate the length of the text to meet the model's input length requirements Args: input_text (str): input text Returns: list[int]: token_ids """ raise NotImplementedError def detokenize(self, input_ids: List[int]) -> str: """detokenize Args: input_ids (list[int]): input token_ids Returns: str: text """ raise NotImplementedError # Path: modelscope_agent/output_parser.py class OutputParser: """Output parser for llm response """ def parse_response(self, response): raise NotImplementedError # use to handle the case of false parsing the action_para result, if there is no valid action then # throw Error @staticmethod def handle_fallback(action: str, action_para: str): if action is not None and action != '': parameters = {'fallback': action_para} return action, parameters else: raise ValueError('Wrong response format for output parser') # Path: modelscope_agent/prompt/prompt.py class PromptGenerator: def __init__(self, system_template: str = '', instruction_template: str = '', user_template: str = '<user_input>', exec_template: str = '', assistant_template: str = '', sep='\n\n', llm=None, length_constraint=LengthConstraint()): """ prompt genertor Args: system_template (str, optional): System template, normally the role of LLM. instruction_template (str, optional): Indicate the instruction for LLM. user_template (str, optional): Prefix before user input. Defaults to ''. exec_template (str, optional): A wrapper str for exec result. assistant_template (str, optional): Prefix before assistant response. Some LLM need to manully concat this prefix before generation. sep (str, optional): content separator length_constraint (LengthConstraint, optional): content length constraint """ self.system_template = system_template self.instruction_template = instruction_template self.user_template = user_template self.assistant_template = assistant_template self.exec_template = exec_template self.sep = sep if isinstance(llm, LLM) and llm.model_id: self.prompt_preprocessor = build_raw_prompt(llm.model_id) self.prompt_max_length = length_constraint.prompt_max_length self.reset() def reset(self): self.prompt = '' self.history = [] self.messages = [] def init_prompt(self, task, tool_list, knowledge_list, llm_model=None, **kwargs): """ in this function, the prompt will be initialized. """ prompt = self.sep.join( [self.system_template, self.instruction_template]) prompt += '<knowledge><history>' knowledge_str = self.get_knowledge_str( knowledge_list, file_name=kwargs.get('file_name', '')) # knowledge prompt = prompt.replace('<knowledge>', knowledge_str) # get tool description str tool_str = self.get_tool_str(tool_list) prompt = prompt.replace('<tool_list>', tool_str) history_str = self.get_history_str() prompt = prompt.replace('<history>', history_str) self.system_prompt = copy.deepcopy(prompt) # user input user_input = self.user_template.replace('<user_input>', task) prompt += f'{self.sep}{user_input}' # assistant input prompt += f'{self.sep}{self.assistant_template}' # store history self.history.append({'role': 'user', 'content': user_input}) self.history.append({ 'role': 'assistant', 'content': self.assistant_template }) self.prompt = prompt self.function_calls = self.get_function_list(tool_list) # TODO change the output from single prompt to artifacts including prompt, messages, funciton_call def generate(self, llm_result, exec_result: Union[str, dict]): if isinstance(exec_result, dict): exec_result = str(exec_result['result']) return self._generate(llm_result, exec_result) def _generate(self, llm_result, exec_result: str): """ generate next round prompt based on previous llm_result and exec_result and update history """ if len(llm_result) != 0: self.prompt = f'{self.prompt}{llm_result}' self.history[-1]['content'] += f'{llm_result}' if len(exec_result) != 0: exec_result = self.exec_template.replace('<exec_result>', str(exec_result)) self.prompt = f'{self.prompt}{self.sep}{exec_result}' self.history[-1]['content'] += f'{self.sep}{exec_result}' return self.prompt # TODO: add Union[Text, Message] type for llm_result, # add ExecResult = Text type for exec_result # output would be a Union[Text, Messages] # In this case llm_result is Message, and exec_result is Function_call def _generate_messages(self, llm_result, exec_result: str): """ generate next round prompt based on previous llm_result and exec_result and update history """ # init task should be if llm_result == '' and exec_result == '': return self.history # make sure set content '' not null function_call = llm_result.get('function_call', None) if function_call is not None: llm_result['content'] = '' self.history.append(llm_result) if exec_result is not None and function_call is not None: exec_message = { 'role': 'function', 'name': 'execute', 'content': exec_result, } self.history.append(exec_message) return self.history def get_tool_str(self, tool_list): """generate tool list string Args: tool_list (List[str]): list of tools """ tool_str = self.sep.join( [f'{i + 1}. {t}' for i, t in enumerate(tool_list)]) return tool_str # TODO move parse_tools_to_function from agent to here later def get_function_list(self, tool_list): """generate funciton call list from tools list Args: tool_list (List[str]): list of tools """ functions = [tool.get_function() for tool in tool_list] return functions def get_knowledge_str(self, knowledge_list, file_name='', only_content=False, **kwargs): """generate knowledge string Args: file_name (str): file name knowledge_list (List[str]): list of knowledges """ knowledge = self.sep.join( [f'{i + 1}. {k}' for i, k in enumerate(knowledge_list)]) knowledge_content = KNOWLEDGE_CONTENT_PROMPT.replace( '<knowledge_content>', knowledge) if only_content: return knowledge_content else: knowledge_introduction = KNOWLEDGE_INTRODUCTION_PROMPT.replace( '<file_name>', file_name) knowledge_str = f'{KNOWLEDGE_PROMPT}{self.sep}{knowledge_introduction}{self.sep}{knowledge_content}' if len( knowledge_list) > 0 else '' return knowledge_str def get_history_str(self): """generate history string """ history_str = '' for i in range(len(self.history)): history_item = self.history[len(self.history) - i - 1] text = history_item['content'] if len(history_str) + len(text) + len( self.prompt) > self.prompt_max_length: break history_str = f'{self.sep}{text.strip()}{history_str}' return history_str # Path: modelscope_agent/tools/tool.py class Tool: """ a base class for tools. when you inherit this class and implement new tool, you should provide name, description and parameters of tool that conforms with schema. each tool may have two call method: _local_call(execute tool in your local environment) and _remote_call(construct a http request to remote server). corresponding to preprocess and postprocess method may need to be overrided to get correct result. """ name: str = 'tool' description: str = 'This is a tool that ...' parameters: list = [] def __init__(self, cfg={}): self.cfg = cfg.get(self.name, {}) self.is_remote_tool = self.cfg.get('is_remote_tool', False) self.project_dir = os.path.dirname( os.path.dirname(os.path.dirname(os.path.abspath(__file__))) ) self.db_path = os.path.join(self.project_dir, "data", "sqlite.db") # remote call self.url = self.cfg.get('url', '') self.token = self.cfg.get('token', '') self.header = { 'Authorization': self.token or f'Bearer {MODELSCOPE_API_TOKEN}' } try: all_para = { 'name': self.name, 'description': self.description, 'parameters': self.parameters } self.tool_schema = ToolSchema(**all_para) except ValidationError: raise ValueError(f'Error when parsing parameters of {self.name}') self._str = self.tool_schema.model_dump_json() self._function = self.parse_pydantic_model_to_openai_function(all_para) def __call__(self, remote=False, *args, **kwargs): if self.is_remote_tool or remote: return self._remote_call(*args, **kwargs) else: return self._local_call(*args, **kwargs) def _remote_call(self, *args, **kwargs): if self.url == '': raise ValueError( f"Could not use remote call for {self.name} since this tool doesn't have a remote endpoint" ) remote_parsed_input = json.dumps( self._remote_parse_input(*args, **kwargs)) origin_result = None retry_times = MAX_RETRY_TIMES while retry_times: retry_times -= 1 try: response = requests.request( 'POST', self.url, headers=self.header, data=remote_parsed_input) if response.status_code != requests.codes.ok: response.raise_for_status() origin_result = json.loads( response.content.decode('utf-8'))['Data'] final_result = self._parse_output(origin_result, remote=True) return final_result except Timeout: continue except RequestException as e: raise ValueError( f'Remote call failed with error code: {e.response.status_code},\ error message: {e.response.content.decode("utf-8")}') raise ValueError( 'Remote call max retry times exceeded! Please try to use local call.' ) def _local_call(self, *args, **kwargs): return def _remote_parse_input(self, *args, **kwargs): return kwargs def _local_parse_input(self, *args, **kwargs): return args, kwargs def _parse_output(self, origin_result, *args, **kwargs): return {'result': origin_result} def __str__(self): return self._str def get_function(self): return self._function def parse_pydantic_model_to_openai_function(self, all_para: dict): ''' this method used to convert a pydantic model to openai function schema such that convert all_para = { 'name': get_current_weather, 'description': Get the current weather in a given location, 'parameters': [{ 'name': 'image', 'description': '用户输入的图片', 'required': True }, { 'name': 'text', 'description': '用户输入的文本', 'required': True }] } to { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "image": { "type": "string", "description": "用户输入的图片", }, "text": { "type": "string", "description": "用户输入的文本", }, "required": ["image", "text"], }, } ''' function = { 'name': all_para['name'], 'description': all_para['description'], 'parameters': { 'type': 'object', 'properties': {}, 'required': [], }, } for para in all_para['parameters']: function['parameters']['properties'][para['name']] = { 'type': 'string', 'description': para['description'] } if para['required']: function['parameters']['required'].append(para['name']) return function # Path: tests/utils.py from modelscope_agent.llm import LLM from modelscope_agent.output_parser import OutputParser from modelscope_agent.prompt import PromptGenerator from modelscope_agent.tools import Tool class MockLLM(LLM): def __init__(self, responses=['mock_llm_response']): super().__init__({}) self.responses = responses self.idx = -1 self.model_id = 'mock_llm' def generate(self, prompt: str, function_list=[], **kwargs) -> str: self.idx += 1 return self.responses[self.idx] if self.idx < len( self.responses) else 'mock llm response' def stream_generate(self, prompt: str, function_list=[], **kwargs) -> str: yield 'mock llm response' class MockPromptGenerator(PromptGenerator): def __init__(self): super().__init__() class MockOutParser(OutputParser): def __init__(self, action, args, count=1): super().__init__() self.action = action self.args = args self.count = count def parse_response(self, response: str): if self.count > 0: self.count -= 1 return self.action, self.args else: return None, None class MockTool(Tool):
def __init__(self, name, func, description, parameters=[]):
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: finned-tech/sportsbookreview-scraper # Path: scrapers/sportsbookreview.py class NFLOddsScraper(OddsScraper): def __init__(self, years): super().__init__("nfl", years) self.base = ( "https://www.sportsbookreviewsonline.com/scoresoddsarchives/nfl-odds-" ) self.schema = { "season": [], "date": [], "home_team": [], "away_team": [], "home_1stQtr": [], "away_1stQtr": [], "home_2ndQtr": [], "away_2ndQtr": [], "home_3rdQtr": [], "away_3rdQtr": [], "home_4thQtr": [], "away_4thQtr": [], "home_final": [], "away_final": [], "home_close_ml": [], "away_close_ml": [], "home_open_spread": [], "away_open_spread": [], "home_close_spread": [], "away_close_spread": [], "home_2H_spread": [], "away_2H_spread": [], "2H_total": [], "open_over_under": [], "close_over_under": [], } def _reformat_data(self, df, season): new_df = pd.DataFrame() new_df["season"] = [season] * len(df) new_df["date"] = df[0].apply(lambda x: self._make_datestr(x, season)) new_df["name"] = df[3] new_df["1stQtr"] = df[4] new_df["2ndQtr"] = df[5] new_df["3rdQtr"] = df[6] new_df["4thQtr"] = df[7] new_df["final"] = df[8] _open = df[9].apply(lambda x: 0 if x in self.blacklist else x) new_df["open_odds"] = _open close = df[10].apply(lambda x: 0 if x in self.blacklist else x) new_df["close_odds"] = close new_df["close_ml"] = df[11] h2 = df[12].apply(lambda x: 0 if x in self.blacklist else x) new_df["2H_odds"] = h2 return new_df def _to_schema(self, df): new_df = self.schema.copy() df = df.fillna(0) progress = df.iterrows() for (i1, row), (i2, next_row) in self._pairwise(progress): home_ml = int(next_row["close_ml"]) away_ml = int(row["close_ml"]) odds1 = float(row["open_odds"]) odds2 = float(next_row["open_odds"]) if odds1 < odds2: open_spread = odds1 close_spread = float(row["close_odds"]) h2_spread = float(row["2H_odds"]) h2_total = float(next_row["2H_odds"]) open_ou = odds2 close_ou = float(next_row["close_odds"]) else: open_spread = odds2 close_spread = float(next_row["close_odds"]) h2_spread = float(next_row["2H_odds"]) h2_total = float(row["2H_odds"]) open_ou = odds1 close_ou = float(row["close_odds"]) home_open_spread = -open_spread if home_ml < away_ml else open_spread away_open_spread = -home_open_spread home_close_spread = -close_spread if home_ml < away_ml else close_spread away_close_spread = -home_close_spread h2_home_spread = -h2_spread if home_ml < away_ml else h2_spread h2_away_spread = -h2_home_spread new_df["season"].append(row["season"]) new_df["date"].append(row["date"]) new_df["home_team"].append(self._translate(next_row["name"])) new_df["away_team"].append(self._translate(row["name"])) new_df["home_1stQtr"].append(next_row["1stQtr"]) new_df["away_1stQtr"].append(row["1stQtr"]) new_df["home_2ndQtr"].append(next_row["2ndQtr"]) new_df["away_2ndQtr"].append(row["2ndQtr"]) new_df["home_3rdQtr"].append(next_row["3rdQtr"]) new_df["away_3rdQtr"].append(row["3rdQtr"]) new_df["home_4thQtr"].append(next_row["4thQtr"]) new_df["away_4thQtr"].append(row["4thQtr"]) new_df["home_final"].append(next_row["final"]) new_df["away_final"].append(row["final"]) new_df["home_close_ml"].append(home_ml) new_df["away_close_ml"].append(away_ml) new_df["home_open_spread"].append(home_open_spread) new_df["away_open_spread"].append(away_open_spread) new_df["home_close_spread"].append(home_close_spread) new_df["away_close_spread"].append(away_close_spread) new_df["home_2H_spread"].append(h2_home_spread) new_df["away_2H_spread"].append(h2_away_spread) new_df["2H_total"].append(h2_total) new_df["open_over_under"].append(open_ou) new_df["close_over_under"].append(close_ou) return pd.DataFrame(new_df) # Path: scrapers/sportsbookreview.py class NBAOddsScraper(NFLOddsScraper): def __init__(self, years): super().__init__(years) self.sport = "nba" self.base = ( "https://www.sportsbookreviewsonline.com/scoresoddsarchives/nba-odds-" ) self.schema = { "season": [], "date": [], "home_team": [], "away_team": [], "home_1stQtr": [], "away_1stQtr": [], "home_2ndQtr": [], "away_2ndQtr": [], "home_3rdQtr": [], "away_3rdQtr": [], "home_4thQtr": [], "away_4thQtr": [], "home_final": [], "away_final": [], "home_close_ml": [], "away_close_ml": [], "home_open_spread": [], "away_open_spread": [], "home_close_spread": [], "away_close_spread": [], "home_2H_spread": [], "away_2H_spread": [], "2H_total": [], "open_over_under": [], "close_over_under": [], } # Path: scrapers/sportsbookreview.py class NHLOddsScraper(OddsScraper): def __init__(self, years): super().__init__("nhl", years) self.base = ( "https://www.sportsbookreviewsonline.com/scoresoddsarchives/nhl-odds-" ) self.schema = { "season": [], "date": [], "home_team": [], "away_team": [], "home_1stPeriod": [], "away_1stPeriod": [], "home_2ndPeriod": [], "away_2ndPeriod": [], "home_3rdPeriod": [], "away_3rdPeriod": [], "home_final": [], "away_final": [], "home_open_ml": [], "away_open_ml": [], "home_close_ml": [], "away_close_ml": [], "home_close_spread": [], "away_close_spread": [], "home_close_spread_odds": [], "away_close_spread_odds": [], "open_over_under": [], "open_over_under_odds": [], "close_over_under": [], "close_over_under_odds": [], } def _reformat_data(self, df, season, covid=False): new_df = pd.DataFrame() new_df["season"] = [season] * len(df) new_df["date"] = df[0].apply( lambda x: self._make_datestr(x, season) if not covid else self._make_datestr(x, season, start=1, yr_end=3) ) new_df["name"] = df[3] new_df["1stPeriod"] = df[4] new_df["2ndPeriod"] = df[5] new_df["3rdPeriod"] = df[6] new_df["final"] = df[7] new_df["open_ml"] = df[8] new_df["open_ml"] = new_df["open_ml"].apply( lambda x: 0 if x in self.blacklist else x ) new_df["close_ml"] = df[9] new_df["close_ml"] = new_df["close_ml"].apply( lambda x: 0 if x in self.blacklist else x ) new_df["close_spread"] = df[10] if season > 2013 else 0 new_df["close_spread"] = new_df["close_spread"].apply( lambda x: 0 if x in self.blacklist else float(x) ) new_df["close_spread_odds"] = df[11] if season > 2013 else 0 new_df["close_spread_odds"] = new_df["close_spread_odds"].apply( lambda x: 0 if x in self.blacklist else float(x) ) new_df["open_over_under"] = df[12] if season > 2013 else df[10] new_df["open_over_under"] = new_df["open_over_under"].apply( lambda x: 0 if x in self.blacklist else float(x) ) new_df["open_over_under_odds"] = df[13] if season > 2013 else df[11] new_df["open_over_under_odds"] = new_df["open_over_under_odds"].apply( lambda x: 0 if x in self.blacklist else float(x) ) new_df["close_over_under"] = df[14] if season > 2013 else df[12] new_df["close_over_under"] = new_df["close_over_under"].apply( lambda x: 0 if x in self.blacklist else float(x) ) new_df["close_over_under_odds"] = df[15] if season > 2013 else df[13] new_df["close_over_under_odds"] = new_df["close_over_under_odds"].apply( lambda x: 0 if x in self.blacklist else float(x) ) return new_df def _to_schema(self, df): new_df = self.schema.copy() df = df.fillna(0) progress = df.iterrows() for (i1, row), (i2, next_row) in self._pairwise(progress): new_df["season"].append(row["season"]) new_df["date"].append(row["date"]) new_df["home_team"].append(self._translate(next_row["name"])) new_df["away_team"].append(self._translate(row["name"])) new_df["home_1stPeriod"].append(next_row["1stPeriod"]) new_df["away_1stPeriod"].append(row["1stPeriod"]) new_df["home_2ndPeriod"].append(next_row["2ndPeriod"]) new_df["away_2ndPeriod"].append(row["2ndPeriod"]) new_df["home_3rdPeriod"].append(next_row["3rdPeriod"]) new_df["away_3rdPeriod"].append(row["3rdPeriod"]) new_df["home_final"].append(next_row["final"]) new_df["away_final"].append(row["final"]) new_df["home_open_ml"].append(int(next_row["open_ml"])) new_df["away_open_ml"].append(int(row["open_ml"])) new_df["home_close_ml"].append(int(next_row["close_ml"])) new_df["away_close_ml"].append(int(row["close_ml"])) new_df["home_close_spread"].append(next_row["close_spread"]) new_df["away_close_spread"].append(row["close_spread"]) new_df["home_close_spread_odds"].append(next_row["close_spread_odds"]) new_df["away_close_spread_odds"].append(row["close_spread_odds"]) new_df["open_over_under"].append(next_row["open_over_under"]) new_df["open_over_under_odds"].append(next_row["open_over_under_odds"]) new_df["close_over_under"].append(next_row["close_over_under"]) new_df["close_over_under_odds"].append(next_row["close_over_under_odds"]) return pd.DataFrame(new_df) def driver(self): dfs = pd.DataFrame() for season in self.seasons: # compensate for the COVID shortened season in 2021 season_str = self._make_season(season) if season != 2020 else "2021" is_cov = True if season == 2020 else False url = self.base + season_str # Sportsbookreview has scraper protection, so we need to set a user agent # to get around this. headers = {"User-Agent": "Mozilla/5.0"} r = requests.get(url, headers=headers) dfs = pd.concat( [dfs, self._reformat_data(pd.read_html(r.text)[0][1:], season, is_cov)], axis=0, ) return self._to_schema(dfs) # Path: scrapers/sportsbookreview.py class MLBOddsScraper(OddsScraper): def __init__(self, years): super().__init__("mlb", years) self.base = "https://www.sportsbookreviewsonline.com/wp-content/uploads/sportsbookreviewsonline_com_737/mlb-odds-" self.ext = ".xlsx" self.schema = { "season": [], "date": [], "home_team": [], "away_team": [], "home_1stInn": [], "away_1stInn": [], "home_2ndInn": [], "away_2ndInn": [], "home_3rdInn": [], "away_3rdInn": [], "home_4thInn": [], "away_4thInn": [], "home_5thInn": [], "away_5thInn": [], "home_6thInn": [], "away_6thInn": [], "home_7thInn": [], "away_7thInn": [], "home_8thInn": [], "away_8thInn": [], "home_9thInn": [], "away_9thInn": [], "home_final": [], "away_final": [], "home_open_ml": [], "away_open_ml": [], "home_close_ml": [], "away_close_ml": [], "home_close_spread": [], "away_close_spread": [], "home_close_spread_odds": [], "away_close_spread_odds": [], "open_over_under": [], "open_over_under_odds": [], "close_over_under": [], "close_over_under_odds": [], } def _reformat_data(self, df, season): new_df = pd.DataFrame() new_df["season"] = [season] * len(df) new_df["date"] = df[0].apply( lambda x: self._make_datestr(x, season, start=3, yr_end=10) ) new_df["name"] = df[3] new_df["1stInn"] = df[5] new_df["2ndInn"] = df[6] new_df["3rdInn"] = df[7] new_df["4thInn"] = df[8] new_df["5thInn"] = df[9] new_df["6thInn"] = df[10] new_df["7thInn"] = df[11] new_df["8thInn"] = df[12] new_df["9thInn"] = df[13] new_df["final"] = df[14] new_df["open_ml"] = df[15] new_df["close_ml"] = df[16] new_df["close_spread"] = df[17] if season > 2013 else 0 new_df["close_spread_odds"] = df[18] if season > 2013 else 0 new_df["open_over_under"] = df[19] if season > 2013 else df[17] new_df["open_over_under_odds"] = df[20] if season > 2013 else df[18] new_df["close_over_under"] = df[21] if season > 2013 else df[19] new_df["close_over_under_odds"] = df[22] if season > 2013 else df[20] return new_df def _to_schema(self, df): new_df = self.schema.copy() progress = df.iterrows() for (i1, row), (i2, next_row) in self._pairwise(progress): new_df["season"].append(row["season"]) new_df["date"].append(row["date"]) new_df["home_team"].append(self._translate(next_row["name"])) new_df["away_team"].append(self._translate(row["name"])) new_df["home_1stInn"].append(next_row["1stInn"]) new_df["away_1stInn"].append(row["1stInn"]) new_df["home_2ndInn"].append(next_row["2ndInn"]) new_df["away_2ndInn"].append(row["2ndInn"]) new_df["home_3rdInn"].append(next_row["3rdInn"]) new_df["away_3rdInn"].append(row["3rdInn"]) new_df["home_4thInn"].append(next_row["4thInn"]) new_df["away_4thInn"].append(row["4thInn"]) new_df["home_5thInn"].append(next_row["5thInn"]) new_df["away_5thInn"].append(row["5thInn"]) new_df["home_6thInn"].append(next_row["6thInn"]) new_df["away_6thInn"].append(row["6thInn"]) new_df["home_7thInn"].append(next_row["7thInn"]) new_df["away_7thInn"].append(row["7thInn"]) new_df["home_8thInn"].append(next_row["8thInn"]) new_df["away_8thInn"].append(row["8thInn"]) new_df["home_9thInn"].append(next_row["9thInn"]) new_df["away_9thInn"].append(row["9thInn"]) new_df["home_final"].append(next_row["final"]) new_df["away_final"].append(row["final"]) new_df["home_open_ml"].append(next_row["open_ml"]) new_df["away_open_ml"].append(row["open_ml"]) new_df["home_close_ml"].append(next_row["close_ml"]) new_df["away_close_ml"].append(row["close_ml"]) new_df["home_close_spread"].append(next_row["close_spread"]) new_df["away_close_spread"].append(row["close_spread"]) new_df["home_close_spread_odds"].append(next_row["close_spread_odds"]) new_df["away_close_spread_odds"].append(row["close_spread_odds"]) new_df["open_over_under"].append(next_row["open_over_under"]) new_df["open_over_under_odds"].append(next_row["open_over_under_odds"]) new_df["close_over_under"].append(next_row["close_over_under"]) new_df["close_over_under_odds"].append(next_row["close_over_under_odds"]) return pd.DataFrame(new_df) def driver(self): dfs = pd.DataFrame() for season in self.seasons: url = self.base + str(season) + self.ext headers = {"User-Agent": "Mozilla/5.0"} r = requests.get(url, headers=headers) with io.BytesIO(r.content) as fh: df = pd.read_excel(fh, header=None, sheet_name=None) dfs = pd.concat( [dfs, self._reformat_data(df["Sheet1"][1:], season)], axis=0 ) return self._to_schema(dfs) # Path: cli.py import argparse import config from scrapers.sportsbookreview import ( NFLOddsScraper, NBAOddsScraper, NHLOddsScraper, MLBOddsScraper, ) parser = argparse.ArgumentParser() parser.add_argument("--sport", type=str, required=True) # start and end years parser.add_argument("--start", type=int, required=True) parser.add_argument("--end", type=int, required=True) # filename for output parser.add_argument("--filename", type=str, required=True) # output format (csv or json), default is json parser.add_argument("--format", type=str, default="json") args = parser.parse_args()
if __name__ == "__main__":
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: chenchenygu/watermark-learnability # Path: aar_watermark.py class AarWatermark: def __init__( self, vocab_size: int, k: int, seed: int = DEFAULT_SEED, eps: float = 1e-20, device: Optional[str] = None, ): if not device: device = "cuda" if torch.cuda.is_available() else "cpu" generator = torch.Generator() # generator is always cpu for reproducibility generator.manual_seed(seed) # clamp to avoid NaNs uniform = torch.clamp(torch.rand((vocab_size * k, vocab_size), generator=generator, dtype=torch.float32), min=eps) self.gumbel = (-torch.log(torch.clamp(-torch.log(uniform), min=eps))).to(device) self.k = k self.vocab_size = vocab_size self.seed = seed self.eps = eps self.device = device def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: if input_ids.shape[-1] < self.k: return scores prev_token = torch.sum(input_ids[:, -self.k:], dim=-1) # (batch_size,) gumbel = self.gumbel[prev_token] # (batch_size, vocab_size) return scores[..., :gumbel.shape[-1]] + gumbel def watermark_logits( self, input_ids: torch.LongTensor, # (batch, seq_len) logits: torch.FloatTensor, # (batch, seq_len, vocab_size) ) -> torch.FloatTensor: """Returns watermarked logits to be used as distillation target.""" hashes = torch.sum(input_ids.unfold(-1, self.k, 1), dim=-1) # (batch, seq_len - k + 1) gumbel = self.gumbel[hashes] # (batch, seq_len - k + 1, vocab_size) # tokenizer vocab size and model outputs vocab size may be different logits[..., self.k - 1:, :gumbel.shape[-1]] += gumbel return logits def watermark_logits_argmax( self, input_ids: torch.LongTensor, # (batch, seq_len) logits: torch.FloatTensor, # (batch, seq_len, vocab_size) ) -> torch.LongTensor: """Finds argmax token for watermark, returns token indexes to be used for cross-entropy loss. Returns tensor of shape (batch, seq_len), where each element is a token index. """ hashes = torch.sum(input_ids.unfold(-1, self.k, 1), dim=-1) # (batch, seq_len - k + 1) gumbel = self.gumbel[hashes] # (batch, seq_len - k + 1, vocab_size) # tokenizer vocab size and model outputs vocab size may be different logits[..., self.k - 1:, :gumbel.shape[-1]] += gumbel # (batch, seq_len, vocab_size) tokens = torch.argmax(logits, dim=-1) # (batch, seq_len) return tokens # Path: kgw_watermarking/watermark_reliability_release/watermark_processor.py class WatermarkLogitsProcessor(WatermarkBase, LogitsProcessor): """LogitsProcessor modifying model output scores in a pipe. Can be used in any HF pipeline to modify scores to fit the watermark, but can also be used as a standalone tool inserted for any model producing scores inbetween model outputs and next token sampler. """ def __init__(self, *args, store_spike_ents: bool = False, **kwargs): super().__init__(*args, **kwargs) self.store_spike_ents = store_spike_ents self.spike_entropies = None if self.store_spike_ents: self._init_spike_entropies() def _init_spike_entropies(self): alpha = torch.exp(torch.tensor(self.delta)).item() gamma = self.gamma self.z_value = ((1 - gamma) * (alpha - 1)) / (1 - gamma + (alpha * gamma)) self.expected_gl_coef = (gamma * alpha) / (1 - gamma + (alpha * gamma)) # catch for overflow when bias is "infinite" if alpha == torch.inf: self.z_value = 1.0 self.expected_gl_coef = 1.0 def _get_spike_entropies(self): spike_ents = [[] for _ in range(len(self.spike_entropies))] for b_idx, ent_tensor_list in enumerate(self.spike_entropies): for ent_tensor in ent_tensor_list: spike_ents[b_idx].append(ent_tensor.item()) return spike_ents def _get_and_clear_stored_spike_ents(self): spike_ents = self._get_spike_entropies() self.spike_entropies = None return spike_ents def _compute_spike_entropy(self, scores): # precomputed z value in init probs = scores.softmax(dim=-1) denoms = 1 + (self.z_value * probs) renormed_probs = probs / denoms sum_renormed_probs = renormed_probs.sum() return sum_renormed_probs def _calc_greenlist_mask( self, scores: torch.FloatTensor, greenlist_token_ids ) -> torch.BoolTensor: # Cannot lose loop, greenlists might have different lengths green_tokens_mask = torch.zeros_like(scores, dtype=torch.bool) for b_idx, greenlist in enumerate(greenlist_token_ids): if len(greenlist) > 0: green_tokens_mask[b_idx][greenlist] = True return green_tokens_mask def _bias_greenlist_logits( self, scores: torch.Tensor, greenlist_mask: torch.Tensor, greenlist_bias: float ) -> torch.Tensor: scores[greenlist_mask] = scores[greenlist_mask] + greenlist_bias return scores def _score_rejection_sampling( self, input_ids: torch.LongTensor, scores: torch.FloatTensor, tail_rule="fixed_compute" ) -> list[int]: """Generate greenlist based on current candidate next token. Reject and move on if necessary. Method not batched. This is only a partial version of Alg.3 "Robust Private Watermarking", as it always assumes greedy sampling. It will still (kinda) work for all types of sampling, but less effectively. To work efficiently, this function can switch between a number of rules for handling the distribution tail. These are not exposed by default. """ sorted_scores, greedy_predictions = scores.sort(dim=-1, descending=True) final_greenlist = [] for idx, prediction_candidate in enumerate(greedy_predictions): greenlist_ids = self._get_greenlist_ids( torch.cat([input_ids, prediction_candidate[None]], dim=0) ) # add candidate to prefix if prediction_candidate in greenlist_ids: # test for consistency final_greenlist.append(prediction_candidate) # What follows below are optional early-stopping rules for efficiency if tail_rule == "fixed_score": if sorted_scores[0] - sorted_scores[idx + 1] > self.delta: break elif tail_rule == "fixed_list_length": if len(final_greenlist) == 10: break elif tail_rule == "fixed_compute": if idx == 40: break else: pass # do not break early return torch.as_tensor(final_greenlist, device=input_ids.device) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: """Call with previous context as input_ids, and scores for next token.""" # this is lazy to allow us to co-locate on the watermarked model's device self.rng = torch.Generator(device=input_ids.device) if self.rng is None else self.rng # NOTE, it would be nice to get rid of this batch loop, but currently, # the seed and partition operations are not tensor/vectorized, thus # each sequence in the batch needs to be treated separately. list_of_greenlist_ids = [None for _ in input_ids] # Greenlists could differ in length for b_idx, input_seq in enumerate(input_ids): if self.self_salt: greenlist_ids = self._score_rejection_sampling(input_seq, scores[b_idx]) else: greenlist_ids = self._get_greenlist_ids(input_seq) list_of_greenlist_ids[b_idx] = greenlist_ids # logic for computing and storing spike entropies for analysis if self.store_spike_ents: if self.spike_entropies is None: self.spike_entropies = [[] for _ in range(input_ids.shape[0])] self.spike_entropies[b_idx].append(self._compute_spike_entropy(scores[b_idx])) green_tokens_mask = self._calc_greenlist_mask( scores=scores, greenlist_token_ids=list_of_greenlist_ids ) scores = self._bias_greenlist_logits( scores=scores, greenlist_mask=green_tokens_mask, greenlist_bias=self.delta ) return scores # Path: kth_watermark.py class KTHWatermark: def __init__( self, vocab_size: int, key_len: int, seed: int = DEFAULT_SEED, device: Optional[str] = None, eps: float = 1e-20, random_shift: bool = False, num_shifts: Optional[int] = None, ): if not device: device = "cuda" if torch.cuda.is_available() else "cpu" generator = torch.Generator() # generator is always cpu for reproducibility generator.manual_seed(seed) uniform = torch.clamp(torch.rand((key_len, vocab_size), generator=generator, dtype=torch.float32), min=eps) self.gumbel = (-torch.log(torch.clamp(-torch.log(uniform), min=eps))).to(device) if random_shift: if num_shifts is not None: self.possible_shifts = [i * (key_len // num_shifts) for i in range(num_shifts)] else: self.possible_shifts = list(range(key_len)) self.random = random.Random(seed) # for random shift self.seed = seed self.eps = eps self.vocab_size = vocab_size self.device = device self.key_len = key_len self.cur_shift = 0 self.random_shift = random_shift self.num_shifts = num_shifts def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: index = (input_ids.shape[1] + self.cur_shift) % self.key_len gumbel = self.gumbel[index] # (batch_size, vocab_size) return scores[..., :gumbel.shape[-1]] + gumbel def watermark_logits( self, input_ids: torch.LongTensor, # (batch, seq_len) logits: torch.FloatTensor, # (batch, seq_len, vocab_size) ) -> torch.FloatTensor: """Returns watermarked logits to be used as distillation target.""" index = torch.arange(input_ids.shape[1], device=input_ids.device) % self.key_len # (seq_len,) gumbel = self.gumbel[index] # (seq_len, vocab_size) # tokenizer vocab size and model outputs vocab size may be different logits[..., :gumbel.shape[-1]] += gumbel # (batch, seq_len, vocab_size) return logits def watermark_logits_argmax( self, input_ids: torch.LongTensor, # (batch, seq_len) logits: torch.FloatTensor, # (batch, seq_len, vocab_size) random_shift: bool = False, ) -> torch.LongTensor: """Finds argmax token for watermark, returns token indexes to be used for cross-entropy loss. Returns tensor of shape (batch, seq_len), where each element is a token index. """ shift = 0 if self.random_shift: shift = self.random.choice(self.possible_shifts) index = (torch.arange(input_ids.shape[1], device=input_ids.device) + shift) % self.key_len # (seq_len,) gumbel = self.gumbel[index] # (seq_len, vocab_size) # tokenizer vocab size and model outputs vocab size may be different logits[..., :gumbel.shape[-1]] += gumbel # (batch, seq_len, vocab_size) tokens = torch.argmax(logits, dim=-1) # (batch, seq_len) return tokens # Path: experiments/generate_samples_decoding_watermark.py import argparse import os import random import json import torch from typing import Dict from datasets import load_dataset from tqdm import tqdm from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessorList from aar_watermark import AarWatermark from kgw_watermarking.watermark_reliability_release.watermark_processor import WatermarkLogitsProcessor from kth_watermark import KTHWatermark DEFAULT_PAD_TOKEN = "[PAD]" DEFAULT_EOS_TOKEN = "</s>" DEFAULT_BOS_TOKEN = "<s>" DEFAULT_UNK_TOKEN = "<unk>" device = "cuda" if torch.cuda.is_available() else "cpu" parser = argparse.ArgumentParser() parser.add_argument("--model_names", type=str, nargs="+", required=True) parser.add_argument("--watermark_config_filename", type=str, default="watermark_config.json") parser.add_argument("--dataset_name", type=str, required=True) parser.add_argument("--tokenizer_name", type=str, default=None) parser.add_argument("--dataset_config_name", type=str, default=None) parser.add_argument("--dataset_split", type=str, default="test") parser.add_argument("--dataset_num_skip", type=int, default=0) parser.add_argument("--data_field", type=str, default="text") parser.add_argument("--num_samples", type=int, default=1000) parser.add_argument("--min_new_tokens", type=int, default=None) parser.add_argument("--max_new_tokens", type=int, default=None) parser.add_argument("--temperature", type=float, default=1.0) parser.add_argument("--top_p", type=float, default=1.0) parser.add_argument("--top_k", type=int, default=0) parser.add_argument("--prompt_length", type=int, default=10) parser.add_argument("--batch_size", type=int, default=32) parser.add_argument("--seed", type=int, default=42) parser.add_argument("--streaming", action="store_true", default=True) parser.add_argument("--output_file", type=str, required=True) parser.add_argument("--overwrite_output_file", action="store_true", default=False) parser.add_argument("--fp16", action="store_true", default=False) parser.add_argument("--watermark_configs_file", type=str, required=True) args = parser.parse_args() def get_prompts(args) -> Dict: if args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name) else: tokenizer = AutoTokenizer.from_pretrained(args.model_names[0]) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token dataset = load_dataset(args.dataset_name, args.dataset_config_name, split=args.dataset_split, streaming=args.streaming) max_length = args.prompt_length + args.max_new_tokens min_length = args.prompt_length + args.min_new_tokens def filter_length(example): return len(tokenizer(example[args.data_field], truncation=True, max_length=max_length)["input_ids"]) >= min_length def encode(examples): trunc_tokens = tokenizer( examples[args.data_field], truncation=True, padding=True, max_length=max_length, return_tensors="pt" ).to(device) examples["text"] = tokenizer.batch_decode(trunc_tokens["input_ids"], skip_special_tokens=True) prompt = tokenizer( examples["text"], truncation=True, padding=True, max_length=args.prompt_length, return_tensors="pt", ).to(device) examples["prompt_text"] = tokenizer.batch_decode(prompt["input_ids"], skip_special_tokens=True) examples["input_ids"] = prompt["input_ids"] examples["attention_mask"] = prompt["attention_mask"] examples["text_completion"] = tokenizer.batch_decode( trunc_tokens["input_ids"][:, args.prompt_length:], skip_special_tokens=True ) return examples dataset = dataset.filter(filter_length) dataset = dataset.skip(args.dataset_num_skip) dataset = dataset.map(encode, batched=True) dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size) prompts = [] human_text = [] prompt_text = [] full_human_text = [] for batch in dataloader: if len(human_text) >= args.num_samples: break prompts.append(batch) human_text.extend(batch["text_completion"]) prompt_text.extend(batch["prompt_text"]) full_human_text.extend(batch["text"]) return { "prompts": prompts, "human_text": human_text, "prompt_text": prompt_text, "full_human_text": full_human_text, } def generate_samples(model, tokenizer, args, prompts, watermark, do_sample=True) -> Dict: model_text = [] full_model_text = [] for batch in tqdm(prompts): if len(model_text) >= args.num_samples: break with torch.no_grad():
outputs = model.generate(
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: skyoux/SemAIM # Path: datasets/datasets.py class ImageListFolder(datasets.ImageFolder): def __init__(self, root, transform=None, target_transform=None, ann_file=None, loader=default_loader): self.root = root self.transform = transform self.loader = loader self.target_transform = target_transform self.nb_classes = 1000 assert ann_file is not None print('load info from', ann_file) self.samples = [] ann = open(ann_file) for elem in ann.readlines(): cut = elem.split(' ') path_current = os.path.join(root, cut[0]) target_current = int(cut[1]) self.samples.append((path_current, target_current)) ann.close() print('load finish') # Path: datasets/datasets.py def build_transform(is_train, args): mean = IMAGENET_DEFAULT_MEAN std = IMAGENET_DEFAULT_STD # train transform if is_train: # this should always dispatch to transforms_imagenet_train transform = create_transform( input_size=args.input_size, is_training=True, color_jitter=args.color_jitter, auto_augment=args.aa, interpolation='bicubic', re_prob=args.reprob, re_mode=args.remode, re_count=args.recount, mean=mean, std=std, ) return transform # eval transform t = [] if args.input_size <= 224: crop_pct = 224 / 256 else: crop_pct = 1.0 size = int(args.input_size / crop_pct) t.append( transforms.Resize(size, interpolation=torchvision.transforms.InterpolationMode.BICUBIC), # to maintain same ratio w.r.t. 224 images ) t.append(transforms.CenterCrop(args.input_size)) t.append(transforms.ToTensor()) t.append(transforms.Normalize(mean, std)) return transforms.Compose(t) # Path: util/pos_embed.py def interpolate_pos_embed(model, checkpoint_model): if 'pos_embed' in checkpoint_model: pos_embed_checkpoint = checkpoint_model['pos_embed'] embedding_size = pos_embed_checkpoint.shape[-1] num_patches = model.patch_embed.num_patches num_extra_tokens = model.pos_embed.shape[-2] - num_patches # height (== width) for the checkpoint position embedding orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) # height (== width) for the new position embedding new_size = int(num_patches ** 0.5) # class_token and dist_token are kept unchanged if orig_size != new_size: print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) checkpoint_model['pos_embed'] = new_pos_embed # Path: util/misc.py class NativeScalerWithGradNormCount: state_dict_key = "amp_scaler" def __init__(self): self._scaler = torch.cuda.amp.GradScaler() def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True): self._scaler.scale(loss).backward(create_graph=create_graph) if update_grad: if clip_grad is not None: assert parameters is not None self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad) else: self._scaler.unscale_(optimizer) norm = get_grad_norm_(parameters) self._scaler.step(optimizer) self._scaler.update() else: norm = None return norm def state_dict(self): return self._scaler.state_dict() def load_state_dict(self, state_dict): self._scaler.load_state_dict(state_dict) # Path: models/models_vit.py class VisionTransformer(timm.models.vision_transformer.VisionTransformer): def __init__(self, global_pool=False, **kwargs): def forward_features(self, x): def forward_head(self, x): def vit_small_patch16(**kwargs): def vit_base_patch16(**kwargs): def vit_large_patch16(**kwargs): def vit_huge_patch14(**kwargs): B = x.shape[0] # Path: engines/engine_finetune.py def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module, data_loader: Iterable, optimizer: torch.optim.Optimizer, device: torch.device, epoch: int, loss_scaler, max_norm: float = 0, mixup_fn: Optional[Mixup] = None, log_writer=None, args=None): model.train(True) metric_logger = misc.MetricLogger(delimiter=" ") metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}')) header = 'Epoch: [{}/{}]'.format(epoch, args.epochs) print_freq = 20 accum_iter = args.accum_iter optimizer.zero_grad() if log_writer is not None: print('log_dir: {}'.format(log_writer.log_dir)) for data_iter_step, (samples, targets) in enumerate(metric_logger.log_every(data_loader, print_freq, header)): # we use a per iteration (instead of per epoch) lr scheduler if data_iter_step % accum_iter == 0: lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args) samples = samples.to(device, non_blocking=True) targets = targets.to(device, non_blocking=True) if mixup_fn is not None: samples, targets = mixup_fn(samples, targets) with torch.cuda.amp.autocast(): outputs = model(samples) loss = criterion(outputs, targets) loss_value = loss.item() if not math.isfinite(loss_value): print("Loss is {}, stopping training".format(loss_value)) sys.exit(1) loss /= accum_iter loss_scaler(loss, optimizer, clip_grad=max_norm, parameters=model.parameters(), create_graph=False, update_grad=(data_iter_step + 1) % accum_iter == 0) if (data_iter_step + 1) % accum_iter == 0: optimizer.zero_grad() torch.cuda.synchronize() metric_logger.update(loss=loss_value) min_lr = 10. max_lr = 0. for group in optimizer.param_groups: min_lr = min(min_lr, group["lr"]) max_lr = max(max_lr, group["lr"]) metric_logger.update(lr=max_lr) loss_value_reduce = misc.all_reduce_mean(loss_value) if log_writer is not None and (data_iter_step + 1) % accum_iter == 0: """ We use epoch_1000x as the x-axis in tensorboard. This calibrates different curves when batch size changes. """ epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000) log_writer.add_scalar('loss', loss_value_reduce, epoch_1000x) log_writer.add_scalar('lr', max_lr, epoch_1000x) # gather the stats from all processes metric_logger.synchronize_between_processes() print("Averaged stats:", metric_logger) return {k: meter.global_avg for k, meter in metric_logger.meters.items()} # Path: engines/engine_finetune.py @torch.no_grad() def evaluate(data_loader, model, device): criterion = torch.nn.CrossEntropyLoss() metric_logger = misc.MetricLogger(delimiter=" ") header = 'Test:' # switch to evaluation mode model.eval() for batch in metric_logger.log_every(data_loader, 10, header): images = batch[0] target = batch[-1] images = images.to(device, non_blocking=True) target = target.to(device, non_blocking=True) # compute output with torch.cuda.amp.autocast(): output = model(images) loss = criterion(output, target) acc1, acc5 = accuracy(output, target, topk=(1, 5)) batch_size = images.shape[0] metric_logger.update(loss=loss.item()) metric_logger.meters['acc1'].update(acc1.item(), n=batch_size) metric_logger.meters['acc5'].update(acc5.item(), n=batch_size) # gather the stats from all processes metric_logger.synchronize_between_processes() print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}' .format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss)) return {k: meter.global_avg for k, meter in metric_logger.meters.items()} # Path: main_finetune.py import argparse import datetime import json import numpy as np import os import time import builtins import torch import torch.backends.cudnn as cudnn import timm import util.lr_decay as lrd import util.misc as misc from pathlib import Path from torch.utils.tensorboard import SummaryWriter from timm.models.layers import trunc_normal_ from timm.data.mixup import Mixup from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy from datasets.datasets import ImageListFolder, build_transform from util.pos_embed import interpolate_pos_embed from util.misc import NativeScalerWithGradNormCount as NativeScaler from models import models_vit from engines.engine_finetune import train_one_epoch, evaluate print(dataset_train) num_tasks = misc.get_world_size() global_rank = misc.get_rank() sampler_train = torch.utils.data.DistributedSampler( dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True ) print("Sampler_train = %s" % str(sampler_train)) data_loader_train = torch.utils.data.DataLoader( dataset_train, sampler=sampler_train, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=True, ) dataset_val = ImageListFolder(os.path.join(args.data_path, 'train'), transform=transform_val, ann_file=os.path.join(args.data_path, 'train.txt')) num_tasks = misc.get_world_size() global_rank = misc.get_rank() sampler_val = torch.utils.data.DistributedSampler( dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False ) print("Sampler_val = %s" % str(sampler_val)) data_loader_val = torch.utils.data.DataLoader( dataset_val, sampler=sampler_val, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=False, shuffle=False, ) mixup_fn = None mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None if mixup_active: print("Mixup is activated!") mixup_fn = Mixup( mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax, prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode, label_smoothing=args.smoothing, num_classes=args.nb_classes) model = models_vit.__dict__[args.model]( num_classes=args.nb_classes, drop_path_rate=args.drop_path, global_pool=args.global_pool, ) if args.finetune and not args.eval: # load pretrained model checkpoint = torch.load(args.finetune, map_location='cpu') print("Load pre-trained checkpoint from: %s" % args.finetune) if 'state_dict' in checkpoint: checkpoint_model = checkpoint['state_dict'] else: checkpoint_model = checkpoint['model'] state_dict = model.state_dict() checkpoint_model = {k.replace("module.", ""): v for k, v in checkpoint_model.items()} for k in ['head.weight', 'head.bias']: if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape: print(f"Removing key {k} from pretrained checkpoint") del checkpoint_model[k] # interpolate position embedding interpolate_pos_embed(model, checkpoint_model) # load pre-trained model msg = model.load_state_dict(checkpoint_model, strict=False) print(msg) print("global_pool = ", args.global_pool) if args.global_pool: assert set(msg.missing_keys) == {'head.weight', 'head.bias', 'fc_norm.weight', 'fc_norm.bias'} else: assert set(msg.missing_keys) == {'head.weight', 'head.bias'} # manually initialize fc layer trunc_normal_(model.head.weight, std=2e-5) model.to(device) model_without_ddp = model n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) # print("Model = %s" % str(model_without_ddp)) print('number of params (M): %.2f' % (n_parameters / 1.e6)) eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size() if args.lr is None: # only base_lr is specified args.lr = args.blr * eff_batch_size / 256 print("base lr: %.2e" % (args.lr * 256 / eff_batch_size)) print("actual lr: %.2e" % args.lr) print("accumulate grad iterations: %d" % args.accum_iter) print("effective batch size: %d" % eff_batch_size) if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) model_without_ddp = model.module # build optimizer with layer-wise lr decay (lrd) param_groups = lrd.param_groups_lrd(model_without_ddp, args.weight_decay, no_weight_decay_list=model_without_ddp.no_weight_decay(), layer_decay=args.layer_decay ) optimizer = torch.optim.AdamW(param_groups, lr=args.lr) loss_scaler = NativeScaler() if mixup_fn is not None: # smoothing is handled with mixup label transform criterion = SoftTargetCrossEntropy() elif args.smoothing > 0.: criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
else:
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: boweniac/autogan # Path: autogan/oai/config_utils.py class LLMConfig: """LLM config object """ def __init__( self, api_key_list: ConfigList, max_messages_tokens: str, request_interval_time: int, request_timeout: int, max_retries: int ): self._api_key_list = api_key_list self._max_messages_tokens = max_messages_tokens self._request_interval_time = request_interval_time self._request_timeout = request_timeout self._max_retries = max_retries def api_key(self, index): """Get the one configuration in the api_key_list. """ return self._api_key_list.get_config(index) @property def next_api_key(self): """Get the next configuration in the api_key_list. """ return self._api_key_list.get_next_config @property def len_of_api_key_list(self) -> int: """Get the first configuration in the api_key_list list. """ return self._api_key_list.len @property def model(self): """Get the model of the first configuration in the api_key_list list. """ return self._api_key_list.get_first_config["model"] @property def max_messages_tokens(self): """Limit the maximum tokens of the context in each dialogue. """ return self._max_messages_tokens @property def request_interval_time(self): return self._request_interval_time @property def request_timeout(self): return self._request_timeout @property def max_retries(self): return self._max_retries # Path: autogan/oai/count_tokens_utils.py def count_text_tokens(text: str, model: Optional[str] = "gpt-3.5-turbo") -> int: """Calculate the tokens of the text. :param text: The text to be tokenized :param model: Calculate tokens for a specific model. If the model is not listed, it will default to calculating the number of tokens based on the gpt-3.5-turbo standard. :return: tokens """ if not text: return 0 model_list = ['gpt-4', 'gpt-3.5-turbo-16k', 'gpt-3.5-turbo'] if model not in model_list: model = "gpt-3.5-turbo" try: encoding = tiktoken.encoding_for_model(model) num_tokens = len(encoding.encode(text)) except Exception as e: print(e) num_tokens = 0 return num_tokens # Path: autogan/utils/environment_utils.py def environment_info() -> str: """Current environment information :return: --current_time: Y.m.d H:M:S week:%w """ info = f'current time: {get_time()}' return info # Path: autogan/oai/generate_utils.py def generate_chat_completion(llm_config: LLMConfig, messages: List, agent_name: str, gen: str, response_func: ResponseFuncType, stream_mode: Optional[bool] = None)\ -> tuple[Optional[str], Optional[int]]: """Call the LLM interface Currently, only the chatgpt model of openai (including azure) is adapted. :param llm_config: LLM configuration. :param messages: :param agent_name: :param gen: Used to distinguish agent replies, deep thoughts, context compression, general summaries, clue summaries - main: agent replies - idea: deep thoughts - messages_summary: context compression - text_summary: general summaries - clue_summary: clue summaries :param response_func: Used to return results to the interface or terminal. :param stream_mode: """ # When a certain configuration in the configuration list fails to request, # continue to try the next configuration until all configurations in the list are attempted. loop = llm_config.len_of_api_key_list for i in range(loop): time.sleep(llm_config.request_interval_time) api_key = llm_config.next_api_key try: completion_content = "" completion_tokens = 0 index = 1 for message in chat_completions(messages, api_key, llm_config.request_timeout, llm_config.max_retries, stream_mode): content = "" if stream_mode: if (message and "choices" in message and "delta" in message["choices"][0] and "content" in message["choices"][0]["delta"] and message["choices"][0]["delta"]["content"]): content = message["choices"][0]["delta"]["content"] completion_content += content else: if (message and "choices" in message and "message" in message["choices"][0] and "content" in message["choices"][0]["message"] and message["choices"][0]["message"]["content"]): content = message["choices"][0]["message"]["content"] completion_content = content if message and "usage" in message and "completion_tokens" in message["usage"]: completion_tokens = message["usage"]["completion_tokens"] response_func(agent_name, gen, api_key["model"], stream_mode, index, content, completion_tokens, message) if content: index += 1 if completion_content: if completion_tokens == 0: completion_tokens = count_text_tokens(completion_content, api_key['model']) return completion_content, completion_tokens else: raise ValueError("The return value is empty.") except Exception as e: if i == loop - 1: print(f"generate_chat_completion Exception: {e}") return None, None # Path: autogan/utils/response.py def colored(x, *args, **kwargs): def default_response_func(agent_name: str, gen: str, model: str, stream_mode: bool, index: int, content: Optional[str], tokens: Optional[int], response: any): def obj_to_dict(obj): # Path: autogan/utils/compressed_text_utils.py import math import re from typing import Optional, List from autogan.oai.config_utils import LLMConfig from autogan.oai.count_tokens_utils import count_text_tokens from autogan.utils.environment_utils import environment_info from autogan.oai.generate_utils import generate_chat_completion from autogan.utils.response import ResponseFuncType 待压缩的文本。 :param safe_size: The target size of the text after compression. 文本压缩后的目标尺寸。 :param summary_model_config: LLM configuration used for text compression. 用于压缩文本的 LLM 配置。 :param agent_name: :param response_func: Used to return results to the interface or terminal. 用于向接口或终端返回结果 :param stream_mode: :return: --compressed_text: The text after compression. 压缩后的文本。 --total_tokens: Total tokens after compression. 压缩后的整体tokens。 """ compressed_text = "" total_tokens = 0 split_texts = split_text(text, summary_model_config.max_messages_tokens, summary_model_config.model) # Calculate the approximate size of the text slices proportionally split_safe_size = int(safe_size / len(split_texts)) for st in split_texts: content, tokens = generate_text_summary(st, summary_model_config, agent_name, response_func, stream_mode, split_safe_size) if content: compressed_text += content + "\n" total_tokens += tokens if compressed_text: return compressed_text, total_tokens else: return None, None def generate_text_summary(text: str, summary_model_config: LLMConfig, agent_name: str, response_func: ResponseFuncType, stream_mode: Optional[bool] = None, safe_size: Optional[int] = None) \ -> tuple[str, int]: """Generate a general summary of the text 生成文本普通摘要 :param text: Text to be compressed. 待压缩的文本。 :param summary_model_config: LLM configuration used for text compression. 用于压缩文本的 LLM 配置。 :param agent_name: :param response_func: Used to return results to the interface or terminal. 用于向接口或终端返回结果 :param stream_mode: :param safe_size: The target size of the text after compression, if not provided there is no limit. 文本压缩后的目标尺寸,如果为空则不做限制。 :return: --compressed_text: The text after compression. 压缩后的文本。 --total_tokens: Total tokens after compression. 压缩后的整体tokens。 """ if safe_size: system_prompt = """I hope you are an article filter and refiner, filtering and refining the articles sent by users. Please ensure that your summary does not exceed the limit of max_tokens. When the content of the article is not enough to refine, please omit other polite language and only output one word: None. If the article can be refined, please help me filter out sensitive content related to politics, geopolitics, violence, and sex from the article, and extract the main content from the article. Please note that the description perspective and chapter structure of the extracted content should be as consistent as possible with the original text, and try to retain details for subsequent reasoning. Please omit other polite language and only output the refined content.""" chat_prompt = f"max_tokens: {safe_size}\n\nArticle content:\n{text}" # system_prompt = """我希望你是一个文章过滤与提炼器,过滤和提炼用户发送的文章,请确保您的总结不超过 max_tokens 的限制. # 当文章内容不足以提炼时,请省略其他客套用语,仅输出一个单词:None。 # 如果文章可以精炼请帮我滤掉文章中与政治、地缘政治、暴力、性等有关的敏感内容,并从文章中提炼出主要内容. # 注意提炼出的内容其描述视角和章节结构尽量与原文一致,并尽可能的保留细节以用于后续推理,请省略其他客套用语,仅输出提炼好的内容。""" # chat_prompt = f"max_tokens: {safe_size}\n\n文章内容:\n\n{text}" else: system_prompt = """I hope you can serve as an article filter and refiner, filtering and refining the articles sent by users. If the content of the article is insufficient for refinement, please omit other polite phrases and output only one word: None. If the article can be refined, please help me filter out sensitive content related to politics, geopolitics, violence, and sex from the article, and extract the main content from the article. Please note that the perspective and chapter structure of the extracted content should be as consistent with the original as possible, and retain as many details as possible for subsequent reasoning. Please omit other polite phrases and only output the refined content.""" chat_prompt = f"Article content:\n{text}" # system_prompt = """我希望你是一个文章过滤与提炼器,过滤和提炼用户发送的文章。当文章内容不足以提炼时,请省略其他客套用语,仅输出一个单词:None。 # 如果文章可以精炼请帮我滤掉文章中与政治、地缘政治、暴力、性等有关的敏感内容,并从文章中提炼出主要内容。 # 注意提炼出的内容其描述视角和章节结构尽量与原文一致,并尽可能的保留细节以用于后续推理。请省略其他客套用语,仅输出提炼好的内容。""" # chat_prompt = f"文章内容:\n{text}" chat_messages = [{'role': 'system', 'content': system_prompt}, {'role': 'user', 'content': chat_prompt}] return generate_chat_completion(summary_model_config, chat_messages, agent_name, "text_summary", response_func, stream_mode) def generate_text_clues(text: str, focus: str, summary_model_config: LLMConfig, agent_name: str, response_func: ResponseFuncType, stream_mode: Optional[bool] = None) -> tuple[str, int]: """Generate a clue summary of the text 生成文本线索摘要 :param text: Text to be compressed. 待压缩的文本。 :param focus: The focus direction when compressing text. 压缩文本时的专注方向。 :param summary_model_config: LLM configuration used for text compression. 用于压缩文本的 LLM 配置。 :param agent_name: :param response_func: Used to return results to the interface or terminal. 用于向接口或终端返回结果 :param stream_mode: :return: --compressed_text: The text after compression. 压缩后的文本。 --total_tokens: Total tokens after compression. 压缩后的整体tokens。 """ info = environment_info() system_prompt = """I hope you are an agent who is good at discovering the truth in real-time, capable of finding content that helps infer the answer to the question from the information sent by users. Please note that if the content of the information has no extractable value, please omit other polite expressions and output only one word: None. Also, please help me filter out sensitive content related to politics, geopolitics, violence, and sex in the information.""" # system_prompt = """我希望你是一个善于发现实时真相的探员, 能从用户发送的资料中帮我找到有助于推断出问题答案的内容。 # 需要注意的是,如果资料内容没有可提取的价值,请省略其他客套用语,仅输出一个单词:None。另外还请帮我过滤掉资料中与政治、地缘政治、暴力、性等有关的敏感内容。""" chat_messages = [{'role': 'system', 'content': system_prompt}, {'role': 'user',
'content': f'The current question is:{focus}\n\nEnvironmental information:\n{info}\n\nMaterial content:\n\n{text}'}]
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: JingHao99/IDR-Ingredients-oriented-Degradation-Reformulation # Path: utils/metric_util.py class AverageMeter(): """ Computes and stores the average and current value """ def __init__(self): self.reset() def reset(self): """ Reset all statistics """ self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): """ Update statistics """ self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count # Path: utils/tensor_op.py def save_img_tensor(restored,result_dir,ippath): ''' :param restored: (1,C,H,W) :param result_dir: :param ippath: :return: ''' restored = torch.clamp(restored, 0, 1).cpu().detach().permute(0, 2, 3, 1).squeeze(0).numpy() util.save_img(img_as_ubyte(restored),util.Generate_rp(result_dir,ippath)) # Path: utils/tensor_op.py def save_image_tensor(image_tensor, output_path="output/"): image_np = torch_to_np(image_tensor) p = np_to_pil(image_np) p.save(output_path) # Path: utils/util.py def mkdir(path): if not os.path.exists(path): os.makedirs(path) # Path: utils/util.py def setup_logger(logger_name, root, phase, level=logging.INFO, screen=False, tofile=False): ''' util.setup_logger('base', opt['path']['log'], 'train_' + opt['name'], level=logging.INFO, screen=True, tofile=True) logger = logging.getLogger('base') logger.info(option.dict2str(opt)) ''' lg = logging.getLogger(logger_name) fmt = '%(asctime)s.%(msecs)03d - %(levelname)s: %(message)s' color_fmt = colored('%(asctime)s.%(msecs)03d','green') + '- %(levelname)s: %(message)s' formatter = logging.Formatter(fmt=color_fmt, datefmt='%y-%m-%d %H:%M:%S') lg.setLevel(level) lg.propagate = False if tofile: log_file = os.path.join(root, phase + '_{}.log'.format(get_timestamp())) fh = logging.FileHandler(log_file, mode='w') fh.setFormatter(formatter) lg.addHandler(fh) if screen: sh = logging.StreamHandler() sh.setFormatter(formatter) lg.addHandler(sh) # Path: utils/data_util.py def crop_HWC_img(image, base=64): """ 裁切到multiple of base的size上 :param image: H,W,C :param base: (int) :return: """ h = image.shape[0] w = image.shape[1] crop_h = h % base crop_w = w % base return image[crop_h // 2:h - crop_h + crop_h // 2, crop_w // 2:w - crop_w + crop_w // 2, :] # Path: utils/data_util.py def random_augmentation(*args): out = [] flag_aug = random.randint(0,7) for data in args: out.append(data_augmentation(data, flag_aug).copy()) return out # Path: utils/data_util.py def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)): """Convert torch Tensors into image numpy arrays. After clamping to [min, max], values will be normalized to [0, 1]. Args: tensor (Tensor or list[Tensor]): Accept shapes: 1) 4D mini-batch Tensor of shape (B x 3/1 x H x W); 2) 3D Tensor of shape (3/1 x H x W); 3) 2D Tensor of shape (H x W). Tensor channel should be in RGB order. rgb2bgr (bool): Whether to change rgb to bgr. out_type (numpy type): output types. If ``np.uint8``, transform outputs to uint8 type with range [0, 255]; otherwise, float type with range [0, 1]. Default: ``np.uint8``. min_max (tuple[int]): min and max values for clamp. Returns: (Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of shape (H x W). The channel order is BGR. """ if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))): raise TypeError( f'tensor or list of tensors expected, got {type(tensor)}') if torch.is_tensor(tensor): tensor = [tensor] result = [] for _tensor in tensor: _tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max) _tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0]) n_dim = _tensor.dim() if n_dim == 4: img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy() img_np = img_np.transpose(1, 2, 0) if rgb2bgr: img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) elif n_dim == 3: img_np = _tensor.numpy() img_np = img_np.transpose(1, 2, 0) if img_np.shape[2] == 1: # gray image img_np = np.squeeze(img_np, axis=2) else: if rgb2bgr: img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) elif n_dim == 2: img_np = _tensor.numpy() else: raise TypeError('Only support 4D, 3D or 2D tensor. ' f'But received with dimension: {n_dim}') if out_type == np.uint8: # Unlike MATLAB, numpy.unit8() WILL NOT round by default. img_np = (img_np * 255.0).round() img_np = img_np.astype(out_type) result.append(img_np) if len(result) == 1: result = result[0] return result # Path: metrics/psnr_ssim.py def compute_psnr_ssim(recoverd, clean): """ model.output输入 """ assert recoverd.shape == clean.shape recoverd = np.clip(recoverd.detach().cpu().numpy(), 0, 1) clean = np.clip(clean.detach().cpu().numpy(), 0, 1) recoverd = recoverd.transpose(0, 2, 3, 1) clean = clean.transpose(0, 2, 3, 1) psnr = 0 ssim = 0 for i in range(recoverd.shape[0]): # psnr_val += compare_psnr(clean[i], recoverd[i]) # ssim += compare_ssim(clean[i], recoverd[i], multichannel=True) psnr += peak_signal_noise_ratio(clean[i], recoverd[i], data_range=1) ssim += structural_similarity(clean[i], recoverd[i], data_range=1, multichannel=True) return psnr / recoverd.shape[0], ssim / recoverd.shape[0], recoverd.shape[0] # Path: metrics/psnr_ssim.py def calculate_psnr(img1, img2, crop_border=0, test_y_channel=False): """img1 and img2 have range [0, 255] np.uint8 tensor2img后输入 crop_border (int): Cropped pixels in each edge of an image. These pixels are not involved in the PSNR calculation. test_y_channel (bool): Test on Y channel of YCbCr. Default: False. Returns: float: psnr result. """ img1 = img1.astype(np.float64) img2 = img2.astype(np.float64) if crop_border != 0: img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...] img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...] if test_y_channel: img1 = to_y_channel(img1) img2 = to_y_channel(img2) mse = np.mean((img1 - img2)**2) if mse == 0: return float('inf') return 20 * math.log10(255.0 / math.sqrt(mse)) # Path: metrics/psnr_ssim.py def calculate_ssim(img1, img2): '''calculate SSIM the same outputs as MATLAB's img1, img2: [0, 255] ''' if not img1.shape == img2.shape: raise ValueError('Input images must have the same dimensions.') if img1.ndim == 2: return ssim(img1, img2) elif img1.ndim == 3: if img1.shape[2] == 3: ssims = [] for i in range(3): ssims.append(ssim(img1, img2)) return np.array(ssims).mean() elif img1.shape[2] == 1: return ssim(np.squeeze(img1), np.squeeze(img2)) else: raise ValueError('Wrong input image dimensions.') # Path: models/archs/IDR_restormer_arch.py class IDR_restormer(nn.Module): def __init__(self, inp_channels=3, out_channels=3, dim=48, num_blocks=[4, 6, 6, 8], num_refinement_blocks=4, heads=[1, 2, 4, 8], ffn_expansion_factor=2.66, bias=False, LayerNorm_type='WithBias', ## Other option 'BiasFree' num_degra_queries = 24, keep_degra = 48, degra_type = 5, sam = True, ops_type = 5, pred = True ): super(IDR_restormer, self).__init__() self.de_dict = {'denoise': 0, 'denoise_15': 0, 'denoise_25': 0, 'denoise_50': 0, 'derain': 1, 'dehaze': 2, 'deblur': 3, 'delowlight': 4, 'clean': 5} self.patch_embed =OverlapPatchEmbed_Keep(inp_channels, dim) self.encoder_level1 = nn.Sequential(*[ MDTA_TransformerBlock(dim=dim, num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[0])]) self.down1_2 = Downsample(dim) ## From Level 1 to Level 2 self.encoder_level2 = nn.Sequential(*[ MDTA_TransformerBlock(dim=int(dim * 2 ** 1), num_heads=heads[1], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[1])]) self.down2_3 = Downsample(int(dim * 2 ** 1)) ## From Level 2 to Level 3 self.encoder_level3 = nn.Sequential(*[ MDTA_TransformerBlock(dim=int(dim * 2 ** 2), num_heads=heads[2], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[2])]) self.down3_4 = Downsample(int(dim * 2 ** 2)) ## From Level 3 to Level 4 self.latent = nn.Sequential(*[ MDTA_TransformerBlock(dim=int(dim * 2 ** 3), num_heads=heads[3], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[3])]) self.up4_3 = Upsample(int(dim * 2 ** 3)) ## From Level 4 to Level 3 self.reduce_chan_level3 = nn.Conv2d(int(dim * 2 ** 3), int(dim * 2 ** 2), kernel_size=1, bias=bias) self.decoder_level3 = nn.Sequential(*[ MDTA_TransformerBlock(dim=int(dim * 2 ** 2), num_heads=heads[2], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[2])]) self.up3_2 = Upsample(int(dim * 2 ** 2)) ## From Level 3 to Level 2 self.reduce_chan_level2 = nn.Conv2d(int(dim * 2 ** 2), int(dim * 2 ** 1), kernel_size=1, bias=bias) self.decoder_level2 = nn.Sequential(*[ MDTA_TransformerBlock(dim=int(dim * 2 ** 1), num_heads=heads[1], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[1])]) self.up2_1 = Upsample(int(dim * 2 ** 1)) ## From Level 2 to Level 1 (NO 1x1 conv to reduce channels) self.decoder_level1 = nn.Sequential(*[ MDTA_TransformerBlock(dim=int(dim * 2 ** 1), num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[0])]) self.refinement = nn.Sequential(*[ MDTA_TransformerBlock(dim=int(dim * 2 ** 1), num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_refinement_blocks)]) self.output = nn.Conv2d(int(dim * 2 ** 1), out_channels, kernel_size=3, stride=1, padding=1, bias=bias) self.degra_key = nn.Parameter(torch.randn(degra_type, num_degra_queries, int(dim * 2 ** 3)), requires_grad=True) self.dmixer = PI_MLP_Mixer(dim=int(dim * 2 ** 3),num_degra=num_degra_queries*degra_type,keep_degra=keep_degra,init='pca') self.kdp_level1 = Key_TransformerBlock(dim=dim, dimkey=int(dim * 2 ** 3), num_heads=heads[0], ffn_expansion_factor=2.66, bias=bias, LayerNorm_type=LayerNorm_type,principle=True, sam=sam, ops_type=ops_type,pred=pred) self.kdp_level2 = Key_TransformerBlock(dim=int(dim * 2 ** 1), dimkey=int(dim * 2 ** 3), num_heads=heads[1], ffn_expansion_factor=2.66, bias=bias, LayerNorm_type=LayerNorm_type,principle=True, sam=sam, ops_type=ops_type,pred=pred) self.kdp_level3 = Key_TransformerBlock(dim=int(dim * 2 ** 2), dimkey=int(dim * 2 ** 3), num_heads=heads[2], ffn_expansion_factor=2.66, bias=bias, LayerNorm_type=LayerNorm_type,principle=True, sam=sam, ops_type=ops_type,pred=pred) self.cri_pix = nn.L1Loss().cuda() def forward(self, inp_img, degra_type=None, gt=None, epoch=None): """ only input_image is required during inference """ flag=0 batch_size,c,h,w = inp_img.shape if epoch and epoch <= 550: # stage 1 training - Task-oriented knowledge collection de_type = degra_type[0] degra_id = self.de_dict[de_type] degra_key = self.degra_key[degra_id,:,:].unsqueeze(0).expand(batch_size,-1,-1) else: # stage 2 training - Ingredients-oriented knowedge intergation if flag==0: U,S,V = process_USV(self.degra_key.detach()) flag=1 U,V = self.dmixer(U,V,batch_size) degra_key = [U,S,V] de_type = None inp_enc_level1 = self.patch_embed(inp_img) out_enc_level1 = self.encoder_level1(inp_enc_level1) torch_resize1 = Resize([out_enc_level1.shape[2],out_enc_level1.shape[3]]) inp_img1 = torch_resize1(inp_img) out_enc_level1,output_img1,pred1 = self.kdp_level1(out_enc_level1,degra_key,inp_img1,degra_type=de_type) inp_enc_level2 = self.down1_2(out_enc_level1) out_enc_level2 = self.encoder_level2(inp_enc_level2) torch_resize2 = Resize([out_enc_level2.shape[2],out_enc_level2.shape[3]]) inp_img2 = torch_resize2(inp_img) out_enc_level2,output_img2,pred2 = self.kdp_level2(out_enc_level2,degra_key,inp_img2,degra_type=de_type) inp_enc_level3 = self.down2_3(out_enc_level2) out_enc_level3 = self.encoder_level3(inp_enc_level3) torch_resize3 = Resize([out_enc_level3.shape[2],out_enc_level3.shape[3]]) inp_img3 = torch_resize3(inp_img) out_enc_level3,output_img3,pred3 = self.kdp_level3(out_enc_level3,degra_key,inp_img3,degra_type=de_type) inp_enc_level4 = self.down3_4(out_enc_level3) latent = self.latent(inp_enc_level4) inp_dec_level3 = self.up4_3(latent) inp_dec_level3 = torch.cat([inp_dec_level3, out_enc_level3], 1) inp_dec_level3 = self.reduce_chan_level3(inp_dec_level3) out_dec_level3 = self.decoder_level3(inp_dec_level3) inp_dec_level2 = self.up3_2(out_dec_level3) inp_dec_level2 = torch.cat([inp_dec_level2, out_enc_level2], 1) inp_dec_level2 = self.reduce_chan_level2(inp_dec_level2) out_dec_level2 = self.decoder_level2(inp_dec_level2) inp_dec_level1 = self.up2_1(out_dec_level2) inp_dec_level1 = torch.cat([inp_dec_level1, out_enc_level1], 1) out_dec_level1 = self.decoder_level1(inp_dec_level1) out_dec_level1 = self.refinement(out_dec_level1) out_dec_level1 = self.output(out_dec_level1) + inp_img if gt is not None: gt_img1 = torch_resize1(gt) gt_img2 = torch_resize2(gt) gt_img3 = torch_resize3(gt) output_img = [output_img1,output_img2,output_img3] gt_img = [gt_img1,gt_img2,gt_img3] loss = np.sum([self.cri_pix(output_img[j],gt_img[j]) for j in range(len(output_img))]) return [out_dec_level1,loss,pred1,pred2,pred3] else: return out_dec_level1 # Path: inference.py import argparse import subprocess import numpy as np import os import torch import torch.nn as nn import logging from tqdm import tqdm from PIL import Image from torch.utils.data import DataLoader from torch.utils.data import Dataset from torchvision.transforms import ToPILImage, Compose, RandomCrop, ToTensor from utils.metric_util import AverageMeter from utils.tensor_op import save_img_tensor, save_image_tensor from utils.util import mkdir, setup_logger from utils.data_util import crop_HWC_img, random_augmentation, tensor2img from metrics.psnr_ssim import compute_psnr_ssim, calculate_psnr, calculate_ssim from models.archs.IDR_restormer_arch import IDR_restormer class DenoiseTestDataset(Dataset): def __init__(self, args, dataset="CBSD68"): super(DenoiseTestDataset, self).__init__() self.args = args self.clean_ids = [] self.sigma = 15 self.dataset_dict = {'CBSD68': 0, 'urban100': 1, 'Kodak24':2} self.set_dataset(dataset) self.toTensor = ToTensor() def _init_clean_ids(self): if self.task_idx == 0: self.clean_ids = [] name_list = os.listdir(self.args.denoise_CBSD68_path) self.clean_ids += [self.args.denoise_CBSD68_path + id_ for id_ in name_list] elif self.task_idx == 1: self.clean_ids = [] name_list = os.listdir(self.args.denoise_urban100_path) self.clean_ids += [self.args.denoise_urban100_path + id_ for id_ in name_list] elif self.task_idx == 2: self.clean_ids = [] name_list = os.listdir(self.args.denoise_Kodak24_path) self.clean_ids += [self.args.denoise_Kodak24_path + id_ for id_ in name_list] self.num_clean = len(self.clean_ids) def set_dataset(self, dataset): self.task_idx = self.dataset_dict[dataset] self._init_clean_ids() def _add_gaussian_noise(self, clean_patch): noise = np.random.randn(*clean_patch.shape) noisy_patch = np.clip(clean_patch + noise * self.sigma, 0, 255).astype(np.uint8) return noisy_patch, clean_patch def _edgeComputation(self,x): x_diffx = np.abs(x[:,1:,:] - x[:,:-1,:]) x_diffy = np.abs(x[1:,:,:] - x[:-1,:,:]) y = np.zeros_like(x) y[:,1:,:] += x_diffx y[:,:-1,:] += x_diffx y[1:,:,:] += x_diffy y[:-1,:,:] += x_diffy y = np.sum(y,2)/3 y /= 4
return y[:,:,None].astype(np.float32)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: TACJu/Compositor # Path: Compositor_Mask2Former/mask2former/modeling/transformer_decoder/position_encoding.py class PositionEmbeddingSine(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): super().__init__() self.num_pos_feats = num_pos_feats self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, x, mask=None): if mask is None: mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) not_mask = ~mask y_embed = not_mask.cumsum(1, dtype=torch.float32) x_embed = not_mask.cumsum(2, dtype=torch.float32) if self.normalize: eps = 1e-6 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack( (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 ).flatten(3) pos_y = torch.stack( (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 ).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos def __repr__(self, _repr_indent=4): head = "Positional encoding " + self.__class__.__name__ body = [ "num_pos_feats: {}".format(self.num_pos_feats), "temperature: {}".format(self.temperature), "normalize: {}".format(self.normalize), "scale: {}".format(self.scale), ] # _repr_indent = 4 lines = [head] + [" " * _repr_indent + line for line in body] return "\n".join(lines) # Path: Compositor_Mask2Former/mask2former/modeling/transformer_decoder/transformer.py def _get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) # Path: Compositor_Mask2Former/mask2former/modeling/transformer_decoder/transformer.py def _get_activation_fn(activation): """Return an activation function given a string""" if activation == "relu": return F.relu if activation == "gelu": return F.gelu if activation == "glu": return F.glu raise RuntimeError(f"activation should be relu/gelu, not {activation}.") # Path: Compositor_Mask2Former/mask2former/modeling/pixel_decoder/ops/modules/ms_deform_attn.py class MSDeformAttn(nn.Module): def __init__(self, d_model=256, n_levels=4, n_heads=8, n_points=4): """ Multi-Scale Deformable Attention Module :param d_model hidden dimension :param n_levels number of feature levels :param n_heads number of attention heads :param n_points number of sampling points per attention head per feature level """ super().__init__() if d_model % n_heads != 0: raise ValueError('d_model must be divisible by n_heads, but got {} and {}'.format(d_model, n_heads)) _d_per_head = d_model // n_heads # you'd better set _d_per_head to a power of 2 which is more efficient in our CUDA implementation if not _is_power_of_2(_d_per_head): warnings.warn("You'd better set d_model in MSDeformAttn to make the dimension of each attention head a power of 2 " "which is more efficient in our CUDA implementation.") self.im2col_step = 128 self.d_model = d_model self.n_levels = n_levels self.n_heads = n_heads self.n_points = n_points self.sampling_offsets = nn.Linear(d_model, n_heads * n_levels * n_points * 2) self.attention_weights = nn.Linear(d_model, n_heads * n_levels * n_points) self.value_proj = nn.Linear(d_model, d_model) self.output_proj = nn.Linear(d_model, d_model) self._reset_parameters() def _reset_parameters(self): constant_(self.sampling_offsets.weight.data, 0.) thetas = torch.arange(self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads) grid_init = torch.stack([thetas.cos(), thetas.sin()], -1) grid_init = (grid_init / grid_init.abs().max(-1, keepdim=True)[0]).view(self.n_heads, 1, 1, 2).repeat(1, self.n_levels, self.n_points, 1) for i in range(self.n_points): grid_init[:, :, i, :] *= i + 1 with torch.no_grad(): self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1)) constant_(self.attention_weights.weight.data, 0.) constant_(self.attention_weights.bias.data, 0.) xavier_uniform_(self.value_proj.weight.data) constant_(self.value_proj.bias.data, 0.) xavier_uniform_(self.output_proj.weight.data) constant_(self.output_proj.bias.data, 0.) def forward(self, query, reference_points, input_flatten, input_spatial_shapes, input_level_start_index, input_padding_mask=None): """ :param query (N, Length_{query}, C) :param reference_points (N, Length_{query}, n_levels, 2), range in [0, 1], top-left (0,0), bottom-right (1, 1), including padding area or (N, Length_{query}, n_levels, 4), add additional (w, h) to form reference boxes :param input_flatten (N, \sum_{l=0}^{L-1} H_l \cdot W_l, C) :param input_spatial_shapes (n_levels, 2), [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})] :param input_level_start_index (n_levels, ), [0, H_0*W_0, H_0*W_0+H_1*W_1, H_0*W_0+H_1*W_1+H_2*W_2, ..., H_0*W_0+H_1*W_1+...+H_{L-1}*W_{L-1}] :param input_padding_mask (N, \sum_{l=0}^{L-1} H_l \cdot W_l), True for padding elements, False for non-padding elements :return output (N, Length_{query}, C) """ N, Len_q, _ = query.shape N, Len_in, _ = input_flatten.shape assert (input_spatial_shapes[:, 0] * input_spatial_shapes[:, 1]).sum() == Len_in value = self.value_proj(input_flatten) if input_padding_mask is not None: value = value.masked_fill(input_padding_mask[..., None], float(0)) value = value.view(N, Len_in, self.n_heads, self.d_model // self.n_heads) sampling_offsets = self.sampling_offsets(query).view(N, Len_q, self.n_heads, self.n_levels, self.n_points, 2) attention_weights = self.attention_weights(query).view(N, Len_q, self.n_heads, self.n_levels * self.n_points) attention_weights = F.softmax(attention_weights, -1).view(N, Len_q, self.n_heads, self.n_levels, self.n_points) # N, Len_q, n_heads, n_levels, n_points, 2 if reference_points.shape[-1] == 2: offset_normalizer = torch.stack([input_spatial_shapes[..., 1], input_spatial_shapes[..., 0]], -1) sampling_locations = reference_points[:, :, None, :, None, :] \ + sampling_offsets / offset_normalizer[None, None, None, :, None, :] elif reference_points.shape[-1] == 4: sampling_locations = reference_points[:, :, None, :, None, :2] \ + sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5 else: raise ValueError( 'Last dim of reference_points must be 2 or 4, but get {} instead.'.format(reference_points.shape[-1])) try: output = MSDeformAttnFunction.apply( value, input_spatial_shapes, input_level_start_index, sampling_locations, attention_weights, self.im2col_step) except: # CPU output = ms_deform_attn_core_pytorch(value, input_spatial_shapes, sampling_locations, attention_weights) # # For FLOPs calculation only # output = ms_deform_attn_core_pytorch(value, input_spatial_shapes, sampling_locations, attention_weights) output = self.output_proj(output) return output # Path: Compositor_Mask2Former/mask2former/modeling/pixel_decoder/msdeformattn.py import logging import numpy as np import fvcore.nn.weight_init as weight_init import torch from typing import Callable, Dict, List, Optional, Tuple, Union from torch import nn from torch.nn import functional as F from torch.nn.init import xavier_uniform_, constant_, uniform_, normal_ from torch.cuda.amp import autocast from detectron2.config import configurable from detectron2.layers import Conv2d, ShapeSpec, get_norm from detectron2.modeling import SEM_SEG_HEADS_REGISTRY from ..transformer_decoder.position_encoding import PositionEmbeddingSine from ..transformer_decoder.transformer import _get_clones, _get_activation_fn from .ops.modules import MSDeformAttn valid_ratio_w = valid_W.float() / W valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1) return valid_ratio def forward(self, srcs, pos_embeds): masks = [torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) for x in srcs] # prepare input for encoder src_flatten = [] mask_flatten = [] lvl_pos_embed_flatten = [] spatial_shapes = [] for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)): bs, c, h, w = src.shape spatial_shape = (h, w) spatial_shapes.append(spatial_shape) src = src.flatten(2).transpose(1, 2) mask = mask.flatten(1) pos_embed = pos_embed.flatten(2).transpose(1, 2) lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1) lvl_pos_embed_flatten.append(lvl_pos_embed) src_flatten.append(src) mask_flatten.append(mask) src_flatten = torch.cat(src_flatten, 1) mask_flatten = torch.cat(mask_flatten, 1) lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=src_flatten.device) level_start_index = torch.cat((spatial_shapes.new_zeros((1, )), spatial_shapes.prod(1).cumsum(0)[:-1])) valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1) # encoder memory = self.encoder(src_flatten, spatial_shapes, level_start_index, valid_ratios, lvl_pos_embed_flatten, mask_flatten) return memory, spatial_shapes, level_start_index class MSDeformAttnTransformerEncoderLayer(nn.Module): def __init__(self, d_model=256, d_ffn=1024, dropout=0.1, activation="relu", n_levels=4, n_heads=8, n_points=4): super().__init__() # self attention self.self_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points) self.dropout1 = nn.Dropout(dropout) self.norm1 = nn.LayerNorm(d_model) # ffn self.linear1 = nn.Linear(d_model, d_ffn) self.activation = _get_activation_fn(activation) self.dropout2 = nn.Dropout(dropout) self.linear2 = nn.Linear(d_ffn, d_model) self.dropout3 = nn.Dropout(dropout) self.norm2 = nn.LayerNorm(d_model) @staticmethod def with_pos_embed(tensor, pos): return tensor if pos is None else tensor + pos def forward_ffn(self, src): src2 = self.linear2(self.dropout2(self.activation(self.linear1(src)))) src = src + self.dropout3(src2) src = self.norm2(src) return src def forward(self, src, pos, reference_points, spatial_shapes, level_start_index, padding_mask=None): # self attention src2 = self.self_attn(self.with_pos_embed(src, pos), reference_points, src, spatial_shapes, level_start_index, padding_mask) src = src + self.dropout1(src2) src = self.norm1(src) # ffn src = self.forward_ffn(src) return src class MSDeformAttnTransformerEncoder(nn.Module): def __init__(self, encoder_layer, num_layers): super().__init__() self.layers = _get_clones(encoder_layer, num_layers) self.num_layers = num_layers @staticmethod def get_reference_points(spatial_shapes, valid_ratios, device): reference_points_list = [] for lvl, (H_, W_) in enumerate(spatial_shapes): ref_y, ref_x = torch.meshgrid(torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device), torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device)) ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_) ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_) ref = torch.stack((ref_x, ref_y), -1) reference_points_list.append(ref) reference_points = torch.cat(reference_points_list, 1) reference_points = reference_points[:, :, None] * valid_ratios[:, None] return reference_points def forward(self, src, spatial_shapes, level_start_index, valid_ratios, pos=None, padding_mask=None): output = src reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=src.device) for _, layer in enumerate(self.layers): output = layer(output, pos, reference_points, spatial_shapes, level_start_index, padding_mask) return output @SEM_SEG_HEADS_REGISTRY.register() class MSDeformAttnPixelDecoder(nn.Module): @configurable def __init__( self, input_shape: Dict[str, ShapeSpec], *, transformer_dropout: float, transformer_nheads: int, transformer_dim_feedforward: int, transformer_enc_layers: int, conv_dim: int, mask_dim: int,
norm: Optional[Union[str, Callable]] = None,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: happyapplehorse/ai-care # Path: src/ai_care/abilities.py class Ability: def __init__(self, ai_care: AICare): self.ai_care = ai_care self.abilities: dict = {} self._register_abilities() def _register_abilities(self) -> None: for name, method in inspect.getmembers(self, predicate=inspect.ismethod): if getattr(method, '_ability_', False): self.abilities[name] = method @_ability( description="Remain silent.", ) def stay_silent(self) -> None: return @_ability( description="Speak to the user right now.", ) @_ability_parameter( name="content", description="The content you want to say.", ) def speak_now(self, content: str | Generator[str, None, None]) -> None: self.ai_care.to_user_method(content) @_ability( description=( "Set a message to be delivered to the user after a certain period of time. " "This choice means you decide to observe for a duration, and if the user does " "not speak to you during this time, you will then convey the message content you have set. " "However, if the user speaks to you within this time frame, the operation will automatically " "be cancelled. This option is recommended." ) ) @_ability_parameter( name="delay", description="Set how long until your message is sent. Unit in seconds.", ) @_ability_parameter( name="message", description="Set what you want to say to the user after a certain period of time.", ) def speak_after(self, delay: float | int, message: str) -> None: if self.ai_care._stream_mode is True: message_wrap = (string for string in [message]) else: message_wrap = message self.ai_care.set_timer(interval=delay, function=self.ai_care.to_user_method, args=(message_wrap,)) @_ability( description=( "Detect environmental conditions. This choice means that you decide to first obtain the results " "from the sensors, observe the environmental situation, and then decide what to choose based on " "this information. You can only choose which sensors to use from the list of available sensors." ), ) @_ability_parameter( name="delay", description="Set how long to wait before using sensors to obtain readings. Unit in seconds.", ) @_ability_parameter( name="sensors", description="The list of names of the sensors to be used.", param_type="list[str]", ) @_auto_depth(depth_param_name="_depth_left") def detect_env(self, delay: float | int, sensors: list[str], _depth_left: int) -> None: def detect_env_callback(sensors_list: list[str]): sensor_data = {} for sensor in sensors_list: data = self.ai_care.get_sensor_data(sensor) sensor_data[sensor] = data self.ai_care.ask( messages_list=[ { "role": "ai_care", "content": f"The results of the sensor are as follows: {str(sensor_data)}.", }, ], depth_left = _depth_left - 1, ) not_existed_sensors_set = set(sensors) - set(self.ai_care.sensors) if not_existed_sensors_set: self.ai_care.ask( messages_list=[ { "role": "ai_care", "content": f"There are no {str(not_existed_sensors_set)} sensor. Please use the correct sensor name.", } ], depth_left = _depth_left - 1, ) return self.ai_care.set_timer( interval=delay, function=detect_env_callback, args=(sensors,), ) @_ability( description=( "Release detectors. This option means you forego making an active choice and instead release " "some detectors, which will automatically report back to you and ask for your decision when " "specific conditions are met. You can only choose which detectors to use from the list of " "available detectors." ), ) @_ability_parameter( name="delay", description="Set the time in seconds before releasing the detectors.", ) @_ability_parameter( name="detectors", description="The list of names of the detectors to be released.", ) @_auto_depth(depth_param_name="_depth_left") def release_detector(self, delay: int | float, detectors: list[str], _depth_left: int) -> None: def release_detector_callback(detectors_list: list[str]): self.ai_care.release_detector(detectors_list) not_existed_detectors_set = set(detectors) - set(self.ai_care.detectors) if not_existed_detectors_set: self.ai_care.ask( messages_list=[ { "role": "ai_care", "content": f"There are no {str(not_existed_detectors_set)} detector. Please use the correct detector name.", } ], depth_left = _depth_left - 1, ) return self.ai_care.set_timer(interval=delay, function=release_detector_callback, args=(detectors,)) @_ability( description=( "Ask again after a while. This choice means that you do not want to make a decision right now, " "and you would like Aicarey to ask you again later." ), ) @_ability_parameter( name="delay", description="Set how long to wait before asking you again, in seconds.", ) @_auto_depth(depth_param_name="_depth_left") def ask_later(self, delay: int | float, _depth_left: int) -> None: if self.ai_care._ask_later_count_left <= 0: return self.ai_care._ask_later_count_left -= 1 self.ai_care.set_timer( interval=delay, function=self.ai_care.ask, kwargs={ "messages_list": [ { "role": "ai_care", "content": ( f"{delay} senconds ago, you asked me to inquire later, " f"and now {delay} seconds have passed. Please make a choice." ) } ], "depth_left": _depth_left - 1, }, ) @_ability( description=( "Cycle release of detectors. This option means that you forgo making an active choice " "and instead continuously release some detectors, which will automatically report back " "to you and ask for your decision when specific conditions are met. The detectors you " "select will be released periodically at set time intervals until the next conversation " "is initiated. All chosen detectors will be released in each cycle." ), ) @_ability_parameter( name="interval", description="Set the time interval between each release of the detectors. Unit in seconds", ) @_ability_parameter( name="detectors", description="The list of names of the detectors to be released.", ) @_auto_depth(depth_param_name="_depth_left") def cyclic_detection(self, interval: int | float, detectors: list[str], _depth_left) -> None: not_existed_detectors_set = set(detectors) - set(self.ai_care.detectors) if not_existed_detectors_set: self.ai_care.ask( messages_list=[ { "role": "ai_care", "content": f"There are no {str(not_existed_detectors_set)} detector. Please use the correct detector name.", } ], depth_left = _depth_left - 1, ) return def repeat_interval(interval: float): while True: yield interval self.ai_care.set_cyclic_detection( detectors=detectors, interval_gen=repeat_interval(float(interval)), cancel_after_trigger_ask=True ) # Path: src/ai_care/choice_execute.py def choice_execute(ai_care: AICare, choice_code: str, content: str | Generator[str, None, None], depth_left: int) -> None: try: choice = Choice(choice_code) except ValueError as e: logger.warning(f"Invalid choice {choice_code}.") ai_care.ask( messages_list=[ { "role": "assistant", "content": f"AA00{choice_code}{choice_code}:{content}", }, { "role": "ai_care", "content": f"Your choice code {choice_code} is not correct. Please make a correct choice again.", }, ], depth_left = depth_left - 1, ) return if choice == Choice.ERROR: ai_care.ask(messages_list=[], depth_left = depth_left - 1) return logger.info(f"Choice: {choice.name}") if isinstance(content, str): ai_care._ask_context.append( { "role": "assistant", "content": f"AA00{choice_code}{choice_code}:{content}", } ) elif isinstance(content, Generator): # This case has been handled in parse_response. pass else: assert False ability_method = ai_care.ability.abilities[choice.name.lower()] if choice == Choice.STAY_SILENT: ability_method() return if choice == Choice.SPEAK_NOW: params = {"content": content} else: assert isinstance(content, str) try: params = json.loads(content) except json.JSONDecodeError as e: logger.warning(f"Failed to correctly parse the parameter. Parameter json string: {content}. Error: {e}.") ai_care.ask( messages_list=[ { "role": "ai_care", "content": ( "Failed to correctly parse the parameter. " "Please send the correct parameters in JSON format, " "or make a choice again." ), }, ], depth_left = depth_left - 1, ) return if not isinstance(params, dict): ai_care.ask( messages_list=[ { "role": "ai_care", "content": ( "The parameters should be a dictionary in JSON format." "Please send the correct parameters in JSON format, or make a choice again." ), }, ], depth_left = depth_left - 1, ) return ability_params = {} for param in ability_method._ability_parameters_: default_value = param["default_value"] if param["required"] is False: ability_params[param["name"]] = default_value ability_params.update(params) if getattr(ability_method, "_auto_depth_", False): ability_params[ability_method._depth_param_name_] = depth_left needed_params_set = {param["name"] for param in ability_method._ability_parameters_} missing_params_set = needed_params_set - set(ability_params.keys()) if missing_params_set: ai_care.ask( messages_list=[ { "role": "ai_care", "content": ( f"You did not provide the following parameters: {str(missing_params_set)} ." "Please send the correct parameters in JSON format, or make a choice again." ), }, ], depth_left = depth_left - 1 ) return logger.info(f"Choice parameters: {str(ability_params)}") ability_method(**ability_params) # Path: src/ai_care/parse_response.py def parse_response( ai_care: AICare, response: str | Generator[str, None, None], ) -> tuple[str, str | Generator[str, None, None]]: choice_code = "" content = "" if isinstance(response, str): ai_care._stream_mode = False prefix, content = _extract_info(response) if not all(prefix): return '00', '' choice_code = prefix[2] check_valid = prefix[3] if choice_code == check_valid: ai_care._valid_msg_count += 1 else: ai_care._invalid_msg_count += 1 assert isinstance(choice_code, str) return choice_code, content or "" elif isinstance(response, Generator): ai_care._stream_mode = True buffer = "" first_item = "" chunk_list = [] found_choice = False prefix = (None, None, None, None) choice = Choice.ERROR for chunk in response: buffer += chunk if not found_choice: prefix, content = _extract_info(buffer) if all(prefix) and len(buffer) >= 9 and not found_choice: choice_code = prefix[2] check_valid = prefix[3] if choice_code == check_valid: ai_care._valid_msg_count += 1 else: ai_care._invalid_msg_count += 1 try: choice = Choice(choice_code) except ValueError as e: logger.warning(f"Invalid choice {choice_code}. Error: {e}") assert isinstance(choice_code, str) return choice_code, '' found_choice = True if choice == Choice.SPEAK_NOW: first_item = buffer[9:] break chunk_list.append(buffer[9:]) continue if found_choice: chunk_list.append(chunk) if found_choice is False: return '00', '' prefix = cast(tuple[str, str, str, str], prefix) if choice == Choice.SPEAK_NOW: def response_content_gen(): gen_content_record = [] yield first_item gen_content_record.append(first_item) for item in response: yield item gen_content_record.append(item) ai_care._ask_context.append( { "role": "ai_care", "content": ''.join(gen_content_record), } ) return choice.value, response_content_gen() else: return choice.value, ''.join(chunk_list) else: assert False, "The response must be str or a generator." # Path: src/ai_care/render_prompt.py def render_basic_prompt( ai_care: AICare, inactive_abilities_list: list[Choice] | None = None, inactive_sensors_list: list[str] | None = None, inactive_detectors_list: list[str] | None = None, ) -> str: inactive_abilities_set = set() if inactive_abilities_list is None else set(inactive_abilities_list) inactive_sensors_set = set() if inactive_sensors_list is None else set(inactive_sensors_list) inactive_detectors_set = set() if inactive_detectors_list is None else set(inactive_detectors_list) if ai_care._ask_later_count_left <= 0: inactive_abilities_set.add(Choice.ASK_LATER) abilities_dict = ai_care.ability.abilities intervals_info = ( f"""The intervals of the last {len(ai_care._chat_intervals)} times the user conversed with you are recorded in the following list (unit in seconds): {str(ai_care._chat_intervals)} """ if ai_care._chat_intervals else "" ) + ( f"""It has been {time.monotonic() - ai_care._last_chat_time} seconds since the last time the user spoke with you.""" if ai_care._last_chat_time is not None else "" ) sorted_abilities = sorted(abilities_dict.values(), key=lambda x: Choice[x.__name__.upper()].value) abilities_info = ''.join(_render_ability_description(ability_method).lstrip() for ability_method in sorted_abilities if ability_method not in inactive_abilities_set ).replace('\n', '\n ') prompt = textwrap.dedent( f""" I am a program, and my name is Aicarey. You can see your conversation history with the user in the previous messages. This message is sent by me. Please continue to focus on the user and do not attempt to converse with me. You should seriously judge which choice you should make based on the content of your conversation with the user. For example, if you are in a question-and-answer mode with the user, then you may not need to speak when the user doesn't ask a question. However, if you are chatting with the user like a friend, then you may need to proactively continue the conversation like a friend when the user doesn't speak. When replying to this message, you must follow the rules below: ========================RESPONSE RULES======================= 1. Start with eight characters followed by an English colon. The first two characters of these eight must be 'AA', the third and fourth must be '00', the fifth and sixth are the code of your choice. The seventh and eighth characters should repeat the fifth and sixth characters. 2. After the colon is the content corresponding to the chosen option. If it involves a function call, this part of the content must be in the format of a JSON string. ============================================================= Here are the choices you can make: ===========================CHOICES=========================== {abilities_info} ============================================================= You must choose one of the options provided above as your reply. Response Examples: If you want to remain silent: AA000101: If you want to say to the user: AA000202: [Your content here] If you decide to ask the user what they are doing if they haven't spoken to you in a minute: AA000303: {{"delay":60, "message":"What are you doing?"}} ===========================SENSORS=========================== Sensors list: { str( [ {"sensor_name": sensor["name"], "sensor_description": sensor["annotation"]} for sensor in ai_care.sensors.values() if sensor["name"] not in inactive_sensors_set ] ) } ============================================================= ==========================DETECTORS========================== Detectors list: { str( [ {"detector_name": detector.name, "detector_description": detector.annotation} for detector in ai_care.detectors.values() if detector.name not in inactive_detectors_set ] ) } ============================================================= ============================FACTS============================ {intervals_info} {ai_care.guide} ============================================================= """ ) return prompt # Path: src/ai_care/ai_care.py import itertools import logging import time import threading from abc import ABCMeta, abstractmethod from typing import Callable, Any, Generator, TypedDict, Literal, cast from .abilities import Ability from .choice_execute import choice_execute from .parse_response import parse_response from .render_prompt import render_basic_prompt from __future__ import annotations logger = logging.getLogger("ai_care") ChatContext = Any ConfigKey = Literal["delay", "ask_later_count_limit", "ask_depth", "n_chat_intervals"] class AICare: def __init__(self) -> None: self.timers: dict[int, AICareTimer] = {} self.detectors: dict[str, Detector] = {} self.sensors: dict[str, dict] = {} self.ability: Ability = Ability(self) self.chat_context: Any = None
self._to_llm_method: (
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: neu-spiral/multi-label-emg # Path: multi_label_emg/data.py def load_data_dict(): """ Loads features and labels from subject folders into a single dictionary as described below. NOTE - preprocessing should be been done first to extract features from raw data (see README). data_dict = { Subj0: { Calibration_features: ..., Calibration_dir_labels: ..., Calibration_mod_labels: ..., Calibration_visual_dir_labels: ..., Calibration_visual_mod_labels: ..., SimultaneousPulse1_NoFeedback_features: ..., ... }, ... } """ blocks = ["Calibration"] for i in [1, 2, 3]: for feedback in ["NoFeedBack", "WithFeedBack"]: blocks.append(f"SimultaneousPulse{i}_{feedback}") blocks.append(f"HoldPulse{i}_{feedback}") results = {} for i in trange(11, desc="Load Subjects", leave=True): results[f"Subj{i}"] = {} for block in tqdm(blocks, leave=False, position=1): path = DATASET_DIR / "python" / f"Subj{i}" / block # NOTE - features.npy is created during preprocessing script results[f"Subj{i}"][f"{block}_features"] = np.load(path / "features.npy") results[f"Subj{i}"][f"{block}_dir_labels"] = np.load(path / "joystick_direction_labels.npy") results[f"Subj{i}"][f"{block}_mod_labels"] = np.load(path / "joystick_modifier_labels.npy") results[f"Subj{i}"][f"{block}_visual_dir_labels"] = np.load(path / "visual_direction_labels.npy") results[f"Subj{i}"][f"{block}_visual_mod_labels"] = np.load(path / "visual_modifier_labels.npy") return results # Path: multi_label_emg/models.py class AvgPairs: """Create fake doubles by averaging pairs of singles. New items have hard labels including both classes""" def __init__(self, n_per_class: int): self.n_per_class = n_per_class def __call__(self, x: np.ndarray, y_dir: np.ndarray, y_mod: np.ndarray): """ Args: x_single: (n_samples_in, n_features) - data/features from single gestures y_dir_single: (n_samples_in, DIR_PROBS_SHAPE) - one-hot labels of direction gestures y_mod_single: (n_samples_in, MOD_PROBS_SHAPE) - one-hot labels of modifier gestures Returns: x_prime: (n_samples_aug, n_features) - augmented data y_prime_dir: (n_samples_aug, len(DIRECTION_GESTURES)) - augmented labels y_prime_mod: (n_samples_aug, len(MODIFIER_GESTURES)) - augmented labels """ x_dir, x_mod, y_dir, y_mod = split_dir_mod(x, y_dir, y_mod) x_aug, y_dir_aug, y_mod_aug = [], [], [] for (x1, y1), (x2, y2) in product(zip(x_dir, y_dir), zip(x_mod, y_mod)): x_aug.append((x1 + x2) / 2) y_dir_aug.append(y1) y_mod_aug.append(y2) x_aug = np.stack(x_aug) y_dir_aug = np.stack(y_dir_aug) y_mod_aug = np.stack(y_mod_aug) if self.n_per_class > 0: # For each combination class, truncate to self.n_per_class res_x, res_y_dir, res_y_mod = [], [], [] for d in np.unique(y_dir_aug, axis=0): for m in np.unique(y_mod_aug, axis=0): idx = np.where(np.logical_and((y_dir_aug == d).all(-1), (y_mod_aug == m).all(-1)))[0] perm = np.random.permutation(len(idx)) res_x.append(x_aug[idx[perm[: self.n_per_class]]]) res_y_dir.append(y_dir_aug[idx[perm[: self.n_per_class]]]) res_y_mod.append(y_mod_aug[idx[perm[: self.n_per_class]]]) x_aug = np.concatenate(res_x) y_dir_aug = np.concatenate(res_y_dir) y_mod_aug = np.concatenate(res_y_mod) return x_aug, y_dir_aug, y_mod_aug def __repr__(self): return f"{type(self).__name__}(n_per_class={self.n_per_class})" # Path: multi_label_emg/models.py class ElementwiseMaxPairs: """Create fake doubles by taking elementwise max of each feature. New items have hard labels including both classes""" def __init__(self, n_per_class: int): self.n_per_class = n_per_class def __call__(self, x: np.ndarray, y_dir: np.ndarray, y_mod: np.ndarray): """ Args: x_single: (n_samples_in, n_features) - data/features from single gestures y_dir_single: (n_samples_in, DIR_PROBS_SHAPE) - one-hot labels of direction gestures y_mod_single: (n_samples_in, MOD_PROBS_SHAPE) - one-hot labels of modifier gestures Returns: x_prime: (n_samples_aug, n_features) - augmented data y_prime_dir: (n_samples_aug, len(DIRECTION_GESTURES)) - augmented labels y_prime_mod: (n_samples_aug, len(MODIFIER_GESTURES)) - augmented labels """ x_dir, x_mod, y_dir, y_mod = split_dir_mod(x, y_dir, y_mod) x_aug, y_dir_aug, y_mod_aug = [], [], [] for (x1, y1), (x2, y2) in product(zip(x_dir, y_dir), zip(x_mod, y_mod)): x_aug.append(np.maximum(x1, x2)) y_dir_aug.append(y1) y_mod_aug.append(y2) x_aug = np.stack(x_aug) y_dir_aug = np.stack(y_dir_aug) y_mod_aug = np.stack(y_mod_aug) if self.n_per_class > 0: # For each combination class, truncate to self.n_per_class res_x, res_y_dir, res_y_mod = [], [], [] for d in np.unique(y_dir_aug, axis=0): for m in np.unique(y_mod_aug, axis=0): idx = np.where(np.logical_and((y_dir_aug == d).all(-1), (y_mod_aug == m).all(-1)))[0] perm = np.random.permutation(len(idx)) res_x.append(x_aug[idx[perm[: self.n_per_class]]]) res_y_dir.append(y_dir_aug[idx[perm[: self.n_per_class]]]) res_y_mod.append(y_mod_aug[idx[perm[: self.n_per_class]]]) x_aug = np.concatenate(res_x) y_dir_aug = np.concatenate(res_y_dir) y_mod_aug = np.concatenate(res_y_mod) return x_aug, y_dir_aug, y_mod_aug def __repr__(self): return f"{type(self).__name__}(n_per_class={self.n_per_class})" # Path: multi_label_emg/models.py class ParallelA(BaseParallelModel): DEFAULT_SAVE_NAME = "ParallelA.pkl" def __init__( self, dir_clf, mod_clf, use_augmentation: bool, n_aug_per_class: int = -1, include_rest_data_for_clf: bool = False, ): self.dir_clf = dir_clf self.mod_clf = mod_clf self.use_augmentation = use_augmentation self.n_aug_per_class = n_aug_per_class self._n_aug_created = None self.include_rest_data_for_clf = include_rest_data_for_clf def get_params(self, deep=True): return { "dir_clf": self.dir_clf, "mod_clf": self.mod_clf, "use_augmentation": self.use_augmentation, "n_aug_per_class": self.n_aug_per_class, "include_rest_data_for_clf": self.include_rest_data_for_clf, } def fit(self, features, y_dir, y_mod): if self.use_augmentation: aug = AvgPairs(self.n_aug_per_class) aug_features, aug_dir_labels, aug_mod_labels = aug(features, y_dir, y_mod) features = np.concatenate([features, aug_features]) y_dir = np.concatenate([y_dir, aug_dir_labels]) y_mod = np.concatenate([y_mod, aug_mod_labels]) self._n_aug_created = len(aug_features) if y_dir.ndim == 2: y_dir = y_dir.argmax(-1) if y_mod.ndim == 2: y_mod = y_mod.argmax(-1) if self.include_rest_data_for_clf: # In this case, the label (NoDir, NoMod) could mean "active and doesn't fit our classes" or "resting" self.dir_clf.fit(features, y_dir) self.mod_clf.fit(features, y_mod) else: # In this case, the label (NoDir, NoMod) means "active and doesn't fit classes". # "Rest" data is out-of-domain active_idx = np.logical_or(y_dir != NO_DIR_IDX, y_mod != NO_MOD_IDX) active_features = features[active_idx] active_y_dir = y_dir[active_idx] active_y_mod = y_mod[active_idx] self.dir_clf.fit(active_features, active_y_dir) self.mod_clf.fit(active_features, active_y_mod) return self def predict_proba(self, features): """Only for gestures""" dir_probs = self.dir_clf.predict_proba(features) mod_probs = self.mod_clf.predict_proba(features) return dir_probs, mod_probs def predict(self, features): """features.shape == (n_channels, n_samples) or (n_trials, n_channels, n_samples)""" dir_probs = self.dir_clf.predict_proba(features) mod_probs = self.mod_clf.predict_proba(features) return dir_probs.argmax(-1), mod_probs.argmax(-1) def save(self, save_dir: Path) -> Path: assert save_dir.exists() and save_dir.is_dir() file_path = save_dir / self.DEFAULT_SAVE_NAME with open(file_path, "wb") as f: pickle.dump(self, f) return file_path @classmethod def load(cls, file_path: Path) -> "ParallelA": with open(file_path, "rb") as f: return pickle.load(f) def __repr__(self): return ( f"{type(self).__name__}(dir_clf={self.dir_clf}, " f"use_augmentation={self.use_augmentation}, " f"n_aug_per_class={self.n_aug_per_class}, " + f"mod_clf={self.mod_clf}, " + f"include_rest_data_for_clf={self.include_rest_data_for_clf})" ) # Path: multi_label_emg/models.py class ParallelB(BaseParallelModel): DEFAULT_SAVE_NAME = "ParallelB.pkl" def __init__( self, dir_clf, mod_clf, has_dir_clf, has_mod_clf, use_augmentation: bool, n_aug_per_class: int = -1, ): self.has_dir_clf = has_dir_clf self.has_mod_clf = has_mod_clf self.dir_clf = dir_clf self.mod_clf = mod_clf self.use_augmentation = use_augmentation self.n_aug_per_class = n_aug_per_class self._n_aug_created = None def get_params(self, deep=True): return { "dir_clf": self.dir_clf, "mod_clf": self.mod_clf, "has_dir_clf": self.dir_clf, "has_mod_clf": self.mod_clf, "use_augmentation": self.use_augmentation, "n_aug_per_class": self.n_aug_per_class, } def fit(self, features, y_dir, y_mod): if self.use_augmentation: aug = AvgPairs(self.n_aug_per_class) aug_features, aug_dir_labels, aug_mod_labels = aug(features, y_dir, y_mod) features = np.concatenate([features, aug_features]) y_dir = np.concatenate([y_dir, aug_dir_labels]) y_mod = np.concatenate([y_mod, aug_mod_labels]) self._n_aug_created = len(aug_features) if y_dir.ndim == 2: y_dir = y_dir.argmax(-1) if y_mod.ndim == 2: y_mod = y_mod.argmax(-1) has_direction = y_dir != NO_DIR_IDX has_modifier = y_mod != NO_MOD_IDX # Event check self.has_dir_clf.fit(features, has_direction.astype(int)) self.has_mod_clf.fit(features, has_modifier.astype(int)) # Direction and modifier self.dir_clf.fit(features[has_direction], y_dir[has_direction]) self.mod_clf.fit(features[has_modifier], y_mod[has_modifier]) return self def predict_proba(self, features): p_has_direction = self.has_dir_clf.predict_proba(features) p_has_modifier = self.has_mod_clf.predict_proba(features) p_dir_probs = self.dir_clf.predict_proba(features) p_mod_probs = self.mod_clf.predict_proba(features) # Check probs dir_probs = np.zeros((features.shape[0], 5)) mod_probs = np.zeros((features.shape[0], 3)) dir_probs[:, NO_DIR_IDX] = p_has_direction[:, 0] # p(no_direction | x) mod_probs[:, NO_MOD_IDX] = p_has_modifier[:, 0] # p(no_modifier | x) dir_probs[:, :NO_DIR_IDX] = np.multiply( p_dir_probs, p_has_direction[:, 1][..., None] ) # p(direction | has_direction) mod_probs[:, :NO_MOD_IDX] = np.multiply( p_mod_probs, p_has_modifier[:, 1][..., None] ) # p(modifier | has_modifier) assert np.allclose(dir_probs.sum(-1), 1) and np.allclose(mod_probs.sum(-1), 1), "Probabilities should sum to 1" # return probs """Only for gestures""" return dir_probs, mod_probs def predict(self, features): dir_probs, mod_probs = self.predict_proba(features) return dir_probs.argmax(-1), mod_probs.argmax(-1) def save(self, save_dir: Path) -> Path: assert save_dir.exists() and save_dir.is_dir() file_path = save_dir / self.DEFAULT_SAVE_NAME with open(file_path, "wb") as f: pickle.dump(self, f) return file_path @classmethod def load(cls, file_path: Path) -> "ParallelB": with open(file_path, "rb") as f: return pickle.load(f) def __repr__(self): return ( f"{type(self).__name__}(has_dir_clf={self.has_dir_clf}, " f"dir_clf={self.dir_clf}, " f"use_augmentation={self.use_augmentation}, " f"n_aug_per_class={self.n_aug_per_class}, " f"has_mod_clf={self.has_mod_clf})," f"mod_clf={self.mod_clf})" ) # Path: multi_label_emg/utils.py NO_DIR_IDX = len(DIRECTION_GESTURES) # When predicting direction, we have an extra class representing "None" # Path: multi_label_emg/utils.py NO_MOD_IDX = len(MODIFIER_GESTURES) # Path: multi_label_emg/utils.py RESULTS_DIR = PROJECT_ROOT.parent / "results" # For experiment outputs and figures # Path: multi_label_emg/utils.py def canonical_coords(): """NOTE - order does not matter: (Up, Pinch) and (Pinch, Up) are both labeled as (Up, Pinch) Make a list table so we can convert: from integer labels such as (0, 1), to an index in confusion matrix and a string label""" result_int = [] result_str = [] # Add (<DIR>, NoMod) items for i, d in enumerate(DIRECTION_GESTURES): result_int.append((i, NO_MOD_IDX)) result_str.append(f"({d}, NoMod)") # Add (NoDir, <MOD>) items for i, m in enumerate(MODIFIER_GESTURES): result_int.append((NO_DIR_IDX, i)) result_str.append(f"(NoDir, {m})") # Add (<DIR>, <MOD>) items for i, d in enumerate(DIRECTION_GESTURES): for j, m in enumerate(MODIFIER_GESTURES): result_int.append((i, j)) result_str.append(f"({d}, {m})") # Add the (NoDir, NoMod) item result_int.append((NO_DIR_IDX, NO_MOD_IDX)) result_str.append("(NoDir, NoMod)") return result_int, result_str # Path: multi_label_emg/utils.py def confusion_matrix(y_true_2d, y_pred_2d, normalize_rows=True): """ Number of classes = 4 direction + 2 modifier + 4*2 combinations + (NoDir, NoMod) = 15 Create a confusion matrix of shape (15, 15), arranged according to the canonical coordinates above NOTE - result may contain nans - use nanmean later """ coords, coords_str = canonical_coords() cm = np.zeros((len(coords), len(coords)), dtype=int) for yt, yp in zip(y_true_2d, y_pred_2d): cm[coords.index(tuple(yt)), coords.index(tuple(yp))] += 1 if normalize_rows: cm = cm.astype(float) with np.errstate(all="ignore"): # Ignore division by zero for empty rows cm /= cm.sum(axis=-1, keepdims=True) return cm # Path: multi_label_emg/utils.py def str2bool(s): if s.lower() in ("yes", "true", "t", "y", "1"): return True elif s.lower() in ("no", "false", "f", "n", "0"): return False else: raise ValueError("Boolean value expected.") # Path: multi_label_emg/train.py import sys import numpy as np import plotly.graph_objects as go import argparse from loguru import logger from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.mixture import GaussianMixture from sklearn.neighbors import KernelDensity, KNeighborsClassifier from sklearn.neural_network import MLPClassifier from sklearn.pipeline import make_pipeline from sklearn.preprocessing import RobustScaler from sklearn.svm import SVC from multi_label_emg.data import load_data_dict from multi_label_emg.models import AvgPairs, ElementwiseMaxPairs, ParallelA, ParallelB from multi_label_emg.utils import ( NO_DIR_IDX, NO_MOD_IDX, RESULTS_DIR, canonical_coords, confusion_matrix, str2bool, ) def get_name( subject: str, seed: int, parallel_model_type: str, clf_name: str, doubles_method: str, fraction_doubles_per_class: float, singles_method: str, rel_fraction_singles_per_class: float, include_doubles_in_train: bool, feature_combine_type: str, ): return "__".join( [ f"subj={subject}", f"seed={seed}", f"par={parallel_model_type}", f"clf={clf_name}", f"doubles={doubles_method}", f"frac_doubles={fraction_doubles_per_class}", f"singles={singles_method}", f"frac_singles={rel_fraction_singles_per_class}", f"incl_doubles={include_doubles_in_train}", f"feat_type={feature_combine_type}", ] ) def plot_confusion_matrix(data: np.ndarray): def make_text(cm): text = [] for v in cm.flatten():
text.append(f"{round(v, 2)}")
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: ebb-earl-co/tidal-wave # Path: tidal_wave/hls.py def playlister( session: Session, vesrj: Optional[VideosEndpointStreamResponseJSON] ) -> m3u8.M3U8: """Attempts to parse a VideosEndpointStreamResponseJSON object into an m3u8.M3U8 object. Requires fetching HTTP(s) resources, so takes a requests.Session object as an argument. If error occurs, raises TidalM3U8Exception""" em_three_you_ate: Optional[m3u8.M3U8] = None if vesrj.manifest_mime_type == "application/vnd.tidal.emu": try: manifest: Dict[str, str] = json.loads(vesrj.manifest_bytes) except json.decoder.JSONDecodeError: raise TidalM3U8Exception( f"Expected an HLS spec. in JSON format for video {vesrj.video_id}" ) else: mt: Optional[str] = manifest.get("mimeType") url: Optional[str] = manifest.get("urls", [None])[0] if ( (mt is None) or (mt != "application/vnd.apple.mpegurl") or (url is None) or (".m3u8" not in url) ): raise TidalM3U8Exception( f"Manifest for video {vesrj.video_id}, video mode " f"{vesrj.video_quality} does not make available an " "M3U8 file" ) em_three_you_ate: m3u8.M3U8 = m3u8.load( url, http_client=RequestsClient(session=session) ) return em_three_you_ate # Path: tidal_wave/hls.py def variant_streams( m3u8: m3u8.M3U8, return_urls: bool = False ) -> Optional[Union[m3u8.Playlist, List[str]]]: """By default, return the highest-bandwidth option of m3u8.playlists as an m3u8.Playlist object. If return_urls, then returns the object's .files attribute, which is a list of strings. N.b. if m3u8.is_variant is False, then return None as there are no variant streams.""" if not m3u8.is_variant: return playlist: m3u8.Playlist = max(m3u8.playlists, key=lambda p: p.stream_info.bandwidth) if return_urls: _m3u8: m3u8.M3U8 = m3u8.load(playlist) return _m3u8.files else: return playlist # Path: tidal_wave/hls.py class TidalM3U8Exception(Exception): pass # Path: tidal_wave/media.py TAG_MAPPING: Dict[str, Dict[str, str]] = { "album": {"flac": "ALBUM", "m4a": "\xa9alb"}, "album_artist": {"flac": "ALBUMARTIST", "m4a": "aART"}, "artist": {"flac": "ARTIST", "m4a": "\xa9ART"}, "artists": {"flac": "ARTISTS", "m4a": "----:com.apple.iTunes:ARTISTS"}, "barcode": {"flac": "BARCODE", "m4a": "----:com.apple.iTunes:BARCODE"}, "comment": {"flac": "COMMENT", "m4a": "\xa9cmt"}, "composer": {"flac": "COMPOSER", "m4a": "\xa9wrt"}, "copyright": {"flac": "COPYRIGHT", "m4a": "cprt"}, "date": {"flac": "DATE", "m4a": "\xa9day"}, "director": {"flac": None, "m4a": "\xa9dir"}, "engineer": {"flac": "ENGINEER", "m4a": "----:com.apple.iTunes:ENGINEER"}, "isrc": {"flac": "ISRC", "m4a": "----:com.apple.iTunes:ISRC"}, "lyrics": {"flac": "LYRICS", "m4a": "\xa9lyr"}, "lyricist": {"flac": "LYRICIST", "m4a": "----:com.apple.iTunes:LYRICIST"}, "mixer": {"flac": "MIXER", "m4a": "----:com.apple.iTunes:MIXER"}, "producer": {"flac": "PRODUCER", "m4a": "----:com.apple.iTunes:PRODUCER"}, "remixer": {"flac": "REMIXER", "m4a": "----:com.apple.iTunes:REMIXER"}, "album_peak_amplitude": { "flac": "REPLAYGAIN_ALBUM_PEAK", "m4a": "----:com.apple.iTunes:REPLAYGAIN_ALBUM_PEAK", }, "album_replay_gain": { "flac": "REPLAYGAIN_ALBUM_GAIN", "m4a": "----:com.apple.iTunes:REPLAYGAIN_ALBUM_GAIN", }, "track_peak_amplitude": { "flac": "REPLAYGAIN_TRACK_PEAK", "m4a": "----:com.apple.iTunes:REPLAYGAIN_TRACK_PEAK", }, "track_replay_gain": { "flac": "REPLAYGAIN_TRACK_GAIN", "m4a": "----:com.apple.iTunes:REPLAYGAIN_TRACK_GAIN", }, "title": {"flac": "TITLE", "m4a": "\xa9nam"}, } # Path: tidal_wave/media.py class VideoFormat(str, Enum): high = "HIGH" medium = "MEDIUM" low = "LOW" audio_only = "AUDIO_ONLY" # Path: tidal_wave/models.py class VideosContributorsResponseJSON(dataclass_wizard.JSONWizard): """The response from the TIDAL API endpoint /videos/<ID>/contributors is modeled by this class.""" limit: int offset: int total_number_of_items: int items: List["VideoContributor"] def get_role(self, role: str) -> Optional[Tuple["VideoContributor"]]: """Given a contributor role (e.g. Composer, Film Director), go through `self.items` object, returning the `VideoContributor` object(s) for the given contributor type if there are any""" role_contributors = tuple(vc for vc in self.items if vc.role == role) try: role_contributors[0] except IndexError: logger.debug(f"There are no credits of type '{role}' for this video") return else: return role_contributors def get_contributors(self, role: str) -> Optional[Tuple[str]]: """Given a contributor role (e.g. Lyricist, Composer), return a tuple of all the names of the contributors """ vcs: Optional[Tuple["VideoContributor"]] = self.get_role(role) if vcs is not None: return tuple(vc.name for vc in vcs) else: return def __post_init__(self): """Try to parse the various Contributors to top-level attributes of this class""" self.composer: Optional[Tuple[str]] = self.get_contributors("Composer") self.director: Optional[Tuple[str]] = self.get_contributors("Director") self.film_director: Optional[Tuple[str]] = self.get_contributors( "Film Director" ) self.film_producer: Optional[Tuple[str]] = self.get_contributors( "Film Producer" ) self.lyricist: Optional[Tuple[str]] = self.get_contributors("Lyricist") self.mastering_engineer: Optional[Tuple[str]] = self.get_contributors( "Mastering Engineer" ) self.producer: Optional[Tuple[str]] = self.get_contributors("Producer") self.video_producer: Optional[Tuple[str]] = self.get_contributors( "Video Producer" ) # Path: tidal_wave/models.py class VideosEndpointResponseJSON(dataclass_wizard.JSONWizard): """Response from the TIDAL API, videos/<VIDEOID> endpoint.If the params and headers are correctly specified, the API returns metadata of the available version of the (music) video, including video quality, video title, date, video artists, duration, etc.""" id: int = field(repr=False) title: str volume_number: int track_number: int release_date: Annotated[ datetime, dataclass_wizard.Pattern("%Y-%m-%dT%H:%M:%S.%f%z") ] duration: int # seconds quality: str explicit: bool type: str artist: "Artist" artists: List["Artist"] def __post_init__(self): self.name: str = ( self.title.replace("/", "_") .replace("|", "_") .replace(":", " -") .replace('"', "") ) # Path: tidal_wave/models.py class VideosEndpointStreamResponseJSON(dataclass_wizard.JSONWizard): """Response from the TIDAL API's videos/<VIDEO_ID> stream endpoint. The params and headers, if correctly specified, return the manifest of the video to be streamed. The manifest is a base64-encoded JSON object containing a .m3u8 URL""" video_id: int stream_type: str # ON_DEMAND video_quality: VideoQualityType manifest: str = field(repr=False) manifest_mime_type: str = field(repr=False) def __post_init__(self): self.manifest_bytes: bytes = base64.b64decode(self.manifest) # Path: tidal_wave/requesting.py def request_videos( session: Session, identifier: int ) -> Optional[VideosEndpointResponseJSON]: return requester_maker( session=session, endpoint="videos", identifier=identifier, headers={"Accept": "application/json"}, subclass=VideosEndpointResponseJSON, ) # Path: tidal_wave/requesting.py def request_video_contributors( session: Session, identifier: int ) -> Optional[VideosContributorsResponseJSON]: return requester_maker( session=session, endpoint="videos", identifier=identifier, headers={"Accept": "application/json"}, parameters={"limit": 100}, url_end="/contributors", subclass=VideosContributorsResponseJSON, ) # Path: tidal_wave/requesting.py def request_video_stream( session: Session, video_id: int, video_quality: str ) -> Optional[VideosEndpointStreamResponseJSON]: func = partial( requester_maker, session=session, identifier=video_id, endpoint="videos", headers={"Accept": "application/json"}, parameters={ "videoquality": video_quality, "playbackmode": "STREAM", "assetpresentation": "FULL", }, url_end="/playbackinfopostpaywall", subclass=VideosEndpointStreamResponseJSON, ) return func() # Path: tidal_wave/utils.py @contextmanager def temporary_file(suffix: str = ".mka"): """This context-managed function is a stand-in for tempfile.NamedTemporaryFile as that stdlib object experiences errors on Windows.""" file_name: str = os.path.join( tempfile.gettempdir(), f"{os.urandom(24).hex()}{suffix}" ) if not os.path.exists(file_name): open(file=file_name, mode="x").close() tf = open(file=file_name, mode="wb") try: yield tf finally: tf.close() os.unlink(tf.name) # Path: tidal_wave/video.py from dataclasses import dataclass from pathlib import Path from typing import Dict, List, Optional from .hls import playlister, variant_streams, TidalM3U8Exception from .media import TAG_MAPPING, VideoFormat from .models import ( VideosContributorsResponseJSON, VideosEndpointResponseJSON, VideosEndpointStreamResponseJSON, ) from .requesting import request_videos, request_video_contributors, request_video_stream from .utils import temporary_file from requests import Session import json import logging import sys import ffmpeg import mutagen import m3u8 def set_urls(self): """This method uses self.m3u8, an m3u8.M3U8 object that is variant: (https://developer.apple.com/documentation/http-live-streaming/creating-a-multivariant-playlist) It retrieves the highest-quality .m3u8 in its .playlists attribute, and sets self.urls as the list of strings from that m3u8.Playlist""" # for now, just get the highest-bandwidth playlist playlist: m3u8.Playlist = variant_streams(self.m3u8) self.M3U8 = m3u8.load(playlist.uri) if self.M3U8 is None or len(self.M3U8.files) == 0: raise TidalM3U8Exception( f"HLS media segments are not available for video {self.video_id}" ) self.urls: List[str] = self.M3U8.files def set_artist_dir(self, out_dir: Path): """Set self.artist_dir, which is the subdirectory of `out_dir` with name `self.metadata.artist.name`""" self.artist_dir: Path = out_dir / self.metadata.artist.name self.artist_dir.mkdir(parents=True, exist_ok=True) def set_filename(self, out_dir: Path): """Set self.filename, which is constructed from self.metadata.name and self.stream.video_quality""" self.filename: str = ( f"{self.metadata.name} [{self.stream.video_quality}].{self.codec}" ) def set_outfile(self): """Uses self.artist_dir and self.metadata and self.filename to craft the pathlib.Path object, self.outfile, that is a reference to where the track will be written on disk.""" self.outfile: Path = self.artist_dir / self.filename if (self.outfile.exists()) and (self.outfile.stat().st_size > 0): logger.info( f"Video {str(self.outfile.absolute())} already exists " "and therefore will not be overwritten" ) return else: return self.outfile def download(self, session: Session, out_dir: Path) -> Optional[Path]: """Requests the HLS video files that constitute self.video_id. Writes HLS bytes to a temporary file, then uses FFmpeg to write the video data to self.outfile""" if session.session_id is not None: download_headers: Dict[str, str] = {"sessionId": session.session_id} else: download_headers: dict = dict() download_params: Dict[str, None] = {k: None for k in session.params} # self.outfile should already have been set by self.set_outfile() logger.info( f"Writing video {self.video_id} to '{str(self.outfile.absolute())}'" ) with temporary_file() as ntf: for u in self.urls: with session.get( url=u, headers=download_headers, params=download_params ) as download_response: if not download_response.ok: logger.warning(f"Could not download {self}") else: ntf.write(download_response.content) else: ntf.seek(0) # will always be .mp4 because HLS ffmpeg.input(ntf.name, hide_banner=None, y=None).output( str(self.outfile.absolute()), vcodec="copy", acodec="copy", loglevel="quiet", ).run() logger.info( f"Video {self.video_id} written to '{str(self.outfile.absolute())}'" ) return self.outfile def craft_tags(self): """Using the TAG_MAPPING dictionary, write the correct values of various metadata tags to the file. Videos are .mp4""" tags = dict() tag_map = {k: v["m4a"] for k, v in TAG_MAPPING.items()} tags[tag_map["artist"]] = ";".join((a.name for a in self.metadata.artists)) tags[tag_map["artists"]] = [a.name for a in self.metadata.artists] tags[tag_map["comment"]] = f"https://tidal.com/browse/video/{self.video_id}" tags[tag_map["date"]] = str(self.metadata.release_date.date()) tags[tag_map["title"]] = self.metadata.title for tag in {"composer", "director", "lyricist", "producer"}: try: _credits_tag = ";".join(getattr(self.contributors, tag)) except (TypeError, AttributeError): # NoneType problems continue else: tags[tag_map[tag]] = _credits_tag # Have to convert to bytes the values of the tags starting with '----' for k, v in tags.copy().items(): if k.startswith("----"): if isinstance(v, str): tags[k]: bytes = v.encode("UTF-8") elif isinstance(v, list): tags[k]: List[bytes] = [s.encode("UTF-8") for s in v] self.tags: dict = {k: v for k, v in tags.items() if v is not None} def set_tags(self): """Instantiate a mutagen.File instance, add self.tags to it, and save it to disk""" self.mutagen = mutagen.File(self.outfile) self.mutagen.clear() self.mutagen.update(**self.tags) self.mutagen.save() def get(
self,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: lbcb-sci/GNNome # Path: graph_dataset.py class AssemblyGraphDataset(DGLDataset): def __init__(self, root, assembler, threads=32, generate=False): self.root = os.path.abspath(root) self.assembler = assembler self.threads = threads self.assembly_dir = os.path.join(self.root, self.assembler) # print(self.assembly_dir) if 'raw' not in os.listdir(self.root): subprocess.run(f"mkdir 'raw'", shell=True, cwd=self.root) if 'output' not in os.listdir(self.assembly_dir): subprocess.run(f"mkdir 'output'", shell=True, cwd=self.assembly_dir) if f'processed' not in os.listdir(self.assembly_dir): subprocess.run(f"mkdir 'processed'", shell=True, cwd=self.assembly_dir) if f'info' not in os.listdir(self.assembly_dir): subprocess.run(f"mkdir 'info'", shell=True, cwd=self.assembly_dir) raw_dir = os.path.join(self.root, 'raw') save_dir = os.path.join(self.assembly_dir, f'processed') self.output_dir = os.path.join(self.assembly_dir, f'output') self.info_dir = os.path.join(self.assembly_dir, f'info') config = get_config() raven_dir = config['raven_dir'] self.raven_path = os.path.join(raven_dir, f'build/bin/raven') self.raven_path = os.path.abspath(self.raven_path) hifiasm_dir = config['hifiasm_dir'] self.hifiasm_path = os.path.join(hifiasm_dir, f'hifiasm') self.hifiasm_path = os.path.abspath(self.hifiasm_path) super().__init__(name='assembly_graphs', raw_dir=raw_dir, save_dir=save_dir) self.graph_list = [] if not generate: for file in os.listdir(self.save_dir): idx = int(file[:-4]) graph = dgl.load_graphs(os.path.join(self.save_dir, file))[0][0] graph = preprocess_graph(graph, self.root, idx) graph = add_positional_encoding(graph) print(f'DGL graph idx={idx} info:\n',graph) self.graph_list.append((idx, graph)) self.graph_list.sort(key=lambda x: x[0]) def has_cache(self): """Check if the raw data is already processed and stored.""" raw_files = {int(re.findall(r'(\d+).fast*', raw)[0]) for raw in os.listdir(self.raw_dir)} prc_files = {int(re.findall(r'(\d+).dgl', prc)[0]) for prc in os.listdir(self.save_dir)} return len(raw_files - prc_files) == 0 # set difference def __len__(self): return len(os.listdir(self.save_dir)) def __getitem__(self, idx): i, graph = self.graph_list[idx] return i, graph def process(self): pass # Path: hyperparameters.py def get_hyperparameters(): return { # Setup 'data_path': '/mnt/sod2-project/csb4/wgs/lovro/gnnome_assembly/hifi/train', 'temp_path': '/home/vrcekl/scratch/gnnome_assembly/train', 'eval_path': '/mnt/sod2-project/csb4/wgs/lovro/gnnome_assembly/hifi/evaluate', 'asms_path': '/home/vrcekl/scratch/gnnome_assembly/evaluate', 'refs_path': '/mnt/sod2-project/csb4/wgs/lovro/gnnome_assembly/references', 'checkpoints_path': '/mnt/sod2-project/csb4/wgs/lovro/gnnome_assembly/checkpoints', 'models_path': '/mnt/sod2-project/csb4/wgs/lovro/gnnome_assembly/models', 'data_path_ont': '/mnt/sod2-project/csb4/wgs/lovro/gnnome_assembly/ont/train', 'eval_path_ont': '/mnt/sod2-project/csb4/wgs/lovro/gnnome_assembly/ont/evaluate', 'asms_path_ont': '/home/vrcekl/scratch/gnnome_assembly/evaluate_ont', 'raven_path': '', 'hifiasm_path': '', 'pbsim3_dir': '', 'sample_profile_id': '', 'sample_file': '', 'assembler': 'hifiasm', 'dataset': 'chm13', # Not used at the moment 'initials': 'LV', 'device': 'cuda:0' if torch.cuda.is_available() else 'cpu', 'seed': 1, 'wandb_mode': 'disabled', # switch between 'online' and 'disabled' # 'wandb_project': 'GeNNome-hifiasm', 'wandb_project': 'hifiasm-runs', # 'wandb_project': 'Sep-23_ablations', 'chr_overfit': 0, 'plot_nga50_during_training': False, 'eval_frequency': 20, # Data 'use_similarities': True, # 'pos_to_neg_ratio': 16.5, # Not used, but could be a hyperparam for loss weight # Model 'dim_latent': 64, 'num_gnn_layers': 8, 'node_features': 2, 'edge_features': 2, # Put 2 if you use similarities, 1 otherwise 'hidden_edge_features': 16, 'hidden_edge_scores': 64, 'nb_pos_enc': 0, 'type_pos_enc': 'PR', 'batch_norm': True, # 'dropout': 0.08, # Training 'num_epochs': 200, 'lr': 1e-4, 'use_symmetry_loss': True, 'alpha': 0.1, 'num_parts_metis_train': 200, 'num_parts_metis_eval': 200, 'num_nodes_per_cluster': 10000, # 2000 = max 10GB GPU memory for d=128, L=8 'npc_lower_bound': 1, # 0.8 'npc_upper_bound': 1, # 1.2 'k_extra_hops': 1, 'patience': 2, 'decay': 0.95, 'masking': True, 'mask_frac_low': 80, # ~ 25x 'mask_frac_high': 100, # ~ 60x # Decoding 'strategy': 'greedy', 'num_decoding_paths': 100, 'decode_with_labels': False, 'load_checkpoint': True, 'num_threads': 32, 'B': 1, 'len_threshold': 10, } # Path: config.py def get_config(): return { 'checkpoints_path': 'checkpoints', 'models_path': 'models', 'tool_dir': 'vendor', 'raven_dir': 'vendor/raven-1.8.1', 'hifiasm_dir': 'vendor/hifiasm-0.18.8', 'pbsim3_dir': 'vendor/pbsim3', 'sample_profile_id': '', 'sample_file': '', 'sequencing_depth': 60, } # Path: inference.py def inference(data_path, model_path, assembler, savedir, device='cpu', dropout=None): """Using a pretrained model, get walks and contigs on new data.""" hyperparameters = get_hyperparameters() seed = hyperparameters['seed'] num_gnn_layers = hyperparameters['num_gnn_layers'] hidden_features = hyperparameters['dim_latent'] nb_pos_enc = hyperparameters['nb_pos_enc'] batch_norm = hyperparameters['batch_norm'] node_features = hyperparameters['node_features'] edge_features = hyperparameters['edge_features'] hidden_edge_features = hyperparameters['hidden_edge_features'] hidden_edge_scores = hyperparameters['hidden_edge_scores'] strategy = hyperparameters['strategy'] B = hyperparameters['B'] nb_paths = hyperparameters['num_decoding_paths'] len_threshold = hyperparameters['len_threshold'] use_labels = hyperparameters['decode_with_labels'] load_checkpoint = hyperparameters['load_checkpoint'] threads = hyperparameters['num_threads'] # assembly_path = hyperparameters['asms_path'] device = 'cpu' # Hardcode, because we cannot do inference on a GPU - usually not enough memory to load the whole graph utils.set_seed(seed) time_start = datetime.now() ds = AssemblyGraphDataset(data_path, assembler) inference_dir = os.path.join(savedir, 'decode') if not os.path.isdir(inference_dir): os.makedirs(inference_dir) checkpoint_dir = os.path.join(savedir, 'checkpoint') if not os.path.isdir(checkpoint_dir): os.makedirs(checkpoint_dir) walks_per_graph = [] contigs_per_graph = [] elapsed = utils.timedelta_to_str(datetime.now() - time_start) print(f'\nelapsed time (loading network and data): {elapsed}\n') for idx, g in ds: # Get scores print(f'==== Processing graph {idx} ====') with torch.no_grad(): time_start_get_scores = datetime.now() g = g.to(device) x = g.ndata['x'].to(device) e = g.edata['e'].to(device) pe_in = g.ndata['in_deg'].unsqueeze(1).to(device) pe_in = (pe_in - pe_in.mean()) / pe_in.std() pe_out = g.ndata['out_deg'].unsqueeze(1).to(device) pe_out = (pe_out - pe_out.mean()) / pe_out.std() pe = torch.cat((pe_in, pe_out), dim=1) # No PageRank if use_labels: # Debugging print('Decoding with labels...') g.edata['score'] = g.edata['y'].clone() else: print('Decoding with model scores...') predicts_path = os.path.join(inference_dir, f'{idx}_predicts.pt') if os.path.isfile(predicts_path): print(f'Loading the scores from:\n{predicts_path}\n') g.edata['score'] = torch.load(predicts_path) else: print(f'Loading model parameters from: {model_path}') model = models.SymGatedGCNModel(node_features, edge_features, hidden_features, hidden_edge_features, num_gnn_layers, hidden_edge_scores, batch_norm, nb_pos_enc, dropout=dropout) model.load_state_dict(torch.load(model_path, map_location=torch.device(device))) model.eval() model.to(device) print(f'Computing the scores with the model...\n') edge_predictions = model(g, x, e, pe) g.edata['score'] = edge_predictions.squeeze() torch.save(g.edata['score'], os.path.join(inference_dir, f'{idx}_predicts.pt')) elapsed = utils.timedelta_to_str(datetime.now() - time_start_get_scores) print(f'elapsed time (get_scores): {elapsed}') # Load info data print(f'Loading successors...') with open(f'{data_path}/{assembler}/info/{idx}_succ.pkl', 'rb') as f_succs: succs = pickle.load(f_succs) print(f'Loading predecessors...') with open(f'{data_path}/{assembler}/info/{idx}_pred.pkl', 'rb') as f_preds: preds = pickle.load(f_preds) print(f'Loading edges...') with open(f'{data_path}/{assembler}/info/{idx}_edges.pkl', 'rb') as f_edges: edges = pickle.load(f_edges) print(f'Done loading the auxiliary graph data!') # Get walks time_start_get_walks = datetime.now() # Some prefixes can be <0 and that messes up the assemblies g.edata['prefix_length'] = g.edata['prefix_length'].masked_fill(g.edata['prefix_length']<0, 0) if strategy == 'greedy': walks = get_contigs_greedy(g, succs, preds, edges, nb_paths, len_threshold, use_labels, checkpoint_dir, load_checkpoint, device='cpu', threads=threads) else: print('Invalid decoding strategy') raise Exception elapsed = utils.timedelta_to_str(datetime.now() - time_start_get_walks) print(f'elapsed time (get_walks): {elapsed}') inference_path = os.path.join(inference_dir, f'{idx}_walks.pkl') pickle.dump(walks, open(f'{inference_path}', 'wb')) print(f'Loading reads...') with open(f'{data_path}/{assembler}/info/{idx}_reads.pkl', 'rb') as f_reads: reads = pickle.load(f_reads) print(f'Done!') time_start_get_contigs = datetime.now() contigs = evaluate.walk_to_sequence(walks, g, reads, edges) elapsed = utils.timedelta_to_str(datetime.now() - time_start_get_contigs) print(f'elapsed time (get_contigs): {elapsed}') assembly_dir = os.path.join(savedir, f'assembly') if not os.path.isdir(assembly_dir): os.makedirs(assembly_dir) evaluate.save_assembly(contigs, assembly_dir, idx) walks_per_graph.append(walks) contigs_per_graph.append(contigs) elapsed = utils.timedelta_to_str(datetime.now() - time_start) print(f'elapsed time (total): {elapsed}') if DEBUG: exit(0) print(f'Found contigs for {data_path}!') print(f'Model used: {model_path}') print(f'Assembly saved in: {savedir}') # Path: train.py import argparse import copy import os import pickle import random import re import numpy as np import torch import torch.nn as nn import torch.optim as optim import dgl import wandb import evaluate import models import utils from datetime import datetime from tqdm import tqdm from torch.nn.functional import kl_div from torch.optim.lr_scheduler import ReduceLROnPlateau from torch.profiler import profile, record_function, ProfilerActivity from dgl.dataloading import GraphDataLoader from graph_dataset import AssemblyGraphDataset from hyperparameters import get_hyperparameters from config import get_config from inference import inference loss_per_epoch_valid.append(min_loss_valid) elapsed = utils.timedelta_to_str(datetime.now() - time_start) print(f'Loading data done. Elapsed time: {elapsed}') try: with wandb.init(project=wandb_project, config=hyperparameters, mode=wandb_mode, name=out): wandb.watch(model, criterion, log='all', log_freq=1000) for epoch in range(start_epoch, num_epochs): train_loss_all_graphs, train_fp_rate_all_graphs, train_fn_rate_all_graphs = [], [], [] train_acc_all_graphs, train_precision_all_graphs, train_recall_all_graphs, train_f1_all_graphs = [], [], [], [] train_loss_epoch, train_fp_rate_epoch, train_fn_rate_epoch = [], [], [] train_acc_epoch, train_precision_epoch, train_recall_epoch, train_f1_epoch = [], [], [], [] train_acc_inv_epoch, train_precision_inv_epoch, train_recall_inv_epoch, train_f1_inv_epoch = [], [], [], [] train_aps_epoch, train_aps_inv_epoch = [], [] print('\n===> TRAINING\n') random.shuffle(ds_train.graph_list) for data in ds_train: model.train() idx, g = data print(f'\n(TRAIN: Epoch = {epoch:3}) NEW GRAPH: index = {idx}') if masking: fraction = random.randint(mask_frac_low, mask_frac_high) / 100 # Fraction of nodes to be left in the graph (.85 -> ~30x, 1.0 -> 60x) g = mask_graph_strandwise(g, fraction, device) # Number of clusters dependant on graph size! num_nodes_per_cluster_min = int(num_nodes_per_cluster * npc_lower_bound) num_nodes_per_cluster_max = int(num_nodes_per_cluster * npc_upper_bound) + 1 num_nodes_for_g = torch.LongTensor(1).random_(num_nodes_per_cluster_min, num_nodes_per_cluster_max).item() num_clusters = g.num_nodes() // num_nodes_for_g + 1 if num_nodes_for_g >= g.num_nodes(): # train with full graph print(f'\nUse METIS: False') print(f'Use full graph') g = g.to(device) if use_symmetry_loss: x = g.ndata['x'].to(device) e = g.edata['e'].to(device) # pe = g.ndata['pe'].to(device) # pe = (pe - pe.mean()) / pe.std() pe_in = g.ndata['in_deg'].unsqueeze(1).to(device) pe_in = (pe_in - pe_in.mean()) / pe_in.std() pe_out = g.ndata['out_deg'].unsqueeze(1).to(device) pe_out = (pe_out - pe_out.mean()) / pe_out.std() # pe = torch.cat((pe_in, pe_out, pe), dim=1) pe = torch.cat((pe_in, pe_out), dim=1) org_scores = model(g, x, e, pe).squeeze(-1) edge_predictions = org_scores edge_labels = g.edata['y'].to(device) g = dgl.reverse(g, True, True) x = g.ndata['x'].to(device) e = g.edata['e'].to(device) # pe = g.ndata['pe'].to(device) # pe = (pe - pe.mean()) / pe.std() pe_out = g.ndata['in_deg'].unsqueeze(1).to(device) # Reversed edges, in/out-deg also reversed pe_out = (pe_out - pe_out.mean()) / pe_out.std() pe_in = g.ndata['out_deg'].unsqueeze(1).to(device) # Reversed edges, in/out-deg also reversed pe_in = (pe_in - pe_in.mean()) / pe_in.std() # pe = torch.cat((pe_in, pe_out, pe), dim=1) pe = torch.cat((pe_in, pe_out), dim=1) rev_scores = model(g, x, e, pe).squeeze(-1) loss = symmetry_loss(org_scores, rev_scores, edge_labels, pos_weight, alpha=alpha) else: x = g.ndata['x'].to(device) e = g.edata['e'].to(device) # pe = g.ndata['pe'].to(device) # pe = (pe - pe.mean()) / pe.std() pe_in = g.ndata['in_deg'].unsqueeze(1).to(device) pe_in = (pe_in - pe_in.mean()) / pe_in.std() pe_out = g.ndata['out_deg'].unsqueeze(1).to(device) pe_out = (pe_out - pe_out.mean()) / pe_out.std() # pe = torch.cat((pe_in, pe_out, pe), dim=1) pe = torch.cat((pe_in, pe_out), dim=1) edge_predictions = model(g, x, e, pe) edge_predictions = edge_predictions.squeeze(-1) edge_labels = g.edata['y'].to(device) loss = criterion(edge_predictions, edge_labels) optimizer.zero_grad() loss.backward() optimizer.step() train_loss = loss.item() TP, TN, FP, FN = utils.calculate_tfpn(edge_predictions, edge_labels) acc, precision, recall, f1 = utils.calculate_metrics(TP, TN, FP, FN) try: fp_rate = FP / (FP + TN) except ZeroDivisionError: fp_rate = 0.0 try: fn_rate = FN / (FN + TP) except ZeroDivisionError: fn_rate = 0.0 train_fp_rate = fp_rate train_fn_rate = fn_rate train_acc = acc train_precision = precision train_recall = recall train_f1 = f1 train_loss_epoch.append(loss.item()) train_fp_rate_epoch.append(fp_rate) train_fn_rate_epoch.append(fn_rate) # elapsed = utils.timedelta_to_str(datetime.now() - time_start) # print(f'\nTRAINING (one training graph): Epoch = {epoch}, Graph = {idx}') # print(f'Loss: {train_loss:.4f}, fp_rate(GT=0): {train_fp_rate:.4f}, fn_rate(GT=1): {train_fn_rate:.4f}') # print(f'elapsed time: {elapsed}\n\n') else: # train with mini-batch print(f'\nUse METIS: True') print(f'Number of clusters:', num_clusters) g = g.long()
d = dgl.metis_partition(g, num_clusters, extra_cached_hops=k_extra_hops)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: SusheelThapa/C-DOTS # Path: features/documenter.py class CodeDocumenter(QWidget): def __init__(self): super().__init__() self.init_ui() self.typing_timer = QTimer(self) self.typing_timer.timeout.connect(self.type_next_character) self.current_typing_position = 0 def init_ui(self): self.setWindowTitle("Article Generator") self.setGeometry(100, 100, 1500, 900) self.setStyleSheet("background-color: #FFFFFF; color: #000000;") main_layout = QHBoxLayout() main_layout.setContentsMargins(20, 20, 20, 20) left_layout = QVBoxLayout() left_layout.setContentsMargins(10, 20, 10, 20) left_layout.setSpacing(20) right_layout = QVBoxLayout() right_layout.setContentsMargins(10, 10, 10, 10) splitter = QSplitter() language_label = QLabel("Select Programming Language:") language_label.setFont(QFont("Arial", 16)) self.language_selection = QComboBox() self.language_selection.setFont(QFont("Arial", 16)) self.language_selection.setStyleSheet( "QComboBox { padding: 8px; background-color: #E0E0E0 ; color: #000000; }" ) self.language_selection.addItems(["Python", "Java", "C++", "JavaScript", "C"]) code_label = QLabel("Code to add Documentation") code_label.setFont(QFont("Arial", 16)) self.code_entry = QTextEdit() self.code_entry.setFont(QFont("Arial", 16)) self.code_entry.setStyleSheet( "QTextEdit { border-radius: 5px; padding: 5px; background-color: #E0E0E0 ; color: #000000; }" ) generate_doc_button = QPushButton("Generate Documentation") generate_doc_button.setFont(QFont("Arial", 18)) generate_doc_button.setStyleSheet( "QPushButton { border-radius: 10px; padding: 10px; background-color: #4CAF50 ; color: #FFFFFF; font-weight:600;} QPushButton:hover { background-color: #45A049; }" ) generate_doc_button.clicked.connect(self.generate_documentation) left_layout.addWidget(language_label) left_layout.addWidget(self.language_selection) left_layout.addWidget(code_label) left_layout.addWidget(self.code_entry) left_layout.addWidget(generate_doc_button) self.generated_text_area = QTextBrowser() self.generated_text_area.setReadOnly(True) self.generated_text_area.setFont(QFont("Arial", 16)) self.generated_text_area.setStyleSheet( "QTextBrowser { border-radius: 5px; padding: 5px; background-color: #E0E0E0 ; color: #000000; }" ) right_layout.addWidget(self.generated_text_area) # Assembling the main layout left_widget = QWidget() left_widget.setLayout(left_layout) right_widget = QWidget() right_widget.setLayout(right_layout) splitter.addWidget(left_widget) splitter.addWidget(right_widget) splitter.setSizes([400, 800]) main_layout.addWidget(splitter) self.setLayout(main_layout) def generate_documentation(self): language = self.language_selection.currentText() code = self.code_entry.toPlainText() self.generated_text_area.setText("Documentng the Code Snippets...") self.worker = Worker(language, code) self.thread = threading.Thread(target=self.worker.run) self.worker.finished.connect(self.on_finished) self.thread.start() def on_finished(self, processed_text): self.processed_text = processed_text self.current_typing_position = 0 self.typing_timer.start(20) def type_next_character(self): if self.current_typing_position < len(self.processed_text): if self.current_typing_position == 0: self.generated_text_area.clear() current_text = self.processed_text[self.current_typing_position] self.generated_text_area.moveCursor(QTextCursor.End) self.generated_text_area.insertPlainText(current_text) self.current_typing_position += 1 else: self.typing_timer.stop() # Path: features/optimizer.py class CodeOptimizer(QWidget): def __init__(self): super().__init__() self.init_ui() self.typing_timer = QTimer(self) self.typing_timer.timeout.connect(self.type_next_character) self.current_typing_position = 0 def init_ui(self): self.setWindowTitle("Article Generator") self.setGeometry(100, 100, 1500, 900) self.setStyleSheet("background-color: #FFFFFF; color: #000000;") main_layout = QHBoxLayout() main_layout.setContentsMargins(20, 20, 20, 20) left_layout = QVBoxLayout() left_layout.setContentsMargins(10, 20, 10, 20) left_layout.setSpacing(20) right_layout = QVBoxLayout() right_layout.setContentsMargins(10, 10, 10, 10) splitter = QSplitter() language_label = QLabel("Select Programming Language:") language_label.setFont(QFont("Arial", 16)) self.language_selection = QComboBox() self.language_selection.setFont(QFont("Arial", 16)) self.language_selection.setStyleSheet( "QComboBox { padding: 8px; background-color: #dae6db; color: #000000; }" ) self.language_selection.addItems(["Python", "Java", "C++", "JavaScript", "C"]) code_label = QLabel("Code to Optimize") code_label.setFont(QFont("Arial", 16)) self.code_entry = QTextEdit() self.code_entry.setFont(QFont("Arial", 16)) self.code_entry.setStyleSheet( "QTextEdit { border-radius: 5px; padding: 5px; background-color: #dae6db; color: #000000; }" ) generate_doc_button = QPushButton("Optimize Code") generate_doc_button.setFont(QFont("Arial", 18)) generate_doc_button.setStyleSheet( "QPushButton { border-radius: 10px; padding: 10px; background-color: #1565C0; color: #FFFFFF; font-weight:600; } QPushButton:hover { background-color: #0F4FA8; }" ) generate_doc_button.clicked.connect(self.optimize_code) left_layout.addWidget(language_label) left_layout.addWidget(self.language_selection) left_layout.addWidget(code_label) left_layout.addWidget(self.code_entry) left_layout.addWidget(generate_doc_button) self.generated_text_area = QTextBrowser() self.generated_text_area.setReadOnly(True) self.generated_text_area.setFont(QFont("Arial", 16)) self.generated_text_area.setStyleSheet( "QTextBrowser { border-radius: 5px; padding: 5px; background-color: #dae6db; color: #000000; }" ) right_layout.addWidget(self.generated_text_area) left_widget = QWidget() left_widget.setLayout(left_layout) right_widget = QWidget() right_widget.setLayout(right_layout) splitter.addWidget(left_widget) splitter.addWidget(right_widget) splitter.setSizes([400, 800]) main_layout.addWidget(splitter) self.setLayout(main_layout) def optimize_code(self): language = self.language_selection.currentText() code = self.code_entry.toPlainText() self.generated_text_area.setText("Optimizing Code Snippets...") self.worker = Worker(language, code) self.thread = threading.Thread(target=self.worker.run) self.worker.finished.connect(self.on_finished) self.thread.start() def on_finished(self, processed_text): self.processed_text = processed_text self.current_typing_position = 0 self.typing_timer.start(20) def type_next_character(self): if self.current_typing_position < len(self.processed_text): if self.current_typing_position == 0: self.generated_text_area.clear() current_text = self.processed_text[self.current_typing_position] self.generated_text_area.moveCursor(QTextCursor.End) self.generated_text_area.insertPlainText(current_text) self.current_typing_position += 1 else: self.typing_timer.stop() # Path: features/summarizer.py class CodeSummarizer(QWidget): def __init__(self): super().__init__() self.init_ui() self.typing_timer = QTimer(self) self.typing_timer.timeout.connect(self.type_next_character) self.current_typing_position = 0 def init_ui(self): self.setWindowTitle("Code Summarizer") self.setGeometry(100, 100, 1500, 900) self.setStyleSheet("background-color: #FFFFFF; color: #000000;") main_layout = QHBoxLayout() main_layout.setContentsMargins(20, 20, 20, 20) left_layout = QVBoxLayout() left_layout.setContentsMargins(10, 20, 10, 20) left_layout.setSpacing(20) right_layout = QVBoxLayout() right_layout.setContentsMargins(10, 10, 10, 10) splitter = QSplitter() language_label = QLabel("Select Programming Language:") language_label.setFont(QFont("Arial", 16)) self.language_selection = QComboBox() self.language_selection.setFont(QFont("Arial", 16)) self.language_selection.setStyleSheet( "QComboBox { padding: 8px; background-color: #F2EFEF; color: #202020; }" ) self.language_selection.addItems(["Python", "Java", "C++", "JavaScript", "C"]) code_label = QLabel("Code to Summarize") code_label.setFont(QFont("Arial", 16)) self.code_entry = QTextEdit() self.code_entry.setFont(QFont("Arial", 16)) self.code_entry.setStyleSheet( "QTextEdit { border-radius: 5px; padding: 5px; background-color: #F2EFEF; color: #202020; }" ) generate_summarize_button = QPushButton("Summarize Code") generate_summarize_button.setFont(QFont("Arial", 18)) generate_summarize_button.setStyleSheet( "QPushButton { border-radius: 10px; padding: 10px; background-color: #601527; color: #FFFFFF; font-weight:600; } QPushButton:hover { background-color: #601527; }" ) generate_summarize_button.clicked.connect(self.summarize_code) left_layout.addWidget(language_label) left_layout.addWidget(self.language_selection) left_layout.addWidget(code_label) left_layout.addWidget(self.code_entry) left_layout.addWidget(generate_summarize_button) self.generated_text_area = QTextBrowser() self.generated_text_area.setReadOnly(True) self.generated_text_area.setFont(QFont("Arial", 16)) self.generated_text_area.setStyleSheet( "QTextBrowser { border-radius: 5px; padding: 5px; background-color: #F2EFEF; color: #202020; }" ) right_layout.addWidget(self.generated_text_area) left_widget = QWidget() left_widget.setLayout(left_layout) right_widget = QWidget() right_widget.setLayout(right_layout) splitter.addWidget(left_widget) splitter.addWidget(right_widget) splitter.setSizes([400, 800]) main_layout.addWidget(splitter) self.setLayout(main_layout) def summarize_code(self): language = self.language_selection.currentText() code = self.code_entry.toPlainText() self.generated_text_area.setText("Summarizing the Code Snippets...") self.worker = Worker(language, code) self.thread = threading.Thread(target=self.worker.run) self.worker.finished.connect(self.on_finished) self.thread.start() def on_finished(self, processed_text): self.processed_text = processed_text self.current_typing_position = 0 self.typing_timer.start(20) def type_next_character(self): if self.current_typing_position < len(self.processed_text): if self.current_typing_position == 0: self.generated_text_area.clear() current_text = self.processed_text[self.current_typing_position] self.generated_text_area.moveCursor(QTextCursor.End) self.generated_text_area.insertPlainText(current_text) self.current_typing_position += 1 else: self.typing_timer.stop() # Path: features/translator.py class CodeTranslator(QWidget): def __init__(self): super().__init__() self.init_ui() self.typing_timer = QTimer(self) self.typing_timer.timeout.connect(self.type_next_character) self.current_typing_position = 0 self.processed_text = "" def init_ui(self): self.setWindowTitle("Code Translator") self.setGeometry(100, 100, 1500, 900) self.setStyleSheet("background-color: #FFFFFF; color: #000000;") main_layout = QHBoxLayout() self.setup_main_layout(main_layout) self.setLayout(main_layout) def setup_main_layout(self, main_layout): main_layout.setContentsMargins(20, 20, 20, 20) left_layout = self.setup_left_layout() right_layout = self.setup_right_layout() splitter = QSplitter() left_widget = QWidget() left_widget.setLayout(left_layout) right_widget = QWidget() right_widget.setLayout(right_layout) splitter.addWidget(left_widget) splitter.addWidget(right_widget) splitter.setSizes([400, 800]) main_layout.addWidget(splitter) def setup_left_layout(self): left_layout = QVBoxLayout() left_layout.setContentsMargins(10, 20, 10, 20) left_layout.setSpacing(20) source_lang_label = self.create_label("Select Source Programming Language:") self.source_lang_selection = self.create_combobox( ["Python", "Java", "C++", "JavaScript", "C"] ) target_lang_label = self.create_label("Select Target Programming Language:") self.target_lang_selection = self.create_combobox( ["Python", "Java", "C++", "JavaScript", "C"] ) code_label = self.create_label("Code Snippets:") self.code_entry = self.create_text_edit() translate_button = self.create_button( "Translate Code", self.generate_translate_code ) left_layout.addWidget(source_lang_label) left_layout.addWidget(self.source_lang_selection) left_layout.addWidget(target_lang_label) left_layout.addWidget(self.target_lang_selection) left_layout.addWidget(code_label) left_layout.addWidget(self.code_entry) left_layout.addWidget(translate_button) return left_layout def setup_right_layout(self): right_layout = QVBoxLayout() right_layout.setContentsMargins(10, 10, 10, 10) self.generated_text_area = self.create_text_browser() right_layout.addWidget(self.generated_text_area) return right_layout def create_label(self, text): label = QLabel(text) label.setFont(QFont("Arial", 16)) return label def create_combobox(self, items): combobox = QComboBox() combobox.setFont(QFont("Arial", 16)) combobox.addItems(items) combobox.setStyleSheet( "padding: 5px; background-color: #F0E6F4; color: #303030;" ) return combobox def create_text_edit(self): text_edit = QTextEdit() text_edit.setFont(QFont("Arial", 16)) text_edit.setStyleSheet( "border-radius: 5px; padding: 5px; background-color: #F0E6F4; color: #303030;" ) return text_edit def create_button(self, text, callback): button = QPushButton(text) button.setFont(QFont("Arial", 18)) button.clicked.connect(callback) button.setStyleSheet( """ QPushButton { border-radius: 10px; padding: 10px; background-color: #6A1B9A; color: #FFFFFF; font-weight:600; } QPushButton:hover { background-color: #6A1B9A; } """ ) return button def create_text_browser(self): text_browser = QTextBrowser() text_browser.setReadOnly(True) text_browser.setFont(QFont("Arial", 16)) text_browser.setStyleSheet( "border-radius: 5px; padding: 5px; background-color: #F0E6F4; color: #303030;" ) return text_browser def generate_translate_code(self): source_lang = self.source_lang_selection.currentText() target_lang = self.target_lang_selection.currentText() code = self.code_entry.toPlainText() self.generated_text_area.setText( f"Translating Code Snippet from {source_lang} to {target_lang}..." ) self.worker = Worker(source_lang, target_lang, code) self.thread = threading.Thread(target=self.worker.run) self.worker.finished.connect(self.on_finished) self.thread.start() def on_finished(self, processed_text): self.processed_text = processed_text self.current_typing_position = 0 self.typing_timer.start(20) def type_next_character(self): if self.current_typing_position < len(self.processed_text): if self.current_typing_position == 0: self.generated_text_area.clear() current_text = self.processed_text[self.current_typing_position] self.generated_text_area.moveCursor(QTextCursor.End) self.generated_text_area.insertPlainText(current_text) self.current_typing_position += 1 else: self.typing_timer.stop() # Path: app.py import sys from PyQt5.QtWidgets import QApplication, QMainWindow, QTabWidget, QWidget, QTabBar from features.documenter import CodeDocumenter from features.optimizer import CodeOptimizer from features.summarizer import CodeSummarizer from features.translator import CodeTranslator class StretchedTabBar(QTabBar): def __init__(self, parent=None): super().__init__(parent) def tabSizeHint(self, index):
size = super().tabSizeHint(index)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: amadad/agentcy3 # Path: agency_swarm/agents/agent.py class Agent(): @property def assistant(self): if self._assistant is None: raise Exception("Assistant is not initialized. Please run init_oai() first.") return self._assistant @assistant.setter def assistant(self, value): self._assistant = value @property def functions(self): return [tool for tool in self.tools if issubclass(tool, BaseTool)] def __init__(self, id: str = None, name: str = None, description: str = None, instructions: str = "", tools: List[Union[Type[BaseTool], Type[Retrieval], Type[CodeInterpreter]]] = None, files_folder: Union[List[str], str] = None, file_ids: List[str] = None, metadata: Dict[str, str] = None, model: str = "gpt-4-1106-preview"): """ Initializes an Agent with specified attributes, tools, and OpenAI client. Parameters: id (str, optional): Unique identifier for the agent. Defaults to None. name (str, optional): Name of the agent. Defaults to the class name if not provided. description (str, optional): A brief description of the agent's purpose. Defaults to None. instructions (str, optional): Path to a file containing specific instructions for the agent. Defaults to an empty string. tools (List[Union[Type[BaseTool], Type[Retrieval], Type[CodeInterpreter]]], optional): A list of tools (as classes) that the agent can use. Defaults to an empty list. files_folder (Union[List[str], str], optional): Path or list of paths to directories containing files associated with the agent. Defaults to None. file_ids (List[str], optional): List of file IDs for files associated with the agent. Defaults to an empty list. metadata (Dict[str, str], optional): Metadata associated with the agent. Defaults to an empty dictionary. model (str, optional): The model identifier for the OpenAI API. Defaults to "gpt-4-1106-preview". This constructor sets up the agent with its unique properties, initializes the OpenAI client, reads instructions if provided, and uploads any associated files. """ self.id = id self.name = name if name else self.__class__.__name__ self.description = description self.instructions = instructions self.tools = tools if tools else [] self.files_folder = files_folder self.file_ids = file_ids if file_ids else [] self.metadata = metadata if metadata else {} self.model = model self._assistant: Any = None self._shared_instructions = None self.client = get_openai_client() if os.path.isfile(self.instructions): self._read_instructions(self.instructions) elif os.path.isfile(os.path.join(self.get_class_folder_path(), self.instructions)): self._read_instructions(os.path.join(self.get_class_folder_path(), self.instructions)) self._upload_files() def init_oai(self): """ Initializes the OpenAI assistant for the agent. This method handles the initialization and potential updates of the agent's OpenAI assistant. It loads the assistant based on a saved ID, updates the assistant if necessary, or creates a new assistant if it doesn't exist. After initialization or update, it saves the assistant's settings. Output: self: Returns the agent instance for chaining methods or further processing. """ # check if settings.json exists path = self.get_settings_path() # load assistant from id if self.id: self.assistant = self.client.beta.assistants.retrieve(self.id) # update assistant if parameters are different if not self._check_parameters(self.assistant.model_dump()): self._update_assistant() return self # load assistant from settings if os.path.exists(path): with open(path, 'r') as f: settings = json.load(f) # iterate settings and find the assistant with the same name for assistant_settings in settings: if assistant_settings['name'] == self.name: self.assistant = self.client.beta.assistants.retrieve(assistant_settings['id']) self.id = assistant_settings['id'] # update assistant if parameters are different if not self._check_parameters(self.assistant.model_dump()): print("Updating assistant... " + self.name) self._update_assistant() self._update_settings() return self # create assistant if settings.json does not exist or assistant with the same name does not exist self.assistant = self.client.beta.assistants.create( name=self.name, description=self.description, instructions=self.instructions, tools=self.get_oai_tools(), file_ids=self.file_ids, metadata=self.metadata, model=self.model ) self.id = self.assistant.id self._save_settings() return self def _update_assistant(self): """ Updates the existing assistant's parameters on the OpenAI server. This method updates the assistant's details such as name, description, instructions, tools, file IDs, metadata, and the model. It only updates parameters that have non-empty values. After updating the assistant, it also updates the local settings file to reflect these changes. No input parameters are directly passed to this method as it uses the agent's instance attributes. No output parameters are returned, but the method updates the assistant's details on the OpenAI server and locally updates the settings file. """ params = { "name": self.name, "description": self.description, "instructions": self.instructions, "tools": self.get_oai_tools(), "file_ids": self.file_ids, "metadata": self.metadata, "model": self.model } params = {k: v for k, v in params.items() if v} self.assistant = self.client.beta.assistants.update( self.id, **params, ) self._update_settings() def _check_parameters(self, assistant_settings): """ Checks if the agent's parameters match with the given assistant settings. Parameters: assistant_settings (dict): A dictionary containing the settings of an assistant. Returns: bool: True if all the agent's parameters match the assistant settings, False otherwise. This method compares the current agent's parameters such as name, description, instructions, tools, file IDs, metadata, and model with the given assistant settings. It uses DeepDiff to compare complex structures like tools and metadata. If any parameter does not match, it returns False; otherwise, it returns True. """ if self.name != assistant_settings['name']: return False if self.description != assistant_settings['description']: return False if self.instructions != assistant_settings['instructions']: return False tools_diff = DeepDiff(self.get_oai_tools(), assistant_settings['tools'], ignore_order=True) if tools_diff != {}: return False if set(self.file_ids) != set(assistant_settings['file_ids']): return False metadata_diff = DeepDiff(self.metadata, assistant_settings['metadata'], ignore_order=True) if metadata_diff != {}: return False if self.model != assistant_settings['model']: return False return True def _save_settings(self): path = self.get_settings_path() # check if settings.json exists if not os.path.isfile(path): with open(path, 'w') as f: json.dump([self.assistant.model_dump()], f, indent=4) else: settings = [] with open(path, 'r') as f: settings = json.load(f) settings.append(self.assistant.model_dump()) with open(path, 'w') as f: json.dump(settings, f, indent=4) def _update_settings(self): path = self.get_settings_path() # check if settings.json exists if os.path.isfile(path): settings = [] with open(path, 'r') as f: settings = json.load(f) for i, assistant_settings in enumerate(settings): if assistant_settings['id'] == self.id: settings[i] = self.assistant.model_dump() break with open(path, 'w') as f: json.dump(settings, f, indent=4) def _read_instructions(self, path): with open(path, 'r') as f: self.instructions = f.read() def _upload_files(self): if isinstance(self.files_folder, str): f_path = self.files_folder if not os.path.isdir(f_path): f_path = os.path.join(self.get_class_folder_path(), self.files_folder) if os.path.isdir(f_path): f_paths = os.listdir(f_path) f_paths = [f for f in f_paths if not f.startswith(".")] f_paths = [os.path.join(f_path, f) for f in f_paths] for f_path in f_paths: file_id = self._get_id_from_file(f_path) if file_id: print("File already uploaded. Skipping... " + os.path.basename(f_path)) self.file_ids.append(file_id) else: print("Uploading new file... " + os.path.basename(f_path)) with open(f_path, 'rb') as f: file_id = self.client.files.create(file=f, purpose="assistants").id self.file_ids.append(file_id) self._add_id_to_file(f_path, file_id) if Retrieval not in self.tools: print("Detected files without Retrieval. Adding Retrieval tool...") self.add_tool(Retrieval) else: raise Exception("Files folder path is not a directory.") def _add_id_to_file(self, f_path, id): """Add file id to file name""" if os.path.isfile(f_path): file_name, file_ext = os.path.splitext(f_path) f_path_new = file_name + "_" + id + file_ext os.rename(f_path, f_path_new) return f_path_new else: raise Exception("Items in files folder must be files.") def _get_id_from_file(self, f_path): """Get file id from file name""" if os.path.isfile(f_path): file_name, file_ext = os.path.splitext(f_path) file_name = os.path.basename(file_name) file_name = file_name.split("_") if len(file_name) > 1: return file_name[-1] if "file-" in file_name[-1] else None else: return None else: raise Exception("Items in files folder must be files.") def get_settings_path(self): return os.path.join("./", 'settings.json') def get_class_folder_path(self): return os.path.abspath(os.path.dirname(inspect.getfile(self.__class__))) def set_params(self, **params): for k, v in params.items(): setattr(self, k, v) def add_tool(self, tool): if not isinstance(tool, type): raise Exception("Tool must not be initialized.") if issubclass(tool, Retrieval): # check that tools name is not already in tools for t in self.tools: if issubclass(t, Retrieval): return self.tools.append(tool) elif issubclass(tool, CodeInterpreter): for t in self.tools: if issubclass(t, Retrieval): return self.tools.append(tool) elif issubclass(tool, BaseTool): for t in self.tools: if t.__name__ == tool.__name__: self.tools.remove(t) self.tools.append(tool) else: raise Exception("Invalid tool type.") def add_instructions(self, instructions: str): if self._shared_instructions is None: self._shared_instructions = instructions else: self.instructions = self.instructions.replace(self._shared_instructions, "") self.instructions = self.instructions.strip().strip("\n") self._shared_instructions = instructions self.instructions = self._shared_instructions + "\n\n" + self.instructions def get_oai_tools(self): tools = [] for tool in self.tools: if not isinstance(tool, type): raise Exception("Tool must not be initialized.") if issubclass(tool, Retrieval): tools.append(tool().model_dump()) elif issubclass(tool, CodeInterpreter): tools.append(tool().model_dump()) elif issubclass(tool, BaseTool): tools.append({ "type": "function", "function": tool.openai_schema }) else: raise Exception("Invalid tool type.") return tools def delete_assistant(self): self.client.beta.assistants.delete(self.id) self._delete_settings() def _delete_settings(self): path = self.get_settings_path() # check if settings.json exists if os.path.isfile(path): settings = [] with open(path, 'r') as f: settings = json.load(f) for i, assistant_settings in enumerate(settings): if assistant_settings['id'] == self.id: settings.pop(i) break with open(path, 'w') as f: json.dump(settings, f, indent=4) # Path: agency_swarm/messages/message_output.py class MessageOutput: def __init__(self, msg_type: Literal["function", "function_output", "text", "system"], sender_name: str, receiver_name: str, content): self.msg_type = msg_type self.sender_name = str(sender_name) self.receiver_name = str(receiver_name) self.content = str(content) self.client = get_openai_client() def hash_names_to_color(self): if self.msg_type == "function": return "green" if self.msg_type == "system": return "red" combined_str = self.sender_name + self.receiver_name encoded_str = combined_str.encode() hash_obj = hashlib.md5(encoded_str) hash_int = int(hash_obj.hexdigest(), 16) colors = [ 'grey', 'yellow', 'blue', 'magenta', 'cyan', 'white', ] color_index = hash_int % len(colors) return colors[color_index] def cprint(self): color = self.hash_names_to_color() text = self.get_formatted_content() print(colored(text, color)) def get_formatted_content(self): if self.msg_type == "function": text = self.sender_name + " Executing Function: " + str(self.content) + "\n" return text if self.msg_type == "function_output": text = self.sender_name + f" Function Output (by {self.receiver_name}): " + str(self.content) + "\n" return text text = self.sender_name + f' (to {self.receiver_name})' ": " + self.content + "\n" return text def get_sender_emoji(self): if self.msg_type == "function" or self.msg_type == "function_output": return "🧠" if self.msg_type == "system": return "🤖" if self.sender_name.lower() == "user": return "👤" if self.sender_name.lower() == "ceo": return "🤵‍" # output emoji based on hash of sender name encoded_str = self.sender_name.encode() hash_obj = hashlib.md5(encoded_str) hash_int = int(hash_obj.hexdigest(), 16) emojis = [ '🐶', '🐱', '🐭', '🐹', '🐰', '🦊', '🐻', '🐼', '🐨', '🐯', '🦁', '🐮', '🐷', '🐸', '🐵', '🐔', '🐧', '🐦', '🐤'] emoji_index = hash_int % len(emojis) return emojis[emoji_index] # Path: agency_swarm/user/user.py class User: name: str = "User" def __init__(self, name: str = None): # later, we can add more attributes to the user like bio, etc pass # Path: agency_swarm/util/oai.py def get_openai_client(): global client with client_lock: if client is None: # Check if the API key is set api_key = openai.api_key or os.getenv('OPENAI_API_KEY') if api_key is None: raise ValueError("OpenAI API key is not set. Please set it using set_openai_key.") client = instructor.patch(openai.OpenAI(api_key=api_key)) return client # Path: agency_swarm/threads/thread.py import inspect import time from typing import Literal from agency_swarm.agents import Agent from agency_swarm.messages import MessageOutput from agency_swarm.user import User from agency_swarm.util.oai import get_openai_client class Thread: id: str thread = None run = None def __init__(self, agent: Literal[Agent, User], recipient_agent: Agent): self.agent = agent self.recipient_agent = recipient_agent self.client = get_openai_client() def get_completion(self, message: str, yield_messages=True): if not self.thread: self.thread = self.client.beta.threads.create() self.id = self.thread.id # send message self.client.beta.threads.messages.create( thread_id=self.thread.id, role="user", content=message ) if yield_messages: yield MessageOutput("text", self.agent.name, self.recipient_agent.name, message) # create run self.run = self.client.beta.threads.runs.create( thread_id=self.thread.id, assistant_id=self.recipient_agent.id, ) while True: # wait until run completes while self.run.status in ['queued', 'in_progress']: time.sleep(0.5) self.run = self.client.beta.threads.runs.retrieve( thread_id=self.thread.id, run_id=self.run.id ) # function execution if self.run.status == "requires_action": tool_calls = self.run.required_action.submit_tool_outputs.tool_calls tool_outputs = [] for tool_call in tool_calls: if yield_messages: yield MessageOutput("function", self.recipient_agent.name, self.agent.name, str(tool_call.function)) output = self._execute_tool(tool_call) if inspect.isgenerator(output): try: while True: item = next(output) if isinstance(item, MessageOutput) and yield_messages: yield item except StopIteration as e: output = e.value else: if yield_messages: yield MessageOutput("function_output", tool_call.function.name, self.recipient_agent.name, output) tool_outputs.append({"tool_call_id": tool_call.id, "output": str(output)}) # submit tool outputs self.run = self.client.beta.threads.runs.submit_tool_outputs( thread_id=self.thread.id, run_id=self.run.id, tool_outputs=tool_outputs ) # error elif self.run.status == "failed":
raise Exception("Run Failed. Error: ", self.run.last_error)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Deltares/imod-python # Path: imod/util.py DATETIME_FORMATS = { 14: "%Y%m%d%H%M%S", 12: "%Y%m%d%H%M", 10: "%Y%m%d%H", 8: "%Y%m%d", 4: "%Y", } def to_datetime(s): def _groupdict(stem: str, pattern: str) -> Dict: def decompose(path, pattern: str = None) -> Dict[str, Any]: def _convert_datetimes(times, use_cftime): def _compose_timestring(time, time_format="%Y%m%d%H%M%S") -> str: def compose(d, pattern=None) -> pathlib.Path: def _xycoords(bounds, cellsizes) -> Dict[str, Any]: def coord_reference(da_coord) -> Tuple[float, float, float]: def spatial_reference( a: xr.DataArray, ) -> Tuple[float, float, float, float, float, float]: def transform(a: xr.DataArray) -> affine.Affine: def equidistant(dx, name): def cd(path: Union[str, pathlib.Path]): def temporary_directory() -> pathlib.Path: def ignore_warnings(): def ugrid2d_data(da: xr.DataArray, face_dim: str) -> xr.DataArray: def unstack_dim_into_variable( dataset: Union[xr.Dataset, xu.UgridDataset], dim: str ) -> Union[xr.Dataset, xu.UgridDataset]: def mdal_compliant_ugrid2d(dataset: xr.Dataset) -> xr.Dataset: def from_mdal_compliant_ugrid2d(dataset: xu.UgridDataset): def to_ugrid2d(data: Union[xr.DataArray, xr.Dataset]) -> xr.Dataset: def is_divisor(numerator: FloatArray, denominator: float) -> bool: def initialize_nested_dict(depth: int) -> collections.defaultdict: def set_nested(d: collections.defaultdict, keys: List[str], value: Any) -> None: def append_nested_dict(dict1: Dict, dict2: Dict) -> None: def sorted_nested_dict(d: Dict) -> Dict: def _layer(layer: Union[int, Sequence[int], IntArray]) -> IntArray: def _time(time: Any) -> Any: def empty_2d( dx: Union[float, FloatArray], xmin: float, xmax: float, dy: Union[float, FloatArray], ymin: float, ymax: float, ) -> xr.DataArray: def empty_3d( dx: Union[float, FloatArray], xmin: float, xmax: float, dy: Union[float, FloatArray], ymin: float, ymax: float, layer: Union[int, Sequence[int], IntArray], ) -> xr.DataArray: def empty_2d_transient( dx: Union[float, FloatArray], xmin: float, xmax: float, dy: Union[float, FloatArray], ymin: float, ymax: float, time: Any, ) -> xr.DataArray: def empty_3d_transient( dx: Union[float, FloatArray], xmin: float, xmax: float, dy: Union[float, FloatArray], ymin: float, ymax: float, layer: Union[int, Sequence[int], IntArray], time: Any, ) -> xr.DataArray: def where(condition, if_true, if_false, keep_nan: bool = True) -> xr.DataArray: def replace(da: xr.DataArray, to_replace: Any, value: Any) -> xr.DataArray: def _replace( a: np.ndarray, to_replace: np.ndarray, value: np.ndarray ) -> np.ndarray: def values_within_range(da, min=None, max=None): def __init__(self, name): def __getattr__(self, name): class MissingOptionalModule: # Path: imod/formats/idf.py def header(path, pattern): def _read(path, headersize, nrow, ncol, nodata, dtype): def read(path, pattern=None): def open(path, use_cftime=False, pattern=None): def _merge_subdomains(pathlists, use_cftime, pattern): def open_subdomains(path, use_cftime=False, pattern=None): def open_dataset(globpath, use_cftime=False, pattern=None): def write(path, a, nodata=1.0e20, dtype=np.float32): def _as_voxeldata(a): def save(path, a, nodata=1.0e20, pattern=None, dtype=np.float32): # Path: imod/tests/test_formats/test_idf.py import numpy as np import pytest import xarray as xr from pytest import approx from imod import idf, util dx, dy = 1.0, -1.0 xmin, xmax = 0.0, 4.0 ymin, ymax = 0.0, 3.0 coords = util._xycoords((xmin, xmax, ymin, ymax), (dx, dy)) assert np.allclose(coords["x"], np.arange(xmin + dx / 2.0, xmax, dx)) assert np.allclose(coords["y"], np.arange(ymax + dy / 2.0, ymin, dy)) assert coords["dx"] == dx assert coords["dy"] == dy def test_xycoords_nonequidistant(): dx = np.array([0.9, 1.1, 0.8, 1.2]) dy = np.array([-1.3, -0.7, -1.0]) xmin, xmax = 0.0, 4.0 ymin, ymax = 0.0, 3.0 coords = util._xycoords((xmin, xmax, ymin, ymax), (dx, dy)) assert np.allclose(coords["x"], np.array([0.45, 1.45, 2.4, 3.4])) assert np.allclose(coords["y"], np.array([2.35, 1.35, 0.5])) assert coords["dx"][0] == "x" assert np.allclose(coords["dx"][1], dx) assert coords["dy"][0] == "y" assert np.allclose(coords["dy"][1], dy) def test_xycoords_equidistant_array(): dx = np.array([2.0, 2.0, 2.0, 2.0]) dy = np.array([-0.5, -0.500001, -0.5]) xmin, xmax = 0.0, 8.0 ymin, ymax = 0.0, 1.5 coords = util._xycoords((xmin, xmax, ymin, ymax), (dx, dy)) assert np.allclose(coords["x"], np.arange(xmin + 1.0, xmax, 2.0)) assert np.allclose(coords["y"], np.arange(ymax - 0.25, ymin, -0.5)) assert coords["dx"] == approx(2.0) assert coords["dy"] == approx(-0.5) def test_saveopen__nonequidistant(test_da_nonequidistant, tmp_path): idf.save(tmp_path / "nonequidistant", test_da_nonequidistant) assert (tmp_path / "nonequidistant.idf").exists() da = idf.open(tmp_path / "nonequidistant.idf") assert isinstance(da, xr.DataArray) assert np.array_equal(da, test_da_nonequidistant) # since the coordinates are created in float64 and stored in float32, # we lose some precision, which we have to allow for here xr.testing.assert_allclose(da, test_da_nonequidistant) def test_save_topbot__single_layer(test_da, tmp_path): da = test_da da = da.assign_coords(z=0.5) da = da.assign_coords(dz=1.0) idf.save(tmp_path / "test", da) da_read = idf.open(tmp_path / "test.idf") assert da_read["z"] == approx(0.5) assert da_read["dz"] == approx(1.0) def test_save_topbot__layers(test_layerda, tmp_path): da = test_layerda da = da.assign_coords(z=("layer", np.arange(1.0, 6.0) - 0.5)) idf.save(tmp_path / "layer", da) da_l1 = idf.open(tmp_path / "layer_l1.idf") assert da_l1["z"] == approx(0.5) assert da_l1["dz"] == approx(1.0) da_l2 = idf.open(tmp_path / "layer_l2.idf") assert da_l2["z"] == approx(1.5) assert da_l2["dz"] == approx(1.0) # Read multiple idfs actual = idf.open(tmp_path / "layer_l*.idf") assert np.allclose(actual["z"], da["z"]) assert actual["dz"] == approx(1.0) def test_save_topbot__layers_nonequidistant(test_layerda, tmp_path): da = test_layerda dz = np.arange(-1.0, -6.0, -1.0) z = np.cumsum(dz) - 0.5 * dz da = da.assign_coords(z=("layer", z)) da = da.assign_coords(dz=("layer", dz)) idf.save(tmp_path / "layer", da) # Read multiple idfs actual = idf.open(tmp_path / "layer_l*.idf") assert np.allclose(actual["z"], da["z"]) assert np.allclose(actual["dz"], da["dz"]) def test_save_topbot__only_z(test_layerda, tmp_path): da = test_layerda da = da.assign_coords(z=("layer", np.arange(1.0, 6.0) - 0.5)) da = da.swap_dims({"layer": "z"}) da = da.drop_vars("layer") idf.save(tmp_path / "layer", da) da_l1 = idf.open(tmp_path / "layer_l1.idf") assert da_l1["z"] == approx(0.5) assert da_l1["dz"] == approx(1.0) da_l2 = idf.open(tmp_path / "layer_l2.idf") assert da_l2["z"] == approx(1.5) assert da_l2["dz"] == approx(1.0) def test_save_topbot__errors(test_layerda, tmp_path): da = test_layerda # non-equidistant, cannot infer dz z = np.array([0.0, -1.0, -3.0, -4.5, -5.0]) da = da.assign_coords(z=("layer", z)) with pytest.raises(ValueError): idf.save(tmp_path / "layer", da) def test_saveopen_dtype(test_da, tmp_path): da = test_da idf.save(tmp_path / "dtype", da, dtype=np.float32) backda = idf.open(tmp_path / "dtype.idf") assert backda.dtype == np.float32 idf.save(tmp_path / "dtype", da, dtype=np.float64) backda = idf.open(tmp_path / "dtype.idf") assert backda.dtype == np.float64
def test_dtype_error(test_da, tmp_path):
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Dong142857/Live3DPortrait # Path: torch_utils/misc.py def constant(value, shape=None, dtype=None, device=None, memory_format=None): def nan_to_num(input, nan=0.0, posinf=None, neginf=None, *, out=None): # pylint: disable=redefined-builtin def suppress_tracer_warnings(): def assert_shape(tensor, ref_shape): def profiled_function(fn): def decorator(*args, **kwargs): def __init__(self, dataset, rank=0, num_replicas=1, shuffle=True, seed=0, window_size=0.5): def __iter__(self): def params_and_buffers(module): def named_params_and_buffers(module): def copy_params_and_buffers(src_module, dst_module, require_all=False): def ddp_sync(module, sync): def check_ddp_consistency(module, ignore_regex=None): def print_module_summary(module, inputs, max_nesting=3, skip_redundant=True): def pre_hook(_mod, _inputs): def post_hook(mod, _inputs, outputs): class InfiniteSampler(torch.utils.data.Sampler): # Path: torch_utils/persistence.py def persistent_class(orig_class): def __init__(self, *args, **kwargs): def init_args(self): def init_kwargs(self): def __reduce__(self): def is_persistent(obj): def import_hook(hook): def _reconstruct_persistent_obj(meta): def _module_to_src(module): def _src_to_module(src): def _check_pickleable(obj): def recurse(obj): class Decorator(orig_class): # Path: torch_utils/ops/conv2d_gradfix.py def no_weight_gradients(disable=True): def conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1): def conv_transpose2d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1): def _should_use_custom_op(input): def _tuple_of_ints(xs, ndim): def _conv2d_gradfix(transpose, weight_shape, stride, padding, output_padding, dilation, groups): def calc_output_padding(input_shape, output_shape): def forward(ctx, input, weight, bias): def backward(ctx, grad_output): def forward(ctx, grad_output, input, weight): def backward(ctx, grad2_grad_weight): class Conv2d(torch.autograd.Function): class Conv2dGradWeight(torch.autograd.Function): # Path: torch_utils/ops/filtered_lrelu.py def filtered_lrelu(x, fu=None, fd=None, b=None, up=1, down=1, padding=0, gain=np.sqrt(2), slope=0.2, clamp=None, flip_filter=False, impl='cuda'): r"""Filtered leaky ReLU for a batch of 2D images. Performs the following sequence of operations for each channel: 1. Add channel-specific bias if provided (`b`). 2. Upsample the image by inserting N-1 zeros after each pixel (`up`). 3. Pad the image with the specified number of zeros on each side (`padding`). Negative padding corresponds to cropping the image. 4. Convolve the image with the specified upsampling FIR filter (`fu`), shrinking it so that the footprint of all output pixels lies within the input image. 5. Multiply each value by the provided gain factor (`gain`). 6. Apply leaky ReLU activation function to each value. 7. Clamp each value between -clamp and +clamp, if `clamp` parameter is provided. 8. Convolve the image with the specified downsampling FIR filter (`fd`), shrinking it so that the footprint of all output pixels lies within the input image. 9. Downsample the image by keeping every Nth pixel (`down`). The fused op is considerably more efficient than performing the same calculation using standard PyTorch ops. It supports gradients of arbitrary order. Args: x: Float32/float16/float64 input tensor of the shape `[batch_size, num_channels, in_height, in_width]`. fu: Float32 upsampling FIR filter of the shape `[filter_height, filter_width]` (non-separable), `[filter_taps]` (separable), or `None` (identity). fd: Float32 downsampling FIR filter of the shape `[filter_height, filter_width]` (non-separable), `[filter_taps]` (separable), or `None` (identity). b: Bias vector, or `None` to disable. Must be a 1D tensor of the same type as `x`. The length of vector must must match the channel dimension of `x`. up: Integer upsampling factor (default: 1). down: Integer downsampling factor. (default: 1). padding: Padding with respect to the upsampled image. Can be a single number or a list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]` (default: 0). gain: Overall scaling factor for signal magnitude (default: sqrt(2)). slope: Slope on the negative side of leaky ReLU (default: 0.2). clamp: Maximum magnitude for leaky ReLU output (default: None). flip_filter: False = convolution, True = correlation (default: False). impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`). Returns: Tensor of the shape `[batch_size, num_channels, out_height, out_width]`. """ assert isinstance(x, torch.Tensor) assert impl in ['ref', 'cuda'] if impl == 'cuda' and x.device.type == 'cuda' and _init(): return _filtered_lrelu_cuda(up=up, down=down, padding=padding, gain=gain, slope=slope, clamp=clamp, flip_filter=flip_filter).apply(x, fu, fd, b, None, 0, 0) return _filtered_lrelu_ref(x, fu=fu, fd=fd, b=b, up=up, down=down, padding=padding, gain=gain, slope=slope, clamp=clamp, flip_filter=flip_filter) # Path: torch_utils/ops/bias_act.py def bias_act(x, b=None, dim=1, act='linear', alpha=None, gain=None, clamp=None, impl='cuda'): r"""Fused bias and activation function. Adds bias `b` to activation tensor `x`, evaluates activation function `act`, and scales the result by `gain`. Each of the steps is optional. In most cases, the fused op is considerably more efficient than performing the same calculation using standard PyTorch ops. It supports first and second order gradients, but not third order gradients. Args: x: Input activation tensor. Can be of any shape. b: Bias vector, or `None` to disable. Must be a 1D tensor of the same type as `x`. The shape must be known, and it must match the dimension of `x` corresponding to `dim`. dim: The dimension in `x` corresponding to the elements of `b`. The value of `dim` is ignored if `b` is not specified. act: Name of the activation function to evaluate, or `"linear"` to disable. Can be e.g. `"relu"`, `"lrelu"`, `"tanh"`, `"sigmoid"`, `"swish"`, etc. See `activation_funcs` for a full list. `None` is not allowed. alpha: Shape parameter for the activation function, or `None` to use the default. gain: Scaling factor for the output tensor, or `None` to use default. See `activation_funcs` for the default scaling of each activation function. If unsure, consider specifying 1. clamp: Clamp the output values to `[-clamp, +clamp]`, or `None` to disable the clamping (default). impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default). Returns: Tensor of the same shape and datatype as `x`. """ assert isinstance(x, torch.Tensor) assert impl in ['ref', 'cuda'] if impl == 'cuda' and x.device.type == 'cuda' and _init(): return _bias_act_cuda(dim=dim, act=act, alpha=alpha, gain=gain, clamp=clamp).apply(x, b) return _bias_act_ref(x=x, b=b, dim=dim, act=act, alpha=alpha, gain=gain, clamp=clamp) # Path: models/eg3d/networks_stylegan3.py import numpy as np import scipy.signal import scipy.optimize import torch from torch_utils import misc from torch_utils import persistence from torch_utils.ops import conv2d_gradfix from torch_utils.ops import filtered_lrelu from torch_utils.ops import bias_act return x def extra_repr(self): return f'z_dim={self.z_dim:d}, c_dim={self.c_dim:d}, w_dim={self.w_dim:d}, num_ws={self.num_ws:d}' #---------------------------------------------------------------------------- @persistence.persistent_class class SynthesisInput(torch.nn.Module): def __init__(self, w_dim, # Intermediate latent (W) dimensionality. channels, # Number of output channels. size, # Output spatial size: int or [width, height]. sampling_rate, # Output sampling rate. bandwidth, # Output bandwidth. ): super().__init__() self.w_dim = w_dim self.channels = channels self.size = np.broadcast_to(np.asarray(size), [2]) self.sampling_rate = sampling_rate self.bandwidth = bandwidth # Draw random frequencies from uniform 2D disc. freqs = torch.randn([self.channels, 2]) radii = freqs.square().sum(dim=1, keepdim=True).sqrt() freqs /= radii * radii.square().exp().pow(0.25) freqs *= bandwidth phases = torch.rand([self.channels]) - 0.5 # Setup parameters and buffers. self.weight = torch.nn.Parameter(torch.randn([self.channels, self.channels])) self.affine = FullyConnectedLayer(w_dim, 4, weight_init=0, bias_init=[1,0,0,0]) self.register_buffer('transform', torch.eye(3, 3)) # User-specified inverse transform wrt. resulting image. self.register_buffer('freqs', freqs) self.register_buffer('phases', phases) def forward(self, w): # Introduce batch dimension. transforms = self.transform.unsqueeze(0) # [batch, row, col] freqs = self.freqs.unsqueeze(0) # [batch, channel, xy] phases = self.phases.unsqueeze(0) # [batch, channel] # Apply learned transformation. t = self.affine(w) # t = (r_c, r_s, t_x, t_y) t = t / t[:, :2].norm(dim=1, keepdim=True) # t' = (r'_c, r'_s, t'_x, t'_y) m_r = torch.eye(3, device=w.device).unsqueeze(0).repeat([w.shape[0], 1, 1]) # Inverse rotation wrt. resulting image. m_r[:, 0, 0] = t[:, 0] # r'_c m_r[:, 0, 1] = -t[:, 1] # r'_s m_r[:, 1, 0] = t[:, 1] # r'_s m_r[:, 1, 1] = t[:, 0] # r'_c m_t = torch.eye(3, device=w.device).unsqueeze(0).repeat([w.shape[0], 1, 1]) # Inverse translation wrt. resulting image. m_t[:, 0, 2] = -t[:, 2] # t'_x m_t[:, 1, 2] = -t[:, 3] # t'_y transforms = m_r @ m_t @ transforms # First rotate resulting image, then translate, and finally apply user-specified transform. # Transform frequencies. phases = phases + (freqs @ transforms[:, :2, 2:]).squeeze(2) freqs = freqs @ transforms[:, :2, :2] # Dampen out-of-band frequencies that may occur due to the user-specified transform. amplitudes = (1 - (freqs.norm(dim=2) - self.bandwidth) / (self.sampling_rate / 2 - self.bandwidth)).clamp(0, 1) # Construct sampling grid. theta = torch.eye(2, 3, device=w.device) theta[0, 0] = 0.5 * self.size[0] / self.sampling_rate theta[1, 1] = 0.5 * self.size[1] / self.sampling_rate grids = torch.nn.functional.affine_grid(theta.unsqueeze(0), [1, 1, self.size[1], self.size[0]], align_corners=False) # Compute Fourier features. x = (grids.unsqueeze(3) @ freqs.permute(0, 2, 1).unsqueeze(1).unsqueeze(2)).squeeze(3) # [batch, height, width, channel] x = x + phases.unsqueeze(1).unsqueeze(2) x = torch.sin(x * (np.pi * 2)) x = x * amplitudes.unsqueeze(1).unsqueeze(2) # Apply trainable mapping. weight = self.weight / np.sqrt(self.channels) x = x @ weight.t() # Ensure correct shape. x = x.permute(0, 3, 1, 2) # [batch, channel, height, width] misc.assert_shape(x, [w.shape[0], self.channels, int(self.size[1]), int(self.size[0])]) return x def extra_repr(self): return '\n'.join([ f'w_dim={self.w_dim:d}, channels={self.channels:d}, size={list(self.size)},', f'sampling_rate={self.sampling_rate:g}, bandwidth={self.bandwidth:g}']) #---------------------------------------------------------------------------- @persistence.persistent_class class SynthesisLayer(torch.nn.Module): def __init__(self, w_dim, # Intermediate latent (W) dimensionality. is_torgb, # Is this the final ToRGB layer? is_critically_sampled, # Does this layer use critical sampling? use_fp16, # Does this layer use FP16? # Input & output specifications. in_channels, # Number of input channels. out_channels, # Number of output channels. in_size, # Input spatial size: int or [width, height]. out_size, # Output spatial size: int or [width, height]. in_sampling_rate, # Input sampling rate (s). out_sampling_rate, # Output sampling rate (s). in_cutoff, # Input cutoff frequency (f_c). out_cutoff, # Output cutoff frequency (f_c). in_half_width, # Input transition band half-width (f_h). out_half_width, # Output Transition band half-width (f_h). # Hyperparameters. conv_kernel = 3, # Convolution kernel size. Ignored for final the ToRGB layer. filter_size = 6, # Low-pass filter size relative to the lower resolution when up/downsampling. lrelu_upsampling = 2, # Relative sampling rate for leaky ReLU. Ignored for final the ToRGB layer. use_radial_filters = False, # Use radially symmetric downsampling filter? Ignored for critically sampled layers. conv_clamp = 256, # Clamp the output to [-X, +X], None = disable clamping. magnitude_ema_beta = 0.999, # Decay rate for the moving average of input magnitudes. ): super().__init__()
self.w_dim = w_dim
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: blaise-tk/RVC_CLI # Path: rvc/lib/utils.py def load_audio(file, sampling_rate): try: file = file.strip(" ").strip('"').strip("\n").strip('"').strip(" ") out, _ = ( ffmpeg.input(file, threads=0) .output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sampling_rate) .run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True) ) except Exception as error: raise RuntimeError(f"Failed to load audio: {error}") return np.frombuffer(out, np.float32).flatten() # Path: rvc/lib/infer_pack/models.py class SynthesizerTrnMs256NSFsid(nn.Module): def __init__( self, spec_channels, segment_size, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, spk_embed_dim, gin_channels, sr, **kwargs ): super(SynthesizerTrnMs256NSFsid, self).__init__() if isinstance(sr, str): sr = sr2sr[sr] self.spec_channels = spec_channels self.inter_channels = inter_channels self.hidden_channels = hidden_channels self.filter_channels = filter_channels self.n_heads = n_heads self.n_layers = n_layers self.kernel_size = kernel_size self.p_dropout = float(p_dropout) self.resblock = resblock self.resblock_kernel_sizes = resblock_kernel_sizes self.resblock_dilation_sizes = resblock_dilation_sizes self.upsample_rates = upsample_rates self.upsample_initial_channel = upsample_initial_channel self.upsample_kernel_sizes = upsample_kernel_sizes self.segment_size = segment_size self.gin_channels = gin_channels # self.hop_length = hop_length# self.spk_embed_dim = spk_embed_dim self.enc_p = TextEncoder256( inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, float(p_dropout), ) self.dec = GeneratorNSF( inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels, sr=sr, is_half=kwargs["is_half"], ) self.enc_q = PosteriorEncoder( spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels, ) self.flow = ResidualCouplingBlock( inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels ) self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) def remove_weight_norm(self): self.dec.remove_weight_norm() self.flow.remove_weight_norm() self.enc_q.remove_weight_norm() def __prepare_scriptable__(self): for hook in self.dec._forward_pre_hooks.values(): # The hook we want to remove is an instance of WeightNorm class, so # normally we would do `if isinstance(...)` but this class is not accessible # because of shadowing, so we check the module name directly. # https://github.com/pytorch/pytorch/blob/be0ca00c5ce260eb5bcec3237357f7a30cc08983/torch/nn/utils/__init__.py#L3 if ( hook.__module__ == "torch.nn.utils.weight_norm" and hook.__class__.__name__ == "WeightNorm" ): torch.nn.utils.remove_weight_norm(self.dec) for hook in self.flow._forward_pre_hooks.values(): if ( hook.__module__ == "torch.nn.utils.weight_norm" and hook.__class__.__name__ == "WeightNorm" ): torch.nn.utils.remove_weight_norm(self.flow) if hasattr(self, "enc_q"): for hook in self.enc_q._forward_pre_hooks.values(): if ( hook.__module__ == "torch.nn.utils.weight_norm" and hook.__class__.__name__ == "WeightNorm" ): torch.nn.utils.remove_weight_norm(self.enc_q) return self @torch.jit.ignore def forward( self, phone: torch.Tensor, phone_lengths: torch.Tensor, pitch: torch.Tensor, pitchf: torch.Tensor, y: torch.Tensor, y_lengths: torch.Tensor, ds: Optional[torch.Tensor] = None, ): # 这里ds是id,[bs,1] # print(1,pitch.shape)#[bs,t] g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的 m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths) z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g) z_p = self.flow(z, y_mask, g=g) z_slice, ids_slice = commons.rand_slice_segments( z, y_lengths, self.segment_size ) # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length) pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size) # print(-2,pitchf.shape,z_slice.shape) o = self.dec(z_slice, pitchf, g=g) return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q) @torch.jit.export def infer( self, phone: torch.Tensor, phone_lengths: torch.Tensor, pitch: torch.Tensor, nsff0: torch.Tensor, sid: torch.Tensor, rate: Optional[torch.Tensor] = None, ): g = self.emb_g(sid).unsqueeze(-1) m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths) z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask if rate is not None: assert isinstance(rate, torch.Tensor) head = int(z_p.shape[2] * (1 - rate.item())) z_p = z_p[:, :, head:] x_mask = x_mask[:, :, head:] nsff0 = nsff0[:, head:] z = self.flow(z_p, x_mask, g=g, reverse=True) o = self.dec(z * x_mask, nsff0, g=g) return o, x_mask, (z, z_p, m_p, logs_p) # Path: rvc/lib/infer_pack/models.py class SynthesizerTrnMs256NSFsid_nono(nn.Module): def __init__( self, spec_channels, segment_size, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, spk_embed_dim, gin_channels, sr=None, **kwargs ): super(SynthesizerTrnMs256NSFsid_nono, self).__init__() self.spec_channels = spec_channels self.inter_channels = inter_channels self.hidden_channels = hidden_channels self.filter_channels = filter_channels self.n_heads = n_heads self.n_layers = n_layers self.kernel_size = kernel_size self.p_dropout = float(p_dropout) self.resblock = resblock self.resblock_kernel_sizes = resblock_kernel_sizes self.resblock_dilation_sizes = resblock_dilation_sizes self.upsample_rates = upsample_rates self.upsample_initial_channel = upsample_initial_channel self.upsample_kernel_sizes = upsample_kernel_sizes self.segment_size = segment_size self.gin_channels = gin_channels # self.hop_length = hop_length# self.spk_embed_dim = spk_embed_dim self.enc_p = TextEncoder256( inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, float(p_dropout), f0=False, ) self.dec = Generator( inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels, ) self.enc_q = PosteriorEncoder( spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels, ) self.flow = ResidualCouplingBlock( inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels ) self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) def remove_weight_norm(self): self.dec.remove_weight_norm() self.flow.remove_weight_norm() self.enc_q.remove_weight_norm() def __prepare_scriptable__(self): for hook in self.dec._forward_pre_hooks.values(): # The hook we want to remove is an instance of WeightNorm class, so # normally we would do `if isinstance(...)` but this class is not accessible # because of shadowing, so we check the module name directly. # https://github.com/pytorch/pytorch/blob/be0ca00c5ce260eb5bcec3237357f7a30cc08983/torch/nn/utils/__init__.py#L3 if ( hook.__module__ == "torch.nn.utils.weight_norm" and hook.__class__.__name__ == "WeightNorm" ): torch.nn.utils.remove_weight_norm(self.dec) for hook in self.flow._forward_pre_hooks.values(): if ( hook.__module__ == "torch.nn.utils.weight_norm" and hook.__class__.__name__ == "WeightNorm" ): torch.nn.utils.remove_weight_norm(self.flow) if hasattr(self, "enc_q"): for hook in self.enc_q._forward_pre_hooks.values(): if ( hook.__module__ == "torch.nn.utils.weight_norm" and hook.__class__.__name__ == "WeightNorm" ): torch.nn.utils.remove_weight_norm(self.enc_q) return self @torch.jit.ignore def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1] g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的 m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths) z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g) z_p = self.flow(z, y_mask, g=g) z_slice, ids_slice = commons.rand_slice_segments( z, y_lengths, self.segment_size ) o = self.dec(z_slice, g=g) return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q) @torch.jit.export def infer( self, phone: torch.Tensor, phone_lengths: torch.Tensor, sid: torch.Tensor, rate: Optional[torch.Tensor] = None, ): g = self.emb_g(sid).unsqueeze(-1) m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths) z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask if rate is not None: head = int(z_p.shape[2] * (1.0 - rate.item())) z_p = z_p[:, :, head:] x_mask = x_mask[:, :, head:] z = self.flow(z_p, x_mask, g=g, reverse=True) o = self.dec(z * x_mask, g=g) return o, x_mask, (z, z_p, m_p, logs_p) # Path: rvc/lib/infer_pack/models.py class SynthesizerTrnMs768NSFsid(nn.Module): def __init__( self, spec_channels, segment_size, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, spk_embed_dim, gin_channels, sr, **kwargs ): super(SynthesizerTrnMs768NSFsid, self).__init__() if isinstance(sr, str): sr = sr self.spec_channels = spec_channels self.inter_channels = inter_channels self.hidden_channels = hidden_channels self.filter_channels = filter_channels self.n_heads = n_heads self.n_layers = n_layers self.kernel_size = kernel_size self.p_dropout = float(p_dropout) self.resblock = resblock self.resblock_kernel_sizes = resblock_kernel_sizes self.resblock_dilation_sizes = resblock_dilation_sizes self.upsample_rates = upsample_rates self.upsample_initial_channel = upsample_initial_channel self.upsample_kernel_sizes = upsample_kernel_sizes self.segment_size = segment_size self.gin_channels = gin_channels # self.hop_length = hop_length# self.spk_embed_dim = spk_embed_dim self.enc_p = TextEncoder768( inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, float(p_dropout), ) self.dec = GeneratorNSF( inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels, sr=sr, is_half=kwargs["is_half"], ) self.enc_q = PosteriorEncoder( spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels, ) self.flow = ResidualCouplingBlock( inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels ) self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) def remove_weight_norm(self): self.dec.remove_weight_norm() self.flow.remove_weight_norm() self.enc_q.remove_weight_norm() def __prepare_scriptable__(self): for hook in self.dec._forward_pre_hooks.values(): # The hook we want to remove is an instance of WeightNorm class, so # normally we would do `if isinstance(...)` but this class is not accessible # because of shadowing, so we check the module name directly. # https://github.com/pytorch/pytorch/blob/be0ca00c5ce260eb5bcec3237357f7a30cc08983/torch/nn/utils/__init__.py#L3 if ( hook.__module__ == "torch.nn.utils.weight_norm" and hook.__class__.__name__ == "WeightNorm" ): torch.nn.utils.remove_weight_norm(self.dec) for hook in self.flow._forward_pre_hooks.values(): if ( hook.__module__ == "torch.nn.utils.weight_norm" and hook.__class__.__name__ == "WeightNorm" ): torch.nn.utils.remove_weight_norm(self.flow) if hasattr(self, "enc_q"): for hook in self.enc_q._forward_pre_hooks.values(): if ( hook.__module__ == "torch.nn.utils.weight_norm" and hook.__class__.__name__ == "WeightNorm" ): torch.nn.utils.remove_weight_norm(self.enc_q) return self @torch.jit.ignore def forward( self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds ): # 这里ds是id,[bs,1] # print(1,pitch.shape)#[bs,t] g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的 m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths) z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g) z_p = self.flow(z, y_mask, g=g) z_slice, ids_slice = commons.rand_slice_segments( z, y_lengths, self.segment_size ) # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length) pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size) # print(-2,pitchf.shape,z_slice.shape) o = self.dec(z_slice, pitchf, g=g) return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q) @torch.jit.export def infer( self, phone: torch.Tensor, phone_lengths: torch.Tensor, pitch: torch.Tensor, nsff0: torch.Tensor, sid: torch.Tensor, rate: Optional[torch.Tensor] = None, ): g = self.emb_g(sid).unsqueeze(-1) m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths) z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask if rate is not None: head = int(z_p.shape[2] * (1.0 - rate.item())) z_p = z_p[:, :, head:] x_mask = x_mask[:, :, head:] nsff0 = nsff0[:, head:] z = self.flow(z_p, x_mask, g=g, reverse=True) o = self.dec(z * x_mask, nsff0, g=g) return o, x_mask, (z, z_p, m_p, logs_p) # Path: rvc/lib/infer_pack/models.py class SynthesizerTrnMs768NSFsid_nono(nn.Module): def __init__( self, spec_channels, segment_size, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, spk_embed_dim, gin_channels, sr=None, **kwargs ): super(SynthesizerTrnMs768NSFsid_nono, self).__init__() self.spec_channels = spec_channels self.inter_channels = inter_channels self.hidden_channels = hidden_channels self.filter_channels = filter_channels self.n_heads = n_heads self.n_layers = n_layers self.kernel_size = kernel_size self.p_dropout = float(p_dropout) self.resblock = resblock self.resblock_kernel_sizes = resblock_kernel_sizes self.resblock_dilation_sizes = resblock_dilation_sizes self.upsample_rates = upsample_rates self.upsample_initial_channel = upsample_initial_channel self.upsample_kernel_sizes = upsample_kernel_sizes self.segment_size = segment_size self.gin_channels = gin_channels # self.hop_length = hop_length# self.spk_embed_dim = spk_embed_dim self.enc_p = TextEncoder768( inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, float(p_dropout), f0=False, ) self.dec = Generator( inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels, ) self.enc_q = PosteriorEncoder( spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels, ) self.flow = ResidualCouplingBlock( inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels ) self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) def remove_weight_norm(self): self.dec.remove_weight_norm() self.flow.remove_weight_norm() self.enc_q.remove_weight_norm() def __prepare_scriptable__(self): for hook in self.dec._forward_pre_hooks.values(): # The hook we want to remove is an instance of WeightNorm class, so # normally we would do `if isinstance(...)` but this class is not accessible # because of shadowing, so we check the module name directly. # https://github.com/pytorch/pytorch/blob/be0ca00c5ce260eb5bcec3237357f7a30cc08983/torch/nn/utils/__init__.py#L3 if ( hook.__module__ == "torch.nn.utils.weight_norm" and hook.__class__.__name__ == "WeightNorm" ): torch.nn.utils.remove_weight_norm(self.dec) for hook in self.flow._forward_pre_hooks.values(): if ( hook.__module__ == "torch.nn.utils.weight_norm" and hook.__class__.__name__ == "WeightNorm" ): torch.nn.utils.remove_weight_norm(self.flow) if hasattr(self, "enc_q"): for hook in self.enc_q._forward_pre_hooks.values(): if ( hook.__module__ == "torch.nn.utils.weight_norm" and hook.__class__.__name__ == "WeightNorm" ): torch.nn.utils.remove_weight_norm(self.enc_q) return self @torch.jit.ignore def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1] g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的 m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths) z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g) z_p = self.flow(z, y_mask, g=g) z_slice, ids_slice = commons.rand_slice_segments( z, y_lengths, self.segment_size ) o = self.dec(z_slice, g=g) return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q) @torch.jit.export def infer( self, phone: torch.Tensor, phone_lengths: torch.Tensor, sid: torch.Tensor, rate: Optional[torch.Tensor] = None, ): g = self.emb_g(sid).unsqueeze(-1) m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths) z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask if rate is not None: head = int(z_p.shape[2] * (1.0 - rate.item())) z_p = z_p[:, :, head:] x_mask = x_mask[:, :, head:] z = self.flow(z_p, x_mask, g=g, reverse=True) o = self.dec(z * x_mask, g=g) return o, x_mask, (z, z_p, m_p, logs_p) # Path: rvc/configs/config.py class Config: def __init__(self): self.device = "cuda:0" self.is_half = True self.use_jit = False self.n_cpu = 0 self.gpu_name = None self.json_config = self.load_config_json() self.gpu_mem = None self.instead = "" self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config() @staticmethod def load_config_json() -> dict: d = {} for config_file in version_config_list: with open(f"rvc/configs/{config_file}", "r") as f: d[config_file] = json.load(f) return d @staticmethod def has_mps() -> bool: if not torch.backends.mps.is_available(): return False try: torch.zeros(1).to(torch.device("mps")) return True except Exception: return False @staticmethod def has_xpu() -> bool: if hasattr(torch, "xpu") and torch.xpu.is_available(): return True else: return False def use_fp32_config(self): for config_file in version_config_list: self.json_config[config_file]["train"]["fp16_run"] = False with open(f"rvc/configs/{config_file}", "r") as f: strr = f.read().replace("true", "false") with open(f"rvc/configs/{config_file}", "w") as f: f.write(strr) with open("rvc/train/preprocess/preprocess.py", "r") as f: strr = f.read().replace("3.7", "3.0") with open("rvc/train/preprocess/preprocess.py", "w") as f: f.write(strr) def device_config(self) -> tuple: if torch.cuda.is_available(): if self.has_xpu(): self.device = self.instead = "xpu:0" self.is_half = True i_device = int(self.device.split(":")[-1]) self.gpu_name = torch.cuda.get_device_name(i_device) if ( ("16" in self.gpu_name and "V100" not in self.gpu_name.upper()) or "P40" in self.gpu_name.upper() or "P10" in self.gpu_name.upper() or "1060" in self.gpu_name or "1070" in self.gpu_name or "1080" in self.gpu_name ): self.is_half = False self.use_fp32_config() self.gpu_mem = int( torch.cuda.get_device_properties(i_device).total_memory / 1024 / 1024 / 1024 + 0.4 ) if self.gpu_mem <= 4: with open("rvc/train/preprocess/preprocess.py", "r") as f: strr = f.read().replace("3.7", "3.0") with open("rvc/train/preprocess/preprocess.py", "w") as f: f.write(strr) elif self.has_mps(): print("No supported Nvidia GPU found") self.device = self.instead = "mps" self.is_half = False self.use_fp32_config() else: print("No supported Nvidia GPU found") self.device = self.instead = "cpu" self.is_half = False self.use_fp32_config() if self.n_cpu == 0: self.n_cpu = cpu_count() if self.is_half: x_pad = 3 x_query = 10 x_center = 60 x_max = 65 else: x_pad = 1 x_query = 6 x_center = 38 x_max = 41 if self.gpu_mem is not None and self.gpu_mem <= 4: x_pad = 1 x_query = 5 x_center = 30 x_max = 32 return x_pad, x_query, x_center, x_max # Path: rvc/infer/infer.py import os import sys import torch import numpy as np import soundfile as sf from vc_infer_pipeline import VC from rvc.lib.utils import load_audio from fairseq import checkpoint_utils from rvc.lib.infer_pack.models import ( SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono, SynthesizerTrnMs768NSFsid, SynthesizerTrnMs768NSFsid_nono, ) from rvc.configs.config import Config config = Config() torch.manual_seed(114514) hubert_model = None def load_hubert(): global hubert_model models, _, _ = checkpoint_utils.load_model_ensemble_and_task( ["hubert_base.pt"], suffix="", ) hubert_model = models[0] hubert_model = hubert_model.to(config.device) if config.is_half:
hubert_model = hubert_model.half()
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: SubConv/SubConv # Path: modules/convert/util.py def RandUserAgent() -> str: return userAgents[random.randint(0, len(userAgents) - 1)] # Path: modules/convert/util.py def get(content): if content is None: return "" else: return content # Path: modules/convert/util.py def uniqueName(names: dict, name): index = names.get(name) if index is None: index = 0 names[name] = index else: index += 1 names[name] = index name = "%s-%02d" % (name, index) return name # Path: modules/convert/util.py def urlSafe(string): return string.replace("+", "-").replace("/", "_") # Path: modules/convert/util.py def base64RawStdDecode(encoded): return base64.b64decode( encoded + "="*(-len(encoded)%4) ).decode("utf-8") # Path: modules/convert/util.py def base64RawURLDecode(encoded): return base64.urlsafe_b64decode( encoded + "="*(-len(encoded)%4) ).decode("utf-8") # Path: modules/convert/v.py def handleVShareLink(names: dict, url: urlparse.ParseResult, scheme: str, proxy: dict): query = dict(urlparse.parse_qsl(url.query)) proxy["name"] = uniqueName(names, urlparse.unquote(url.fragment)) if url.hostname == "": raise if url.port == "": raise proxy["type"] = scheme proxy["server"] = url.hostname proxy["port"] = url.port proxy["uuid"] = url.username proxy["udp"] = True tls = get(query.get("security")).lower() if tls.endswith("tls") or tls == "reality": proxy["tls"] = True fingerprint = get(query.get("fp")) if fingerprint == "": proxy["client-fingerprint"] = "chrome" else: proxy["client-fingerprint"] = fingerprint alpn = get(query.get("alpn")) if alpn != "": proxy["alpn"] = alpn.split(",") sni = get(query.get("sni")) if sni != "": proxy["servername"] = sni realityPublicKey = get(query.get("pbk")) if realityPublicKey != "": proxy["reality-opts"] = { "public-key": realityPublicKey, "short-id": get(query.get("sid")) } switch = get(query.get("packetEncoding")) if switch == "none" or switch == "": pass elif switch == "packet": proxy["packet-addr"] = True else: proxy["xudp"] = True network = get(query.get("type")).lower() if network == "": network = "tcp" fakeType = get(query.get("headerType")).lower() if fakeType == "http": network = "http" elif network == "http": network = "h2" proxy["network"] = network if network == "tcp": if fakeType != "none" and fakeType != "": headers = {} httpOpts = {} httpOpts["path"] = "/" host = get(query.get("host")) if host != "": headers["Host"] = str(host) method = get(query.get("method")) if method != "": httpOpts["method"] = method path = get(query.get("path")) if path != "": httpOpts["path"] = str(path) httpOpts["headers"] = headers proxy["http-opts"] = httpOpts elif network == "http": headers = {} h2Opts = {} h2Opts["path"] = "/" path = get(query.get("path")) if path != "": h2Opts["path"] = str(path) host = get(query.get("host")) if host != "": h2Opts["host"] = str(host) h2Opts["headers"] = headers proxy["h2-opts"] = h2Opts elif network == "ws": headers = {} wsOpts = {} headers["User-Agent"] = RandUserAgent() headers["Host"] = get(query.get("host")) wsOpts["path"] = get(query.get("path")) wsOpts["headers"] = headers earlyData = get(query.get("ed")) if earlyData != "": try: med = int(earlyData) except: raise wsOpts["max-early-data"] = med earlyDataHeader = get(query.get("edh")) if earlyDataHeader != "": wsOpts["early-data-header-name"] = earlyDataHeader proxy["ws-opts"] = wsOpts elif network == "grpc": grpcOpts = {} grpcOpts["grpc-service-name"] = get(query.get("serviceName")) proxy["grpc-opts"] = grpcOpts # Path: modules/convert/converter.py from modules.convert.util import RandUserAgent from modules.convert.util import get from modules.convert.util import uniqueName from modules.convert.util import urlSafe from modules.convert.util import base64RawStdDecode from modules.convert.util import base64RawURLDecode from modules.convert.v import handleVShareLink import json import base64 import urllib.parse as urlparse import distutils.util trojan["client-fingerprint"] = "chrome" else: trojan["client-fingerprint"] = fingerprint proxies.append(trojan) elif scheme == "vless": try: urlVless = urlparse.urlparse(line) except: continue query = dict(urlparse.parse_qsl(urlVless.query)) vless = {} try: handleVShareLink(names, urlVless, scheme, vless) except: continue flow = get(query.get("flow")) if flow != "": vless["flow"] = str(flow).lower() proxies.append(vless) elif scheme == "vmess": try: dcBuf = base64.b64decode(body) except: # Xray VMessAEAD share link try: urlVMess = urlparse.urlparse(line) except: continue query = dict(urlparse.parse_qsl(urlVMess.query)) vmess = {} try: handleVShareLink(names, urlVMess, scheme, vmess) except: continue vmess["alterId"] = 0 vmess["cipher"] = "auto" encryption = get(query.get("encryption")) if encryption != "": vmess["cipher"] = encryption proxies.append(vmess) continue values = {} try: values = json.loads(dcBuf) except: continue try: tempName = values["ps"] except: continue name = uniqueName(names, tempName) vmess = {} vmess["name"] = name vmess["type"] = scheme vmess["server"] = values["add"] vmess["port"] = values["port"] vmess["uuid"] = values["id"] alterId = values.get("aid") if alterId is not None: vmess["alterId"] = alterId else: vmess["alterId"] = 0 vmess["udp"] = True vmess["xudp"] = True vmess["tls"] = False vmess["skip-cert-verify"] = False vmess["cipher"] = "auto" cipher = get(values.get("scy")) if cipher != "": vmess["cipher"] = cipher sni = get(values.get("sni")) if sni != "": vmess["servername"] = sni network = get(values.get("net")).lower() if values.get("type") == "http": network = "http" elif network == "http": network = "h2" vmess["network"] = network tls = values.get("tls") if tls is not None: tls = str(tls).lower() if tls.endswith("tls"): vmess["tls"] = True alpn = values.get("alpn") if alpn is not None and alpn != "": vmess["alpn"] = alpn.split(",") if network == "http": headers = {} httpOpts = {} host = get(values.get("host")) if host != "": headers["Host"] = host httpOpts["path"] = "/" path = get(values.get("path")) if path != "": httpOpts["path"] = path httpOpts["headers"] = headers vmess["http-opts"] = httpOpts elif network == "h2": headers = {} h2Opts = {} host = get(values.get("host")) if host != "": headers["Host"] = host h2Opts["path"] = get(values.get("path"))
h2Opts["headers"] = headers
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Opt-Mucca/PySCIPOpt-ML # Path: src/pyscipopt_ml/modelling/base_predictor_constraint.py class AbstractPredictorConstr(ABC): """Base class to store all information of embedded ML model by :py:func`pyscipopt_ml.add_predictor_constr`. This class is the base class to store everything that is added to a SCIP model when a trained predictor is inserted into it. Depending on the type of the predictor, a class derived from it will be returned by :py:func:`pyscipopt_ml.add_predictor_constr`. Warning ------- Users should usually never construct objects of this class or one of its derived classes. They are returned by the :py:func:`pyscipopt_ml.add_predictor_constr` and other functions. """ def __init__( self, scip_model, input_vars, output_vars=None, unique_naming_prefix="", **kwargs ): self.scip_model = scip_model self.unique_naming_prefix = unique_naming_prefix self._validate(input_vars, output_vars) self._created_vars = [] self._created_cons = [] self._build_predictor_model(**kwargs) def _validate(self, input_vars, output_vars=None): """Validate input and output variables (check shapes, reshape if needed).""" # Ensure the correct type of input and output is given if type(input_vars) not in [list, np.ndarray]: raise ParameterError( f"Input variables are not type list or np.ndarray. They are type {type(input_vars)}." ) if output_vars is not None: if not isinstance(output_vars, list) and not isinstance(output_vars, np.ndarray): raise ParameterError( f"Output variables are not type list or np.ndarray. They are type {type(output_vars)}." ) # Transform the type list to type np.ndarray if isinstance(input_vars, list): input_vars = np.array(input_vars, dtype=object) if isinstance(output_vars, list): output_vars = np.array(output_vars, dtype=object) # Change the dimension of the input variables if needed. (Always want number of data points first) if input_vars.ndim == 1: input_vars = input_vars.reshape((1, -1)) if input_vars.ndim >= 3: input_vars = input_vars.reshape((input_vars.shape[0], -1)) # In the case of the output being None, create the appropriate output variables here if output_vars is None: output_vars = self._create_output_vars(input_vars) # Change the dimensions of the output variables if needed (Always want the number of data points first) if output_vars.ndim == 1: if input_vars.shape[0] == 1: output_vars = output_vars.reshape((1, -1)) else: output_vars = output_vars.reshape((-1, 1)) # Ensure that the variable dimensions match that of the predictor if hasattr(self, "input_size") and input_vars.shape[-1] != self.input_size: raise ParameterError( f"Input variables dimension don't conform with predictor {type(self)} " + f"Input variable dimensions: {input_vars.shape[-1]} != {self.input_size}" ) if hasattr(self, "output_size") and output_vars.shape[-1] != self.output_size: raise ParameterError( f"Output variable dimensions don't conform with predictor {type(self)} " + f"Output variable dimensions: {output_vars.shape[-1]} != {self.output_size}" ) if output_vars.shape[0] != input_vars.shape[0]: raise ParameterError( "Non-conforming dimension between input variables and output variables: " + f"{output_vars.shape[0]} != {input_vars.shape[0]}" ) self._input = input_vars self._output = output_vars def _build_predictor_model(self, **kwargs): self._mip_model(**kwargs) def print_stats(self, file=None): """Print statistics on model additions stored by this class. This function prints detailed statistics on the variables and constraints that were added to the model. Arguments --------- file: None, optional Text stream to which output should be redirected. By default, this is sys.stdout. """ n_indicator_cons = 0 n_sos_cons = 0 n_linear_cons = 0 created_cons = self._created_cons created_vars = self._created_vars if hasattr(self, "_estimators"): for estimator in self._estimators: created_cons += estimator._created_cons created_vars += estimator._created_vars if hasattr(self, "_layers"): for layer in self._layers: created_cons += layer._created_cons created_vars += layer._created_vars for cons_set in created_cons: it = np.nditer(cons_set, flags=["multi_index", "refs_ok"]) for _ in it: if isinstance(cons_set[it.multi_index], Constraint): cons_type = cons_set[it.multi_index].getConshdlrName() if cons_type == "indicator": n_indicator_cons += 1 elif cons_type == "SOS1": n_sos_cons += 1 elif cons_type == "linear": n_linear_cons += 1 else: raise TypeError( f"Cons {cons_set[it.multi_index]} is of unknown type {cons_type}" ) n_bin_vars = 0 n_cont_vars = 0 for var_set in created_vars: it = np.nditer(var_set, flags=["multi_index", "refs_ok"]) for _ in it: if isinstance(var_set[it.multi_index], Variable): var_type = var_set[it.multi_index].vtype() if var_type == "BINARY": n_bin_vars += 1 elif var_type == "CONTINUOUS": n_cont_vars += 1 else: raise TypeError( f"Var {var_set[it.multi_index]} is of unknown type {var_type}" ) print( f"Constraints created:\n Linear {n_linear_cons}\n Indicator {n_indicator_cons}\n " f"SOS1 {n_sos_cons}\n" f"Created (internal) variables:\n Binary {n_bin_vars}\n Continuous {n_cont_vars}\n" f"Input Shape: {self.input.shape}\nOutput Shape: {self.output.shape}", file=file, ) def _create_output_vars(self, input_vars): """May be defined in derived class to create the output variables of predictor.""" if (not hasattr(self, "_output") or self._output is None) and ( not hasattr(self, "output_size") or self.output_size is None ): raise AttributeError if not hasattr(self, "_output") or self._output is None: if hasattr(self, "classification"): if self.classification: vtype = "B" else: vtype = "C" else: vtype = "C" output_vars = create_vars( self.scip_model, (input_vars.shape[0], self.output_size), vtype, lb=None, ub=None, name_prefix="out", ) return output_vars else: return self._output @property def _has_solution(self): """Returns true if we have a solution.""" if self.scip_model.getNSols() > 0: return True return False @abstractmethod def get_error(self, eps): """Returns error in SCIP's solution with respect to prediction from input. Returns ------- error : ndarray of same shape as :py:attr:`pyscipopt_ml.modelling.base_predictor_constr.AbstractPredictorConstr.output` Assuming that we have a solution for the input and output variables `x, y`. Returns the absolute value of the differences between `predictor.predict(x)` and `y`. Where predictor is the regression / classification model represented by this object. Raises ------ NoSolution If the SCIP model has no solution (either was not optimized or is infeasible). """ ... @abstractmethod def _mip_model(self, **kwargs): """Makes MIP model for the predictor.""" ... @property def input(self): """Returns the input variables of embedded predictor. Returns ------- output : np.ndarray """ return self._input @property def output(self): """Output variables of embedded predictor. Returns ------- output : np.ndarray """ return self._output @property def input_values(self): """Returns the values for the input variables if a solution is known. Returns ------- input_vals : np.ndarray Raises ------ NoSolution If SCIP has no solution (either was not optimized or is infeasible). """ if not self._has_solution: raise NoSolution input_vals = np.zeros(self.input.shape) for i in range(self.input.shape[0]): for j in range(self.input.shape[1]): input_vals[i][j] = self.scip_model.getVal(self.input[i][j]) return input_vals @property def output_values(self): """Returns the values for the output variables if a solution is known. Returns ------- output_value : np.ndarray Raises ------ NoSolution If SCIP has no solution (either was not optimized or is infeasible). """ if not self._has_solution: raise NoSolution output_vals = np.zeros(self.output.shape) for i in range(self.output.shape[0]): for j in range(self.output.shape[1]): output_vals[i][j] = self.scip_model.getVal(self.output[i][j]) return output_vals def __str__(self): return self._name # Path: src/pyscipopt_ml/modelling/gradient_boosting/aggregate_tree_model.py def aggregated_estimator_formulation( scip_model, _input, output, tree_vars, trees, constant, lr, n_estimators, unique_naming_prefix, epsilon, aggr, classification, **kwargs, ): """ Creates the model that represents the aggregation of estimators into a single output. This function is used exclusively for the case where the estimators are decision trees, and the larger predictor is either a gradient boosting decision tree or random forest. Parameters ---------- scip_model : PySCIPOpt Model The SCIP Model where the predictor should be inserted. _input : np.ndarray The input variables that are passed to each decision tree output : np.ndarray The output variables of the predictor tree_vars : np.ndarray The PySCIPOpt variables that have been created to represent the output of each decision tree (i.e. estimator) trees : list A list of lists containing dictionary information that completely describe each decision tree (i.e. estimator) constant : np.ndarray An array of constant shift values that are added to the output values of each decision tree (i.e. estimator) lr : float or int The learning rate used while training. For GBDT / RF this scales the output of each tree n_estimators : int The number of decision trees (i.e. estimators) unique_naming_prefix : str The unique naming prefix string that goes before all variables and constraints that are constructed by SCIP epsilon : float The epsilon that is used for each decision tree model. See :py:func:`pyscipopt_ml.modelling.decision_tree.leaf_formulation`. aggr : str, "sum" or "avg" The aggregation method used in the formulation. Either the estimators are averages or summed. classification : bool Whether the aggregated output of each decision tree (i.e. estimator) should be used for classification. Returns ------- estimators : list A list of :py:class`pyscipopt_ml.modelling.aggregate_tree_model.TreeEstimator` created_vars : list A list containing all created PySCIPOpt vars created_cons : list A list containing all created PySCIPOpt cons """ # Get the number of samples and output dimension n_samples = _input.shape[0] outdim = output.shape[-1] # Create the individual tree estimators estimators = create_tree_estimators( scip_model, _input, tree_vars, trees, n_estimators, outdim, unique_naming_prefix, epsilon, False, **kwargs, ) # Aggregate the trees over the output dimension aggregate_tree_output = aggregate_estimator_outputs(tree_vars, lr, constant, aggr=aggr) # Formulate the appropriate constraints created_vars, created_cons = create_aggregation_constraints( scip_model, aggregate_tree_output, output, n_samples, outdim, unique_naming_prefix, classification, ) return estimators, created_vars, created_cons # Path: src/pyscipopt_ml/lightgbm/lgbgetter.py class LGBgetter(AbstractPredictorConstr): """Utility class for lightgbm models convertors. Implement some common functionalities: check predictor is fitted, output dimension, get error Attributes ---------- predictor Lightgbm predictor embedded into SCIP model. """ def __init__(self, predictor, input_vars, output_type="regular", **kwargs): if not hasattr(predictor, "booster_"): raise ParameterError( "LightGBM model has not yet been fitted. There is nothing to model." ) if predictor.boosting_type not in ["gbdt", "rf"]: raise NoModel( predictor, f"There is only support for LightGBM boosting type gbdt and rf. " f"Not {predictor.boosting_type}", ) self.predictor = predictor def extract_raw_data_and_create_tree_vars(self, epsilon=0.0): """ Function for extracting information from lgb._Booster and creating additional modelling variables. Parameters ---------- epsilon : float, optional Small value used to impose strict inequalities for splitting nodes in MIP formulations. Returns ------- trees : list A list of tree dictionaries similar in structure to that provided by SKlearn tree_vars : np.ndarray A numpy array filled with variables that represent output of trees from the trained LightGBM model """ n_samples = self.input.shape[0] outdim = self.output.shape[1] # Extract the raw data raw = self.predictor.booster_.dump_model() n_features = self.predictor.n_features_ n_trees = len(raw["tree_info"]) n_estimators = self.predictor.n_estimators_ def read_node(tree, tree_structure): # Increase the node count and keep track of the current node index node_idx = tree["node_count"] tree["node_count"] += 1 # Add features specific to the node of the tree if "split_feature" in tree_structure: tree["feature"].append(tree_structure["split_feature"]) else: tree["feature"].append(-1) if "threshold" in tree_structure: tree["threshold"].append(tree_structure["threshold"]) else: tree["threshold"].append(-1) if "internal_value" in tree_structure: tree["value"].append([[tree_structure["internal_value"]]]) else: tree["value"].append([[tree_structure["leaf_value"]]]) if "decision_type" in tree_structure and tree_structure["decision_type"] != "<=": raise ParameterError( f"Currently no support for LightGBM trees with decision type " f"{tree_structure['decision_type']}" ) # Add in dummy left and right children tree["children_left"].append(-1) tree["children_right"].append(-1) # Now recursively call a new node if "left_child" in tree_structure: tree["children_left"][node_idx] = tree["node_count"] tree = read_node(tree, tree_structure["left_child"]) if "right_child" in tree_structure: tree["children_right"][node_idx] = tree["node_count"] tree = read_node(tree, tree_structure["right_child"]) return tree trees = [ [ { "node_count": 0, "n_features": n_features, "children_left": [], "children_right": [], "feature": [], "threshold": [], "value": [], } for _ in range(outdim) ] for _ in range(n_estimators) ] trees_converted = [0 for _ in range(outdim)] for i in range(n_trees): tree_raw = raw["tree_info"][i]["tree_structure"] class_idx = i % outdim tree_idx = trees_converted[class_idx] trees[tree_idx][class_idx] = read_node(trees[tree_idx][class_idx], tree_raw) trees[tree_idx][class_idx]["children_left"] = np.array( trees[tree_idx][class_idx]["children_left"], dtype=np.int32 ) trees[tree_idx][class_idx]["children_right"] = np.array( trees[tree_idx][class_idx]["children_right"], dtype=np.int32 ) trees[tree_idx][class_idx]["feature"] = np.array( trees[tree_idx][class_idx]["feature"], dtype=np.int32 ) trees[tree_idx][class_idx]["threshold"] = np.array( trees[tree_idx][class_idx]["threshold"], dtype=np.float64 ) trees[tree_idx][class_idx]["value"] = np.array( trees[tree_idx][class_idx]["value"], dtype=np.float64 ) trees_converted[class_idx] += 1 shape = (n_samples, n_estimators, outdim) tree_vars = create_vars( self.scip_model, shape=shape, vtype="C", lb=None, ub=None, name_prefix="tree" ) return trees, tree_vars def get_error(self, eps=None): """ Returns error in SCIP's solution with respect to the actual output of the trained predictor Parameters ---------- eps : float or int or None, optional The maximum allowed tolerance for a mismatch between the actual predictive model and SCIP. If the error is larger than eps an appropriate warning is printed Returns ------- error: np.ndarray The absolute values of the difference between SCIP's solution and the trained ML model's output given the input as defined by SCIP. The matrix is the same dimension as the output of the trained predictor. Using sklearn / pyscipopt, the absolute difference between model.predict(input) and scip.getVal(output). Raises ------ NoSolution If SCIP has no solution (either was not optimized or is infeasible). """ if self._has_solution: if not is_classifier(self.predictor): lgb_output_values = self.predictor.predict(self.input_values).reshape( self.input.shape[0], self.output.shape[-1] ) else: lgb_class_prediction = self.predictor.predict(self.input_values) lgb_output_values = np.zeros((self.input.shape[0], self.output.shape[-1])) for i, class_pred in enumerate(lgb_class_prediction): lgb_output_values[i][class_pred] = 1 scip_output_values = self.output_values error = np.abs(lgb_output_values - scip_output_values) max_error = np.max(error) if eps is not None and max_error > eps: print( f"SCIP output values of ML model {self.predictor} have larger than max error {max_error} > {eps}" ) return error raise NoSolution() # Path: src/pyscipopt_ml/lightgbm/lightgbm_constr.py import numpy as np from ..modelling import AbstractPredictorConstr from ..modelling.gradient_boosting import aggregated_estimator_formulation from .lgbgetter import LGBgetter """Module for formulating a LightGBM gradient boosting or random forest regressor / classifier into a PySCIPOpt Model.""" def add_lgbregressor_constr( scip_model, lightgbm_regressor, input_vars,
output_vars=None,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Yanyutin753/CowAndPandoraNext # Path: bridge/context.py class ContextType(Enum): TEXT = 1 # 文本消息 VOICE = 2 # 音频消息 IMAGE = 3 # 图片消息 IMAGE_CREATE = 10 # 创建图片命令 JOIN_GROUP = 20 # 加入群聊 PATPAT = 21 # 拍了拍 def __str__(self): return self.name # Path: bridge/reply.py class Reply: def __init__(self, type: ReplyType = None, content=None): self.type = type self.content = content def __str__(self): return "Reply(type={}, content={})".format(self.type, self.content) # Path: bridge/reply.py class ReplyType(Enum): TEXT = 1 # 文本 VOICE = 2 # 音频文件 IMAGE = 3 # 图片文件 IMAGE_URL = 4 # 图片URL INFO = 9 ERROR = 10 def __str__(self): return self.name # Path: config.py class Config(dict): def __init__(self, d=None): def __getitem__(self, key): def __setitem__(self, key, value): def get(self, key, default=None): def get_user_data(self, user) -> dict: def load_user_datas(self): def save_user_datas(self): def load_config(): def get_root(): def read_file(path): def conf(): def get_appdata_dir(): def subscribe_msg(): def write_plugin_config(pconf: dict): def pconf(plugin_name: str) -> dict: # Path: plugins/linkai/midjourney.py class MJBot: def __init__(self, config): self.base_url = conf().get("linkai_api_base", "https://api.link-ai.chat") + "/v1/img/midjourney" self.headers = {"Authorization": "Bearer " + conf().get("linkai_api_key")} self.config = config self.tasks = {} self.temp_dict = {} self.tasks_lock = threading.Lock() self.event_loop = asyncio.new_event_loop() def judge_mj_task_type(self, e_context: EventContext): """ 判断MJ任务的类型 :param e_context: 上下文 :return: 任务类型枚举 """ if not self.config: return None trigger_prefix = conf().get("plugin_trigger_prefix", "$") context = e_context['context'] if context.type == ContextType.TEXT: cmd_list = context.content.split(maxsplit=1) if cmd_list[0].lower() == f"{trigger_prefix}mj": return TaskType.GENERATE elif cmd_list[0].lower() == f"{trigger_prefix}mju": return TaskType.UPSCALE elif cmd_list[0].lower() == f"{trigger_prefix}mjv": return TaskType.VARIATION elif cmd_list[0].lower() == f"{trigger_prefix}mjr": return TaskType.RESET elif context.type == ContextType.IMAGE_CREATE and self.config.get("use_image_create_prefix"): return TaskType.GENERATE def process_mj_task(self, mj_type: TaskType, e_context: EventContext): """ 处理mj任务 :param mj_type: mj任务类型 :param e_context: 对话上下文 """ context = e_context['context'] session_id = context["session_id"] cmd = context.content.split(maxsplit=1) if len(cmd) == 1 and context.type == ContextType.TEXT: # midjourney 帮助指令 self._set_reply_text(self.get_help_text(verbose=True), e_context, level=ReplyType.INFO) return if len(cmd) == 2 and (cmd[1] == "open" or cmd[1] == "close"): # midjourney 开关指令 is_open = True tips_text = "开启" if cmd[1] == "close": tips_text = "关闭" is_open = False self.config["enabled"] = is_open self._set_reply_text(f"Midjourney绘画已{tips_text}", e_context, level=ReplyType.INFO) return if not self.config.get("enabled"): logger.warn("Midjourney绘画未开启,请查看 plugins/linkai/config.json 中的配置") self._set_reply_text(f"Midjourney绘画未开启", e_context, level=ReplyType.INFO) return if not self._check_rate_limit(session_id, e_context): logger.warn("[MJ] midjourney task exceed rate limit") return if mj_type == TaskType.GENERATE: if context.type == ContextType.IMAGE_CREATE: raw_prompt = context.content else: # 图片生成 raw_prompt = cmd[1] reply = self.generate(raw_prompt, session_id, e_context) e_context['reply'] = reply e_context.action = EventAction.BREAK_PASS return elif mj_type == TaskType.UPSCALE or mj_type == TaskType.VARIATION: # 图片放大/变换 clist = cmd[1].split() if len(clist) < 2: self._set_reply_text(f"{cmd[0]} 命令缺少参数", e_context) return img_id = clist[0] index = int(clist[1]) if index < 1 or index > 4: self._set_reply_text(f"图片序号 {index} 错误,应在 1 至 4 之间", e_context) return key = f"{str(mj_type)}_{img_id}_{index}" if self.temp_dict.get(key): self._set_reply_text(f"第 {index} 张图片已经{task_name_mapping.get(str(mj_type))}过了", e_context) return # 执行图片放大/变换操作 reply = self.do_operate(mj_type, session_id, img_id, e_context, index) e_context['reply'] = reply e_context.action = EventAction.BREAK_PASS return elif mj_type == TaskType.RESET: # 图片重新生成 clist = cmd[1].split() if len(clist) < 1: self._set_reply_text(f"{cmd[0]} 命令缺少参数", e_context) return img_id = clist[0] # 图片重新生成 reply = self.do_operate(mj_type, session_id, img_id, e_context) e_context['reply'] = reply e_context.action = EventAction.BREAK_PASS else: self._set_reply_text(f"暂不支持该命令", e_context) def generate(self, prompt: str, user_id: str, e_context: EventContext) -> Reply: """ 图片生成 :param prompt: 提示词 :param user_id: 用户id :param e_context: 对话上下文 :return: 任务ID """ logger.info(f"[MJ] image generate, prompt={prompt}") mode = self._fetch_mode(prompt) body = {"prompt": prompt, "mode": mode, "auto_translate": self.config.get("auto_translate")} if not self.config.get("img_proxy"): body["img_proxy"] = False res = requests.post(url=self.base_url + "/generate", json=body, headers=self.headers, timeout=(5, 40)) if res.status_code == 200: res = res.json() logger.debug(f"[MJ] image generate, res={res}") if res.get("code") == 200: task_id = res.get("data").get("task_id") real_prompt = res.get("data").get("real_prompt") if mode == TaskMode.RELAX.value: time_str = "1~10分钟" else: time_str = "1分钟" content = f"🚀您的作品将在{time_str}左右完成,请耐心等待\n- - - - - - - - -\n" if real_prompt: content += f"初始prompt: {prompt}\n转换后prompt: {real_prompt}" else: content += f"prompt: {prompt}" reply = Reply(ReplyType.INFO, content) task = MJTask(id=task_id, status=Status.PENDING, raw_prompt=prompt, user_id=user_id, task_type=TaskType.GENERATE) # put to memory dict self.tasks[task.id] = task # asyncio.run_coroutine_threadsafe(self.check_task(task, e_context), self.event_loop) self._do_check_task(task, e_context) return reply else: res_json = res.json() logger.error(f"[MJ] generate error, msg={res_json.get('message')}, status_code={res.status_code}") if res.status_code == INVALID_REQUEST: reply = Reply(ReplyType.ERROR, "图片生成失败,请检查提示词参数或内容") else: reply = Reply(ReplyType.ERROR, "图片生成失败,请稍后再试") return reply def do_operate(self, task_type: TaskType, user_id: str, img_id: str, e_context: EventContext, index: int = None) -> Reply: logger.info(f"[MJ] image operate, task_type={task_type}, img_id={img_id}, index={index}") body = {"type": task_type.name, "img_id": img_id} if index: body["index"] = index if not self.config.get("img_proxy"): body["img_proxy"] = False res = requests.post(url=self.base_url + "/operate", json=body, headers=self.headers, timeout=(5, 40)) logger.debug(res) if res.status_code == 200: res = res.json() if res.get("code") == 200: task_id = res.get("data").get("task_id") logger.info(f"[MJ] image operate processing, task_id={task_id}") icon_map = {TaskType.UPSCALE: "🔎", TaskType.VARIATION: "🪄", TaskType.RESET: "🔄"} content = f"{icon_map.get(task_type)}图片正在{task_name_mapping.get(task_type.name)}中,请耐心等待" reply = Reply(ReplyType.INFO, content) task = MJTask(id=task_id, status=Status.PENDING, user_id=user_id, task_type=task_type) # put to memory dict self.tasks[task.id] = task key = f"{task_type.name}_{img_id}_{index}" self.temp_dict[key] = True # asyncio.run_coroutine_threadsafe(self.check_task(task, e_context), self.event_loop) self._do_check_task(task, e_context) return reply else: error_msg = "" if res.status_code == NOT_FOUND_ORIGIN_IMAGE: error_msg = "请输入正确的图片ID" res_json = res.json() logger.error(f"[MJ] operate error, msg={res_json.get('message')}, status_code={res.status_code}") reply = Reply(ReplyType.ERROR, error_msg or "图片生成失败,请稍后再试") return reply def check_task_sync(self, task: MJTask, e_context: EventContext): logger.debug(f"[MJ] start check task status, {task}") max_retry_times = 90 while max_retry_times > 0: time.sleep(10) url = f"{self.base_url}/tasks/{task.id}" try: res = requests.get(url, headers=self.headers, timeout=8) if res.status_code == 200: res_json = res.json() logger.debug(f"[MJ] task check res sync, task_id={task.id}, status={res.status_code}, " f"data={res_json.get('data')}, thread={threading.current_thread().name}") if res_json.get("data") and res_json.get("data").get("status") == Status.FINISHED.name: # process success res if self.tasks.get(task.id): self.tasks[task.id].status = Status.FINISHED self._process_success_task(task, res_json.get("data"), e_context) return max_retry_times -= 1 else: res_json = res.json() logger.warn(f"[MJ] image check error, status_code={res.status_code}, res={res_json}") max_retry_times -= 20 except Exception as e: max_retry_times -= 20 logger.warn(e) logger.warn("[MJ] end from poll") if self.tasks.get(task.id): self.tasks[task.id].status = Status.EXPIRED def _do_check_task(self, task: MJTask, e_context: EventContext): threading.Thread(target=self.check_task_sync, args=(task, e_context)).start() def _process_success_task(self, task: MJTask, res: dict, e_context: EventContext): """ 处理任务成功的结果 :param task: MJ任务 :param res: 请求结果 :param e_context: 对话上下文 """ # channel send img task.status = Status.FINISHED task.img_id = res.get("img_id") task.img_url = res.get("img_url") logger.info(f"[MJ] task success, task_id={task.id}, img_id={task.img_id}, img_url={task.img_url}") # send img reply = Reply(ReplyType.IMAGE_URL, task.img_url) channel = e_context["channel"] _send(channel, reply, e_context["context"]) # send info trigger_prefix = conf().get("plugin_trigger_prefix", "$") text = "" if task.task_type == TaskType.GENERATE or task.task_type == TaskType.VARIATION or task.task_type == TaskType.RESET: text = f"🎨绘画完成!\n" if task.raw_prompt: text += f"prompt: {task.raw_prompt}\n" text += f"- - - - - - - - -\n图片ID: {task.img_id}" text += f"\n\n🔎使用 {trigger_prefix}mju 命令放大图片\n" text += f"例如:\n{trigger_prefix}mju {task.img_id} 1" text += f"\n\n🪄使用 {trigger_prefix}mjv 命令变换图片\n" text += f"例如:\n{trigger_prefix}mjv {task.img_id} 1" text += f"\n\n🔄使用 {trigger_prefix}mjr 命令重新生成图片\n" text += f"例如:\n{trigger_prefix}mjr {task.img_id}" reply = Reply(ReplyType.INFO, text) _send(channel, reply, e_context["context"]) self._print_tasks() return def _check_rate_limit(self, user_id: str, e_context: EventContext) -> bool: """ midjourney任务限流控制 :param user_id: 用户id :param e_context: 对话上下文 :return: 任务是否能够生成, True:可以生成, False: 被限流 """ tasks = self.find_tasks_by_user_id(user_id) task_count = len([t for t in tasks if t.status == Status.PENDING]) if task_count >= self.config.get("max_tasks_per_user"): reply = Reply(ReplyType.INFO, "您的Midjourney作图任务数已达上限,请稍后再试") e_context["reply"] = reply e_context.action = EventAction.BREAK_PASS return False task_count = len([t for t in self.tasks.values() if t.status == Status.PENDING]) if task_count >= self.config.get("max_tasks"): reply = Reply(ReplyType.INFO, "Midjourney作图任务数已达上限,请稍后再试") e_context["reply"] = reply e_context.action = EventAction.BREAK_PASS return False return True def _fetch_mode(self, prompt) -> str: mode = self.config.get("mode") if "--relax" in prompt or mode == TaskMode.RELAX.value: return TaskMode.RELAX.value return mode or TaskMode.FAST.value def _run_loop(self, loop: asyncio.BaseEventLoop): """ 运行事件循环,用于轮询任务的线程 :param loop: 事件循环 """ loop.run_forever() loop.stop() def _print_tasks(self): for id in self.tasks: logger.debug(f"[MJ] current task: {self.tasks[id]}") def _set_reply_text(self, content: str, e_context: EventContext, level: ReplyType = ReplyType.ERROR): """ 设置回复文本 :param content: 回复内容 :param e_context: 对话上下文 :param level: 回复等级 """ reply = Reply(level, content) e_context["reply"] = reply e_context.action = EventAction.BREAK_PASS def get_help_text(self, verbose=False, **kwargs): trigger_prefix = conf().get("plugin_trigger_prefix", "$") help_text = "🎨利用Midjourney进行画图\n\n" if not verbose: return help_text help_text += f" - 生成: {trigger_prefix}mj 描述词1, 描述词2.. \n - 放大: {trigger_prefix}mju 图片ID 图片序号\n - 变换: mjv 图片ID 图片序号\n - 重置: mjr 图片ID" help_text += f"\n\n例如:\n\"{trigger_prefix}mj a little cat, white --ar 9:16\"\n\"{trigger_prefix}mju 11055927171882 2\"" help_text += f"\n\"{trigger_prefix}mjv 11055927171882 2\"\n\"{trigger_prefix}mjr 11055927171882\"" return help_text def find_tasks_by_user_id(self, user_id) -> list: result = [] with self.tasks_lock: now = time.time() for task in self.tasks.values(): if task.status == Status.PENDING and now > task.expiry_time: task.status = Status.EXPIRED logger.info(f"[MJ] {task} expired") if task.user_id == user_id: result.append(task) return result # Path: bridge/bridge.py class Bridge(object): def __init__(self): def get_bot(self, typename): def get_bot_type(self, typename): def fetch_reply_content(self, query, context: Context) -> Reply: def fetch_voice_to_text(self, voiceFile) -> Reply: def fetch_text_to_voice(self, text) -> Reply: def fetch_translate(self, text, from_lang="", to_lang="en") -> Reply: def reset_bot(self): # Path: plugins/linkai/linkai.py import plugins from bridge.context import ContextType from bridge.reply import Reply, ReplyType from config import global_config from plugins import * from .midjourney import MJBot from bridge import bridge @plugins.register( name="linkai", desc="A plugin that supports knowledge base and midjourney drawing.", version="0.1.0", author="https://link-ai.tech", ) class LinkAI(Plugin): def __init__(self): super().__init__() self.handlers[Event.ON_HANDLE_CONTEXT] = self.on_handle_context self.config = super().load_config() if self.config: self.mj_bot = MJBot(self.config.get("midjourney")) logger.info("[LinkAI] inited")
def on_handle_context(self, e_context: EventContext):
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: nerdslab/bams # Path: bams/data/dataset.py class Dataset(CachedDataset): r"""Dataset for holding time series data, with input and target features. Caching is possible if you need to avoid processing the data every time you run the script. The cache file will be saved in `cache_path` and will be loaded if `cache` is set to True. Be careful when using the cache, as it will not be updated if the data changes. Only use once the data processing pipeline is finalized. Deleteing the cache file will force the data to be processed again. Args: input_feats (np.ndarray): Array of shape (num_sequences, sequence_len, num_feats). Use np.nan for missing values or padding frames. target_feats (np.ndarray): Array of shape (num_sequences, sequence_len, num_feats). Use np.nan for missing values or padding frames. ignore_frames (np.ndarray): Array of shape (num_sequences, sequence_len). Use True for missing values or padding frames. hoa_bins (int): Number of bins for the histograms of actions. hoa_window (int): Window size for the histograms of actions. cache_path (str): Path to the cache file. cache (bool): Whether to use the cache file. """ def __init__( self, input_feats, target_feats, ignore_frames, *, hoa_bins=32, hoa_window=30, cache_path=None, cache=False, ): self.input_feats = input_feats self.target_feats = target_feats self.ignore_frames = ignore_frames assert hoa_bins <= 255, "n_bins must be less than 256, got {}.".format(hoa_bins) self.hoa_bins = hoa_bins assert hoa_window <= 255, "hoa_window must be less than 256, got {}.".format( hoa_window ) self.hoa_window = hoa_window cache_path = "./data/tmp" if cache_path is None else cache_path cache_path = cache_path + f"_bins{self.hoa_bins}.pkl" super().__init__(cache_path, cache) @staticmethod def cache_is_available(cache_path, hoa_bins): return os.path.exists(cache_path + f"_bins{hoa_bins}.pkl") def process(self): # quantize the target features in order to create the histogram of actions bins = np.zeros( (self.hoa_bins - 1, self.target_feats.shape[-1]), dtype=np.float32 ) quantized_target_feats = np.zeros_like(self.target_feats, dtype=np.uint8) # pre-compute histogram of actions for target features num_feats = self.target_feats.shape[2] for i in tqdm(range(num_feats)): # find the range of values (low, high) for each feature feat = self.target_feats[..., i].flatten() feat = feat[~np.isnan(feat)] feat = feat[np.abs(feat) > 0.1] low, high = np.nanpercentile(feat, [0.5, 99.5]) # compute histogram bins[..., i] = np.linspace(low, high, self.hoa_bins - 1) quantized_target_feats[..., i] = np.digitize( self.target_feats[..., i], bins[..., i] ).astype(np.uint8) # normalize self.target_feats[..., i] = self.target_feats[..., i] / np.max( [np.abs(low), np.abs(high)] ) # normalize input features for i in range(self.input_feats.shape[2]): # z-score self.input_feats[..., i] = self.input_feats[..., i] / np.nanmax( np.abs(self.input_feats[..., i]) ) data = dict( input_feats=self.input_feats, target_feats=self.target_feats, quantized_target_feats=quantized_target_feats, ignore_frames=self.ignore_frames, ) return data def __getitem__(self, item): # make histogram of actions quantized_target_feat = self.quantized_target_feats[ item ] # shape (sequence_len, num_feats) ignore_frames = self.ignore_frames[item] # shape (sequence_len,) rows, cols = np.indices(quantized_target_feat.shape) histogram_of_actions = np.zeros( (*quantized_target_feat.shape, self.hoa_bins), dtype=np.uint8 ) weights = np.zeros_like(self.ignore_frames[item], dtype=np.float32) for i in range(1, self.hoa_window + 1): histogram_of_actions[rows[:-i], cols[:-i], quantized_target_feat[:-i]] += 1 weights[:-i] += 1 - self.ignore_frames[item][i:].astype(np.float32) histogram_of_actions = histogram_of_actions / self.hoa_window weights = weights / self.hoa_window ignore_frames[: -self.hoa_window] = True data = dict( input=self.input_feats[item], target_hist=histogram_of_actions, ignore_frames=self.ignore_frames[item], ignore_weights=weights, ) return data def __len__(self): return self.input_feats.shape[0] @cached_property def input_size(self): return self.input_feats.shape[2] @cached_property def target_size(self): return self.target_feats.shape[2] # Path: bams/data/utils.py def diff(vec, axis=-1, h=1, padding="edge"): assert padding in [ "zero", "edge", ], "Padding must be one of ['zero', 'edge']," " got {}.".format(padding) # move the target axis to the end vec = np.moveaxis(vec, axis, -1) # compute diff dvec = np.zeros_like(vec) dvec[..., h:] = vec[..., h:] - vec[..., :-h] # take care of padding the beginning if padding == "edge": for i in range(h): dvec[..., i] = dvec[..., h + 1] # move the axis back to its original position dvec = np.moveaxis(dvec, -1, axis) return dvec # Path: bams/data/utils.py def to_polar_coordinates(vec): r = np.linalg.norm(vec, axis=-1) theta = np.arctan2(vec[..., 1], vec[..., 0]) return r, theta # Path: bams/data/utils.py def angle_clip(theta): return np.mod(theta + np.pi, 2 * np.pi) - np.pi # Path: bams/models/bams.py class BAMS(nn.Module): r"""BAMS model. Args: input_size (int): Number of input features. predictor (dict): Parameters for the predictor MLP. encoders (dict[dict]): A dictionnary of encoders, where each key is the name of the encoder, and each value is a dictionnary of parameters for the encoder. Each encoder is a TemporalConvNet. """ def __init__( self, input_size, *, predictor=None, **encoder_kwargs, ): super().__init__() self.input_size = input_size self.representation_size = 0 encoders = dict() for name, tcn_kwargs in encoder_kwargs.items(): assert "num_inputs" not in tcn_kwargs encoders[name] = TemporalConvNet(num_inputs=input_size, **tcn_kwargs) self.representation_size += tcn_kwargs["num_channels"][-1] self.encoders = torch.nn.ModuleDict(encoders) # hoa predictor (first layer is a lazy linear layer) self.predictor = MLP(**predictor) # byol predictors byol_predictors = dict() for name, tcn_kwargs in encoder_kwargs.items(): emb_dim = tcn_kwargs["num_channels"][-1] byol_predictors[name] = nn.Sequential( nn.Linear(emb_dim, emb_dim * 4, bias=False), nn.BatchNorm1d(emb_dim * 4, eps=1e-5, momentum=0.1), nn.ReLU(inplace=True), nn.Linear(emb_dim * 4, emb_dim, bias=True), ) self.byol_predictors = torch.nn.ModuleDict(byol_predictors) def forward(self, x): # input shape: (B: batch_size, L:sequence_length, N: num_feats) # forward through TCNs embs = OrderedDict() byol_preds = OrderedDict() for name, encoder in self.encoders.items(): embs[name] = encoder(x) # (B, L, N) flattened_emb = embs[name].flatten(0, 1) # (B*L, N) pred_emb = self.byol_predictors[name](flattened_emb) byol_preds[name] = pred_emb.reshape(embs[name].shape) # concatenate embeddings h = torch.cat(list(embs.values()), dim=2) # (B, L, N) # concatenate input and embeddings hx = torch.cat([h, x], dim=2) # prediction hoa_pred = self.predictor(hx) return embs, hoa_pred, byol_preds def __repr__(self) -> str: args = [ f" {name}: {encoder.__class__.__name__}" f" (receptive field: {encoder.receptive_field}," f" feature dim: {encoder.feat_dim})" for name, encoder in self.encoders.items() ] args.append( f" predictor: {self.predictor.__class__.__name__}" f" (input size: {self.input_size}," f" output size: {self.predictor.out_dim})" ) return "{}([\n{}\n])".format(self.__class__.__name__, ",\n".join(args)) # Path: bams/hoa_loss.py class HoALoss(nn.Module): def __init__(self, hoa_bins=32, skip_frames=60): super().__init__() self.hoa_bins = hoa_bins self.skip_frames = skip_frames def forward(self, target, pred, ignore_weights=None): r""" target: (B, L, N) pred: (B, L, N) ignore_weights: (B, L)""" n = target.size(2) # reshape target = target.reshape(-1, self.hoa_bins) pred = pred.reshape(-1, self.hoa_bins) # make each histogram sum to 1 pred = torch.softmax(pred, dim=1) # compute EMD using Mallow's distance loss = earth_mover_distance(target, pred) # ignore first `self.skip_frames` frames ignore_weights[:, :self.skip_frames] = 1.0 ignore_weights = ignore_weights.unsqueeze(2).repeat((1, 1, n, 1)) weights = 1 - ignore_weights.view(-1) loss = torch.sum(loss * weights) / torch.sum(weights) return loss # Path: mouse_triplets.py import os import numpy as np import argparse import torch import torch.nn.functional as F from datetime import datetime from torch import optim from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter from tqdm import tqdm from bams.data import Dataset from bams.data.utils import diff, to_polar_coordinates, angle_clip from bams.models import BAMS from bams import HoALoss parser.add_argument("--num_workers", type=int, default=16) parser.add_argument("--epochs", type=int, default=500) parser.add_argument("--lr", type=float, default=1e-3) parser.add_argument("--weight_decay", type=float, default=4e-5) parser.add_argument("--log_every_step", type=int, default=50) parser.add_argument("--ckpt_path", type=str, default=None) args = parser.parse_args() if args.job == "train": train(args) elif args.job == "compute_representations": compute_representations(args) def train(args): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # dataset if not Dataset.cache_is_available(args.cache_path, args.hoa_bins): print("Processing data...") keypoints, split_mask, batch = load_mice_triplet(args.data_root) input_feats, target_feats, ignore_frames = mouse_feature_extractor(keypoints) else: print("No need to process data") input_feats = target_feats = ignore_frames = None dataset = Dataset( input_feats=input_feats, target_feats=target_feats, ignore_frames=ignore_frames, cache_path=args.cache_path, cache=True, hoa_bins=args.hoa_bins, hoa_window=30, ) print("Number of sequences:", len(dataset)) # prepare dataloaders train_loader = DataLoader( dataset, batch_size=args.batch_size, shuffle=True, drop_last=True, num_workers=args.num_workers, pin_memory=True, ) # build model model = BAMS( input_size=dataset.input_size, short_term=dict(num_channels=(64, 64, 32, 32), kernel_size=3), long_term=dict(num_channels=(64, 64, 64, 32, 32), kernel_size=3, dilation=4), predictor=dict( hidden_layers=(-1, 256, 512, 512, dataset.target_size * args.hoa_bins), ), # frame rate = 30, 6 steps = 200ms ).to(device) model_name = f"bams-mouse-triplet-{datetime.now().strftime('%Y-%m-%d-%H-%M-%S')}" writer = SummaryWriter("runs/" + model_name) main_params = [p for name, p in model.named_parameters() if "byol" not in name] byol_params = list(model.byol_predictors.parameters()) optimizer = optim.AdamW( [{"params": main_params}, {"params": byol_params, "lr": args.lr * 10}], lr=args.lr, weight_decay=args.weight_decay, ) scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[200], gamma=0.1) criterion = HoALoss(hoa_bins=args.hoa_bins, skip_frames=60) step = 0 for epoch in tqdm(range(1, args.epochs + 1)): step = train_loop( model, device, train_loader, optimizer, criterion, writer, step, args.log_every_step, ) scheduler.step() if epoch % 100 == 0: torch.save(model.state_dict(), model_name + ".pt") def compute_representations(args): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") keypoints, split_mask, batch = load_mice_triplet(args.data_root) # dataset if not Dataset.cache_is_available(args.cache_path, args.hoa_bins): print("Processing data...") input_feats, target_feats, ignore_frames = mouse_feature_extractor(keypoints) else: print("No need to process data") input_feats = target_feats = ignore_frames = None # only use dataset = Dataset( input_feats=input_feats, target_feats=target_feats, ignore_frames=ignore_frames, cache_path=args.cache_path, hoa_bins=args.hoa_bins, hoa_window=30, ) print("Number of sequences:", len(dataset)) # build model model = BAMS( input_size=dataset.input_size,
short_term=dict(num_channels=(64, 64, 32, 32), kernel_size=3),
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: camenduru/MotionDirector-hf # Path: models/unet_3d_blocks.py class CrossAttnDownBlock3D(nn.Module): def __init__( self, in_channels: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, attn_num_head_channels=1, cross_attention_dim=1280, output_scale_factor=1.0, downsample_padding=1, add_downsample=True, dual_cross_attention=False, use_linear_projection=False, only_cross_attention=False, upcast_attention=False, ): super().__init__() resnets = [] attentions = [] temp_attentions = [] temp_convs = [] self.gradient_checkpointing = False self.has_cross_attention = True self.attn_num_head_channels = attn_num_head_channels for i in range(num_layers): in_channels = in_channels if i == 0 else out_channels resnets.append( ResnetBlock2D( in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) temp_convs.append( TemporalConvLayer( out_channels, out_channels, dropout=0.1 ) ) attentions.append( Transformer2DModel( out_channels // attn_num_head_channels, attn_num_head_channels, in_channels=out_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, ) ) temp_attentions.append( TransformerTemporalModel( out_channels // attn_num_head_channels, attn_num_head_channels, in_channels=out_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, ) ) self.resnets = nn.ModuleList(resnets) self.temp_convs = nn.ModuleList(temp_convs) self.attentions = nn.ModuleList(attentions) self.temp_attentions = nn.ModuleList(temp_attentions) if add_downsample: self.downsamplers = nn.ModuleList( [ Downsample2D( out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" ) ] ) else: self.downsamplers = None def forward( self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, num_frames=1, cross_attention_kwargs=None, ): # TODO(Patrick, William) - attention mask is not used output_states = () for resnet, temp_conv, attn, temp_attn in zip( self.resnets, self.temp_convs, self.attentions, self.temp_attentions ): if self.gradient_checkpointing: hidden_states = cross_attn_g_c( attn, temp_attn, resnet, temp_conv, hidden_states, encoder_hidden_states, cross_attention_kwargs, temb, num_frames, inverse_temp=True ) else: hidden_states = resnet(hidden_states, temb) if num_frames > 1: hidden_states = temp_conv(hidden_states, num_frames=num_frames) hidden_states = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, ).sample if num_frames > 1: hidden_states = temp_attn(hidden_states, num_frames=num_frames).sample output_states += (hidden_states,) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) output_states += (hidden_states,) return hidden_states, output_states # Path: models/unet_3d_blocks.py class CrossAttnUpBlock3D(nn.Module): def __init__( self, in_channels: int, out_channels: int, prev_output_channel: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, attn_num_head_channels=1, cross_attention_dim=1280, output_scale_factor=1.0, add_upsample=True, dual_cross_attention=False, use_linear_projection=False, only_cross_attention=False, upcast_attention=False, ): super().__init__() resnets = [] temp_convs = [] attentions = [] temp_attentions = [] self.gradient_checkpointing = False self.has_cross_attention = True self.attn_num_head_channels = attn_num_head_channels for i in range(num_layers): res_skip_channels = in_channels if (i == num_layers - 1) else out_channels resnet_in_channels = prev_output_channel if i == 0 else out_channels resnets.append( ResnetBlock2D( in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) temp_convs.append( TemporalConvLayer( out_channels, out_channels, dropout=0.1 ) ) attentions.append( Transformer2DModel( out_channels // attn_num_head_channels, attn_num_head_channels, in_channels=out_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, ) ) temp_attentions.append( TransformerTemporalModel( out_channels // attn_num_head_channels, attn_num_head_channels, in_channels=out_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, ) ) self.resnets = nn.ModuleList(resnets) self.temp_convs = nn.ModuleList(temp_convs) self.attentions = nn.ModuleList(attentions) self.temp_attentions = nn.ModuleList(temp_attentions) if add_upsample: self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) else: self.upsamplers = None def forward( self, hidden_states, res_hidden_states_tuple, temb=None, encoder_hidden_states=None, upsample_size=None, attention_mask=None, num_frames=1, cross_attention_kwargs=None, ): # TODO(Patrick, William) - attention mask is not used for resnet, temp_conv, attn, temp_attn in zip( self.resnets, self.temp_convs, self.attentions, self.temp_attentions ): # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) if self.gradient_checkpointing: hidden_states = cross_attn_g_c( attn, temp_attn, resnet, temp_conv, hidden_states, encoder_hidden_states, cross_attention_kwargs, temb, num_frames, inverse_temp=True ) else: hidden_states = resnet(hidden_states, temb) if num_frames > 1: hidden_states = temp_conv(hidden_states, num_frames=num_frames) hidden_states = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, ).sample if num_frames > 1: hidden_states = temp_attn(hidden_states, num_frames=num_frames).sample if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states, upsample_size) return hidden_states # Path: models/unet_3d_blocks.py class DownBlock3D(nn.Module): def __init__( self, in_channels: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, output_scale_factor=1.0, add_downsample=True, downsample_padding=1, ): super().__init__() resnets = [] temp_convs = [] self.gradient_checkpointing = False for i in range(num_layers): in_channels = in_channels if i == 0 else out_channels resnets.append( ResnetBlock2D( in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) temp_convs.append( TemporalConvLayer( out_channels, out_channels, dropout=0.1 ) ) self.resnets = nn.ModuleList(resnets) self.temp_convs = nn.ModuleList(temp_convs) if add_downsample: self.downsamplers = nn.ModuleList( [ Downsample2D( out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" ) ] ) else: self.downsamplers = None def forward(self, hidden_states, temb=None, num_frames=1): output_states = () for resnet, temp_conv in zip(self.resnets, self.temp_convs): if self.gradient_checkpointing: hidden_states = up_down_g_c(resnet, temp_conv, hidden_states, temb, num_frames) else: hidden_states = resnet(hidden_states, temb) if num_frames > 1: hidden_states = temp_conv(hidden_states, num_frames=num_frames) output_states += (hidden_states,) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) output_states += (hidden_states,) return hidden_states, output_states # Path: models/unet_3d_blocks.py class UNetMidBlock3DCrossAttn(nn.Module): def __init__( self, in_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, attn_num_head_channels=1, output_scale_factor=1.0, cross_attention_dim=1280, dual_cross_attention=False, use_linear_projection=True, upcast_attention=False, ): super().__init__() self.gradient_checkpointing = False self.has_cross_attention = True self.attn_num_head_channels = attn_num_head_channels resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) # there is always at least one resnet resnets = [ ResnetBlock2D( in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ] temp_convs = [ TemporalConvLayer( in_channels, in_channels, dropout=0.1 ) ] attentions = [] temp_attentions = [] for _ in range(num_layers): attentions.append( Transformer2DModel( in_channels // attn_num_head_channels, attn_num_head_channels, in_channels=in_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention, ) ) temp_attentions.append( TransformerTemporalModel( in_channels // attn_num_head_channels, attn_num_head_channels, in_channels=in_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, ) ) resnets.append( ResnetBlock2D( in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) temp_convs.append( TemporalConvLayer( in_channels, in_channels, dropout=0.1 ) ) self.resnets = nn.ModuleList(resnets) self.temp_convs = nn.ModuleList(temp_convs) self.attentions = nn.ModuleList(attentions) self.temp_attentions = nn.ModuleList(temp_attentions) def forward( self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, num_frames=1, cross_attention_kwargs=None, ): if self.gradient_checkpointing: hidden_states = up_down_g_c( self.resnets[0], self.temp_convs[0], hidden_states, temb, num_frames ) else: hidden_states = self.resnets[0](hidden_states, temb) hidden_states = self.temp_convs[0](hidden_states, num_frames=num_frames) for attn, temp_attn, resnet, temp_conv in zip( self.attentions, self.temp_attentions, self.resnets[1:], self.temp_convs[1:] ): if self.gradient_checkpointing: hidden_states = cross_attn_g_c( attn, temp_attn, resnet, temp_conv, hidden_states, encoder_hidden_states, cross_attention_kwargs, temb, num_frames ) else: hidden_states = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, ).sample if num_frames > 1: hidden_states = temp_attn(hidden_states, num_frames=num_frames).sample hidden_states = resnet(hidden_states, temb) if num_frames > 1: hidden_states = temp_conv(hidden_states, num_frames=num_frames) return hidden_states # Path: models/unet_3d_blocks.py class UpBlock3D(nn.Module): def __init__( self, in_channels: int, prev_output_channel: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, output_scale_factor=1.0, add_upsample=True, ): super().__init__() resnets = [] temp_convs = [] self.gradient_checkpointing = False for i in range(num_layers): res_skip_channels = in_channels if (i == num_layers - 1) else out_channels resnet_in_channels = prev_output_channel if i == 0 else out_channels resnets.append( ResnetBlock2D( in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) temp_convs.append( TemporalConvLayer( out_channels, out_channels, dropout=0.1 ) ) self.resnets = nn.ModuleList(resnets) self.temp_convs = nn.ModuleList(temp_convs) if add_upsample: self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) else: self.upsamplers = None def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, num_frames=1): for resnet, temp_conv in zip(self.resnets, self.temp_convs): # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) if self.gradient_checkpointing: hidden_states = up_down_g_c(resnet, temp_conv, hidden_states, temb, num_frames) else: hidden_states = resnet(hidden_states, temb) if num_frames > 1: hidden_states = temp_conv(hidden_states, num_frames=num_frames) if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states, upsample_size) return hidden_states # Path: models/unet_3d_blocks.py def get_down_block( down_block_type, num_layers, in_channels, out_channels, temb_channels, add_downsample, resnet_eps, resnet_act_fn, attn_num_head_channels, resnet_groups=None, cross_attention_dim=None, downsample_padding=None, dual_cross_attention=False, use_linear_projection=True, only_cross_attention=False, upcast_attention=False, resnet_time_scale_shift="default", ): if down_block_type == "DownBlock3D": return DownBlock3D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, downsample_padding=downsample_padding, resnet_time_scale_shift=resnet_time_scale_shift, ) elif down_block_type == "CrossAttnDownBlock3D": if cross_attention_dim is None: raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D") return CrossAttnDownBlock3D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, downsample_padding=downsample_padding, cross_attention_dim=cross_attention_dim, attn_num_head_channels=attn_num_head_channels, dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift, ) raise ValueError(f"{down_block_type} does not exist.") # Path: models/unet_3d_blocks.py def get_up_block( up_block_type, num_layers, in_channels, out_channels, prev_output_channel, temb_channels, add_upsample, resnet_eps, resnet_act_fn, attn_num_head_channels, resnet_groups=None, cross_attention_dim=None, dual_cross_attention=False, use_linear_projection=True, only_cross_attention=False, upcast_attention=False, resnet_time_scale_shift="default", ): if up_block_type == "UpBlock3D": return UpBlock3D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, resnet_time_scale_shift=resnet_time_scale_shift, ) elif up_block_type == "CrossAttnUpBlock3D": if cross_attention_dim is None: raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D") return CrossAttnUpBlock3D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, cross_attention_dim=cross_attention_dim, attn_num_head_channels=attn_num_head_channels, dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift, ) raise ValueError(f"{up_block_type} does not exist.") # Path: models/unet_3d_blocks.py def transformer_g_c(transformer, sample, num_frames): sample = g_c(custom_checkpoint(transformer, mode='temp'), sample, num_frames, use_reentrant=False )['sample'] return sample # Path: models/unet_3d_condition.py from dataclasses import dataclass from typing import Any, Dict, List, Optional, Tuple, Union from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.utils import BaseOutput, logging from diffusers.models.embeddings import TimestepEmbedding, Timesteps from diffusers.models.modeling_utils import ModelMixin from diffusers.models.transformer_temporal import TransformerTemporalModel from .unet_3d_blocks import ( CrossAttnDownBlock3D, CrossAttnUpBlock3D, DownBlock3D, UNetMidBlock3DCrossAttn, UpBlock3D, get_down_block, get_up_block, transformer_g_c ) import torch import torch.nn as nn import torch.utils.checkpoint # Copyright 2023 Alibaba DAMO-VILAB and The HuggingFace Team. All rights reserved. # Copyright 2023 The ModelScope Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. logger = logging.get_logger(__name__) # pylint: disable=invalid-name @dataclass class UNet3DConditionOutput(BaseOutput): """ Args: sample (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`): Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model. """ sample: torch.FloatTensor class UNet3DConditionModel(ModelMixin, ConfigMixin): r""" UNet3DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep and returns sample shaped output. This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library implements for all the models (such as downloading or saving, etc.) Parameters: sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): Height and width of input/output sample. in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample.
out_channels (`int`, *optional*, defaults to 4): The number of channels in the output.
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Yingyue-L/Mamba-LLaVA # Path: llava/constants.py IMAGE_TOKEN_INDEX = -200 # Path: llava/constants.py DEFAULT_IMAGE_TOKEN = "<image>" # Path: llava/constants.py DEFAULT_IM_START_TOKEN = "<im_start>" # Path: llava/constants.py DEFAULT_IM_END_TOKEN = "<im_end>" # Path: llava/constants.py IMAGE_PLACEHOLDER = "<image-placeholder>" # Path: llava/conversation.py class SeparatorStyle(Enum): class Conversation: SINGLE = auto() TWO = auto() MPT = auto() PLAIN = auto() LLAMA_2 = auto() W, H = image.size H, W = longest_edge, shortest_edge H, W = shortest_edge, longest_edge W, H = image.size H, W = longest_edge, shortest_edge H, W = shortest_edge, longest_edge def get_prompt(self): def append_message(self, role, message): def get_images(self, return_pil=False): def expand2square(pil_img, background_color=(122, 116, 104)): def to_gradio_chatbot(self): def copy(self): def dict(self): # Path: llava/model/builder.py def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda", **kwargs): kwargs = {"device_map": device_map, **kwargs} if device != "cuda": kwargs['device_map'] = {"": device} if load_8bit: kwargs['load_in_8bit'] = True elif load_4bit: kwargs['load_in_4bit'] = True kwargs['quantization_config'] = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type='nf4' ) else: kwargs['torch_dtype'] = torch.float16 if 'llava' in model_name.lower(): # Load LLaVA model if 'lora' in model_name.lower() and model_base is None: warnings.warn('There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged.') if 'lora' in model_name.lower() and model_base is not None: lora_cfg_pretrained = AutoConfig.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) print('Loading LLaVA from base model...') model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs) token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features if model.lm_head.weight.shape[0] != token_num: model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) print('Loading additional LLaVA weights...') if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')): non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu') else: # this is probably from HF Hub from huggingface_hub import hf_hub_download def load_from_hf(repo_id, filename, subfolder=None): cache_file = hf_hub_download( repo_id=repo_id, filename=filename, subfolder=subfolder) return torch.load(cache_file, map_location='cpu') non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin') non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()} if any(k.startswith('model.model.') for k in non_lora_trainables): non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()} model.load_state_dict(non_lora_trainables, strict=False) from peft import PeftModel print('Loading LoRA weights...') model = PeftModel.from_pretrained(model, model_path) print('Merging LoRA weights...') model = model.merge_and_unload() print('Model is loaded...') elif model_base is not None: # this may be mm projector only print('Loading LLaVA from base model...') if 'mpt' in model_name.lower(): if not os.path.isfile(os.path.join(model_path, 'configuration_mpt.py')): shutil.copyfile(os.path.join(model_base, 'configuration_mpt.py'), os.path.join(model_path, 'configuration_mpt.py')) tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True) cfg_pretrained = AutoConfig.from_pretrained(model_path, trust_remote_code=True) model = LlavaMPTForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs) elif "mamba" in model_name.lower(): tokenizer = AutoTokenizer.from_pretrained("/data/yingyueli/hub/gpt-neox-20b") cfg_pretrained = AutoConfig.from_pretrained(model_path) model = LlavaMambaForCausalLM.from_pretrained(model_base, dtype=torch.float16, config=cfg_pretrained, device=device) else: tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) cfg_pretrained = AutoConfig.from_pretrained(model_path) model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs) mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu') mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()} model.load_state_dict(mm_projector_weights, strict=False) else: if 'mpt' in model_name.lower(): tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) model = LlavaMPTForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) else: tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) model = LlavaLlamaForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) else: # Load language model if model_base is not None: # PEFT model from peft import PeftModel tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, **kwargs) print(f"Loading LoRA weights from {model_path}") model = PeftModel.from_pretrained(model, model_path) print(f"Merging weights") model = model.merge_and_unload() print('Convert to FP16...') model.to(torch.float16) else: use_fast = False if 'mpt' in model_name.lower(): tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs) else: tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) image_processor = None if 'llava' in model_name.lower(): mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) if mm_use_im_patch_token: tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) if mm_use_im_start_end: tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) model.resize_token_embeddings(len(tokenizer)) vision_tower = model.get_vision_tower() if not vision_tower.is_loaded: vision_tower.load_model() vision_tower.to(device=device, dtype=torch.float16) image_processor = vision_tower.image_processor if hasattr(model.config, "max_sequence_length"): context_len = model.config.max_sequence_length else: context_len = 2048 return tokenizer, model, image_processor, context_len # Path: llava/utils.py def disable_torch_init(): """ Disable the redundant torch default initialization to accelerate model creation. """ import torch setattr(torch.nn.Linear, "reset_parameters", lambda self: None) setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None) # Path: llava/mm_utils.py def process_images(images, image_processor, model_cfg): image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None) new_images = [] if image_aspect_ratio == 'pad': for image in images: image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean)) image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] new_images.append(image) else: return image_processor(images, return_tensors='pt')['pixel_values'] if all(x.shape == new_images[0].shape for x in new_images): new_images = torch.stack(new_images, dim=0) return new_images # Path: llava/mm_utils.py def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None): prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')] def insert_separator(X, sep): return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1] input_ids = [] offset = 0 if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id: offset = 1 input_ids.append(prompt_chunks[0][0]) for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): input_ids.extend(x[offset:]) if return_tensors is not None: if return_tensors == 'pt': return torch.tensor(input_ids, dtype=torch.long) raise ValueError(f'Unsupported tensor type: {return_tensors}') return input_ids # Path: llava/mm_utils.py def get_model_name_from_path(model_path): model_path = model_path.strip("/") model_paths = model_path.split("/") if model_paths[-1].startswith('checkpoint-'): return model_paths[-2] + "_" + model_paths[-1] else: return model_paths[-1] # Path: llava/mm_utils.py class KeywordsStoppingCriteria(StoppingCriteria): def __init__(self, keywords, tokenizer, input_ids): self.keywords = keywords self.keyword_ids = [] self.max_keyword_len = 0 for keyword in keywords: cur_keyword_ids = tokenizer(keyword).input_ids if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id: cur_keyword_ids = cur_keyword_ids[1:] if len(cur_keyword_ids) > self.max_keyword_len: self.max_keyword_len = len(cur_keyword_ids) self.keyword_ids.append(torch.tensor(cur_keyword_ids)) self.tokenizer = tokenizer self.start_len = input_ids.shape[1] def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len) self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids] for keyword_id in self.keyword_ids: if (output_ids[0, -keyword_id.shape[0]:] == keyword_id).all(): return True outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0] for keyword in self.keywords: if keyword in outputs: return True return False def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: outputs = [] for i in range(output_ids.shape[0]): outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores)) return all(outputs) # Path: llava/eval/run_llava.py import argparse import torch import requests import re from llava.constants import ( IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IMAGE_PLACEHOLDER, ) from llava.conversation import conv_templates, SeparatorStyle from llava.model.builder import load_pretrained_model from llava.utils import disable_torch_init from llava.mm_utils import ( process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria, ) from PIL import Image from PIL import Image from io import BytesIO def image_parser(args): out = args.image_file.split(args.sep) return out def load_image(image_file): if image_file.startswith("http") or image_file.startswith("https"): response = requests.get(image_file) image = Image.open(BytesIO(response.content)).convert("RGB") else: image = Image.open(image_file).convert("RGB") return image def load_images(image_files): out = [] for image_file in image_files: image = load_image(image_file) out.append(image) return out def eval_model(args): # Model disable_torch_init() model_name = get_model_name_from_path(args.model_path) tokenizer, model, image_processor, context_len = load_pretrained_model( args.model_path, args.model_base, model_name ) qs = args.query image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN if IMAGE_PLACEHOLDER in qs: if model.config.mm_use_im_start_end: qs = re.sub(IMAGE_PLACEHOLDER, image_token_se, qs) else: qs = re.sub(IMAGE_PLACEHOLDER, DEFAULT_IMAGE_TOKEN, qs) else: if model.config.mm_use_im_start_end: qs = image_token_se + "\n" + qs else: qs = DEFAULT_IMAGE_TOKEN + "\n" + qs if "llama-2" in model_name.lower(): conv_mode = "llava_llama_2" elif "v1" in model_name.lower(): conv_mode = "llava_v1" elif "mpt" in model_name.lower(): conv_mode = "mpt" else: conv_mode = "llava_v0" if args.conv_mode is not None and conv_mode != args.conv_mode: print( "[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format( conv_mode, args.conv_mode, args.conv_mode ) ) else:
args.conv_mode = conv_mode
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: khwong-c/syn-magia # Path: magia/core.py class Input(Signal): """ Representing an input signal. It has no driver, but it is driving other signals. It is used by both the module declaration and the module instance. """ def __init__( self, name: str, width: int, signed: bool = False, owner_instance: Optional["Instance"] = None, **kwargs ): """ I/O ports must have name and width well-defined by designers. """ if name is None: raise ValueError("Input name is not set") if width == 0: raise ValueError("Input width is not set") super().__init__(name=name, width=width, signed=signed, **kwargs) self._config.signal_type = SignalType.INPUT self._config.owner_instance = owner_instance @property def net_name(self) -> str: """ Net Name of I/O must be the same with the name, even they are within an IOBundle """ return self.name def elaborate(self) -> str: """ Elaborate the input signal in the module declaration. :return: input logic (signed) [...]PORT_NAME """ port_decl = self.signal_decl().rstrip(";") return f"input {port_decl}" def copy(self, owner_instance: Optional["Instance"] = None) -> "Input": """ Copy the input signal. Driver is discarded. I/O port can only be assigned to an instance, not a SignalBundle / IOBundle. :return: A new input signal with the same configuration. """ return Input( name=self.name, width=len(self), signed=self.signed, description=self.description, owner_instance=owner_instance, ) # Path: magia/core.py class Output(Signal): """ Representing an output signal. They are the starting points when we elaborate the module. It is used by both the module declaration and the module instance. """ def __init__( self, name: str, width: int, signed: bool = False, owner_instance: Optional["Instance"] = None, **kwargs ): """ I/O ports must have name and width well-defined by designers. """ if name is None: raise ValueError("Output name is not set") if width == 0: raise ValueError("Output width is not set") super().__init__(name=name, width=width, signed=signed, **kwargs) self._config.signal_type = SignalType.OUTPUT self._config.owner_instance = owner_instance @property def net_name(self) -> str: """ Net Name of I/O must be the same with the name, even they are within an IOBundle """ return self.name def elaborate(self) -> str: """ Elaborate the output signal in the module declaration. :return: output logic (signed) [...]PORT_NAME """ port_decl = self.signal_decl().rstrip(";") return f"output {port_decl}" def copy(self, owner_instance: Optional["Instance"] = None, **kwargs) -> "Output": """ Copy the output signal. Driver is discarded. I/O port can only be assigned to an instance, not a SignalBundle / IOBundle. :return: A new output signal with the same configuration. """ return Output( name=self.name, width=len(self), signed=self.signed, description=self.description, owner_instance=owner_instance, ) # Path: magia/memory.py class Memory(Synthesizable): """ A memory object, storing an array of signals which can be accessed by another signal as an index. The memory object represents only the memory itself, not the logic to access it. This class is intended to be used to elaborate as a BRAM or Distributed RAM, especially on FPGA. In case of ASIC, consider to adopt the SRAM with `Blackbox`, especially when the memory module is created / compiled externally. A write port can be added to the memory object with the `write_port` method. A read port can be added to the memory object with the `read_port` method A read/write port can be added to the memory object with the `rw_port` method Args: address_width (int): The width of the address bus. data_width (int): The width of the data bus. name (str, optional): The name of the memory object. Defaults to None. r_port (int, optional): The number of read ports. Defaults to 0. w_port (int, optional): The number of write ports. Defaults to 0. rw_port (int, optional): The number of read/write ports. Defaults to 0. rw_write_through (bool, optional): Whether the read/write port is write through. Defaults to True. registered_read (bool, optional): Whether the reading output of the read port is registered. Defaults to False. """ new_mem_counter = count(0) _MEM_DECL_TEMPLATE = string.Template("logic $width $name $size;") def __init__( self, clk: Input, address_width: int, data_width: int, name: Optional[str] = None, r_port: int = 0, w_port: int = 0, rw_port: int = 0, rw_write_through: bool = True, registered_read: bool = True, **kwargs ): if not r_port and not w_port and not rw_port: raise ValueError("Memory must have at least one port") if rw_port > 2: raise ValueError("Memory can have at most 2 read/write ports") if rw_port == 2 and (r_port or w_port): raise ValueError("Memory in True Dual Port mode cannot have read or write ports") if rw_port and w_port: raise ValueError("Memory with Read/Write port cannot have extra write port") if not rw_port and w_port and not r_port: raise ValueError("Memory with Write port must have at least one read port") if rw_port and not registered_read: raise ValueError("Memory with Read/Write port must have registered read port") memory_size = 1 << address_width if name is None: name = f"{memory_size}_{data_width}_{next(Memory.new_mem_counter)}" name = f"mem_{name}" super().__init__(**kwargs) self._config = MemoryConfig( address_width=address_width, data_width=data_width, name=name, ) self._clk = clk self._read_ports = [MemReadPort(self, f"{i}", registered_read) for i in range(r_port)] self._write_ports = [MemWritePort(self, f"{i}") for i in range(w_port)] self._rw_ports = [MemRWPort(self, f"{i}", rw_write_through) for i in range(rw_port)] @property def port_count(self) -> tuple[int, int, int]: return len(self._read_ports), len(self._write_ports), len(self._rw_ports) def read_port(self, index: int = 0) -> MemReadPort: return self._read_ports[index] def write_port(self, index: int = 0) -> MemWritePort: return self._write_ports[index] def rw_port(self, index: int = 0) -> MemRWPort: return self._rw_ports[index] @property def drivers(self) -> list[Signal]: return [ signal for port in self._read_ports + self._write_ports + self._rw_ports for signal in port.signals if not signal.drive_by_mem ] @property def clk(self) -> Input: return self._clk def elaborate(self) -> str: mem_decl = self._MEM_DECL_TEMPLATE.substitute( width=f"[{self.data_width - 1}:0]", name=self.net_name, size=f"[0:{self.size - 1}]", ) port_impl = "\n".join(port.elaborate() for port in self._write_ports + self._rw_ports + self._read_ports) return "\n".join((mem_decl, port_impl)) @property def size(self) -> int: return 1 << self._config.address_width @property def address_width(self) -> int: return self._config.address_width @property def data_width(self) -> int: return self._config.data_width @property def name(self) -> str: return self._config.name @property def net_name(self) -> str: """ Memory does not belong to any bundle. net_name is the same as name. """ return self._config.name @classmethod def sdp(cls, clk: Input, address_width: int, data_width: int, **kwargs) -> "Memory": """ Create a Simple Dual Port memory. """ return cls(clk, address_width, data_width, r_port=1, w_port=1, **kwargs) @classmethod def tdp(cls, clk: Input, address_width: int, data_width: int, **kwargs) -> "Memory": """ Create a True Dual Port memory. """ return cls(clk, address_width, data_width, rw_port=2, registered_read=True, **kwargs) @classmethod def sp(cls, clk: Input, address_width: int, data_width: int, **kwargs) -> "Memory": """ Create a Single Port memory. """ return cls(clk, address_width, data_width, rw_port=1, registered_read=True, **kwargs) # Path: magia/module.py class Module(Synthesizable): """ A module is a collection of signals and operations. It can also include other modules. The module is the base class of specialized modules. Developers can define the generic behavior of the module in a dynamic way, while each `Module` objects is a specialized module initialized with specific parameters. The SystemVerilog Keyword `parameters` is not used here. It is because we can generate the code for the specialized module with parametrized values hard-coded. The module can be instantiated with the `instance` method. Designers shall implement the circuit logic in the `__init__` method. However, we highly recommend designers to extract the logic implementation into a seperated method. e.g. def __init__(self, **kwargs): self.io += Input("a", 8) self.io += Output("q", 8) self.implement() def implement(self): self.io.q <<= self.io.a + 1 """ _MOD_DECL_TEMPLATE = Template("module $name (\n$io\n);") _new_module_counter = count(0) output_file: Optional[PathLike] = None def __init__(self, name: Optional[str] = None, **kwargs): super().__init__(**kwargs) # Get the arguments passed to the __init__ method of the inherited class # === DON'T REFACTOR BELOW. We are inspecting the stack and refactoring will affect the result === children_local = inspect.stack(0)[1].frame.f_locals children_class = children_local.get("__class__") func_signature = inspect.signature(children_class.__init__) if children_class else {} self._mod_params = OrderedDict(**{ arg: children_local[arg] for arg, param in func_signature.parameters.items() if param.kind not in (param.VAR_KEYWORD, param.VAR_POSITIONAL) and arg != "self" }) # === DON'T REFACTOR ABOVE === if name is None: name = f"{self.__class__.__name__}_{next(self._new_module_counter)}" self._config = ModuleConfig( module_class=type(self), name=name, ) self.io = IOBundle() def validate(self) -> list[Exception]: undriven_outputs = [ output.net_name for output in self.io.outputs if output.driver() is None ] if undriven_outputs: return [ ValueError("Output not driven", output) for output in undriven_outputs ] return [] def mod_declaration(self) -> str: mod_decl = self._MOD_DECL_TEMPLATE.substitute( name=self.name, io=",\n".join( port.elaborate() for port in self.io.inputs + self.io.outputs ), ) return "\n".join((mod_decl, self._module_elab_doc)) def elaborate(self) -> tuple[str, set["Module"]]: """ Trace nets and operations from output ports This method generates the SystemVerilog code for the module. :return: The SystemVerilog code for the module, and the list of submodules of the instance in the module. """ violations = self.validate() if violations: raise ValueError(f"Module {self.name} is not valid.", violations) mod_decl = self.mod_declaration() signals, insts = self.trace() mod_impl = [ inst.elaborate() for inst in insts ] mod_impl += [ signal.elaborate() for signal in signals ] mod_impl = "\n".join(mod_impl) mod_output_assignment = "\n".join( Signal._SIGNAL_ASSIGN_TEMPLATE.substitute( name=output.net_name, driver=output.driver().net_name, ) for output in self.io.outputs ) extra_code = self.post_elaborate() mod_end = "endmodule" sv_code = "\n".join((mod_decl, mod_impl, mod_output_assignment, extra_code, mod_end)) submodules = {inst.module for inst in insts} return sv_code, submodules def post_elaborate(self) -> str: """ Override this method to add extra code to the module. The code will be added after the elaboration of the module. Adding assertions to the module is a typical use case. :return: The extra code to be added to the module. """ _ = self # Stub to avoid IDE/Lint warning return "" def trace(self) -> tuple[list[Union[Signal, Memory]], list["Instance"]]: """ Trace nets and instances from output ports """ traced_sig_id: set[int] = set() traced_inst_id: set[int] = set() traced_signal: list[Union[Signal, Memory]] = [] traced_inst: list[Instance] = [] sig_to_be_traced: dict[int, Signal] = {} for output in self.io.outputs: sig_to_be_traced |= { id(sig): sig for sig in output.drivers } while sig_to_be_traced: next_trace = {} for signal_id, signal in sig_to_be_traced.items(): # Tracing Instances with Output connected if signal.type == SignalType.OUTPUT: inst: Optional[Instance] = signal.owner_instance if inst is not None and id(inst) not in traced_inst_id: traced_inst_id.add(id(inst)) traced_inst.append(inst) # The Input port of the instance is skipped # We will go directly to the driver as it must be driven by another signal. input_drivers = [i.driver() for i in inst.inputs.values()] next_trace |= { id_sig: sig for sig in input_drivers if (id_sig := id(sig)) not in traced_sig_id } elif signal.type != SignalType.INPUT and signal_id not in traced_sig_id: traced_sig_id.add(signal_id) traced_signal.append(signal) next_trace |= { id_sig: sig for sig in signal.drivers if sig.type not in (SignalType.INPUT,) and (id_sig := id(sig)) not in traced_sig_id } if signal.type == SignalType.MEMORY: signal: MemorySignal if id(signal.memory) not in traced_sig_id: traced_sig_id.add(id(signal.memory)) traced_signal.append(signal.memory) next_trace |= { id_sig: sig for sig in signal.memory.drivers if (id_sig := id(sig)) not in traced_sig_id } sig_to_be_traced = next_trace traced_signal.reverse() traced_inst.reverse() # Check if we have name conflict on the signals and instances sig_name_counter = Counter(sig.net_name for sig in traced_signal) inst_name_counter = Counter(inst.name for inst in traced_inst) sig_conflicts = [name for name, cnt in sig_name_counter.items() if cnt > 1] inst_conflicts = [name for name, cnt in inst_name_counter.items() if cnt > 1] if sig_conflicts: raise ValueError(f"Signal name conflict: {sig_conflicts}") if inst_conflicts: raise ValueError(f"Instance name conflict: {inst_conflicts}") return traced_signal, traced_inst def instance( self, name: Optional[str] = None, io: Optional[dict[str, Signal]] = None ) -> "Instance": """ Create an instance of the module :return: The created instance """ return Instance( module=self, name=name, io=io, ) @property def name(self) -> str: return self._config.name @property def params(self) -> dict[str, object]: """ Return the parameters used to specialize this module. """ return self._mod_params @property def _module_elab_doc(self) -> str: """ Generate the summary of a module and register it to the module. It will be written into the SystemVerilog code during elaboration. """ doc = self._module_doc_str if self.params: doc += "\nModule Parameters:\n" doc += "-----------------\n" doc += "\n".join( f"{k}: {v}" for k, v in self.params.items() ) + "\n" if doc: doc = f"/*\n{doc}*/\n" return doc @property def _module_doc_str(self) -> str: doc = inspect.getdoc(self.__class__) if doc is None or doc == inspect.getdoc(Module): return "" if not doc.endswith("\n"): return doc + "\n" return doc @cached_property def _module_init_param_doc(self) -> dict[str, str]: params = [(k, f"{k}:") for k in self._mod_params] doc = inspect.getdoc(self.__init__) if doc is None: return [] result_doc = {} possible_param = [line.strip() for line in doc.split("\n") if ":" in line] for line in possible_param: for param, sep in params: if sep in line: result_doc[param] = line.split(sep, 1)[-1].strip() return result_doc @property def spec(self) -> dict[str, object]: """ Return the "Specification" of a specialized Module. It is a dictionary which can be further processed. """ return { "name": self.name, "description": self._module_doc_str.strip(), "parameters": [ { "name": k, "value": v, "description": self._module_init_param_doc.get(k, ""), } for k, v in self.params.items() ], "ports": [ { "name": alias, "direction": signal.type.name, "width": len(signal), "signed": signal.signed, "description": signal.description, } for alias, signal in self.io.signals.items() ], } # Path: tests/test_memory.py from pathlib import Path from cocotb.clock import Clock from cocotb.triggers import FallingEdge from cocotb_test.simulator import run as sim_run from magia import Input, Memory, Module, Output import cocotb import tests.helper as helper async def drive_spram(dut): clock = Clock(dut.clk, 10, units="ns") cocotb.start_soon(clock.start()) await FallingEdge(dut.clk) # Synchronize with the clock dut.wen.value = 1 dut.addr.value = 0x12
dut.din.value = 0xAB
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: batmanlab/DrasCLR # Path: models/cnn3d.py class Encoder(nn.Module): def __init__(self, rep_dim, moco_dim, num_experts, num_coordinates): super(Encoder, self).__init__() self.rep_dim = rep_dim self.moco_dim = moco_dim self.num_experts = num_experts self.num_coordinates = num_coordinates self.conv1 = Conv3d(1, 8, kernel_size=3, stride=1, padding=1, num_experts=self.num_experts, num_coordinates=self.num_coordinates) self.bn1 = nn.BatchNorm3d(8) self.act = nn.ELU() self.conv2 = Conv3d(8, 8, kernel_size=3, stride=2, padding=1, num_experts=self.num_experts, num_coordinates=self.num_coordinates) self.bn2 = nn.BatchNorm3d(8) self.downsample1 = Block(8, 16, self.num_experts, self.num_coordinates) self.downsample2 = Block(16, 32, self.num_experts, self.num_coordinates) self.downsample3 = Block(32, 64, self.num_experts, self.num_coordinates) self.conv3 = Conv3d(64, 128, kernel_size=3, stride=1, padding=1, num_experts=self.num_experts, num_coordinates=self.num_coordinates) self.bn3 = nn.BatchNorm3d(128) self.conv4 = Conv3d(128, rep_dim, kernel_size=3, stride=2, padding=1, num_experts=self.num_experts, num_coordinates=self.num_coordinates) self.bn4 = nn.BatchNorm3d(rep_dim) self.fc = nn.Linear(rep_dim, moco_dim) def forward(self, x, loc): x = self.conv1(x, loc) x = self.bn1(x) x = self.act(x) x = self.conv2(x, loc) x = self.bn2(x) x = self.act(x) x = self.downsample1(x, loc) x = self.downsample2(x, loc) x = self.downsample3(x, loc) x = self.conv3(x, loc) x = self.bn3(x) x = self.act(x) x = self.conv4(x, loc) x = self.bn4(x) x = self.act(x) h = torch.flatten(x, 1) z = self.fc(h) return z, h # Path: models/builder.py class DrasCLR(nn.Module): def __init__(self, base_encoder, num_patch, rep_dim, moco_dim, num_experts, num_coordinates, K, m, T, mlp): """ dim: feature dimension (default: 128) K: queue size; number of negative keys (default: 65536) m: moco momentum of updating key encoder (default: 0.999) T: softmax temperature (default: 0.07) """ super(DrasCLR, self).__init__() self.K = K self.m = m self.T = T self.num_locs = num_patch # add the new dimension of number of locations # create the encoders # num_classes is the output fc dimension self.encoder_q = base_encoder(rep_dim=rep_dim, moco_dim=moco_dim, num_experts=num_experts, num_coordinates=num_coordinates) self.encoder_k = base_encoder(rep_dim=rep_dim, moco_dim=moco_dim, num_experts=num_experts, num_coordinates=num_coordinates) if mlp: # hack: brute-force replacement dim_mlp = self.encoder_q.fc.weight.shape[1] self.encoder_q.fc = nn.Sequential(nn.Linear(dim_mlp, dim_mlp), nn.ReLU(), self.encoder_q.fc) self.encoder_k.fc = nn.Sequential(nn.Linear(dim_mlp, dim_mlp), nn.ReLU(), self.encoder_k.fc) for param_q, param_k in zip(self.encoder_q.parameters(), self.encoder_k.parameters()): param_k.data.copy_(param_q.data) # initialize param_k.requires_grad = False # not update by gradient # create the queue self.register_buffer("queue", torch.randn(moco_dim, K, self.num_locs)) # the queue should be the size of (dim of reps) * (number of negative pairs) * (number of total locations) self.queue = nn.functional.normalize(self.queue, dim=0) # normalize patch representation self.register_buffer("queue_ptr", torch.zeros(self.num_locs, dtype=torch.long)) # set pointer in buffer to 1 for each path location @torch.no_grad() def _momentum_update_key_encoder(self): """ Momentum update of the key encoder """ for param_q, param_k in zip(self.encoder_q.parameters(), self.encoder_k.parameters()): param_k.data = param_k.data * self.m + param_q.data * (1. - self.m) @torch.no_grad() def _dequeue_and_enqueue(self, keys, patch_idx): # gather keys before updating queue keys = concat_all_gather(keys) batch_size = keys.shape[0] ptr = self.queue_ptr assert self.K % batch_size == 0 # for simplicity # replace the keys at ptr (dequeue and enqueue) self.queue[:, ptr[patch_idx]:ptr[patch_idx] + batch_size, patch_idx] = keys.T ptr[patch_idx] = (ptr[patch_idx] + batch_size) % self.K # move pointer self.queue_ptr = ptr @torch.no_grad() def _batch_shuffle_ddp(self, x): """ Batch shuffle, for making use of BatchNorm. *** Only support DistributedDataParallel (DDP) model. *** """ # gather from all gpus batch_size_this = x.shape[0] x_gather = concat_all_gather(x) batch_size_all = x_gather.shape[0] num_gpus = batch_size_all // batch_size_this # random shuffle index idx_shuffle = torch.randperm(batch_size_all).cuda() # broadcast to all gpus torch.distributed.broadcast(idx_shuffle, src=0) # index for restoring idx_unshuffle = torch.argsort(idx_shuffle) # shuffled index for this gpu gpu_idx = torch.distributed.get_rank() idx_this = idx_shuffle.view(num_gpus, -1)[gpu_idx] return x_gather[idx_this], idx_unshuffle @torch.no_grad() def _batch_unshuffle_ddp(self, x, idx_unshuffle): """ Undo batch shuffle. *** Only support DistributedDataParallel (DDP) model. *** """ # gather from all gpus batch_size_this = x.shape[0] x_gather = concat_all_gather(x) batch_size_all = x_gather.shape[0] num_gpus = batch_size_all // batch_size_this # restored index for this gpu gpu_idx = torch.distributed.get_rank() idx_this = idx_unshuffle.view(num_gpus, -1)[gpu_idx] return x_gather[idx_this] def forward(self, patch_idx, pch_q, pch_k, ngb_q): """ Input: im_q: a batch of query images im_k: a batch of key images Output: logits, targets """ # compute query patch features q, h_q = self.encoder_q(pch_q[0], pch_q[1]) # queries: NxC, encoder needs to take both pathces and their locations as inputs q = nn.functional.normalize(q, dim=1) # compute query neighbor features ngb_flatten = ngb_q[0].reshape(-1, 32, 32, 32) loc_flatten = ngb_q[1].reshape(-1, 3) r, h_r = self.encoder_q(ngb_flatten[:, None, :, :, :], loc_flatten) r = nn.functional.normalize(r, dim=1) r = r.reshape(ngb_q[0].shape[0], ngb_q[0].shape[1], -1) # queries: N * R * C, samples * k-neighbors * channels # compute key features with torch.no_grad(): # no gradient to keys self._momentum_update_key_encoder() # update the key encoder # shuffle for making use of BN pch_k[0], idx_unshuffle = self._batch_shuffle_ddp(pch_k[0]) k, h_k = self.encoder_k(pch_k[0], pch_k[1]) # keys: N * C k = nn.functional.normalize(k, dim=1) # undo shuffle k = self._batch_unshuffle_ddp(k, idx_unshuffle) # patch InfoNCE logits # Einstein sum is more intuitive # positive logits: N * 1 l_pos_pch = torch.einsum('nc,nc->n', [q, k]).unsqueeze(-1) # negative logits: N * K negs = self.queue[:,:,patch_idx].clone().detach() # compute negative logits for each path in the batch conditioned on their locations l_neg_pch = torch.einsum('nc,ck->nk', [q, negs]) # logits: N * (1+K) logits_pch = torch.cat([l_pos_pch, l_neg_pch], dim=1) # apply temperature logits_pch /= self.T # neighbor InfoNCE logits # positive logits: N * 1 l_pos_ngb = torch.einsum('nrc, nc->n', [r, k]).unsqueeze(-1) # negative logits: N * K l_neg_ngb = torch.einsum('nrc, ck->nk', [r, negs]) # logits: N * (1+K) logits_ngb = torch.cat([l_pos_ngb, l_neg_ngb], dim=1) # apply temperature logits_ngb /= self.T # labels: positive key indicators labels = torch.zeros(logits_pch.shape[0], dtype=torch.long).cuda() # dequeue and enqueue self._dequeue_and_enqueue(k, patch_idx) # consider location for each patch in the batch return logits_pch, logits_ngb, labels # Path: data/copd_patch.py class COPD_dataset(Dataset): def __init__(self, stage, args, patch_transforms=default_transform, neighbor_transforms=default_transform): self.stage = stage self.args = args self.root_dir = args.root_dir self.metric_dict = dict() # initialize metric dictionary self.patch_transforms = patch_transforms self.neighbor_transforms = neighbor_transforms # atlas patch locations, our refernce file can be found at ./preprocess/misc/atlas_patch_loc.npy self.patch_loc = np.load(self.args.root_dir + "19676E_INSP_STD_JHU_COPD_BSpline_Iso1_patch_loc.npy") # pairwise distance self.dists = pairwise_distances(self.patch_loc, metric='euclidean') # normalize patch locations self.patch_loc = (self.patch_loc / self.patch_loc.max(0)) * 2 - 1 # normalize position to [-1, 1] self.patch_idx = 0 self.patch_data = np.load(self.args.root_dir+"grouped_patch/patch_loc_"+str(self.patch_idx)+".npy") # top k nearest patches self.k_neighbor_idx = np.argsort(self.dists[self.patch_idx,:])[1: (self.args.k_neighbors+1)] neighbor_lst = [] for k in range(self.args.k_neighbors): neighbor_data = np.load(self.args.root_dir+"grouped_patch/patch_loc_"+str(self.k_neighbor_idx[k])+".npy") neighbor_lst.append(neighbor_data[None, :, :, :, :]) # 1 * 9179 * 32 * 32 * 32 self.neighbor_data = np.concatenate(neighbor_lst, axis=0) del neighbor_lst if stage == 'training': # Specific to COPDGene dataset, you can change depends on your needs FILE = open(DATA_DIR + "phase1_Final_10K/phase 1 Pheno/Final10000_Phase1_Rev_28oct16.txt", "r") mylist = FILE.readline().strip("\n").split("\t") metric_idx = [mylist.index(label) for label in self.args.label_name] race_idx = mylist.index("race") for line in FILE.readlines(): mylist = line.strip("\n").split("\t") tmp = [mylist[idx] for idx in metric_idx] if "" in tmp: continue if self.args.nhw_only and mylist[race_idx] != "1": continue metric_list = [] for i in range(len(metric_idx)): metric_list.append(float(tmp[i])) self.metric_dict[mylist[0]] = metric_list FILE.close() if stage == 'testing': # Specific to COPDGene dataset, you can change depends on your needs self.label_name = self.args.label_name + self.args.label_name_set2 FILE = open(DATA_DIR + "phase1_Final_10K/phase 1 Pheno/Final10000_Phase1_Rev_28oct16.txt", "r") mylist = FILE.readline().strip("\n").split("\t") metric_idx = [mylist.index(label) for label in self.label_name] for line in FILE.readlines(): mylist = line.strip("\n").split("\t") tmp = [mylist[idx] for idx in metric_idx] if "" in tmp[:3]: continue metric_list = [] for i in range(len(metric_idx)): if tmp[i] == "": metric_list.append(-1024) else: metric_list.append(float(tmp[i])) self.metric_dict[mylist[0]] = metric_list + [-1024, -1024, -1024] FILE = open(DATA_DIR + "CT_scan_datasets/CT_visual_scoring/COPDGene_CT_Visual_20JUL17.txt", "r") mylist = FILE.readline().strip("\n").split("\t") metric_idx = [mylist.index(label) for label in self.args.visual_score] for line in FILE.readlines(): mylist = line.strip("\n").split("\t") if mylist[0] not in self.metric_dict: continue tmp = [mylist[idx] for idx in metric_idx] metric_list = [] for i in range(len(metric_idx)): metric_list.append(float(tmp[i])) self.metric_dict[mylist[0]][ -len(self.args.visual_score) - len(self.args.P2_Pheno):-len(self.args.P2_Pheno)] = metric_list FILE.close() FILE = open( DATA_DIR + 'P1-P2 First 5K Long Data/Subject-flattened- one row per subject/First5000_P1P2_Pheno_Flat24sep16.txt', 'r') mylist = FILE.readline().strip("\n").split("\t") metric_idx = [mylist.index(label) for label in self.args.P2_Pheno] for line in FILE.readlines(): mylist = line.strip("\n").split("\t") if mylist[0] not in self.metric_dict: continue tmp = [mylist[idx] for idx in metric_idx] metric_list = [] for i in range(len(metric_idx)): metric_list.append(float(tmp[i])) self.metric_dict[mylist[0]][-len(self.args.P2_Pheno):] = metric_list FILE.close() self.sid_list = [] for item in glob.glob(self.args.root_dir+"patch/"+"*_patch.npy"): if item.split('/')[-1][:6] not in self.metric_dict: continue self.sid_list.append(item.split('/')[-1][:-10]) self.sid_list.sort() assert len(self.sid_list) == self.patch_data.shape[0] print("Fold: full") self.sid_list = np.asarray(self.sid_list) self.sid_list_len = len(self.sid_list) print(stage+" dataset size:", self.sid_list_len) def set_patch_idx(self, patch_idx): self.patch_idx = patch_idx self.patch_data = np.load(self.args.root_dir+"grouped_patch/patch_loc_"+str(self.patch_idx)+".npy") # top k nearest patches self.k_neighbor_idx = np.argsort(self.dists[self.patch_idx,:])[1: (self.args.k_neighbors+1)] neighbor_lst = [] for k in range(self.args.k_neighbors): neighbor_data = np.load(self.args.root_dir+"grouped_patch/patch_loc_"+str(self.k_neighbor_idx[k])+".npy") neighbor_lst.append(neighbor_data[None, :, :, :, :]) # 1 * 9179 * 32 * 32 * 32 self.neighbor_data = np.concatenate(neighbor_lst, axis=0) del neighbor_lst def __len__(self): if self.stage == 'training': return self.sid_list_len * self.args.num_patch if self.stage == 'testing': return self.sid_list_len def __getitem__(self, idx): if self.stage == 'training': idx = idx % self.sid_list_len # patch data pch = self.patch_data[idx, :, :, :] pch = np.clip(pch, -1024, 240) # clip input intensity to [-1024, 240] pch = pch + 1024. pch = self.patch_transforms(pch[None, :, :, :]) pch[0] = pch[0]/632.-1 # Normalize to [-1,1], 632=(1024+240)/2 pch[1] = pch[1]/632.-1 # Normalize to [-1,1], 632=(1024+240)/2 # patch location patch_loc_idx = self.patch_loc[self.patch_idx, :] # neighbor data ngb = self.neighbor_data[:, idx, :, :, :] ngb = np.clip(ngb, -1024, 240) # clip input intensity to [-1024, 240] ngb = ngb + 1024. ngb = self.neighbor_transforms(ngb) ngb = ngb/632.-1 # Normalize to [-1,1], 632=(1024+240)/2 # neighbor location neighor_loc_idx = self.patch_loc[self.k_neighbor_idx, :] # labels key = self.sid_list[idx][:6] label = np.asarray(self.metric_dict[key]) return key, pch, patch_loc_idx, ngb, neighor_loc_idx, label if self.stage == 'testing': sid = self.sid_list[idx] # read the entire image including 581 patches img = np.load(self.root_dir + "patch/" + sid + "_patch.npy") img = np.clip(img, -1024, 240) # clip input intensity to [-1024, 240] img = img + 1024. img = img[:, None, :, :, :] / 632. - 1 # Normalize to [-1,1], 632=(1024+240)/2 # patch locations for all 581 patches patch_loc_idx = self.patch_loc # study id key = self.sid_list[idx][:6] # labels label = np.asarray(self.metric_dict[key]) # extract sid from the first 6 letters return sid, img, patch_loc_idx, label # Path: train.py import os import argparse import builtins import math import random import shutil import time import warnings import json import numpy as np import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.distributed as dist import torch.optim import torch.multiprocessing as mp import torch.utils.data import torch.utils.data.distributed import models.loader as DrasCLR_Loader from tensorboard_logger import configure, log_value from models.cnn3d import Encoder from models.builder import DrasCLR from data.copd_patch import COPD_dataset from monai.transforms import Compose, RandGaussianNoise, RandAffine, Rand3DElastic, RandAdjustContrast parser.add_argument('--moco-m', default=0.999, type=float, help='moco momentum of updating key encoder (default: 0.999)') parser.add_argument('--moco-t', default=0.2, type=float, help='softmax temperature (default: 0.2)') # options for moco v2 parser.add_argument('--mlp', action='store_false', help='use mlp head') parser.add_argument('--cos', action='store_false', help='use cosine lr schedule') # experiment configs parser.add_argument('--adj-thres', default=0.18, type=float, help='patch adjacent threshold (default: 0.18)') parser.add_argument('--k-neighbors', default=2, type=int, help='top k nearest neighbors of the anchor patch in the atlas image.') parser.add_argument('--beta', default=1.0, type=float, help='scaling factor of neighbor InfoNCE loss. (default: 1.0)') parser.add_argument('--warm-up', default=0, type=int, help='number of warm-up epochs before training neighbor contrastive loss.') parser.add_argument('--num-experts', default=8, type=int, help='number of experts in CondConv layer.') parser.add_argument('--num-coordinates', default=1, type=int, help='number of input coordinates.') parser.add_argument('--augmentation', default='agc', help='initials of augmentation including: (f)lip, (a)ffine, (e)lastic, (g)uassian, (c)ontrast.') parser.add_argument('--exp-name', default='debug_patch', type=str, help='experiment name') def main(): # read configurations args = parser.parse_args() # define and create the experiment directory exp_dir = os.path.join('./ssl_exp', args.exp_name) if not os.path.isdir(exp_dir): os.makedirs(exp_dir, exist_ok=True) # save configurations to a dictionary with open(os.path.join(exp_dir, 'configs.json'), 'w') as f: json.dump(vars(args), f, indent=2) f.close() if args.seed is not None: random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) torch.backends.cudnn.benchmark = True if args.gpu is not None: warnings.warn('You have chosen a specific GPU. This will completely ' 'disable data parallelism.') if args.dist_url == "env://" and args.world_size == -1: args.world_size = int(os.environ["WORLD_SIZE"]) args.distributed = args.world_size > 1 or args.multiprocessing_distributed print("Distributed:", args.distributed) #ngpus_per_node = torch.cuda.device_count() ngpus_per_node = args.npgus_per_node if args.multiprocessing_distributed: # Since we have ngpus_per_node processes per node, the total world_size # needs to be adjusted accordingly args.world_size = ngpus_per_node * args.world_size # Use torch.multiprocessing.spawn to launch distributed processes: the # main_worker process function mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args)) else: # Simply call main_worker function main_worker(args.gpu, ngpus_per_node, args) def main_worker(gpu, ngpus_per_node, args): args.gpu = gpu # suppress printing if not master if args.multiprocessing_distributed and args.gpu != 0: def print_pass(*args): pass builtins.print = print_pass if args.gpu is not None: print("Use GPU: {} for training".format(args.gpu)) if args.distributed: if args.dist_url == "env://" and args.rank == -1: args.rank = int(os.environ["RANK"]) if args.multiprocessing_distributed: # For multiprocessing distributed training, rank needs to be the # global rank among all the processes args.rank = args.rank * ngpus_per_node + gpu dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank) if args.rank == 0: configure(os.path.join('./ssl_exp', args.exp_name)) # create patch-level encoder model = DrasCLR( Encoder, args.num_patch, args.rep_dim, args.moco_dim, args.num_experts, \ args.num_coordinates, args.moco_k, args.moco_m, args.moco_t, args.mlp) if args.distributed: # For multiprocessing distributed, DistributedDataParallel constructor # should always set the single device scope, otherwise, # DistributedDataParallel will use all available devices. if args.gpu is not None: torch.cuda.set_device(args.gpu) model.cuda(args.gpu) # When using a single GPU per process and per # DistributedDataParallel, we need to divide the batch size # ourselves based on the total number of GPUs we have args.batch_size = int(args.batch_size / ngpus_per_node) args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node) model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) else: raise NotImplementedError("GPU number is unknown.")
else:
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: CHDers/Traffic-Flow-Prediction-with-Graph-Neural-Networks # Path: traffic_dataset.py class LoadData(Dataset): # 这个就是把读入的数据处理成模型需要的训练数据和测试数据,一个一个样本能读取出来 def __init__(self, data_path, num_nodes, divide_days, time_interval, history_length, train_mode): """ :param data_path: list, ["graph file name" , "flow data file name"], path to save the data file names. :param num_nodes: int, number of nodes. :param divide_days: list, [ days of train data, days of test data], list to divide the original data. :param time_interval: int, time interval between two traffic data records (mins).---5 mins :param history_length: int, length of history data to be used. :param train_mode: list, ["train", "test"]. """ self.data_path = data_path self.num_nodes = num_nodes self.train_mode = train_mode self.train_days = divide_days[0] # 59-14 = 45, train_data self.test_days = divide_days[1] # 7*2 = 14 ,test_data self.history_length = history_length # 30/5 = 6, 历史长度为6 self.time_interval = time_interval # 5 min self.one_day_length = int(24 * 60 / self.time_interval) # 一整天的数据量 self.graph = get_adjacent_matrix(distance_file=data_path[0], num_nodes=num_nodes) self.flow_norm, self.flow_data = self.pre_process_data(data=get_flow_data(data_path[1]), norm_dim=1) # self.flow_norm为归一化的基 def __len__(self): # 表示数据集的长度 """ :return: length of dataset (number of samples). """ if self.train_mode == "train": return self.train_days * self.one_day_length - self.history_length # 训练的样本数 = 训练集总长度 - 历史数据长度 elif self.train_mode == "test": return self.test_days * self.one_day_length # 每个样本都能测试,测试样本数 = 测试总长度 else: raise ValueError("train mode: [{}] is not defined".format(self.train_mode)) def __getitem__(self, index): # 功能是如何取每一个样本 (x, y), index = [0, L1 - 1]这个是根据数据集的长度确定的 """ :param index: int, range between [0, length - 1]. :return: graph: torch.tensor, [N, N]. data_x: torch.tensor, [N, H, D]. data_y: torch.tensor, [N, 1, D]. """ if self.train_mode == "train": index = index # 训练集的数据是从时间0开始的,这个是每一个流量数据,要和样本(x,y)区别 elif self.train_mode == "test": index += self.train_days * self.one_day_length # 有一个偏移量 else: raise ValueError("train mode: [{}] is not defined".format(self.train_mode)) data_x, data_y = LoadData.slice_data(self.flow_data, self.history_length, index, self.train_mode) # 这个就是样本(x,y) data_x = LoadData.to_tensor(data_x) # [N, H, D] # 转换成张量 data_y = LoadData.to_tensor(data_y).unsqueeze(1) # [N, 1, D] # 转换成张量,在时间维度上扩维 return {"graph": LoadData.to_tensor(self.graph), "flow_x": data_x, "flow_y": data_y} # 组成词典返回 @staticmethod def slice_data(data, history_length, index, train_mode): # 根据历史长度,下标来划分数据样本 """ :param data: np.array, normalized traffic data. :param history_length: int, length of history data to be used. :param index: int, index on temporal axis. :param train_mode: str, ["train", "test"]. :return: data_x: np.array, [N, H, D]. data_y: np.array [N, D]. """ if train_mode == "train": start_index = index # 开始下标就是时间下标本身,这个是闭区间 end_index = index + history_length # 结束下标,这个是开区间 elif train_mode == "test": start_index = index - history_length # 开始下标,这个最后面贴图了,可以帮助理解 end_index = index # 结束下标 else: raise ValueError("train model {} is not defined".format(train_mode)) data_x = data[:, start_index: end_index] # 在切第二维,不包括end_index data_y = data[:, end_index] # 把上面的end_index取上 return data_x, data_y @staticmethod def pre_process_data(data, norm_dim): # 预处理,归一化 """ :param data: np.array,原始的交通流量数据 :param norm_dim: int,归一化的维度,就是说在哪个维度上归一化,这里是在dim=1时间维度上 :return: norm_base: list, [max_data, min_data], 这个是归一化的基. norm_data: np.array, normalized traffic data. """ norm_base = LoadData.normalize_base(data, norm_dim) # 计算 normalize base norm_data = LoadData.normalize_data(norm_base[0], norm_base[1], data) # 归一化后的流量数据 return norm_base, norm_data # 返回基是为了恢复数据做准备的 @staticmethod def normalize_base(data, norm_dim): # 计算归一化的基 """ :param data: np.array, 原始的交通流量数据 :param norm_dim: int, normalization dimension.归一化的维度,就是说在哪个维度上归一化,这里是在dim=1时间维度上 :return: max_data: np.array min_data: np.array """ max_data = np.max(data, norm_dim, keepdims=True) # [N, T, D] , norm_dim=1, [N, 1, D], keepdims=True就保持了纬度一致 min_data = np.min(data, norm_dim, keepdims=True) return max_data, min_data # 返回最大值和最小值 @staticmethod def normalize_data(max_data, min_data, data): # 计算归一化的流量数据,用的是最大值最小值归一化法 """ :param max_data: np.array, max data. :param min_data: np.array, min data. :param data: np.array, original traffic data without normalization. :return: np.array, normalized traffic data. """ mid = min_data base = max_data - min_data normalized_data = (data - mid) / base return normalized_data @staticmethod def recover_data(max_data, min_data, data): # 恢复数据时使用的,为可视化比较做准备的 """ :param max_data: np.array, max data. :param min_data: np.array, min data. :param data: np.array, normalized data. :return: recovered_data: np.array, recovered data. """ mid = min_data base = max_data - min_data recovered_data = data * base + mid return recovered_data # 这个就是原始的数据 @staticmethod def to_tensor(data): return torch.tensor(data, dtype=torch.float) # Path: utils.py class Evaluation(object): def __init__(self): pass @staticmethod def mae_(target, output): return np.mean(np.abs(target - output)) @staticmethod def mape_(target, output): return np.mean(np.abs(target - output) / (target + 5)) # 加5是因为target有可能为0,当然只要不太大,加几都行 @staticmethod def rmse_(target, output): return np.sqrt(np.mean(np.power(target - output, 2))) @staticmethod def total(target, output): mae = Evaluation.mae_(target, output) mape = Evaluation.mape_(target, output) rmse = Evaluation.rmse_(target, output) return mae, mape, rmse # Path: utils.py def visualize_result(h5_file, nodes_id, time_se, visualize_file): file_obj = h5py.File(h5_file, "r") # 获得文件对象,这个文件对象有两个keys:"predict"和"target" prediction = file_obj["predict"][:][:, :, 0] # [N, T],切片,最后一维取第0列,所以变成二维了,要是[:, :, :1]那么维度不会缩减 target = file_obj["target"][:][:, :, 0] # [N, T],同上 file_obj.close() plot_prediction = prediction[nodes_id][time_se[0]: time_se[1]] # [T1],将指定节点的,指定时间的数据拿出来 plot_target = target[nodes_id][time_se[0]: time_se[1]] # [T1],同上 plt.figure() plt.grid(True, linestyle="-.", linewidth=0.5) plt.plot(np.array([t for t in range(time_se[1] - time_se[0])]), plot_prediction, ls="-", marker=" ", color="r") plt.plot(np.array([t for t in range(time_se[1] - time_se[0])]), plot_target, ls="-", marker=" ", color="b") plt.legend(["prediction", "target"], loc="upper right") plt.axis([0, time_se[1] - time_se[0], np.min(np.array([np.min(plot_prediction), np.min(plot_target)])), np.max(np.array([np.max(plot_prediction), np.max(plot_target)]))]) plt.savefig(visualize_file + ".png") # Path: gcnnet.py class GCN(nn.Module): # GCN模型,向空域的第一个图卷积 def __init__(self, in_c, hid_c, out_c): super(GCN, self).__init__() # 表示继承父类的所有属性和方法 self.linear_1 = nn.Linear(in_c, hid_c) # 定义一个线性层 self.linear_2 = nn.Linear(hid_c, out_c) # 定义一个线性层 self.act = nn.ReLU() # 定义激活函数 def forward(self, data, device): graph_data = data["graph"].to(device)[0] # [N, N] 邻接矩阵,并且将数据送入设备 graph_data = GCN.process_graph(graph_data) # 变换邻接矩阵 \hat A = D_{-1/2}*A*D_{-1/2} flow_x = data["flow_x"].to(device) # [B, N, H, D] 流量数据 B, N = flow_x.size(0), flow_x.size(1) # batch_size、节点数 flow_x = flow_x.view(B, N, -1) # [B, N, H*D] H = 6, D = 1把最后两维缩减到一起了,这个就是把历史时间的特征放一起 # 第一个图卷积层 output_1 = self.linear_1(flow_x) # [B, N, hid_C],这个就是 WX,其中W是可学习的参数,X是输入的流量数据(就是flow_x) output_1 = self.act(torch.matmul(graph_data, output_1)) # [B, N, N] ,[B, N, hid_c],就是 \hat AWX # 第二个图卷积层 output_2 = self.linear_2(output_1) # WX output_2 = self.act(torch.matmul(graph_data, output_2)) # [B, N, 1, Out_C] , 就是 \hat AWX return output_2.unsqueeze(2) # 第2维的维度扩张 @staticmethod def process_graph(graph_data): # 这个就是在原始的邻接矩阵之上,再次变换,也就是\hat A = D_{-1/2}*A*D_{-1/2} N = graph_data.size(0) # 获得节点的个数 matrix_i = torch.eye(N, dtype=torch.float, device=graph_data.device) # 定义[N, N]的单位矩阵 graph_data += matrix_i # [N, N] ,就是 A+I degree_matrix = torch.sum(graph_data, dim=1, keepdim=False) # [N],计算度矩阵,塌陷成向量,其实就是将上面的A+I每行相加 degree_matrix = degree_matrix.pow(-1) # 计算度矩阵的逆,若为0,-1次方可能计算结果为无穷大的数 degree_matrix[degree_matrix == float("inf")] = 0. # 让无穷大的数为0 degree_matrix = torch.diag(degree_matrix) # 转换成对角矩阵 return torch.mm(degree_matrix, graph_data) # 返回 \hat A=D^(-1) * A ,这个等价于\hat A = D_{-1/2}*A*D_{-1/2} # Path: chebnet.py class ChebNet(nn.Module): # 定义图网络的类 def __init__(self, in_c, hid_c, out_c, K): """ :param in_c: int, number of input channels. :param hid_c: int, number of hidden channels.class :param out_c: int, number of output channels. :param K: """ super(ChebNet, self).__init__() self.conv1 = ChebConv(in_c=in_c, out_c=hid_c, K=K) # 第一个图卷积层 self.conv2 = ChebConv(in_c=hid_c, out_c=out_c, K=K) # 第二个图卷积层 self.act = nn.ReLU() # 激活函数 def forward(self, data, device): graph_data = data["graph"].to(device)[0] # [N, N] flow_x = data["flow_x"].to(device) # [B, N, H, D] # B是batch size,N是节点数,H是历史数据长度,D是特征维度 B, N = flow_x.size(0), flow_x.size(1) flow_x = flow_x.view(B, N, -1) # [B, N, H*D] H = 6, D = 1把最后两维缩减到一起了,这个就是把历史时间的特征放一起 output_1 = self.act(self.conv1(flow_x, graph_data)) output_2 = self.act(self.conv2(output_1, graph_data)) return output_2.unsqueeze(2) # 在第2维度,也就是时间维度上做扩张 # Path: gat.py class GATNet(nn.Module): def __init__(self, in_c, hid_c, out_c, n_heads): super(GATNet, self).__init__() self.subnet = GATSubNet(in_c, hid_c, out_c, n_heads) def forward(self, data, device): graph = data["graph"][0].to(device) # [N, N] flow = data["flow_x"] # [B, N, T, C] flow = flow.to(device) # 将流量数据送入设备 B, N = flow.size(0), flow.size(1) flow = flow.view(B, N, -1) # [B, N, T * C] """ 上面是将这一段的时间的特征数据摊平做为特征,这种做法实际上忽略了时序上的连续性 这种做法可行,但是比较粗糙,当然也可以这么做: flow[:, :, 0] ... flow[:, :, T-1] 则就有T个[B, N, C]这样的张量,也就是 [B, N, C]*T 每一个张量都用一个SubNet来表示,则一共有T个SubNet,初始化定义 self.subnet = [GATSubNet(...) for _ in range(T)] 然后用nn.ModuleList将SubNet分别拎出来处理,参考多头注意力的处理,同理 """ prediction = self.subnet(flow, graph).unsqueeze(2) # [B, N, 1, C],这个1加上就表示预测的是未来一个时刻 return prediction # Path: traffic_prediction.py import os import time import h5py import torch import numpy as np import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import warnings from torch.utils.data import DataLoader from traffic_dataset import LoadData from utils import Evaluation # 三种评价指标以及可视化类 from utils import visualize_result from gcnnet import GCN from chebnet import ChebNet from gat import GATNet from rich import print from tqdm import tqdm # @Time : 2020/8/25 # @Author : LeronQ # @github : https://github.com/LeronQ # Pytorch-基于GCN/GAT/Chebnet图神经网络实现的交通流预测(附代码): https://blog.csdn.net/yilulvxing/article/details/110306999 # traffic_prediction.py # 这个就是上一小节处理数据自己写的的类,封装在traffic_dataset.py文件中 warnings.filterwarnings('ignore') def main(): os.environ["CUDA_VISIBLE_DEVICES"] = "0" # 配置GPU,因为可能有多个GPU,这里用了第0号GPU # 第一步:准备数据(上一节已经准备好了,这里只是调用而已,链接在最开头) train_data = LoadData(data_path=["PeMS_04/PeMS04.csv", "PeMS_04/PeMS04.npz"], num_nodes=307, divide_days=[45, 14], time_interval=5, history_length=6, train_mode="train") # num_workers是加载数据(batch)的线程数目 train_loader = DataLoader( train_data, batch_size=32, shuffle=True, num_workers=4) test_data = LoadData(data_path=["PeMS_04/PeMS04.csv", "PeMS_04/PeMS04.npz"], num_nodes=307, divide_days=[45, 14], time_interval=5, history_length=6, train_mode="test") test_loader = DataLoader(test_data, batch_size=32, shuffle=False, num_workers=4) print("🚀🚀🚀 [italic bold green]数据加载完成!!!") # SECTION: 第二步:定义模型(这里其实只是加载模型,关于模型的定义在下面单独写了,先假设已经写好) my_net = GCN(in_c=6, hid_c=6, out_c=1) # 加载GCN模型 # my_net = ChebNet(in_c=6, hid_c=6, out_c=1, K=2) # 加载ChebNet模型 # my_net = GATNet(in_c=6 * 1, hid_c=6, out_c=1, n_heads=2) # 加载GAT模型 print(my_net) device = torch.device( "cuda" if torch.cuda.is_available() else "cpu") # 定义设备 my_net = my_net.to(device) # 模型送入设备 # 第三步:定义损失函数和优化器 criterion = nn.MSELoss() # 均方损失函数 # 没写学习率,表示使用的是默认的,也就是lr=1e-3 optimizer = optim.Adam(params=my_net.parameters()) # 第四步:训练+测试 # Train model Epoch = 20 # 训练的次数 my_net.train() # 打开训练模式 for epoch in tqdm(range(Epoch), colour="green", desc="Train"):
epoch_loss = 0.0
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: nickruggeri/hypergraph-message-passing # Path: src/data/representation/incidence_hypergraph.py class IncidenceHypergraph(BinaryHypergraph): """Representation of a binary hypergraph via its incidence matrix. The incidence matrix B is of size N x E, with N number of nodes in the hypergraph and E number of hyperedges. For each hyperedge e, the column of B with index e contains ones for the nodes belonging to the hyperedge e, zeros for all other nodes. """ def __init__( self, B: np.ndarray | sparse.spmatrix, sort_indices: bool = True, ): """ Parameters ---------- B: incidence matrix, of shape (N, E). sort_indices: sort the indices in the internal sparse matrix representation. """ self.B = self._check_and_convert_incidence(B, sort_indices) self.N, self.E = self.B.shape hye_lengths = self.B.sum(axis=0) hye_counter = dict(Counter(hye_lengths)) self.hye_count = hye_counter self.max_hye_size = max(hye_counter.keys()) def get_repr(self) -> TYPE_INCIDENCE: return self.B def get_binary_incidence_matrix(self) -> TYPE_INCIDENCE: return self.B def sub_hyg( self, hyperedge_idx: np.ndarray | None = None, ) -> IncidenceHypergraph: """Produce a sub-hypergraph where only the specified hyperedges are present. Parameters ---------- hyperedge_idx: the list of the hyperedges to keep, specified by their indices. Returns ------- The sub-hypergraph instance. """ if hyperedge_idx is None: return self B = self.B[:, hyperedge_idx] return IncidenceHypergraph(B) def __iter__(self) -> Iterable[np.ndarray]: return incidence_matrix_to_hye(self.B) def __str__(self): return f"{self.__class__.__name__} with N={self.N}, E={self.E}" @classmethod def load_from_txt( cls, hye_file: str | Path, N: int | None = None, ) -> IncidenceHypergraph: """Load a IncidenceHypergraph instance from a txt file, containing the list of hyperedges. Parameters ---------- hye_file: text file containing the hyperedges. N: number of nodes in the hypergraph. Returns ------- An instance of IncidenceHypergraph. """ with open(hye_file, "r") as file: hye = (map(int, line.split(" ")) for line in file.readlines()) return cls.load_from_hye_list(hye, N) @classmethod def load_from_hye_list( cls, hye_list: list[Iterable[int]], N: int | None ) -> IncidenceHypergraph: hye = list(set(tuple(sorted(set(hyperedge))) for hyperedge in hye_list)) shape = (N, len(hye)) if N else None B = hye_list_to_binary_incidence(hye, shape=shape) return IncidenceHypergraph(B) @staticmethod def _check_and_convert_incidence( incidence: np.ndarray | sparse.spmatrix, sort_indices: bool ) -> TYPE_INCIDENCE: incidence = TYPE_INCIDENCE(incidence) # When converting to other sparse types, repeated entries are summed. In such # case, there could be entries different from 1. Set them to 1. # Similarly, if a weighted matrix is provided as configurations, flatten all non-zero # entries to 1. if not np.all(incidence.data == 1): warnings.warn( "The configurations matrix contains elements different from 0 and 1. " "All non-zero elements will be converted to 1." ) incidence = incidence > 0 if not np.all(incidence.data == 1): raise ValueError("The incidence matrix can only contain 1 and 0 values.") if sort_indices: incidence.sort_indices() return incidence # Path: src/model/kappa.py def compute_C_prime(max_hye_size: int) -> float: r"""Compute the :math::`C'` constant defined as .. math:: C' := \sum_{d=2}^D \binom{N-2}{d-2} / \kappa_d where D is the maximum hyperedge size, N the number of nodes in the hypergraph, and :math::`\kappa_d` the normalizing constant. """ if max_hye_size in C_PRIME_VALS: return C_PRIME_VALS[max_hye_size] hye_dims = np.arange(2, max_hye_size + 1) c_prime = 2 * (1 / (hye_dims * (hye_dims - 1))).sum() C_PRIME_VALS[max_hye_size] = c_prime return c_prime # Path: src/model/kappa.py def compute_C_third(max_hye_size: int) -> float: r"""Compute the :math::`C'` constant defined as .. math:: C''' := \sum_{d=2}^D \frac{1-d}{\kappa_d} \binom{N-2}{d-2} / where D is the maximum hyperedge size, N the number of nodes in the hypergraph, and :math::`\kappa_d` the normalizing constant. """ hye_dims = np.arange(2, max_hye_size + 1) return -2 * (1 / hye_dims).sum() # Path: src/model/numerical.py def hyperedge_pi(hye_comm_counts: list[int], p: np.ndarray) -> float: r"""Compute the value of :math::`\pi_e` for a hyperedge :math::`e`. The value is defined as: .. math:: \pi_e := \sum_{i < j \in e} \p_{t_i t_j} where p is the affinity matrix and :math::`t_i` the community assignment of node i. Parameters ---------- hye_comm_counts: a list of length K, where K is the number of communities. Every entry a of the list contains the number of nodes in the hyperedge belonging to community a. p: symmetric affinity matrix of probabilities in [0, 1]. Returns ------- The value of :math::`\pi_e`. """ prob = 0 for a, b in itertools.combinations(range(len(hye_comm_counts)), 2): prob += p[a, b] * hye_comm_counts[a] * hye_comm_counts[b] for a, count in enumerate(hye_comm_counts): prob += p[a, a] * count * (count - 1) / 2 return prob # Path: src/model/numerical.py def sparse_reduce_lse( *args: sparse.csc_array | sparse.csr_array, ) -> sparse.csc_array | sparse.csr_array: """Perform the elementwise log-sum-exp operation on a sequence of sparse arrays. The arrays are assumed to have all the same pattern of non-zero entries, and to have sorted indices. """ data = np.stack([mat.data for mat in args], axis=1) lse_vals = special.logsumexp(data, axis=1) lse_mat = args[0].copy() lse_mat.data = lse_vals return lse_mat # Path: src/model/dynamic_updates.py def compute_psi_dynamic_programming( hypergraph: IncidenceHypergraph, model: "HypergraphBlockModel", mask: np.ndarray | None = None, ) -> list[sparse.coo_array]: """Compute the psi quantities via dynamic programming. "Message Passing on Hypergraphs: Detectability, Phase Transitions, and Higher-Order Information", Ruggeri et al. Parameters ---------- hypergraph: configurations hypergraph. model: configurations stochastic block model. mask: a boolean mask to compute the psi values only for specific (hyperedge, node) pairs. The mask needs to be a flattened boolean array with the same length as hypergraphs.get_binary_incidence_matrix().data Returns ------- The psi values, results of the dynamic programming recursions. """ # The incidence matrix needs to be in CSC sparse format, the rest of the code # doesn't work otherwise. incidence: sparse.csc_array = hypergraph.get_binary_incidence_matrix() assert isinstance(incidence, sparse.csc_array), "Incidence matrix is not CSC." # For coherence with the returned COO array at the end, the incidence matrix needs # to be in canonical sorted format. Otherwise, calling all_psi.tocsc() might result # in a matrix where non-zero indices do not correspond. assert incidence.has_sorted_indices, ( "The incidence matrix doesn't have a canonical sorted format. " "To fix this, call the sort_indices() method of scipy CSC matrices.", ) if mask is not None: assert mask.shape == (len(incidence.data),), ( f"The mask has shape {mask.shape}, " f"different from the incidence matrix data {incidence.data.shape}" ) log_node_to_hye = [x.tocsc() for x in model.log_node_to_hye] K = model.K def hyperedge_psi_(hye: int): nodes, psi = hyperedge_psi( incidence, hye, model.p, log_node_to_hye, eta_tilde=False, mask=mask, ) return hye, nodes, psi res = Parallel(n_jobs=N_JOBS)( delayed(hyperedge_psi_)(hye) for hye in range(hypergraph.E) ) nonzeros = mask.sum() if mask is not None else incidence.nnz hye_idx = np.zeros(nonzeros) node_idx = np.zeros(nonzeros) psi_vals = np.zeros((nonzeros, K)) idx = itertools.count() for hye, nodes, psi in res: for i, node in enumerate(nodes): idx_ = next(idx) hye_idx[idx_] = hye node_idx[idx_] = node psi_vals[idx_, :] = psi[i, :] all_psi = [ sparse.coo_array( (psi_vals[:, a], (node_idx, hye_idx)), shape=(hypergraph.N, hypergraph.E), ) for a in range(K) ] return all_psi # Path: src/model/dynamic_updates.py def compute_psi_tilde_dynamic_programming( hypergraph: IncidenceHypergraph, model: "HypergraphBlockModel", ) -> np.ndarray: """Compute the psi quantities via dynamic programming. "Message Passing on Hypergraphs: Detectability, Phase Transitions, and Higher-Order Information", Ruggeri et al. Parameters ---------- hypergraph: configurations hypergraph. model: configurations stochastic block model. Returns ------- The psi tilde values, results of the dynamic programming recursions. """ # Here we are assuming the incidence to be a CSC sparse array, the rest of the code # doesn't work otherwise. incidence: sparse.csc_array = hypergraph.get_binary_incidence_matrix() assert isinstance( incidence, sparse.csc_array ), "Incidence matrix is not is CSC sparse format." log_node_to_hye = [x.tocsc() for x in model.log_node_to_hye] def hyperedge_psi_(hye): psi_tilde = hyperedge_psi( incidence, hye, model.p, log_node_to_hye, eta_tilde=True ) return hye, psi_tilde res = Parallel(n_jobs=N_JOBS)( delayed(hyperedge_psi_)(hye) for hye in range(hypergraph.E) ) all_psi = np.zeros(hypergraph.E) for hye, psi_val in res: all_psi[hye] = psi_val return all_psi # Path: src/model/hypergraph_block_model.py import logging import numpy as np from collections import Counter from typing import Iterable from scipy import sparse, special from src.data.representation.incidence_hypergraph import IncidenceHypergraph from src.model.kappa import compute_C_prime, compute_C_third from src.model.numerical import hyperedge_pi, sparse_reduce_lse from .dynamic_updates import ( compute_psi_dynamic_programming, compute_psi_tilde_dynamic_programming, ) absolute change in log-marginals below the mp_thresh, the message passing procedure is stopped. seed: random seed. warm_start: whether to re-initialize the messages and marginal beliefs. """ logging.info("\tMessage passing...") if seed is not None: self.rng = np.random.default_rng(seed) self._check_hypergraph_vs_model_params(hypergraph) all_messages_init = ( self.log_hye_to_node is not None and self.log_node_to_hye is not None and self.log_marginals is not None and self.external_field is not None ) if not warm_start or not all_messages_init: alpha = 10.0 * self.K if dirichlet_alpha is None else dirichlet_alpha self._init_message_passing(hypergraph, dirichlet_alpha=alpha) logging.debug( f"\t\tInitialized hye to node:\n{self.log_hye_to_node[0].data[:5]}" ) logging.debug( f"\t\tInitialized node to hye:\n{self.log_node_to_hye[0].data[:5]}" ) logging.debug(f"\t\tInitialized marginals:\n{self.log_marginals[:5]}") logging.debug(f"\t\tInitialized external field:\n{self.external_field}") self.log_marginal_diff.append(list()) patience_count = 0 for i in range(mp_iter): old_log_marginals = self.log_marginals.copy() self._parallel_message_passing_step(hypergraph, dropout) self.log_marginal_diff[-1].append( np.abs(old_log_marginals - self.log_marginals).sum() ) logging.info( f"\t\tMP step {i} - difference in log-marginals from previous iter: " f"{self.log_marginal_diff[-1][-1]}" ) if self.log_marginal_diff[-1][-1] <= mp_thresh: patience_count += 1 else: patience_count = 0 if patience_count == patience: logging.info( "\tMessage passing threshold passed. Message passing terminated." ) break def _parallel_message_passing_step( self, hypergraph: IncidenceHypergraph, dropout: float = 0.99, ) -> None: """Perform one step of message passing, updating the messages from nodes to factors, the messages from factors to nodes, the marginal probabilities and external field.""" inc = hypergraph.get_binary_incidence_matrix() # Update node to hye. new_node_to_hye = [None] * self.K for assignment in range(self.K): col_sum = self.log_hye_to_node[assignment].sum(axis=1) assert col_sum.shape == (self.N,) col_sum += np.log(self.n[assignment]) - self.external_field[assignment] col_sum = col_sum.reshape((self.N, 1)) new_node_to_hye[assignment] = ( TYPE_HYE_TO_NODE(inc * col_sum) - self.log_hye_to_node[assignment] ) norm = sparse_reduce_lse(*new_node_to_hye) for assignment in range(self.K): new_node_to_hye[assignment].data -= norm.data new_node_to_hye[assignment].data = np.clip( new_node_to_hye[assignment].data, a_min=CLIP_MIN, a_max=CLIP_MAX ) # TODO dropout could be made more efficient here. Do it or not? if dropout > 0: non_dropout_mask = ( self.rng.random(len(self.log_node_to_hye[0].data)) >= dropout ) for assignment in range(self.K): self.log_node_to_hye[assignment].data[ non_dropout_mask ] = new_node_to_hye[assignment].data[non_dropout_mask] else: for assignment in range(self.K): self.log_node_to_hye[assignment].data = new_node_to_hye[assignment].data logging.debug(f"\t\tUpdated node to hye:\n{self.log_node_to_hye[0].data[:5]}") # Update hye to node. if dropout > 0: non_dropout_mask = ( self.rng.random(len(self.log_hye_to_node[0].data)) >= dropout ) else: non_dropout_mask = None new_hye_to_node = [ TYPE_HYE_TO_NODE(x) for x in compute_psi_dynamic_programming( hypergraph=hypergraph, model=self, mask=non_dropout_mask, ) ] norm = sparse_reduce_lse(*new_hye_to_node) for assignment in range(self.K): new_hye_to_node[assignment].data -= norm.data new_hye_to_node[assignment].data = np.clip( new_hye_to_node[assignment].data, a_min=CLIP_MIN, a_max=CLIP_MAX ) for assignment in range(self.K):
self.log_hye_to_node[assignment].data[non_dropout_mask] = new_hye_to_node[
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: oVo-HxBots/URLUploadBot # Path: Uploader/script.py class Translation(object): START_TEXT = """ Hi {} I am Powerful Url Uploader Bot """ HELP_TEXT = """ # Send me the Google Drive | ytdl | direct links. # Select the desired option. # Then be relaxed your file will be uploaded soon.. """ # give credit to developer ABOUT_TEXT = """ <b>♻️ My Name</b> : Url Uploader Bot <b>🌀 Channel</b> : <a href="https://t.me/TMWAD">@TMWAD</a> <b>🌺 Heroku</b> : <a href="https://heroku.com/">Heroku</a> <b>📑 Language :</b> <a href="https://www.python.org/">Python 3.10.5</a> <b>🇵🇲 Framework :</b> <a href="https://docs.pyrogram.org/">Pyrogram 2.0.30</a> <b>👲 Developer :</b> <a href="https://t.me/kinu6">@kinu6</a> """ PROGRESS = """ 🔰 Speed : {3}/s\n\n 🌀 Done : {1}\n\n 🎥 Tᴏᴛᴀʟ sɪᴢᴇ : {2}\n\n ⏳ Tɪᴍᴇ ʟᴇғᴛ : {4}\n\n """ ID_TEXT = """ 🆔 Your Telegram ID 𝐢𝐬 :- <code>{}</code> """ INFO_TEXT = """ 🤹 First Name : <b>{}</b> 🚴‍♂️ Second Name : <b>{}</b> 🧑🏻‍🎓 Username : <b>@{}</b> 🆔 Telegram Id : <code>{}</code> 📇 Profile Link : <b>{}</b> 📡 Dc : <b>{}</b> 📑 Language : <b>{}</b> 👲 Status : <b>{}</b> """ START_BUTTONS = InlineKeyboardMarkup( [[ InlineKeyboardButton('❓ Help', callback_data='help'), InlineKeyboardButton('🦊 About', callback_data='about') ], [ InlineKeyboardButton('📛 Close', callback_data='close') ]] ) HELP_BUTTONS = InlineKeyboardMarkup( [[ InlineKeyboardButton('🏠 Home', callback_data='home'), InlineKeyboardButton('🦊 About', callback_data='about') ], [ InlineKeyboardButton('📛 Close', callback_data='close') ]] ) ABOUT_BUTTONS = InlineKeyboardMarkup( [[ InlineKeyboardButton('🏠 Home', callback_data='home'), InlineKeyboardButton('❓ Help', callback_data='help') ], [ InlineKeyboardButton('📛 Close', callback_data='close') ]] ) BUTTONS = InlineKeyboardMarkup( [[ InlineKeyboardButton('📛 Close', callback_data='close') ]] ) FORMAT_SELECTION = "Now Select the desired formats" SET_CUSTOM_USERNAME_PASSWORD = """""" DOWNLOAD_START = "Trying to Download ⌛\n\n <i>{} </i>" UPLOAD_START = "<i>{} </i>\n\n📤 Uploading Please Wait " RCHD_TG_API_LIMIT = "Downloaded in {} seconds.\nDetected File Size: {}\nSorry. But, I cannot upload files greater than 2GB due to Telegram API limitations." AFTER_SUCCESSFUL_UPLOAD_MSG_WITH_TS = "Dᴏᴡɴʟᴏᴀᴅᴇᴅ ɪɴ {} sᴇᴄᴏɴᴅs.\n\nTʜᴀɴᴋs Fᴏʀ Usɪɴɢ Mᴇ\n\nUᴘʟᴏᴀᴅᴇᴅ ɪɴ {} sᴇᴄᴏɴᴅs" FF_MPEG_DEL_ETED_CUSTOM_MEDIA = "✅ Media cleared succesfully." CUSTOM_CAPTION_UL_FILE = " " NO_VOID_FORMAT_FOUND = "ERROR... <code>{}</code>" SLOW_URL_DECED = "Gosh that seems to be a very slow URL. Since you were screwing my home, I am in no mood to download this file. Meanwhile, why don't you try this:==> https://shrtz.me/PtsVnf6 and get me a fast URL so that I can upload to Telegram, without me slowing down for other users." # Path: Uploader/functions/ran_text.py def random_char(y): return ''.join(random.choice(string.ascii_letters) for _ in range(y)) # Path: Uploader/functions/display_progress.py async def progress_for_pyrogram( current, total, ud_type, message, start ): now = time.time() diff = now - start if round(diff % 10.00) == 0 or current == total: # if round(current / total * 100, 0) % 5 == 0: percentage = current * 100 / total speed = current / diff elapsed_time = round(diff) * 1000 time_to_completion = round((total - current) / speed) * 1000 estimated_total_time = elapsed_time + time_to_completion elapsed_time = TimeFormatter(milliseconds=elapsed_time) estimated_total_time = TimeFormatter(milliseconds=estimated_total_time) progress = "[{0}{1}] \nP: {2}%\n".format( ''.join(["◾" for _ in range(math.floor(percentage / 5))]), ''.join(["◽" for _ in range(20 - math.floor(percentage / 5))]), round(percentage, 2), ) tmp = progress + "{0} of {1}\n\nSpeed: {2}/s\n\nETA: {3}\n\n".format( humanbytes(current), humanbytes(total), humanbytes(speed), # elapsed_time if elapsed_time != '' else "0 s", estimated_total_time if estimated_total_time != '' else "0 s" ) try: await message.edit(text=f"{ud_type}\n {tmp}") except Exception as e: logger.info(f"Error {e}") return # Path: Uploader/functions/display_progress.py def humanbytes(size): # https://stackoverflow.com/a/49361727/4723940 # 2**10 = 1024 if not size: return "" power = 2**10 n = 0 Dic_powerN = {0: ' ', 1: 'K', 2: 'M', 3: 'G', 4: 'T'} while size > power: size /= power n += 1 return f"{str(round(size, 2))} {Dic_powerN[n]}B" # Path: Uploader/button.py import os import json import time import shutil import asyncio import logging import subprocess from pyrogram.types import * from datetime import datetime from Uploader.utitles import * from Uploader.config import Config from sample_config import Config from Uploader.script import Translation from Uploader.functions.ran_text import random_char from Uploader.functions.display_progress import progress_for_pyrogram, humanbytes logger.info(t_response) ad_string_to_replace = "please report this issue on https://github.com/kalanakt/All-Url-Uploader/issues" if e_response and ad_string_to_replace in e_response: error_message = e_response.replace(ad_string_to_replace, "") await update.message.edit_caption( text=error_message ) return False if t_response: logger.info(t_response) try: os.remove(save_ytdl_json_path) except FileNotFoundError as exc: pass end_one = datetime.now() time_taken_for_download = (end_one - start).seconds file_size = Config.TG_MAX_FILE_SIZE + 1 try: file_size = os.stat(download_directory).st_size except FileNotFoundError as exc: download_directory = os.path.splitext( download_directory)[0] + "." + "mkv" # https://stackoverflow.com/a/678242/4723940 file_size = os.stat(download_directory).st_size download_location = f"{Config.DOWNLOAD_LOCATION}/{update.from_user.id}.jpg" thumb = download_location if os.path.isfile( download_location) else None if ((file_size > Config.TG_MAX_FILE_SIZE)): await update.message.edit_caption( caption=Translation.RCHD_TG_API_LIMIT.format( time_taken_for_download, humanbytes(file_size)) ) else: await update.message.edit_caption( caption=Translation.UPLOAD_START.format(custom_file_name) ) start_time = time.time() if tg_send_type == "video": width, height, duration = await Mdata01(download_directory) await update.message.reply_video( # chat_id=update.message.chat.id, video=download_directory, caption=description, duration=duration, width=width, height=height, supports_streaming=True, thumb=thumb, # reply_to_message_id=update.id, progress=progress_for_pyrogram, progress_args=( Translation.UPLOAD_START, update.message, start_time ) ) elif tg_send_type == "audio": duration = await Mdata03(download_directory) await update.message.reply_audio( # chat_id=update.message.chat.id, audio=download_directory, caption=description, duration=duration, thumb=thumb, # reply_to_message_id=update.id, progress=progress_for_pyrogram, progress_args=( Translation.UPLOAD_START, update.message, start_time ) ) elif tg_send_type == "vm": width, duration = await Mdata02(download_directory) await update.message.reply_video_note( # chat_id=update.message.chat.id, video_note=download_directory, duration=duration, length=width, thumb=thumb, # reply_to_message_id=update.id, progress=progress_for_pyrogram, progress_args=( Translation.UPLOAD_START, update.message, start_time ) ) else: await update.message.reply_document( # chat_id=update.message.chat.id, document=download_directory, caption=description, # parse_mode=enums.ParseMode.HTML, # reply_to_message_id=update.id, thumb=thumb, progress=progress_for_pyrogram, progress_args=( Translation.UPLOAD_START, update.message, start_time ) ) end_two = datetime.now() time_taken_for_upload = (end_two - end_one).seconds try: shutil.rmtree(tmp_directory_for_each_user) except Exception: pass await update.message.edit_caption( caption=Translation.AFTER_SUCCESSFUL_UPLOAD_MSG_WITH_TS.format(
time_taken_for_download, time_taken_for_upload)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: kramerlab/PeerLearning # Path: dqn_peer.py class DQNPeer(make_peer_class(DQN)): """ A DQN version to be used with peer learning. Therefore, it features a critic function """ def critic(self, observations, actions): q_values = self.q_net(observations).reshape(len(actions), -1, 1) tmp = q_values[range(len(actions)), actions, :] return tmp, tmp # SAC critic outputs multiple values, so this need # to do the same def get_action(self, *args, **kwargs): action, _ = super().get_action(*args, **kwargs) return action.reshape(-1), _ # Path: peer.py class PeerGroup: """ A group of peers who train together. """ def __init__(self, peers, use_agent_values=False, init_agent_values=200., lr=0.95, switch_ratio=0, use_advantage=False, max_peer_epochs=1_000_000_000): """ :param peers: An iterable of peer agents :param lr: The learning rate for trust and agent values :param switch_ratio: switch_ratio == 0 means no switching :param use_advantage: use advantage instead of value for AV updates """ self.peers = peers self.lr = lr self.switch_ratio = switch_ratio self.active_peer = None # index of currently learning peer self.solo_epoch = False self.use_advantage = use_advantage self.max_peer_epochs = max_peer_epochs if use_agent_values: self.agent_values = np.full(len(peers), init_agent_values, dtype=np.float32) key = "agent_values" for peer in peers: peer.n_peers = len(peers) peer.group = self # setup agent values if use_agent_values: peer.peer_values[key] = self.agent_values # noqa (Eq. 6) peer.peer_value_functions[key] = self._update_agent_values def _update_agent_values(self, batch_size=10): """ Updates the agent values with samples from the peers' buffers""" targets = np.zeros_like(self.peers, dtype=np.float32) counts = np.zeros_like(self.peers, dtype=np.float32) for peer in self.peers: bs = batch_size // len(self.peers) # reward, action, peer, new_obs, old_obs if peer.buffer is not None: batch = peer.buffer.sample(bs) if batch is None: # buffer not sufficiently full return obs = np.array([b[3] for b in batch]).reshape(bs, -1) v = peer.value(obs) if self.use_advantage: # previous observations prev_obs = np.array([b[4] for b in batch]).reshape(bs, -1) prev_v = peer.value(prev_obs) else: prev_v = np.zeros_like(v) # no advantage (see Eq. 5) for i in range(len(batch)): # Eq. 8 target = (batch[i][0] + peer.gamma * v[i]) - prev_v[i] counts[batch[i][2]] += 1 targets[batch[i][2]] += target # ensure counts are >= 1, don't change these values targets[counts == 0] = self.agent_values[counts == 0] counts[counts == 0] = 1 targets /= counts self.agent_values += self.lr * (targets - self.agent_values) # Eq. 7 def learn(self, n_epochs, max_epoch_len, callbacks, **kwargs): """ The outer peer learning routine. """ assert len(callbacks) == len(self.peers) # more solo epochs boost_single = 0 < self.switch_ratio < 1 if boost_single: self.switch_ratio = 1 / self.switch_ratio self.solo_epoch = False peer_epochs = 0 for i in range(n_epochs): # don't do peer learning forever if peer_epochs < self.max_peer_epochs: # ratio of 0 never performs a solo episode if (i % (1 + self.switch_ratio) == 1) ^ boost_single: self.solo_epoch = True else: peer_epochs += 1 else: # budget spent self.solo_epoch = True for p, peer, callback in zip(it.count(), self.peers, callbacks): self.active_peer = p peer.learn(self.solo_epoch, total_timesteps=max_epoch_len, callback=callback, tb_log_name=f"Peer{p}", reset_num_timesteps=False, log_interval=None, **kwargs) # update epoch for temperature decay peer.epoch += 1 self.active_peer = None def __len__(self): return len(self.peers) # Path: peer.py def make_peer_class(cls: Type[OffPolicyAlgorithm]): """ Creates a mixin with the corresponding algorithm class. :param cls: The learning algorithm (needs to have a callable critic). :return: The mixed in peer agent class. """ class Peer(cls, ABC): """ Abstract Peer class needs to be mixed with a suitable algorithm. """ def __init__(self, temperature, temp_decay, algo_args, env, use_trust=False, use_critic=False, init_trust_values=200, buffer_size=1000, follow_steps=10, seed=None, use_trust_buffer=True, solo_training=False, peers_sample_with_noise=False, sample_random_actions=False, sample_from_suggestions=True, epsilon=0.0, env_args=None, only_follow_peers=False): if env_args is None: env_args = {} super(Peer, self).__init__(**algo_args, env=make_env(env, **env_args), seed=seed) # create noise matrix on the correct device if hasattr(self.actor, "reset_noise"): self.actor.reset_noise(self.env.num_envs) self.solo_training = solo_training self.init_values = dict() # store all peer values, e.g., trust and agent values in a dict self.peer_values = dict() # store corresponding functions as well self.peer_value_functions = dict() self.buffer = SuggestionBuffer(buffer_size) self.followed_peer = None self.__n_peers = None self.group = None self.epoch = 0 if sample_random_actions: epsilon = 1.0 if not solo_training: # all peers suggest without noise self.peers_sample_with_noise = peers_sample_with_noise # actions are sampled instead of taken greedily self.sample_actions = sample_from_suggestions self.epsilon = epsilon self.use_critic = use_critic if use_trust: self.trust_values = np.array([]) self.init_values["trust"] = init_trust_values self.peer_value_functions["trust"] = self._update_trust self.use_buffer_for_trust = use_trust_buffer # sampling parameters self.temperature = temperature self.temp_decay = temp_decay self.follow_steps = follow_steps self.steps_followed = 0 self.only_follow_peers = only_follow_peers @property def n_peers(self): return self.__n_peers @n_peers.setter def n_peers(self, n_peers): self.__n_peers = n_peers # Also reset the trust values if "trust" in self.init_values.keys(): self.trust_values = np.full(self.__n_peers, self.init_values["trust"], dtype=np.float32) self.peer_values["trust"] = self.trust_values def critique(self, observations, actions) -> np.array: """ Evaluates the actions with the critic. """ with torch.no_grad(): a = torch.as_tensor(actions, device=self.device) o = torch.as_tensor(observations, device=self.device) # Compute the next Q values: min over all critic targets q_values = torch.cat(self.critic(o, a), dim=1) # noqa q_values, _ = torch.min(q_values, dim=1, keepdim=True) return q_values.cpu().numpy() def get_action(self, obs, deterministic=False): """ The core function of peer learning acquires the suggested actions of the peers and chooses one based on the settings. """ # follow peer for defined number of steps followed_steps = self.steps_followed self.steps_followed += 1 self.steps_followed %= self.follow_steps if 0 < followed_steps: peer = self.group.peers[self.followed_peer] det = (peer != self and not self.peers_sample_with_noise) or \ deterministic action, _ = peer.policy.predict(obs, deterministic=det) return action, None # get actions actions = [] for peer in self.group.peers: # self always uses exploration, the suggestions of the other # peers only do if the critic method isn't used. det = (peer != self and not self.peers_sample_with_noise) or \ deterministic action, _ = peer.policy.predict(obs, deterministic=det) actions.append(action) actions = np.asarray(actions).squeeze(1) # critic (Eq. 3) if self.use_critic: observations = np.tile(obs, (self.n_peers, 1)) q_values = self.critique(observations, actions).reshape(-1) self.peer_values['critic'] = q_values # part of Eq. 9 # calculate peer values, e.g., trust and agent values values = np.zeros(self.n_peers) for key in self.peer_values.keys(): # part of Eq. 9 incl. Footnote 7 values += self.__normalize(self.peer_values[key]) if self.sample_actions: # sample action from probability distribution (Eq. 2) temp = self.temperature * np.exp(-self.temp_decay * self.epoch) p = np.exp(values / temp) p /= np.sum(p) self.followed_peer = np.random.choice(self.n_peers, p=p) elif self.only_follow_peers: p = np.full(self.n_peers, 1 / (self.n_peers - 1)) p[self.group.peers.index(self)] = 0 self.followed_peer = np.random.choice(self.n_peers, p=p) else: # act (epsilon) greedily if np.random.random(1) >= self.epsilon: self.followed_peer = np.argmax(values) else: self.followed_peer = np.random.choice(self.n_peers) action = actions[self.followed_peer].reshape(1, -1) return action, None @staticmethod def __normalize(values): """ Normalize the values based on their absolute maximum. """ return values / np.max(np.abs(values)) def value(self, observations) -> np.ndarray: """ Calculates the value of the observations. """ actions, _ = self.policy.predict(observations, False) return self.critique(observations, actions) def _update_trust(self, batch_size=10): """ Updates the trust values with samples from the buffer. (Eq. 5 and 8) """ if self.use_buffer_for_trust: batch = self.buffer.sample(batch_size) else: batch = self.buffer.latest() batch_size = 1 if batch is None: # buffer not sufficiently full return # next observations obs = np.array([b[3] for b in batch]).reshape(batch_size, -1) v = self.value(obs) if self.group.use_advantage: # previous observations prev_obs = np.array([b[4] for b in batch]).reshape(batch_size, -1) prev_v = self.value(prev_obs) else: prev_v = np.zeros_like(v) # no comparison to own act (Eq. 5) targets = np.zeros(self.n_peers) counts = np.zeros(self.n_peers) for i in range(batch_size): target = (batch[i][0] + self.gamma * v[i]) - prev_v[i] # Eq. 8 counts[batch[i][2]] += 1 targets[batch[i][2]] += target # ensure counts are >= 1, don't change these values targets[counts == 0] = self.trust_values[counts == 0] counts[counts == 0] = 1 targets /= counts # Eq. 4 self.trust_values += self.group.lr * (targets - self.trust_values) def _on_step(self): """ Adds updates of the peer values, e.g., trust or agent values. """ super(Peer, self)._on_step() # noqa if not self.group.solo_epoch: # update values, e.g., trust and agent values after ever step for key in self.peer_value_functions.keys(): self.peer_value_functions[key]() def _store_transition(self, replay_buffer, buffer_action, new_obs, reward, dones, infos): """ Adds suggestion buffer handling. """ # get previous observations old_obs = self._last_obs super(Peer, self)._store_transition(replay_buffer, # noqa buffer_action, new_obs, reward, dones, infos) if not self.group.solo_epoch: # store transition in suggestion buffer as well self.buffer.add(reward, buffer_action, self.followed_peer, new_obs, old_obs) def _predict_train(self, observation, state=None, episode_start=None, deterministic=False): """ The action selection during training involves the peers. """ if deterministic: return self.policy.predict(observation, state=state, episode_start=episode_start, deterministic=deterministic) else: return self.get_action(observation) def learn(self, solo_episode=False, **kwargs): """ Adds action selection with help of peers. """ predict = self.predict # safe for later # use peer suggestions only when wanted if not (self.solo_training or solo_episode): self.predict = self._predict_train else: self.followed_peer = self.group.peers.index(self) result = super(Peer, self).learn(**kwargs) self.predict = predict # noqa return result def _excluded_save_params(self): """ Excludes attributes that are functions. Otherwise, the save method fails. """ ex_list = super(Peer, self)._excluded_save_params() ex_list.extend(["peer_value_functions", "peer_values", "group", "predict"]) return ex_list return Peer # Path: callbacks.py class PeerEvalCallback(EvalCallback): """ Callback to track collective measurements about peers. .. warning:: When using multiple environments, each call to ``env.step()`` will effectively correspond to ``n_envs`` steps. To account for that, you can use ``eval_freq = max(eval_freq // n_envs, 1)`` :param peer_group: The group of peers :param eval_env: The environment used for initialization :param n_eval_episodes: The number of episodes to test the agent :param eval_freq: Evaluate the agent every ``eval_freq`` call of the callback. :param log_path: Path to a folder where the evaluations (``evaluations.npz``) will be saved. It will be updated at each evaluation. :param deterministic: Whether the evaluation should use a stochastic or deterministic actions. :param render: Whether to render or not the environment during evaluation :param verbose: :param warn: Passed to ``evaluate_policy`` (warns if ``eval_env`` has not been wrapped with a Monitor wrapper) """ def __init__( self, peer_group: PeerGroup, eval_envs: List[Union[gym.Env, VecEnv]], n_samples=100, **kwargs ): self.peer_group = peer_group self.eval_envs = eval_envs self.n_samples = n_samples self.last_logged_matrix = None self.follow_matrix = np.zeros((len(peer_group), len(peer_group))) self.start_time = time.time() super().__init__(**kwargs) def _on_step(self) -> bool: self.accumulate_followed_peers() # needs to be done at every step # log time for debugging etc. self.logger.record("time/time_elapsed", time.time() - self.start_time, exclude="tensorboard") super()._on_step() if self.eval_freq > 0 and self.n_calls % self.eval_freq == 0: if 'agent_values' in self.peer_group.__dict__: self.track_agent_values() if 'trust_values' in self.peer_group.peers[0].__dict__: self.track_trust_values() self.track_followed_agent(self.peer_group.active_peer) peer = self.peer_group.active_peer eval_values = { f"Peer{peer}_0/eval/mean_reward": self.last_mean_reward, } if peer == len(self.peer_group) - 1: eval_values["global_step"] = self.n_calls wandb.log(eval_values, commit=True) else: wandb.log(eval_values, commit=False) return True def track_agent_values(self): n_agents = len(self.peer_group.peers) for i in range(n_agents): agent_value = self.peer_group.agent_values[i] wandb.log({'Peer{}_0/eval/agent_value'.format(i): agent_value}, commit=False) return True def track_trust_values(self): peer = self.peer_group.active_peer trust_i = self.peer_group.peers[peer].trust_values for j, el in np.ndenumerate(trust_i): wandb.log({'Peer{}_0/eval/trust_{}'.format(peer, j[0]): el}, commit=False) return True def accumulate_followed_peers(self): peer = self.peer_group.active_peer followed_peer = self.peer_group.peers[peer].followed_peer if followed_peer is not None: self.follow_matrix[peer, followed_peer] += 1 def track_followed_agent(self, active_peer): if self.last_logged_matrix is None: diff = self.follow_matrix else: diff = self.follow_matrix - self.last_logged_matrix for (followed_peer,), count in np.ndenumerate( self.follow_matrix[active_peer]): wandb.log({'Peer{}_0/eval/follow_count{}'.format( active_peer, followed_peer): count}, commit=False) # also log difference wandb.log({'Peer{}_0/eval/follow_count_{}diff'.format( active_peer, followed_peer): diff[active_peer, followed_peer]}, commit=False) self.last_logged_matrix = np.copy(self.follow_matrix) def commit_global_step(self, timesteps): if self.peer_group.active_peer == len(self.peer_group) - 1: eval_values = {"global_step": self.n_calls + self.eval_freq} wandb.log(eval_values, commit=True) self.n_calls += timesteps # Path: utils.py def str2bool(v): if isinstance(v, bool): return v if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') # Path: utils.py def add_default_values_to_parser(parser): parser.add_argument("--job_id", type=str, default=wandb.util.generate_id()) parser.add_argument("--agent-count", type=int, help="Number of agents.", default=4) parser.add_argument("--device", type=str, default="auto", choices=["cpu", "cuda", "auto"], help="Device to use, either 'cpu', 'cuda' for GPU or " "'auto'.") parser.add_argument("--env", type=str, default="HalfCheetahBulletEnv-v0", help="OpenAI Gym environment to perform algorithm on.") parser.add_argument("--env_args", action=StoreDictKeyPair, nargs='*', metavar="KEY=VAL", default={}) parser.add_argument("--seed", type=int, default=1, help="Random seed in [0, 2 ** 32)") parser.add_argument("--wandb", type=str, default='offline', choices=["online", "offline", "disabled"]) parser.add_argument("--discrete-actions", type=str2bool, nargs="?", const=False, default=False) parser.add_argument("--save-dir", type=Path, default=Path.cwd().joinpath("Experiments")) # Agents agent_parser = parser.add_argument_group("Agent") agent_parser.add_argument("--mix-agents", type=str, nargs='*', default=["SAC"]) agent_parser.add_argument("--net-arch", type=int, nargs='*', action='append') agent_parser.add_argument("--load_paths", type=str, nargs='*', default=[]) agent_parser.add_argument("--agents_to_store", type=int, nargs='*', default=[]) return parser # Path: utils.py def log_reward_avg_in_wandb(callbacks): results = [] for callback in callbacks: eval_callback = callback[-1] result = eval_callback.evaluations_results results.append(np.mean(result)) wandb.log({'reward_avg': np.mean(results)}) # Path: utils.py def add_default_values_to_train_parser(training_parser): training_parser.add_argument("--steps", type=int, default=3_000_000, help="Total number of time steps to train " "the agent.") training_parser.add_argument("--eval-interval", type=int, default=10_000, help="Interval in time steps between " "evaluations.") training_parser.add_argument("--n-eval-episodes", type=int, default=10, help="Number of episodes for each " "evaluation.") training_parser.add_argument("--buffer-size", type=int, default=1_000_000) training_parser.add_argument("--buffer-start-size", type=int, default=1_000, help="Minimum replay buffer size before " "performing gradient updates.") training_parser.add_argument("--batch-size", type=int, default=100, help="Minibatch size") training_parser.add_argument("--min-epoch-length", type=int, default=10_000, help="Minimal length of a training_parser " "epoch.") training_parser.add_argument("--learning_rate", type=str2func, nargs='*', default=[3e-4], help='Learning rate for adam optimizer, ' 'the same learning rate will be used ' 'for all networks (Q-Values, Actor and ' 'Value function) it can be a function' ' of the current progress remaining ' '(from 1 to 0)') training_parser.add_argument("--tau", type=float, default=0.005) training_parser.add_argument("--gamma", type=float, default=0.99) training_parser.add_argument("--gradient_steps", type=int, default=1) training_parser.add_argument("--train_freq", type=int, default=1) training_parser.add_argument("--target_update_interval", type=int, default=1) dqn_parser = training_parser.add_argument_group("DQN") dqn_parser.add_argument("--exploration-fraction", type=float, default=0.1) dqn_parser.add_argument("--exploration-final-eps", type=float, default=0.05) return training_parser # Path: utils.py def new_random_seed(): return np.random.randint(np.iinfo(np.int32).max) # Path: utils.py def make_env(env_str, n_envs=1, **env_args): envs = [] for _ in range(n_envs): def env_func(): env = Monitor(gym.make(env_str, **env_args)) env.seed(new_random_seed()) return env envs.append(env_func) return DummyVecEnv(envs) # Path: utils.py class ControllerArguments: def __init__(self, number_agents): self.number_agents = number_agents def argument_for_every_agent(self, arguments, i): if type(arguments) is list: if len(arguments) == 1: return arguments[0] elif len(arguments) == self.number_agents: return arguments[i] else: raise AssertionError(f'number of arguments ({len(arguments)}) ' f'has to be 1 or == number of agents ' f'({self.number_agents}) input is' f' {arguments}') else: raise AssertionError(f'input is not a list input is{arguments} ' f'{type(arguments)}') # Path: run_peer.py import argparse import datetime import gym import wandb import predefined_agents # noqa: F401 import env as local_envs # noqa: F401 from pathlib import Path from stable_baselines3 import SAC, TD3 from stable_baselines3.common.utils import set_random_seed, \ update_learning_rate from wandb.integration.sb3 import WandbCallback from dqn_peer import DQNPeer from peer import PeerGroup, make_peer_class from callbacks import PeerEvalCallback from utils import str2bool, add_default_values_to_parser, \ log_reward_avg_in_wandb, add_default_values_to_train_parser, \ new_random_seed, make_env, ControllerArguments def add_args(): # create arg parser parser = argparse.ArgumentParser(description="Peer learning.") # General parser.add_argument("--save-name", type=str, default="delete_me") parser = add_default_values_to_parser(parser) # Training training = parser.add_argument_group("Training") add_default_values_to_train_parser(training) # Peer Learning peer_learning = parser.add_argument_group("Peer Learning") peer_learning.add_argument("--follow-steps", type=int, default=10) peer_learning.add_argument("--switch-ratio", type=float, default=1, help="How many times peer training compared to " "solo training Ratio of peer learning " "episodes to solo episodes; 0 -> only " "peer learning episodes." "ratio 0 {'solo': 0, 'peer': 100}" "ratio 0.2 {'solo': 83, 'peer': 17}" "ratio 0.25 {'solo': 80, 'peer': 20}" "ratio 0.333333 {'solo': 75, 'peer': 25}" "ratio 0.5 {'solo': 67, 'peer': 33}" "ratio 1 {'solo': 50, 'peer': 50}" "ratio 2 {'solo': 33, 'peer': 67}" "ratio 3 {'solo': 25, 'peer': 75}" "ratio 4 {'solo': 20, 'peer': 80}" "ratio 5 {'solo': 17, 'peer': 83}") peer_learning.add_argument("--peer-learning", type=str2bool, nargs="?", const=True, default=True) peer_learning.add_argument("--peers-sample-with-noise", type=str2bool, nargs="?", const=True, default=True) peer_learning.add_argument("--use-agent-value", type=str2bool, nargs="?", const=True, default=True) peer_learning.add_argument("--use-trust", type=str2bool, nargs="?", const=True, default=True) peer_learning.add_argument("--use-trust-buffer", type=str2bool, nargs="?", const=True, default=True) peer_learning.add_argument("--trust-buffer-size", type=int, default=1000) peer_learning.add_argument("--use-critic", type=str2bool, nargs="?", const=True, default=True) peer_learning.add_argument("--sample_random_actions", type=str2bool, nargs="?", const=True, default=False)
peer_learning.add_argument("--trust-lr", type=float, default=0.001)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: ZS-YANG/FemtoDet-v3 # Path: mmdet/models/dense_heads/atss_head.py class ATSSHead(AnchorHead): """Detection Head of `ATSS <https://arxiv.org/abs/1912.02424>`_. ATSS head structure is similar with FCOS, however ATSS use anchor boxes and assign label by Adaptive Training Sample Selection instead max-iou. Args: num_classes (int): Number of categories excluding the background category. in_channels (int): Number of channels in the input feature map. pred_kernel_size (int): Kernel size of ``nn.Conv2d`` stacked_convs (int): Number of stacking convs of the head. conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for convolution layer. Defaults to None. norm_cfg (:obj:`ConfigDict` or dict): Config dict for normalization layer. Defaults to ``dict(type='GN', num_groups=32, requires_grad=True)``. reg_decoded_bbox (bool): If true, the regression loss would be applied directly on decoded bounding boxes, converting both the predicted boxes and regression targets to absolute coordinates format. Defaults to False. It should be `True` when using `IoULoss`, `GIoULoss`, or `DIoULoss` in the bbox head. loss_centerness (:obj:`ConfigDict` or dict): Config of centerness loss. Defaults to ``dict(type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)``. init_cfg (:obj:`ConfigDict` or dict or list[dict] or list[:obj:`ConfigDict`]): Initialization config dict. """ def __init__(self, num_classes: int, in_channels: int, pred_kernel_size: int = 3, stacked_convs: int = 4, conv_cfg: OptConfigType = None, norm_cfg: ConfigType = dict( type='GN', num_groups=32, requires_grad=True), reg_decoded_bbox: bool = True, loss_centerness: ConfigType = dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), init_cfg: MultiConfig = dict( type='Normal', layer='Conv2d', std=0.01, override=dict( type='Normal', name='atss_cls', std=0.01, bias_prob=0.01)), **kwargs) -> None: self.pred_kernel_size = pred_kernel_size self.stacked_convs = stacked_convs self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg super().__init__( num_classes=num_classes, in_channels=in_channels, reg_decoded_bbox=reg_decoded_bbox, init_cfg=init_cfg, **kwargs) self.sampling = False self.loss_centerness = MODELS.build(loss_centerness) def _init_layers(self) -> None: """Initialize layers of the head.""" self.relu = nn.ReLU(inplace=True) self.cls_convs = nn.ModuleList() self.reg_convs = nn.ModuleList() for i in range(self.stacked_convs): chn = self.in_channels if i == 0 else self.feat_channels self.cls_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) self.reg_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) pred_pad_size = self.pred_kernel_size // 2 self.atss_cls = nn.Conv2d( self.feat_channels, self.num_anchors * self.cls_out_channels, self.pred_kernel_size, padding=pred_pad_size) self.atss_reg = nn.Conv2d( self.feat_channels, self.num_base_priors * 4, self.pred_kernel_size, padding=pred_pad_size) self.atss_centerness = nn.Conv2d( self.feat_channels, self.num_base_priors * 1, self.pred_kernel_size, padding=pred_pad_size) self.scales = nn.ModuleList( [Scale(1.0) for _ in self.prior_generator.strides]) def forward(self, x: Tuple[Tensor]) -> Tuple[List[Tensor]]: """Forward features from the upstream network. Args: x (tuple[Tensor]): Features from the upstream network, each is a 4D-tensor. Returns: tuple: Usually a tuple of classification scores and bbox prediction cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, the channels number is num_anchors * num_classes. bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, the channels number is num_anchors * 4. """ return multi_apply(self.forward_single, x, self.scales) def forward_single(self, x: Tensor, scale: Scale) -> Sequence[Tensor]: """Forward feature of a single scale level. Args: x (Tensor): Features of a single scale level. scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize the bbox prediction. Returns: tuple: cls_score (Tensor): Cls scores for a single scale level the channels number is num_anchors * num_classes. bbox_pred (Tensor): Box energies / deltas for a single scale level, the channels number is num_anchors * 4. centerness (Tensor): Centerness for a single scale level, the channel number is (N, num_anchors * 1, H, W). """ cls_feat = x reg_feat = x for cls_conv in self.cls_convs: cls_feat = cls_conv(cls_feat) for reg_conv in self.reg_convs: reg_feat = reg_conv(reg_feat) cls_score = self.atss_cls(cls_feat) # we just follow atss, not apply exp in bbox_pred bbox_pred = scale(self.atss_reg(reg_feat)).float() centerness = self.atss_centerness(reg_feat) return cls_score, bbox_pred, centerness def loss_by_feat_single(self, anchors: Tensor, cls_score: Tensor, bbox_pred: Tensor, centerness: Tensor, labels: Tensor, label_weights: Tensor, bbox_targets: Tensor, avg_factor: float) -> dict: """Calculate the loss of a single scale level based on the features extracted by the detection head. Args: cls_score (Tensor): Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W). bbox_pred (Tensor): Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W). anchors (Tensor): Box reference for each scale level with shape (N, num_total_anchors, 4). labels (Tensor): Labels of each anchors with shape (N, num_total_anchors). label_weights (Tensor): Label weights of each anchor with shape (N, num_total_anchors) bbox_targets (Tensor): BBox regression targets of each anchor with shape (N, num_total_anchors, 4). avg_factor (float): Average factor that is used to average the loss. When using sampling method, avg_factor is usually the sum of positive and negative priors. When using `PseudoSampler`, `avg_factor` is usually equal to the number of positive priors. Returns: dict[str, Tensor]: A dictionary of loss components. """ anchors = anchors.reshape(-1, 4) cls_score = cls_score.permute(0, 2, 3, 1).reshape( -1, self.cls_out_channels).contiguous() bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4) centerness = centerness.permute(0, 2, 3, 1).reshape(-1) bbox_targets = bbox_targets.reshape(-1, 4) labels = labels.reshape(-1) label_weights = label_weights.reshape(-1) # classification loss loss_cls = self.loss_cls( cls_score, labels, label_weights, avg_factor=avg_factor) # FG cat_id: [0, num_classes -1], BG cat_id: num_classes bg_class_ind = self.num_classes pos_inds = ((labels >= 0) & (labels < bg_class_ind)).nonzero().squeeze(1) if len(pos_inds) > 0: pos_bbox_targets = bbox_targets[pos_inds] pos_bbox_pred = bbox_pred[pos_inds] pos_anchors = anchors[pos_inds] pos_centerness = centerness[pos_inds] centerness_targets = self.centerness_target( pos_anchors, pos_bbox_targets) pos_decode_bbox_pred = self.bbox_coder.decode( pos_anchors, pos_bbox_pred) # regression loss loss_bbox = self.loss_bbox( pos_decode_bbox_pred, pos_bbox_targets, weight=centerness_targets, avg_factor=1.0) # centerness loss loss_centerness = self.loss_centerness( pos_centerness, centerness_targets, avg_factor=avg_factor) else: loss_bbox = bbox_pred.sum() * 0 loss_centerness = centerness.sum() * 0 centerness_targets = bbox_targets.new_tensor(0.) return loss_cls, loss_bbox, loss_centerness, centerness_targets.sum() def loss_by_feat( self, cls_scores: List[Tensor], bbox_preds: List[Tensor], centernesses: List[Tensor], batch_gt_instances: InstanceList, batch_img_metas: List[dict], batch_gt_instances_ignore: OptInstanceList = None) -> dict: """Calculate the loss based on the features extracted by the detection head. Args: cls_scores (list[Tensor]): Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W) bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W) centernesses (list[Tensor]): Centerness for each scale level with shape (N, num_anchors * 1, H, W) batch_gt_instances (list[:obj:`InstanceData`]): Batch of gt_instance. It usually includes ``bboxes`` and ``labels`` attributes. batch_img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional): Batch of gt_instances_ignore. It includes ``bboxes`` attribute data that is ignored during training and testing. Defaults to None. Returns: dict[str, Tensor]: A dictionary of loss components. """ featmap_sizes = [featmap.size()[-2:] for featmap in bbox_preds] assert len(featmap_sizes) == self.prior_generator.num_levels device = cls_scores[0].device anchor_list, valid_flag_list = self.get_anchors( featmap_sizes, batch_img_metas, device=device) cls_reg_targets = self.get_targets( anchor_list, valid_flag_list, batch_gt_instances, batch_img_metas, batch_gt_instances_ignore=batch_gt_instances_ignore) (anchor_list, labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, avg_factor) = cls_reg_targets avg_factor = reduce_mean( torch.tensor(avg_factor, dtype=torch.float, device=device)).item() losses_cls, losses_bbox, loss_centerness, \ bbox_avg_factor = multi_apply( self.loss_by_feat_single, anchor_list, cls_scores, bbox_preds, centernesses, labels_list, label_weights_list, bbox_targets_list, avg_factor=avg_factor) bbox_avg_factor = sum(bbox_avg_factor) bbox_avg_factor = reduce_mean(bbox_avg_factor).clamp_(min=1).item() losses_bbox = list(map(lambda x: x / bbox_avg_factor, losses_bbox)) return dict( loss_cls=losses_cls, loss_bbox=losses_bbox, loss_centerness=loss_centerness) def centerness_target(self, anchors: Tensor, gts: Tensor) -> Tensor: """Calculate the centerness between anchors and gts. Only calculate pos centerness targets, otherwise there may be nan. Args: anchors (Tensor): Anchors with shape (N, 4), "xyxy" format. gts (Tensor): Ground truth bboxes with shape (N, 4), "xyxy" format. Returns: Tensor: Centerness between anchors and gts. """ anchors_cx = (anchors[:, 2] + anchors[:, 0]) / 2 anchors_cy = (anchors[:, 3] + anchors[:, 1]) / 2 l_ = anchors_cx - gts[:, 0] t_ = anchors_cy - gts[:, 1] r_ = gts[:, 2] - anchors_cx b_ = gts[:, 3] - anchors_cy left_right = torch.stack([l_, r_], dim=1) top_bottom = torch.stack([t_, b_], dim=1) centerness = torch.sqrt( (left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * (top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0])) assert not torch.isnan(centerness).any() return centerness def get_targets(self, anchor_list: List[List[Tensor]], valid_flag_list: List[List[Tensor]], batch_gt_instances: InstanceList, batch_img_metas: List[dict], batch_gt_instances_ignore: OptInstanceList = None, unmap_outputs: bool = True) -> tuple: """Get targets for ATSS head. This method is almost the same as `AnchorHead.get_targets()`. Besides returning the targets as the parent method does, it also returns the anchors as the first element of the returned tuple. """ num_imgs = len(batch_img_metas) assert len(anchor_list) == len(valid_flag_list) == num_imgs # anchor number of multi levels num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] num_level_anchors_list = [num_level_anchors] * num_imgs # concat all level anchors and flags to a single tensor for i in range(num_imgs): assert len(anchor_list[i]) == len(valid_flag_list[i]) anchor_list[i] = torch.cat(anchor_list[i]) valid_flag_list[i] = torch.cat(valid_flag_list[i]) # compute targets for each image if batch_gt_instances_ignore is None: batch_gt_instances_ignore = [None] * num_imgs (all_anchors, all_labels, all_label_weights, all_bbox_targets, all_bbox_weights, pos_inds_list, neg_inds_list, sampling_results_list) = multi_apply( self._get_targets_single, anchor_list, valid_flag_list, num_level_anchors_list, batch_gt_instances, batch_img_metas, batch_gt_instances_ignore, unmap_outputs=unmap_outputs) # Get `avg_factor` of all images, which calculate in `SamplingResult`. # When using sampling method, avg_factor is usually the sum of # positive and negative priors. When using `PseudoSampler`, # `avg_factor` is usually equal to the number of positive priors. avg_factor = sum( [results.avg_factor for results in sampling_results_list]) # split targets to a list w.r.t. multiple levels anchors_list = images_to_levels(all_anchors, num_level_anchors) labels_list = images_to_levels(all_labels, num_level_anchors) label_weights_list = images_to_levels(all_label_weights, num_level_anchors) bbox_targets_list = images_to_levels(all_bbox_targets, num_level_anchors) bbox_weights_list = images_to_levels(all_bbox_weights, num_level_anchors) return (anchors_list, labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, avg_factor) def _get_targets_single(self, flat_anchors: Tensor, valid_flags: Tensor, num_level_anchors: List[int], gt_instances: InstanceData, img_meta: dict, gt_instances_ignore: Optional[InstanceData] = None, unmap_outputs: bool = True) -> tuple: """Compute regression, classification targets for anchors in a single image. Args: flat_anchors (Tensor): Multi-level anchors of the image, which are concatenated into a single tensor of shape (num_anchors ,4) valid_flags (Tensor): Multi level valid flags of the image, which are concatenated into a single tensor of shape (num_anchors,). num_level_anchors (List[int]): Number of anchors of each scale level. gt_instances (:obj:`InstanceData`): Ground truth of instance annotations. It usually includes ``bboxes`` and ``labels`` attributes. img_meta (dict): Meta information for current image. gt_instances_ignore (:obj:`InstanceData`, optional): Instances to be ignored during training. It includes ``bboxes`` attribute data that is ignored during training and testing. Defaults to None. unmap_outputs (bool): Whether to map outputs back to the original set of anchors. Returns: tuple: N is the number of total anchors in the image. labels (Tensor): Labels of all anchors in the image with shape (N,). label_weights (Tensor): Label weights of all anchor in the image with shape (N,). bbox_targets (Tensor): BBox targets of all anchors in the image with shape (N, 4). bbox_weights (Tensor): BBox weights of all anchors in the image with shape (N, 4) pos_inds (Tensor): Indices of positive anchor with shape (num_pos,). neg_inds (Tensor): Indices of negative anchor with shape (num_neg,). sampling_result (:obj:`SamplingResult`): Sampling results. """ inside_flags = anchor_inside_flags(flat_anchors, valid_flags, img_meta['img_shape'][:2], self.train_cfg['allowed_border']) if not inside_flags.any(): raise ValueError( 'There is no valid anchor inside the image boundary. Please ' 'check the image size and anchor sizes, or set ' '``allowed_border`` to -1 to skip the condition.') # assign gt and sample anchors anchors = flat_anchors[inside_flags, :] num_level_anchors_inside = self.get_num_level_anchors_inside( num_level_anchors, inside_flags) pred_instances = InstanceData(priors=anchors) assign_result = self.assigner.assign(pred_instances, num_level_anchors_inside, gt_instances, gt_instances_ignore) sampling_result = self.sampler.sample(assign_result, pred_instances, gt_instances) num_valid_anchors = anchors.shape[0] bbox_targets = torch.zeros_like(anchors) bbox_weights = torch.zeros_like(anchors) labels = anchors.new_full((num_valid_anchors, ), self.num_classes, dtype=torch.long) label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float) pos_inds = sampling_result.pos_inds neg_inds = sampling_result.neg_inds if len(pos_inds) > 0: if self.reg_decoded_bbox: pos_bbox_targets = sampling_result.pos_gt_bboxes else: pos_bbox_targets = self.bbox_coder.encode( sampling_result.pos_priors, sampling_result.pos_gt_bboxes) bbox_targets[pos_inds, :] = pos_bbox_targets bbox_weights[pos_inds, :] = 1.0 labels[pos_inds] = sampling_result.pos_gt_labels if self.train_cfg['pos_weight'] <= 0: label_weights[pos_inds] = 1.0 else: label_weights[pos_inds] = self.train_cfg['pos_weight'] if len(neg_inds) > 0: label_weights[neg_inds] = 1.0 # map up to original set of anchors if unmap_outputs: num_total_anchors = flat_anchors.size(0) anchors = unmap(anchors, num_total_anchors, inside_flags) labels = unmap( labels, num_total_anchors, inside_flags, fill=self.num_classes) label_weights = unmap(label_weights, num_total_anchors, inside_flags) bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags) bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags) return (anchors, labels, label_weights, bbox_targets, bbox_weights, pos_inds, neg_inds, sampling_result) def get_num_level_anchors_inside(self, num_level_anchors, inside_flags): """Get the number of valid anchors in every level.""" split_inside_flags = torch.split(inside_flags, num_level_anchors) num_level_anchors_inside = [ int(flags.sum()) for flags in split_inside_flags ] return num_level_anchors_inside # Path: mmdet/models/utils/misc.py def images_to_levels(target, num_levels): """Convert targets by image to targets by feature level. [target_img0, target_img1] -> [target_level0, target_level1, ...] """ target = stack_boxes(target, 0) level_targets = [] start = 0 for n in num_levels: end = start + n # level_targets.append(target[:, start:end].squeeze(0)) level_targets.append(target[:, start:end]) start = end return level_targets # Path: mmdet/models/utils/misc.py def multi_apply(func, *args, **kwargs): """Apply function to a list of arguments. Note: This function applies the ``func`` to multiple inputs and map the multiple outputs of the ``func`` into different list. Each list contains the same type of outputs corresponding to different inputs. Args: func (Function): A function that will be applied to a list of arguments Returns: tuple(list): A tuple containing multiple list, each list contains \ a kind of returned results by the function """ pfunc = partial(func, **kwargs) if kwargs else func map_results = map(pfunc, *args) return tuple(map(list, zip(*map_results))) # Path: mmdet/registry.py MODELS = Registry('model', parent=MMENGINE_MODELS, locations=['mmdet.models']) # Path: mmdet/utils/dist_utils.py def reduce_mean(tensor): """"Obtain the mean of tensor on different GPUs.""" if not (dist.is_available() and dist.is_initialized()): return tensor tensor = tensor.clone() dist.all_reduce(tensor.div_(dist.get_world_size()), op=dist.ReduceOp.SUM) return tensor # Path: mmdet/utils/typing_utils.py # Path: projects/CO-DETR/codetr/co_atss_head.py from typing import List from torch import Tensor from mmdet.models.dense_heads import ATSSHead from mmdet.models.utils import images_to_levels, multi_apply from mmdet.registry import MODELS from mmdet.utils import InstanceList, OptInstanceList, reduce_mean import torch @MODELS.register_module() class CoATSSHead(ATSSHead): def loss_by_feat(
self,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: mit-ll-ai-technology/maite # Path: src/maite/_internals/interop/artifact_hub/deduction.py def make_entrypoint_deduction_filter( require_deduction: bool = True, name: str | None = None, filter_type: ArtifactName | None = None, filter_task: TaskName | None = None, filter_regex: str | Pattern[str] | None = None, filter_str: str | List[str] | None = None, ): """Creates a filter for listed entrypoints on a module Parameters ---------- require_deduction: bool, default True Require that the entrypoint has return annotations and they are runtime compatible with the Artifact Protocols name: str, default None Optionally require an exact match on name filter_type: ArtifactName | None model - entrypoint return implements the `Model` protocol dataset - entrypoint return implements the `Dataset` protocol metric - entrypoint return implements the `Metric` protocol None - entrypoint returns any of the above filter_task: 'image-classification' | 'object-detection' | None image-classification - entrypoint implements the specialization of the type protocol for image classification object-detection - entrypoint implements the specialization of the type protocol for object detection None: No additional restrictions placed on the entrypoint filter_str: str | List[str] , default None Optionally filter endpoints to those which begin with the name, or partial names provided """ # Note: The composition of filters is very practical, but also redundant. If this # becomes a bottleneck we could make a smarter expression composition system which # unpacks and/or and simplifies. However, it is very likely that would be more # expensive than just double-checking some conditions as we are here. The # expressions are already built such that more general ones are evaluated first, # also `and` compositions will short-circuit. type_filters = { "model": is_model_entrypoint, "dataset": is_dataset_entrypoint, "metric": is_metric_entrypoint, None: or_filters( is_model_entrypoint, is_dataset_entrypoint, is_metric_entrypoint ), } task_filters = { "object-detection": or_filters( is_object_detection_dataset_entrypoint, is_object_detector_entrypoint ), # NOTE: the lack of parity in naming b/t dataset type and model type for OD above, and IC below "image-classification": or_filters( is_vision_dataset_entrypoint, is_image_classifier_entrypoint ), None: identity, } # Even without requiring deduction we can enforce that the entrypoint must be a callable # This is general enough, any symbol for which <symbol>(...) is a valid expression will pass. filter = callable if require_deduction: # if we require deduction, then lookup should return some filter for the # "<xyz>_filter" passed. this is the key, and both tables define that entry type_filter = type_filters.get(filter_type, None) if type_filter is None: raise InvalidArgument( f"Invalid type filter: {filter_type}, expected one of {get_args(ArtifactName)} or None" ) task_filter = task_filters.get(filter_task, None) if task_filter is None: raise InvalidArgument( f"Invalid task filter: {filter_task} excepted one of {get_args(TaskName)} or None" ) filter = and_filters(filter, task_filter, type_filter) else: if filter_type is not None or filter_task is not None: raise InvalidArgument( "Filtering on Artifact type or Task category is only possible with `require_deduction=True`" ) if filter_regex is not None: filter = and_filters(filter, make_name_regex_filter(filter_regex)) if filter_str is not None: strings = [filter_str] if not isinstance(filter_str, list) else filter_str name_filters = or_filters(*(make_name_startswith_filter(s) for s in strings)) filter = and_filters(filter, name_filters) if name is not None: # this is the most restrictive condition that can be applied so putting it first makes sense as it will eagerly short circuit filter = and_filters(make_name_match_filter(name), filter) return filter # Path: src/maite/_internals/interop/artifact_hub/module_utils.py def import_hubconf(local_dir: str | os.PathLike[str], module_name: str) -> ModuleType: _local_dir = Path(local_dir) with _add_to_sys_path(str(_local_dir)): hub_module = _try_import(module_name, _local_dir / module_name) # Note: This check does not really work as intended. Unless the import of the # missing dependency happens at a scope that is not evaluated on import (say inside # a function). We must import the hubconf module to check the dependencies var, but # can't do that without triggering the import error first above. The error message # will still be informative to user, but it is not very likely this will actually be # raised as the source of signal on missing dependencies. # We may want to consider modifying the extended hubconf spec to place this list in # a special location making it possible to pre-parse it before import if there is a # lot of user confusion around this point deps = getattr(hub_module, "dependencies", []) missing_deps = [pkg for pkg in deps if not _check_module_exists(pkg)] if len(missing_deps) != 0: raise RuntimeError( f"Missing dependencies for hub endpoint: {', '.join(missing_deps)}" ) return hub_module # Path: src/maite/_internals/interop/artifact_hub/registry.py class HubEndpointRegistry: """The registry for ArtifactHubProvider endpoint types. This class holds the mapping of key names -> endpoint implementations Attributes ---------- registered_endpoints : ClassVar[Dict[str, ]] Maps registered names -> provider implementation types Methods ------- register_impl(impl_type: Type[ArtifactHubEndpoint], spec_tag: str) Register an Endpoint type with a spec prefix tag get_impl(spec_tag: str) -> Type[ArtifactHubEndpoint] Lookup the Endpoint type associated with the given spec tag list_registered_specs() -> List[str] List Endpoint spec tags registered """ registered_endpoints = {} def __init__(self, *args, **kwargs): # Error on __init__ no need to instantiate the class. Technically, this would be # "safe" in that the instance would hold a reference to the dict defined above, # but there is no need to allow/encourage doing that raise InternalError( "The ProviderRegistry functionality should be accessed " "through the class itself, do not instantiate this type" ) @classmethod def register_impl(cls, impl_type: Type[ArtifactHubEndpoint], spec_tag: str): """Register an Endpoint implementation Parameters ---------- impl_type : Type[ArtifactHubEndpoint] Some type implementing the required protocol to act as a hub endpoint spec_tag : str The spec prefix that will indicate this Endpoint type is to be used """ if spec_tag in cls.registered_endpoints: warnings.warn( f"Attempting to register endpoint {impl_type.__name__} under " f"spec tag {spec_tag} which will overwrite the existing endpoint " f"{cls.registered_endpoints[spec_tag].__name__} registered under " "that name" ) if not isinstance(impl_type, ArtifactHubEndpoint): raise InvalidArgument( "Attempting to register a hub endpoint type which does not satisfy the protocol for a hub endpoint." ) cls.registered_endpoints[spec_tag] = impl_type @classmethod def list_registered_specs(cls): return list(cls.registered_endpoints.keys()) @classmethod def get_endpoint_impl(cls, spec): """Get the type associated with the given spec Parameters ---------- spec : str The spec tag used to register the type """ spec_tag = spec impl_type = cls.registered_endpoints.get(spec_tag, None) if impl_type is None: registered_msg = "\n\t".join(cls.registered_endpoints.keys()) raise InvalidArgument( f"Unable to find interface for spec tag {spec_tag}, the following are registered: \n{registered_msg}\n" "Register a custom endpoint interface by inheriting from 'HubEndpoint'." ) return impl_type # Path: src/maite/_internals/interop/artifact_hub/api.py from types import ModuleType from typing import ( Any, Callable, Iterable, List, Optional, Pattern, Type, TypeVar, cast, overload, ) from maite._internals.interop.provider import ArtifactName, register_provider from maite._internals.protocols.typing import ( AnyEntrypoint, DatasetEntrypoint, MetricEntrypoint, ModelEntrypoint, ) from maite.errors import InvalidArgument from maite.protocols import ArtifactHubEndpoint, Dataset, Metric, Model, TaskName from .deduction import make_entrypoint_deduction_filter from .module_utils import import_hubconf from .registry import HubEndpointRegistry task=task, require_deduction=True, filter_regex=filter_regex, filter_str=filter_str, ) def load_dataset( self, *, dataset_name: str, task: TaskName | None = None, split: str | None = None, **entrypoint_options: Any, ) -> Dataset[Any]: ep = self.get_entrypoint(dataset_name) filter = make_entrypoint_deduction_filter( filter_type="dataset", filter_task=task, require_deduction=True ) if not filter(ep): raise InvalidArgument( f"Entrypoint {dataset_name} does exists, but does not return a Dataset suitable for {task}." ) # cast is required, type checker can't detect filter limiting the type of ep ep = cast(DatasetEntrypoint, ep) return ep(split=split, **entrypoint_options) # Metric Provider protocol def list_metrics( self, *, metric_name: str | None = None, task: TaskName | None = None, filter_regex: str | Pattern[str] | None = None, filter_str: str | List[str] | None = None, ) -> Iterable[str]: return self.list( artifact_type="metric", name=metric_name, task=task, require_deduction=True, filter_regex=filter_regex, filter_str=filter_str, ) def load_metric( self, *, metric_name: str, task: TaskName | None = None, **entrypoint_options: Any, ) -> Metric[Any, Any]: ep = self.get_entrypoint(metric_name) filter = make_entrypoint_deduction_filter( filter_type="metric", filter_task=task, require_deduction=True ) if not filter(ep): raise InvalidArgument( f"Entrypoint {metric_name} does exists, but does not return a Metric suitable for {task}." ) # cast is required, type checker can't detect filter limiting the type of ep ep = cast(MetricEntrypoint, ep) return ep(**entrypoint_options) # Model Provider protocol def list_models( self, *, filter_str: str | List[str] | None = None, model_name: str | None = None, task: TaskName | None = None, filter_regex: str | Pattern[str] | None = None, ) -> Iterable[str]: return self.list( artifact_type="model", task=task, name=model_name, require_deduction=True, filter_regex=filter_regex, filter_str=filter_str, ) def load_model( self, *, model_name: str, task: TaskName | None = None, **entrypoint_options: Any, ) -> Model[Any, Any]: ep = self.get_entrypoint(model_name) filter = make_entrypoint_deduction_filter( filter_type="model", filter_task=task, require_deduction=True ) if not filter(ep): raise InvalidArgument( f"Entrypoint {model_name} does exists, but does not return a Model suitable for {task}." ) # cast is required, type checker can't detect filter limiting the type of ep ep = cast(ModelEntrypoint, ep) return ep(**entrypoint_options) # # Endpoint Registration API # @overload @staticmethod def register_endpoint( endpoint_type: Type[HubEP_T], ) -> Type[HubEP_T]: ... @overload @staticmethod def register_endpoint( endpoint_type: None, ) -> Callable[[Type[HubEP_T]], Type[HubEP_T]]: ...
@overload
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Tps-F/rvc-onnx-test # Path: onnxlib/attentions.py class Encoder(nn.Module): class Decoder(nn.Module): class MultiHeadAttention(nn.Module): class FFN(nn.Module): def __init__( self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0.0, window_size=10, **kwargs ): def forward(self, x, x_mask): def __init__( self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0.0, proximal_bias=False, proximal_init=True, **kwargs ): def forward(self, x, x_mask, h, h_mask): def __init__( self, channels, out_channels, n_heads, p_dropout=0.0, window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False, ): def forward( self, x: torch.Tensor, c: torch.Tensor, attn_mask: Optional[torch.Tensor] = None ): def attention( self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, mask: Optional[torch.Tensor] = None, ): def _matmul_with_relative_values(self, x, y): def _matmul_with_relative_keys(self, x, y): def _get_relative_embeddings(self, relative_embeddings, length: int): def _relative_position_to_absolute_position(self, x): def _absolute_position_to_relative_position(self, x): def _attention_bias_proximal(self, length: int): def __init__( self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0.0, activation: str = None, causal=False, ): def padding(self, x: torch.Tensor, x_mask: torch.Tensor) -> torch.Tensor: def forward(self, x: torch.Tensor, x_mask: torch.Tensor): def _causal_padding(self, x): def _same_padding(self, x): # Path: onnxlib/commons.py def init_weights(m, mean=0.0, std=0.01): def get_padding(kernel_size, dilation=1): def kl_divergence(m_p, logs_p, m_q, logs_q): def rand_gumbel(shape): def rand_gumbel_like(x): def slice_segments(x, ids_str, segment_size=4): def slice_segments2(x, ids_str, segment_size=4): def rand_slice_segments(x, x_lengths=None, segment_size=4): def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4): def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4): def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1): def subsequent_mask(length): def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): def convert_pad_shape(pad_shape: List[List[int]]) -> List[int]: def shift_1d(x): def sequence_mask(length: torch.Tensor, max_length: Optional[int] = None): def generate_path(duration, mask): def clip_grad_value_(parameters, clip_value, norm_type=2): # Path: onnxlib/modules.py LRELU_SLOPE = 0.1 class LayerNorm(nn.Module): class ConvReluNorm(nn.Module): class DDSConv(nn.Module): class WN(torch.nn.Module): class ResBlock1(torch.nn.Module): class ResBlock2(torch.nn.Module): class Log(nn.Module): class Flip(nn.Module): class ElementwiseAffine(nn.Module): class ResidualCouplingLayer(nn.Module): class ConvFlow(nn.Module): def __init__(self, channels, eps=1e-5): def forward(self, x): def __init__( self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout, ): def forward(self, x, x_mask): def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0): def forward(self, x, x_mask, g: Optional[torch.Tensor] = None): def __init__( self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0, ): def forward( self, x: torch.Tensor, x_mask: torch.Tensor, g: Optional[torch.Tensor] = None ): def remove_weight_norm(self): def __prepare_scriptable__(self): def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): def forward(self, x: torch.Tensor, x_mask: Optional[torch.Tensor] = None): def remove_weight_norm(self): def __prepare_scriptable__(self): def __init__(self, channels, kernel_size=3, dilation=(1, 3)): def forward(self, x, x_mask: Optional[torch.Tensor] = None): def remove_weight_norm(self): def __prepare_scriptable__(self): def forward( self, x: torch.Tensor, x_mask: torch.Tensor, g: Optional[torch.Tensor] = None, reverse: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: def forward( self, x: torch.Tensor, x_mask: torch.Tensor, g: Optional[torch.Tensor] = None, reverse: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: def __init__(self, channels): def forward(self, x, x_mask, reverse=False, **kwargs): def __init__( self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=0, gin_channels=0, mean_only=False, ): def forward( self, x: torch.Tensor, x_mask: torch.Tensor, g: Optional[torch.Tensor] = None, reverse: bool = False, ): def remove_weight_norm(self): def __prepare_scriptable__(self): def __init__( self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0, ): def forward( self, x: torch.Tensor, x_mask: torch.Tensor, g: Optional[torch.Tensor] = None, reverse=False, ): # Path: onnxlib/commons.py def get_padding(kernel_size, dilation=1): return int((kernel_size * dilation - dilation) / 2) # Path: onnxlib/commons.py def init_weights(m, mean=0.0, std=0.01): classname = m.__class__.__name__ if classname.find("Conv") != -1: m.weight.data.normal_(mean, std) # Path: onnxlib/models_onnx.py import logging import math import numpy as np import torch from torch import nn from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d from torch.nn import functional as F from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm from onnxlib import attentions, commons, modules from onnxlib.commons import get_padding, init_weights x, _ = flow(x, x_mask, g=g, reverse=reverse) return x def remove_weight_norm(self): for i in range(self.n_flows): self.flows[i * 2].remove_weight_norm() class PosteriorEncoder(nn.Module): def __init__( self, in_channels, out_channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, ): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.gin_channels = gin_channels self.pre = nn.Conv1d(in_channels, hidden_channels, 1) self.enc = modules.WN( hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, ) self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) def forward(self, x, x_lengths, g=None): x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to( x.dtype ) x = self.pre(x) * x_mask x = self.enc(x, x_mask, g=g) stats = self.proj(x) * x_mask m, logs = torch.split(stats, self.out_channels, dim=1) z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask return z, m, logs, x_mask def remove_weight_norm(self): self.enc.remove_weight_norm() class Generator(torch.nn.Module): def __init__( self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0, ): super(Generator, self).__init__() self.num_kernels = len(resblock_kernel_sizes) self.num_upsamples = len(upsample_rates) self.conv_pre = Conv1d( initial_channel, upsample_initial_channel, 7, 1, padding=3 ) resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2 self.ups = nn.ModuleList() for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): self.ups.append( weight_norm( ConvTranspose1d( upsample_initial_channel // (2**i), upsample_initial_channel // (2 ** (i + 1)), k, u, padding=(k - u) // 2, ) ) ) self.resblocks = nn.ModuleList() for i in range(len(self.ups)): ch = upsample_initial_channel // (2 ** (i + 1)) for j, (k, d) in enumerate( zip(resblock_kernel_sizes, resblock_dilation_sizes) ): self.resblocks.append(resblock(ch, k, d)) self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) self.ups.apply(init_weights) if gin_channels != 0: self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) def forward(self, x, g=None): x = self.conv_pre(x) if g is not None: x = x + self.cond(g) for i in range(self.num_upsamples): x = F.leaky_relu(x, modules.LRELU_SLOPE) x = self.ups[i](x) xs = None for j in range(self.num_kernels): if xs is None: xs = self.resblocks[i * self.num_kernels + j](x) else: xs += self.resblocks[i * self.num_kernels + j](x) x = xs / self.num_kernels x = F.leaky_relu(x) x = self.conv_post(x) x = torch.tanh(x)
return x
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: zengydd/ProphDR # Path: utils/optimizer.py def load_config(path): with open(path, 'r') as f: return EasyDict(yaml.safe_load(f)) # Path: utils/optimizer.py def get_optimizer(cfg, model): if cfg.type == 'adam': return torch.optim.Adam( model.parameters(), lr=cfg.lr, weight_decay=cfg.weight_decay, betas=(cfg.beta1, cfg.beta2, ) ) else: raise NotImplementedError('Optimizer not supported: %s' % cfg.type) # Path: utils/optimizer.py def get_scheduler(cfg, optimizer): if cfg.type == 'plateau': return torch.optim.lr_scheduler.ReduceLROnPlateau( optimizer, factor=cfg.factor, patience=cfg.patience, min_lr=cfg.min_lr ) else: raise NotImplementedError('Scheduler not supported: %s' % cfg.type) # Path: utils/load.py def load_pickle(path): f = open(path, "rb") data = pickle.load(f) f.close() return data # Path: utils/load.py def save_pickle(data, path): f = open(path, "wb") pickle.dump(data, f) f.close() # Path: utils/load.py def set_file(root_path, task, method, down_sample): if task=='binary': if method =='orio': res_df = pd.read_csv(root_path + 'unify_thred_Iorio.csv') elif method =='only2': res_df = pd.read_csv(root_path + 'unify_thred_only2.csv') else: res_df = pd.read_csv(root_path + 'unify_thred_only2.csv') return res_df # Path: utils/load.py def set_random_seed(seed=4): """Set random seed. Parameters ---------- seed : int Random seed to use """ random.seed(seed) np.random.seed(seed) # dgl.random.seed(seed) # dgl.seed(seed) torch.manual_seed(seed) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True if torch.cuda.is_available(): torch.cuda.manual_seed(seed) # Path: utils/load.py def nested_dict_factory(): return defaultdict(nested_dict_factory) # Path: utils/mydata.py class mydata(data.Dataset): def __init__(self, list_ID, label, res_df, drug_smiles_df, omic_encode_dict): 'Initialization' self.list_ID = list_ID self.label = label self.res_df = res_df self.drug_smiles_df = drug_smiles_df self.omic_encode_dict = omic_encode_dict def __len__(self): 'Denotes the total number of samples' return len(self.list_ID) def __getitem__(self, index): label = self.label[index] ID = self.list_ID[index] drug_id = self.res_df.iloc[ID]['DRUG_ID'] cosmic_id = self.res_df.iloc[ID]['COSMIC_ID'] drug_f = self.drug_smiles_df.loc[drug_id]['smiles'] omic_f = self.omic_encode_dict[str(cosmic_id)] return drug_id, cosmic_id, drug_f, omic_f, label # Path: utils/mydata.py def dataset_split(res_df, random=4, stratify=None): if stratify == None: train_set, val_test_set = train_test_split(res_df, test_size=0.2, random_state=random) val_set, test_set = train_test_split(val_test_set, test_size=0.5, random_state=random) else: train_set, val_test_set = train_test_split(res_df, test_size=0.2, random_state=random, stratify=res_df[stratify]) # print('ct', val_test_set['binary'].tolist()) val_set, test_set = train_test_split(val_test_set, test_size=0.5, random_state=random, stratify=val_test_set[stratify]) print('Responses:{}'.format(res_df.shape[0])) print('Train:{}'.format(train_set.shape[0])) print('Val:{}'.format(val_set.shape[0])) print('Test:{}'.format(test_set.shape[0])) print('train_DRUG:{}, val_DRUG:{}, test_DRUG:{}'.format(len(train_set['DRUG_ID'].value_counts()), len(set(val_set['DRUG_ID'])), len(set(test_set['DRUG_ID'])))) print('train_cell:{}, val_cell:{}, test_cell:{}'.format(len(set(train_set['COSMIC_ID'])), len(set(val_set['COSMIC_ID'])), len(set(test_set['COSMIC_ID'])))) return train_set, val_set, test_set # Path: Models/RCCA_ca.py class CCNet(nn.Module): def __init__(self, dim, recurrence=2): super(CCNet, self).__init__() self.ccnet = RCCAModule(dim, in_channels=1, out_channels=512, recurrence=recurrence) def forward(self, x): output, attn_list = self.ccnet(x) return output, attn_list # Path: Models/cross_attention_dual.py class cross_EncoderBlock_G(nn.Module): """Transformer编码器块""" def __init__(self, query_size, key_size, value_size, num_hiddens, num_heads, norm_shape, dropout=0.1, bias=False, **kwargs): super(cross_EncoderBlock_G, self).__init__(**kwargs) self.cross_attention = cross_MultiHeadAttention_G( query_size, key_size, value_size, num_hiddens, num_heads, dropout, bias) self.addnorm_q = AddNorm_Q(norm_shape, query_size, num_hiddens, dropout) self.linear = nn.Linear(num_hiddens, num_hiddens) def forward(self, q, k, v, valid_lens): attn_output, attn_w = self.cross_attention(q, k, v, valid_lens) out = self.addnorm_q(q, attn_output) return out, attn_w # Path: Models/cross_attention_dual.py class cross_EncoderBlock_D(nn.Module): """Transformer编码器块""" def __init__(self, query_size, key_size, value_size, num_hiddens, num_heads, norm_shape, dropout=0.1, bias=False, **kwargs): super(cross_EncoderBlock_D, self).__init__(**kwargs) # print('query_size', query_size) self.cross_attention = cross_MultiHeadAttention_D( query_size, key_size, value_size, num_hiddens, num_heads, dropout, bias) # self.norm_shape = [self.len_q, self.h_dim] self.addnorm_q = AddNorm_Q(norm_shape, query_size, num_hiddens, dropout) # self.addnorm = AddNorm(norm_shape, dropout) self.linear = nn.Linear(num_hiddens, num_hiddens) def forward(self, q, k, v, valid_lens): attn_output, attn_w = self.cross_attention(q, k, v, valid_lens) # print('attn_output', attn_output.shape) # print('attn_w', attn_w.shape) out = self.addnorm_q(q, attn_output) return out, attn_w # Path: Models/Proph_DR.py class gbz_main_cross(object): def __init__(self, task, omic_dim, res_df, omic_encode_dict, model_dir): # self.model_drug = bert_atom_embedding self.task = task self.model_dir = model_dir self.model = Predictor(h_dim=128, num_heads=4, omic_dim=omic_dim) self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.omic_encode_dict = omic_encode_dict self.record_file = os.path.join(self.model_dir, "valid_markdowntable.txt") self.pkl_file = os.path.join(self.model_dir, "loss_curve_iter.pkl") self.res_df = res_df if self.task=='binary': self.label = 'binary' self.loss_fct = FocalLoss(logits=True) elif self.task=='IC50': self.label = 'LN_IC50' self.loss_fct = torch.nn.MSELoss() elif self.task=='AUC': self.label='AUC' self.loss_fct = torch.nn.MSELoss() def validate(self, generator, model): torch.cuda.empty_cache() loss_fct = self.loss_fct model.eval() y_label = [] y_pred = [] with torch.no_grad(): for i, (drug_id, cosmic_id, drug_fs, omic_f, label) in enumerate(generator): torch.cuda.empty_cache() label = Variable(torch.from_numpy(np.array(label)).float()).to(self.device) # score = model(drug_id, omic_f, cosmic_id) encode_D, valid_lens = encoder_D(drug_id) score = model(drug_id, encode_D, omic_f, valid_lens, cosmic_id) score_flatten = score.flatten().to(self.device) loss = loss_fct(score_flatten, label).to(self.device) y_label.append(label.view(-1,1)) y_pred.append(score_flatten.view(-1, 1)) y_label = torch.cat(y_label, dim=0).cpu().numpy().flatten() y_pred = torch.cat(y_pred, dim=0).cpu().numpy().flatten() # Metrics if self.task=='binary': metric = {} y_pred = torch.sigmoid(torch.tensor(y_pred)).tolist() # print('y_label:{},\ny_pred:{}'.format(y_label, y_pred)) metric['AUC'] = roc_auc_score(y_label, y_pred) metric['pr_score'] = average_precision_score(y_label, y_pred) false_positive_rate,true_positive_rate,thresholds = roc_curve(y_label, y_pred) recall, precision, thresholds = precision_recall_curve(y_label, y_pred) print('roc_curve data:', [false_positive_rate,true_positive_rate,thresholds]) print('PR_curve data:', [recall, precision]) to_binary = lambda x: 1 if x > 0.5 else 0 y_pred_cls = list(map(to_binary, y_pred)) metric['acc'] = accuracy_score(y_label, y_pred_cls) metric['F1'] = f1_score(y_label, y_pred_cls, average='binary') print('metric_resut_{}{}:'.format(self.task, metric)) else: metric = {} metric['r2'] = r2_score(y_label, y_pred) metric['MAE'] = mean_absolute_error(y_label, y_pred) metric['mse'] = mean_squared_error(y_label, y_pred) metric['rmse'] = torch.sqrt(torch.tensor(metric['mse'])) metric['spearman'] = spearmanr(y_label, y_pred)[0] metric['pearson'] = pearsonr(y_label, y_pred)[0] metric['ci'] = concordance_index(y_label, y_pred) print('metric_resut_{}{}:'.format(self.task, metric)) model.train() return metric, loss def train(self, train_set, val_set, **param): torch.cuda.empty_cache() self.model = self.model.to(self.device) print(self.model) label = self.label loss_fct = self.loss_fct BATCH_SIZE = param['bs'] train_epoch = param['te'] patience = param['pt'] opt = getattr(torch.optim, param['optimizer'])(self.model.parameters(), lr=param['lr'], weight_decay=param['decay']) params = {'batch_size': BATCH_SIZE, 'shuffle': True, 'num_workers': 0, 'drop_last': False} # loader train_generator = data.DataLoader( mydata( train_set.index.values, train_set[label].values, self.res_df, drug_smiles_df, self.omic_encode_dict ), **params) val_generator = data.DataLoader( mydata( val_set.index.values, val_set[label].values, self.res_df, drug_smiles_df, self.omic_encode_dict ), **params) max_MSE = 10000 model_max = copy.deepcopy(self.model) writer = SummaryWriter(self.model_dir) table = PrettyTable() table.title = 'valid' t_start = time.time() loss_history = [] early_stopping = EarlyStopping(patience=patience, verbose=False) for epo in range(train_epoch): torch.cuda.empty_cache() for i, (drug_id, cosmic_id, drug_fs, omic_f, label) in enumerate(train_generator): torch.backends.cudnn.enabled = False # score = self.model(drug_id, omic_f, cosmic_id) encode_D, valid_lens = encoder_D(drug_id) score = self.model(drug_id, encode_D, omic_f, valid_lens, cosmic_id) # print('score:'.format(type(score), score)) label = Variable(torch.from_numpy(np.array(label))).float().to(self.device) n = torch.squeeze(score, 1).float() n = n.squeeze(-1) loss = loss_fct(n, label) loss_history.append(loss.item()) writer.add_scalar("Loss/train", loss.item(), epo) opt.zero_grad() loss.backward() opt.step() if (i % 1000 == 0): t_now = time.time() print('Training at Epoch ' + str(epo + 1) + ' iteration ' + str(i) + \ ' with loss ' + str(loss.cpu().detach().numpy())[:7] + \ ' with lr ' + str(opt.param_groups[0]['lr']) + \ ". Total time " + str(int(t_now - t_start) / 3600)[:7] + " hours") metric_result, loss_val = self.validate(val_generator, self.model) print('Validation at Epoch:{} \nMetric_result:{}'.format(str(epo + 1), metric_result)) # mark table.field_names = ['# epoch'] + list(metric_result.keys()) + ['loss'] valid_content_lst = ['epo'+str(epo)]+list(map(float2str, metric_result.values()))+[str(loss_val)] table.add_row(valid_content_lst) # tensorboard for k, v in metric_result.items(): writer.add_scalar("valid/{}".format(k), v, epo) writer.add_scalar("Loss/valid", loss_val.item(), epo) # early_stop early_stopping(loss, self.model, self.model_dir) if early_stopping.early_stop: print("Early stopping at epoch{}".format(epo)) break lowest_val = 1e9 if loss_val < lowest_val: lowest_val = lowest_val self.save_model(self.model, self.model_dir) print(f'Val Loss: {loss_val}') # self.model = model_max with open(self.record_file, 'w') as fp: fp.write(table.get_string()) with open(self.pkl_file, 'wb') as pck: pickle.dump(loss_history, pck) print('--- Training Finished ---') writer.flush() writer.close() return metric_result, loss_val def test(self, test_set): self.model = self.model.to(self.device) label = self.label params = {'batch_size': 200, 'shuffle': True, 'num_workers': 0, 'drop_last': False} # loader test_generator = data.DataLoader( mydata( test_set.index.values, test_set[label].values, self.res_df, drug_smiles_df, self.omic_encode_dict ), **params) print("=====testing...") self.model.load_state_dict(torch.load(self.model_dir + '/checkpoint.pt')['model_state_dict']) metric_result, loss = self.validate(test_generator, self.model) return metric_result, loss def pred(self, smiles_list, cosmic_id_list, pt_path=os.path.join(root, 'ckpt/checkpoint.pt'), drug_id=0): with torch.no_grad(): score_list = [] smi_list = [] cell_list = [] for smiles in smiles_list: smi_list.append(smiles) for cosmic_id in cosmic_id_list: cell_list.append(str(cosmic_id)) self.model = self.model.to(self.device) omic_f = self.omic_encode_dict[str(cosmic_id)] omic_f = omic_f.unsqueeze(0) self.model.load_state_dict(torch.load(pt_path, map_location='cpu')['model_state_dict']) encode_D_pred, valid_lens = encoder_D_pred(smiles) score = self.model(drug_id, encode_D_pred, omic_f, valid_lens, cosmic_id) score = score.flatten().to(self.device).cpu().numpy().item() score_list.append(score) res = pd.DataFrame() res['LN(IC50)'] = pd.Series(score_list) res['smiles'] = smi_list res['cosmic'] = cell_list return res def save_model(self, model, model_dir): torch.save({'model_state_dict': model.state_dict()}, model_dir + '/checkpoint.pt') print('model_saved:{}'.format(model_dir)) # Path: pred.py import os, sys import pandas as pd import numpy as np import random import copy import time import datetime import math import pickle import optuna import yaml import torch import torch.nn as nn import torch.nn.functional as F from torch.utils import data from torch.nn.parallel import DataParallel from torch.autograd import Variable from torch.optim.lr_scheduler import ReduceLROnPlateau, MultiStepLR from sklearn.model_selection import train_test_split, KFold from sklearn.model_selection import StratifiedKFold from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer from torch.utils.tensorboard import SummaryWriter from torch.utils.data import SequentialSampler from prettytable import PrettyTable from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error from sklearn.metrics import roc_auc_score, average_precision_score, accuracy_score, roc_curve, f1_score, precision_recall_curve from lifelines.utils import concordance_index from scipy.stats import pearsonr,spearmanr from utils.optimizer import load_config, get_optimizer, get_scheduler from easydict import EasyDict from collections import defaultdict from utils.load import load_pickle, save_pickle, set_file, set_random_seed, nested_dict_factory from utils.mydata import mydata, dataset_split from Models.RCCA_ca import CCNet from Models.cross_attention_dual import cross_EncoderBlock_G, cross_EncoderBlock_D from Models.Proph_DR import gbz_main_cross os.environ['NUMEXPR_MAX_THREADS'] = '32' sys.path.append("..") torch.set_default_dtype(torch.float32) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') float2str = lambda x: '%0.4f' % x # FILE path root = os.getcwd() data_dir = os.path.join(root, 'data_collect/') unify_dir = os.path.join(root, 'data_collect/unify/') # omics data omic_encode = os.path.join(unify_dir, 'omics_std/omics_stk_dict.pkl') mut_encode = os.path.join(unify_dir, 'omics_std/mut_dict.pkl') cnv_encode = os.path.join(unify_dir, 'omics_std/cnv_dict.pkl') exp_encode = os.path.join(unify_dir, 'omics_std/exp_dict.pkl') mut_cnv = os.path.join(unify_dir, 'omics_std/omics_stk_dict_mut_cnv.pkl') mut_exp = os.path.join(unify_dir, 'omics_std/omics_stk_dict_mut_exp.pkl') exp_cnv = os.path.join(unify_dir, 'omics_std/omics_stk_dict_exp_cnv.pkl') if __name__ == '__main__': set_random_seed()
model_dir = os.path.join(root, 'Models/')
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: zhenqincn/FedKSeed # Path: server.py class Server(object): def __init__(self, args, eval_loader, candidate_seeds, log_dir): self.args = args self.eval_loader = eval_loader self.candidate_seeds = candidate_seeds self.tokenizer = AutoTokenizer.from_pretrained(args.model, use_fast=True) self.log_dir = log_dir self.tokenizer.model_max_length = self.args.max_length special_tokens = dict() if self.tokenizer.pad_token is None: special_tokens["pad_token"] = DefaultToken.PAD_TOKEN.value if self.tokenizer.eos_token is None: special_tokens["eos_token"] = DefaultToken.EOS_TOKEN.value if self.tokenizer.bos_token is None: special_tokens["bos_token"] = DefaultToken.BOS_TOKEN.value if self.tokenizer.unk_token is None: special_tokens["unk_token"] = DefaultToken.UNK_TOKEN.value self.tokenizer.add_special_tokens(special_tokens) self.model = AutoModelForCausalLM.from_pretrained(args.model, device_map='cpu', torch_dtype=torch.float16, trust_remote_code=True) from copy import deepcopy self.model_w0 = deepcopy(self.model) self.seed_pool = {seed: 0.0 for seed in self.candidate_seeds} self.device = torch.device(f'cuda:{self.args.device}') if self.args.bias_sampling: # initialize the probabilities of seeds self.gradient_history = {seed: [self.args.grad_initial] for seed in self.candidate_seeds} self.probabilities = [1.0 / float(len(self.candidate_seeds)) for _ in range(len(self.candidate_seeds))] else: self.gradient_history = None self.probabilities = None def create_model_by_seedpool(self, cur_round): tmp_model = deepcopy(self.model_w0) tmp_model.to(self.device) lr = self.args.lr * math.pow(self.args.lr_decay, cur_round - 1) if self.args.lr_decay != 1.0: raise ValueError('currently seed pool only supports constant learning rate') # replace local model with initial weights framework = MeZOFramework(tmp_model, args=self.args, lr=lr, candidate_seeds=self.candidate_seeds) progress_bar = tqdm(range(len(self.seed_pool))) # pull the latest model via accumulated {seed, grad} pairs on the server for seed, grad in self.seed_pool.items(): if grad != 0: framework.zo_update(seed=seed, grad=grad) progress_bar.update(1) progress_bar.set_description(f'pull global model at round{cur_round}') tmp_model = tmp_model.cpu() return tmp_model def aggregate_seed_pool(self, selected_client_list): if self.args.equal_weight: weight_array = np.array([1.0 for _ in selected_client_list], dtype=np.float64) weight_array /= float(len(selected_client_list)) else: weight_array = np.array([len(client.train_loader) for client in selected_client_list], dtype=np.float64) weight_array /= float(np.sum(weight_array)) for client_idx in range(len(selected_client_list)): local_seed_pool = selected_client_list[client_idx].local_seed_pool for seed, grad in local_seed_pool.items(): self.seed_pool[seed] += grad * weight_array[client_idx] for client in selected_client_list: client.clear_model() def update_global_model_by_seed_pool(self): self.model = deepcopy(self.model_w0) self.model.to(self.device) framework = MeZOFramework(self.model, args=self.args, lr=self.args.lr, candidate_seeds=self.candidate_seeds) progress_bar = tqdm(range(len(self.seed_pool))) # pull the latest model via accumulated {seed, grad} pairs on the server for seed, grad in self.seed_pool.items(): if grad != 0.0: framework.zo_update(seed=seed, grad=grad) progress_bar.update(1) progress_bar.set_description(f'server update global model') def prepare_aggregate(self): self.model_for_aggregate = deepcopy(self.model) for _, v in self.model_for_aggregate.named_parameters(): if v.requires_grad: v.data.zero_() def online_aggregate(self, client, selected_client_list): if self.args.equal_weight: weight_array = np.array([1.0 for _ in selected_client_list], dtype=np.float64) weight_array /= float(len(selected_client_list)) else: weight_array = np.array([len(client.train_loader) for client in selected_client_list], dtype=np.float64) weight_array /= float(np.sum(weight_array)) cur_client_index = 0 for c in selected_client_list: if client.idx == c.idx: break cur_client_index += 1 cur_weight = weight_array[cur_client_index] for k, v in self.model_for_aggregate.named_parameters(): if v.requires_grad: v.data += client.model.state_dict()[k].data * cur_weight client.clear_model() def finish_aggregate(self): self.model = self.model_for_aggregate def calculate_probabilities(self): history_list = [self.gradient_history[seed] for seed in self.candidate_seeds] mean_grad_history = np.array([np.mean(np.abs(np.clip(history_cur_seed, -self.args.bias_loss_clip, self.args.bias_loss_clip))) for history_cur_seed in history_list]) self.probabilities = softmax(min_max_norm(mean_grad_history)) sum_prob = np.sum(self.probabilities) if sum_prob != 1.0: self.probabilities /= sum_prob return self.probabilities def eval(self, cur_round, eval_avg_acc): if self.args.eval_metric == 'loss': eval_metric = self.eval_loss(cur_round) else: eval_metric = self.eval_generate(cur_round) if self.args.save and cur_round > 0: save_dir = self.log_dir if not os.path.exists(save_dir): os.makedirs(save_dir) if (self.args.eval_metric == 'loss' and eval_metric < np.min(eval_avg_acc)) or (self.args.eval_metric != 'none' and eval_metric > np.max(eval_avg_acc)): for file_name in os.listdir(save_dir): if 'best' in file_name: os.remove(os.path.join(save_dir, file_name)) torch.save(self.model.state_dict(), os.path.join(save_dir, f'model_state_dict_best_round{cur_round}.bin')) for file_name in os.listdir(save_dir): if 'final' in file_name: os.remove(os.path.join(save_dir, file_name)) torch.save(self.model.state_dict(), os.path.join(save_dir, f'model_state_dict_final_round{cur_round}.bin')) return eval_metric def eval_loss(self, cur_round): self.model = self.model.to(self.device) self.model.eval() progress_bar_eval = tqdm(range(len(self.eval_loader))) loss_total_eval = 0.0 num_eval = 0 with torch.inference_mode(): for batch in self.eval_loader: batch = { 'input_ids': batch['input_ids'].to(self.device), 'labels': batch['labels'].to(self.device), 'attention_mask': batch['attention_mask'].to(self.device) } outputs = self.model(**batch) loss = outputs.loss progress_bar_eval.update(1) if torch.isnan(loss): continue loss_total_eval += loss num_eval += len(batch['input_ids']) if num_eval == 0: num_eval = 1e-10 progress_bar_eval.set_description(f'eval at round {cur_round}, loss: {loss_total_eval / num_eval}') print() print() self.model = self.model.cpu() return (loss_total_eval / num_eval).item() def eval_generate(self, cur_round): self.model = self.model.to(self.device) self.model.eval() progress_bar_eval = tqdm(range(len(self.eval_loader))) acc_total_eval = 0.0 num_eval = 0 with torch.inference_mode(): for batch in self.eval_loader: input_ids = batch['input_ids'].to(self.device) label_ids = batch['labels'].to(self.device) output_ids = self.model.generate( input_ids=input_ids, max_new_tokens=128, num_beams=1, ) acc_total_eval += rouge_score(output_ids[0][len(input_ids[0]):], label_ids[0], self.tokenizer) progress_bar_eval.update(1) num_eval += len(batch['input_ids']) if num_eval == 0: num_eval = 1e-10 progress_bar_eval.set_description(f'eval at round {cur_round}, metric: {acc_total_eval / num_eval}') print() print() self.model = self.model.cpu() return acc_total_eval / num_eval # Path: client.py class Client(object): def __init__(self, idx, args, candidate_seeds, train_loader): self.idx = idx self.args = args self.train_loader = train_loader self.train_iterator = iter(self.train_loader) self.model = None self.device = torch.device(f'cuda:{args.device}') self.candidate_seeds = candidate_seeds def local_train_with_seed_pool(self, pulled_model, cur_round, memory_record_dic=None, probabilities=None, gradient_history=None): self.model = pulled_model self.model.to(self.device) if memory_record_dic is not None: torch.cuda.empty_cache() # initialize a seed pool self.local_seed_pool = {seed: 0.0 for seed in self.candidate_seeds} lr = self.args.lr if self.args.batch_or_epoch == 'epoch': iter_steps = self.args.local_step * len(self.train_loader) else: iter_steps = self.args.local_step if self.args.bias_sampling: assert probabilities is not None framework = MeZOBiasOptimizer(self.model, args=self.args, lr=lr, candidate_seeds=self.candidate_seeds, probabilities=probabilities, gradient_history=gradient_history) else: framework = MeZOFramework(self.model, args=self.args, lr=lr, candidate_seeds=self.candidate_seeds) self.model.eval() with torch.inference_mode(): if self.args.batch_or_epoch == 'batch': loss_total_train = 0.0 num_trained = 0 progress_bar = tqdm(range(iter_steps)) for cur_step in range(iter_steps): # init epoch progress bar if self.args.batch_or_epoch == 'epoch': if cur_step % len(self.train_loader) == 0: loss_total_train = 0.0 num_trained = 0 progress_bar = tqdm(range(len(self.train_loader))) try: batch = next(self.train_iterator) except StopIteration: self.train_iterator = iter(self.train_loader) batch = next(self.train_iterator) batch = { 'input_ids': batch['input_ids'].to(self.device), 'labels': batch['labels'].to(self.device), 'attention_mask': batch['attention_mask'].to(self.device) } logits, loss = framework.zo_step(batch, local_seed_pool=self.local_seed_pool) progress_bar.update(1) if (not torch.isnan(loss)) and (self.args.grad_clip <= 0 or loss != 0.0): loss_total_train += loss num_trained += len(batch['input_ids']) if self.args.batch_or_epoch == 'epoch': progress_bar.set_description(f'client {self.idx} train at epoch {int(cur_step / len(self.train_loader)) + 1}, loss: {loss_total_train / num_trained if num_trained != 0 else 0.0}') else: progress_bar.set_description(f'client {self.idx} train at step {cur_step}, loss: {loss_total_train / num_trained if num_trained != 0 else 0.0}') # save both CPU and GPU memory del framework self.model = None if memory_record_dic is not None: memory_record_dic[self.device.index] = {} memory_record_dic[self.device.index]['max_memory_allocated'] = torch.cuda.max_memory_allocated(self.device) memory_record_dic[self.device.index]['max_memory_reserved'] = torch.cuda.max_memory_reserved(self.device) def clear_model(self): # clear model to same memory self.model = None def migrate(self, device): """ migrate a client to a new device """ self.device = device def pull(self, forked_global_model): """ pull model from the server """ self.model = forked_global_model # Path: utils_data/load_data.py def get_loaders(args, only_eval=False): """ Return: list of train_loaders, eval_loader """ tokenizer = AutoTokenizer.from_pretrained(args.model, use_fast=True) tokenizer.model_max_length = args.max_length special_tokens = dict() if tokenizer.pad_token is None: special_tokens["pad_token"] = DefaultToken.PAD_TOKEN.value if tokenizer.eos_token is None: special_tokens["eos_token"] = DefaultToken.EOS_TOKEN.value if tokenizer.bos_token is None: special_tokens["bos_token"] = DefaultToken.BOS_TOKEN.value if tokenizer.unk_token is None: special_tokens["unk_token"] = DefaultToken.UNK_TOKEN.value tokenizer.add_special_tokens(special_tokens) # Generation task if args.dataset == 'dolly': from utils_data.llm_dataset import LLMDataset, LLMDataCollator if args.eval_metric == 'loss': raw_datasets = LLMDataset(args.dataset, tokenizer=tokenizer, generation=False) else: raw_datasets = LLMDataset(args.dataset, tokenizer=tokenizer, generation=True) data_collator = LLMDataCollator(tokenizer=tokenizer) # only use a subset of raw dataset raw_datasets, _ = torch.utils.data.dataset.random_split(raw_datasets, [int(len(raw_datasets) * args.dataset_subsample), len(raw_datasets) - int(len(raw_datasets) * args.dataset_subsample)]) y_all = np.array([item['categories'] for item in raw_datasets]) index_eval = np.where(y_all == args.zerotask)[0] # delete the indices of eval samples from the all set index_train = np.delete(np.arange(len(y_all)), index_eval) raw_datasets = np.array(raw_datasets) train_set = raw_datasets[index_train] eval_set = raw_datasets[index_eval] y_train = np.array([item['categories'] for item in train_set]) counter = Counter(y_train) noniid = args.iid if 'dir' in noniid: split_dic = partition_idx_labeldir(y_train, n_parties=args.num_clients, alpha=float(noniid[3:]), num_classes=len(counter)) split_trainsets = [] for _, sample_indices in split_dic.items(): split_trainsets.append(Subset(train_set, indices=sample_indices)) else: n_parts = [int(len(train_set) / args.num_clients) for _ in range(args.num_clients - 1)] n_parts.append(len(train_set) - sum(n_parts)) split_trainsets = torch.utils.data.dataset.random_split(train_set, n_parts) list_train_loader = [ DataLoader( subset, shuffle=True, batch_size=args.batch_size, collate_fn=data_collator ) for subset in split_trainsets ] eval_loader = DataLoader( eval_set, batch_size=args.batch_size, collate_fn=data_collator ) elif args.dataset in ['instruct']: from utils_data.natural_instruction_loader import get_instruction_dataset list_train_loader, eval_loader = get_instruction_dataset(args, tokenizer, only_eval=only_eval) else: raise AttributeError(f'dataset {args.dataset} not implemented') return list_train_loader, eval_loader, tokenizer # Path: main.py import argparse import os import time import random import numpy as np import torch import yaml import json from server import Server from client import Client from utils_data.load_data import get_loaders from copy import deepcopy os.environ["TOKENIZERS_PARALLELISM"] = "false" def setup_seed(seed): torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) torch.backends.cudnn.deterministic = True if __name__ == '__main__': parser = argparse.ArgumentParser() # Federation parser.add_argument('--num_clients', type=int, default=200, help='N in our paper') parser.add_argument('-m', type=float, default=0.05, help='ratio of activate clients in each round') parser.add_argument('--rounds', type=int, default=40, help='the total number of rounds') parser.add_argument('--local_step', type=int, default=200, help=r'$\tau in our paper') parser.add_argument('--batch_or_epoch', type=str, default='batch', choices=['epoch', 'batch']) parser.add_argument('--equal_weight', default=False, action='store_true', help='if `true`, the weights among clients for aggregation are the same') # Data ## Arguments related to data on both datasets parser.add_argument('--dataset', type=str, default='instruct', choices=['instruct', 'dolly']) parser.add_argument('--batch_size', type=int, default=1, help='batch size > 1 may cause error during running') parser.add_argument('--max_length', type=int, default=1024, help='the max number of tokens of a data instance') parser.add_argument('--use_prompts', default=True, help='if `true`, the prompt template from alpaca is adopted') ## Arguments related to data only for Dolly-15K parser.add_argument('--iid', type=str, default='dir0.5', help=r'`dir{alpha}` means that \alpha in Dirichlet distribution, `0` means IID split') parser.add_argument('--zerotask', default=7, type=int, help='the index of the task for evaluation in dolly-15K') parser.add_argument('--dataset_subsample', type=float, default=1.0, help='used for sampling a subset from the original dataset, only effective for dolly-15K') # Model parser.add_argument('--model', type=str, default='datajuicer/LLaMA-1B-dj-refine-150B') # Training parser.add_argument('--lr', type=float, default=0.001, help=r'learning rate \eta') parser.add_argument('--weight_decay', type=float, default=0.0, help='weight decay in MeZO') parser.add_argument('--grad_clip', type=float, default=-100.0, help='clip the over large loss value, if < 0, disable this feature') # Training args only for `FedKSeed` parser.add_argument('-K', type=int, default=4096, help='ratio of active clients in each round') parser.add_argument('--zo_eps', type=float, default=0.0005, help=r'\eps in MeZO') # Training args only for `FedKSeed-Pro` parser.add_argument('--bias_sampling', default=False, action='store_true', help='if `true`, the probabilities of candidate seeds to be sampled are not identical, i.e., FedKSeed-Pro') parser.add_argument('--bias_loss_clip', default=1000.0, type=float, help='scalar gradient whose abstract values exceeds this value will be cliped') parser.add_argument('--grad_initial', default=0.0, type=float, help='initial value of scalar gradient history corresponding to each candidate seed') # Environment parser.add_argument('--device', type=int, default=0, help='index of the targeted cuda device') parser.add_argument('--log', default=False, action='store_true', help='if `true`, running logs will be recorded in files') parser.add_argument('--log_root', default='logs', help='root path of log files') parser.add_argument('--seed', default=42, type=int, help='global seed, for reproducibility') # Evaluation parser.add_argument('--eval_metric', default='rouge', type=str, choices=['rouge', 'loss'], help='metric to evaluate global model in the last round') # Checkpoints parser.add_argument('--save', default=False, action='store_true', help='if `true`, the checkpoint of tuned models will be stored') time_stamp = str(time.time()) args = parser.parse_args() eval_avg_acc = [] memory_record_dic = {} previous_metric = args.eval_metric args.eval_metric = 'loss' # set CUDA visibility to targeted cuda device, to avoid the several hundred MB memory consumption of device 0 os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = str(args.device) setup_seed(args.seed) list_train_loader, eval_loader, _ = get_loaders(args) if args.dataset == 'instruct': args.iid = 'meta' log_dir = time_stamp if args.log_root != '': log_dir = os.path.join(args.log_root, log_dir)
if args.log:
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: merlresearch/PixPNet # Path: pixpnet/protonets/models/layers.py class GroupedLinear(nn.Linear): """ Equivalent to (but faster than): >>> conv = nn.Conv1d(in_features, out_features, kernel_size=1, >>> groups=groups, bias=bias, **kwargs) >>> conv(input[:, :, None]).squeeze(dim=2) """ def __init__(self, in_features, out_features, groups, bias=True, **kwargs): if in_features % groups != 0: raise ValueError("in_features must be divisible by groups") self.groups = groups self.in_features_per_group = in_features // groups super().__init__(in_features=self.in_features_per_group, out_features=out_features, bias=bias, **kwargs) def forward(self, input: torch.Tensor) -> torch.Tensor: if self.groups == 1: return super().forward(input) # Otherwise, group input input_grouped = torch.reshape(input, (input.size()[0], self.groups, self.in_features_per_group)) # Batched matrix multiplications using einsum out = torch.einsum("bji,ji->bj", input_grouped, self.weight) # Add bias if using bias if self.bias is not None: out += self.bias[None, :] return out # Path: pixpnet/protonets/models/protonet.py class ProtoNet(nn.Module): # Buffers ones: torch.Tensor corresponding_sample_idxs: torch.Tensor min_fmap_idxs: torch.Tensor prototype_class_identity: Optional[torch.Tensor] # Parameters prototype_vectors: torch.nn.Parameter # Constants prototype_layer_stride = 1 def __init__( self, features: nn.Module, feature_layer: str, rf_slices: Optional[SlicesType], num_prototypes: int, prototype_dim: int, prototype_kernel_size: int, num_classes: int, init_weights: bool = True, prototype_activation: Union[str, Callable] = "log", add_on_layers_type: str = "regular", class_specific: bool = True, epsilon: float = 1e-6, learn_prototypes: bool = True, incorrect_strength: float = -0.5, correct_strength: float = 1, readout_type: str = "linear", distance: str = "l2", ): """""" super().__init__() self.prototype_shape = (num_prototypes, prototype_dim, prototype_kernel_size, prototype_kernel_size) self.num_prototypes = num_prototypes self.prototype_dim = prototype_dim self.prototype_kernel_size = prototype_kernel_size self.num_classes = num_classes self.epsilon = epsilon self.learn_prototypes = learn_prototypes # prototype_activation could be 'log', 'linear', # or a callable that converts distance to similarity score self.prototype_activation = prototype_activation self.distance = distance self.feature_layer = feature_layer self.rf_slices = rf_slices self.rf_idxs = None self.rf_sizes = None if self.rf_slices is not None: Hz = len(self.rf_slices) Wz = len(self.rf_slices[0]) self.rf_sizes = torch.zeros((Hz, Wz, 2), dtype=torch.int) self.rf_idxs = torch.zeros((Hz, Wz, 4), dtype=torch.int) for h in range(Hz): for w in range(Wz): # for patch h,w if len(self.rf_slices[h][w]) > 1: raise NotImplementedError for h_s, w_s in self.rf_slices[h][w]: # Start weighting approach h_size = h_s.stop - h_s.start w_size = w_s.stop - w_s.start self.rf_sizes[h, w] = torch.tensor([h_size, w_size], dtype=torch.int) self.rf_idxs[h, w] = torch.tensor([h_s.start, h_s.stop, w_s.start, w_s.stop], dtype=torch.int) self.incorrect_strength = incorrect_strength self.correct_strength = correct_strength self.class_specific = class_specific if self.class_specific: # Here we are initializing the class identities of the prototypes. # Without domain specific knowledge we allocate the same number of # prototypes for each class assert self.num_prototypes % self.num_classes == 0 # a one-hot indication matrix for each prototype's class identity self.register_buffer( "prototype_class_identity", torch.zeros(self.num_prototypes, self.num_classes, dtype=torch.int) ) num_prototypes_per_class = self.num_prototypes // self.num_classes for j in range(self.num_prototypes): self.prototype_class_identity[j, j // num_prototypes_per_class] = 1 # this has to be named features to allow the precise loading self.features = features self._init_add_on_layers(add_on_layers_type) self.register_parameter( "prototype_vectors", nn.Parameter(torch.rand(self.prototype_shape), requires_grad=learn_prototypes) ) self.register_buffer("ones", torch.ones(self.prototype_shape)) self.register_buffer("corresponding_sample_idxs", torch.full((self.num_prototypes,), -1)) self.register_buffer("min_fmap_idxs", torch.full((self.num_prototypes, 4), -1)) self.readout_type = readout_type self._init_last_layer() if init_weights: self._initialize_weights() def _init_last_layer(self): # do not use bias to aid interpretability if self.readout_type == "linear": # standard linear self.last_layer = nn.Linear(self.num_prototypes, self.num_classes, bias=False) elif self.readout_type == "sparse": # sparse linear if not self.class_specific: raise ValueError('`readout_type` cannot be "sparse" if ' "`class_specific` is False") self.last_layer = GroupedLinear(self.num_prototypes, self.num_classes, groups=self.num_classes, bias=False) elif self.readout_type == "proto": # prototype sim sums as prediction if not self.class_specific: raise ValueError('`readout_type` cannot be "proto" if ' "`class_specific` is False") # Note that this assumes that `prototype_class_identity` is still # uniform across classes when class_specific is True self.last_layer = GroupedSum(self.num_prototypes, self.num_classes) else: raise NotImplementedError(f"readout_type = {self.readout_type}") def _init_add_on_layers(self, add_on_layers_type): in_channels = self.features.out_channels final_act, final_act_str = nn.Sigmoid(), "sigmoid" if add_on_layers_type == "bottleneck": add_on_layers = [] current_in_channels = in_channels conv_idx = 1 while current_in_channels > self.prototype_dim or not len(add_on_layers): current_out_channels = max(self.prototype_dim, (current_in_channels // 2)) if current_out_channels > self.prototype_dim: conv2_str, act2, act2_str = (f"conv{conv_idx + 1}", nn.ReLU(), f"relu{conv_idx + 1}") else: assert current_out_channels == self.prototype_dim conv2_str, act2, act2_str = ("conv_last", final_act, final_act_str) add_on_layers.extend( ( ( f"conv{conv_idx}", nn.Conv2d( in_channels=current_in_channels, out_channels=current_out_channels, kernel_size=1 ), ), (f"relu{conv_idx}", nn.ReLU()), ( conv2_str, nn.Conv2d( in_channels=current_out_channels, out_channels=current_out_channels, kernel_size=1 ), ), (act2_str, act2), ) ) current_in_channels = current_in_channels // 2 conv_idx += 2 elif add_on_layers_type == "regular": add_on_layers = ( ("conv1", nn.Conv2d(in_channels=in_channels, out_channels=self.prototype_dim, kernel_size=1)), ("relu1", nn.ReLU()), ( "conv_last", nn.Conv2d(in_channels=self.prototype_dim, out_channels=self.prototype_dim, kernel_size=1), ), (final_act_str, final_act), ) else: raise ValueError(add_on_layers_type) add_on_layers = OrderedDict(add_on_layers) self.add_on_layers = nn.Sequential(add_on_layers) def conv_features(self, x): """ the feature input to prototype layer """ x = self.features(x) log_once(logger.info, f'features output shape: {("N", *x.size()[1:])}') x = self.add_on_layers(x) log_once(logger.info, f'add_on_layers output shape: {("N", *x.size()[1:])}') return x def compute_distances(self, x): return compute_distances(self.distance, x, self.prototype_vectors, self.ones) def prototype_distances(self, x): """ x is the raw input """ conv_features = self.conv_features(x) distances = self.compute_distances(conv_features) return conv_features, distances def dist_2_sim(self, distances): if self.prototype_activation == "log": # equivalent: # log((distances + 1) / (distances + epsilon)) # noqa: E800 # but this one is numerically more accurate return torch.log(1 / (distances + self.epsilon) + 1) elif self.prototype_activation == "linear": if self.distance == "cosine": # dists = 1 - sim --> sim = 1 - dists return 1 - distances else: return -distances else: return self.prototype_activation(distances) def forward(self, x, return_features=False): result = self.prototype_distances(x) conv_features, distances = result outputs = self.classify_head(x, distances) if return_features: outputs["features"] = conv_features return outputs def classify_head(self, x, distances): return self._classify_head_proto2patch(distances) def pixel_space_map(self, x_i, proto_dists, sigma_factor=1.0): # Note: one sample at a time! otherwise there will definitely be # memory issues on most hardware and ProtoNets dtype = proto_dists.dtype device = proto_dists.device # validate shape if x_i.ndim == 4: assert x_i.shape[0] == 1, x_i.shape x_i = torch.squeeze(x_i, 0) else: assert x_i.ndim == 3, x_i.shape if proto_dists.ndim == 4: assert proto_dists.shape[0] == 1, proto_dists.shape proto_dists = torch.squeeze(proto_dists, 0) else: assert proto_dists.ndim == 3, proto_dists.shape C, H, W = x_i.shape P, Hz, Wz = proto_dists.shape # dists --> sims proto_sims = self.dist_2_sim(proto_dists) # Sim maps heat_map_max = torch.zeros((P, H, W), dtype=dtype, device=device) heat_map_avg = torch.zeros_like(heat_map_max) heat_map_counts = torch.zeros_like(heat_map_avg, dtype=torch.int) rf_h = self.rf_sizes[:, :, 0].max() rf_w = self.rf_sizes[:, :, 1].max() do_super_rfs = rf_h >= H or rf_w >= W if do_super_rfs: # increase true rf_h/w where_big = torch.where((self.rf_sizes[:, :, 0] >= H) | (self.rf_sizes[:, :, 1] >= W)) do_super_rfs = len(where_big[0]) > 1 if do_super_rfs: # linear stretching assumption for super-100% RF networks naive_midpoints_h = torch.round((torch.arange(Hz) + 0.5) * H / Hz).int() naive_midpoints_w = torch.round((torch.arange(Wz) + 0.5) * W / Wz).int() im_midpoints = (H - 1) / 2, (W - 1) / 2 pad_h = torch.round((im_midpoints[0] - naive_midpoints_h[where_big[0]]).abs().max()).int() pad_w = torch.round((im_midpoints[1] - naive_midpoints_w[where_big[1]]).abs().max()).int() # increase the RFs by the discovered padding amount rf_h = rf_h + 2 * pad_h rf_w = rf_w + 2 * pad_w k_size = max(rf_h, rf_w) sigma = k_size * sigma_factor g_kern = gaussian_kernel(k_size, sigma=sigma, device=device) for h in range(Hz): for w in range(Wz): # for patch h,w sims_hw = proto_sims[:, h, w][:, None, None] # P x 1 x 1 h_size, w_size = self.rf_sizes[h, w] # rf_sizes: Hz x Wz x 2 hs0, hs1, ws0, ws1 = self.rf_idxs[h, w] if do_super_rfs: mh, mw = naive_midpoints_h[h], naive_midpoints_w[w] hs0_ = mh - rf_h // 2 hs1_ = mh + ceil(rf_h // 2) ws0_ = mw - rf_w // 2 ws1_ = mw + ceil(rf_w // 2) h_pad0 = max(-hs0_, 0) h_pad1 = max(hs1_ - H - max(hs0_, 0), 0) w_pad0 = max(-ws0_, 0) w_pad1 = max(ws1_ - W - max(ws0_, 0), 0) if h_size < H: if hs0 != 0: h_pad0 += H - h_size else: h_pad1 += H - h_size if w_size < W: if ws0 != 0: w_pad0 += W - w_size else: w_pad1 += W - w_size g_kern_hw = g_kern[int(h_pad0) : k_size - ceil(h_pad1), int(w_pad0) : k_size - ceil(w_pad1)] else: h_pad0 = h_pad1 = 0 w_pad0 = w_pad1 = 0 if h_size < rf_h: if hs1 - rf_h < 0: h_pad0 += rf_h - h_size else: h_pad1 += rf_h - h_size if w_size < rf_w: if ws1 - rf_w < 0: w_pad0 += rf_w - w_size else: w_pad1 += rf_w - w_size g_kern_hw = g_kern[int(h_pad0) : k_size - ceil(h_pad1), int(w_pad0) : k_size - ceil(w_pad1)] sims_hw_full = sims_hw * g_kern_hw[None, :, :] heat_map_avg[:, hs0:hs1, ws0:ws1] += sims_hw_full heat_map_counts[:, hs0:hs1, ws0:ws1] += 1 heat_map_max[:, hs0:hs1, ws0:ws1] = torch.maximum(sims_hw_full, heat_map_max[:, hs0:hs1, ws0:ws1]) # take element-wise averages according to overlap tensor (counts) heat_map_sum = heat_map_avg.clone() heat_map_avg /= heat_map_counts return heat_map_max, heat_map_avg, heat_map_sum # each is P x H x W def pixel_space_upscale(self, x_i, proto_dists): # validate shape if x_i.ndim == 4: assert x_i.shape[0] == 1, x_i.shape x_i = torch.squeeze(x_i, 0) else: assert x_i.ndim == 3, x_i.shape if proto_dists.ndim == 4: assert proto_dists.shape[0] == 1, proto_dists.shape proto_dists = torch.squeeze(proto_dists, 0) else: assert proto_dists.ndim == 3, proto_dists.shape C, H, W = x_i.shape # dists --> sims proto_sims = self.dist_2_sim(proto_dists) # Sim maps heat_map = torch.nn.functional.interpolate(proto_sims[None], (H, W), mode="bicubic") # 1 x P x H x W --> P x H x W heat_map = heat_map.squeeze(dim=0) return heat_map def pixel_space_bboxes(self, min_dist_idxs, proto_dists): if not (self.prototype_kernel_size == self.prototype_layer_stride == 1): raise NotImplementedError((self.prototype_kernel_size, self.prototype_layer_stride)) N, P = min_dist_idxs.shape # N x P, N x P fmap_h_start, fmap_w_start = unravel_index(min_dist_idxs, proto_dists.shape[-2:]) bboxes = [] for i in range(N): bboxes_i = [] for j in range(P): h, w = fmap_h_start[i, j], fmap_w_start[i, j] slices_hw = self.rf_slices[h][w] assert len(slices_hw) == 1, "unsupported at the moment" slice_h, slice_w = slices_hw[0] x1, y1 = slice_w.start, slice_h.start x2, y2 = slice_w.stop, slice_h.stop bboxes_i.append([x1, y1, x2, y2]) bboxes.append(bboxes_i) bboxes = torch.tensor(bboxes) return bboxes # N x P x 4 def pixel_space_centers_upscale(self, x, min_dist_idxs, proto_dists): if not (self.prototype_kernel_size == self.prototype_layer_stride == 1): raise NotImplementedError((self.prototype_kernel_size, self.prototype_layer_stride)) _, _, H, W = x.shape Hz, Wz = proto_dists.shape[-2:] # N x P, N x P fmap_h_start, fmap_w_start = unravel_index(min_dist_idxs, [Hz, Wz]) naive_midpoints_h = torch.round((torch.arange(Hz) + 0.5) * H / Hz).int() naive_midpoints_w = torch.round((torch.arange(Wz) + 0.5) * W / Wz).int() centers_x = naive_midpoints_w[fmap_w_start.cpu()] centers_y = naive_midpoints_h[fmap_h_start.cpu()] return centers_x, centers_y # NxP each def _classify_head_proto2patch(self, distances): # global min pooling (N x P x H x W --> N x P x 1 x 1) # I.e., the KxK patch of the latent representations z of the input # images that is most similar to each of the P prototypes. Output # indicates how present each prototype is in the image. min_distances, min_dist_idxs = self.global_min_pool(distances) # Convert distances to similarity using the log/linear function prototype_activations = self.dist_2_sim(min_distances) # Compute logits (N x C) logits = self.last_layer(prototype_activations) return { "logits": logits, # N x C "min_distances": min_distances, # N x P "min_dist_idxs": min_dist_idxs, # N x P "distances": distances, # N x P x H x W "max_similarities": prototype_activations, # N x P } @staticmethod def global_min_pool(distances): """ To gather `min_distances` using `min_dist_idxs`: ```python distances.flatten(start_dim=2).gather( dim=2, index=min_dist_idxs.flatten(start_dim=2) ).view_as(min_dist_idxs) ``` :param distances: :return: """ with warnings.catch_warnings(): # You'd think they would've checked for positionally passed args... warnings.filterwarnings( "ignore", ".*order of the arguments: ceil_mode and " "return_indices will change.*", UserWarning ) min_distances, min_dist_idxs = F.max_pool2d( -distances, kernel_size=(distances.size()[2], distances.size()[3]), return_indices=True ) min_distances = -min_distances # N x P x 1 x 1 --> N x P min_distances = min_distances.view(min_distances.shape[0], min_distances.shape[1]) min_dist_idxs = min_dist_idxs.view(min_dist_idxs.shape[0], min_dist_idxs.shape[1]) return min_distances, min_dist_idxs def push_forward(self, x): """this method is needed for the pushing operation""" return self.prototype_distances(x) def set_prototypes(self, new_prototype_vectors, corresponding_sample_idxs=None, min_fmap_idxs=None): self.prototype_vectors.data.copy_(new_prototype_vectors) err_msg = "both min_fmap_idxs and corresponding_sample_idxs should be" " None or not None" if corresponding_sample_idxs is not None: assert min_fmap_idxs is not None, err_msg self.corresponding_sample_idxs = corresponding_sample_idxs self.min_fmap_idxs = min_fmap_idxs else: assert min_fmap_idxs is None, err_msg def prune_prototypes(self, prototypes_to_prune): """ prototypes_to_prune: a list of indices each in [0, current number of prototypes - 1] that indicates the prototypes to be removed """ prototypes_to_keep = [*({*range(self.num_prototypes)} - {*prototypes_to_prune})] self.register_parameter( "prototype_vectors", nn.Parameter(self.prototype_vectors.data[prototypes_to_keep, ...], requires_grad=self.learn_prototypes), ) self.corresponding_sample_idxs = self.corresponding_sample_idxs[prototypes_to_keep, ...] self.min_fmap_idxs = self.min_fmap_idxs[prototypes_to_keep, ...] self.prototype_shape = tuple(self.prototype_vectors.size()) self.num_prototypes = self.prototype_shape[0] # changing self.last_layer in place # changing in_features and out_features make sure the numbers are # consistent if self.readout_type != "linear": raise NotImplementedError( f"Removing prototypes for readout_type={self.readout_type}" f" is not implemented yet" ) self.last_layer.in_features = self.num_prototypes self.last_layer.out_features = self.num_classes self.last_layer.weight.data = self.last_layer.weight.data[:, prototypes_to_keep] # self.ones is nn.Parameter self.ones = self.ones[prototypes_to_keep, ...] # self.prototype_class_identity is torch tensor # so it does not need .data access for value update if self.class_specific: self.prototype_class_identity = self.prototype_class_identity[prototypes_to_keep, :] def set_last_layer_incorrect_connection(self): """ Initialize weight of last_layer to correct_strength if prototype_class_identity is 1 (i.e., the prototype is for that class), and to incorrect_strength if prototype_class_identity is 0 (i.e., the prototype is not for that class) """ positive_one_weights_locations = torch.t(self.prototype_class_identity) negative_one_weights_locations = 1 - positive_one_weights_locations self.last_layer.weight.data.copy_( self.correct_strength * positive_one_weights_locations + self.incorrect_strength * negative_one_weights_locations ) def _initialize_weights(self): for name, m in self.add_on_layers.named_children(): if isinstance(m, nn.Conv2d): if name == "conv_last": # for the sigmoid activation nn.init.xavier_normal_(m.weight, gain=1.0) else: nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) if self.class_specific and self.readout_type == "linear": # This is not needed (or valid) for sparse linear or proto self.set_last_layer_incorrect_connection() elif self.class_specific and self.readout_type == "sparse": nn.init.ones_(self.last_layer.weight) # Path: pixpnet/protonets/loss.py import torch from torch import Tensor, nn from pixpnet.protonets.models.layers import GroupedLinear from pixpnet.protonets.models.protonet import ProtoNet # Copyright (c) 2022-2023 Mitsubishi Electric Research Laboratories (MERL) # # SPDX-License-Identifier: AGPL-3.0-or-later class ClusterLoss(nn.Module): def __init__(self, class_specific=True): super().__init__() self.class_specific = class_specific def forward(self, min_distances: Tensor, target: Tensor, model: ProtoNet) -> Tensor: # min_distances: N x P
if self.class_specific:
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Dinghow/UIM # Path: util/dataset.py IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm'] BASE_DIR = 'Combined_Dataset' class Composition1KMatting(Dataset): class Combined4ClassesMatting(Dataset): class RealWorldMatting(Dataset): def __init__(self, root='dataset', split='train', task='matting', num_bgs=10, transform=None, preprocess=False, retname=True): def __getitem__(self, index): def _composite_fg(self, fg, alpha, idx): def _composite(self, fg, bg, a, w, h, trimap): def __len__(self): def __str__(self): def __init__(self, root='dataset', split='all', transform=None, retname=True): def __getitem__(self, index): def __len__(self): def __str__(self): def __init__(self, root='dataset', transform=None, retname=True): def __getitem__(self, index): def __len__(self): def __str__(self): # Path: util/util.py class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count # Path: util/util.py def compute_mse(pred, alpha, trimap=None): if trimap is not None: num_pixels = float((trimap == 128).sum()) return ((pred - alpha) ** 2 * (trimap == 128) ).sum() / (num_pixels + 1e-8) else: num_pixels = float(np.prod(alpha.shape)) return ((pred - alpha) ** 2).sum() / (num_pixels + 1e-8) # Path: util/util.py def compute_sad(pred, alpha, trimap=None): diff = np.abs(pred - alpha) if trimap is not None: return np.sum(diff * (trimap == 128)) / 1000 else: return np.sum(diff) / 1000 # Path: util/util.py def compute_gradient(pred, target, trimap=None): pred_x, pred_y = gaussgradient(pred, 1.4) target_x, target_y = gaussgradient(target, 1.4) pred_amp = np.sqrt(pred_x ** 2 + pred_y ** 2) target_amp = np.sqrt(target_x ** 2 + target_y ** 2) error_map = (pred_amp - target_amp) ** 2 if trimap is not None: loss = np.sum(error_map[trimap == 128]) else: loss = np.sum(error_map) return loss / 1000. # Path: util/util.py def compute_connectivity(pred, target, trimap=None, step=0.1): h, w = pred.shape thresh_steps = list(np.arange(0, 1 + step, step)) l_map = np.ones_like(pred, dtype=np.float) * -1 for i in range(1, len(thresh_steps)): pred_alpha_thresh = (pred >= thresh_steps[i]).astype(np.int) target_alpha_thresh = (target >= thresh_steps[i]).astype(np.int) omega = getLargestCC(pred_alpha_thresh * target_alpha_thresh).astype(np.int) flag = ((l_map == -1) & (omega == 0)).astype(np.int) l_map[flag == 1] = thresh_steps[i - 1] l_map[l_map == -1] = 1 pred_d = pred - l_map target_d = target - l_map pred_phi = 1 - pred_d * (pred_d >= 0.15).astype(np.int) target_phi = 1 - target_d * (target_d >= 0.15).astype(np.int) if trimap is not None: loss = np.sum(np.abs(pred_phi - target_phi)[trimap == 128]) else: loss = np.sum(np.abs(pred_phi - target_phi)) return loss / 1000. # Path: util/util.py def get_cuda_devices(): os.system('nvidia-smi -q -d Memory | grep -A4 GPU | grep Free > tmp') memory_gpu = np.array([int(x.split()[2]) for x in open('tmp', 'r').readlines()]) clen = len(os.environ['CUDA_VISIBLE_DEVICES'].split(',')) devices = heapq.nlargest(clen, range(len(memory_gpu)), memory_gpu.take) test_gpu = devices os.environ['CUDA_VISIBLE_DEVICES']=str(devices)[1:-1] os.system('rm tmp') return devices # Path: util/util.py def get_unknown_tensor_from_pred(pred, rand_width=30, train_mode=True): ### pred: N, 1 ,H, W N, C, H, W = pred.shape pred = pred.data.cpu().numpy() uncertain_area = np.ones_like(pred, dtype=np.uint8) uncertain_area[pred<1.0/255.0] = 0 uncertain_area[pred>1-1.0/255.0] = 0 for n in range(N): uncertain_area_ = uncertain_area[n,0,:,:] # H, W if train_mode: width = np.random.randint(1, rand_width) else: width = rand_width // 2 uncertain_area_ = cv2.dilate(uncertain_area_, Kernels[width]) uncertain_area[n,0,:,:] = uncertain_area_ weight = np.zeros_like(uncertain_area) weight[uncertain_area == 1] = 1 weight = torch.from_numpy(weight).cuda() return weight # Path: util/custom_transforms.py class interactiveMattingTransform(object): # modified from transform.py of dingrunyu def __init__(self, channel, no_crop = False, diff_width = False,\ relax_crop = 50, zero_pad_crop = True, use_iogpoints = False,\ use_roimasking = False, use_trimap = False, use_bbox = False,\ use_in_point = False, use_iogdextr = False, use_extreme_points = False,\ use_scribble = False, rotate_degree = 30, scale = [0.8, 1.25], shear = 10,\ flip = 0.5, crop_size = 512, trimap_type = 'standard', mask_type = 'alpha',\ bbox_type = 'area', trimap_one_hot=True): self.channel = channel self.no_crop = no_crop self.diff_width = diff_width self.relax_crop = relax_crop self.zero_pad_crop = zero_pad_crop self.rotate_degree = rotate_degree self.scale = scale self.shear = shear self.flip = flip self.crop_size = crop_size self.trimap_type = trimap_type self.mask_type = mask_type self.bbox_type = bbox_type self.use_roimasking = use_roimasking self.trimap_one_hot = trimap_one_hot self.use_trimap = use_trimap self.use_extreme_points = use_extreme_points self.use_bbox = use_bbox self.use_in_point = use_in_point self.use_iogpoints = use_iogpoints self.use_iogdextr = use_iogdextr self.use_scribble = use_scribble def getTrainTransform(self): transform_tr = [ RandomAffine(degrees=self.rotate_degree, scale=self.scale, shear=self.shear, flip=self.flip), GenTrimap(), RandomCrop(output_size=(self.crop_size, self.crop_size)), RandomJitter(), Composite(), GenMask(mask_type=self.mask_type), MattingToTensor(phase="train", trimap_type=self.trimap_type, in_channels=self.channel, trimap_one_hot=self.trimap_one_hot)] tr_ep = ExtremePoints(sigma=10, pert=5, elem='alpha') tr_in = IOGPoints(sigma=10, pert=5, elem='alpha', p_type='in') tr_out = IOGPoints(sigma=10, pert=5, elem='alpha', p_type='out') tr_bbox = OutPoints(sigma=10, pert=5, elem='alpha') tr_crop = CropFromMask(crop_elems=('alpha', 'fg'), \ relax=self.relax_crop, zero_pad=self.zero_pad_crop, \ crop=False if self.no_crop else True, use_roimasking = self.use_roimasking,\ is_matting=True) tr_scribble = GenerateScribble(elem='alpha') if not self.no_crop: transform_tr.insert(0, tr_crop) if self.channel == 5 and self.use_iogpoints: print('Use foreground/background points') transform_tr.insert(-3, tr_in) transform_tr.insert(-3, tr_out) transform_tr.insert(-3, ToImage(norm_elem=('in_points', 'out_points'))) elif self.channel == 6 and self.use_trimap: print('Use trimap (one-hot)') elif self.channel == 4 and self.use_trimap: print('Use trimap') elif self.channel == 4 and self.use_bbox: print('Use bounding box') if self.bbox_type == 'points': transform_tr.insert(-3, tr_out) elif self.bbox_type == 'area': transform_tr.insert(-3, tr_bbox) else: raise RuntimeError('Wrong bbox type.') transform_tr.insert(-3, ToImage(norm_elem=('out_points'))) elif self.channel == 4 and self.use_in_point: print('Use inside point') transform_tr.insert(-3, tr_in) transform_tr.insert(-3, ToImage(norm_elem=('in_points'))) elif self.channel == 4 and self.use_extreme_points: print('Use extreme points') transform_tr.insert(-3, tr_ep) transform_tr.insert(-3, ToImage(norm_elem='extreme_points')) elif self.channel == 4 and self.use_scribble: print('Use scribble') transform_tr.insert(-3, tr_scribble) transform_tr.insert(-3, ToImage(norm_elem='scribble')) elif self.channel == 3: print('Use no annotation') else: raise NotImplementedError('Wrong interactive method.') print([str(tran) for tran in transform_tr]) return transforms.Compose(transform_tr) def getTestTransform(self, reserveGT = False): transform_ts = [ MattingToTensor(phase="test", in_channels=self.channel, trimap_one_hot=self.trimap_one_hot)] tr_ep = ExtremePoints(sigma=10, pert=5, elem='alpha') tr_in = IOGPoints(sigma=10, pert=5, elem='alpha', p_type='in') tr_out = IOGPoints(sigma=10, pert=5, elem='alpha', p_type='out') tr_bbox = OutPoints(sigma=10, pert=5, elem='alpha') tr_crop = CropFromMask(crop_elems=('image', 'alpha', 'trimap'), \ relax=self.relax_crop, zero_pad=self.zero_pad_crop, \ crop=False if self.no_crop else True, use_roimasking = self.use_roimasking,\ is_matting=True) tr_scribble = GenerateScribble(elem='alpha') if not self.no_crop: transform_ts.insert(0, tr_crop) if self.channel == 5 and self.use_iogpoints: print('Use foreground/background points') transform_ts.insert(-1, tr_in) transform_ts.insert(-1, tr_out) transform_ts.insert(-1, ToImage(norm_elem=('in_points', 'out_points'))) elif self.channel == 6 and self.use_trimap: print('Use trimap (one-hot)') elif self.channel == 4 and self.use_trimap: print('Use trimap') elif self.channel == 4 and self.use_bbox: print('Use bounding box') if self.bbox_type == 'points': transform_ts.insert(-1, tr_out) elif self.bbox_type == 'area': transform_ts.insert(-1, tr_bbox) else: raise RuntimeError('Wrong bbox type.') transform_ts.insert(-1, ToImage(norm_elem=('out_points'))) elif self.channel == 4 and self.use_in_point: print('Use inside point') transform_ts.insert(-1, tr_in) transform_ts.insert(-1, ToImage(norm_elem=('in_points'))) elif self.channel == 4 and self.use_extreme_points: print('Use extreme points') transform_ts.insert(-1, tr_ep) transform_ts.insert(-1, ToImage(norm_elem='extreme_points')) elif self.channel == 4 and self.use_scribble: print('Use scribble') transform_ts.insert(-1, tr_scribble) transform_ts.insert(-1, ToImage(norm_elem='scribble')) elif self.channel == 3: print('Use no annotation') else: raise NotImplementedError('Wrong interactive method.') print([str(tran) for tran in transform_ts]) return transforms.Compose(transform_ts) # Path: util/dataset.py IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm'] BASE_DIR = 'Combined_Dataset' class Composition1KMatting(Dataset): class Combined4ClassesMatting(Dataset): class RealWorldMatting(Dataset): def __init__(self, root='dataset', split='train', task='matting', num_bgs=10, transform=None, preprocess=False, retname=True): def __getitem__(self, index): def _composite_fg(self, fg, alpha, idx): def _composite(self, fg, bg, a, w, h, trimap): def __len__(self): def __str__(self): def __init__(self, root='dataset', split='all', transform=None, retname=True): def __getitem__(self, index): def __len__(self): def __str__(self): def __init__(self, root='dataset', transform=None, retname=True): def __getitem__(self, index): def __len__(self): def __str__(self): # Path: util/config.py class CfgNode(dict): def __init__(self, init_dict=None, key_list=None, new_allowed=False): def __getattr__(self, name): def __setattr__(self, name, value): def __str__(self): def _indent(s_, num_spaces): def __repr__(self): def load_cfg_from_cfg_file(file): def merge_cfg_from_list(cfg, cfg_list): def _decode_cfg_value(v): def _check_and_coerce_cfg_value_type(replacement, original, key, full_key): def conditional_cast(from_type, to_type): def _assert_with_logging(cond, msg): # Path: util/helpers.py def dilate(im, kernel=20): def tens2image(im): def crop2fullmask(crop_mask, bbox, im=None, im_size=None, zero_pad=False, relax=0, mask_relax=True, #interpolation=cv2.INTER_CUBIC, scikit=False): interpolation=cv2.INTER_LINEAR, scikit=False): def align2fullmask(crop_mask, im_size, points, relax=0): def overlay_mask(im, ma, colors=None, alpha=0.5): def overlay_masks(im, masks, alpha=0.5): def extreme_points(mask, pert): def find_point(id_x, id_y, ids): def getPositon(distance_transform): def in_points(mask, pert): def out_points(mask, pert): def out_points_mask(mask, pert): def get_bbox(mask, points=None, pad=0, zero_pad=False, use_roimasking=False): def crop_from_bbox(img, bbox, zero_pad=False, use_roimasking=False): def fixed_resize(sample, resolution, flagval=None): def crop_from_mask(img, mask, relax=0, zero_pad=False, use_roimasking = False): def make_gaussian(size, sigma=10, center=None, d_type=np.float64): def make_gt(img, labels, sigma=10, one_mask_per_point=False): def make_gt_bbox(img, labels, sigma=10, one_mask_per_point=False): def cstm_normalize(im, max_value): def generate_param_report(logfile, param): def color_map(N=256, normalized=False): def bitget(byteval, idx): def save_mask(results, mask_path): def B_spline(control_points, num_i, s=0.5): def generate_scribble_strictly(mask, num_c=3, num_i=50, coverage_area=0.1, width=10, best_out_of=5): def generate_trimap_with_gaussian(mask): def clamp(input, min=None, max=None): def produce_trimap(mask): def unified_trimap_transform(trimap, sample_name, split_dir): H, W = mask.shape # Path: seg_matting_tool/test_4classes.py import numpy as np import os.path import logging import argparse import cv2 import torch.nn.parallel import numpy as np import util.helpers as helpers import os import random import time import cv2 import numpy as np import logging import argparse import torch import torch.backends.cudnn as cudnn import torch.nn as nn import torch.nn.functional as F import torch.nn.parallel import torch.optim import torch.utils.data import torch.multiprocessing as mp import torch.distributed as dist from PIL import Image from util import dataset from util.util import AverageMeter, compute_mse, compute_sad, compute_gradient, compute_connectivity, get_cuda_devices, get_unknown_tensor_from_pred from torch.nn.functional import upsample from torchvision import transforms from tensorboardX import SummaryWriter from util.custom_transforms import interactiveMattingTransform from util import dataset, config, helpers from model.mattingnet import Unified_Interactive_Matting from model.mattingnet import Unified_Interactive_Matting_trimap fmt = "[%(asctime)s %(levelname)s %(filename)s line %(lineno)d %(process)d] %(message)s" handler.setFormatter(logging.Formatter(fmt)) logger.addHandler(handler) return logger def get_relax_pad(relax_pad, extreme_points): if relax_pad <= 0: return 0 if relax_pad >= 1: return int(relax_pad) x_min, y_min = np.min(extreme_points, axis=0) x_max, y_max = np.max(extreme_points, axis=0) x_len = x_max - x_min + 1 y_len = y_max - y_min + 1 return max(20, int(relax_pad * max(x_len, y_len))) def main(): global args, logger, writer use_void_pixels=True logger = get_logger() args = get_parser() # writer = SummaryWriter(args.save_folder) if args.test_gpu: os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(str(x) for x in args.test_gpu) else: args.test_gpu = get_cuda_devices() device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') logger.info(args)# 在屏幕上打印信息 if args.manual_seed is not None: random.seed(args.manual_seed) np.random.seed(args.manual_seed) torch.manual_seed(args.manual_seed) torch.cuda.manual_seed(args.manual_seed) torch.cuda.manual_seed_all(args.manual_seed) cudnn.benchmark = False cudnn.deterministic = True # transform and dataloader _interactive_matting_transform = interactiveMattingTransform(channel=args.in_channels, no_crop=args.no_crop, relax_crop=args.relax_crop,\ use_iogpoints=args.use_iogpoints, use_roimasking=args.use_roimasking, use_trimap=args.use_trimap,\ use_in_point=args.use_in_point, use_bbox=args.use_bbox, use_iogdextr=args.use_iogdextr, use_extreme_points=args.use_extreme_points, use_scribble=args.use_scribble,\ rotate_degree=args.rotate_degree, scale=args.scale, shear=args.shear,\ flip=args.flip, crop_size=args.crop_size, mask_type=args.mask_type, bbox_type=args.bbox_type) composed_transforms_ts = _interactive_matting_transform.getTestTransform() val_data = dataset.Combined4ClassesMatting(root=args.data_root, split=args.test_split,transform=composed_transforms_ts) val_loader = torch.utils.data.DataLoader(val_data, batch_size=args.batch_size_test, shuffle=False, num_workers=args.workers_test, pin_memory=True, sampler=None) # model if args.arch == 'uim': model = Unified_Interactive_Matting(n_classes=args.classes, in_channels=args.in_channels, encoder_layers=args.encoder_layers, decoder_layers=args.decoder_layers, fusion_method=args.fusion_method) elif args.arch == 'uim_trimap': model = Unified_Interactive_Matting_trimap(n_classes=args.classes, in_channels=args.in_channels, encoder_layers=args.encoder_layers, decoder_layers=args.decoder_layers, fusion_method=args.fusion_method) else: raise RuntimeError('Wrong arch.') logger.info(model) model = torch.nn.DataParallel(model) cudnn.benchmark = True model = model.to(device) model.eval() # checkpoint model_path = args.model_path if os.path.isfile(model_path): logger.info("=> loading checkpoint '{}'".format(model_path)) checkpoint = torch.load(model_path) model.load_state_dict(checkpoint) logger.info("=> loaded checkpoint '{}'".format(model_path)) else: raise RuntimeError("=> no checkpoint found at '{}'".format(model_path)) # evaluate print('evaluating Network') eval_result = dict() eval_result['all_mse_tri_free'] = AverageMeter() eval_result['all_sad_tri_free'] = AverageMeter() eval_result['all_grad_tri_free'] = AverageMeter() eval_result['all_connectivity_tri_free'] = AverageMeter() eval_result["per_categ_mse"] = dict() eval_result["per_categ_sad"] = dict() eval_result["per_categ_grad"] = dict() eval_result["per_categ_conn"] = dict() if not os.path.exists(args.save_folder): os.mkdir(args.save_folder) with torch.no_grad(): # Main Testing Loop for ii, sample in enumerate(val_loader): if ii % 10 == 0: print('Evaluating: {} of {} batches'.format(ii, len(val_loader))) # predict result and gt image = sample['image'] alpha = sample['alpha'] trimap_ori = sample['trimap_ori'] alpha_shape = sample['alpha_shape'] alpha_ori = sample['alpha_ori'] metas = sample["meta"] cat = int(metas['category'][0]) if args.use_iogpoints: interactive = torch.cat((sample['in_points'],sample['out_points']), dim=1) elif args.use_trimap: interactive = sample['trimap'] elif args.use_bbox: interactive = sample['out_points'] elif args.use_in_point: interactive = sample['in_points'] elif args.use_extreme_points: interactive = sample['extreme_points'] elif args.use_scribble: interactive = sample['scribble'] else: interactive = None if 'gca' in args.arch or 'aim' in args.arch or 'uim' in args.arch or 'interactive_matting' in args.arch: pred = model.forward(image, interactive) else: pred = model.forward(input) if not args.arch == 'mgmatting':
pred = pred.to(torch.device('cpu'))
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: SJTU-Quant/SUNNY-GNN # Path: models/utils.py def aug_mask(g, n_pos, n_neg, topk, k): edge_mask = g.edata['e_att'] pos_masks = None neg_masks = None cts_idxs = torch.tensor([]).long() e_d_mask = torch.zeros_like(edge_mask) e_d_mask[:, 1] = distance_coef(1) * edge_mask[:, 1] e_d_mask[:, 0] = distance_coef(2) * edge_mask[:, 0] e_d_mask[e_d_mask > 1] = 1. g.edata['e_att'] = e_d_mask gs = dgl.unbatch(g) for i in range(len(gs)): e_h_mask = gs[i].edata['e_h_mask'].T.cpu() relevant_edges = torch.nonzero(e_h_mask[0]).shape[0] + torch.nonzero(e_h_mask[1]).shape[0] mask = gs[i].edata['e_att'].T.cpu() mask = mask.view(-1) pos_mask, neg_mask, cts_idxs = \ perturb_mask(mask, n_pos, n_neg, topk, k, cts_idxs, i, relevant_edges) if pos_masks is None: pos_masks = pos_mask.view(n_pos, 2, -1).transpose(0, 1) neg_masks = neg_mask.view(n_neg, 2, -1).transpose(0, 1) else: pos_masks = torch.cat((pos_masks, pos_mask.view(n_pos, 2, -1).transpose(0, 1)), dim=2) neg_masks = torch.cat((neg_masks, neg_mask.view(n_neg, 2, -1).transpose(0, 1)), dim=2) del gs return pos_masks, neg_masks, cts_idxs # Path: models/utils.py def aug_mask_hetero(g, n_pos, n_neg, topk, k): edge_mask = g.edata['e_att'] pos_masks = {etp: [] for etp in g.etypes} neg_masks = {etp: [] for etp in g.etypes} cts_idxs = torch.tensor([]).long() for etp in edge_mask.keys(): e_d_mask = torch.zeros_like(edge_mask[etp]) e_d_mask[:, 1] = distance_coef(1) * edge_mask[etp][:, 1] e_d_mask[:, 0] = distance_coef(2) * edge_mask[etp][:, 0] g.edata['e_att'][etp] = e_d_mask gs = dgl.unbatch(g) for i in range(len(gs)): mask = torch.tensor([]) e_num = torch.tensor([], dtype=torch.uint8) m = gs[i].edata['e_att'] e_h_m = gs[i].edata['e_h_mask'] relevant_edges = 0 for i, etp in enumerate(m): mask = torch.cat((mask, m[etp].T.cpu().view(-1))) relevant_edges += torch.nonzero(e_h_m[etp]).shape[0] e_num = torch.cat((e_num, torch.tensor([i]*m[etp].shape[0]*m[etp].shape[1]))) pos_mask, neg_mask, cts_idxs = \ perturb_mask(mask, n_pos, n_neg, topk, k, cts_idxs, i, relevant_edges) for i, etp in enumerate(pos_masks): pos_masks[etp].append(pos_mask[:, e_num==i]) neg_masks[etp].append(neg_mask[:, e_num==i]) del gs for etp in pos_masks: pos_masks[etp] = torch.cat(pos_masks[etp], dim=1) neg_masks[etp] = torch.cat(neg_masks[etp], dim=1) return pos_masks, neg_masks, cts_idxs # Path: models/snexgnn.py import torch import torch.nn as nn import torch.nn.functional as F import dgl from models.utils import aug_mask, aug_mask_hetero def loss(self, edge_mask, logits, labels): pred_loss = F.cross_entropy(logits, labels) sparsity_loss = self.sparsity(edge_mask) return pred_loss + sparsity_loss def batched_emb(self, g, x, batched_edge_mask, idx): n_samples = batched_edge_mask.shape[1] g.ndata['x'] = x gs = dgl.batch([g] * n_samples) x = gs.ndata.pop('x') self.encoder.set_graph(gs) h = self.encoder.get_emb(x, batched_edge_mask.view(2, -1, 1)) h = h.view(g.number_of_nodes(), n_samples, -1, h.shape[-1]).mean(2) offset = torch.cat([torch.tensor([0], device=gs.device), gs.batch_num_nodes().cumsum(dim=0)[:int(gs.batch_size / n_samples) - 1]]) proj = self.proj_head(h[offset]) logits = self.encoder(h, offset).view(g.batch_size, n_samples, -1) logits = torch.softmax(logits, dim=2) del gs return proj[idx], logits[idx] def get_edge_att(self, g, all_emb, e_batch, h_target): def calc_att(mask, hop_batch, k=1): n_map = g.ndata['_ID'] e = g.edges()[0][mask], g.edges()[1][mask] emb = torch.cat([self.f[k - 1](all_emb[k - 1][n_map[e[0]]]), self.f[k](all_emb[k][n_map[e[1]]]), h_target[hop_batch]], dim=1) att = self.extractor(emb) return att e_h_mask = g.edata['e_h_mask'].T one_hop_mask = torch.nonzero(e_h_mask[0]).view(-1) one_hop_att = calc_att(one_hop_mask, e_batch[one_hop_mask], k=2) two_hop_mask = torch.nonzero(e_h_mask[1]).view(-1) two_hop_att = calc_att(two_hop_mask, e_batch[two_hop_mask], k=1) edge_att = torch.zeros((2, g.number_of_edges(), 1), device=g.device) edge_att[:, :, :] = self.MIN_WEIGHT edge_att[0][two_hop_mask] = two_hop_att edge_att[1][one_hop_mask] = one_hop_att return edge_att def forward(self, g, all_emb, labels, training=False, explain=False, epoch=0): x = all_emb[0][g.ndata['_ID']] with g.local_scope(): offset_node = torch.cat([torch.tensor([0], device=g.device), g.batch_num_nodes().cumsum(dim=0)[:-1]]) h_target = self.f[2](all_emb[2][g.ndata['_ID'][offset_node]]) e_batch = torch.repeat_interleave(torch.arange(g.batch_size, device=g.device), g.batch_num_edges()) edge_att = self.get_edge_att(g, all_emb, e_batch, h_target) if explain: return edge_att edge_att = self.sampling(edge_att, training) self.encoder.set_graph(g) enc_emb = self.encoder.get_emb(x, edge_att) enc_logits = self.encoder(enc_emb, offset_node) if training: pred_loss = self.loss(edge_att, enc_logits, labels) g.edata['e_att'] = edge_att.view(2, g.number_of_edges()).T enc_proj = self.proj_head(enc_emb[offset_node]) topk = (self.max_topk - (self.max_topk - self.min_topk) * epoch / self.max_epoch) pos_edge_att, neg_edge_att, cts_idxs = self.get_cts_mask(g, topk, self.k) pos_enc_proj, pos_enc_logits = self.batched_emb(g, x, pos_edge_att.to(g.device), cts_idxs) neg_enc_proj, neg_enc_logits = self.batched_emb(g, x, neg_edge_att.to(g.device), cts_idxs) cts_loss = self.cts_loss(enc_proj[cts_idxs], pos_enc_proj, neg_enc_proj, pos_enc_logits, neg_enc_logits, labels[cts_idxs]) return enc_logits, [pred_loss, cts_loss] return enc_logits, None class SNexHGN(SNexGNN): def __init__(self, pret_encoder, encoder, extractor, in_dim, target_ntype, n_heads=1, dropout=0.5): super(SNexHGN, self).__init__(pret_encoder, encoder, extractor, in_dim, target_ntype, n_heads, dropout) self.sparsity_mask_coef = 1e-5 self.sparsity_ent_coef = 1e-5 def get_edge_att_hetero(self, g, all_emb, e_batch, h_target, etype, ntypes): def calc_att(mask, hop_batch, k): n_map_src = g.ndata['_ID'][ntypes[0]] n_map_dst = g.ndata['_ID'][ntypes[1]] e = g.edges(etype=etype)[0][mask], g.edges(etype=etype)[1][mask] src_emb = self.f[k - 1][ntypes[0]](all_emb[k - 1][ntypes[0]][n_map_src[e[0]]]) dst_emb = self.f[k][ntypes[1]](all_emb[k][ntypes[1]][n_map_dst[e[1]]]) emb = torch.cat([src_emb, dst_emb, h_target[hop_batch]], dim=1) att = self.extractor(emb) return att e_h_mask = g.edata['e_h_mask'][(ntypes[0], etype, ntypes[1])].T one_hop_mask = torch.nonzero(e_h_mask[0]).view(-1) if one_hop_mask.shape[0] > 0: one_hop_att = calc_att(one_hop_mask, e_batch[one_hop_mask], k=2) else: one_hop_att = torch.tensor([]).view(0, 1).to(g.device) two_hop_mask = torch.nonzero(e_h_mask[1]).view(-1) if two_hop_mask.shape[0] > 0: two_hop_att = calc_att(two_hop_mask, e_batch[two_hop_mask], k=1) else: two_hop_att = torch.tensor([]).view(0, 1).to(g.device) edge_att = torch.zeros((2, g.num_edges(etype), 1), device=g.device) edge_att[:, :, :] = self.MIN_WEIGHT edge_att[0][two_hop_mask] = two_hop_att edge_att[1][one_hop_mask] = one_hop_att return edge_att def batched_emb_hetero(self, g, x, batched_edge_mask, n_samples, idx): g.ndata['x'] = x gs = dgl.batch([g] * n_samples) x = gs.ndata.pop('x') self.encoder.set_graph(gs) for etp in batched_edge_mask.keys():
batched_edge_mask[etp] = batched_edge_mask[etp].view(2, -1, 1).to(gs.device)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: dvmazur/mixtral-offloading # Path: src/expert_cache.py class ExpertCache: def __init__(self, make_module: callable, main_size: int, offload_size: int, buffer_size: int): """Dynamically loads an array of modules with identical hyperparameters""" self.module_type = self.module_size = self.device = None self.active = False self.registered_experts: Dict[ExpertUID, ExpertInfo] = dict() self.main_modules = [self._check_module(make_module()) for i in range(main_size)] self.main_infos: List[Optional[ExpertInfo]] = [None for _ in range(main_size)] assert self.module_size is not None self.offloaded_storages = [ torch.UntypedStorage(self.module_size).pin_memory(self.device) for _ in range(offload_size)] self.offloaded_infos: List[Optional[ExpertInfo]] = [None for _ in range(offload_size)] # temporary storage to shave off latency self.device_expert_buffers = deque([self._check_module(make_module()) for _ in range(buffer_size)]) self.offloaded_storage_buffers = deque([ torch.UntypedStorage(self.module_size).pin_memory(self.device) for _ in range(buffer_size)]) self.group_infos: Dict[int, EvictionGroupInfo] = defaultdict(EvictionGroupInfo) def _check_module(self, module: MixtralExpertWrapper): assert isinstance(module.storage, torch.UntypedStorage) if self.module_type is None: self.module_type = type(module) self.module_size = len(module.storage) self.device = module.storage.device else: assert isinstance(module, self.module_type) assert len(module.storage) == self.module_size assert module.storage.device == self.device return module def add_expert(self, uid: ExpertUID, module: MixtralExpertWrapper, eviction_group: int = 0, offload: Optional[bool] = None): """Register an expert to the cache and associate it with uid""" assert self.module_type is not None assert isinstance(module, self.module_type) return self.add_expert_storage(uid, module.storage, eviction_group=eviction_group, offload=offload) def add_expert_storage(self, uid: ExpertUID, storage: torch.UntypedStorage, eviction_group: int = 0, offload: Optional[bool] = None): assert uid not in self.registered_experts, f"expert {uid} already registered" assert isinstance(storage, torch.UntypedStorage) assert len(storage) == self.module_size if offload is None or not offload: # False or None for i in range(len(self.main_modules)): if self.main_infos[i] is None: self.main_modules[i].storage.copy_(storage) info = ExpertInfo(uid, eviction_group=eviction_group, offloaded=False, index=i) self.registered_experts[uid] = self.main_infos[i] = info self.group_infos[eviction_group].add(info) return # done allocating; found spot on device if offload is None or offload: # True or None for i in range(len(self.offloaded_storages)): if self.offloaded_infos[i] is None: self.offloaded_storages[i].copy_(storage) info = ExpertInfo(uid, eviction_group=eviction_group, offloaded=True, index=i) self.registered_experts[uid] = self.offloaded_infos[i] = info self.group_infos[eviction_group].add(info) return # done allocating; found an offloaded spot raise ValueError("Cache is full") def load_experts( self, *uids: ExpertUID, unordered: bool = False) -> Iterator[Tuple[ExpertUID, MixtralExpertWrapper]]: """ :example: >>> for uid, expert in expert_cache.load_experts(*list_of_uids, unordered=True): >>> for uid, expert in expert_iter: >>> result += expert(x) * get_moe_weight(uid) :param uids: iterate over the specified expert uids. Same uids as in add_expert :param unordered: if True, allows cache to iterate experts in arbitrary order The order is chosen to minimize the total wait time. :returns: an iterator that yields (uid, expert) pairs, only usable inside the for loop """ assert len(set(uids)) == len(uids) assert not self.active, "already loading experts; buffers are busy" if unordered: # yield non-offloaded experts first uids = sorted(uids, key=lambda uid: self.registered_experts[uid].offloaded) infos = [self.registered_experts[uid] for uid in uids] assert len(set(info.eviction_group for info in infos)) == 1, "experts must be in the same evicton group" eviction_group = self.group_infos[infos[0].eviction_group] for info in infos: eviction_group.mark_used(info) try: self.active = True # save pre-loaded experts before they can be swapped pre_loaded_infos = deque([info for info in infos if not info.offloaded]) pre_loaded_experts = deque([self.main_modules[info.index] for info in pre_loaded_infos]) # begin loading experts into free buffers in background (via non-blocking copy) infos_to_load = deque([info for info in infos if info.offloaded]) infos_in_loading = deque([]) experts_in_loading = deque([]) window_size = min(len(self.device_expert_buffers) - 1, len(eviction_group.main_infos), len(infos_to_load)) for _ in range(window_size): info_to_load = infos_to_load.popleft() infos_in_loading.append(info_to_load) experts_in_loading.append( self._swap(info_to_load, eviction_group.choose_expert_to_evict())) for info in infos: if len(pre_loaded_infos) > 0 and info is pre_loaded_infos[0]: pre_loaded_infos.popleft() yield (info.uid, pre_loaded_experts.popleft()) elif len(infos_in_loading) > 0 and info is infos_in_loading[0]: infos_in_loading.popleft() yield (info.uid, experts_in_loading.popleft()) if len(infos_to_load) > 0: info_to_load = infos_to_load.popleft() infos_in_loading.append(info_to_load) experts_in_loading.append( self._swap(info_to_load, eviction_group.choose_expert_to_evict())) else: raise RuntimeError("internal error: caching algorithm failed") finally: self.active = False def _swap(self, info_to_load: ExpertInfo, info_to_evict: ExpertInfo) -> nn.Module: """Swap an offloaded expert (info_to_load) with an on-device expert (info_to_evict) return the loaded expert""" assert info_to_load.offloaded and not info_to_evict.offloaded assert info_to_load.eviction_group == info_to_evict.eviction_group # swap a single on-device expert with a single offloaded expert using buffers for parallelism offloaded_storage_buffer = self.offloaded_storage_buffers.popleft() device_expert_buffer = self.device_expert_buffers.popleft() device_expert_buffer.storage.copy_(self.offloaded_storages[info_to_load.index], non_blocking=True) offloaded_storage_buffer.copy_(self.main_modules[info_to_evict.index].storage, non_blocking=True) self.device_expert_buffers.append(self.main_modules[info_to_evict.index]) self.main_modules[info_to_evict.index] = device_expert_buffer self.offloaded_storage_buffers.append(self.offloaded_storages[info_to_load.index]) self.offloaded_storages[info_to_load.index] = offloaded_storage_buffer self.main_infos[info_to_evict.index] = info_to_load self.offloaded_infos[info_to_load.index] = info_to_evict info_to_evict.offloaded, info_to_load.offloaded = info_to_load.offloaded, info_to_evict.offloaded info_to_evict.index, info_to_load.index = info_to_load.index, info_to_evict.index self.group_infos[info_to_load.eviction_group].swap(info_to_load, info_to_evict) return device_expert_buffer # Path: src/expert_wrapper.py class MixtralExpertWrapper(nn.Module): def __init__( self, expert_module: tp.Any, device: torch.device, ): super().__init__() expert_module, self.storage = self.replace_layer_storage(expert_module, device) self.expert_module = lambda *args, **kwargs: expert_module(*args, **kwargs) self._register_state_dict_hook(self._add_storage_to_state_dict_hook) self._register_load_state_dict_pre_hook(self._load_storage_from_state_dict_hook) @staticmethod def _add_storage_to_state_dict_hook(self, state_dict, prefix, local_metadata): state_dict[prefix + 'storage'] = torch.as_tensor(self.storage, dtype=torch.uint8) return state_dict def _load_storage_from_state_dict_hook(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): self.storage.copy_(state_dict[prefix + 'storage'].storage().untyped()) del state_dict[prefix + 'storage'] def forward(self, *args, **kwargs): return self.expert_module(*args, **kwargs) @staticmethod def replace_layer_storage( layer: tp.Any, device: torch.device, ): state_dict = { f"w{i}": { "W_q": getattr(layer, f"w{i}").W_q, "meta": getattr(layer, f"w{i}").meta, "bias": getattr(layer, f"w{i}").bias, } for i in range(1, 4) } storage_size = 0 offsets = [0] for x in nested_flatten(state_dict): if not isinstance(x, torch.Tensor): continue storage_size += x.nbytes offsets.append(storage_size) storage = torch.UntypedStorage(storage_size, device=device) i = 0 new_flattened_states = list() for x in nested_flatten(state_dict): if not isinstance(x, torch.Tensor): new_flattened_states.append(x) continue start = offsets[i] end = offsets[i + 1] a_view = torch.as_tensor(storage[start:end], dtype=x.dtype, device=device).view(x.shape) a_view[...] = x assert a_view.data_ptr() == storage.data_ptr() + start i += 1 new_flattened_states.append(a_view) state_dict = nested_pack(new_flattened_states, state_dict) for layer_id, states in state_dict.items(): patched = getattr(layer, layer_id) patched.W_q = states["W_q"] patched.meta = states["meta"] patched.bias = states["bias"] setattr(layer, layer_id, patched) return layer, storage # Path: src/custom_layers.py class HQQLinearTritonSavable(HQQLinear): def __init__(self, layer, quant_config, meta=None, **kwargs): """ Example how to get meta: >>>> meta1 = HQQLinearSavable.get_hqq_meta((hidden_dim, ffn_dim), quant_config) >>>> meta2 = HQQLinearSavable.get_hqq_meta((ffn_dim, hidden_dim), quant_config) """ assert quant_config['weight_quant_params']['nbits'] in [2, 3, 4] super().__init__(layer, quant_config, **kwargs) if not hasattr(self, 'meta'): assert meta is not None self.meta = copy.deepcopy(meta) self._register_state_dict_hook(self._add_to_state_dict_hook) self._register_load_state_dict_pre_hook(self._load_from_state_dict_hook) def quantize(self, *args, **kwargs): super().quantize(*args, **kwargs) # repacking self.repack() def repack(self): if self.W_q.shape != self.meta['shape']: W_q = Quantizer.unpack[self.meta['packing']](self.W_q) sh = self.meta['shape'] W_q = W_q.reshape((-1,) + sh[1:]) W_q = W_q[:sh[0], ...] self.W_q = Quantizer.pack[self.meta['packing']](W_q) def forward(self, x): return self.forward_triton(x) def set_backend(self, backend): pass @torch.inference_mode() def forward_triton(self, x): assert self.ready, "model was not quantized" assert self.meta['axis'] == 0 W_q, meta = self.W_q, self.meta del_keys = [] if 'quant_scale' in meta and meta['quant_scale']: meta['scale'] = Quantizer.dequantize(meta['scale_q'], meta['meta_scale']); del_keys.append('scale') if 'quant_zero' in meta and meta['quant_zero']: meta['zero'] = Quantizer.dequantize(meta['zero_q'], meta['meta_zero']); del_keys.append('zero') K = meta['shape'][1] N = meta['shape'][0] if self.meta['nbits'] == 4: fn = triton_matmul4_transpose elif self.meta['nbits'] == 3: fn = functools.partial(triton_matmul3_transpose, N=N) elif self.meta['nbits'] == 2: fn = triton_matmul2_transpose else: raise RuntimeError(f"nbits == {self.meta['nbits']} isn't yet supported") output = fn( meta['group_size'], x, W_q.view(-1, K), meta['scale'].view(-1, K), meta['zero'].view(-1, K), bias=self.bias if hasattr(self, 'bias') else None, ) #Cleanup for key in del_keys: del meta[key] return output # to support .forward_pytorch(...) - backward compatibility @torch.inference_mode() def dequantize(self): assert self.ready, "model was not quantized" W_q, meta = self.W_q, self.meta del_keys = [] if(meta['quant_scale']): meta['scale'] = Quantizer.dequantize(meta['scale_q'], meta['meta_scale']); del_keys.append('scale') if(meta['quant_zero']): meta['zero'] = Quantizer.dequantize(meta['zero_q'], meta['meta_zero']); del_keys.append('zero') W_q_p = Quantizer.unpack[meta['packing']](W_q).half() W_q_p = W_q_p[:meta['shape'][0], ...] W_q_p = W_q_p.reshape((meta['group_size'], -1)) if((meta['group_size'] is not None) and (meta['nbits']==3)): W_q_p = W_q_p[:meta['group_size']] if (meta['axis']==0) else W_q_p[:,:meta['group_size']] W_est = ((W_q_p - meta['zero'])*meta['scale']).reshape(meta['shape']) #Cleanup del W_q_p for key in del_keys: del meta[key] return W_est @classmethod def get_hqq_meta(cls, linear_shape, quant_config): layer = HQQLinear(nn.Linear(*linear_shape, bias=False), quant_config) meta = layer.meta def _remove_tensors_recursive(d): keys = list(d.keys()) for k in keys: if isinstance(d[k], torch.Tensor): del d[k] elif isinstance(d[k], dict): _remove_tensors_recursive(d[k]) _remove_tensors_recursive(meta) return meta @staticmethod def _add_to_state_dict_hook(self, state_dict, prefix, local_metadata): tensor_paths = self._get_tensor_paths(self.meta) assert set(tensor_paths).issubset( {'scale_q', 'meta_scale.scale', 'meta_scale.zero', 'zero_q', 'meta_zero.scale', 'meta_zero.zero', 'scale', 'zero'} ) def _add(name, value): state_dict[prefix + name] = value _add('W_q', self.W_q) if self.bias is not None: _add('bias', self.bias) if 'meta_scale' in self.meta: _add('meta.scale_q', self.meta['scale_q']) _add('meta.meta_scale.scale', self.meta['meta_scale']['scale']) _add('meta.meta_scale.zero', self.meta['meta_scale']['zero']) else: _add('meta.scale', self.meta['scale']) if 'meta_zero' in self.meta: _add('meta.zero_q', self.meta['zero_q']) _add('meta.meta_zero.scale', self.meta['meta_zero']['scale']) _add('meta.meta_zero.zero', self.meta['meta_zero']['zero']) else: _add('meta.zero', self.meta['zero']) return state_dict def _load_from_state_dict_hook(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): tensor_paths = [k[len(prefix + 'meta.'):] for k in state_dict.keys() if k.startswith(prefix + 'meta.')] assert set(tensor_paths).issubset( {'scale_q', 'meta_scale.scale', 'meta_scale.zero', 'zero_q', 'meta_zero.scale', 'meta_zero.zero', 'scale', 'zero'} ) def _del(name): del state_dict[prefix + name] def _set(name): setattr(self, name, state_dict[prefix + name]) _del(name) def _get(name): v = state_dict[prefix + name] _del(name) return v _set('W_q') if 'bias' in state_dict: _set('bias') else: self.bias = None if not hasattr(self, 'meta'): self.meta = {} if (prefix + 'meta.meta_scale.scale') in state_dict: self.meta['scale_q'] = _get('meta.scale_q') self.meta['quant_scale'] = True if not 'meta_scale' in self.meta: self.meta['meta_scale'] = {} self.meta['meta_scale'] |= { 'scale': _get('meta.meta_scale.scale'), 'zero': _get('meta.meta_scale.zero') } else: self.meta['scale'] = _get('meta.scale') if (prefix + 'meta.meta_zero.scale') in state_dict: self.meta['zero_q'] = _get('meta.zero_q') self.meta['quant_zero'] = True if not 'meta_zero' in self.meta: self.meta['meta_zero'] = {} self.meta['meta_zero'] |= { 'scale': _get('meta.meta_zero.scale'), 'zero': _get('meta.meta_zero.zero') } else: self.meta['zero'] = _get('meta.zero') self.ready = True # self.cuda() # self.in_gpu = self.W_q.device.type == 'cuda' # assert self.in_gpu self.repack() @classmethod def _get_tensor_paths(cls, state: Dict[str, Any], prefix=''): paths = [] for k, v in state.items(): if isinstance(v, dict): paths += cls._get_tensor_paths(v, prefix=k + '.') elif isinstance(v, torch.Tensor): paths.append(prefix + k) return paths def state_dict(self, *args, **kwargs): return nn.Module.state_dict(self, *args, **kwargs) def load_state_dict(self, *args, **kwargs): nn.Module.load_state_dict(self, *args, **kwargs) # Path: src/custom_layers.py class MixtralBLockSparseTop2MLP_HQQ(nn.Module): def __init__(self, config: MixtralConfig, quant_config: Dict[str, Any], meta1, meta2): super().__init__() self.w1 = HQQLinearTritonSavable(None, quant_config, meta1) self.w2 = HQQLinearTritonSavable(None, quant_config, meta2) self.w3 = HQQLinearTritonSavable(None, quant_config, meta1) self.act_fn = ACT2FN[config.hidden_act] def forward(self, hidden_states): current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states) current_hidden_states = self.w2(current_hidden_states) return current_hidden_states # Path: src/custom_layers.py class SparseMoeWrapper(nn.Module): def __init__(self, config, layer_id, gate, expert_cache): super().__init__() self.hidden_dim = config.hidden_size self.ffn_dim = config.intermediate_size self.num_experts = config.num_local_experts self.top_k = config.num_experts_per_tok self.layer_id = layer_id self.gate = gate self.experts = expert_cache def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: batch_size, sequence_length, hidden_dim = hidden_states.shape hidden_states = hidden_states.view(-1, hidden_dim) # router_logits: (batch * sequence_length, n_experts) router_logits = self.gate(hidden_states) routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) routing_weights /= routing_weights.sum(dim=-1, keepdim=True) # we cast back to the input dtype routing_weights = routing_weights.to(hidden_states.dtype) final_hidden_states = torch.zeros( (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device ) # One hot encode the selected experts to create an expert mask # this will be used to easily index which expert is going to be sollicitated expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) active_experts = selected_experts.flatten().unique().tolist() # Loop over all available experts in the model and perform the computation on each expert for (_layer_index, expert_idx), expert_layer in self.experts.load_experts( *((self.layer_id, expert_idx) for expert_idx in active_experts), unordered=True): idx, top_x = torch.where(expert_mask[expert_idx]) assert top_x.shape[0] > 0 # in torch it is faster to index using lists than torch tensors top_x_list = top_x.tolist() idx_list = idx.tolist() # Index the correct hidden states and compute the expert hidden state for # the current expert. We need to make sure to multiply the output hidden # states by `routing_weights` on the corresponding tokens (top-1 and top-2) current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim) current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None] # However `index_add_` only support torch tensors for indexing so we'll use # the `top_x` tensor here. final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) return final_hidden_states, router_logits # Path: src/utils.py @contextmanager def with_default_dtype(dtype): _dtype_original = torch.get_default_dtype() try: torch.set_default_dtype(dtype) yield finally: torch.set_default_dtype(_dtype_original) # Path: src/build_model.py import os import json import typing as tp import torch from functools import cache from dataclasses import dataclass from torch import nn from transformers import AutoConfig from transformers.models.mixtral import MixtralForCausalLM, MixtralConfig from safetensors.torch import load_file from torch import nn from tqdm.auto import trange from hqq.core.quantize import BaseQuantizeConfig from .expert_cache import ExpertCache from .expert_wrapper import MixtralExpertWrapper from .custom_layers import ( HQQLinearTritonSavable, MixtralBLockSparseTop2MLP_HQQ, SparseMoeWrapper, ) from .utils import with_default_dtype @dataclass(frozen=True) class OffloadConfig: main_size: int offload_size: int buffer_size: int offload_per_layer: int class QuantConfig: def __init__( self, ffn_config: BaseQuantizeConfig, attn_config: BaseQuantizeConfig, ): self.ffn_config = ffn_config self.attn_config = attn_config @cache def get_ffn_metas(self, hidden_dim: int, ffn_dim: int) -> tuple[tp.Any, tp.Any]: return ( HQQLinearTritonSavable.get_hqq_meta((hidden_dim, ffn_dim), self.ffn_config), HQQLinearTritonSavable.get_hqq_meta((ffn_dim, hidden_dim), self.ffn_config), ) def replace_attn_layers( model: MixtralForCausalLM, config: MixtralConfig, quant_config: QuantConfig, device: torch.device, ) -> None: attn_quant_config = quant_config.attn_config hidden_size = config.hidden_size num_heads = config.num_attention_heads head_dim = hidden_size // num_heads num_key_value_heads = config.num_key_value_heads shapes = [ (hidden_size, num_heads * head_dim),
(hidden_size, num_key_value_heads * head_dim),
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: CircleRadon/Osprey # Path: osprey/constants.py IGNORE_INDEX = -100 # Path: osprey/datasets/stage2_data.py class COCODataset(CustomDataset): def __init__(self, tokenizer=None, data_args=None, ann_file=None, img_prefix=None, max_gt_per_img=20, ): super().__init__(tokenizer, data_args, ann_file, img_prefix, max_gt_per_img) self.begin_str = '<image>\nIn the conversation below, you simply answer the category name based on what you see ' \ 'in the imagery inside a particular region. I will give you only one region each time.\n' # Path: osprey/datasets/stage2_data.py class RefCOCO(CustomDataset): def __init__(self, tokenizer, data_args=None, ann_file=None, img_prefix=None, max_gt_per_img=15, ): super().__init__(tokenizer, data_args, ann_file, img_prefix, max_gt_per_img) self.begin_str = '<image>\nI will provide you with only one region ' \ 'containing only one object, although there may be other ' \ 'objects present in the image. It is recommended that you ' \ "describe the object's relative position with respect to other " \ 'objects in the image, as well as its position within ' \ 'the image and its basic attributes.' def load_annotations(self, ann_file): self.coco = COCO(ann_file) self.img_ids = self.coco.getImgIds() data_infos = [] total_ann_ids = [] for i in self.img_ids: info = self.coco.loadImgs([i])[0] info['filename'] = info['file_name'].split('_')[-1] info['height'] = int(info['height']) info['width'] = int(info['width']) ann_ids = self.coco.getAnnIds(imgIds=[i]) ann_info = self.coco.loadAnns(ann_ids) if len(ann_info)==0: continue data_infos.append(info) total_ann_ids.extend(ann_ids) assert len(set(total_ann_ids)) == len( total_ann_ids), f"Annotation ids in '{ann_file}' are not unique!" return data_infos def get_data_item(self, idx): data_info = self.data_infos[idx] ann_info = self.get_ann_info(idx) img_path =os.path.join(self.img_prefix, data_info['filename']) image = self.read_process_image(img_path) gt_masks = [] gt_labels = [] for ann in ann_info: mask = self.annToMask(ann['segmentation'], data_info['height'], data_info['width']) gt_masks.append(mask) cat = self.coco.loadCats(ann['category_id']) gt_labels.append(data_info['caption']) data_item = dict( img = image, gt_masks = gt_masks, gt_labels = gt_labels ) return data_item # Path: osprey/datasets/stage2_data.py class RefCOCOP(RefCOCO): def __init__(self, tokenizer, data_args=None, ann_file=None, img_prefix=None, max_gt_per_img=15, ): super().__init__(tokenizer, data_args, ann_file, img_prefix, max_gt_per_img) self.begin_str = '<image>\nI will provide you with only one region ' \ 'containing only one object, although there may be other ' \ 'objects present in the image. It is recommended that you ' \ "describe the object's relative position with respect to other " \ 'objects in the image and its basic attibuts, you should not ' \ 'give its position within the image.' # Path: osprey/datasets/vcr.py class VCRDataset(Dataset): CLASSES = ('object',) def __init__(self, tokenizer, data_args=None, ann_file=None, img_prefix=None, ): super(VCRDataset, self).__init__() self.img_prefix = img_prefix self.tokenizer = tokenizer self.data_args = data_args self.begin_str = """<image>.\nThis provides an overview of the picture.\n""" self.data_infos = self.load_annotations(ann_file) print('normal_vcr', len(self.data_infos)) def load_annotations(self, ann_file): with open(ann_file, 'r') as f: ann_list = [json.loads(line) for line in f] data_infos = [] import re def replace_numbers_with_tags(s, class_names): pattern = r'\b(\d+)\b' try: result = re.sub(pattern, lambda match: f'{class_names[int(match.group(1))]} at region{match.group(1)}', s) except: # contain number not for instance return None return result for ann in ann_list: metadata_fn_path = ann['metadata_fn'] img_fn = ann['img_fn'] img_path = os.path.join(self.img_prefix,img_fn) annotations = json.load(open(os.path.join(self.img_prefix, metadata_fn_path))) masks = annotations['segms'] bboxes = np.array(annotations['boxes']) class_names = ann['objects'] num_objects = len(class_names) ref_string = '' for i in range(num_objects): ref_string = ref_string + f'region{i+1} <mask><pos>' + ',' ref_string = ref_string[:-1] ref_prefix = random.choice(Ref_WAY) begion_string = ref_prefix.replace('<region>', ref_string) qa_s = [] q = ann['question_orig'] q = replace_numbers_with_tags(q, class_names) a = ann['answer_orig'] a = replace_numbers_with_tags(a, class_names) why = ann['rationale_orig'] why = replace_numbers_with_tags(why, class_names) if (q is None) or (a is None) or (why) is None: continue qa_s.append({'from': 'human', 'value': begion_string + q}) qa_s.append({'from': 'gpt', 'value': a}) qa_s.append({'from': 'human', 'value': random.choice(WHY_QUESTIONS)}) qa_s.append({'from': 'gpt', 'value': why}) data_infos.append(dict( img_path = img_path, bboxes = bboxes, masks = masks, labels= class_names, qas = qa_s) ) return data_infos def __len__(self): return len(self.data_infos) def __getitem__(self, i): data_info = self.data_infos[i] img_path = data_info['img_path'] masks = data_info['masks'] bboxes = data_info['bboxes'] qas = data_info['qas'] processor = self.data_args.image_processor image = Image.open(img_path).convert('RGB') w, h = image.size # TODO ablation this image_file = img_path pred_masks = np.zeros((len(masks), h, w)) for i,mask in enumerate(masks): int_box = [round(box) for box in bboxes[i][:-1]] height_ = int(int_box[3]-int_box[1]) width_ = int(int_box[2]-int_box[0]) box_mask = make_mask(height_, width_, bboxes[i], mask) pred_masks[i, int_box[1]:int_box[3], int_box[0]:int_box[2]] = box_mask image = processor.preprocess(image, do_center_crop=False, return_tensors='pt')['pixel_values'][0] image = torch.nn.functional.interpolate(image.unsqueeze(0), size=(512, 512), mode='bilinear', align_corners=False).squeeze(0) cur_token_len = (image.shape[1] // 16) * (image.shape[2] // 16) # FIXME: 16 is hardcoded patch size qas = copy.deepcopy(qas) qas[0]['value'] = self.begin_str + qas[0]['value'] sources = preprocess_multimodal( copy.deepcopy([qas]), self.data_args, cur_token_len) data_dict = preprocess( sources, self.tokenizer, has_image=True) if isinstance(i, int): data_dict = dict(input_ids=data_dict['input_ids'][0], labels=data_dict['labels'][0]) data_dict['image'] = image data_dict['masks'] = torch.Tensor(pred_masks) return data_dict # Path: osprey/datasets/vg.py class VGDATA(CustomDataset): def __init__(self, tokenizer, data_args=None, ann_file=None, img_prefix=None, max_gt_per_img=3, ): self.data_args = data_args self.tokenizer = tokenizer self.ann_file = ann_file self.img_prefix = img_prefix self.max_gt_per_img = max_gt_per_img super().__init__(tokenizer, data_args, ann_file, img_prefix, max_gt_per_img) self.begin_str = """<image>\nThis provides an overview of the picture.\n""" def get_data_item(self, idx): data_info = self.data_infos[idx] ann_info = self.get_ann_info(idx) img_path = os.path.join(self.img_prefix, data_info['filename']) image = self.read_process_image(img_path) gt_labels = [] gt_masks_ann = [] for i, ann in enumerate(ann_info): if ann.get('ignore', False): continue mask = self.annToMask(ann['segmentation'], data_info['height'], data_info['width']) gt_labels.append(ann['caption']) gt_masks_ann.append(mask) data_item = dict( img = image, gt_labels=gt_labels, gt_masks=gt_masks_ann ) return data_item def process_text(self, data_item): image = data_item['img'] ori_labels = data_item['gt_labels'] ori_masks = np.array(data_item['gt_masks']) ori_masks = torch.from_numpy(ori_masks) shuffle_ids = torch.randperm(len(ori_labels)) if len(shuffle_ids) > self.max_gt_per_img: shuffle_ids = shuffle_ids[:self.max_gt_per_img] ori_masks = ori_masks[shuffle_ids] ori_labels = [ori_labels[i] for i in shuffle_ids] sources = dict() sources['conversations'] = [] for i in range(len(ori_labels)): question = random.choice(QUESTIONS).strip() question = question.replace('<region>', '<mask><pos>') if i == 0: question = self.begin_str + question question += LIMIT answer = ori_labels[i] sources['conversations'].append( {'from': 'human', 'value': question}) sources['conversations'].append({'from': 'gpt', 'value': answer}) cur_token_len = (image.shape[1] // 16) * (image.shape[2] // 16) sources = preprocess_multimodal( copy.deepcopy([sources['conversations']]), self.data_args, cur_token_len) # print(sources) data_dict = preprocess( sources, self.tokenizer, has_image=True ) # get single if isinstance(i, int): data_dict = dict(input_ids=data_dict['input_ids'][0], labels=data_dict['labels'][0]) data_dict['image'] = image data_dict['masks'] = ori_masks return data_dict # Path: osprey/datasets/stage2_data.py class PascalPart(CustomDataset): def __init__(self, tokenizer, data_args=None, ann_file=None, img_prefix=None, max_gt_per_img=15, ): super().__init__(tokenizer, data_args, ann_file, img_prefix, max_gt_per_img) CAT_CLASSES = ('potted plant', 'aeroplane', 'cow', 'cat', 'bus', 'horse', 'car', 'dog', 'bicycle', 'person', 'bird', 'bottle', 'sheep', 'motorbike') SUB_CLASSES = ('eye', 'window', 'cap', 'headlight', 'hand', 'mirror', 'arm', 'plant', 'wheel', 'ear', 'pot', 'foot', 'leg', 'nose', 'body', 'horn', 'handlebar', 'neck', 'license plate', 'paw', 'saddle', 'head', 'muzzle', 'tail', 'wing', 'beak', 'hair', 'torso', 'door', 'mouth') begin_str = '<image>\n In the conversation below, you simply answer the category and subcategory name based on what you see' \ 'in the image inside a particular region. It maybe a subpart of an object. '\ 'I will give you only one region each time. Your answer should in the format of '\ 'category:subcategory. ' class_str = 'Categories Containing '+', '.join(CAT_CLASSES)+ '. ' subclass_str = 'Subcategories Containing ' + ','.join(SUB_CLASSES) self.begin_str = begin_str + class_str + subclass_str + '.\n' # Path: osprey/datasets/stage2_data.py class PartImagenet(CustomDataset): def __init__(self, tokenizer, data_args=None, ann_file=None, img_prefix=None, max_gt_per_img=15, ): super().__init__(tokenizer, data_args, ann_file, img_prefix, max_gt_per_img) CAT_CLASSES = ( 'Bottle', 'Biped', 'Quadruped', 'Fish', 'Reptile', 'Bicycle', 'Bird', 'Car', 'Boat', 'Snake', 'Aeroplane' ) SUB_CLASSES = ( 'Tier', 'Hand', 'Wing', 'Mouth', 'Tail', 'Side', 'Fin', 'Engine', 'Foot', 'Head', 'Body', 'Sail', 'Seat' ) begin_str = '<image>\nIn the conversation below, you simply answer the category and subcategory name based on what you see' \ 'in the image inside a particular region. It maybe a subpart of an object. '\ 'I will give you only one region each time. Your answer should in the format of '\ 'category subcategory. ' class_str = 'Categories Containing '+', '.join(CAT_CLASSES)+ '. ' subclass_str = 'Subcategories Containing ' + ','.join(SUB_CLASSES) self.begin_str = begin_str + class_str + subclass_str + '.\n' # Path: osprey/datasets/osprey_724k.py class OspreyDetailedDescription(ConversationDataset): def __init__(self, tokenizer, data_args=None, ann_file=None, img_prefix=None, ): super().__init__(tokenizer, data_args, ann_file, img_prefix) def load_annotations(self, ann_file): data_infos = [] ann_list = json.load(open(ann_file)) for ann in ann_list: masks = [] qa_s = [] filename = ann['file_name'].split('_')[-1] img_path = os.path.join(self.img_prefix, filename) region_num = len(ann['annotation']) h, w = ann['height'], ann['width'] for i in range(region_num): mask = ann['annotation'][i]['segmentation'] masks.append(mask) question = random.choice(DETAILED_QUESTIONS) question = question.replace('<region>', '<mask><pos>') if i==0: qa_s.append({'from': 'human', 'value': self.begin_str+question}) else: qa_s.append({'from': 'human', 'value': question}) answer = re.findall(r"<.*>:\ (.*)", ann['description'][i])[0] qa_s.append({'from': 'gpt', 'value': answer}) data_infos.append(dict( img_path = img_path, masks = masks, height = h, width = w, qas = qa_s )) return data_infos # Path: osprey/datasets/osprey_724k.py class OspreyConversations(ConversationDataset): def __init__(self, tokenizer, data_args=None, ann_file=None, img_prefix=None, ): self.limit = "" super().__init__(tokenizer, data_args, ann_file, img_prefix) # Path: osprey/datasets/osprey_724k.py class OspreyShortForm(ConversationDataset): def __init__(self, tokenizer, data_args=None, ann_file=None, img_prefix=None, ): self.limit = ' Answer the question using a single word or phrase.' super().__init__(tokenizer, data_args, ann_file, img_prefix) # Path: osprey/datasets/osprey_724k.py class OspreyPartLevel(ConversationDataset): def __init__(self, tokenizer, data_args=None, ann_file=None, img_prefix=None, ): self.limit = ' Answer the question using a single word or phrase.' super().__init__(tokenizer, data_args, ann_file, img_prefix) # Path: osprey/datasets/osprey_724k.py class OspreyLVISPosNeg(ConversationDataset): def __init__(self, tokenizer, data_args=None, ann_file=None, img_prefix=None, ): super().__init__(tokenizer, data_args, ann_file, img_prefix) def load_annotations(self, ann_file): data_infos = [] ann_list = json.load(open(ann_file)) for ann in ann_list: if len(ann['conversations'])//2 ==0: continue masks = [] qa_s = [] filename = ann['file_name'] img_path = os.path.join(self.img_prefix, filename) region_num = len(ann['annotation']) h, w = ann['height'], ann['width'] for i in range(region_num): mask = ann['annotation'][i]['segmentation'] masks.append(mask) for i in range(len(ann['conversations'])//2): question = ann['conversations'][i*2]['value'] question = re.sub(r'<region\d+>', '<mask><pos>', question) if i==0: question = self.begin_str+question qa_s.append({'from': 'human', 'value': question}) answer = ann['conversations'][i*2+1]['value'] qa_s.append({'from': 'gpt', 'value': answer}) data_infos.append(dict( img_path = img_path, masks = masks, height = h, width = w, qas = qa_s )) # print(qa_s) return data_infos # Path: osprey/datasets/data_modules.py from dataclasses import dataclass from torch.utils.data import ConcatDataset from osprey.constants import IGNORE_INDEX from .stage2_data import COCODataset, RefCOCO, RefCOCOP from .vcr import VCRDataset from .vg import VGDATA from .stage2_data import PascalPart from .stage2_data import PartImagenet from .osprey_724k import OspreyDetailedDescription, OspreyConversations, OspreyShortForm, OspreyPartLevel, OspreyLVISPosNeg import torch import transformers import json @dataclass class DataCollatorForDetDataset(object): tokenizer: transformers.PreTrainedTokenizer def __call__(self, instances): input_ids, labels, img_metas, masks = tuple([instance.get(key,None) for instance in instances] for key in ('input_ids', 'labels', 'img_metas', 'masks')) input_ids = torch.nn.utils.rnn.pad_sequence( input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id) labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX) batch = dict( input_ids=input_ids, labels=labels, attention_mask=input_ids.ne(self.tokenizer.pad_token_id), img_metas=img_metas, masks = masks ) if 'image' in instances[0]: images = [instance['image'] for instance in instances] if all(x is not None and x.shape == images[0].shape for x in images): batch['images'] = torch.stack(images) else: batch['images'] = images return batch
def make_multitask_data_module(tokenizer,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: open-mmlab/PIA # Path: animatediff/models/attention.py class Transformer3DModel(ModelMixin, ConfigMixin): @register_to_config def __init__( self, num_attention_heads: int = 16, attention_head_dim: int = 88, in_channels: Optional[int] = None, num_layers: int = 1, dropout: float = 0.0, norm_num_groups: int = 32, cross_attention_dim: Optional[int] = None, attention_bias: bool = False, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, use_linear_projection: bool = False, only_cross_attention: bool = False, upcast_attention: bool = False, unet_use_cross_frame_attention=None, unet_use_temporal_attention=None, ): super().__init__() self.use_linear_projection = use_linear_projection self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim inner_dim = num_attention_heads * attention_head_dim # Define input layers self.in_channels = in_channels self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) if use_linear_projection: self.proj_in = nn.Linear(in_channels, inner_dim) else: self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) # Define transformers blocks self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, num_embeds_ada_norm=num_embeds_ada_norm, attention_bias=attention_bias, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, unet_use_cross_frame_attention=unet_use_cross_frame_attention, unet_use_temporal_attention=unet_use_temporal_attention, ) for d in range(num_layers) ] ) # 4. Define output layers if use_linear_projection: self.proj_out = nn.Linear(in_channels, inner_dim) else: self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True): # Input assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." video_length = hidden_states.shape[2] hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length) batch, channel, height, weight = hidden_states.shape residual = hidden_states hidden_states = self.norm(hidden_states) if not self.use_linear_projection: hidden_states = self.proj_in(hidden_states) inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) else: inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) hidden_states = self.proj_in(hidden_states) # Blocks for block in self.transformer_blocks: hidden_states = block( hidden_states, encoder_hidden_states=encoder_hidden_states, timestep=timestep, video_length=video_length ) # Output if not self.use_linear_projection: hidden_states = ( hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() ) hidden_states = self.proj_out(hidden_states) else: hidden_states = self.proj_out(hidden_states) hidden_states = ( hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() ) output = hidden_states + residual output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) if not return_dict: return (output,) return Transformer3DModelOutput(sample=output) # Path: animatediff/models/resnet.py class Downsample3D(nn.Module): def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.padding = padding stride = 2 self.name = name if use_conv: self.conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding) else: raise NotImplementedError def forward(self, hidden_states): assert hidden_states.shape[1] == self.channels if self.use_conv and self.padding == 0: raise NotImplementedError assert hidden_states.shape[1] == self.channels hidden_states = self.conv(hidden_states) return hidden_states # Path: animatediff/models/resnet.py class ResnetBlock3D(nn.Module): def __init__( self, *, in_channels, out_channels=None, conv_shortcut=False, dropout=0.0, temb_channels=512, groups=32, groups_out=None, pre_norm=True, eps=1e-6, non_linearity="swish", time_embedding_norm="default", output_scale_factor=1.0, use_in_shortcut=None, ): super().__init__() self.pre_norm = pre_norm self.pre_norm = True self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.time_embedding_norm = time_embedding_norm self.output_scale_factor = output_scale_factor if groups_out is None: groups_out = groups self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) if temb_channels is not None: if self.time_embedding_norm == "default": time_emb_proj_out_channels = out_channels elif self.time_embedding_norm == "scale_shift": time_emb_proj_out_channels = out_channels * 2 else: raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ") self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels) else: self.time_emb_proj = None self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) self.dropout = torch.nn.Dropout(dropout) self.conv2 = InflatedConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) if non_linearity == "swish": self.nonlinearity = lambda x: F.silu(x) elif non_linearity == "mish": self.nonlinearity = Mish() elif non_linearity == "silu": self.nonlinearity = nn.SiLU() self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut self.conv_shortcut = None if self.use_in_shortcut: self.conv_shortcut = InflatedConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) def forward(self, input_tensor, temb): hidden_states = input_tensor hidden_states = self.norm1(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states = self.conv1(hidden_states) if temb is not None: temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None] if temb is not None and self.time_embedding_norm == "default": hidden_states = hidden_states + temb hidden_states = self.norm2(hidden_states) if temb is not None and self.time_embedding_norm == "scale_shift": scale, shift = torch.chunk(temb, 2, dim=1) hidden_states = hidden_states * (1 + scale) + shift hidden_states = self.nonlinearity(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.conv2(hidden_states) if self.conv_shortcut is not None: input_tensor = self.conv_shortcut(input_tensor) output_tensor = (input_tensor + hidden_states) / self.output_scale_factor return output_tensor # Path: animatediff/models/resnet.py class Upsample3D(nn.Module): def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.use_conv_transpose = use_conv_transpose self.name = name conv = None if use_conv_transpose: raise NotImplementedError elif use_conv: self.conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1) def forward(self, hidden_states, output_size=None): assert hidden_states.shape[1] == self.channels if self.use_conv_transpose: raise NotImplementedError # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16 dtype = hidden_states.dtype if dtype == torch.bfloat16: hidden_states = hidden_states.to(torch.float32) # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 if hidden_states.shape[0] >= 64: hidden_states = hidden_states.contiguous() # if `output_size` is passed we force the interpolation output # size and do not make use of `scale_factor=2` if output_size is None: hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest") else: hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest") # If the input is bfloat16, we cast back to bfloat16 if dtype == torch.bfloat16: hidden_states = hidden_states.to(dtype) # if self.use_conv: # if self.name == "conv": # hidden_states = self.conv(hidden_states) # else: # hidden_states = self.Conv2d_0(hidden_states) hidden_states = self.conv(hidden_states) return hidden_states # Path: animatediff/models/motion_module.py def get_motion_module( in_channels, motion_module_type: str, motion_module_kwargs: dict ): if motion_module_type == "Vanilla": return VanillaTemporalModule(in_channels=in_channels, **motion_module_kwargs,) else: raise ValueError # Path: animatediff/models/unet_blocks.py import torch import pdb from torch import nn from .attention import Transformer3DModel from .resnet import Downsample3D, ResnetBlock3D, Upsample3D from .motion_module import get_motion_module # Adapted from https://github.com/guoyww/AnimateDiff def get_down_block( down_block_type, num_layers, in_channels, out_channels, temb_channels, add_downsample, resnet_eps, resnet_act_fn, attn_num_head_channels, resnet_groups=None, cross_attention_dim=None, downsample_padding=None, dual_cross_attention=False, use_linear_projection=False, only_cross_attention=False, upcast_attention=False, resnet_time_scale_shift="default", unet_use_cross_frame_attention=None, unet_use_temporal_attention=None, use_motion_module=None, motion_module_type=None, motion_module_kwargs=None, ): down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type if down_block_type == "DownBlock3D": return DownBlock3D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, downsample_padding=downsample_padding, resnet_time_scale_shift=resnet_time_scale_shift, use_motion_module=use_motion_module, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) elif down_block_type == "CrossAttnDownBlock3D": if cross_attention_dim is None: raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D") return CrossAttnDownBlock3D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, downsample_padding=downsample_padding, cross_attention_dim=cross_attention_dim, attn_num_head_channels=attn_num_head_channels, dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift, unet_use_cross_frame_attention=unet_use_cross_frame_attention, unet_use_temporal_attention=unet_use_temporal_attention, use_motion_module=use_motion_module, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) raise ValueError(f"{down_block_type} does not exist.") def get_up_block( up_block_type, num_layers, in_channels, out_channels, prev_output_channel, temb_channels, add_upsample, resnet_eps, resnet_act_fn, attn_num_head_channels, resnet_groups=None, cross_attention_dim=None, dual_cross_attention=False, use_linear_projection=False, only_cross_attention=False, upcast_attention=False, resnet_time_scale_shift="default", unet_use_cross_frame_attention=None, unet_use_temporal_attention=None, use_motion_module=None, motion_module_type=None, motion_module_kwargs=None, ): up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type if up_block_type == "UpBlock3D": return UpBlock3D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups,
resnet_time_scale_shift=resnet_time_scale_shift,